SemaDecl.cpp revision 3e9438b5251a547253d64169863c2909b9b2772a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774void Sema::InitBuiltinVaListType() {
775  if (!Context.getBuiltinVaListType().isNull())
776    return;
777
778  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
779  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
780                                       LookupOrdinaryName, ForRedeclaration);
781  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
782  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
783}
784
785/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
786/// file scope.  lazily create a decl for it. ForRedeclaration is true
787/// if we're creating this built-in in anticipation of redeclaring the
788/// built-in.
789NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
790                                     Scope *S, bool ForRedeclaration,
791                                     SourceLocation Loc) {
792  Builtin::ID BID = (Builtin::ID)bid;
793
794  if (Context.BuiltinInfo.hasVAListUse(BID))
795    InitBuiltinVaListType();
796
797  ASTContext::GetBuiltinTypeError Error;
798  QualType R = Context.GetBuiltinType(BID, Error);
799  switch (Error) {
800  case ASTContext::GE_None:
801    // Okay
802    break;
803
804  case ASTContext::GE_Missing_stdio:
805    if (ForRedeclaration)
806      Diag(Loc, diag::err_implicit_decl_requires_stdio)
807        << Context.BuiltinInfo.GetName(BID);
808    return 0;
809
810  case ASTContext::GE_Missing_setjmp:
811    if (ForRedeclaration)
812      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
813        << Context.BuiltinInfo.GetName(BID);
814    return 0;
815  }
816
817  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
818    Diag(Loc, diag::ext_implicit_lib_function_decl)
819      << Context.BuiltinInfo.GetName(BID)
820      << R;
821    if (Context.BuiltinInfo.getHeaderName(BID) &&
822        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
823          != Diagnostic::Ignored)
824      Diag(Loc, diag::note_please_include_header)
825        << Context.BuiltinInfo.getHeaderName(BID)
826        << Context.BuiltinInfo.GetName(BID);
827  }
828
829  FunctionDecl *New = FunctionDecl::Create(Context,
830                                           Context.getTranslationUnitDecl(),
831                                           Loc, II, R, /*TInfo=*/0,
832                                           SC_Extern,
833                                           SC_None, false,
834                                           /*hasPrototype=*/true);
835  New->setImplicit();
836
837  // Create Decl objects for each parameter, adding them to the
838  // FunctionDecl.
839  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
840    llvm::SmallVector<ParmVarDecl*, 16> Params;
841    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
842      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
843                                           FT->getArgType(i), /*TInfo=*/0,
844                                           SC_None, SC_None, 0));
845    New->setParams(Params.data(), Params.size());
846  }
847
848  AddKnownFunctionAttributes(New);
849
850  // TUScope is the translation-unit scope to insert this function into.
851  // FIXME: This is hideous. We need to teach PushOnScopeChains to
852  // relate Scopes to DeclContexts, and probably eliminate CurContext
853  // entirely, but we're not there yet.
854  DeclContext *SavedContext = CurContext;
855  CurContext = Context.getTranslationUnitDecl();
856  PushOnScopeChains(New, TUScope);
857  CurContext = SavedContext;
858  return New;
859}
860
861/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
862/// same name and scope as a previous declaration 'Old'.  Figure out
863/// how to resolve this situation, merging decls or emitting
864/// diagnostics as appropriate. If there was an error, set New to be invalid.
865///
866void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
867  // If the new decl is known invalid already, don't bother doing any
868  // merging checks.
869  if (New->isInvalidDecl()) return;
870
871  // Allow multiple definitions for ObjC built-in typedefs.
872  // FIXME: Verify the underlying types are equivalent!
873  if (getLangOptions().ObjC1) {
874    const IdentifierInfo *TypeID = New->getIdentifier();
875    switch (TypeID->getLength()) {
876    default: break;
877    case 2:
878      if (!TypeID->isStr("id"))
879        break;
880      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'id', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
883      return;
884    case 5:
885      if (!TypeID->isStr("Class"))
886        break;
887      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
888      // Install the built-in type for 'Class', ignoring the current definition.
889      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
890      return;
891    case 3:
892      if (!TypeID->isStr("SEL"))
893        break;
894      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
895      // Install the built-in type for 'SEL', ignoring the current definition.
896      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
897      return;
898    case 8:
899      if (!TypeID->isStr("Protocol"))
900        break;
901      Context.setObjCProtoType(New->getUnderlyingType());
902      return;
903    }
904    // Fall through - the typedef name was not a builtin type.
905  }
906
907  // Verify the old decl was also a type.
908  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912
913    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
914    if (OldD->getLocation().isValid())
915      Diag(OldD->getLocation(), diag::note_previous_definition);
916
917    return New->setInvalidDecl();
918  }
919
920  // If the old declaration is invalid, just give up here.
921  if (Old->isInvalidDecl())
922    return New->setInvalidDecl();
923
924  // Determine the "old" type we'll use for checking and diagnostics.
925  QualType OldType;
926  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
927    OldType = OldTypedef->getUnderlyingType();
928  else
929    OldType = Context.getTypeDeclType(Old);
930
931  // If the typedef types are not identical, reject them in all languages and
932  // with any extensions enabled.
933
934  if (OldType != New->getUnderlyingType() &&
935      Context.getCanonicalType(OldType) !=
936      Context.getCanonicalType(New->getUnderlyingType())) {
937    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
938      << New->getUnderlyingType() << OldType;
939    if (Old->getLocation().isValid())
940      Diag(Old->getLocation(), diag::note_previous_definition);
941    return New->setInvalidDecl();
942  }
943
944  // The types match.  Link up the redeclaration chain if the old
945  // declaration was a typedef.
946  // FIXME: this is a potential source of wierdness if the type
947  // spellings don't match exactly.
948  if (isa<TypedefDecl>(Old))
949    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
950
951  if (getLangOptions().Microsoft)
952    return;
953
954  if (getLangOptions().CPlusPlus) {
955    // C++ [dcl.typedef]p2:
956    //   In a given non-class scope, a typedef specifier can be used to
957    //   redefine the name of any type declared in that scope to refer
958    //   to the type to which it already refers.
959    if (!isa<CXXRecordDecl>(CurContext))
960      return;
961
962    // C++0x [dcl.typedef]p4:
963    //   In a given class scope, a typedef specifier can be used to redefine
964    //   any class-name declared in that scope that is not also a typedef-name
965    //   to refer to the type to which it already refers.
966    //
967    // This wording came in via DR424, which was a correction to the
968    // wording in DR56, which accidentally banned code like:
969    //
970    //   struct S {
971    //     typedef struct A { } A;
972    //   };
973    //
974    // in the C++03 standard. We implement the C++0x semantics, which
975    // allow the above but disallow
976    //
977    //   struct S {
978    //     typedef int I;
979    //     typedef int I;
980    //   };
981    //
982    // since that was the intent of DR56.
983    if (!isa<TypedefDecl >(Old))
984      return;
985
986    Diag(New->getLocation(), diag::err_redefinition)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991
992  // If we have a redefinition of a typedef in C, emit a warning.  This warning
993  // is normally mapped to an error, but can be controlled with
994  // -Wtypedef-redefinition.  If either the original or the redefinition is
995  // in a system header, don't emit this for compatibility with GCC.
996  if (getDiagnostics().getSuppressSystemWarnings() &&
997      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
998       Context.getSourceManager().isInSystemHeader(New->getLocation())))
999    return;
1000
1001  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1002    << New->getDeclName();
1003  Diag(Old->getLocation(), diag::note_previous_definition);
1004  return;
1005}
1006
1007/// DeclhasAttr - returns true if decl Declaration already has the target
1008/// attribute.
1009static bool
1010DeclHasAttr(const Decl *D, const Attr *A) {
1011  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1012  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1013    if ((*i)->getKind() == A->getKind()) {
1014      // FIXME: Don't hardcode this check
1015      if (OA && isa<OwnershipAttr>(*i))
1016        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1017      return true;
1018    }
1019
1020  return false;
1021}
1022
1023/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1024static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1025  if (!Old->hasAttrs())
1026    return;
1027  // Ensure that any moving of objects within the allocated map is done before
1028  // we process them.
1029  if (!New->hasAttrs())
1030    New->setAttrs(AttrVec());
1031  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1032       ++i) {
1033    // FIXME: Make this more general than just checking for Overloadable.
1034    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1035      Attr *NewAttr = (*i)->clone(C);
1036      NewAttr->setInherited(true);
1037      New->addAttr(NewAttr);
1038    }
1039  }
1040}
1041
1042namespace {
1043
1044/// Used in MergeFunctionDecl to keep track of function parameters in
1045/// C.
1046struct GNUCompatibleParamWarning {
1047  ParmVarDecl *OldParm;
1048  ParmVarDecl *NewParm;
1049  QualType PromotedType;
1050};
1051
1052}
1053
1054/// getSpecialMember - get the special member enum for a method.
1055Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1056  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1057    if (Ctor->isCopyConstructor())
1058      return Sema::CXXCopyConstructor;
1059
1060    return Sema::CXXConstructor;
1061  }
1062
1063  if (isa<CXXDestructorDecl>(MD))
1064    return Sema::CXXDestructor;
1065
1066  assert(MD->isCopyAssignmentOperator() &&
1067         "Must have copy assignment operator");
1068  return Sema::CXXCopyAssignment;
1069}
1070
1071/// canRedefineFunction - checks if a function can be redefined. Currently,
1072/// only extern inline functions can be redefined, and even then only in
1073/// GNU89 mode.
1074static bool canRedefineFunction(const FunctionDecl *FD,
1075                                const LangOptions& LangOpts) {
1076  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1077          FD->isInlineSpecified() &&
1078          FD->getStorageClass() == SC_Extern);
1079}
1080
1081/// MergeFunctionDecl - We just parsed a function 'New' from
1082/// declarator D which has the same name and scope as a previous
1083/// declaration 'Old'.  Figure out how to resolve this situation,
1084/// merging decls or emitting diagnostics as appropriate.
1085///
1086/// In C++, New and Old must be declarations that are not
1087/// overloaded. Use IsOverload to determine whether New and Old are
1088/// overloaded, and to select the Old declaration that New should be
1089/// merged with.
1090///
1091/// Returns true if there was an error, false otherwise.
1092bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1093  // Verify the old decl was also a function.
1094  FunctionDecl *Old = 0;
1095  if (FunctionTemplateDecl *OldFunctionTemplate
1096        = dyn_cast<FunctionTemplateDecl>(OldD))
1097    Old = OldFunctionTemplate->getTemplatedDecl();
1098  else
1099    Old = dyn_cast<FunctionDecl>(OldD);
1100  if (!Old) {
1101    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1102      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1103      Diag(Shadow->getTargetDecl()->getLocation(),
1104           diag::note_using_decl_target);
1105      Diag(Shadow->getUsingDecl()->getLocation(),
1106           diag::note_using_decl) << 0;
1107      return true;
1108    }
1109
1110    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1111      << New->getDeclName();
1112    Diag(OldD->getLocation(), diag::note_previous_definition);
1113    return true;
1114  }
1115
1116  // Determine whether the previous declaration was a definition,
1117  // implicit declaration, or a declaration.
1118  diag::kind PrevDiag;
1119  if (Old->isThisDeclarationADefinition())
1120    PrevDiag = diag::note_previous_definition;
1121  else if (Old->isImplicit())
1122    PrevDiag = diag::note_previous_implicit_declaration;
1123  else
1124    PrevDiag = diag::note_previous_declaration;
1125
1126  QualType OldQType = Context.getCanonicalType(Old->getType());
1127  QualType NewQType = Context.getCanonicalType(New->getType());
1128
1129  // Don't complain about this if we're in GNU89 mode and the old function
1130  // is an extern inline function.
1131  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1132      New->getStorageClass() == SC_Static &&
1133      Old->getStorageClass() != SC_Static &&
1134      !canRedefineFunction(Old, getLangOptions())) {
1135    Diag(New->getLocation(), diag::err_static_non_static)
1136      << New;
1137    Diag(Old->getLocation(), PrevDiag);
1138    return true;
1139  }
1140
1141  // If a function is first declared with a calling convention, but is
1142  // later declared or defined without one, the second decl assumes the
1143  // calling convention of the first.
1144  //
1145  // For the new decl, we have to look at the NON-canonical type to tell the
1146  // difference between a function that really doesn't have a calling
1147  // convention and one that is declared cdecl. That's because in
1148  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1149  // because it is the default calling convention.
1150  //
1151  // Note also that we DO NOT return at this point, because we still have
1152  // other tests to run.
1153  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1154  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1155  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1156  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1157  if (OldTypeInfo.getCC() != CC_Default &&
1158      NewTypeInfo.getCC() == CC_Default) {
1159    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1160    New->setType(NewQType);
1161    NewQType = Context.getCanonicalType(NewQType);
1162  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1163                                     NewTypeInfo.getCC())) {
1164    // Calling conventions really aren't compatible, so complain.
1165    Diag(New->getLocation(), diag::err_cconv_change)
1166      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1167      << (OldTypeInfo.getCC() == CC_Default)
1168      << (OldTypeInfo.getCC() == CC_Default ? "" :
1169          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1170    Diag(Old->getLocation(), diag::note_previous_declaration);
1171    return true;
1172  }
1173
1174  // FIXME: diagnose the other way around?
1175  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1176    NewQType = Context.getNoReturnType(NewQType);
1177    New->setType(NewQType);
1178    assert(NewQType.isCanonical());
1179  }
1180
1181  // Merge regparm attribute.
1182  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1183    if (NewType->getRegParmType()) {
1184      Diag(New->getLocation(), diag::err_regparm_mismatch)
1185        << NewType->getRegParmType()
1186        << OldType->getRegParmType();
1187      Diag(Old->getLocation(), diag::note_previous_declaration);
1188      return true;
1189    }
1190
1191    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1192    New->setType(NewQType);
1193    assert(NewQType.isCanonical());
1194  }
1195
1196  if (getLangOptions().CPlusPlus) {
1197    // (C++98 13.1p2):
1198    //   Certain function declarations cannot be overloaded:
1199    //     -- Function declarations that differ only in the return type
1200    //        cannot be overloaded.
1201    QualType OldReturnType
1202      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1203    QualType NewReturnType
1204      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1205    QualType ResQT;
1206    if (OldReturnType != NewReturnType) {
1207      if (NewReturnType->isObjCObjectPointerType()
1208          && OldReturnType->isObjCObjectPointerType())
1209        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1210      if (ResQT.isNull()) {
1211        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1212        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1213        return true;
1214      }
1215      else
1216        NewQType = ResQT;
1217    }
1218
1219    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1220    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1221    if (OldMethod && NewMethod) {
1222      // Preserve triviality.
1223      NewMethod->setTrivial(OldMethod->isTrivial());
1224
1225      bool isFriend = NewMethod->getFriendObjectKind();
1226
1227      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1228        //    -- Member function declarations with the same name and the
1229        //       same parameter types cannot be overloaded if any of them
1230        //       is a static member function declaration.
1231        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1232          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1233          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1234          return true;
1235        }
1236
1237        // C++ [class.mem]p1:
1238        //   [...] A member shall not be declared twice in the
1239        //   member-specification, except that a nested class or member
1240        //   class template can be declared and then later defined.
1241        unsigned NewDiag;
1242        if (isa<CXXConstructorDecl>(OldMethod))
1243          NewDiag = diag::err_constructor_redeclared;
1244        else if (isa<CXXDestructorDecl>(NewMethod))
1245          NewDiag = diag::err_destructor_redeclared;
1246        else if (isa<CXXConversionDecl>(NewMethod))
1247          NewDiag = diag::err_conv_function_redeclared;
1248        else
1249          NewDiag = diag::err_member_redeclared;
1250
1251        Diag(New->getLocation(), NewDiag);
1252        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1253
1254      // Complain if this is an explicit declaration of a special
1255      // member that was initially declared implicitly.
1256      //
1257      // As an exception, it's okay to befriend such methods in order
1258      // to permit the implicit constructor/destructor/operator calls.
1259      } else if (OldMethod->isImplicit()) {
1260        if (isFriend) {
1261          NewMethod->setImplicit();
1262        } else {
1263          Diag(NewMethod->getLocation(),
1264               diag::err_definition_of_implicitly_declared_member)
1265            << New << getSpecialMember(OldMethod);
1266          return true;
1267        }
1268      }
1269    }
1270
1271    // (C++98 8.3.5p3):
1272    //   All declarations for a function shall agree exactly in both the
1273    //   return type and the parameter-type-list.
1274    // attributes should be ignored when comparing.
1275    if (Context.getNoReturnType(OldQType, false) ==
1276        Context.getNoReturnType(NewQType, false))
1277      return MergeCompatibleFunctionDecls(New, Old);
1278
1279    // Fall through for conflicting redeclarations and redefinitions.
1280  }
1281
1282  // C: Function types need to be compatible, not identical. This handles
1283  // duplicate function decls like "void f(int); void f(enum X);" properly.
1284  if (!getLangOptions().CPlusPlus &&
1285      Context.typesAreCompatible(OldQType, NewQType)) {
1286    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1287    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1288    const FunctionProtoType *OldProto = 0;
1289    if (isa<FunctionNoProtoType>(NewFuncType) &&
1290        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1291      // The old declaration provided a function prototype, but the
1292      // new declaration does not. Merge in the prototype.
1293      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1294      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1295                                                 OldProto->arg_type_end());
1296      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1297                                         ParamTypes.data(), ParamTypes.size(),
1298                                         OldProto->isVariadic(),
1299                                         OldProto->getTypeQuals(),
1300                                         false, false, 0, 0,
1301                                         OldProto->getExtInfo());
1302      New->setType(NewQType);
1303      New->setHasInheritedPrototype();
1304
1305      // Synthesize a parameter for each argument type.
1306      llvm::SmallVector<ParmVarDecl*, 16> Params;
1307      for (FunctionProtoType::arg_type_iterator
1308             ParamType = OldProto->arg_type_begin(),
1309             ParamEnd = OldProto->arg_type_end();
1310           ParamType != ParamEnd; ++ParamType) {
1311        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312                                                 SourceLocation(), 0,
1313                                                 *ParamType, /*TInfo=*/0,
1314                                                 SC_None, SC_None,
1315                                                 0);
1316        Param->setImplicit();
1317        Params.push_back(Param);
1318      }
1319
1320      New->setParams(Params.data(), Params.size());
1321    }
1322
1323    return MergeCompatibleFunctionDecls(New, Old);
1324  }
1325
1326  // GNU C permits a K&R definition to follow a prototype declaration
1327  // if the declared types of the parameters in the K&R definition
1328  // match the types in the prototype declaration, even when the
1329  // promoted types of the parameters from the K&R definition differ
1330  // from the types in the prototype. GCC then keeps the types from
1331  // the prototype.
1332  //
1333  // If a variadic prototype is followed by a non-variadic K&R definition,
1334  // the K&R definition becomes variadic.  This is sort of an edge case, but
1335  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336  // C99 6.9.1p8.
1337  if (!getLangOptions().CPlusPlus &&
1338      Old->hasPrototype() && !New->hasPrototype() &&
1339      New->getType()->getAs<FunctionProtoType>() &&
1340      Old->getNumParams() == New->getNumParams()) {
1341    llvm::SmallVector<QualType, 16> ArgTypes;
1342    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343    const FunctionProtoType *OldProto
1344      = Old->getType()->getAs<FunctionProtoType>();
1345    const FunctionProtoType *NewProto
1346      = New->getType()->getAs<FunctionProtoType>();
1347
1348    // Determine whether this is the GNU C extension.
1349    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350                                               NewProto->getResultType());
1351    bool LooseCompatible = !MergedReturn.isNull();
1352    for (unsigned Idx = 0, End = Old->getNumParams();
1353         LooseCompatible && Idx != End; ++Idx) {
1354      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356      if (Context.typesAreCompatible(OldParm->getType(),
1357                                     NewProto->getArgType(Idx))) {
1358        ArgTypes.push_back(NewParm->getType());
1359      } else if (Context.typesAreCompatible(OldParm->getType(),
1360                                            NewParm->getType(),
1361                                            /*CompareUnqualified=*/true)) {
1362        GNUCompatibleParamWarning Warn
1363          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364        Warnings.push_back(Warn);
1365        ArgTypes.push_back(NewParm->getType());
1366      } else
1367        LooseCompatible = false;
1368    }
1369
1370    if (LooseCompatible) {
1371      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372        Diag(Warnings[Warn].NewParm->getLocation(),
1373             diag::ext_param_promoted_not_compatible_with_prototype)
1374          << Warnings[Warn].PromotedType
1375          << Warnings[Warn].OldParm->getType();
1376        if (Warnings[Warn].OldParm->getLocation().isValid())
1377          Diag(Warnings[Warn].OldParm->getLocation(),
1378               diag::note_previous_declaration);
1379      }
1380
1381      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382                                           ArgTypes.size(),
1383                                           OldProto->isVariadic(), 0,
1384                                           false, false, 0, 0,
1385                                           OldProto->getExtInfo()));
1386      return MergeCompatibleFunctionDecls(New, Old);
1387    }
1388
1389    // Fall through to diagnose conflicting types.
1390  }
1391
1392  // A function that has already been declared has been redeclared or defined
1393  // with a different type- show appropriate diagnostic
1394  if (unsigned BuiltinID = Old->getBuiltinID()) {
1395    // The user has declared a builtin function with an incompatible
1396    // signature.
1397    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1398      // The function the user is redeclaring is a library-defined
1399      // function like 'malloc' or 'printf'. Warn about the
1400      // redeclaration, then pretend that we don't know about this
1401      // library built-in.
1402      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1403      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1404        << Old << Old->getType();
1405      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1406      Old->setInvalidDecl();
1407      return false;
1408    }
1409
1410    PrevDiag = diag::note_previous_builtin_declaration;
1411  }
1412
1413  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1414  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1415  return true;
1416}
1417
1418/// \brief Completes the merge of two function declarations that are
1419/// known to be compatible.
1420///
1421/// This routine handles the merging of attributes and other
1422/// properties of function declarations form the old declaration to
1423/// the new declaration, once we know that New is in fact a
1424/// redeclaration of Old.
1425///
1426/// \returns false
1427bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1428  // Merge the attributes
1429  MergeDeclAttributes(New, Old, Context);
1430
1431  // Merge the storage class.
1432  if (Old->getStorageClass() != SC_Extern &&
1433      Old->getStorageClass() != SC_None)
1434    New->setStorageClass(Old->getStorageClass());
1435
1436  // Merge "pure" flag.
1437  if (Old->isPure())
1438    New->setPure();
1439
1440  // Merge the "deleted" flag.
1441  if (Old->isDeleted())
1442    New->setDeleted();
1443
1444  if (getLangOptions().CPlusPlus)
1445    return MergeCXXFunctionDecl(New, Old);
1446
1447  return false;
1448}
1449
1450/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1451/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1452/// situation, merging decls or emitting diagnostics as appropriate.
1453///
1454/// Tentative definition rules (C99 6.9.2p2) are checked by
1455/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1456/// definitions here, since the initializer hasn't been attached.
1457///
1458void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1459  // If the new decl is already invalid, don't do any other checking.
1460  if (New->isInvalidDecl())
1461    return;
1462
1463  // Verify the old decl was also a variable.
1464  VarDecl *Old = 0;
1465  if (!Previous.isSingleResult() ||
1466      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1467    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1468      << New->getDeclName();
1469    Diag(Previous.getRepresentativeDecl()->getLocation(),
1470         diag::note_previous_definition);
1471    return New->setInvalidDecl();
1472  }
1473
1474  // C++ [class.mem]p1:
1475  //   A member shall not be declared twice in the member-specification [...]
1476  //
1477  // Here, we need only consider static data members.
1478  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1479    Diag(New->getLocation(), diag::err_duplicate_member)
1480      << New->getIdentifier();
1481    Diag(Old->getLocation(), diag::note_previous_declaration);
1482    New->setInvalidDecl();
1483  }
1484
1485  MergeDeclAttributes(New, Old, Context);
1486
1487  // Merge the types
1488  QualType MergedT;
1489  if (getLangOptions().CPlusPlus) {
1490    if (Context.hasSameType(New->getType(), Old->getType()))
1491      MergedT = New->getType();
1492    // C++ [basic.link]p10:
1493    //   [...] the types specified by all declarations referring to a given
1494    //   object or function shall be identical, except that declarations for an
1495    //   array object can specify array types that differ by the presence or
1496    //   absence of a major array bound (8.3.4).
1497    else if (Old->getType()->isIncompleteArrayType() &&
1498             New->getType()->isArrayType()) {
1499      CanQual<ArrayType> OldArray
1500        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1501      CanQual<ArrayType> NewArray
1502        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1503      if (OldArray->getElementType() == NewArray->getElementType())
1504        MergedT = New->getType();
1505    } else if (Old->getType()->isArrayType() &&
1506             New->getType()->isIncompleteArrayType()) {
1507      CanQual<ArrayType> OldArray
1508        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1509      CanQual<ArrayType> NewArray
1510        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1511      if (OldArray->getElementType() == NewArray->getElementType())
1512        MergedT = Old->getType();
1513    } else if (New->getType()->isObjCObjectPointerType()
1514               && Old->getType()->isObjCObjectPointerType()) {
1515        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1516    }
1517  } else {
1518    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1519  }
1520  if (MergedT.isNull()) {
1521    Diag(New->getLocation(), diag::err_redefinition_different_type)
1522      << New->getDeclName();
1523    Diag(Old->getLocation(), diag::note_previous_definition);
1524    return New->setInvalidDecl();
1525  }
1526  New->setType(MergedT);
1527
1528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1529  if (New->getStorageClass() == SC_Static &&
1530      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1531    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1532    Diag(Old->getLocation(), diag::note_previous_definition);
1533    return New->setInvalidDecl();
1534  }
1535  // C99 6.2.2p4:
1536  //   For an identifier declared with the storage-class specifier
1537  //   extern in a scope in which a prior declaration of that
1538  //   identifier is visible,23) if the prior declaration specifies
1539  //   internal or external linkage, the linkage of the identifier at
1540  //   the later declaration is the same as the linkage specified at
1541  //   the prior declaration. If no prior declaration is visible, or
1542  //   if the prior declaration specifies no linkage, then the
1543  //   identifier has external linkage.
1544  if (New->hasExternalStorage() && Old->hasLinkage())
1545    /* Okay */;
1546  else if (New->getStorageClass() != SC_Static &&
1547           Old->getStorageClass() == SC_Static) {
1548    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1549    Diag(Old->getLocation(), diag::note_previous_definition);
1550    return New->setInvalidDecl();
1551  }
1552
1553  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1554
1555  // FIXME: The test for external storage here seems wrong? We still
1556  // need to check for mismatches.
