SemaDecl.cpp revision 3f09327b26033d0a9676d52d80cf92c48f581aff
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result;
89  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::Ambiguous: {
98    // Recover from type-hiding ambiguities by hiding the type.  We'll
99    // do the lookup again when looking for an object, and we can
100    // diagnose the error then.  If we don't do this, then the error
101    // about hiding the type will be immediately followed by an error
102    // that only makes sense if the identifier was treated like a type.
103    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
104      return 0;
105
106    // Look to see if we have a type anywhere in the list of results.
107    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
108         Res != ResEnd; ++Res) {
109      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
110        if (!IIDecl ||
111            (*Res)->getLocation().getRawEncoding() <
112              IIDecl->getLocation().getRawEncoding())
113          IIDecl = *Res;
114      }
115    }
116
117    if (!IIDecl) {
118      // None of the entities we found is a type, so there is no way
119      // to even assume that the result is a type. In this case, don't
120      // complain about the ambiguity. The parser will either try to
121      // perform this lookup again (e.g., as an object name), which
122      // will produce the ambiguity, or will complain that it expected
123      // a type name.
124      return 0;
125    }
126
127    // We found a type within the ambiguous lookup; diagnose the
128    // ambiguity and then return that type. This might be the right
129    // answer, or it might not be, but it suppresses any attempt to
130    // perform the name lookup again.
131    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
132    break;
133  }
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  if (IIDecl) {
141    QualType T;
142
143    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144      // Check whether we can use this type
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      if (getLangOptions().CPlusPlus) {
148        // C++ [temp.local]p2:
149        //   Within the scope of a class template specialization or
150        //   partial specialization, when the injected-class-name is
151        //   not followed by a <, it is equivalent to the
152        //   injected-class-name followed by the template-argument s
153        //   of the class template specialization or partial
154        //   specialization enclosed in <>.
155        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
156          if (RD->isInjectedClassName())
157            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
158              T = Template->getInjectedClassNameType(Context);
159      }
160
161      if (T.isNull())
162        T = Context.getTypeDeclType(TD);
163    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
164      // Check whether we can use this interface.
165      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
166
167      T = Context.getObjCInterfaceType(IDecl);
168    } else
169      return 0;
170
171    if (SS)
172      T = getQualifiedNameType(*SS, T);
173
174    return T.getAsOpaquePtr();
175  }
176
177  return 0;
178}
179
180/// isTagName() - This method is called *for error recovery purposes only*
181/// to determine if the specified name is a valid tag name ("struct foo").  If
182/// so, this returns the TST for the tag corresponding to it (TST_enum,
183/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
184/// where the user forgot to specify the tag.
185DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
186  // Do a tag name lookup in this scope.
187  LookupResult R;
188  LookupName(R, S, &II, LookupTagName, false, false);
189  if (R.getKind() == LookupResult::Found)
190    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
191      switch (TD->getTagKind()) {
192      case TagDecl::TK_struct: return DeclSpec::TST_struct;
193      case TagDecl::TK_union:  return DeclSpec::TST_union;
194      case TagDecl::TK_class:  return DeclSpec::TST_class;
195      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
196      }
197    }
198
199  return DeclSpec::TST_unspecified;
200}
201
202
203// Determines the context to return to after temporarily entering a
204// context.  This depends in an unnecessarily complicated way on the
205// exact ordering of callbacks from the parser.
206DeclContext *Sema::getContainingDC(DeclContext *DC) {
207
208  // Functions defined inline within classes aren't parsed until we've
209  // finished parsing the top-level class, so the top-level class is
210  // the context we'll need to return to.
211  if (isa<FunctionDecl>(DC)) {
212    DC = DC->getLexicalParent();
213
214    // A function not defined within a class will always return to its
215    // lexical context.
216    if (!isa<CXXRecordDecl>(DC))
217      return DC;
218
219    // A C++ inline method/friend is parsed *after* the topmost class
220    // it was declared in is fully parsed ("complete");  the topmost
221    // class is the context we need to return to.
222    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
223      DC = RD;
224
225    // Return the declaration context of the topmost class the inline method is
226    // declared in.