1557  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1558      // Don't complain about out-of-line definitions of static members.
1559      !(Old->getLexicalDeclContext()->isRecord() &&
1560        !New->getLexicalDeclContext()->isRecord())) {
1561    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1562    Diag(Old->getLocation(), diag::note_previous_definition);
1563    return New->setInvalidDecl();
1564  }
1565
1566  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1570    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1571    Diag(Old->getLocation(), diag::note_previous_definition);
1572  }
1573
1574  // C++ doesn't have tentative definitions, so go right ahead and check here.
1575  const VarDecl *Def;
1576  if (getLangOptions().CPlusPlus &&
1577      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1578      (Def = Old->getDefinition())) {
1579    Diag(New->getLocation(), diag::err_redefinition)
1580      << New->getDeclName();
1581    Diag(Def->getLocation(), diag::note_previous_definition);
1582    New->setInvalidDecl();
1583    return;
1584  }
1585  // c99 6.2.2 P4.
1586  // For an identifier declared with the storage-class specifier extern in a
1587  // scope in which a prior declaration of that identifier is visible, if
1588  // the prior declaration specifies internal or external linkage, the linkage
1589  // of the identifier at the later declaration is the same as the linkage
1590  // specified at the prior declaration.
1591  // FIXME. revisit this code.
1592  if (New->hasExternalStorage() &&
1593      Old->getLinkage() == InternalLinkage &&
1594      New->getDeclContext() == Old->getDeclContext())
1595    New->setStorageClass(Old->getStorageClass());
1596
1597  // Keep a chain of previous declarations.
1598  New->setPreviousDeclaration(Old);
1599
1600  // Inherit access appropriately.
1601  New->setAccess(Old->getAccess());
1602}
1603
1604/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1605/// no declarator (e.g. "struct foo;") is parsed.
1606Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1607                                            DeclSpec &DS) {
1608  // FIXME: Error on auto/register at file scope
1609  // FIXME: Error on inline/virtual/explicit
1610  // FIXME: Warn on useless __thread
1611  // FIXME: Warn on useless const/volatile
1612  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1613  // FIXME: Warn on useless attributes
1614  Decl *TagD = 0;
1615  TagDecl *Tag = 0;
1616  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1617      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1618      DS.getTypeSpecType() == DeclSpec::TST_union ||
1619      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1620    TagD = DS.getRepAsDecl();
1621
1622    if (!TagD) // We probably had an error
1623      return 0;
1624
1625    // Note that the above type specs guarantee that the
1626    // type rep is a Decl, whereas in many of the others
1627    // it's a Type.
1628    Tag = dyn_cast<TagDecl>(TagD);
1629  }
1630
1631  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1632    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1633    // or incomplete types shall not be restrict-qualified."
1634    if (TypeQuals & DeclSpec::TQ_restrict)
1635      Diag(DS.getRestrictSpecLoc(),
1636           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1637           << DS.getSourceRange();
1638  }
1639
1640  if (DS.isFriendSpecified()) {
1641    // If we're dealing with a class template decl, assume that the
1642    // template routines are handling it.
1643    if (TagD && isa<ClassTemplateDecl>(TagD))
1644      return 0;
1645    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1646  }
1647
1648  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1649    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1650
1651    if (!Record->getDeclName() && Record->isDefinition() &&
1652        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1653      if (getLangOptions().CPlusPlus ||
1654          Record->getDeclContext()->isRecord())
1655        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1656
1657      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1658        << DS.getSourceRange();
1659    }
1660
1661    // Microsoft allows unnamed struct/union fields. Don't complain
1662    // about them.
1663    // FIXME: Should we support Microsoft's extensions in this area?
1664    if (Record->getDeclName() && getLangOptions().Microsoft)
1665      return Tag;
1666  }
1667
1668  if (getLangOptions().CPlusPlus &&
1669      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1670    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1671      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1672          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1673        Diag(Enum->getLocation(), diag::ext_no_declarators)
1674          << DS.getSourceRange();
1675
1676  if (!DS.isMissingDeclaratorOk() &&
1677      DS.getTypeSpecType() != DeclSpec::TST_error) {
1678    // Warn about typedefs of enums without names, since this is an
1679    // extension in both Microsoft and GNU.
1680    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1681        Tag && isa<EnumDecl>(Tag)) {
1682      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1683        << DS.getSourceRange();
1684      return Tag;
1685    }
1686
1687    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1688      << DS.getSourceRange();
1689  }
1690
1691  return TagD;
1692}
1693
1694/// We are trying to inject an anonymous member into the given scope;
1695/// check if there's an existing declaration that can't be overloaded.
1696///
1697/// \return true if this is a forbidden redeclaration
1698static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1699                                         Scope *S,
1700                                         DeclContext *Owner,
1701                                         DeclarationName Name,
1702                                         SourceLocation NameLoc,
1703                                         unsigned diagnostic) {
1704  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1705                 Sema::ForRedeclaration);
1706  if (!SemaRef.LookupName(R, S)) return false;
1707
1708  if (R.getAsSingle<TagDecl>())
1709    return false;
1710
1711  // Pick a representative declaration.
1712  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1713  assert(PrevDecl && "Expected a non-null Decl");
1714
1715  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1716    return false;
1717
1718  SemaRef.Diag(NameLoc, diagnostic) << Name;
1719  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1720
1721  return true;
1722}
1723
1724/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1725/// anonymous struct or union AnonRecord into the owning context Owner
1726/// and scope S. This routine will be invoked just after we realize
1727/// that an unnamed union or struct is actually an anonymous union or
1728/// struct, e.g.,
1729///
1730/// @code
1731/// union {
1732///   int i;
1733///   float f;
1734/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1735///    // f into the surrounding scope.x
1736/// @endcode
1737///
1738/// This routine is recursive, injecting the names of nested anonymous
1739/// structs/unions into the owning context and scope as well.
1740static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1741                                                DeclContext *Owner,
1742                                                RecordDecl *AnonRecord,
1743                                                AccessSpecifier AS) {
1744  unsigned diagKind
1745    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1746                            : diag::err_anonymous_struct_member_redecl;
1747
1748  bool Invalid = false;
1749  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1750                               FEnd = AnonRecord->field_end();
1751       F != FEnd; ++F) {
1752    if ((*F)->getDeclName()) {
1753      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1754                                       (*F)->getLocation(), diagKind)) {
1755        // C++ [class.union]p2:
1756        //   The names of the members of an anonymous union shall be
1757        //   distinct from the names of any other entity in the
1758        //   scope in which the anonymous union is declared.
1759        Invalid = true;
1760      } else {
1761        // C++ [class.union]p2:
1762        //   For the purpose of name lookup, after the anonymous union
1763        //   definition, the members of the anonymous union are
1764        //   considered to have been defined in the scope in which the
1765        //   anonymous union is declared.
1766        Owner->makeDeclVisibleInContext(*F);
1767        S->AddDecl(*F);
1768        SemaRef.IdResolver.AddDecl(*F);
1769
1770        // That includes picking up the appropriate access specifier.
1771        if (AS != AS_none) (*F)->setAccess(AS);
1772      }
1773    } else if (const RecordType *InnerRecordType
1774                 = (*F)->getType()->getAs<RecordType>()) {
1775      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1776      if (InnerRecord->isAnonymousStructOrUnion())
1777        Invalid = Invalid ||
1778          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1779                                              InnerRecord, AS);
1780    }
1781  }
1782
1783  return Invalid;
1784}
1785
1786/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1787/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1788/// illegal input values are mapped to SC_None.
1789static StorageClass
1790StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1791  switch (StorageClassSpec) {
1792  case DeclSpec::SCS_unspecified:    return SC_None;
1793  case DeclSpec::SCS_extern:         return SC_Extern;
1794  case DeclSpec::SCS_static:         return SC_Static;
1795  case DeclSpec::SCS_auto:           return SC_Auto;
1796  case DeclSpec::SCS_register:       return SC_Register;
1797  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1798    // Illegal SCSs map to None: error reporting is up to the caller.
1799  case DeclSpec::SCS_mutable:        // Fall through.
1800  case DeclSpec::SCS_typedef:        return SC_None;
1801  }
1802  llvm_unreachable("unknown storage class specifier");
1803}
1804
1805/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1806/// a StorageClass. Any error reporting is up to the caller:
1807/// illegal input values are mapped to SC_None.
1808static StorageClass
1809StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1810  switch (StorageClassSpec) {
1811  case DeclSpec::SCS_unspecified:    return SC_None;
1812  case DeclSpec::SCS_extern:         return SC_Extern;
1813  case DeclSpec::SCS_static:         return SC_Static;
1814  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1815    // Illegal SCSs map to None: error reporting is up to the caller.
1816  case DeclSpec::SCS_auto:           // Fall through.
1817  case DeclSpec::SCS_mutable:        // Fall through.
1818  case DeclSpec::SCS_register:       // Fall through.
1819  case DeclSpec::SCS_typedef:        return SC_None;
1820  }
1821  llvm_unreachable("unknown storage class specifier");
1822}
1823
1824/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1825/// anonymous structure or union. Anonymous unions are a C++ feature
1826/// (C++ [class.union]) and a GNU C extension; anonymous structures
1827/// are a GNU C and GNU C++ extension.
1828Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1829                                             AccessSpecifier AS,
1830                                             RecordDecl *Record) {
1831  DeclContext *Owner = Record->getDeclContext();
1832
1833  // Diagnose whether this anonymous struct/union is an extension.
1834  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1835    Diag(Record->getLocation(), diag::ext_anonymous_union);
1836  else if (!Record->isUnion())
1837    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1838
1839  // C and C++ require different kinds of checks for anonymous
1840  // structs/unions.
1841  bool Invalid = false;
1842  if (getLangOptions().CPlusPlus) {
1843    const char* PrevSpec = 0;
1844    unsigned DiagID;
1845    // C++ [class.union]p3:
1846    //   Anonymous unions declared in a named namespace or in the
1847    //   global namespace shall be declared static.
1848    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1849        (isa<TranslationUnitDecl>(Owner) ||
1850         (isa<NamespaceDecl>(Owner) &&
1851          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1852      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1853      Invalid = true;
1854
1855      // Recover by adding 'static'.
1856      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1857                             PrevSpec, DiagID);
1858    }
1859    // C++ [class.union]p3:
1860    //   A storage class is not allowed in a declaration of an
1861    //   anonymous union in a class scope.
1862    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1863             isa<RecordDecl>(Owner)) {
1864      Diag(DS.getStorageClassSpecLoc(),
1865           diag::err_anonymous_union_with_storage_spec);
1866      Invalid = true;
1867
1868      // Recover by removing the storage specifier.
1869      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1870                             PrevSpec, DiagID);
1871    }
1872
1873    // C++ [class.union]p2:
1874    //   The member-specification of an anonymous union shall only
1875    //   define non-static data members. [Note: nested types and
1876    //   functions cannot be declared within an anonymous union. ]
1877    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1878                                 MemEnd = Record->decls_end();
1879         Mem != MemEnd; ++Mem) {
1880      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1881        // C++ [class.union]p3:
1882        //   An anonymous union shall not have private or protected
1883        //   members (clause 11).
1884        assert(FD->getAccess() != AS_none);
1885        if (FD->getAccess() != AS_public) {
1886          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1887            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1888          Invalid = true;
1889        }
1890
1891        if (CheckNontrivialField(FD))
1892          Invalid = true;
1893      } else if ((*Mem)->isImplicit()) {
1894        // Any implicit members are fine.
1895      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1896        // This is a type that showed up in an
1897        // elaborated-type-specifier inside the anonymous struct or
1898        // union, but which actually declares a type outside of the
1899        // anonymous struct or union. It's okay.
1900      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1901        if (!MemRecord->isAnonymousStructOrUnion() &&
1902            MemRecord->getDeclName()) {
1903          // Visual C++ allows type definition in anonymous struct or union.
1904          if (getLangOptions().Microsoft)
1905            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1906              << (int)Record->isUnion();
1907          else {
1908            // This is a nested type declaration.
1909            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1910              << (int)Record->isUnion();
1911            Invalid = true;
1912          }
1913        }
1914      } else if (isa<AccessSpecDecl>(*Mem)) {
1915        // Any access specifier is fine.
1916      } else {
1917        // We have something that isn't a non-static data
1918        // member. Complain about it.
1919        unsigned DK = diag::err_anonymous_record_bad_member;
1920        if (isa<TypeDecl>(*Mem))
1921          DK = diag::err_anonymous_record_with_type;
1922        else if (isa<FunctionDecl>(*Mem))
1923          DK = diag::err_anonymous_record_with_function;
1924        else if (isa<VarDecl>(*Mem))
1925          DK = diag::err_anonymous_record_with_static;
1926
1927        // Visual C++ allows type definition in anonymous struct or union.
1928        if (getLangOptions().Microsoft &&
1929            DK == diag::err_anonymous_record_with_type)
1930          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1931            << (int)Record->isUnion();
1932        else {
1933          Diag((*Mem)->getLocation(), DK)
1934              << (int)Record->isUnion();
1935          Invalid = true;
1936        }
1937      }
1938    }
1939  }
1940
1941  if (!Record->isUnion() && !Owner->isRecord()) {
1942    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1943      << (int)getLangOptions().CPlusPlus;
1944    Invalid = true;
1945  }
1946
1947  // Mock up a declarator.
1948  Declarator Dc(DS, Declarator::TypeNameContext);
1949  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1950  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1951
1952  // Create a declaration for this anonymous struct/union.
1953  NamedDecl *Anon = 0;
1954  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1955    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1956                             /*IdentifierInfo=*/0,
1957                             Context.getTypeDeclType(Record),
1958                             TInfo,
1959                             /*BitWidth=*/0, /*Mutable=*/false);
1960    Anon->setAccess(AS);
1961    if (getLangOptions().CPlusPlus) {
1962      FieldCollector->Add(cast<FieldDecl>(Anon));
1963      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1964        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1965    }
1966  } else {
1967    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1968    assert(SCSpec != DeclSpec::SCS_typedef &&
1969           "Parser allowed 'typedef' as storage class VarDecl.");
1970    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1971    if (SCSpec == DeclSpec::SCS_mutable) {
1972      // mutable can only appear on non-static class members, so it's always
1973      // an error here
1974      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1975      Invalid = true;
1976      SC = SC_None;
1977    }
1978    SCSpec = DS.getStorageClassSpecAsWritten();
1979    VarDecl::StorageClass SCAsWritten
1980      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1981
1982    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1983                           /*IdentifierInfo=*/0,
1984                           Context.getTypeDeclType(Record),
1985                           TInfo, SC, SCAsWritten);
1986  }
1987  Anon->setImplicit();
1988
1989  // Add the anonymous struct/union object to the current
1990  // context. We'll be referencing this object when we refer to one of
1991  // its members.
1992  Owner->addDecl(Anon);
1993
1994  // Inject the members of the anonymous struct/union into the owning
1995  // context and into the identifier resolver chain for name lookup
1996  // purposes.
1997  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1998    Invalid = true;
1999
2000  // Mark this as an anonymous struct/union type. Note that we do not
2001  // do this until after we have already checked and injected the
2002  // members of this anonymous struct/union type, because otherwise
2003  // the members could be injected twice: once by DeclContext when it
2004  // builds its lookup table, and once by
2005  // InjectAnonymousStructOrUnionMembers.
2006  Record->setAnonymousStructOrUnion(true);
2007
2008  if (Invalid)
2009    Anon->setInvalidDecl();
2010
2011  return Anon;
2012}
2013
2014
2015/// GetNameForDeclarator - Determine the full declaration name for the
2016/// given Declarator.
2017DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2018  return GetNameFromUnqualifiedId(D.getName());
2019}
2020
2021/// \brief Retrieves the declaration name from a parsed unqualified-id.
2022DeclarationNameInfo
2023Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2024  DeclarationNameInfo NameInfo;
2025  NameInfo.setLoc(Name.StartLocation);
2026
2027  switch (Name.getKind()) {
2028
2029  case UnqualifiedId::IK_Identifier:
2030    NameInfo.setName(Name.Identifier);
2031    NameInfo.setLoc(Name.StartLocation);
2032    return NameInfo;
2033
2034  case UnqualifiedId::IK_OperatorFunctionId:
2035    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2036                                           Name.OperatorFunctionId.Operator));
2037    NameInfo.setLoc(Name.StartLocation);
2038    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2039      = Name.OperatorFunctionId.SymbolLocations[0];
2040    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2041      = Name.EndLocation.getRawEncoding();
2042    return NameInfo;
2043
2044  case UnqualifiedId::IK_LiteralOperatorId:
2045    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2046                                                           Name.Identifier));
2047    NameInfo.setLoc(Name.StartLocation);
2048    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2049    return NameInfo;
2050
2051  case UnqualifiedId::IK_ConversionFunctionId: {
2052    TypeSourceInfo *TInfo;
2053    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2054    if (Ty.isNull())
2055      return DeclarationNameInfo();
2056    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2057                                               Context.getCanonicalType(Ty)));
2058    NameInfo.setLoc(Name.StartLocation);
2059    NameInfo.setNamedTypeInfo(TInfo);
2060    return NameInfo;
2061  }
2062
2063  case UnqualifiedId::IK_ConstructorName: {
2064    TypeSourceInfo *TInfo;
2065    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2066    if (Ty.isNull())
2067      return DeclarationNameInfo();
2068    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2069                                              Context.getCanonicalType(Ty)));
2070    NameInfo.setLoc(Name.StartLocation);
2071    NameInfo.setNamedTypeInfo(TInfo);
2072    return NameInfo;
2073  }
2074
2075  case UnqualifiedId::IK_ConstructorTemplateId: {
2076    // In well-formed code, we can only have a constructor
2077    // template-id that refers to the current context, so go there
2078    // to find the actual type being constructed.
2079    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2080    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2081      return DeclarationNameInfo();
2082
2083    // Determine the type of the class being constructed.
2084    QualType CurClassType = Context.getTypeDeclType(CurClass);
2085
2086    // FIXME: Check two things: that the template-id names the same type as
2087    // CurClassType, and that the template-id does not occur when the name
2088    // was qualified.
2089
2090    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2091                                    Context.getCanonicalType(CurClassType)));
2092    NameInfo.setLoc(Name.StartLocation);
2093    // FIXME: should we retrieve TypeSourceInfo?
2094    NameInfo.setNamedTypeInfo(0);
2095    return NameInfo;
2096  }
2097
2098  case UnqualifiedId::IK_DestructorName: {
2099    TypeSourceInfo *TInfo;
2100    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2101    if (Ty.isNull())
2102      return DeclarationNameInfo();
2103    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2104                                              Context.getCanonicalType(Ty)));
2105    NameInfo.setLoc(Name.StartLocation);
2106    NameInfo.setNamedTypeInfo(TInfo);
2107    return NameInfo;
2108  }
2109
2110  case UnqualifiedId::IK_TemplateId: {
2111    TemplateName TName = Name.TemplateId->Template.get();
2112    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2113    return Context.getNameForTemplate(TName, TNameLoc);
2114  }
2115
2116  } // switch (Name.getKind())
2117
2118  assert(false && "Unknown name kind");
2119  return DeclarationNameInfo();
2120}
2121
2122/// isNearlyMatchingFunction - Determine whether the C++ functions
2123/// Declaration and Definition are "nearly" matching. This heuristic
2124/// is used to improve diagnostics in the case where an out-of-line
2125/// function definition doesn't match any declaration within
2126/// the class or namespace.
2127static bool isNearlyMatchingFunction(ASTContext &Context,
2128                                     FunctionDecl *Declaration,
2129                                     FunctionDecl *Definition) {
2130  if (Declaration->param_size() != Definition->param_size())
2131    return false;
2132  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2133    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2134    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2135
2136    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2137                                        DefParamTy.getNonReferenceType()))
2138      return false;
2139  }
2140
2141  return true;
2142}
2143
2144/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2145/// declarator needs to be rebuilt in the current instantiation.
2146/// Any bits of declarator which appear before the name are valid for
2147/// consideration here.  That's specifically the type in the decl spec
2148/// and the base type in any member-pointer chunks.
2149static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2150                                                    DeclarationName Name) {
2151  // The types we specifically need to rebuild are:
2152  //   - typenames, typeofs, and decltypes
2153  //   - types which will become injected class names
2154  // Of course, we also need to rebuild any type referencing such a
2155  // type.  It's safest to just say "dependent", but we call out a
2156  // few cases here.
2157
2158  DeclSpec &DS = D.getMutableDeclSpec();
2159  switch (DS.getTypeSpecType()) {
2160  case DeclSpec::TST_typename:
2161  case DeclSpec::TST_typeofType:
2162  case DeclSpec::TST_decltype: {
2163    // Grab the type from the parser.
2164    TypeSourceInfo *TSI = 0;
2165    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2166    if (T.isNull() || !T->isDependentType()) break;
2167
2168    // Make sure there's a type source info.  This isn't really much
2169    // of a waste; most dependent types should have type source info
2170    // attached already.
2171    if (!TSI)
2172      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2173
2174    // Rebuild the type in the current instantiation.
2175    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2176    if (!TSI) return true;
2177
2178    // Store the new type back in the decl spec.
2179    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2180    DS.UpdateTypeRep(LocType);
2181    break;
2182  }
2183
2184  case DeclSpec::TST_typeofExpr: {
2185    Expr *E = DS.getRepAsExpr();
2186    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2187    if (Result.isInvalid()) return true;
2188    DS.UpdateExprRep(Result.get());
2189    break;
2190  }
2191
2192  default:
2193    // Nothing to do for these decl specs.
2194    break;
2195  }
2196
2197  // It doesn't matter what order we do this in.
2198  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2199    DeclaratorChunk &Chunk = D.getTypeObject(I);
2200
2201    // The only type information in the declarator which can come
2202    // before the declaration name is the base type of a member
2203    // pointer.
2204    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2205      continue;
2206
2207    // Rebuild the scope specifier in-place.
2208    CXXScopeSpec &SS = Chunk.Mem.Scope();
2209    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2210      return true;
2211  }
2212
2213  return false;
2214}
2215
2216Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2217  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2218}
2219
2220Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2221                             MultiTemplateParamsArg TemplateParamLists,
2222                             bool IsFunctionDefinition) {
2223  // TODO: consider using NameInfo for diagnostic.
2224  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2225  DeclarationName Name = NameInfo.getName();
2226
2227  // All of these full declarators require an identifier.  If it doesn't have
2228  // one, the ParsedFreeStandingDeclSpec action should be used.
2229  if (!Name) {
2230    if (!D.isInvalidType())  // Reject this if we think it is valid.
2231      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2232           diag::err_declarator_need_ident)
2233        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2234    return 0;
2235  }
2236
2237  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2238  // we find one that is.
2239  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2240         (S->getFlags() & Scope::TemplateParamScope) != 0)
2241    S = S->getParent();
2242
2243  DeclContext *DC = CurContext;
2244  if (D.getCXXScopeSpec().isInvalid())
2245    D.setInvalidType();
2246  else if (D.getCXXScopeSpec().isSet()) {
2247    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2248    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2249    if (!DC) {
2250      // If we could not compute the declaration context, it's because the
2251      // declaration context is dependent but does not refer to a class,
2252      // class template, or class template partial specialization. Complain
2253      // and return early, to avoid the coming semantic disaster.
2254      Diag(D.getIdentifierLoc(),
2255           diag::err_template_qualified_declarator_no_match)
2256        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2257        << D.getCXXScopeSpec().getRange();
2258      return 0;
2259    }
2260
2261    bool IsDependentContext = DC->isDependentContext();
2262
2263    if (!IsDependentContext &&
2264        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2265      return 0;
2266
2267    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2268      Diag(D.getIdentifierLoc(),
2269           diag::err_member_def_undefined_record)
2270        << Name << DC << D.getCXXScopeSpec().getRange();
2271      D.setInvalidType();
2272    }
2273
2274    // Check whether we need to rebuild the type of the given
2275    // declaration in the current instantiation.
2276    if (EnteringContext && IsDependentContext &&
2277        TemplateParamLists.size() != 0) {
2278      ContextRAII SavedContext(*this, DC);
2279      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2280        D.setInvalidType();
2281    }
2282  }
2283
2284  NamedDecl *New;
2285
2286  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2287  QualType R = TInfo->getType();
2288
2289  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2290                        ForRedeclaration);
2291
2292  // See if this is a redefinition of a variable in the same scope.
2293  if (!D.getCXXScopeSpec().isSet()) {
2294    bool IsLinkageLookup = false;
2295
2296    // If the declaration we're planning to build will be a function
2297    // or object with linkage, then look for another declaration with
2298    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2299    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2300      /* Do nothing*/;
2301    else if (R->isFunctionType()) {
2302      if (CurContext->isFunctionOrMethod() ||
2303          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2304        IsLinkageLookup = true;
2305    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2306      IsLinkageLookup = true;
2307    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2308             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2309      IsLinkageLookup = true;
2310
2311    if (IsLinkageLookup)
2312      Previous.clear(LookupRedeclarationWithLinkage);
2313
2314    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2315  } else { // Something like "int foo::x;"
2316    LookupQualifiedName(Previous, DC);
2317
2318    // Don't consider using declarations as previous declarations for
2319    // out-of-line members.
2320    RemoveUsingDecls(Previous);
2321
2322    // C++ 7.3.1.2p2:
2323    // Members (including explicit specializations of templates) of a named
2324    // namespace can also be defined outside that namespace by explicit
2325    // qualification of the name being defined, provided that the entity being
2326    // defined was already declared in the namespace and the definition appears
2327    // after the point of declaration in a namespace that encloses the
2328    // declarations namespace.
2329    //
2330    // Note that we only check the context at this point. We don't yet
2331    // have enough information to make sure that PrevDecl is actually
2332    // the declaration we want to match. For example, given:
2333    //
2334    //   class X {
2335    //     void f();
2336    //     void f(float);
2337    //   };
2338    //
2339    //   void X::f(int) { } // ill-formed
2340    //
2341    // In this case, PrevDecl will point to the overload set
2342    // containing the two f's declared in X, but neither of them
2343    // matches.
2344
2345    // First check whether we named the global scope.
2346    if (isa<TranslationUnitDecl>(DC)) {
2347      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2348        << Name << D.getCXXScopeSpec().getRange();
2349    } else {
2350      DeclContext *Cur = CurContext;
2351      while (isa<LinkageSpecDecl>(Cur))
2352        Cur = Cur->getParent();
2353      if (!Cur->Encloses(DC)) {
2354        // The qualifying scope doesn't enclose the original declaration.
2355        // Emit diagnostic based on current scope.
2356        SourceLocation L = D.getIdentifierLoc();
2357        SourceRange R = D.getCXXScopeSpec().getRange();
2358        if (isa<FunctionDecl>(Cur))
2359          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2360        else
2361          Diag(L, diag::err_invalid_declarator_scope)
2362            << Name << cast<NamedDecl>(DC) << R;
2363        D.setInvalidType();
2364      }
2365    }
2366  }
2367
2368  if (Previous.isSingleResult() &&
2369      Previous.getFoundDecl()->isTemplateParameter()) {
2370    // Maybe we will complain about the shadowed template parameter.
2371    if (!D.isInvalidType())
2372      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2373                                          Previous.getFoundDecl()))
2374        D.setInvalidType();
2375
2376    // Just pretend that we didn't see the previous declaration.
2377    Previous.clear();
2378  }
2379
2380  // In C++, the previous declaration we find might be a tag type
2381  // (class or enum). In this case, the new declaration will hide the
2382  // tag type. Note that this does does not apply if we're declaring a
2383  // typedef (C++ [dcl.typedef]p4).
2384  if (Previous.isSingleTagDecl() &&
2385      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2386    Previous.clear();
2387
2388  bool Redeclaration = false;
2389  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2390    if (TemplateParamLists.size()) {
2391      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2392      return 0;
2393    }
2394
2395    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2396  } else if (R->isFunctionType()) {
2397    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2398                                  move(TemplateParamLists),
2399                                  IsFunctionDefinition, Redeclaration);
2400  } else {
2401    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2402                                  move(TemplateParamLists),
2403                                  Redeclaration);
2404  }
2405
2406  if (New == 0)
2407    return 0;
2408
2409  // If this has an identifier and is not an invalid redeclaration or
2410  // function template specialization, add it to the scope stack.
2411  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2412    PushOnScopeChains(New, S);
2413
2414  return New;
2415}
2416
2417/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2418/// types into constant array types in certain situations which would otherwise
2419/// be errors (for GCC compatibility).
2420static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2421                                                    ASTContext &Context,
2422                                                    bool &SizeIsNegative,
2423                                                    llvm::APSInt &Oversized) {
2424  // This method tries to turn a variable array into a constant
2425  // array even when the size isn't an ICE.  This is necessary
2426  // for compatibility with code that depends on gcc's buggy
2427  // constant expression folding, like struct {char x[(int)(char*)2];}
2428  SizeIsNegative = false;
2429  Oversized = 0;
2430
2431  if (T->isDependentType())
2432    return QualType();
2433
2434  QualifierCollector Qs;
2435  const Type *Ty = Qs.strip(T);
2436
2437  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2438    QualType Pointee = PTy->getPointeeType();
2439    QualType FixedType =
2440        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2441                                            Oversized);
2442    if (FixedType.isNull()) return FixedType;
2443    FixedType = Context.getPointerType(FixedType);
2444    return Qs.apply(FixedType);
2445  }
2446
2447  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2448  if (!VLATy)
2449    return QualType();
2450  // FIXME: We should probably handle this case
2451  if (VLATy->getElementType()->isVariablyModifiedType())
2452    return QualType();
2453
2454  Expr::EvalResult EvalResult;
2455  if (!VLATy->getSizeExpr() ||
2456      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2457      !EvalResult.Val.isInt())
2458    return QualType();
2459
2460  // Check whether the array size is negative.
2461  llvm::APSInt &Res = EvalResult.Val.getInt();
2462  if (Res.isSigned() && Res.isNegative()) {
2463    SizeIsNegative = true;
2464    return QualType();
2465  }
2466
2467  // Check whether the array is too large to be addressed.
2468  unsigned ActiveSizeBits
2469    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2470                                              Res);
2471  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2472    Oversized = Res;
2473    return QualType();
2474  }
2475
2476  return Context.getConstantArrayType(VLATy->getElementType(),
2477                                      Res, ArrayType::Normal, 0);
2478}
2479
2480/// \brief Register the given locally-scoped external C declaration so
2481/// that it can be found later for redeclarations
2482void
2483Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2484                                       const LookupResult &Previous,
2485                                       Scope *S) {
2486  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2487         "Decl is not a locally-scoped decl!");
2488  // Note that we have a locally-scoped external with this name.
2489  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2490
2491  if (!Previous.isSingleResult())
2492    return;
2493
2494  NamedDecl *PrevDecl = Previous.getFoundDecl();
2495
2496  // If there was a previous declaration of this variable, it may be
2497  // in our identifier chain. Update the identifier chain with the new
2498  // declaration.
2499  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2500    // The previous declaration was found on the identifer resolver
2501    // chain, so remove it from its scope.
2502    while (S && !S->isDeclScope(PrevDecl))
2503      S = S->getParent();
2504
2505    if (S)
2506      S->RemoveDecl(PrevDecl);
2507  }
2508}
2509
2510/// \brief Diagnose function specifiers on a declaration of an identifier that
2511/// does not identify a function.
2512void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2513  // FIXME: We should probably indicate the identifier in question to avoid
2514  // confusion for constructs like "inline int a(), b;"
2515  if (D.getDeclSpec().isInlineSpecified())
2516    Diag(D.getDeclSpec().getInlineSpecLoc(),
2517         diag::err_inline_non_function);
2518
2519  if (D.getDeclSpec().isVirtualSpecified())
2520    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2521         diag::err_virtual_non_function);
2522
2523  if (D.getDeclSpec().isExplicitSpecified())
2524    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2525         diag::err_explicit_non_function);
2526}
2527
2528NamedDecl*
2529Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2530                             QualType R,  TypeSourceInfo *TInfo,
2531                             LookupResult &Previous, bool &Redeclaration) {
2532  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2533  if (D.getCXXScopeSpec().isSet()) {
2534    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2535      << D.getCXXScopeSpec().getRange();
2536    D.setInvalidType();
2537    // Pretend we didn't see the scope specifier.
2538    DC = CurContext;
2539    Previous.clear();
2540  }
2541
2542  if (getLangOptions().CPlusPlus) {
2543    // Check that there are no default arguments (C++ only).
2544    CheckExtraCXXDefaultArguments(D);
2545  }
2546
2547  DiagnoseFunctionSpecifiers(D);
2548
2549  if (D.getDeclSpec().isThreadSpecified())
2550    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2551
2552  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2553    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2554      << D.getName().getSourceRange();
2555    return 0;
2556  }
2557
2558  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2559  if (!NewTD) return 0;
2560
2561  // Handle attributes prior to checking for duplicates in MergeVarDecl
2562  ProcessDeclAttributes(S, NewTD, D);
2563
2564  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2565  // then it shall have block scope.
2566  // Note that variably modified types must be fixed before merging the decl so
2567  // that redeclarations will match.
2568  QualType T = NewTD->getUnderlyingType();
2569  if (T->isVariablyModifiedType()) {
2570    getCurFunction()->setHasBranchProtectedScope();
2571
2572    if (S->getFnParent() == 0) {
2573      bool SizeIsNegative;
2574      llvm::APSInt Oversized;
2575      QualType FixedTy =
2576          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2577                                              Oversized);
2578      if (!FixedTy.isNull()) {
2579        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2580        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2581      } else {
2582        if (SizeIsNegative)
2583          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2584        else if (T->isVariableArrayType())
2585          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2586        else if (Oversized.getBoolValue())
2587          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2588            << Oversized.toString(10);
2589        else
2590          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2591        NewTD->setInvalidDecl();
2592      }
2593    }
2594  }
2595
2596  // Merge the decl with the existing one if appropriate. If the decl is
2597  // in an outer scope, it isn't the same thing.
2598  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2599  if (!Previous.empty()) {
2600    Redeclaration = true;
2601    MergeTypeDefDecl(NewTD, Previous);
2602  }
2603
2604  // If this is the C FILE type, notify the AST context.
2605  if (IdentifierInfo *II = NewTD->getIdentifier())
2606    if (!NewTD->isInvalidDecl() &&
2607        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2608      if (II->isStr("FILE"))
2609        Context.setFILEDecl(NewTD);
2610      else if (II->isStr("jmp_buf"))
2611        Context.setjmp_bufDecl(NewTD);
2612      else if (II->isStr("sigjmp_buf"))
2613        Context.setsigjmp_bufDecl(NewTD);
2614    }
2615
2616  return NewTD;
2617}
2618
2619/// \brief Determines whether the given declaration is an out-of-scope
2620/// previous declaration.
2621///
2622/// This routine should be invoked when name lookup has found a
2623/// previous declaration (PrevDecl) that is not in the scope where a
2624/// new declaration by the same name is being introduced. If the new
2625/// declaration occurs in a local scope, previous declarations with
2626/// linkage may still be considered previous declarations (C99
2627/// 6.2.2p4-5, C++ [basic.link]p6).
2628///
2629/// \param PrevDecl the previous declaration found by name
2630/// lookup
2631///
2632/// \param DC the context in which the new declaration is being
2633/// declared.
2634///
2635/// \returns true if PrevDecl is an out-of-scope previous declaration
2636/// for a new delcaration with the same name.
2637static bool
2638isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2639                                ASTContext &Context) {
2640  if (!PrevDecl)
2641    return false;
2642
2643  if (!PrevDecl->hasLinkage())
2644    return false;
2645
2646  if (Context.getLangOptions().CPlusPlus) {
2647    // C++ [basic.link]p6:
2648    //   If there is a visible declaration of an entity with linkage
2649    //   having the same name and type, ignoring entities declared
2650    //   outside the innermost enclosing namespace scope, the block
2651    //   scope declaration declares that same entity and receives the
2652    //   linkage of the previous declaration.
2653    DeclContext *OuterContext = DC->getRedeclContext();
2654    if (!OuterContext->isFunctionOrMethod())
2655      // This rule only applies to block-scope declarations.
2656      return false;
2657
2658    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2659    if (PrevOuterContext->isRecord())
2660      // We found a member function: ignore it.
2661      return false;
2662
2663    // Find the innermost enclosing namespace for the new and
2664    // previous declarations.
2665    OuterContext = OuterContext->getEnclosingNamespaceContext();
2666    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2667
2668    // The previous declaration is in a different namespace, so it
2669    // isn't the same function.
2670    if (!OuterContext->Equals(PrevOuterContext))
2671      return false;
2672  }
2673
2674  return true;
2675}
2676
2677static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2678  CXXScopeSpec &SS = D.getCXXScopeSpec();
2679  if (!SS.isSet()) return;
2680  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2681                       SS.getRange());
2682}
2683
2684NamedDecl*
2685Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2686                              QualType R, TypeSourceInfo *TInfo,
2687                              LookupResult &Previous,
2688                              MultiTemplateParamsArg TemplateParamLists,
2689                              bool &Redeclaration) {
2690  DeclarationName Name = GetNameForDeclarator(D).getName();
2691
2692  // Check that there are no default arguments (C++ only).
2693  if (getLangOptions().CPlusPlus)
2694    CheckExtraCXXDefaultArguments(D);
2695
2696  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2697  assert(SCSpec != DeclSpec::SCS_typedef &&
2698         "Parser allowed 'typedef' as storage class VarDecl.");
2699  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2700  if (SCSpec == DeclSpec::SCS_mutable) {
2701    // mutable can only appear on non-static class members, so it's always
2702    // an error here
2703    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2704    D.setInvalidType();
2705    SC = SC_None;
2706  }
2707  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2708  VarDecl::StorageClass SCAsWritten
2709    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2710
2711  IdentifierInfo *II = Name.getAsIdentifierInfo();
2712  if (!II) {
2713    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2714      << Name.getAsString();
2715    return 0;
2716  }
2717
2718  DiagnoseFunctionSpecifiers(D);
2719
2720  if (!DC->isRecord() && S->getFnParent() == 0) {
2721    // C99 6.9p2: The storage-class specifiers auto and register shall not
2722    // appear in the declaration specifiers in an external declaration.
2723    if (SC == SC_Auto || SC == SC_Register) {
2724
2725      // If this is a register variable with an asm label specified, then this
2726      // is a GNU extension.
2727      if (SC == SC_Register && D.getAsmLabel())
2728        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2729      else
2730        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2731      D.setInvalidType();
2732    }
2733  }
2734  if (DC->isRecord() && !CurContext->isRecord()) {
2735    // This is an out-of-line definition of a static data member.
2736    if (SC == SC_Static) {
2737      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2738           diag::err_static_out_of_line)
2739        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2740    } else if (SC == SC_None)
2741      SC = SC_Static;
2742  }
2743  if (SC == SC_Static) {
2744    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2745      if (RD->isLocalClass())
2746        Diag(D.getIdentifierLoc(),
2747             diag::err_static_data_member_not_allowed_in_local_class)
2748          << Name << RD->getDeclName();
2749    }
2750  }
2751
2752  // Match up the template parameter lists with the scope specifier, then
2753  // determine whether we have a template or a template specialization.
2754  bool isExplicitSpecialization = false;
2755  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2756  bool Invalid = false;
2757  if (TemplateParameterList *TemplateParams
2758        = MatchTemplateParametersToScopeSpecifier(
2759                                  D.getDeclSpec().getSourceRange().getBegin(),
2760                                                  D.getCXXScopeSpec(),
2761                        (TemplateParameterList**)TemplateParamLists.get(),
2762                                                   TemplateParamLists.size(),
2763                                                  /*never a friend*/ false,
2764                                                  isExplicitSpecialization,
2765                                                  Invalid)) {
2766    // All but one template parameter lists have been matching.
2767    --NumMatchedTemplateParamLists;
2768
2769    if (TemplateParams->size() > 0) {
2770      // There is no such thing as a variable template.
2771      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2772        << II
2773        << SourceRange(TemplateParams->getTemplateLoc(),
2774                       TemplateParams->getRAngleLoc());
2775      return 0;
2776    } else {
2777      // There is an extraneous 'template<>' for this variable. Complain
2778      // about it, but allow the declaration of the variable.
2779      Diag(TemplateParams->getTemplateLoc(),
2780           diag::err_template_variable_noparams)
2781        << II
2782        << SourceRange(TemplateParams->getTemplateLoc(),
2783                       TemplateParams->getRAngleLoc());
2784
2785      isExplicitSpecialization = true;
2786    }
2787  }
2788
2789  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2790                                   II, R, TInfo, SC, SCAsWritten);
2791
2792  if (D.isInvalidType() || Invalid)
2793    NewVD->setInvalidDecl();
2794
2795  SetNestedNameSpecifier(NewVD, D);
2796
2797  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2798    NewVD->setTemplateParameterListsInfo(Context,
2799                                         NumMatchedTemplateParamLists,
2800                        (TemplateParameterList**)TemplateParamLists.release());
2801  }
2802
2803  if (D.getDeclSpec().isThreadSpecified()) {
2804    if (NewVD->hasLocalStorage())
2805      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2806    else if (!Context.Target.isTLSSupported())
2807      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2808    else
2809      NewVD->setThreadSpecified(true);
2810  }
2811
2812  // Set the lexical context. If the declarator has a C++ scope specifier, the
2813  // lexical context will be different from the semantic context.
2814  NewVD->setLexicalDeclContext(CurContext);
2815
2816  // Handle attributes prior to checking for duplicates in MergeVarDecl
2817  ProcessDeclAttributes(S, NewVD, D);
2818
2819  // Handle GNU asm-label extension (encoded as an attribute).
2820  if (Expr *E = (Expr*) D.getAsmLabel()) {
2821    // The parser guarantees this is a string.
2822    StringLiteral *SE = cast<StringLiteral>(E);
2823    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2824                                                Context, SE->getString()));
2825  }
2826
2827  // Diagnose shadowed variables before filtering for scope.
2828  if (!D.getCXXScopeSpec().isSet())
2829    CheckShadow(S, NewVD, Previous);
2830
2831  // Don't consider existing declarations that are in a different
2832  // scope and are out-of-semantic-context declarations (if the new
2833  // declaration has linkage).
2834  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2835
2836  // Merge the decl with the existing one if appropriate.
2837  if (!Previous.empty()) {
2838    if (Previous.isSingleResult() &&
2839        isa<FieldDecl>(Previous.getFoundDecl()) &&
2840        D.getCXXScopeSpec().isSet()) {
2841      // The user tried to define a non-static data member
2842      // out-of-line (C++ [dcl.meaning]p1).
2843      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2844        << D.getCXXScopeSpec().getRange();
2845      Previous.clear();
2846      NewVD->setInvalidDecl();
2847    }
2848  } else if (D.getCXXScopeSpec().isSet()) {
2849    // No previous declaration in the qualifying scope.
2850    Diag(D.getIdentifierLoc(), diag::err_no_member)
2851      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2852      << D.getCXXScopeSpec().getRange();
2853    NewVD->setInvalidDecl();
2854  }
2855
2856  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2857
2858  // This is an explicit specialization of a static data member. Check it.
2859  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2860      CheckMemberSpecialization(NewVD, Previous))
2861    NewVD->setInvalidDecl();
2862
2863  // attributes declared post-definition are currently ignored
2864  // FIXME: This should be handled in attribute merging, not
2865  // here.
2866  if (Previous.isSingleResult()) {
2867    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2868    if (Def && (Def = Def->getDefinition()) &&
2869        Def != NewVD && D.hasAttributes()) {
2870      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2871      Diag(Def->getLocation(), diag::note_previous_definition);
2872    }
2873  }
2874
2875  // If this is a locally-scoped extern C variable, update the map of
2876  // such variables.
2877  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2878      !NewVD->isInvalidDecl())
2879    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2880
2881  // If there's a #pragma GCC visibility in scope, and this isn't a class
2882  // member, set the visibility of this variable.
2883  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2884    AddPushedVisibilityAttribute(NewVD);
2885
2886  MarkUnusedFileScopedDecl(NewVD);
2887
2888  return NewVD;
2889}
2890
2891/// \brief Diagnose variable or built-in function shadowing.  Implements
2892/// -Wshadow.
2893///
2894/// This method is called whenever a VarDecl is added to a "useful"
2895/// scope.
2896///
2897/// \param S the scope in which the shadowing name is being declared
2898/// \param R the lookup of the name
2899///
2900void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2901  // Return if warning is ignored.
2902  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2903    return;
2904
2905  // Don't diagnose declarations at file scope.  The scope might not
2906  // have a DeclContext if (e.g.) we're parsing a function prototype.
2907  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2908  if (NewDC && NewDC->isFileContext())
2909    return;
2910
2911  // Only diagnose if we're shadowing an unambiguous field or variable.
2912  if (R.getResultKind() != LookupResult::Found)
2913    return;
2914
2915  NamedDecl* ShadowedDecl = R.getFoundDecl();
2916  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2917    return;
2918
2919  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2920
2921  // Only warn about certain kinds of shadowing for class members.
2922  if (NewDC && NewDC->isRecord()) {
2923    // In particular, don't warn about shadowing non-class members.
2924    if (!OldDC->isRecord())
2925      return;
2926
2927    // TODO: should we warn about static data members shadowing
2928    // static data members from base classes?
2929
2930    // TODO: don't diagnose for inaccessible shadowed members.
2931    // This is hard to do perfectly because we might friend the
2932    // shadowing context, but that's just a false negative.
2933  }
2934
2935  // Determine what kind of declaration we're shadowing.
2936  unsigned Kind;
2937  if (isa<RecordDecl>(OldDC)) {
2938    if (isa<FieldDecl>(ShadowedDecl))
2939      Kind = 3; // field
2940    else
2941      Kind = 2; // static data member
2942  } else if (OldDC->isFileContext())
2943    Kind = 1; // global
2944  else
2945    Kind = 0; // local
2946
2947  DeclarationName Name = R.getLookupName();
2948
2949  // Emit warning and note.
2950  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2951  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2952}
2953
2954/// \brief Check -Wshadow without the advantage of a previous lookup.
2955void Sema::CheckShadow(Scope *S, VarDecl *D) {
2956  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2957                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2958  LookupName(R, S);
2959  CheckShadow(S, D, R);
2960}
2961
2962/// \brief Perform semantic checking on a newly-created variable
2963/// declaration.
2964///
2965/// This routine performs all of the type-checking required for a
2966/// variable declaration once it has been built. It is used both to
2967/// check variables after they have been parsed and their declarators
2968/// have been translated into a declaration, and to check variables
2969/// that have been instantiated from a template.
2970///
2971/// Sets NewVD->isInvalidDecl() if an error was encountered.
2972void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2973                                    LookupResult &Previous,
2974                                    bool &Redeclaration) {
2975  // If the decl is already known invalid, don't check it.
2976  if (NewVD->isInvalidDecl())
2977    return;
2978
2979  QualType T = NewVD->getType();
2980
2981  if (T->isObjCObjectType()) {
2982    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2983    return NewVD->setInvalidDecl();
2984  }
2985
2986  // Emit an error if an address space was applied to decl with local storage.
2987  // This includes arrays of objects with address space qualifiers, but not
2988  // automatic variables that point to other address spaces.
2989  // ISO/IEC TR 18037 S5.1.2
2990  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2991    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2992    return NewVD->setInvalidDecl();
2993  }
2994
2995  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2996      && !NewVD->hasAttr<BlocksAttr>())
2997    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2998
2999  bool isVM = T->isVariablyModifiedType();
3000  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3001      NewVD->hasAttr<BlocksAttr>())
3002    getCurFunction()->setHasBranchProtectedScope();
3003
3004  if ((isVM && NewVD->hasLinkage()) ||
3005      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3006    bool SizeIsNegative;
3007    llvm::APSInt Oversized;
3008    QualType FixedTy =
3009        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3010                                            Oversized);
3011
3012    if (FixedTy.isNull() && T->isVariableArrayType()) {
3013      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3014      // FIXME: This won't give the correct result for
3015      // int a[10][n];
3016      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3017
3018      if (NewVD->isFileVarDecl())
3019        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3020        << SizeRange;
3021      else if (NewVD->getStorageClass() == SC_Static)
3022        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3023        << SizeRange;
3024      else
3025        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3026        << SizeRange;
3027      return NewVD->setInvalidDecl();
3028    }
3029
3030    if (FixedTy.isNull()) {
3031      if (NewVD->isFileVarDecl())
3032        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3033      else
3034        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3035      return NewVD->setInvalidDecl();
3036    }
3037
3038    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3039    NewVD->setType(FixedTy);
3040  }
3041
3042  if (Previous.empty() && NewVD->isExternC()) {
3043    // Since we did not find anything by this name and we're declaring
3044    // an extern "C" variable, look for a non-visible extern "C"
3045    // declaration with the same name.
3046    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3047      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3048    if (Pos != LocallyScopedExternalDecls.end())
3049      Previous.addDecl(Pos->second);
3050  }
3051
3052  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3053    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3054      << T;
3055    return NewVD->setInvalidDecl();
3056  }
3057
3058  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3059    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3060    return NewVD->setInvalidDecl();
3061  }
3062
3063  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3064    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3065    return NewVD->setInvalidDecl();
3066  }
3067
3068  // Function pointers and references cannot have qualified function type, only
3069  // function pointer-to-members can do that.
3070  QualType Pointee;
3071  unsigned PtrOrRef = 0;
3072  if (const PointerType *Ptr = T->getAs<PointerType>())
3073    Pointee = Ptr->getPointeeType();
3074  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3075    Pointee = Ref->getPointeeType();
3076    PtrOrRef = 1;
3077  }
3078  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3079      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3080    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3081        << PtrOrRef;
3082    return NewVD->setInvalidDecl();
3083  }
3084
3085  if (!Previous.empty()) {
3086    Redeclaration = true;
3087    MergeVarDecl(NewVD, Previous);
3088  }
3089}
3090
3091/// \brief Data used with FindOverriddenMethod
3092struct FindOverriddenMethodData {
3093  Sema *S;
3094  CXXMethodDecl *Method;
3095};
3096
3097/// \brief Member lookup function that determines whether a given C++
3098/// method overrides a method in a base class, to be used with
3099/// CXXRecordDecl::lookupInBases().
3100static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3101                                 CXXBasePath &Path,
3102                                 void *UserData) {
3103  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3104
3105  FindOverriddenMethodData *Data
3106    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3107
3108  DeclarationName Name = Data->Method->getDeclName();
3109
3110  // FIXME: Do we care about other names here too?
3111  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3112    // We really want to find the base class destructor here.
3113    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3114    CanQualType CT = Data->S->Context.getCanonicalType(T);
3115
3116    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3117  }
3118
3119  for (Path.Decls = BaseRecord->lookup(Name);
3120       Path.Decls.first != Path.Decls.second;
3121       ++Path.Decls.first) {
3122    NamedDecl *D = *Path.Decls.first;
3123    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3124      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3125        return true;
3126    }
3127  }
3128
3129  return false;
3130}
3131
3132/// AddOverriddenMethods - See if a method overrides any in the base classes,
3133/// and if so, check that it's a valid override and remember it.
3134void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3135  // Look for virtual methods in base classes that this method might override.
3136  CXXBasePaths Paths;
3137  FindOverriddenMethodData Data;
3138  Data.Method = MD;
3139  Data.S = this;
3140  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3141    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3142         E = Paths.found_decls_end(); I != E; ++I) {
3143      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3144        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3145            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3146            !CheckOverridingFunctionAttributes(MD, OldMD))
3147          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3148      }
3149    }
3150  }
3151}
3152
3153NamedDecl*
3154Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3155                              QualType R, TypeSourceInfo *TInfo,
3156                              LookupResult &Previous,
3157                              MultiTemplateParamsArg TemplateParamLists,
3158                              bool IsFunctionDefinition, bool &Redeclaration) {
3159  assert(R.getTypePtr()->isFunctionType());
3160
3161  // TODO: consider using NameInfo for diagnostic.
3162  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3163  DeclarationName Name = NameInfo.getName();
3164  FunctionDecl::StorageClass SC = SC_None;
3165  switch (D.getDeclSpec().getStorageClassSpec()) {
3166  default: assert(0 && "Unknown storage class!");
3167  case DeclSpec::SCS_auto:
3168  case DeclSpec::SCS_register:
3169  case DeclSpec::SCS_mutable:
3170    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3171         diag::err_typecheck_sclass_func);
3172    D.setInvalidType();
3173    break;
3174  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3175  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3176  case DeclSpec::SCS_static: {
3177    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3178      // C99 6.7.1p5:
3179      //   The declaration of an identifier for a function that has
3180      //   block scope shall have no explicit storage-class specifier
3181      //   other than extern
3182      // See also (C++ [dcl.stc]p4).
3183      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3184           diag::err_static_block_func);
3185      SC = SC_None;
3186    } else
3187      SC = SC_Static;
3188    break;
3189  }
3190  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3191  }
3192
3193  if (D.getDeclSpec().isThreadSpecified())
3194    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3195
3196  bool isFriend = D.getDeclSpec().isFriendSpecified();
3197  bool isInline = D.getDeclSpec().isInlineSpecified();
3198  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3199  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3200
3201  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3202  FunctionDecl::StorageClass SCAsWritten
3203    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3204
3205  // Check that the return type is not an abstract class type.