227    return DC;
228  }
229
230  if (isa<ObjCMethodDecl>(DC))
231    return Context.getTranslationUnitDecl();
232
233  return DC->getLexicalParent();
234}
235
236void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
237  assert(getContainingDC(DC) == CurContext &&
238      "The next DeclContext should be lexically contained in the current one.");
239  CurContext = DC;
240  S->setEntity(DC);
241}
242
243void Sema::PopDeclContext() {
244  assert(CurContext && "DeclContext imbalance!");
245
246  CurContext = getContainingDC(CurContext);
247}
248
249/// EnterDeclaratorContext - Used when we must lookup names in the context
250/// of a declarator's nested name specifier.
251void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
252  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
253  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
254  CurContext = DC;
255  assert(CurContext && "No context?");
256  S->setEntity(CurContext);
257}
258
259void Sema::ExitDeclaratorContext(Scope *S) {
260  S->setEntity(PreDeclaratorDC);
261  PreDeclaratorDC = 0;
262
263  // Reset CurContext to the nearest enclosing context.
264  while (!S->getEntity() && S->getParent())
265    S = S->getParent();
266  CurContext = static_cast<DeclContext*>(S->getEntity());
267  assert(CurContext && "No context?");
268}
269
270/// \brief Determine whether we allow overloading of the function
271/// PrevDecl with another declaration.
272///
273/// This routine determines whether overloading is possible, not
274/// whether some new function is actually an overload. It will return
275/// true in C++ (where we can always provide overloads) or, as an
276/// extension, in C when the previous function is already an
277/// overloaded function declaration or has the "overloadable"
278/// attribute.
279static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
280  if (Context.getLangOptions().CPlusPlus)
281    return true;
282
283  if (isa<OverloadedFunctionDecl>(PrevDecl))
284    return true;
285
286  return PrevDecl->getAttr<OverloadableAttr>() != 0;
287}
288
289/// Add this decl to the scope shadowed decl chains.
290void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
291  // Move up the scope chain until we find the nearest enclosing
292  // non-transparent context. The declaration will be introduced into this
293  // scope.
294  while (S->getEntity() &&
295         ((DeclContext *)S->getEntity())->isTransparentContext())
296    S = S->getParent();
297
298  // Add scoped declarations into their context, so that they can be
299  // found later. Declarations without a context won't be inserted
300  // into any context.
301  if (AddToContext)
302    CurContext->addDecl(D);
303
304  // Out-of-line function and variable definitions should not be pushed into
305  // scope.
306  if ((isa<FunctionTemplateDecl>(D) &&
307       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
308      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
309      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
310    return;
311
312  // If this replaces anything in the current scope,
313  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
314                               IEnd = IdResolver.end();
315  for (; I != IEnd; ++I) {
316    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
317      S->RemoveDecl(DeclPtrTy::make(*I));
318      IdResolver.RemoveDecl(*I);
319
320      // Should only need to replace one decl.
321      break;
322    }
323  }
324
325  S->AddDecl(DeclPtrTy::make(D));
326  IdResolver.AddDecl(D);
327}
328
329bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
330  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
331    // Look inside the overload set to determine if any of the declarations
332    // are in scope. (Possibly) build a new overload set containing only
333    // those declarations that are in scope.
334    OverloadedFunctionDecl *NewOvl = 0;
335    bool FoundInScope = false;
336    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
337         FEnd = Ovl->function_end();
338         F != FEnd; ++F) {
339      NamedDecl *FD = F->get();
340      if (!isDeclInScope(FD, Ctx, S)) {
341        if (!NewOvl && F != Ovl->function_begin()) {
342          NewOvl = OverloadedFunctionDecl::Create(Context,
343                                                  F->get()->getDeclContext(),
344                                                  F->get()->getDeclName());
345          D = NewOvl;
346          for (OverloadedFunctionDecl::function_iterator
347               First = Ovl->function_begin();
348               First != F; ++First)
349            NewOvl->addOverload(*First);
350        }
351      } else {
352        FoundInScope = true;
353        if (NewOvl)
354          NewOvl->addOverload(*F);
355      }
356    }
357
358    return FoundInScope;
359  }
360
361  return IdResolver.isDeclInScope(D, Ctx, Context, S);
362}
363
364void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
365  if (S->decl_empty()) return;
366  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
367         "Scope shouldn't contain decls!");
368
369  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
370       I != E; ++I) {
371    Decl *TmpD = (*I).getAs<Decl>();
372    assert(TmpD && "This decl didn't get pushed??");
373
374    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
375    NamedDecl *D = cast<NamedDecl>(TmpD);
376
377    if (!D->getDeclName()) continue;
378
379    // Diagnose unused variables in this scope.