3206  // For record types, this is done by the AbstractClassUsageDiagnoser once
3207  // the class has been completely parsed.
3208  if (!DC->isRecord() &&
3209      RequireNonAbstractType(D.getIdentifierLoc(),
3210                             R->getAs<FunctionType>()->getResultType(),
3211                             diag::err_abstract_type_in_decl,
3212                             AbstractReturnType))
3213    D.setInvalidType();
3214
3215  // Do not allow returning a objc interface by-value.
3216  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3217    Diag(D.getIdentifierLoc(),
3218         diag::err_object_cannot_be_passed_returned_by_value) << 0
3219      << R->getAs<FunctionType>()->getResultType();
3220    D.setInvalidType();
3221  }
3222
3223  bool isVirtualOkay = false;
3224  FunctionDecl *NewFD;
3225
3226  if (isFriend) {
3227    // C++ [class.friend]p5
3228    //   A function can be defined in a friend declaration of a
3229    //   class . . . . Such a function is implicitly inline.
3230    isInline |= IsFunctionDefinition;
3231  }
3232
3233  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3234    // This is a C++ constructor declaration.
3235    assert(DC->isRecord() &&
3236           "Constructors can only be declared in a member context");
3237
3238    R = CheckConstructorDeclarator(D, R, SC);
3239
3240    // Create the new declaration
3241    NewFD = CXXConstructorDecl::Create(Context,
3242                                       cast<CXXRecordDecl>(DC),
3243                                       NameInfo, R, TInfo,
3244                                       isExplicit, isInline,
3245                                       /*isImplicitlyDeclared=*/false);
3246  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3247    // This is a C++ destructor declaration.
3248    if (DC->isRecord()) {
3249      R = CheckDestructorDeclarator(D, R, SC);
3250
3251      NewFD = CXXDestructorDecl::Create(Context,
3252                                        cast<CXXRecordDecl>(DC),
3253                                        NameInfo, R,
3254                                        isInline,
3255                                        /*isImplicitlyDeclared=*/false);
3256      NewFD->setTypeSourceInfo(TInfo);
3257
3258      isVirtualOkay = true;
3259    } else {
3260      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3261
3262      // Create a FunctionDecl to satisfy the function definition parsing
3263      // code path.
3264      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3265                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3266                                   /*hasPrototype=*/true);
3267      D.setInvalidType();
3268    }
3269  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3270    if (!DC->isRecord()) {
3271      Diag(D.getIdentifierLoc(),
3272           diag::err_conv_function_not_member);
3273      return 0;
3274    }
3275
3276    CheckConversionDeclarator(D, R, SC);
3277    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3278                                      NameInfo, R, TInfo,
3279                                      isInline, isExplicit);
3280
3281    isVirtualOkay = true;
3282  } else if (DC->isRecord()) {
3283    // If the of the function is the same as the name of the record, then this
3284    // must be an invalid constructor that has a return type.
3285    // (The parser checks for a return type and makes the declarator a
3286    // constructor if it has no return type).
3287    // must have an invalid constructor that has a return type
3288    if (Name.getAsIdentifierInfo() &&
3289        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3290      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3291        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3292        << SourceRange(D.getIdentifierLoc());
3293      return 0;
3294    }
3295
3296    bool isStatic = SC == SC_Static;
3297
3298    // [class.free]p1:
3299    // Any allocation function for a class T is a static member
3300    // (even if not explicitly declared static).
3301    if (Name.getCXXOverloadedOperator() == OO_New ||
3302        Name.getCXXOverloadedOperator() == OO_Array_New)
3303      isStatic = true;
3304
3305    // [class.free]p6 Any deallocation function for a class X is a static member
3306    // (even if not explicitly declared static).
3307    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3308        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3309      isStatic = true;
3310
3311    // This is a C++ method declaration.
3312    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3313                                  NameInfo, R, TInfo,
3314                                  isStatic, SCAsWritten, isInline);
3315
3316    isVirtualOkay = !isStatic;
3317  } else {
3318    // Determine whether the function was written with a
3319    // prototype. This true when:
3320    //   - we're in C++ (where every function has a prototype),
3321    //   - there is a prototype in the declarator, or
3322    //   - the type R of the function is some kind of typedef or other reference
3323    //     to a type name (which eventually refers to a function type).
3324    bool HasPrototype =
3325       getLangOptions().CPlusPlus ||
3326       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3327       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3328
3329    NewFD = FunctionDecl::Create(Context, DC,
3330                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3331                                 HasPrototype);
3332  }
3333
3334  if (D.isInvalidType())
3335    NewFD->setInvalidDecl();
3336
3337  SetNestedNameSpecifier(NewFD, D);
3338
3339  // Set the lexical context. If the declarator has a C++
3340  // scope specifier, or is the object of a friend declaration, the
3341  // lexical context will be different from the semantic context.
3342  NewFD->setLexicalDeclContext(CurContext);
3343
3344  // Match up the template parameter lists with the scope specifier, then
3345  // determine whether we have a template or a template specialization.
3346  FunctionTemplateDecl *FunctionTemplate = 0;
3347  bool isExplicitSpecialization = false;
3348  bool isFunctionTemplateSpecialization = false;
3349  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3350  bool Invalid = false;
3351  if (TemplateParameterList *TemplateParams
3352        = MatchTemplateParametersToScopeSpecifier(
3353                                  D.getDeclSpec().getSourceRange().getBegin(),
3354                                  D.getCXXScopeSpec(),
3355                           (TemplateParameterList**)TemplateParamLists.get(),
3356                                                  TemplateParamLists.size(),
3357                                                  isFriend,
3358                                                  isExplicitSpecialization,
3359                                                  Invalid)) {
3360    // All but one template parameter lists have been matching.
3361    --NumMatchedTemplateParamLists;
3362
3363    if (TemplateParams->size() > 0) {
3364      // This is a function template
3365
3366      // Check that we can declare a template here.
3367      if (CheckTemplateDeclScope(S, TemplateParams))
3368        return 0;
3369
3370      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3371                                                      NewFD->getLocation(),
3372                                                      Name, TemplateParams,
3373                                                      NewFD);
3374      FunctionTemplate->setLexicalDeclContext(CurContext);
3375      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3376    } else {
3377      // This is a function template specialization.
3378      isFunctionTemplateSpecialization = true;
3379
3380      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3381      if (isFriend && isFunctionTemplateSpecialization) {
3382        // We want to remove the "template<>", found here.
3383        SourceRange RemoveRange = TemplateParams->getSourceRange();
3384
3385        // If we remove the template<> and the name is not a
3386        // template-id, we're actually silently creating a problem:
3387        // the friend declaration will refer to an untemplated decl,
3388        // and clearly the user wants a template specialization.  So
3389        // we need to insert '<>' after the name.
3390        SourceLocation InsertLoc;
3391        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3392          InsertLoc = D.getName().getSourceRange().getEnd();
3393          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3394        }
3395
3396        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3397          << Name << RemoveRange
3398          << FixItHint::CreateRemoval(RemoveRange)
3399          << FixItHint::CreateInsertion(InsertLoc, "<>");
3400      }
3401    }
3402  }
3403
3404  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3405    NewFD->setTemplateParameterListsInfo(Context,
3406                                         NumMatchedTemplateParamLists,
3407                        (TemplateParameterList**)TemplateParamLists.release());
3408  }
3409
3410  if (Invalid) {
3411    NewFD->setInvalidDecl();
3412    if (FunctionTemplate)
3413      FunctionTemplate->setInvalidDecl();
3414  }
3415
3416  // C++ [dcl.fct.spec]p5:
3417  //   The virtual specifier shall only be used in declarations of
3418  //   nonstatic class member functions that appear within a
3419  //   member-specification of a class declaration; see 10.3.
3420  //
3421  if (isVirtual && !NewFD->isInvalidDecl()) {
3422    if (!isVirtualOkay) {
3423       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3424           diag::err_virtual_non_function);
3425    } else if (!CurContext->isRecord()) {
3426      // 'virtual' was specified outside of the class.
3427      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3428        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3429    } else {
3430      // Okay: Add virtual to the method.
3431      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3432      CurClass->setMethodAsVirtual(NewFD);
3433    }
3434  }
3435
3436  // C++ [dcl.fct.spec]p3:
3437  //  The inline specifier shall not appear on a block scope function declaration.
3438  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3439    if (CurContext->isFunctionOrMethod()) {
3440      // 'inline' is not allowed on block scope function declaration.
3441      Diag(D.getDeclSpec().getInlineSpecLoc(),
3442           diag::err_inline_declaration_block_scope) << Name
3443        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3444    }
3445  }
3446
3447  // C++ [dcl.fct.spec]p6:
3448  //  The explicit specifier shall be used only in the declaration of a
3449  //  constructor or conversion function within its class definition; see 12.3.1
3450  //  and 12.3.2.
3451  if (isExplicit && !NewFD->isInvalidDecl()) {
3452    if (!CurContext->isRecord()) {
3453      // 'explicit' was specified outside of the class.
3454      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3455           diag::err_explicit_out_of_class)
3456        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3457    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3458               !isa<CXXConversionDecl>(NewFD)) {
3459      // 'explicit' was specified on a function that wasn't a constructor
3460      // or conversion function.
3461      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3462           diag::err_explicit_non_ctor_or_conv_function)
3463        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3464    }
3465  }
3466
3467  // Filter out previous declarations that don't match the scope.
3468  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3469
3470  if (isFriend) {
3471    // DC is the namespace in which the function is being declared.
3472    assert((DC->isFileContext() || !Previous.empty()) &&
3473           "previously-undeclared friend function being created "
3474           "in a non-namespace context");
3475
3476    // For now, claim that the objects have no previous declaration.
3477    if (FunctionTemplate) {
3478      FunctionTemplate->setObjectOfFriendDecl(false);
3479      FunctionTemplate->setAccess(AS_public);
3480    }
3481    NewFD->setObjectOfFriendDecl(false);
3482    NewFD->setAccess(AS_public);
3483  }
3484
3485  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3486      !CurContext->isRecord()) {
3487    // C++ [class.static]p1:
3488    //   A data or function member of a class may be declared static
3489    //   in a class definition, in which case it is a static member of
3490    //   the class.
3491
3492    // Complain about the 'static' specifier if it's on an out-of-line
3493    // member function definition.
3494    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3495         diag::err_static_out_of_line)
3496      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3497  }
3498
3499  // Handle GNU asm-label extension (encoded as an attribute).
3500  if (Expr *E = (Expr*) D.getAsmLabel()) {
3501    // The parser guarantees this is a string.
3502    StringLiteral *SE = cast<StringLiteral>(E);
3503    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3504                                                SE->getString()));
3505  }
3506
3507  // Copy the parameter declarations from the declarator D to the function
3508  // declaration NewFD, if they are available.  First scavenge them into Params.
3509  llvm::SmallVector<ParmVarDecl*, 16> Params;
3510  if (D.getNumTypeObjects() > 0) {
3511    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3512
3513    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3514    // function that takes no arguments, not a function that takes a
3515    // single void argument.
3516    // We let through "const void" here because Sema::GetTypeForDeclarator
3517    // already checks for that case.
3518    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3519        FTI.ArgInfo[0].Param &&
3520        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3521      // Empty arg list, don't push any params.
3522      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3523
3524      // In C++, the empty parameter-type-list must be spelled "void"; a
3525      // typedef of void is not permitted.
3526      if (getLangOptions().CPlusPlus &&
3527          Param->getType().getUnqualifiedType() != Context.VoidTy)
3528        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3529      // FIXME: Leaks decl?
3530    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3531      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3532        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3533        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3534        Param->setDeclContext(NewFD);
3535        Params.push_back(Param);
3536
3537        if (Param->isInvalidDecl())
3538          NewFD->setInvalidDecl();
3539      }
3540    }
3541
3542  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3543    // When we're declaring a function with a typedef, typeof, etc as in the
3544    // following example, we'll need to synthesize (unnamed)
3545    // parameters for use in the declaration.
3546    //
3547    // @code
3548    // typedef void fn(int);
3549    // fn f;
3550    // @endcode
3551
3552    // Synthesize a parameter for each argument type.
3553    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3554         AE = FT->arg_type_end(); AI != AE; ++AI) {
3555      ParmVarDecl *Param =
3556        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3557      Params.push_back(Param);
3558    }
3559  } else {
3560    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3561           "Should not need args for typedef of non-prototype fn");
3562  }
3563  // Finally, we know we have the right number of parameters, install them.
3564  NewFD->setParams(Params.data(), Params.size());
3565
3566  // If the declarator is a template-id, translate the parser's template
3567  // argument list into our AST format.
3568  bool HasExplicitTemplateArgs = false;
3569  TemplateArgumentListInfo TemplateArgs;
3570  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3571    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3572    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3573    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3574    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3575                                       TemplateId->getTemplateArgs(),
3576                                       TemplateId->NumArgs);
3577    translateTemplateArguments(TemplateArgsPtr,
3578                               TemplateArgs);
3579    TemplateArgsPtr.release();
3580
3581    HasExplicitTemplateArgs = true;
3582
3583    if (FunctionTemplate) {
3584      // FIXME: Diagnose function template with explicit template
3585      // arguments.
3586      HasExplicitTemplateArgs = false;
3587    } else if (!isFunctionTemplateSpecialization &&
3588               !D.getDeclSpec().isFriendSpecified()) {
3589      // We have encountered something that the user meant to be a
3590      // specialization (because it has explicitly-specified template
3591      // arguments) but that was not introduced with a "template<>" (or had
3592      // too few of them).
3593      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3594        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3595        << FixItHint::CreateInsertion(
3596                                   D.getDeclSpec().getSourceRange().getBegin(),
3597                                                 "template<> ");
3598      isFunctionTemplateSpecialization = true;
3599    } else {
3600      // "friend void foo<>(int);" is an implicit specialization decl.
3601      isFunctionTemplateSpecialization = true;
3602    }
3603  } else if (isFriend && isFunctionTemplateSpecialization) {
3604    // This combination is only possible in a recovery case;  the user
3605    // wrote something like:
3606    //   template <> friend void foo(int);
3607    // which we're recovering from as if the user had written:
3608    //   friend void foo<>(int);
3609    // Go ahead and fake up a template id.
3610    HasExplicitTemplateArgs = true;
3611    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3612    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3613  }
3614
3615  // If it's a friend (and only if it's a friend), it's possible
3616  // that either the specialized function type or the specialized
3617  // template is dependent, and therefore matching will fail.  In
3618  // this case, don't check the specialization yet.
3619  if (isFunctionTemplateSpecialization && isFriend &&
3620      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3621    assert(HasExplicitTemplateArgs &&
3622           "friend function specialization without template args");
3623    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3624                                                     Previous))
3625      NewFD->setInvalidDecl();
3626  } else if (isFunctionTemplateSpecialization) {
3627    if (CheckFunctionTemplateSpecialization(NewFD,
3628                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3629                                            Previous))
3630      NewFD->setInvalidDecl();
3631  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3632    if (CheckMemberSpecialization(NewFD, Previous))
3633      NewFD->setInvalidDecl();
3634  }
3635
3636  // Perform semantic checking on the function declaration.
3637  bool OverloadableAttrRequired = false; // FIXME: HACK!
3638  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3639                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3640
3641  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3642          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3643         "previous declaration set still overloaded");
3644
3645  NamedDecl *PrincipalDecl = (FunctionTemplate
3646                              ? cast<NamedDecl>(FunctionTemplate)
3647                              : NewFD);
3648
3649  if (isFriend && Redeclaration) {
3650    AccessSpecifier Access = AS_public;
3651    if (!NewFD->isInvalidDecl())
3652      Access = NewFD->getPreviousDeclaration()->getAccess();
3653
3654    NewFD->setAccess(Access);
3655    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3656
3657    PrincipalDecl->setObjectOfFriendDecl(true);
3658  }
3659
3660  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3661      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3662    PrincipalDecl->setNonMemberOperator();
3663
3664  // If we have a function template, check the template parameter
3665  // list. This will check and merge default template arguments.
3666  if (FunctionTemplate) {
3667    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3668    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3669                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3670             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3671                                                : TPC_FunctionTemplate);
3672  }
3673
3674  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3675    // Fake up an access specifier if it's supposed to be a class member.
3676    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3677      NewFD->setAccess(AS_public);
3678
3679    // An out-of-line member function declaration must also be a
3680    // definition (C++ [dcl.meaning]p1).
3681    // Note that this is not the case for explicit specializations of
3682    // function templates or member functions of class templates, per
3683    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3684    // for compatibility with old SWIG code which likes to generate them.
3685    if (!IsFunctionDefinition && !isFriend &&
3686        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3687      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3688        << D.getCXXScopeSpec().getRange();
3689    }
3690    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3691      // The user tried to provide an out-of-line definition for a
3692      // function that is a member of a class or namespace, but there
3693      // was no such member function declared (C++ [class.mfct]p2,
3694      // C++ [namespace.memdef]p2). For example:
3695      //
3696      // class X {
3697      //   void f() const;
3698      // };
3699      //
3700      // void X::f() { } // ill-formed
3701      //
3702      // Complain about this problem, and attempt to suggest close
3703      // matches (e.g., those that differ only in cv-qualifiers and
3704      // whether the parameter types are references).
3705      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3706        << Name << DC << D.getCXXScopeSpec().getRange();
3707      NewFD->setInvalidDecl();
3708
3709      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3710                        ForRedeclaration);
3711      LookupQualifiedName(Prev, DC);
3712      assert(!Prev.isAmbiguous() &&
3713             "Cannot have an ambiguity in previous-declaration lookup");
3714      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3715           Func != FuncEnd; ++Func) {
3716        if (isa<FunctionDecl>(*Func) &&
3717            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3718          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3719      }
3720    }
3721  }
3722
3723  // Handle attributes. We need to have merged decls when handling attributes
3724  // (for example to check for conflicts, etc).
3725  // FIXME: This needs to happen before we merge declarations. Then,
3726  // let attribute merging cope with attribute conflicts.
3727  ProcessDeclAttributes(S, NewFD, D);
3728
3729  // attributes declared post-definition are currently ignored
3730  // FIXME: This should happen during attribute merging
3731  if (Redeclaration && Previous.isSingleResult()) {
3732    const FunctionDecl *Def;
3733    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3734    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3735      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3736      Diag(Def->getLocation(), diag::note_previous_definition);
3737    }
3738  }
3739
3740  AddKnownFunctionAttributes(NewFD);
3741
3742  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3743    // If a function name is overloadable in C, then every function
3744    // with that name must be marked "overloadable".
3745    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3746      << Redeclaration << NewFD;
3747    if (!Previous.empty())
3748      Diag(Previous.getRepresentativeDecl()->getLocation(),
3749           diag::note_attribute_overloadable_prev_overload);
3750    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3751  }
3752
3753  if (NewFD->hasAttr<OverloadableAttr>() &&
3754      !NewFD->getType()->getAs<FunctionProtoType>()) {
3755    Diag(NewFD->getLocation(),
3756         diag::err_attribute_overloadable_no_prototype)
3757      << NewFD;
3758
3759    // Turn this into a variadic function with no parameters.
3760    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3761    QualType R = Context.getFunctionType(FT->getResultType(),
3762                                         0, 0, true, 0, false, false, 0, 0,
3763                                         FT->getExtInfo());
3764    NewFD->setType(R);
3765  }
3766
3767  // If there's a #pragma GCC visibility in scope, and this isn't a class
3768  // member, set the visibility of this function.
3769  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3770    AddPushedVisibilityAttribute(NewFD);
3771
3772  // If this is a locally-scoped extern C function, update the
3773  // map of such names.
3774  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3775      && !NewFD->isInvalidDecl())
3776    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3777
3778  // Set this FunctionDecl's range up to the right paren.
3779  NewFD->setLocEnd(D.getSourceRange().getEnd());
3780
3781  if (FunctionTemplate && NewFD->isInvalidDecl())
3782    FunctionTemplate->setInvalidDecl();
3783
3784  if (FunctionTemplate)
3785    return FunctionTemplate;
3786
3787  MarkUnusedFileScopedDecl(NewFD);
3788
3789  return NewFD;
3790}
3791
3792/// \brief Perform semantic checking of a new function declaration.
3793///
3794/// Performs semantic analysis of the new function declaration
3795/// NewFD. This routine performs all semantic checking that does not
3796/// require the actual declarator involved in the declaration, and is
3797/// used both for the declaration of functions as they are parsed
3798/// (called via ActOnDeclarator) and for the declaration of functions
3799/// that have been instantiated via C++ template instantiation (called
3800/// via InstantiateDecl).
3801///
3802/// \param IsExplicitSpecialiation whether this new function declaration is
3803/// an explicit specialization of the previous declaration.
3804///
3805/// This sets NewFD->isInvalidDecl() to true if there was an error.
3806void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3807                                    LookupResult &Previous,
3808                                    bool IsExplicitSpecialization,
3809                                    bool &Redeclaration,
3810                                    bool &OverloadableAttrRequired) {
3811  // If NewFD is already known erroneous, don't do any of this checking.
3812  if (NewFD->isInvalidDecl()) {
3813    // If this is a class member, mark the class invalid immediately.
3814    // This avoids some consistency errors later.
3815    if (isa<CXXMethodDecl>(NewFD))
3816      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3817
3818    return;
3819  }
3820
3821  if (NewFD->getResultType()->isVariablyModifiedType()) {
3822    // Functions returning a variably modified type violate C99 6.7.5.2p2
3823    // because all functions have linkage.
3824    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3825    return NewFD->setInvalidDecl();
3826  }
3827
3828  if (NewFD->isMain())
3829    CheckMain(NewFD);
3830
3831  // Check for a previous declaration of this name.
3832  if (Previous.empty() && NewFD->isExternC()) {
3833    // Since we did not find anything by this name and we're declaring
3834    // an extern "C" function, look for a non-visible extern "C"
3835    // declaration with the same name.
3836    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3837      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3838    if (Pos != LocallyScopedExternalDecls.end())
3839      Previous.addDecl(Pos->second);
3840  }
3841
3842  // Merge or overload the declaration with an existing declaration of
3843  // the same name, if appropriate.
3844  if (!Previous.empty()) {
3845    // Determine whether NewFD is an overload of PrevDecl or
3846    // a declaration that requires merging. If it's an overload,
3847    // there's no more work to do here; we'll just add the new
3848    // function to the scope.
3849
3850    NamedDecl *OldDecl = 0;
3851    if (!AllowOverloadingOfFunction(Previous, Context)) {
3852      Redeclaration = true;
3853      OldDecl = Previous.getFoundDecl();
3854    } else {
3855      if (!getLangOptions().CPlusPlus)
3856        OverloadableAttrRequired = true;
3857
3858      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3859                            /*NewIsUsingDecl*/ false)) {
3860      case Ovl_Match:
3861        Redeclaration = true;
3862        break;
3863
3864      case Ovl_NonFunction:
3865        Redeclaration = true;
3866        break;
3867
3868      case Ovl_Overload:
3869        Redeclaration = false;
3870        break;
3871      }
3872    }
3873
3874    if (Redeclaration) {
3875      // NewFD and OldDecl represent declarations that need to be
3876      // merged.
3877      if (MergeFunctionDecl(NewFD, OldDecl))
3878        return NewFD->setInvalidDecl();
3879
3880      Previous.clear();
3881      Previous.addDecl(OldDecl);
3882
3883      if (FunctionTemplateDecl *OldTemplateDecl
3884                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3885        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3886        FunctionTemplateDecl *NewTemplateDecl
3887          = NewFD->getDescribedFunctionTemplate();
3888        assert(NewTemplateDecl && "Template/non-template mismatch");
3889        if (CXXMethodDecl *Method
3890              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3891          Method->setAccess(OldTemplateDecl->getAccess());
3892          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3893        }
3894
3895        // If this is an explicit specialization of a member that is a function
3896        // template, mark it as a member specialization.
3897        if (IsExplicitSpecialization &&
3898            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3899          NewTemplateDecl->setMemberSpecialization();
3900          assert(OldTemplateDecl->isMemberSpecialization());
3901        }
3902      } else {
3903        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3904          NewFD->setAccess(OldDecl->getAccess());
3905        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3906      }
3907    }
3908  }
3909
3910  // Semantic checking for this function declaration (in isolation).
3911  if (getLangOptions().CPlusPlus) {
3912    // C++-specific checks.
3913    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3914      CheckConstructor(Constructor);
3915    } else if (CXXDestructorDecl *Destructor =
3916                dyn_cast<CXXDestructorDecl>(NewFD)) {
3917      CXXRecordDecl *Record = Destructor->getParent();
3918      QualType ClassType = Context.getTypeDeclType(Record);
3919
3920      // FIXME: Shouldn't we be able to perform this check even when the class
3921      // type is dependent? Both gcc and edg can handle that.
3922      if (!ClassType->isDependentType()) {
3923        DeclarationName Name
3924          = Context.DeclarationNames.getCXXDestructorName(
3925                                        Context.getCanonicalType(ClassType));
3926//         NewFD->getDeclName().dump();
3927//         Name.dump();
3928        if (NewFD->getDeclName() != Name) {
3929          Diag(NewFD->getLocation(), diag::err_destructor_name);
3930          return NewFD->setInvalidDecl();
3931        }
3932      }
3933
3934      Record->setUserDeclaredDestructor(true);
3935      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3936      // user-defined destructor.
3937      Record->setPOD(false);
3938
3939      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3940      // declared destructor.
3941      // FIXME: C++0x: don't do this for "= default" destructors
3942      Record->setHasTrivialDestructor(false);
3943    } else if (CXXConversionDecl *Conversion
3944               = dyn_cast<CXXConversionDecl>(NewFD)) {
3945      ActOnConversionDeclarator(Conversion);
3946    }
3947
3948    // Find any virtual functions that this function overrides.
3949    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3950      if (!Method->isFunctionTemplateSpecialization() &&
3951          !Method->getDescribedFunctionTemplate())
3952        AddOverriddenMethods(Method->getParent(), Method);
3953    }
3954
3955    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3956    if (NewFD->isOverloadedOperator() &&
3957        CheckOverloadedOperatorDeclaration(NewFD))
3958      return NewFD->setInvalidDecl();
3959
3960    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3961    if (NewFD->getLiteralIdentifier() &&
3962        CheckLiteralOperatorDeclaration(NewFD))
3963      return NewFD->setInvalidDecl();
3964
3965    // In C++, check default arguments now that we have merged decls. Unless
3966    // the lexical context is the class, because in this case this is done
3967    // during delayed parsing anyway.