380    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
381        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
382        D->getDeclContext()->isFunctionOrMethod())
383	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
384
385    // Remove this name from our lexical scope.
386    IdResolver.RemoveDecl(D);
387  }
388}
389
390/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
391/// return 0 if one not found.
392ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
393  // The third "scope" argument is 0 since we aren't enabling lazy built-in
394  // creation from this context.
395  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
396
397  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
398}
399
400/// getNonFieldDeclScope - Retrieves the innermost scope, starting
401/// from S, where a non-field would be declared. This routine copes
402/// with the difference between C and C++ scoping rules in structs and
403/// unions. For example, the following code is well-formed in C but
404/// ill-formed in C++:
405/// @code
406/// struct S6 {
407///   enum { BAR } e;
408/// };
409///
410/// void test_S6() {
411///   struct S6 a;
412///   a.e = BAR;
413/// }
414/// @endcode
415/// For the declaration of BAR, this routine will return a different
416/// scope. The scope S will be the scope of the unnamed enumeration
417/// within S6. In C++, this routine will return the scope associated
418/// with S6, because the enumeration's scope is a transparent
419/// context but structures can contain non-field names. In C, this
420/// routine will return the translation unit scope, since the
421/// enumeration's scope is a transparent context and structures cannot
422/// contain non-field names.
423Scope *Sema::getNonFieldDeclScope(Scope *S) {
424  while (((S->getFlags() & Scope::DeclScope) == 0) ||
425         (S->getEntity() &&
426          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
427         (S->isClassScope() && !getLangOptions().CPlusPlus))
428    S = S->getParent();
429  return S;
430}
431
432void Sema::InitBuiltinVaListType() {
433  if (!Context.getBuiltinVaListType().isNull())
434    return;
435
436  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
437  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
438  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
439  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
440}
441
442/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
443/// file scope.  lazily create a decl for it. ForRedeclaration is true
444/// if we're creating this built-in in anticipation of redeclaring the
445/// built-in.
446NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
447                                     Scope *S, bool ForRedeclaration,
448                                     SourceLocation Loc) {
449  Builtin::ID BID = (Builtin::ID)bid;
450
451  if (Context.BuiltinInfo.hasVAListUse(BID))
452    InitBuiltinVaListType();
453
454  ASTContext::GetBuiltinTypeError Error;
455  QualType R = Context.GetBuiltinType(BID, Error);
456  switch (Error) {
457  case ASTContext::GE_None:
458    // Okay
459    break;
460
461  case ASTContext::GE_Missing_stdio:
462    if (ForRedeclaration)
463      Diag(Loc, diag::err_implicit_decl_requires_stdio)
464        << Context.BuiltinInfo.GetName(BID);
465    return 0;
466
467  case ASTContext::GE_Missing_setjmp:
468    if (ForRedeclaration)
469      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
470        << Context.BuiltinInfo.GetName(BID);
471    return 0;
472  }
473
474  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
475    Diag(Loc, diag::ext_implicit_lib_function_decl)
476      << Context.BuiltinInfo.GetName(BID)
477      << R;
478    if (Context.BuiltinInfo.getHeaderName(BID) &&
479        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
480          != Diagnostic::Ignored)
481      Diag(Loc, diag::note_please_include_header)
482        << Context.BuiltinInfo.getHeaderName(BID)
483        << Context.BuiltinInfo.GetName(BID);
484  }
485
486  FunctionDecl *New = FunctionDecl::Create(Context,
487                                           Context.getTranslationUnitDecl(),
488                                           Loc, II, R, /*DInfo=*/0,
489                                           FunctionDecl::Extern, false,
490                                           /*hasPrototype=*/true);
491  New->setImplicit();
492
493  // Create Decl objects for each parameter, adding them to the
494  // FunctionDecl.
495  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
496    llvm::SmallVector<ParmVarDecl*, 16> Params;
497    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
498      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
499                                           FT->getArgType(i), /*DInfo=*/0,
500                                           VarDecl::None, 0));
501    New->setParams(Context, Params.data(), Params.size());
502  }
503
504  AddKnownFunctionAttributes(New);
505
506  // TUScope is the translation-unit scope to insert this function into.
507  // FIXME: This is hideous. We need to teach PushOnScopeChains to
508  // relate Scopes to DeclContexts, and probably eliminate CurContext
509  // entirely, but we're not there yet.