3968    if (!CurContext->isRecord())
3969      CheckCXXDefaultArguments(NewFD);
3970  }
3971}
3972
3973void Sema::CheckMain(FunctionDecl* FD) {
3974  // C++ [basic.start.main]p3:  A program that declares main to be inline
3975  //   or static is ill-formed.
3976  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3977  //   shall not appear in a declaration of main.
3978  // static main is not an error under C99, but we should warn about it.
3979  bool isInline = FD->isInlineSpecified();
3980  bool isStatic = FD->getStorageClass() == SC_Static;
3981  if (isInline || isStatic) {
3982    unsigned diagID = diag::warn_unusual_main_decl;
3983    if (isInline || getLangOptions().CPlusPlus)
3984      diagID = diag::err_unusual_main_decl;
3985
3986    int which = isStatic + (isInline << 1) - 1;
3987    Diag(FD->getLocation(), diagID) << which;
3988  }
3989
3990  QualType T = FD->getType();
3991  assert(T->isFunctionType() && "function decl is not of function type");
3992  const FunctionType* FT = T->getAs<FunctionType>();
3993
3994  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3995    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3996    TypeLoc TL = TSI->getTypeLoc();
3997    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
3998                                          diag::err_main_returns_nonint);
3999    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4000      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4001                                        "int");
4002    }
4003    FD->setInvalidDecl(true);
4004  }
4005
4006  // Treat protoless main() as nullary.
4007  if (isa<FunctionNoProtoType>(FT)) return;
4008
4009  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4010  unsigned nparams = FTP->getNumArgs();
4011  assert(FD->getNumParams() == nparams);
4012
4013  bool HasExtraParameters = (nparams > 3);
4014
4015  // Darwin passes an undocumented fourth argument of type char**.  If
4016  // other platforms start sprouting these, the logic below will start
4017  // getting shifty.
4018  if (nparams == 4 &&
4019      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4020    HasExtraParameters = false;
4021
4022  if (HasExtraParameters) {
4023    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4024    FD->setInvalidDecl(true);
4025    nparams = 3;
4026  }
4027
4028  // FIXME: a lot of the following diagnostics would be improved
4029  // if we had some location information about types.
4030
4031  QualType CharPP =
4032    Context.getPointerType(Context.getPointerType(Context.CharTy));
4033  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4034
4035  for (unsigned i = 0; i < nparams; ++i) {
4036    QualType AT = FTP->getArgType(i);
4037
4038    bool mismatch = true;
4039
4040    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4041      mismatch = false;
4042    else if (Expected[i] == CharPP) {
4043      // As an extension, the following forms are okay:
4044      //   char const **
4045      //   char const * const *
4046      //   char * const *
4047
4048      QualifierCollector qs;
4049      const PointerType* PT;
4050      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4051          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4052          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4053        qs.removeConst();
4054        mismatch = !qs.empty();
4055      }
4056    }
4057
4058    if (mismatch) {
4059      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4060      // TODO: suggest replacing given type with expected type
4061      FD->setInvalidDecl(true);
4062    }
4063  }
4064
4065  if (nparams == 1 && !FD->isInvalidDecl()) {
4066    Diag(FD->getLocation(), diag::warn_main_one_arg);
4067  }
4068}
4069
4070bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4071  // FIXME: Need strict checking.  In C89, we need to check for
4072  // any assignment, increment, decrement, function-calls, or
4073  // commas outside of a sizeof.  In C99, it's the same list,
4074  // except that the aforementioned are allowed in unevaluated
4075  // expressions.  Everything else falls under the
4076  // "may accept other forms of constant expressions" exception.
4077  // (We never end up here for C++, so the constant expression
4078  // rules there don't matter.)
4079  if (Init->isConstantInitializer(Context, false))
4080    return false;
4081  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4082    << Init->getSourceRange();
4083  return true;
4084}
4085
4086void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4087  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4088}
4089
4090/// AddInitializerToDecl - Adds the initializer Init to the
4091/// declaration dcl. If DirectInit is true, this is C++ direct
4092/// initialization rather than copy initialization.
4093void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4094  // If there is no declaration, there was an error parsing it.  Just ignore
4095  // the initializer.
4096  if (RealDecl == 0)
4097    return;
4098
4099  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4100    // With declarators parsed the way they are, the parser cannot
4101    // distinguish between a normal initializer and a pure-specifier.
4102    // Thus this grotesque test.
4103    IntegerLiteral *IL;
4104    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4105        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4106      CheckPureMethod(Method, Init->getSourceRange());
4107    else {
4108      Diag(Method->getLocation(), diag::err_member_function_initialization)
4109        << Method->getDeclName() << Init->getSourceRange();
4110      Method->setInvalidDecl();
4111    }
4112    return;
4113  }
4114
4115  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4116  if (!VDecl) {
4117    if (getLangOptions().CPlusPlus &&
4118        RealDecl->getLexicalDeclContext()->isRecord() &&
4119        isa<NamedDecl>(RealDecl))
4120      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4121    else
4122      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4123    RealDecl->setInvalidDecl();
4124    return;
4125  }
4126
4127
4128
4129  // A definition must end up with a complete type, which means it must be
4130  // complete with the restriction that an array type might be completed by the
4131  // initializer; note that later code assumes this restriction.
4132  QualType BaseDeclType = VDecl->getType();
4133  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4134    BaseDeclType = Array->getElementType();
4135  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4136                          diag::err_typecheck_decl_incomplete_type)) {
4137    RealDecl->setInvalidDecl();
4138    return;
4139  }
4140
4141  // The variable can not have an abstract class type.
4142  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4143                             diag::err_abstract_type_in_decl,
4144                             AbstractVariableType))
4145    VDecl->setInvalidDecl();
4146
4147  const VarDecl *Def;
4148  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4149    Diag(VDecl->getLocation(), diag::err_redefinition)
4150      << VDecl->getDeclName();
4151    Diag(Def->getLocation(), diag::note_previous_definition);
4152    VDecl->setInvalidDecl();
4153    return;
4154  }
4155
4156  // C++ [class.static.data]p4
4157  //   If a static data member is of const integral or const
4158  //   enumeration type, its declaration in the class definition can
4159  //   specify a constant-initializer which shall be an integral
4160  //   constant expression (5.19). In that case, the member can appear
4161  //   in integral constant expressions. The member shall still be
4162  //   defined in a namespace scope if it is used in the program and the
4163  //   namespace scope definition shall not contain an initializer.
4164  //
4165  // We already performed a redefinition check above, but for static
4166  // data members we also need to check whether there was an in-class
4167  // declaration with an initializer.
4168  const VarDecl* PrevInit = 0;
4169  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4170    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4171    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4172    return;
4173  }
4174
4175  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4176    getCurFunction()->setHasBranchProtectedScope();
4177
4178  // Capture the variable that is being initialized and the style of
4179  // initialization.
4180  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4181
4182  // FIXME: Poor source location information.
4183  InitializationKind Kind
4184    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4185                                                   Init->getLocStart(),
4186                                                   Init->getLocEnd())
4187                : InitializationKind::CreateCopy(VDecl->getLocation(),
4188                                                 Init->getLocStart());
4189
4190  // Get the decls type and save a reference for later, since
4191  // CheckInitializerTypes may change it.
4192  QualType DclT = VDecl->getType(), SavT = DclT;
4193  if (VDecl->isBlockVarDecl()) {
4194    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4195      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4196      VDecl->setInvalidDecl();
4197    } else if (!VDecl->isInvalidDecl()) {
4198      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4199      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4200                                                MultiExprArg(*this, &Init, 1),
4201                                                &DclT);
4202      if (Result.isInvalid()) {
4203        VDecl->setInvalidDecl();
4204        return;
4205      }
4206
4207      Init = Result.takeAs<Expr>();
4208
4209      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4210      // Don't check invalid declarations to avoid emitting useless diagnostics.
4211      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4212        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4213          CheckForConstantInitializer(Init, DclT);
4214      }
4215    }
4216  } else if (VDecl->isStaticDataMember() &&
4217             VDecl->getLexicalDeclContext()->isRecord()) {
4218    // This is an in-class initialization for a static data member, e.g.,
4219    //
4220    // struct S {
4221    //   static const int value = 17;
4222    // };
4223
4224    // Try to perform the initialization regardless.
4225    if (!VDecl->isInvalidDecl()) {
4226      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4227      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4228                                          MultiExprArg(*this, &Init, 1),
4229                                          &DclT);
4230      if (Result.isInvalid()) {
4231        VDecl->setInvalidDecl();
4232        return;
4233      }
4234
4235      Init = Result.takeAs<Expr>();
4236    }
4237
4238    // C++ [class.mem]p4:
4239    //   A member-declarator can contain a constant-initializer only
4240    //   if it declares a static member (9.4) of const integral or
4241    //   const enumeration type, see 9.4.2.
4242    QualType T = VDecl->getType();
4243
4244    // Do nothing on dependent types.
4245    if (T->isDependentType()) {
4246
4247    // Require constness.
4248    } else if (!T.isConstQualified()) {
4249      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4250        << Init->getSourceRange();
4251      VDecl->setInvalidDecl();
4252
4253    // We allow integer constant expressions in all cases.
4254    } else if (T->isIntegralOrEnumerationType()) {
4255      if (!Init->isValueDependent()) {
4256        // Check whether the expression is a constant expression.
4257        llvm::APSInt Value;
4258        SourceLocation Loc;
4259        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4260          Diag(Loc, diag::err_in_class_initializer_non_constant)
4261            << Init->getSourceRange();
4262          VDecl->setInvalidDecl();
4263        }
4264      }
4265
4266    // We allow floating-point constants as an extension in C++03, and
4267    // C++0x has far more complicated rules that we don't really
4268    // implement fully.
4269    } else {
4270      bool Allowed = false;
4271      if (getLangOptions().CPlusPlus0x) {
4272        Allowed = T->isLiteralType();
4273      } else if (T->isFloatingType()) { // also permits complex, which is ok
4274        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4275          << T << Init->getSourceRange();
4276        Allowed = true;
4277      }
4278
4279      if (!Allowed) {
4280        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4281          << T << Init->getSourceRange();
4282        VDecl->setInvalidDecl();
4283
4284      // TODO: there are probably expressions that pass here that shouldn't.
4285      } else if (!Init->isValueDependent() &&
4286                 !Init->isConstantInitializer(Context, false)) {
4287        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4288          << Init->getSourceRange();
4289        VDecl->setInvalidDecl();
4290      }
4291    }
4292  } else if (VDecl->isFileVarDecl()) {
4293    if (VDecl->getStorageClass() == SC_Extern &&
4294        (!getLangOptions().CPlusPlus ||
4295         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4296      Diag(VDecl->getLocation(), diag::warn_extern_init);
4297    if (!VDecl->isInvalidDecl()) {
4298      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4299      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4300                                                MultiExprArg(*this, &Init, 1),
4301                                                &DclT);
4302      if (Result.isInvalid()) {
4303        VDecl->setInvalidDecl();
4304        return;
4305      }
4306
4307      Init = Result.takeAs<Expr>();
4308    }
4309
4310    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4311    // Don't check invalid declarations to avoid emitting useless diagnostics.
4312    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4313      // C99 6.7.8p4. All file scoped initializers need to be constant.
4314      CheckForConstantInitializer(Init, DclT);
4315    }
4316  }
4317  // If the type changed, it means we had an incomplete type that was
4318  // completed by the initializer. For example:
4319  //   int ary[] = { 1, 3, 5 };
4320  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4321  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4322    VDecl->setType(DclT);
4323    Init->setType(DclT);
4324  }
4325
4326  Init = MaybeCreateCXXExprWithTemporaries(Init);
4327  // Attach the initializer to the decl.
4328  VDecl->setInit(Init);
4329
4330  if (getLangOptions().CPlusPlus) {
4331    if (!VDecl->isInvalidDecl() &&
4332        !VDecl->getDeclContext()->isDependentContext() &&
4333        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4334        !Init->isConstantInitializer(Context,
4335                                     VDecl->getType()->isReferenceType()))
4336      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4337        << Init->getSourceRange();
4338
4339    // Make sure we mark the destructor as used if necessary.
4340    QualType InitType = VDecl->getType();
4341    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4342      InitType = Context.getBaseElementType(Array);
4343    if (const RecordType *Record = InitType->getAs<RecordType>())
4344      FinalizeVarWithDestructor(VDecl, Record);
4345  }
4346
4347  return;
4348}
4349
4350/// ActOnInitializerError - Given that there was an error parsing an
4351/// initializer for the given declaration, try to return to some form
4352/// of sanity.
4353void Sema::ActOnInitializerError(Decl *D) {
4354  // Our main concern here is re-establishing invariants like "a
4355  // variable's type is either dependent or complete".
4356  if (!D || D->isInvalidDecl()) return;
4357
4358  VarDecl *VD = dyn_cast<VarDecl>(D);
4359  if (!VD) return;
4360
4361  QualType Ty = VD->getType();
4362  if (Ty->isDependentType()) return;
4363
4364  // Require a complete type.
4365  if (RequireCompleteType(VD->getLocation(),
4366                          Context.getBaseElementType(Ty),
4367                          diag::err_typecheck_decl_incomplete_type)) {
4368    VD->setInvalidDecl();
4369    return;
4370  }
4371
4372  // Require an abstract type.
4373  if (RequireNonAbstractType(VD->getLocation(), Ty,
4374                             diag::err_abstract_type_in_decl,
4375                             AbstractVariableType)) {
4376    VD->setInvalidDecl();
4377    return;
4378  }
4379
4380  // Don't bother complaining about constructors or destructors,
4381  // though.
4382}
4383
4384void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4385                                  bool TypeContainsUndeducedAuto) {
4386  // If there is no declaration, there was an error parsing it. Just ignore it.
4387  if (RealDecl == 0)
4388    return;
4389
4390  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4391    QualType Type = Var->getType();
4392
4393    // C++0x [dcl.spec.auto]p3
4394    if (TypeContainsUndeducedAuto) {
4395      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4396        << Var->getDeclName() << Type;
4397      Var->setInvalidDecl();
4398      return;
4399    }
4400
4401    switch (Var->isThisDeclarationADefinition()) {
4402    case VarDecl::Definition:
4403      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4404        break;
4405
4406      // We have an out-of-line definition of a static data member
4407      // that has an in-class initializer, so we type-check this like
4408      // a declaration.
4409      //
4410      // Fall through
4411
4412    case VarDecl::DeclarationOnly:
4413      // It's only a declaration.
4414
4415      // Block scope. C99 6.7p7: If an identifier for an object is
4416      // declared with no linkage (C99 6.2.2p6), the type for the
4417      // object shall be complete.
4418      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4419          !Var->getLinkage() && !Var->isInvalidDecl() &&
4420          RequireCompleteType(Var->getLocation(), Type,
4421                              diag::err_typecheck_decl_incomplete_type))
4422        Var->setInvalidDecl();
4423
4424      // Make sure that the type is not abstract.
4425      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4426          RequireNonAbstractType(Var->getLocation(), Type,
4427                                 diag::err_abstract_type_in_decl,
4428                                 AbstractVariableType))
4429        Var->setInvalidDecl();
4430      return;
4431
4432    case VarDecl::TentativeDefinition:
4433      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4434      // object that has file scope without an initializer, and without a
4435      // storage-class specifier or with the storage-class specifier "static",
4436      // constitutes a tentative definition. Note: A tentative definition with
4437      // external linkage is valid (C99 6.2.2p5).
4438      if (!Var->isInvalidDecl()) {
4439        if (const IncompleteArrayType *ArrayT
4440                                    = Context.getAsIncompleteArrayType(Type)) {
4441          if (RequireCompleteType(Var->getLocation(),
4442                                  ArrayT->getElementType(),
4443                                  diag::err_illegal_decl_array_incomplete_type))
4444            Var->setInvalidDecl();
4445        } else if (Var->getStorageClass() == SC_Static) {
4446          // C99 6.9.2p3: If the declaration of an identifier for an object is
4447          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4448          // declared type shall not be an incomplete type.
4449          // NOTE: code such as the following
4450          //     static struct s;
4451          //     struct s { int a; };
4452          // is accepted by gcc. Hence here we issue a warning instead of
4453          // an error and we do not invalidate the static declaration.
4454          // NOTE: to avoid multiple warnings, only check the first declaration.
4455          if (Var->getPreviousDeclaration() == 0)
4456            RequireCompleteType(Var->getLocation(), Type,
4457                                diag::ext_typecheck_decl_incomplete_type);
4458        }
4459      }
4460
4461      // Record the tentative definition; we're done.
4462      if (!Var->isInvalidDecl())
4463        TentativeDefinitions.push_back(Var);
4464      return;
4465    }
4466
4467    // Provide a specific diagnostic for uninitialized variable
4468    // definitions with incomplete array type.
4469    if (Type->isIncompleteArrayType()) {
4470      Diag(Var->getLocation(),
4471           diag::err_typecheck_incomplete_array_needs_initializer);
4472      Var->setInvalidDecl();
4473      return;
4474    }
4475
4476    // Provide a specific diagnostic for uninitialized variable
4477    // definitions with reference type.
4478    if (Type->isReferenceType()) {
4479      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4480        << Var->getDeclName()
4481        << SourceRange(Var->getLocation(), Var->getLocation());
4482      Var->setInvalidDecl();
4483      return;
4484    }
4485
4486    // Do not attempt to type-check the default initializer for a
4487    // variable with dependent type.
4488    if (Type->isDependentType())
4489      return;
4490
4491    if (Var->isInvalidDecl())
4492      return;
4493
4494    if (RequireCompleteType(Var->getLocation(),
4495                            Context.getBaseElementType(Type),
4496                            diag::err_typecheck_decl_incomplete_type)) {
4497      Var->setInvalidDecl();
4498      return;
4499    }
4500
4501    // The variable can not have an abstract class type.
4502    if (RequireNonAbstractType(Var->getLocation(), Type,
4503                               diag::err_abstract_type_in_decl,
4504                               AbstractVariableType)) {
4505      Var->setInvalidDecl();
4506      return;
4507    }
4508
4509    const RecordType *Record
4510      = Context.getBaseElementType(Type)->getAs<RecordType>();
4511    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4512        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4513      // C++03 [dcl.init]p9:
4514      //   If no initializer is specified for an object, and the
4515      //   object is of (possibly cv-qualified) non-POD class type (or
4516      //   array thereof), the object shall be default-initialized; if
4517      //   the object is of const-qualified type, the underlying class
4518      //   type shall have a user-declared default
4519      //   constructor. Otherwise, if no initializer is specified for
4520      //   a non- static object, the object and its subobjects, if
4521      //   any, have an indeterminate initial value); if the object
4522      //   or any of its subobjects are of const-qualified type, the
4523      //   program is ill-formed.
4524      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4525    } else {
4526      // Check for jumps past the implicit initializer.  C++0x
4527      // clarifies that this applies to a "variable with automatic
4528      // storage duration", not a "local variable".
4529      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4530        getCurFunction()->setHasBranchProtectedScope();
4531
4532      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4533      InitializationKind Kind
4534        = InitializationKind::CreateDefault(Var->getLocation());
4535
4536      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4537      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4538                                        MultiExprArg(*this, 0, 0));
4539      if (Init.isInvalid())
4540        Var->setInvalidDecl();
4541      else if (Init.get()) {
4542        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4543
4544        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4545            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4546            !Var->getDeclContext()->isDependentContext() &&
4547            !Var->getInit()->isConstantInitializer(Context, false))
4548          Diag(Var->getLocation(), diag::warn_global_constructor);
4549      }
4550    }
4551
4552    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4553      FinalizeVarWithDestructor(Var, Record);
4554  }
4555}
4556
4557Sema::DeclGroupPtrTy
4558Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4559                              Decl **Group, unsigned NumDecls) {
4560  llvm::SmallVector<Decl*, 8> Decls;
4561
4562  if (DS.isTypeSpecOwned())
4563    Decls.push_back(DS.getRepAsDecl());
4564
4565  for (unsigned i = 0; i != NumDecls; ++i)
4566    if (Decl *D = Group[i])
4567      Decls.push_back(D);
4568
4569  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4570                                                   Decls.data(), Decls.size()));
4571}
4572
4573
4574/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4575/// to introduce parameters into function prototype scope.
4576Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4577  const DeclSpec &DS = D.getDeclSpec();
4578
4579  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4580  VarDecl::StorageClass StorageClass = SC_None;
4581  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4582  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4583    StorageClass = SC_Register;
4584    StorageClassAsWritten = SC_Register;
4585  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4586    Diag(DS.getStorageClassSpecLoc(),
4587         diag::err_invalid_storage_class_in_func_decl);
4588    D.getMutableDeclSpec().ClearStorageClassSpecs();
4589  }
4590
4591  if (D.getDeclSpec().isThreadSpecified())
4592    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4593
4594  DiagnoseFunctionSpecifiers(D);
4595
4596  // Check that there are no default arguments inside the type of this
4597  // parameter (C++ only).
4598  if (getLangOptions().CPlusPlus)
4599    CheckExtraCXXDefaultArguments(D);
4600
4601  TagDecl *OwnedDecl = 0;
4602  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4603  QualType parmDeclType = TInfo->getType();
4604
4605  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4606    // C++ [dcl.fct]p6:
4607    //   Types shall not be defined in return or parameter types.
4608    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4609      << Context.getTypeDeclType(OwnedDecl);
4610  }
4611
4612  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4613  IdentifierInfo *II = D.getIdentifier();
4614  if (II) {
4615    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4616                   ForRedeclaration);
4617    LookupName(R, S);
4618    if (R.isSingleResult()) {
4619      NamedDecl *PrevDecl = R.getFoundDecl();
4620      if (PrevDecl->isTemplateParameter()) {
4621        // Maybe we will complain about the shadowed template parameter.
4622        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4623        // Just pretend that we didn't see the previous declaration.
4624        PrevDecl = 0;
4625      } else if (S->isDeclScope(PrevDecl)) {
4626        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4627        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4628
4629        // Recover by removing the name
4630        II = 0;
4631        D.SetIdentifier(0, D.getIdentifierLoc());
4632        D.setInvalidType(true);
4633      }
4634    }
4635  }
4636
4637  // Temporarily put parameter variables in the translation unit, not
4638  // the enclosing context.  This prevents them from accidentally
4639  // looking like class members in C++.
4640  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4641                                    TInfo, parmDeclType, II,
4642                                    D.getIdentifierLoc(),
4643                                    StorageClass, StorageClassAsWritten);
4644
4645  if (D.isInvalidType())
4646    New->setInvalidDecl();
4647
4648  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4649  if (D.getCXXScopeSpec().isSet()) {
4650    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4651      << D.getCXXScopeSpec().getRange();
4652    New->setInvalidDecl();
4653  }
4654
4655  // Add the parameter declaration into this scope.
4656  S->AddDecl(New);
4657  if (II)
4658    IdResolver.AddDecl(New);
4659
4660  ProcessDeclAttributes(S, New, D);
4661
4662  if (New->hasAttr<BlocksAttr>()) {
4663    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4664  }
4665  return New;
4666}
4667
4668/// \brief Synthesizes a variable for a parameter arising from a
4669/// typedef.
4670ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4671                                              SourceLocation Loc,
4672                                              QualType T) {
4673  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4674                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4675                                           SC_None, SC_None, 0);
4676  Param->setImplicit();
4677  return Param;
4678}
4679
4680void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4681                                    ParmVarDecl * const *ParamEnd) {
4682  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4683        Diagnostic::Ignored)
4684    return;
4685
4686  // Don't diagnose unused-parameter errors in template instantiations; we
4687  // will already have done so in the template itself.
4688  if (!ActiveTemplateInstantiations.empty())
4689    return;
4690
4691  for (; Param != ParamEnd; ++Param) {
4692    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4693        !(*Param)->hasAttr<UnusedAttr>()) {
4694      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4695        << (*Param)->getDeclName();
4696    }
4697  }
4698}
4699
4700ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4701                                  TypeSourceInfo *TSInfo, QualType T,
4702                                  IdentifierInfo *Name,
4703                                  SourceLocation NameLoc,
4704                                  VarDecl::StorageClass StorageClass,
4705                                  VarDecl::StorageClass StorageClassAsWritten) {
4706  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4707                                         adjustParameterType(T), TSInfo,
4708                                         StorageClass, StorageClassAsWritten,
4709                                         0);
4710
4711  // Parameters can not be abstract class types.
4712  // For record types, this is done by the AbstractClassUsageDiagnoser once
4713  // the class has been completely parsed.
4714  if (!CurContext->isRecord() &&
4715      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4716                             AbstractParamType))
4717    New->setInvalidDecl();
4718
4719  // Parameter declarators cannot be interface types. All ObjC objects are
4720  // passed by reference.
4721  if (T->isObjCObjectType()) {
4722    Diag(NameLoc,
4723         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4724    New->setInvalidDecl();
4725  }
4726
4727  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4728  // duration shall not be qualified by an address-space qualifier."
4729  // Since all parameters have automatic store duration, they can not have
4730  // an address space.
4731  if (T.getAddressSpace() != 0) {
4732    Diag(NameLoc, diag::err_arg_with_address_space);
4733    New->setInvalidDecl();
4734  }
4735
4736  return New;
4737}
4738
4739void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4740                                           SourceLocation LocAfterDecls) {
4741  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4742         "Not a function declarator!");
4743  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4744
4745  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4746  // for a K&R function.
4747  if (!FTI.hasPrototype) {
4748    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4749      --i;
4750      if (FTI.ArgInfo[i].Param == 0) {
4751        llvm::SmallString<256> Code;
4752        llvm::raw_svector_ostream(Code) << "  int "
4753                                        << FTI.ArgInfo[i].Ident->getName()
4754                                        << ";\n";
4755        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4756          << FTI.ArgInfo[i].Ident
4757          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4758
4759        // Implicitly declare the argument as type 'int' for lack of a better
4760        // type.
4761        DeclSpec DS;
4762        const char* PrevSpec; // unused
4763        unsigned DiagID; // unused
4764        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4765                           PrevSpec, DiagID);
4766        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4767        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4768        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4769      }
4770    }
4771  }
4772}
4773
4774Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4775                                         Declarator &D) {
4776  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4777  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4778         "Not a function declarator!");
4779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4780
4781  if (FTI.hasPrototype) {
4782    // FIXME: Diagnose arguments without names in C.
4783  }
4784
4785  Scope *ParentScope = FnBodyScope->getParent();
4786
4787  Decl *DP = HandleDeclarator(ParentScope, D,
4788                              MultiTemplateParamsArg(*this),
4789                              /*IsFunctionDefinition=*/true);
4790  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4791}
4792
4793static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4794  // Don't warn about invalid declarations.
4795  if (FD->isInvalidDecl())
4796    return false;
4797
4798  // Or declarations that aren't global.
4799  if (!FD->isGlobal())
4800    return false;
4801
4802  // Don't warn about C++ member functions.
4803  if (isa<CXXMethodDecl>(FD))
4804    return false;
4805
4806  // Don't warn about 'main'.
4807  if (FD->isMain())
4808    return false;
4809
4810  // Don't warn about inline functions.
4811  if (FD->isInlineSpecified())
4812    return false;
4813
4814  // Don't warn about function templates.
4815  if (FD->getDescribedFunctionTemplate())
4816    return false;
4817
4818  // Don't warn about function template specializations.
4819  if (FD->isFunctionTemplateSpecialization())
4820    return false;
4821
4822  bool MissingPrototype = true;
4823  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4824       Prev; Prev = Prev->getPreviousDeclaration()) {
4825    // Ignore any declarations that occur in function or method
4826    // scope, because they aren't visible from the header.
4827    if (Prev->getDeclContext()->isFunctionOrMethod())
4828      continue;
4829
4830    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4831    break;
4832  }
4833
4834  return MissingPrototype;
4835}
4836
4837Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4838  // Clear the last template instantiation error context.
4839  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4840
4841  if (!D)
4842    return D;
4843  FunctionDecl *FD = 0;
4844
4845  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4846    FD = FunTmpl->getTemplatedDecl();
4847  else
4848    FD = cast<FunctionDecl>(D);
4849
4850  // Enter a new function scope
4851  PushFunctionScope();
4852
4853  // See if this is a redefinition.
4854  // But don't complain if we're in GNU89 mode and the previous definition
4855  // was an extern inline function.
4856  const FunctionDecl *Definition;
4857  if (FD->hasBody(Definition) &&
4858      !canRedefineFunction(Definition, getLangOptions())) {
4859    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4860        Definition->getStorageClass() == SC_Extern)
4861      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4862        << FD->getDeclName() << getLangOptions().CPlusPlus;
4863    else
4864      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4865    Diag(Definition->getLocation(), diag::note_previous_definition);
4866  }
4867
4868  // Builtin functions cannot be defined.
4869  if (unsigned BuiltinID = FD->getBuiltinID()) {
4870    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4871      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4872      FD->setInvalidDecl();
4873    }
4874  }
4875
4876  // The return type of a function definition must be complete
4877  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4878  QualType ResultType = FD->getResultType();
4879  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4880      !FD->isInvalidDecl() &&
4881      RequireCompleteType(FD->getLocation(), ResultType,
4882                          diag::err_func_def_incomplete_result))
4883    FD->setInvalidDecl();
4884
4885  // GNU warning -Wmissing-prototypes:
4886  //   Warn if a global function is defined without a previous
4887  //   prototype declaration. This warning is issued even if the
4888  //   definition itself provides a prototype. The aim is to detect
4889  //   global functions that fail to be declared in header files.
4890  if (ShouldWarnAboutMissingPrototype(FD))
4891    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4892
4893  if (FnBodyScope)
4894    PushDeclContext(FnBodyScope, FD);
4895
4896  // Check the validity of our function parameters
4897  CheckParmsForFunctionDef(FD);
4898
4899  bool ShouldCheckShadow =
4900    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4901
4902  // Introduce our parameters into the function scope
4903  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4904    ParmVarDecl *Param = FD->getParamDecl(p);
4905    Param->setOwningFunction(FD);
4906
4907    // If this has an identifier, add it to the scope stack.
4908    if (Param->getIdentifier() && FnBodyScope) {
4909      if (ShouldCheckShadow)
4910        CheckShadow(FnBodyScope, Param);
4911
4912      PushOnScopeChains(Param, FnBodyScope);
4913    }
4914  }
4915
4916  // Checking attributes of current function definition
4917  // dllimport attribute.
4918  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4919  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4920    // dllimport attribute cannot be directly applied to definition.
4921    if (!DA->isInherited()) {
4922      Diag(FD->getLocation(),
4923           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4924        << "dllimport";
4925      FD->setInvalidDecl();
4926      return FD;
4927    }
4928
4929    // Visual C++ appears to not think this is an issue, so only issue
4930    // a warning when Microsoft extensions are disabled.
4931    if (!LangOpts.Microsoft) {
4932      // If a symbol previously declared dllimport is later defined, the
4933      // attribute is ignored in subsequent references, and a warning is
4934      // emitted.
4935      Diag(FD->getLocation(),
4936           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4937        << FD->getName() << "dllimport";
4938    }
4939  }
4940  return FD;
4941}
4942
4943/// \brief Given the set of return statements within a function body,
4944/// compute the variables that are subject to the named return value
4945/// optimization.
4946///
4947/// Each of the variables that is subject to the named return value
4948/// optimization will be marked as NRVO variables in the AST, and any
4949/// return statement that has a marked NRVO variable as its NRVO candidate can
4950/// use the named return value optimization.
4951///
4952/// This function applies a very simplistic algorithm for NRVO: if every return
4953/// statement in the function has the same NRVO candidate, that candidate is
4954/// the NRVO variable.
4955///
4956/// FIXME: Employ a smarter algorithm that accounts for multiple return
4957/// statements and the lifetimes of the NRVO candidates. We should be able to
4958/// find a maximal set of NRVO variables.
4959static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4960  ReturnStmt **Returns = Scope->Returns.data();
4961
4962  const VarDecl *NRVOCandidate = 0;
4963  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4964    if (!Returns[I]->getNRVOCandidate())
4965      return;
4966
4967    if (!NRVOCandidate)
4968      NRVOCandidate = Returns[I]->getNRVOCandidate();
4969    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4970      return;
4971  }
4972
4973  if (NRVOCandidate)
4974    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4975}
4976
4977Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4978  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4979}
4980
4981Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4982                                    bool IsInstantiation) {
4983  FunctionDecl *FD = 0;
4984  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4985  if (FunTmpl)
4986    FD = FunTmpl->getTemplatedDecl();
4987  else
4988    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4989
4990  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4991
4992  if (FD) {
4993    FD->setBody(Body);
4994    if (FD->isMain()) {
4995      // C and C++ allow for main to automagically return 0.
4996      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4997      FD->setHasImplicitReturnZero(true);
4998      WP.disableCheckFallThrough();
4999    }
5000
5001    if (!FD->isInvalidDecl()) {
5002      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5003
5004      // If this is a constructor, we need a vtable.
5005      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5006        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5007
5008      ComputeNRVO(Body, getCurFunction());
5009    }
5010
5011    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5012  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5013    assert(MD == getCurMethodDecl() && "Method parsing confused");
5014    MD->setBody(Body);
5015    MD->setEndLoc(Body->getLocEnd());
5016    if (!MD->isInvalidDecl())
5017      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5018  } else {
5019    return 0;
5020  }
5021
5022  // Verify and clean out per-function state.
5023
5024  // Check goto/label use.
5025  FunctionScopeInfo *CurFn = getCurFunction();
5026  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5027         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5028    LabelStmt *L = I->second;
5029
5030    // Verify that we have no forward references left.  If so, there was a goto
5031    // or address of a label taken, but no definition of it.  Label fwd
5032    // definitions are indicated with a null substmt.
5033    if (L->getSubStmt() != 0) {
5034      if (!L->isUsed())
5035        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5036      continue;
5037    }
5038
5039    // Emit error.
5040    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5041
5042    // At this point, we have gotos that use the bogus label.  Stitch it into
5043    // the function body so that they aren't leaked and that the AST is well
5044    // formed.
5045    if (Body == 0) {
5046      // The whole function wasn't parsed correctly.
5047      continue;
5048    }
5049
5050    // Otherwise, the body is valid: we want to stitch the label decl into the
5051    // function somewhere so that it is properly owned and so that the goto
5052    // has a valid target.  Do this by creating a new compound stmt with the
5053    // label in it.
5054
5055    // Give the label a sub-statement.
5056    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5057
5058    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5059                               cast<CXXTryStmt>(Body)->getTryBlock() :
5060                               cast<CompoundStmt>(Body);
5061    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5062                                          Compound->body_end());
5063    Elements.push_back(L);
5064    Compound->setStmts(Context, Elements.data(), Elements.size());
5065  }
5066
5067  if (Body) {
5068    // C++ constructors that have function-try-blocks can't have return
5069    // statements in the handlers of that block. (C++ [except.handle]p14)
5070    // Verify this.
5071    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5072      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5073
5074    // Verify that that gotos and switch cases don't jump into scopes illegally.
5075    // Verify that that gotos and switch cases don't jump into scopes illegally.
5076    if (getCurFunction()->NeedsScopeChecking() &&
5077        !dcl->isInvalidDecl() &&
5078        !hasAnyErrorsInThisFunction())
5079      DiagnoseInvalidJumps(Body);
5080
5081    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5082      if (!Destructor->getParent()->isDependentType())
5083        CheckDestructor(Destructor);
5084
5085      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5086                                             Destructor->getParent());
5087    }
5088
5089    // If any errors have occurred, clear out any temporaries that may have
5090    // been leftover. This ensures that these temporaries won't be picked up for
5091    // deletion in some later function.
5092    if (PP.getDiagnostics().hasErrorOccurred())
5093      ExprTemporaries.clear();
5094    else if (!isa<FunctionTemplateDecl>(dcl)) {
5095      // Since the body is valid, issue any analysis-based warnings that are
5096      // enabled.
5097      QualType ResultType;
5098      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5099        AnalysisWarnings.IssueWarnings(WP, FD);
5100      } else {
5101        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5102        AnalysisWarnings.IssueWarnings(WP, MD);
5103      }
5104    }
5105
5106    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5107  }
5108
5109  if (!IsInstantiation)
5110    PopDeclContext();
5111
5112  PopFunctionOrBlockScope();
5113
5114  // If any errors have occurred, clear out any temporaries that may have
5115  // been leftover. This ensures that these temporaries won't be picked up for
5116  // deletion in some later function.
5117  if (getDiagnostics().hasErrorOccurred())
5118    ExprTemporaries.clear();
5119
5120  return dcl;
5121}
5122
5123/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5124/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5125NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5126                                          IdentifierInfo &II, Scope *S) {
5127  // Before we produce a declaration for an implicitly defined
5128  // function, see whether there was a locally-scoped declaration of
5129  // this name as a function or variable. If so, use that
5130  // (non-visible) declaration, and complain about it.
5131  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5132    = LocallyScopedExternalDecls.find(&II);
5133  if (Pos != LocallyScopedExternalDecls.end()) {
5134    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5135    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5136    return Pos->second;
5137  }
5138
5139  // Extension in C99.  Legal in C90, but warn about it.
5140  if (II.getName().startswith("__builtin_"))
5141    Diag(Loc, diag::warn_builtin_unknown) << &II;
5142  else if (getLangOptions().C99)
5143    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5144  else
5145    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5146
5147  // Set a Declarator for the implicit definition: int foo();
5148  const char *Dummy;
5149  DeclSpec DS;
5150  unsigned DiagID;
5151  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5152  Error = Error; // Silence warning.
5153  assert(!Error && "Error setting up implicit decl!");
5154  Declarator D(DS, Declarator::BlockContext);
5155  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5156                                             0, 0, false, SourceLocation(),
5157                                             false, 0,0,0, Loc, Loc, D),
5158                SourceLocation());
5159  D.SetIdentifier(&II, Loc);
5160
5161  // Insert this function into translation-unit scope.
5162
5163  DeclContext *PrevDC = CurContext;
5164  CurContext = Context.getTranslationUnitDecl();
5165
5166  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5167  FD->setImplicit();
5168
5169  CurContext = PrevDC;
5170
5171  AddKnownFunctionAttributes(FD);
5172
5173  return FD;
5174}
5175
5176/// \brief Adds any function attributes that we know a priori based on
5177/// the declaration of this function.
5178///
5179/// These attributes can apply both to implicitly-declared builtins
5180/// (like __builtin___printf_chk) or to library-declared functions
5181/// like NSLog or printf.
5182void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5183  if (FD->isInvalidDecl())
5184    return;
5185
5186  // If this is a built-in function, map its builtin attributes to
5187  // actual attributes.
5188  if (unsigned BuiltinID = FD->getBuiltinID()) {
5189    // Handle printf-formatting attributes.
5190    unsigned FormatIdx;
5191    bool HasVAListArg;
5192    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5193      if (!FD->getAttr<FormatAttr>())
5194        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5195                                                "printf", FormatIdx+1,
5196                                               HasVAListArg ? 0 : FormatIdx+2));
5197    }
5198    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5199                                             HasVAListArg)) {
5200     if (!FD->getAttr<FormatAttr>())
5201       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5202                                              "scanf", FormatIdx+1,
5203                                              HasVAListArg ? 0 : FormatIdx+2));
5204    }
5205
5206    // Mark const if we don't care about errno and that is the only
5207    // thing preventing the function from being const. This allows
5208    // IRgen to use LLVM intrinsics for such functions.
5209    if (!getLangOptions().MathErrno &&
5210        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5211      if (!FD->getAttr<ConstAttr>())
5212        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5213    }
5214
5215    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5216      FD->setType(Context.getNoReturnType(FD->getType()));
5217    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5218      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5219    if (Context.BuiltinInfo.isConst(BuiltinID))
5220      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5221  }
5222
5223  IdentifierInfo *Name = FD->getIdentifier();
5224  if (!Name)
5225    return;
5226  if ((!getLangOptions().CPlusPlus &&
5227       FD->getDeclContext()->isTranslationUnit()) ||
5228      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5229       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5230       LinkageSpecDecl::lang_c)) {
5231    // Okay: this could be a libc/libm/Objective-C function we know
5232    // about.
5233  } else
5234    return;
5235
5236  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5237    // FIXME: NSLog and NSLogv should be target specific
5238    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5239      // FIXME: We known better than our headers.
5240      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5241    } else
5242      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5243                                             "printf", 1,
5244                                             Name->isStr("NSLogv") ? 0 : 2));
5245  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5246    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5247    // target-specific builtins, perhaps?
5248    if (!FD->getAttr<FormatAttr>())
5249      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5250                                             "printf", 2,
5251                                             Name->isStr("vasprintf") ? 0 : 3));
5252  }
5253}
5254
5255TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5256                                    TypeSourceInfo *TInfo) {
5257  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5258  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5259
5260  if (!TInfo) {
5261    assert(D.isInvalidType() && "no declarator info for valid type");
5262    TInfo = Context.getTrivialTypeSourceInfo(T);
5263  }
5264
5265  // Scope manipulation handled by caller.
5266  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5267                                           D.getIdentifierLoc(),
5268                                           D.getIdentifier(),
5269                                           TInfo);
5270
5271  if (const TagType *TT = T->getAs<TagType>()) {
5272    TagDecl *TD = TT->getDecl();
5273
5274    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5275    // keep track of the TypedefDecl.
5276    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5277      TD->setTypedefForAnonDecl(NewTD);
5278  }
5279
5280  if (D.isInvalidType())
5281    NewTD->setInvalidDecl();
5282  return NewTD;
5283}
5284
5285
5286/// \brief Determine whether a tag with a given kind is acceptable
5287/// as a redeclaration of the given tag declaration.
5288///
5289/// \returns true if the new tag kind is acceptable, false otherwise.
5290bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5291                                        TagTypeKind NewTag,
5292                                        SourceLocation NewTagLoc,
5293                                        const IdentifierInfo &Name) {
5294  // C++ [dcl.type.elab]p3:
5295  //   The class-key or enum keyword present in the
5296  //   elaborated-type-specifier shall agree in kind with the
5297  //   declaration to which the name in the elaborated-type-specifier
5298  //   refers. This rule also applies to the form of
5299  //   elaborated-type-specifier that declares a class-name or
5300  //   friend class since it can be construed as referring to the
5301  //   definition of the class. Thus, in any
5302  //   elaborated-type-specifier, the enum keyword shall be used to
5303  //   refer to an enumeration (7.2), the union class-key shall be
5304  //   used to refer to a union (clause 9), and either the class or
5305  //   struct class-key shall be used to refer to a class (clause 9)
5306  //   declared using the class or struct class-key.
5307  TagTypeKind OldTag = Previous->getTagKind();
5308  if (OldTag == NewTag)
5309    return true;
5310
5311  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5312      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5313    // Warn about the struct/class tag mismatch.
5314    bool isTemplate = false;
5315    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5316      isTemplate = Record->getDescribedClassTemplate();
5317
5318    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5319      << (NewTag == TTK_Class)
5320      << isTemplate << &Name
5321      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5322                              OldTag == TTK_Class? "class" : "struct");
5323    Diag(Previous->getLocation(), diag::note_previous_use);
5324    return true;
5325  }
5326  return false;
5327}
5328
5329/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5330/// former case, Name will be non-null.  In the later case, Name will be null.
5331/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5332/// reference/declaration/definition of a tag.
5333Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5334                     SourceLocation KWLoc, CXXScopeSpec &SS,
5335                     IdentifierInfo *Name, SourceLocation NameLoc,
5336                     AttributeList *Attr, AccessSpecifier AS,
5337                     MultiTemplateParamsArg TemplateParameterLists,
5338                     bool &OwnedDecl, bool &IsDependent) {
5339  // If this is not a definition, it must have a name.
5340  assert((Name != 0 || TUK == TUK_Definition) &&
5341         "Nameless record must be a definition!");
5342
5343  OwnedDecl = false;
5344  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5345
5346  // FIXME: Check explicit specializations more carefully.
5347  bool isExplicitSpecialization = false;
5348  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5349  bool Invalid = false;
5350  if (TUK != TUK_Reference) {
5351    if (TemplateParameterList *TemplateParams
5352          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5353                        (TemplateParameterList**)TemplateParameterLists.get(),
5354                                              TemplateParameterLists.size(),
5355                                                    TUK == TUK_Friend,
5356                                                    isExplicitSpecialization,
5357                                                    Invalid)) {
5358      // All but one template parameter lists have been matching.
5359      --NumMatchedTemplateParamLists;
5360
5361      if (TemplateParams->size() > 0) {
5362        // This is a declaration or definition of a class template (which may
5363        // be a member of another template).
5364        if (Invalid)
5365          return 0;
5366
5367        OwnedDecl = false;
5368        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5369                                               SS, Name, NameLoc, Attr,
5370                                               TemplateParams,
5371                                               AS);
5372        TemplateParameterLists.release();
5373        return Result.get();
5374      } else {
5375        // The "template<>" header is extraneous.
5376        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5377          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5378        isExplicitSpecialization = true;
5379      }
5380    }
5381  }
5382
5383  DeclContext *SearchDC = CurContext;
5384  DeclContext *DC = CurContext;
5385  bool isStdBadAlloc = false;
5386
5387  RedeclarationKind Redecl = ForRedeclaration;
5388  if (TUK == TUK_Friend || TUK == TUK_Reference)
5389    Redecl = NotForRedeclaration;
5390
5391  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5392
5393  if (Name && SS.isNotEmpty()) {
5394    // We have a nested-name tag ('struct foo::bar').
5395
5396    // Check for invalid 'foo::'.
5397    if (SS.isInvalid()) {
5398      Name = 0;
5399      goto CreateNewDecl;
5400    }
5401
5402    // If this is a friend or a reference to a class in a dependent
5403    // context, don't try to make a decl for it.
5404    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5405      DC = computeDeclContext(SS, false);
5406      if (!DC) {
5407        IsDependent = true;
5408        return 0;
5409      }
5410    } else {
5411      DC = computeDeclContext(SS, true);
5412      if (!DC) {
5413        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5414          << SS.getRange();
5415        return 0;
5416      }
5417    }
5418
5419    if (RequireCompleteDeclContext(SS, DC))
5420      return 0;
5421
5422    SearchDC = DC;
5423    // Look-up name inside 'foo::'.
5424    LookupQualifiedName(Previous, DC);
5425
5426    if (Previous.isAmbiguous())
5427      return 0;
5428
5429    if (Previous.empty()) {
5430      // Name lookup did not find anything. However, if the
5431      // nested-name-specifier refers to the current instantiation,
5432      // and that current instantiation has any dependent base
5433      // classes, we might find something at instantiation time: treat
5434      // this as a dependent elaborated-type-specifier.
5435      if (Previous.wasNotFoundInCurrentInstantiation()) {
5436        IsDependent = true;
5437        return 0;
5438      }
5439
5440      // A tag 'foo::bar' must already exist.
5441      Diag(NameLoc, diag::err_not_tag_in_scope)
5442        << Kind << Name << DC << SS.getRange();
5443      Name = 0;
5444      Invalid = true;
5445      goto CreateNewDecl;
5446    }
5447  } else if (Name) {
5448    // If this is a named struct, check to see if there was a previous forward
5449    // declaration or definition.
5450    // FIXME: We're looking into outer scopes here, even when we
5451    // shouldn't be. Doing so can result in ambiguities that we
5452    // shouldn't be diagnosing.
5453    LookupName(Previous, S);
5454
5455    // Note:  there used to be some attempt at recovery here.
5456    if (Previous.isAmbiguous())
5457      return 0;
5458
5459    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5460      // FIXME: This makes sure that we ignore the contexts associated
5461      // with C structs, unions, and enums when looking for a matching
5462      // tag declaration or definition. See the similar lookup tweak
5463      // in Sema::LookupName; is there a better way to deal with this?
5464      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5465        SearchDC = SearchDC->getParent();
5466    }
5467  } else if (S->isFunctionPrototypeScope()) {
5468    // If this is an enum declaration in function prototype scope, set its
5469    // initial context to the translation unit.
5470    SearchDC = Context.getTranslationUnitDecl();
5471  }
5472
5473  if (Previous.isSingleResult() &&
5474      Previous.getFoundDecl()->isTemplateParameter()) {
5475    // Maybe we will complain about the shadowed template parameter.
5476    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5477    // Just pretend that we didn't see the previous declaration.
5478    Previous.clear();
5479  }
5480
5481  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5482      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5483    // This is a declaration of or a reference to "std::bad_alloc".
5484    isStdBadAlloc = true;
5485
5486    if (Previous.empty() && StdBadAlloc) {
5487      // std::bad_alloc has been implicitly declared (but made invisible to
5488      // name lookup). Fill in this implicit declaration as the previous
5489      // declaration, so that the declarations get chained appropriately.
5490      Previous.addDecl(getStdBadAlloc());
5491    }
5492  }
5493
5494  // If we didn't find a previous declaration, and this is a reference
5495  // (or friend reference), move to the correct scope.  In C++, we
5496  // also need to do a redeclaration lookup there, just in case
5497  // there's a shadow friend decl.
5498  if (Name && Previous.empty() &&
5499      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5500    if (Invalid) goto CreateNewDecl;
5501    assert(SS.isEmpty());
5502
5503    if (TUK == TUK_Reference) {
5504      // C++ [basic.scope.pdecl]p5:
5505      //   -- for an elaborated-type-specifier of the form
5506      //
5507      //          class-key identifier
5508      //
5509      //      if the elaborated-type-specifier is used in the
5510      //      decl-specifier-seq or parameter-declaration-clause of a
5511      //      function defined in namespace scope, the identifier is
5512      //      declared as a class-name in the namespace that contains
5513      //      the declaration; otherwise, except as a friend
5514      //      declaration, the identifier is declared in the smallest
5515      //      non-class, non-function-prototype scope that contains the
5516      //      declaration.
5517      //
5518      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5519      // C structs and unions.
5520      //
5521      // It is an error in C++ to declare (rather than define) an enum
5522      // type, including via an elaborated type specifier.  We'll
5523      // diagnose that later; for now, declare the enum in the same
5524      // scope as we would have picked for any other tag type.
5525      //
5526      // GNU C also supports this behavior as part of its incomplete
5527      // enum types extension, while GNU C++ does not.
5528      //
5529      // Find the context where we'll be declaring the tag.
5530      // FIXME: We would like to maintain the current DeclContext as the
5531      // lexical context,
5532      while (SearchDC->isRecord())
5533        SearchDC = SearchDC->getParent();
5534
5535      // Find the scope where we'll be declaring the tag.
5536      while (S->isClassScope() ||
5537             (getLangOptions().CPlusPlus &&
5538              S->isFunctionPrototypeScope()) ||
5539             ((S->getFlags() & Scope::DeclScope) == 0) ||
5540             (S->getEntity() &&
5541              ((DeclContext *)S->getEntity())->isTransparentContext()))
5542        S = S->getParent();
5543    } else {
5544      assert(TUK == TUK_Friend);
5545      // C++ [namespace.memdef]p3:
5546      //   If a friend declaration in a non-local class first declares a
5547      //   class or function, the friend class or function is a member of
5548      //   the innermost enclosing namespace.
5549      SearchDC = SearchDC->getEnclosingNamespaceContext();
5550    }
5551
5552    // In C++, we need to do a redeclaration lookup to properly
5553    // diagnose some problems.
5554    if (getLangOptions().CPlusPlus) {
5555      Previous.setRedeclarationKind(ForRedeclaration);
5556      LookupQualifiedName(Previous, SearchDC);
5557    }
5558  }
5559
5560  if (!Previous.empty()) {
5561    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5562
5563    // It's okay to have a tag decl in the same scope as a typedef
5564    // which hides a tag decl in the same scope.  Finding this
5565    // insanity with a redeclaration lookup can only actually happen
5566    // in C++.
5567    //
5568    // This is also okay for elaborated-type-specifiers, which is
5569    // technically forbidden by the current standard but which is
5570    // okay according to the likely resolution of an open issue;
5571    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5572    if (getLangOptions().CPlusPlus) {
5573      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5574        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5575          TagDecl *Tag = TT->getDecl();
5576          if (Tag->getDeclName() == Name &&
5577              Tag->getDeclContext()->getRedeclContext()
5578                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5579            PrevDecl = Tag;
5580            Previous.clear();
5581            Previous.addDecl(Tag);
5582            Previous.resolveKind();
5583          }
5584        }
5585      }
5586    }
5587
5588    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5589      // If this is a use of a previous tag, or if the tag is already declared
5590      // in the same scope (so that the definition/declaration completes or
5591      // rementions the tag), reuse the decl.
5592      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5593          isDeclInScope(PrevDecl, SearchDC, S)) {
5594        // Make sure that this wasn't declared as an enum and now used as a
5595        // struct or something similar.
5596        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5597          bool SafeToContinue
5598            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5599               Kind != TTK_Enum);
5600          if (SafeToContinue)
5601            Diag(KWLoc, diag::err_use_with_wrong_tag)
5602              << Name
5603              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5604                                              PrevTagDecl->getKindName());
5605          else
5606            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5607          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5608
5609          if (SafeToContinue)
5610            Kind = PrevTagDecl->getTagKind();
5611          else {
5612            // Recover by making this an anonymous redefinition.