510  DeclContext *SavedContext = CurContext;
511  CurContext = Context.getTranslationUnitDecl();
512  PushOnScopeChains(New, TUScope);
513  CurContext = SavedContext;
514  return New;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
538      // Install the built-in type for 'id', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
540      return;
541    case 5:
542      if (!TypeID->isStr("Class"))
543        break;
544      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'Class', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
547      return;
548    case 3:
549      if (!TypeID->isStr("SEL"))
550        break;
551      Context.setObjCSelType(Context.getTypeDeclType(New));
552      return;
553    case 8:
554      if (!TypeID->isStr("Protocol"))
555        break;
556      Context.setObjCProtoType(New->getUnderlyingType());
557      return;
558    }
559    // Fall through - the typedef name was not a builtin type.
560  }
561  // Verify the old decl was also a type.
562  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
563  if (!Old) {
564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
565      << New->getDeclName();
566    if (OldD->getLocation().isValid())
567      Diag(OldD->getLocation(), diag::note_previous_definition);
568    return New->setInvalidDecl();
569  }
570
571  // Determine the "old" type we'll use for checking and diagnostics.
572  QualType OldType;
573  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
574    OldType = OldTypedef->getUnderlyingType();
575  else
576    OldType = Context.getTypeDeclType(Old);
577
578  // If the typedef types are not identical, reject them in all languages and
579  // with any extensions enabled.
580
581  if (OldType != New->getUnderlyingType() &&
582      Context.getCanonicalType(OldType) !=
583      Context.getCanonicalType(New->getUnderlyingType())) {
584    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
585      << New->getUnderlyingType() << OldType;
586    if (Old->getLocation().isValid())
587      Diag(Old->getLocation(), diag::note_previous_definition);
588    return New->setInvalidDecl();
589  }
590
591  if (getLangOptions().Microsoft)
592    return;
593
594  // C++ [dcl.typedef]p2:
595  //   In a given non-class scope, a typedef specifier can be used to
596  //   redefine the name of any type declared in that scope to refer
597  //   to the type to which it already refers.
598  if (getLangOptions().CPlusPlus) {
599    if (!isa<CXXRecordDecl>(CurContext))
600      return;
601    Diag(New->getLocation(), diag::err_redefinition)
602      << New->getDeclName();
603    Diag(Old->getLocation(), diag::note_previous_definition);
604    return New->setInvalidDecl();
605  }
606
607  // If we have a redefinition of a typedef in C, emit a warning.  This warning
608  // is normally mapped to an error, but can be controlled with
609  // -Wtypedef-redefinition.  If either the original or the redefinition is
610  // in a system header, don't emit this for compatibility with GCC.
611  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
612      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
613       Context.getSourceManager().isInSystemHeader(New->getLocation())))
614    return;
615
616  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
617    << New->getDeclName();
618  Diag(Old->getLocation(), diag::note_previous_definition);
619  return;
620}
621
622/// DeclhasAttr - returns true if decl Declaration already has the target
623/// attribute.
624static bool
625DeclHasAttr(const Decl *decl, const Attr *target) {
626  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
627    if (attr->getKind() == target->getKind())
628      return true;
629
630  return false;
631}
632
633/// MergeAttributes - append attributes from the Old decl to the New one.
634static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
635  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
636    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
637      Attr *NewAttr = attr->clone(C);
638      NewAttr->setInherited(true);
639      New->addAttr(NewAttr);
640    }
641  }
642}
643
644/// Used in MergeFunctionDecl to keep track of function parameters in
645/// C.
646struct GNUCompatibleParamWarning {
647  ParmVarDecl *OldParm;
648  ParmVarDecl *NewParm;
649  QualType PromotedType;
650};
651
652/// MergeFunctionDecl - We just parsed a function 'New' from
653/// declarator D which has the same name and scope as a previous
654/// declaration 'Old'.  Figure out how to resolve this situation,
655/// merging decls or emitting diagnostics as appropriate.
656///
657/// In C++, New and Old must be declarations that are not
658/// overloaded. Use IsOverload to determine whether New and Old are
659/// overloaded, and to select the Old declaration that New should be
660/// merged with.
661///
662/// Returns true if there was an error, false otherwise.
663bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
664  assert(!isa<OverloadedFunctionDecl>(OldD) &&
665         "Cannot merge with an overloaded function declaration");
666
667  // Verify the old decl was also a function.