5613            Name = 0;
5614            Previous.clear();
5615            Invalid = true;
5616          }
5617        }
5618
5619        if (!Invalid) {
5620          // If this is a use, just return the declaration we found.
5621
5622          // FIXME: In the future, return a variant or some other clue
5623          // for the consumer of this Decl to know it doesn't own it.
5624          // For our current ASTs this shouldn't be a problem, but will
5625          // need to be changed with DeclGroups.
5626          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5627              TUK == TUK_Friend)
5628            return PrevTagDecl;
5629
5630          // Diagnose attempts to redefine a tag.
5631          if (TUK == TUK_Definition) {
5632            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5633              // If we're defining a specialization and the previous definition
5634              // is from an implicit instantiation, don't emit an error
5635              // here; we'll catch this in the general case below.
5636              if (!isExplicitSpecialization ||
5637                  !isa<CXXRecordDecl>(Def) ||
5638                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5639                                               == TSK_ExplicitSpecialization) {
5640                Diag(NameLoc, diag::err_redefinition) << Name;
5641                Diag(Def->getLocation(), diag::note_previous_definition);
5642                // If this is a redefinition, recover by making this
5643                // struct be anonymous, which will make any later
5644                // references get the previous definition.
5645                Name = 0;
5646                Previous.clear();
5647                Invalid = true;
5648              }
5649            } else {
5650              // If the type is currently being defined, complain
5651              // about a nested redefinition.
5652              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5653              if (Tag->isBeingDefined()) {
5654                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5655                Diag(PrevTagDecl->getLocation(),
5656                     diag::note_previous_definition);
5657                Name = 0;
5658                Previous.clear();
5659                Invalid = true;
5660              }
5661            }
5662
5663            // Okay, this is definition of a previously declared or referenced
5664            // tag PrevDecl. We're going to create a new Decl for it.
5665          }
5666        }
5667        // If we get here we have (another) forward declaration or we
5668        // have a definition.  Just create a new decl.
5669
5670      } else {
5671        // If we get here, this is a definition of a new tag type in a nested
5672        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5673        // new decl/type.  We set PrevDecl to NULL so that the entities
5674        // have distinct types.
5675        Previous.clear();
5676      }
5677      // If we get here, we're going to create a new Decl. If PrevDecl
5678      // is non-NULL, it's a definition of the tag declared by
5679      // PrevDecl. If it's NULL, we have a new definition.
5680
5681
5682    // Otherwise, PrevDecl is not a tag, but was found with tag
5683    // lookup.  This is only actually possible in C++, where a few
5684    // things like templates still live in the tag namespace.
5685    } else {
5686      assert(getLangOptions().CPlusPlus);
5687
5688      // Use a better diagnostic if an elaborated-type-specifier
5689      // found the wrong kind of type on the first
5690      // (non-redeclaration) lookup.
5691      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5692          !Previous.isForRedeclaration()) {
5693        unsigned Kind = 0;
5694        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5695        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5696        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5697        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5698        Invalid = true;
5699
5700      // Otherwise, only diagnose if the declaration is in scope.
5701      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5702        // do nothing
5703
5704      // Diagnose implicit declarations introduced by elaborated types.
5705      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5706        unsigned Kind = 0;
5707        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5708        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5709        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5710        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5711        Invalid = true;
5712
5713      // Otherwise it's a declaration.  Call out a particularly common
5714      // case here.
5715      } else if (isa<TypedefDecl>(PrevDecl)) {
5716        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5717          << Name
5718          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5719        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5720        Invalid = true;
5721
5722      // Otherwise, diagnose.
5723      } else {
5724        // The tag name clashes with something else in the target scope,
5725        // issue an error and recover by making this tag be anonymous.
5726        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5727        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5728        Name = 0;
5729        Invalid = true;
5730      }
5731
5732      // The existing declaration isn't relevant to us; we're in a
5733      // new scope, so clear out the previous declaration.
5734      Previous.clear();
5735    }
5736  }
5737
5738CreateNewDecl:
5739
5740  TagDecl *PrevDecl = 0;
5741  if (Previous.isSingleResult())
5742    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5743
5744  // If there is an identifier, use the location of the identifier as the
5745  // location of the decl, otherwise use the location of the struct/union
5746  // keyword.
5747  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5748
5749  // Otherwise, create a new declaration. If there is a previous
5750  // declaration of the same entity, the two will be linked via
5751  // PrevDecl.
5752  TagDecl *New;
5753
5754  if (Kind == TTK_Enum) {
5755    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5756    // enum X { A, B, C } D;    D should chain to X.
5757    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5758                           cast_or_null<EnumDecl>(PrevDecl));
5759    // If this is an undefined enum, warn.
5760    if (TUK != TUK_Definition && !Invalid) {
5761      TagDecl *Def;
5762      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5763        Diag(Loc, diag::ext_forward_ref_enum_def)
5764          << New;
5765        Diag(Def->getLocation(), diag::note_previous_definition);
5766      } else {
5767        unsigned DiagID = diag::ext_forward_ref_enum;
5768        if (getLangOptions().Microsoft)
5769          DiagID = diag::ext_ms_forward_ref_enum;
5770        else if (getLangOptions().CPlusPlus)
5771          DiagID = diag::err_forward_ref_enum;
5772        Diag(Loc, DiagID);
5773      }
5774    }
5775  } else {
5776    // struct/union/class
5777
5778    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5779    // struct X { int A; } D;    D should chain to X.
5780    if (getLangOptions().CPlusPlus) {
5781      // FIXME: Look for a way to use RecordDecl for simple structs.
5782      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5783                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5784
5785      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5786        StdBadAlloc = cast<CXXRecordDecl>(New);
5787    } else
5788      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5789                               cast_or_null<RecordDecl>(PrevDecl));
5790  }
5791
5792  // Maybe add qualifier info.
5793  if (SS.isNotEmpty()) {
5794    if (SS.isSet()) {
5795      NestedNameSpecifier *NNS
5796        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5797      New->setQualifierInfo(NNS, SS.getRange());
5798      if (NumMatchedTemplateParamLists > 0) {
5799        New->setTemplateParameterListsInfo(Context,
5800                                           NumMatchedTemplateParamLists,
5801                    (TemplateParameterList**) TemplateParameterLists.release());
5802      }
5803    }
5804    else
5805      Invalid = true;
5806  }
5807
5808  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5809    // Add alignment attributes if necessary; these attributes are checked when
5810    // the ASTContext lays out the structure.
5811    //
5812    // It is important for implementing the correct semantics that this
5813    // happen here (in act on tag decl). The #pragma pack stack is
5814    // maintained as a result of parser callbacks which can occur at
5815    // many points during the parsing of a struct declaration (because
5816    // the #pragma tokens are effectively skipped over during the
5817    // parsing of the struct).
5818    AddAlignmentAttributesForRecord(RD);
5819  }
5820
5821  // If this is a specialization of a member class (of a class template),
5822  // check the specialization.
5823  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5824    Invalid = true;
5825
5826  if (Invalid)
5827    New->setInvalidDecl();
5828
5829  if (Attr)
5830    ProcessDeclAttributeList(S, New, Attr);
5831
5832  // If we're declaring or defining a tag in function prototype scope
5833  // in C, note that this type can only be used within the function.
5834  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5835    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5836
5837  // Set the lexical context. If the tag has a C++ scope specifier, the
5838  // lexical context will be different from the semantic context.
5839  New->setLexicalDeclContext(CurContext);
5840
5841  // Mark this as a friend decl if applicable.
5842  if (TUK == TUK_Friend)
5843    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5844
5845  // Set the access specifier.
5846  if (!Invalid && SearchDC->isRecord())
5847    SetMemberAccessSpecifier(New, PrevDecl, AS);
5848
5849  if (TUK == TUK_Definition)
5850    New->startDefinition();
5851
5852  // If this has an identifier, add it to the scope stack.
5853  if (TUK == TUK_Friend) {
5854    // We might be replacing an existing declaration in the lookup tables;
5855    // if so, borrow its access specifier.
5856    if (PrevDecl)
5857      New->setAccess(PrevDecl->getAccess());
5858
5859    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5860    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5861    if (Name) // can be null along some error paths
5862      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5863        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5864  } else if (Name) {
5865    S = getNonFieldDeclScope(S);
5866    PushOnScopeChains(New, S);
5867  } else {
5868    CurContext->addDecl(New);
5869  }
5870
5871  // If this is the C FILE type, notify the AST context.
5872  if (IdentifierInfo *II = New->getIdentifier())
5873    if (!New->isInvalidDecl() &&
5874        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5875        II->isStr("FILE"))
5876      Context.setFILEDecl(New);
5877
5878  OwnedDecl = true;
5879  return New;
5880}
5881
5882void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5883  AdjustDeclIfTemplate(TagD);
5884  TagDecl *Tag = cast<TagDecl>(TagD);
5885
5886  // Enter the tag context.
5887  PushDeclContext(S, Tag);
5888}
5889
5890void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5891                                           SourceLocation LBraceLoc) {
5892  AdjustDeclIfTemplate(TagD);
5893  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5894
5895  FieldCollector->StartClass();
5896
5897  if (!Record->getIdentifier())
5898    return;
5899
5900  // C++ [class]p2:
5901  //   [...] The class-name is also inserted into the scope of the
5902  //   class itself; this is known as the injected-class-name. For
5903  //   purposes of access checking, the injected-class-name is treated
5904  //   as if it were a public member name.
5905  CXXRecordDecl *InjectedClassName
5906    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5907                            CurContext, Record->getLocation(),
5908                            Record->getIdentifier(),
5909                            Record->getTagKeywordLoc(),
5910                            Record);
5911  InjectedClassName->setImplicit();
5912  InjectedClassName->setAccess(AS_public);
5913  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5914      InjectedClassName->setDescribedClassTemplate(Template);
5915  PushOnScopeChains(InjectedClassName, S);
5916  assert(InjectedClassName->isInjectedClassName() &&
5917         "Broken injected-class-name");
5918}
5919
5920void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5921                                    SourceLocation RBraceLoc) {
5922  AdjustDeclIfTemplate(TagD);
5923  TagDecl *Tag = cast<TagDecl>(TagD);
5924  Tag->setRBraceLoc(RBraceLoc);
5925
5926  if (isa<CXXRecordDecl>(Tag))
5927    FieldCollector->FinishClass();
5928
5929  // Exit this scope of this tag's definition.
5930  PopDeclContext();
5931
5932  // Notify the consumer that we've defined a tag.
5933  Consumer.HandleTagDeclDefinition(Tag);
5934}
5935
5936void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5937  AdjustDeclIfTemplate(TagD);
5938  TagDecl *Tag = cast<TagDecl>(TagD);
5939  Tag->setInvalidDecl();
5940
5941  // We're undoing ActOnTagStartDefinition here, not
5942  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5943  // the FieldCollector.
5944
5945  PopDeclContext();
5946}
5947
5948// Note that FieldName may be null for anonymous bitfields.
5949bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5950                          QualType FieldTy, const Expr *BitWidth,
5951                          bool *ZeroWidth) {
5952  // Default to true; that shouldn't confuse checks for emptiness
5953  if (ZeroWidth)
5954    *ZeroWidth = true;
5955
5956  // C99 6.7.2.1p4 - verify the field type.
5957  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5958  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5959    // Handle incomplete types with specific error.
5960    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5961      return true;
5962    if (FieldName)
5963      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5964        << FieldName << FieldTy << BitWidth->getSourceRange();
5965    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5966      << FieldTy << BitWidth->getSourceRange();
5967  }
5968
5969  // If the bit-width is type- or value-dependent, don't try to check
5970  // it now.
5971  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5972    return false;
5973
5974  llvm::APSInt Value;
5975  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5976    return true;
5977
5978  if (Value != 0 && ZeroWidth)
5979    *ZeroWidth = false;
5980
5981  // Zero-width bitfield is ok for anonymous field.
5982  if (Value == 0 && FieldName)
5983    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5984
5985  if (Value.isSigned() && Value.isNegative()) {
5986    if (FieldName)
5987      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5988               << FieldName << Value.toString(10);
5989    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5990      << Value.toString(10);
5991  }
5992
5993  if (!FieldTy->isDependentType()) {
5994    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5995    if (Value.getZExtValue() > TypeSize) {
5996      if (!getLangOptions().CPlusPlus) {
5997        if (FieldName)
5998          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5999            << FieldName << (unsigned)Value.getZExtValue()
6000            << (unsigned)TypeSize;
6001
6002        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6003          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6004      }
6005
6006      if (FieldName)
6007        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6008          << FieldName << (unsigned)Value.getZExtValue()
6009          << (unsigned)TypeSize;
6010      else
6011        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6012          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6013    }
6014  }
6015
6016  return false;
6017}
6018
6019/// ActOnField - Each field of a struct/union/class is passed into this in order
6020/// to create a FieldDecl object for it.
6021Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6022                                 SourceLocation DeclStart,
6023                                 Declarator &D, ExprTy *BitfieldWidth) {
6024  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6025                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6026                               AS_public);
6027  return Res;
6028}
6029
6030/// HandleField - Analyze a field of a C struct or a C++ data member.
6031///
6032FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6033                             SourceLocation DeclStart,
6034                             Declarator &D, Expr *BitWidth,
6035                             AccessSpecifier AS) {
6036  IdentifierInfo *II = D.getIdentifier();
6037  SourceLocation Loc = DeclStart;
6038  if (II) Loc = D.getIdentifierLoc();
6039
6040  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6041  QualType T = TInfo->getType();
6042  if (getLangOptions().CPlusPlus)
6043    CheckExtraCXXDefaultArguments(D);
6044
6045  DiagnoseFunctionSpecifiers(D);
6046
6047  if (D.getDeclSpec().isThreadSpecified())
6048    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6049
6050  // Check to see if this name was declared as a member previously
6051  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6052  LookupName(Previous, S);
6053  assert((Previous.empty() || Previous.isOverloadedResult() ||
6054          Previous.isSingleResult())
6055    && "Lookup of member name should be either overloaded, single or null");
6056
6057  // If the name is overloaded then get any declaration else get the single result
6058  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6059    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6060
6061  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6062    // Maybe we will complain about the shadowed template parameter.
6063    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6064    // Just pretend that we didn't see the previous declaration.
6065    PrevDecl = 0;
6066  }
6067
6068  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6069    PrevDecl = 0;
6070
6071  bool Mutable
6072    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6073  SourceLocation TSSL = D.getSourceRange().getBegin();
6074  FieldDecl *NewFD
6075    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6076                     AS, PrevDecl, &D);
6077
6078  if (NewFD->isInvalidDecl())
6079    Record->setInvalidDecl();
6080
6081  if (NewFD->isInvalidDecl() && PrevDecl) {
6082    // Don't introduce NewFD into scope; there's already something
6083    // with the same name in the same scope.
6084  } else if (II) {
6085    PushOnScopeChains(NewFD, S);
6086  } else
6087    Record->addDecl(NewFD);
6088
6089  return NewFD;
6090}
6091
6092/// \brief Build a new FieldDecl and check its well-formedness.
6093///
6094/// This routine builds a new FieldDecl given the fields name, type,
6095/// record, etc. \p PrevDecl should refer to any previous declaration
6096/// with the same name and in the same scope as the field to be
6097/// created.
6098///
6099/// \returns a new FieldDecl.
6100///
6101/// \todo The Declarator argument is a hack. It will be removed once
6102FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6103                                TypeSourceInfo *TInfo,
6104                                RecordDecl *Record, SourceLocation Loc,
6105                                bool Mutable, Expr *BitWidth,
6106                                SourceLocation TSSL,
6107                                AccessSpecifier AS, NamedDecl *PrevDecl,
6108                                Declarator *D) {
6109  IdentifierInfo *II = Name.getAsIdentifierInfo();
6110  bool InvalidDecl = false;
6111  if (D) InvalidDecl = D->isInvalidType();
6112
6113  // If we receive a broken type, recover by assuming 'int' and
6114  // marking this declaration as invalid.
6115  if (T.isNull()) {
6116    InvalidDecl = true;
6117    T = Context.IntTy;
6118  }
6119
6120  QualType EltTy = Context.getBaseElementType(T);
6121  if (!EltTy->isDependentType() &&
6122      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6123    // Fields of incomplete type force their record to be invalid.
6124    Record->setInvalidDecl();
6125    InvalidDecl = true;
6126  }
6127
6128  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6129  // than a variably modified type.
6130  if (!InvalidDecl && T->isVariablyModifiedType()) {
6131    bool SizeIsNegative;
6132    llvm::APSInt Oversized;
6133    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6134                                                           SizeIsNegative,
6135                                                           Oversized);
6136    if (!FixedTy.isNull()) {
6137      Diag(Loc, diag::warn_illegal_constant_array_size);
6138      T = FixedTy;
6139    } else {
6140      if (SizeIsNegative)
6141        Diag(Loc, diag::err_typecheck_negative_array_size);
6142      else if (Oversized.getBoolValue())
6143        Diag(Loc, diag::err_array_too_large)
6144          << Oversized.toString(10);
6145      else
6146        Diag(Loc, diag::err_typecheck_field_variable_size);
6147      InvalidDecl = true;
6148    }
6149  }
6150
6151  // Fields can not have abstract class types
6152  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6153                                             diag::err_abstract_type_in_decl,
6154                                             AbstractFieldType))
6155    InvalidDecl = true;
6156
6157  bool ZeroWidth = false;
6158  // If this is declared as a bit-field, check the bit-field.
6159  if (!InvalidDecl && BitWidth &&
6160      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6161    InvalidDecl = true;
6162    BitWidth = 0;
6163    ZeroWidth = false;
6164  }
6165
6166  // Check that 'mutable' is consistent with the type of the declaration.
6167  if (!InvalidDecl && Mutable) {
6168    unsigned DiagID = 0;
6169    if (T->isReferenceType())
6170      DiagID = diag::err_mutable_reference;
6171    else if (T.isConstQualified())
6172      DiagID = diag::err_mutable_const;
6173
6174    if (DiagID) {
6175      SourceLocation ErrLoc = Loc;
6176      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6177        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6178      Diag(ErrLoc, DiagID);
6179      Mutable = false;
6180      InvalidDecl = true;
6181    }
6182  }
6183
6184  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6185                                       BitWidth, Mutable);
6186  if (InvalidDecl)
6187    NewFD->setInvalidDecl();
6188
6189  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6190    Diag(Loc, diag::err_duplicate_member) << II;
6191    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6192    NewFD->setInvalidDecl();
6193  }
6194
6195  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6196    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6197
6198    if (!T->isPODType())
6199      CXXRecord->setPOD(false);
6200    if (!ZeroWidth)
6201      CXXRecord->setEmpty(false);
6202    if (T->isReferenceType())
6203      CXXRecord->setHasTrivialConstructor(false);
6204
6205    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6206      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6207      if (RDecl->getDefinition()) {
6208        if (!RDecl->hasTrivialConstructor())
6209          CXXRecord->setHasTrivialConstructor(false);
6210        if (!RDecl->hasTrivialCopyConstructor())
6211          CXXRecord->setHasTrivialCopyConstructor(false);
6212        if (!RDecl->hasTrivialCopyAssignment())
6213          CXXRecord->setHasTrivialCopyAssignment(false);
6214        if (!RDecl->hasTrivialDestructor())
6215          CXXRecord->setHasTrivialDestructor(false);
6216
6217        // C++ 9.5p1: An object of a class with a non-trivial
6218        // constructor, a non-trivial copy constructor, a non-trivial
6219        // destructor, or a non-trivial copy assignment operator
6220        // cannot be a member of a union, nor can an array of such
6221        // objects.
6222        // TODO: C++0x alters this restriction significantly.
6223        if (Record->isUnion() && CheckNontrivialField(NewFD))
6224          NewFD->setInvalidDecl();
6225      }
6226    }
6227  }
6228
6229  // FIXME: We need to pass in the attributes given an AST
6230  // representation, not a parser representation.
6231  if (D)
6232    // FIXME: What to pass instead of TUScope?
6233    ProcessDeclAttributes(TUScope, NewFD, *D);
6234
6235  if (T.isObjCGCWeak())
6236    Diag(Loc, diag::warn_attribute_weak_on_field);
6237
6238  NewFD->setAccess(AS);
6239
6240  // C++ [dcl.init.aggr]p1:
6241  //   An aggregate is an array or a class (clause 9) with [...] no
6242  //   private or protected non-static data members (clause 11).
6243  // A POD must be an aggregate.
6244  if (getLangOptions().CPlusPlus &&
6245      (AS == AS_private || AS == AS_protected)) {
6246    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6247    CXXRecord->setAggregate(false);
6248    CXXRecord->setPOD(false);
6249  }
6250
6251  return NewFD;
6252}
6253
6254bool Sema::CheckNontrivialField(FieldDecl *FD) {
6255  assert(FD);
6256  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6257
6258  if (FD->isInvalidDecl())
6259    return true;
6260
6261  QualType EltTy = Context.getBaseElementType(FD->getType());
6262  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6263    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6264    if (RDecl->getDefinition()) {
6265      // We check for copy constructors before constructors
6266      // because otherwise we'll never get complaints about
6267      // copy constructors.
6268
6269      CXXSpecialMember member = CXXInvalid;
6270      if (!RDecl->hasTrivialCopyConstructor())
6271        member = CXXCopyConstructor;
6272      else if (!RDecl->hasTrivialConstructor())
6273        member = CXXConstructor;
6274      else if (!RDecl->hasTrivialCopyAssignment())
6275        member = CXXCopyAssignment;
6276      else if (!RDecl->hasTrivialDestructor())
6277        member = CXXDestructor;
6278
6279      if (member != CXXInvalid) {
6280        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6281              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6282        DiagnoseNontrivial(RT, member);
6283        return true;
6284      }
6285    }
6286  }
6287
6288  return false;
6289}
6290
6291/// DiagnoseNontrivial - Given that a class has a non-trivial
6292/// special member, figure out why.
6293void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6294  QualType QT(T, 0U);
6295  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6296
6297  // Check whether the member was user-declared.
6298  switch (member) {
6299  case CXXInvalid:
6300    break;
6301
6302  case CXXConstructor:
6303    if (RD->hasUserDeclaredConstructor()) {
6304      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6305      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6306        const FunctionDecl *body = 0;
6307        ci->hasBody(body);
6308        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6309          SourceLocation CtorLoc = ci->getLocation();
6310          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6311          return;
6312        }
6313      }
6314
6315      assert(0 && "found no user-declared constructors");
6316      return;
6317    }
6318    break;
6319
6320  case CXXCopyConstructor:
6321    if (RD->hasUserDeclaredCopyConstructor()) {
6322      SourceLocation CtorLoc =
6323        RD->getCopyConstructor(Context, 0)->getLocation();
6324      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6325      return;
6326    }
6327    break;
6328
6329  case CXXCopyAssignment:
6330    if (RD->hasUserDeclaredCopyAssignment()) {
6331      // FIXME: this should use the location of the copy
6332      // assignment, not the type.
6333      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6334      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6335      return;
6336    }
6337    break;
6338
6339  case CXXDestructor:
6340    if (RD->hasUserDeclaredDestructor()) {
6341      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6342      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6343      return;
6344    }
6345    break;
6346  }
6347
6348  typedef CXXRecordDecl::base_class_iterator base_iter;
6349
6350  // Virtual bases and members inhibit trivial copying/construction,
6351  // but not trivial destruction.
6352  if (member != CXXDestructor) {
6353    // Check for virtual bases.  vbases includes indirect virtual bases,
6354    // so we just iterate through the direct bases.
6355    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6356      if (bi->isVirtual()) {
6357        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6358        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6359        return;
6360      }
6361
6362    // Check for virtual methods.
6363    typedef CXXRecordDecl::method_iterator meth_iter;
6364    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6365         ++mi) {
6366      if (mi->isVirtual()) {
6367        SourceLocation MLoc = mi->getSourceRange().getBegin();
6368        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6369        return;
6370      }
6371    }
6372  }
6373
6374  bool (CXXRecordDecl::*hasTrivial)() const;
6375  switch (member) {
6376  case CXXConstructor:
6377    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6378  case CXXCopyConstructor:
6379    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6380  case CXXCopyAssignment:
6381    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6382  case CXXDestructor:
6383    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6384  default:
6385    assert(0 && "unexpected special member"); return;
6386  }
6387
6388  // Check for nontrivial bases (and recurse).
6389  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6390    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6391    assert(BaseRT && "Don't know how to handle dependent bases");
6392    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6393    if (!(BaseRecTy->*hasTrivial)()) {
6394      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6395      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6396      DiagnoseNontrivial(BaseRT, member);
6397      return;
6398    }
6399  }
6400
6401  // Check for nontrivial members (and recurse).
6402  typedef RecordDecl::field_iterator field_iter;
6403  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6404       ++fi) {
6405    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6406    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6407      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6408
6409      if (!(EltRD->*hasTrivial)()) {
6410        SourceLocation FLoc = (*fi)->getLocation();
6411        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6412        DiagnoseNontrivial(EltRT, member);
6413        return;
6414      }
6415    }
6416  }
6417
6418  assert(0 && "found no explanation for non-trivial member");
6419}
6420
6421/// TranslateIvarVisibility - Translate visibility from a token ID to an
6422///  AST enum value.
6423static ObjCIvarDecl::AccessControl
6424TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6425  switch (ivarVisibility) {
6426  default: assert(0 && "Unknown visitibility kind");
6427  case tok::objc_private: return ObjCIvarDecl::Private;
6428  case tok::objc_public: return ObjCIvarDecl::Public;
6429  case tok::objc_protected: return ObjCIvarDecl::Protected;
6430  case tok::objc_package: return ObjCIvarDecl::Package;
6431  }
6432}
6433
6434/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6435/// in order to create an IvarDecl object for it.
6436Decl *Sema::ActOnIvar(Scope *S,
6437                                SourceLocation DeclStart,
6438                                Decl *IntfDecl,
6439                                Declarator &D, ExprTy *BitfieldWidth,
6440                                tok::ObjCKeywordKind Visibility) {
6441
6442  IdentifierInfo *II = D.getIdentifier();
6443  Expr *BitWidth = (Expr*)BitfieldWidth;
6444  SourceLocation Loc = DeclStart;
6445  if (II) Loc = D.getIdentifierLoc();
6446
6447  // FIXME: Unnamed fields can be handled in various different ways, for
6448  // example, unnamed unions inject all members into the struct namespace!