668  FunctionDecl *Old = 0;
669  if (FunctionTemplateDecl *OldFunctionTemplate
670        = dyn_cast<FunctionTemplateDecl>(OldD))
671    Old = OldFunctionTemplate->getTemplatedDecl();
672  else
673    Old = dyn_cast<FunctionDecl>(OldD);
674  if (!Old) {
675    Diag(New->getLocation(), diag::err_redefinition_different_kind)
676      << New->getDeclName();
677    Diag(OldD->getLocation(), diag::note_previous_definition);
678    return true;
679  }
680
681  // Determine whether the previous declaration was a definition,
682  // implicit declaration, or a declaration.
683  diag::kind PrevDiag;
684  if (Old->isThisDeclarationADefinition())
685    PrevDiag = diag::note_previous_definition;
686  else if (Old->isImplicit())
687    PrevDiag = diag::note_previous_implicit_declaration;
688  else
689    PrevDiag = diag::note_previous_declaration;
690
691  QualType OldQType = Context.getCanonicalType(Old->getType());
692  QualType NewQType = Context.getCanonicalType(New->getType());
693
694  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
695      New->getStorageClass() == FunctionDecl::Static &&
696      Old->getStorageClass() != FunctionDecl::Static) {
697    Diag(New->getLocation(), diag::err_static_non_static)
698      << New;
699    Diag(Old->getLocation(), PrevDiag);
700    return true;
701  }
702
703  if (getLangOptions().CPlusPlus) {
704    // (C++98 13.1p2):
705    //   Certain function declarations cannot be overloaded:
706    //     -- Function declarations that differ only in the return type
707    //        cannot be overloaded.
708    QualType OldReturnType
709      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
710    QualType NewReturnType
711      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
712    if (OldReturnType != NewReturnType) {
713      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
714      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
715      return true;
716    }
717
718    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
719    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
720    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
721        NewMethod->getLexicalDeclContext()->isRecord()) {
722      //    -- Member function declarations with the same name and the
723      //       same parameter types cannot be overloaded if any of them
724      //       is a static member function declaration.
725      if (OldMethod->isStatic() || NewMethod->isStatic()) {
726        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
728        return true;
729      }
730
731      // C++ [class.mem]p1:
732      //   [...] A member shall not be declared twice in the
733      //   member-specification, except that a nested class or member
734      //   class template can be declared and then later defined.
735      unsigned NewDiag;
736      if (isa<CXXConstructorDecl>(OldMethod))
737        NewDiag = diag::err_constructor_redeclared;
738      else if (isa<CXXDestructorDecl>(NewMethod))
739        NewDiag = diag::err_destructor_redeclared;
740      else if (isa<CXXConversionDecl>(NewMethod))
741        NewDiag = diag::err_conv_function_redeclared;
742      else
743        NewDiag = diag::err_member_redeclared;
744
745      Diag(New->getLocation(), NewDiag);
746      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747    }
748
749    // (C++98 8.3.5p3):
750    //   All declarations for a function shall agree exactly in both the
751    //   return type and the parameter-type-list.
752    if (OldQType == NewQType)
753      return MergeCompatibleFunctionDecls(New, Old);
754
755    // Fall through for conflicting redeclarations and redefinitions.
756  }
757
758  // C: Function types need to be compatible, not identical. This handles
759  // duplicate function decls like "void f(int); void f(enum X);" properly.
760  if (!getLangOptions().CPlusPlus &&
761      Context.typesAreCompatible(OldQType, NewQType)) {
762    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
763    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
764    const FunctionProtoType *OldProto = 0;
765    if (isa<FunctionNoProtoType>(NewFuncType) &&
766        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
767      // The old declaration provided a function prototype, but the
768      // new declaration does not. Merge in the prototype.
769      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
770      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
771                                                 OldProto->arg_type_end());
772      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
773                                         ParamTypes.data(), ParamTypes.size(),
774                                         OldProto->isVariadic(),
775                                         OldProto->getTypeQuals());
776      New->setType(NewQType);
777      New->setHasInheritedPrototype();
778
779      // Synthesize a parameter for each argument type.