6449
6450  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6451  QualType T = TInfo->getType();
6452
6453  if (BitWidth) {
6454    // 6.7.2.1p3, 6.7.2.1p4
6455    if (VerifyBitField(Loc, II, T, BitWidth)) {
6456      D.setInvalidType();
6457      BitWidth = 0;
6458    }
6459  } else {
6460    // Not a bitfield.
6461
6462    // validate II.
6463
6464  }
6465  if (T->isReferenceType()) {
6466    Diag(Loc, diag::err_ivar_reference_type);
6467    D.setInvalidType();
6468  }
6469  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6470  // than a variably modified type.
6471  else if (T->isVariablyModifiedType()) {
6472    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6473    D.setInvalidType();
6474  }
6475
6476  // Get the visibility (access control) for this ivar.
6477  ObjCIvarDecl::AccessControl ac =
6478    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6479                                        : ObjCIvarDecl::None;
6480  // Must set ivar's DeclContext to its enclosing interface.
6481  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6482  ObjCContainerDecl *EnclosingContext;
6483  if (ObjCImplementationDecl *IMPDecl =
6484      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6485    if (!LangOpts.ObjCNonFragileABI2) {
6486    // Case of ivar declared in an implementation. Context is that of its class.
6487      EnclosingContext = IMPDecl->getClassInterface();
6488      assert(EnclosingContext && "Implementation has no class interface!");
6489    }
6490    else
6491      EnclosingContext = EnclosingDecl;
6492  } else {
6493    if (ObjCCategoryDecl *CDecl =
6494        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6495      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6496        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6497        return 0;
6498      }
6499    }
6500    EnclosingContext = EnclosingDecl;
6501  }
6502
6503  // Construct the decl.
6504  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6505                                             EnclosingContext, Loc, II, T,
6506                                             TInfo, ac, (Expr *)BitfieldWidth);
6507
6508  if (II) {
6509    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6510                                           ForRedeclaration);
6511    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6512        && !isa<TagDecl>(PrevDecl)) {
6513      Diag(Loc, diag::err_duplicate_member) << II;
6514      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6515      NewID->setInvalidDecl();
6516    }
6517  }
6518
6519  // Process attributes attached to the ivar.
6520  ProcessDeclAttributes(S, NewID, D);
6521
6522  if (D.isInvalidType())
6523    NewID->setInvalidDecl();
6524
6525  if (II) {
6526    // FIXME: When interfaces are DeclContexts, we'll need to add
6527    // these to the interface.
6528    S->AddDecl(NewID);
6529    IdResolver.AddDecl(NewID);
6530  }
6531
6532  return NewID;
6533}
6534
6535/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6536/// class and class extensions. For every class @interface and class
6537/// extension @interface, if the last ivar is a bitfield of any type,
6538/// then add an implicit `char :0` ivar to the end of that interface.
6539void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6540                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6541  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6542    return;
6543
6544  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6545  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6546
6547  if (!Ivar->isBitField())
6548    return;
6549  uint64_t BitFieldSize =
6550    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6551  if (BitFieldSize == 0)
6552    return;
6553  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6554  if (!ID) {
6555    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6556      if (!CD->IsClassExtension())
6557        return;
6558    }
6559    // No need to add this to end of @implementation.
6560    else
6561      return;
6562  }
6563  // All conditions are met. Add a new bitfield to the tail end of ivars.
6564  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6565  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6566
6567  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6568                              DeclLoc, 0,
6569                              Context.CharTy,
6570                              Context.CreateTypeSourceInfo(Context.CharTy),
6571                              ObjCIvarDecl::Private, BW,
6572                              true);
6573  AllIvarDecls.push_back(Ivar);
6574}
6575
6576void Sema::ActOnFields(Scope* S,
6577                       SourceLocation RecLoc, Decl *EnclosingDecl,
6578                       Decl **Fields, unsigned NumFields,
6579                       SourceLocation LBrac, SourceLocation RBrac,
6580                       AttributeList *Attr) {
6581  assert(EnclosingDecl && "missing record or interface decl");
6582
6583  // If the decl this is being inserted into is invalid, then it may be a
6584  // redeclaration or some other bogus case.  Don't try to add fields to it.
6585  if (EnclosingDecl->isInvalidDecl()) {
6586    // FIXME: Deallocate fields?
6587    return;
6588  }
6589
6590
6591  // Verify that all the fields are okay.
6592  unsigned NumNamedMembers = 0;
6593  llvm::SmallVector<FieldDecl*, 32> RecFields;
6594
6595  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6596  for (unsigned i = 0; i != NumFields; ++i) {
6597    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6598
6599    // Get the type for the field.
6600    Type *FDTy = FD->getType().getTypePtr();
6601
6602    if (!FD->isAnonymousStructOrUnion()) {
6603      // Remember all fields written by the user.
6604      RecFields.push_back(FD);
6605    }
6606
6607    // If the field is already invalid for some reason, don't emit more
6608    // diagnostics about it.
6609    if (FD->isInvalidDecl()) {
6610      EnclosingDecl->setInvalidDecl();
6611      continue;
6612    }
6613
6614    // C99 6.7.2.1p2:
6615    //   A structure or union shall not contain a member with
6616    //   incomplete or function type (hence, a structure shall not
6617    //   contain an instance of itself, but may contain a pointer to
6618    //   an instance of itself), except that the last member of a
6619    //   structure with more than one named member may have incomplete
6620    //   array type; such a structure (and any union containing,
6621    //   possibly recursively, a member that is such a structure)
6622    //   shall not be a member of a structure or an element of an
6623    //   array.
6624    if (FDTy->isFunctionType()) {
6625      // Field declared as a function.
6626      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6627        << FD->getDeclName();
6628      FD->setInvalidDecl();
6629      EnclosingDecl->setInvalidDecl();
6630      continue;
6631    } else if (FDTy->isIncompleteArrayType() && Record &&
6632               ((i == NumFields - 1 && !Record->isUnion()) ||
6633                (getLangOptions().Microsoft &&
6634                 (i == NumFields - 1 || Record->isUnion())))) {
6635      // Flexible array member.
6636      // Microsoft is more permissive regarding flexible array.
6637      // It will accept flexible array in union and also
6638	    // as the sole element of a struct/class.
6639      if (getLangOptions().Microsoft) {
6640        if (Record->isUnion())
6641          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6642            << FD->getDeclName();
6643        else if (NumFields == 1)
6644          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6645            << FD->getDeclName() << Record->getTagKind();
6646      } else  if (NumNamedMembers < 1) {
6647        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6648          << FD->getDeclName();
6649        FD->setInvalidDecl();
6650        EnclosingDecl->setInvalidDecl();
6651        continue;
6652      }
6653      if (!FD->getType()->isDependentType() &&
6654          !Context.getBaseElementType(FD->getType())->isPODType()) {
6655        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6656          << FD->getDeclName() << FD->getType();
6657        FD->setInvalidDecl();
6658        EnclosingDecl->setInvalidDecl();
6659        continue;
6660      }
6661      // Okay, we have a legal flexible array member at the end of the struct.
6662      if (Record)
6663        Record->setHasFlexibleArrayMember(true);
6664    } else if (!FDTy->isDependentType() &&
6665               RequireCompleteType(FD->getLocation(), FD->getType(),
6666                                   diag::err_field_incomplete)) {
6667      // Incomplete type
6668      FD->setInvalidDecl();
6669      EnclosingDecl->setInvalidDecl();
6670      continue;
6671    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6672      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6673        // If this is a member of a union, then entire union becomes "flexible".
6674        if (Record && Record->isUnion()) {
6675          Record->setHasFlexibleArrayMember(true);
6676        } else {
6677          // If this is a struct/class and this is not the last element, reject
6678          // it.  Note that GCC supports variable sized arrays in the middle of
6679          // structures.
6680          if (i != NumFields-1)
6681            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6682              << FD->getDeclName() << FD->getType();
6683          else {
6684            // We support flexible arrays at the end of structs in
6685            // other structs as an extension.
6686            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6687              << FD->getDeclName();
6688            if (Record)
6689              Record->setHasFlexibleArrayMember(true);
6690          }
6691        }
6692      }
6693      if (Record && FDTTy->getDecl()->hasObjectMember())
6694        Record->setHasObjectMember(true);
6695    } else if (FDTy->isObjCObjectType()) {
6696      /// A field cannot be an Objective-c object
6697      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6698      FD->setInvalidDecl();
6699      EnclosingDecl->setInvalidDecl();
6700      continue;
6701    } else if (getLangOptions().ObjC1 &&
6702               getLangOptions().getGCMode() != LangOptions::NonGC &&
6703               Record &&
6704               (FD->getType()->isObjCObjectPointerType() ||
6705                FD->getType().isObjCGCStrong()))
6706      Record->setHasObjectMember(true);
6707    else if (Context.getAsArrayType(FD->getType())) {
6708      QualType BaseType = Context.getBaseElementType(FD->getType());
6709      if (Record && BaseType->isRecordType() &&
6710          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6711        Record->setHasObjectMember(true);
6712    }
6713    // Keep track of the number of named members.
6714    if (FD->getIdentifier())
6715      ++NumNamedMembers;
6716  }
6717
6718  // Okay, we successfully defined 'Record'.
6719  if (Record) {
6720    Record->completeDefinition();
6721  } else {
6722    ObjCIvarDecl **ClsFields =
6723      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6724    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6725      ID->setLocEnd(RBrac);
6726      // Add ivar's to class's DeclContext.
6727      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6728        ClsFields[i]->setLexicalDeclContext(ID);
6729        ID->addDecl(ClsFields[i]);
6730      }
6731      // Must enforce the rule that ivars in the base classes may not be
6732      // duplicates.
6733      if (ID->getSuperClass())
6734        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6735    } else if (ObjCImplementationDecl *IMPDecl =
6736                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6737      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6738      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6739        // Ivar declared in @implementation never belongs to the implementation.
6740        // Only it is in implementation's lexical context.
6741        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6742      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6743    } else if (ObjCCategoryDecl *CDecl =
6744                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6745      // case of ivars in class extension; all other cases have been
6746      // reported as errors elsewhere.
6747      // FIXME. Class extension does not have a LocEnd field.
6748      // CDecl->setLocEnd(RBrac);
6749      // Add ivar's to class extension's DeclContext.
6750      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6751        ClsFields[i]->setLexicalDeclContext(CDecl);
6752        CDecl->addDecl(ClsFields[i]);
6753      }
6754    }
6755  }
6756
6757  if (Attr)
6758    ProcessDeclAttributeList(S, Record, Attr);
6759
6760  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6761  // set the visibility of this record.
6762  if (Record && !Record->getDeclContext()->isRecord())
6763    AddPushedVisibilityAttribute(Record);
6764}
6765
6766/// \brief Determine whether the given integral value is representable within
6767/// the given type T.
6768static bool isRepresentableIntegerValue(ASTContext &Context,
6769                                        llvm::APSInt &Value,
6770                                        QualType T) {
6771  assert(T->isIntegralType(Context) && "Integral type required!");
6772  unsigned BitWidth = Context.getIntWidth(T);
6773
6774  if (Value.isUnsigned() || Value.isNonNegative())
6775    return Value.getActiveBits() < BitWidth;
6776
6777  return Value.getMinSignedBits() <= BitWidth;
6778}
6779
6780// \brief Given an integral type, return the next larger integral type
6781// (or a NULL type of no such type exists).
6782static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6783  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6784  // enum checking below.
6785  assert(T->isIntegralType(Context) && "Integral type required!");
6786  const unsigned NumTypes = 4;
6787  QualType SignedIntegralTypes[NumTypes] = {
6788    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6789  };
6790  QualType UnsignedIntegralTypes[NumTypes] = {
6791    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6792    Context.UnsignedLongLongTy
6793  };
6794
6795  unsigned BitWidth = Context.getTypeSize(T);
6796  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6797                                            : UnsignedIntegralTypes;
6798  for (unsigned I = 0; I != NumTypes; ++I)
6799    if (Context.getTypeSize(Types[I]) > BitWidth)
6800      return Types[I];
6801
6802  return QualType();
6803}
6804
6805EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6806                                          EnumConstantDecl *LastEnumConst,
6807                                          SourceLocation IdLoc,
6808                                          IdentifierInfo *Id,
6809                                          Expr *Val) {
6810  unsigned IntWidth = Context.Target.getIntWidth();
6811  llvm::APSInt EnumVal(IntWidth);
6812  QualType EltTy;
6813  if (Val) {
6814    if (Enum->isDependentType() || Val->isTypeDependent())
6815      EltTy = Context.DependentTy;
6816    else {
6817      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6818      SourceLocation ExpLoc;
6819      if (!Val->isValueDependent() &&
6820          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6821        Val = 0;
6822      } else {
6823        if (!getLangOptions().CPlusPlus) {
6824          // C99 6.7.2.2p2:
6825          //   The expression that defines the value of an enumeration constant
6826          //   shall be an integer constant expression that has a value
6827          //   representable as an int.
6828
6829          // Complain if the value is not representable in an int.
6830          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6831            Diag(IdLoc, diag::ext_enum_value_not_int)
6832              << EnumVal.toString(10) << Val->getSourceRange()
6833              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6834          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6835            // Force the type of the expression to 'int'.
6836            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6837          }
6838        }
6839
6840        // C++0x [dcl.enum]p5:
6841        //   If the underlying type is not fixed, the type of each enumerator
6842        //   is the type of its initializing value:
6843        //     - If an initializer is specified for an enumerator, the
6844        //       initializing value has the same type as the expression.
6845        EltTy = Val->getType();
6846      }
6847    }
6848  }
6849
6850  if (!Val) {
6851    if (Enum->isDependentType())
6852      EltTy = Context.DependentTy;
6853    else if (!LastEnumConst) {
6854      // C++0x [dcl.enum]p5:
6855      //   If the underlying type is not fixed, the type of each enumerator
6856      //   is the type of its initializing value:
6857      //     - If no initializer is specified for the first enumerator, the
6858      //       initializing value has an unspecified integral type.
6859      //
6860      // GCC uses 'int' for its unspecified integral type, as does
6861      // C99 6.7.2.2p3.
6862      EltTy = Context.IntTy;
6863    } else {
6864      // Assign the last value + 1.
6865      EnumVal = LastEnumConst->getInitVal();
6866      ++EnumVal;
6867      EltTy = LastEnumConst->getType();
6868
6869      // Check for overflow on increment.
6870      if (EnumVal < LastEnumConst->getInitVal()) {
6871        // C++0x [dcl.enum]p5:
6872        //   If the underlying type is not fixed, the type of each enumerator
6873        //   is the type of its initializing value:
6874        //
6875        //     - Otherwise the type of the initializing value is the same as
6876        //       the type of the initializing value of the preceding enumerator
6877        //       unless the incremented value is not representable in that type,
6878        //       in which case the type is an unspecified integral type
6879        //       sufficient to contain the incremented value. If no such type
6880        //       exists, the program is ill-formed.
6881        QualType T = getNextLargerIntegralType(Context, EltTy);
6882        if (T.isNull()) {
6883          // There is no integral type larger enough to represent this
6884          // value. Complain, then allow the value to wrap around.
6885          EnumVal = LastEnumConst->getInitVal();
6886          EnumVal.zext(EnumVal.getBitWidth() * 2);
6887          Diag(IdLoc, diag::warn_enumerator_too_large)
6888            << EnumVal.toString(10);
6889        } else {
6890          EltTy = T;
6891        }
6892
6893        // Retrieve the last enumerator's value, extent that type to the
6894        // type that is supposed to be large enough to represent the incremented
6895        // value, then increment.
6896        EnumVal = LastEnumConst->getInitVal();
6897        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6898        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6899        ++EnumVal;
6900
6901        // If we're not in C++, diagnose the overflow of enumerator values,
6902        // which in C99 means that the enumerator value is not representable in
6903        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6904        // permits enumerator values that are representable in some larger
6905        // integral type.
6906        if (!getLangOptions().CPlusPlus && !T.isNull())
6907          Diag(IdLoc, diag::warn_enum_value_overflow);
6908      } else if (!getLangOptions().CPlusPlus &&
6909                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6910        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6911        Diag(IdLoc, diag::ext_enum_value_not_int)
6912          << EnumVal.toString(10) << 1;
6913      }
6914    }
6915  }
6916
6917  if (!EltTy->isDependentType()) {
6918    // Make the enumerator value match the signedness and size of the
6919    // enumerator's type.
6920    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6921    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6922  }
6923
6924  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6925                                  Val, EnumVal);
6926}
6927
6928
6929Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6930                                        Decl *lastEnumConst,
6931                                        SourceLocation IdLoc,
6932                                        IdentifierInfo *Id,
6933                                        SourceLocation EqualLoc, ExprTy *val) {
6934  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6935  EnumConstantDecl *LastEnumConst =
6936    cast_or_null<EnumConstantDecl>(lastEnumConst);
6937  Expr *Val = static_cast<Expr*>(val);
6938
6939  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6940  // we find one that is.
6941  S = getNonFieldDeclScope(S);
6942
6943  // Verify that there isn't already something declared with this name in this
6944  // scope.
6945  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6946                                         ForRedeclaration);
6947  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6948    // Maybe we will complain about the shadowed template parameter.
6949    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6950    // Just pretend that we didn't see the previous declaration.
6951    PrevDecl = 0;
6952  }
6953
6954  if (PrevDecl) {
6955    // When in C++, we may get a TagDecl with the same name; in this case the
6956    // enum constant will 'hide' the tag.
6957    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6958           "Received TagDecl when not in C++!");
6959    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6960      if (isa<EnumConstantDecl>(PrevDecl))
6961        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6962      else
6963        Diag(IdLoc, diag::err_redefinition) << Id;
6964      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6965      return 0;
6966    }
6967  }
6968
6969  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6970                                            IdLoc, Id, Val);
6971
6972  // Register this decl in the current scope stack.
6973  if (New) {
6974    New->setAccess(TheEnumDecl->getAccess());
6975    PushOnScopeChains(New, S);
6976  }
6977
6978  return New;
6979}
6980
6981void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6982                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6983                         Decl **Elements, unsigned NumElements,
6984                         Scope *S, AttributeList *Attr) {
6985  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6986  QualType EnumType = Context.getTypeDeclType(Enum);
6987
6988  if (Attr)
6989    ProcessDeclAttributeList(S, Enum, Attr);
6990
6991  if (Enum->isDependentType()) {
6992    for (unsigned i = 0; i != NumElements; ++i) {
6993      EnumConstantDecl *ECD =
6994        cast_or_null<EnumConstantDecl>(Elements[i]);
6995      if (!ECD) continue;
6996
6997      ECD->setType(EnumType);
6998    }
6999
7000    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7001    return;
7002  }
7003
7004  // TODO: If the result value doesn't fit in an int, it must be a long or long
7005  // long value.  ISO C does not support this, but GCC does as an extension,
7006  // emit a warning.
7007  unsigned IntWidth = Context.Target.getIntWidth();
7008  unsigned CharWidth = Context.Target.getCharWidth();
7009  unsigned ShortWidth = Context.Target.getShortWidth();
7010
7011  // Verify that all the values are okay, compute the size of the values, and
7012  // reverse the list.
7013  unsigned NumNegativeBits = 0;
7014  unsigned NumPositiveBits = 0;
7015
7016  // Keep track of whether all elements have type int.
7017  bool AllElementsInt = true;
7018
7019  for (unsigned i = 0; i != NumElements; ++i) {
7020    EnumConstantDecl *ECD =
7021      cast_or_null<EnumConstantDecl>(Elements[i]);
7022    if (!ECD) continue;  // Already issued a diagnostic.
7023
7024    const llvm::APSInt &InitVal = ECD->getInitVal();
7025
7026    // Keep track of the size of positive and negative values.
7027    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7028      NumPositiveBits = std::max(NumPositiveBits,
7029                                 (unsigned)InitVal.getActiveBits());
7030    else
7031      NumNegativeBits = std::max(NumNegativeBits,
7032                                 (unsigned)InitVal.getMinSignedBits());
7033
7034    // Keep track of whether every enum element has type int (very commmon).
7035    if (AllElementsInt)
7036      AllElementsInt = ECD->getType() == Context.IntTy;
7037  }
7038
7039  // Figure out the type that should be used for this enum.
7040  // FIXME: Support -fshort-enums.
7041  QualType BestType;
7042  unsigned BestWidth;
7043
7044  // C++0x N3000 [conv.prom]p3:
7045  //   An rvalue of an unscoped enumeration type whose underlying
7046  //   type is not fixed can be converted to an rvalue of the first
7047  //   of the following types that can represent all the values of
7048  //   the enumeration: int, unsigned int, long int, unsigned long
7049  //   int, long long int, or unsigned long long int.
7050  // C99 6.4.4.3p2:
7051  //   An identifier declared as an enumeration constant has type int.
7052  // The C99 rule is modified by a gcc extension
7053  QualType BestPromotionType;
7054
7055  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7056
7057  if (NumNegativeBits) {
7058    // If there is a negative value, figure out the smallest integer type (of
7059    // int/long/longlong) that fits.
7060    // If it's packed, check also if it fits a char or a short.
7061    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7062      BestType = Context.SignedCharTy;
7063      BestWidth = CharWidth;
7064    } else if (Packed && NumNegativeBits <= ShortWidth &&
7065               NumPositiveBits < ShortWidth) {
7066      BestType = Context.ShortTy;
7067      BestWidth = ShortWidth;
7068    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7069      BestType = Context.IntTy;
7070      BestWidth = IntWidth;
7071    } else {
7072      BestWidth = Context.Target.getLongWidth();
7073
7074      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7075        BestType = Context.LongTy;
7076      } else {
7077        BestWidth = Context.Target.getLongLongWidth();
7078
7079        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7080          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7081        BestType = Context.LongLongTy;
7082      }
7083    }
7084    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7085  } else {
7086    // If there is no negative value, figure out the smallest type that fits
7087    // all of the enumerator values.
7088    // If it's packed, check also if it fits a char or a short.
7089    if (Packed && NumPositiveBits <= CharWidth) {
7090      BestType = Context.UnsignedCharTy;
7091      BestPromotionType = Context.IntTy;
7092      BestWidth = CharWidth;
7093    } else if (Packed && NumPositiveBits <= ShortWidth) {
7094      BestType = Context.UnsignedShortTy;
7095      BestPromotionType = Context.IntTy;
7096      BestWidth = ShortWidth;
7097    } else if (NumPositiveBits <= IntWidth) {
7098      BestType = Context.UnsignedIntTy;
7099      BestWidth = IntWidth;
7100      BestPromotionType
7101        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7102                           ? Context.UnsignedIntTy : Context.IntTy;
7103    } else if (NumPositiveBits <=
7104               (BestWidth = Context.Target.getLongWidth())) {
7105      BestType = Context.UnsignedLongTy;
7106      BestPromotionType
7107        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7108                           ? Context.UnsignedLongTy : Context.LongTy;
7109    } else {
7110      BestWidth = Context.Target.getLongLongWidth();
7111      assert(NumPositiveBits <= BestWidth &&
7112             "How could an initializer get larger than ULL?");
7113      BestType = Context.UnsignedLongLongTy;
7114      BestPromotionType
7115        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7116                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7117    }
7118  }
7119
7120  // Loop over all of the enumerator constants, changing their types to match
7121  // the type of the enum if needed.
7122  for (unsigned i = 0; i != NumElements; ++i) {
7123    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7124    if (!ECD) continue;  // Already issued a diagnostic.
7125
7126    // Standard C says the enumerators have int type, but we allow, as an
7127    // extension, the enumerators to be larger than int size.  If each
7128    // enumerator value fits in an int, type it as an int, otherwise type it the
7129    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7130    // that X has type 'int', not 'unsigned'.
7131
7132    // Determine whether the value fits into an int.
7133    llvm::APSInt InitVal = ECD->getInitVal();
7134
7135    // If it fits into an integer type, force it.  Otherwise force it to match
7136    // the enum decl type.
7137    QualType NewTy;
7138    unsigned NewWidth;
7139    bool NewSign;
7140    if (!getLangOptions().CPlusPlus &&
7141        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7142      NewTy = Context.IntTy;
7143      NewWidth = IntWidth;
7144      NewSign = true;
7145    } else if (ECD->getType() == BestType) {
7146      // Already the right type!
7147      if (getLangOptions().CPlusPlus)
7148        // C++ [dcl.enum]p4: Following the closing brace of an
7149        // enum-specifier, each enumerator has the type of its
7150        // enumeration.
7151        ECD->setType(EnumType);
7152      continue;
7153    } else {
7154      NewTy = BestType;
7155      NewWidth = BestWidth;
7156      NewSign = BestType->isSignedIntegerType();
7157    }
7158
7159    // Adjust the APSInt value.
7160    InitVal.extOrTrunc(NewWidth);
7161    InitVal.setIsSigned(NewSign);
7162    ECD->setInitVal(InitVal);
7163
7164    // Adjust the Expr initializer and type.
7165    if (ECD->getInitExpr())
7166      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7167                                                CK_IntegralCast,
7168                                                ECD->getInitExpr(),
7169                                                /*base paths*/ 0,
7170                                                VK_RValue));
7171    if (getLangOptions().CPlusPlus)
7172      // C++ [dcl.enum]p4: Following the closing brace of an
7173      // enum-specifier, each enumerator has the type of its
7174      // enumeration.
7175      ECD->setType(EnumType);
7176    else
7177      ECD->setType(NewTy);
7178  }
7179
7180  Enum->completeDefinition(BestType, BestPromotionType,
7181                           NumPositiveBits, NumNegativeBits);
7182}
7183
7184Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7185  StringLiteral *AsmString = cast<StringLiteral>(expr);
7186
7187  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7188                                                   Loc, AsmString);
7189  CurContext->addDecl(New);
7190  return New;
7191}
7192
7193void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7194                             SourceLocation PragmaLoc,
7195                             SourceLocation NameLoc) {
7196  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7197
7198  if (PrevDecl) {
7199    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7200  } else {
7201    (void)WeakUndeclaredIdentifiers.insert(
7202      std::pair<IdentifierInfo*,WeakInfo>
7203        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7204  }
7205}
7206
7207void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7208                                IdentifierInfo* AliasName,
7209                                SourceLocation PragmaLoc,
7210                                SourceLocation NameLoc,
7211                                SourceLocation AliasNameLoc) {
7212  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7213                                    LookupOrdinaryName);
7214  WeakInfo W = WeakInfo(Name, NameLoc);
7215
7216  if (PrevDecl) {
7217    if (!PrevDecl->hasAttr<AliasAttr>())
7218      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7219        DeclApplyPragmaWeak(TUScope, ND, W);
7220  } else {
7221    (void)WeakUndeclaredIdentifiers.insert(
7222      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7223  }
7224}
7225