780      llvm::SmallVector<ParmVarDecl*, 16> Params;
781      for (FunctionProtoType::arg_type_iterator
782             ParamType = OldProto->arg_type_begin(),
783             ParamEnd = OldProto->arg_type_end();
784           ParamType != ParamEnd; ++ParamType) {
785        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
786                                                 SourceLocation(), 0,
787                                                 *ParamType, /*DInfo=*/0,
788                                                 VarDecl::None, 0);
789        Param->setImplicit();
790        Params.push_back(Param);
791      }
792
793      New->setParams(Context, Params.data(), Params.size());
794    }
795
796    return MergeCompatibleFunctionDecls(New, Old);
797  }
798
799  // GNU C permits a K&R definition to follow a prototype declaration
800  // if the declared types of the parameters in the K&R definition
801  // match the types in the prototype declaration, even when the
802  // promoted types of the parameters from the K&R definition differ
803  // from the types in the prototype. GCC then keeps the types from
804  // the prototype.
805  //
806  // If a variadic prototype is followed by a non-variadic K&R definition,
807  // the K&R definition becomes variadic.  This is sort of an edge case, but
808  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
809  // C99 6.9.1p8.
810  if (!getLangOptions().CPlusPlus &&
811      Old->hasPrototype() && !New->hasPrototype() &&
812      New->getType()->getAs<FunctionProtoType>() &&
813      Old->getNumParams() == New->getNumParams()) {
814    llvm::SmallVector<QualType, 16> ArgTypes;
815    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
816    const FunctionProtoType *OldProto
817      = Old->getType()->getAs<FunctionProtoType>();
818    const FunctionProtoType *NewProto
819      = New->getType()->getAs<FunctionProtoType>();
820
821    // Determine whether this is the GNU C extension.
822    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
823                                               NewProto->getResultType());
824    bool LooseCompatible = !MergedReturn.isNull();
825    for (unsigned Idx = 0, End = Old->getNumParams();
826         LooseCompatible && Idx != End; ++Idx) {
827      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
828      ParmVarDecl *NewParm = New->getParamDecl(Idx);
829      if (Context.typesAreCompatible(OldParm->getType(),
830                                     NewProto->getArgType(Idx))) {
831        ArgTypes.push_back(NewParm->getType());
832      } else if (Context.typesAreCompatible(OldParm->getType(),
833                                            NewParm->getType())) {
834        GNUCompatibleParamWarning Warn
835          = { OldParm, NewParm, NewProto->getArgType(Idx) };
836        Warnings.push_back(Warn);
837        ArgTypes.push_back(NewParm->getType());
838      } else
839        LooseCompatible = false;
840    }
841
842    if (LooseCompatible) {
843      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
844        Diag(Warnings[Warn].NewParm->getLocation(),
845             diag::ext_param_promoted_not_compatible_with_prototype)
846          << Warnings[Warn].PromotedType
847          << Warnings[Warn].OldParm->getType();
848        Diag(Warnings[Warn].OldParm->getLocation(),
849             diag::note_previous_declaration);
850      }
851
852      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
853                                           ArgTypes.size(),
854                                           OldProto->isVariadic(), 0));
855      return MergeCompatibleFunctionDecls(New, Old);
856    }
857
858    // Fall through to diagnose conflicting types.
859  }
860
861  // A function that has already been declared has been redeclared or defined
862  // with a different type- show appropriate diagnostic
863  if (unsigned BuiltinID = Old->getBuiltinID()) {
864    // The user has declared a builtin function with an incompatible
865    // signature.
866    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
867      // The function the user is redeclaring is a library-defined
868      // function like 'malloc' or 'printf'. Warn about the
869      // redeclaration, then pretend that we don't know about this
870      // library built-in.
871      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
872      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
873        << Old << Old->getType();
874      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
875      Old->setInvalidDecl();
876      return false;
877    }
878
879    PrevDiag = diag::note_previous_builtin_declaration;
880  }
881
882  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
883  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
884  return true;
885}
886
887/// \brief Completes the merge of two function declarations that are
888/// known to be compatible.
889///
890/// This routine handles the merging of attributes and other
891/// properties of function declarations form the old declaration to
892/// the new declaration, once we know that New is in fact a
893/// redeclaration of Old.
894///
895/// \returns false
896bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
897  // Merge the attributes
898  MergeAttributes(New, Old, Context);
899
900  // Merge the storage class.
901  if (Old->getStorageClass() != FunctionDecl::Extern &&
902      Old->getStorageClass() != FunctionDecl::None)
903    New->setStorageClass(Old->getStorageClass());
904
905  // Merge "pure" flag.
906  if (Old->isPure())
907    New->setPure();
908
909  // Merge the "deleted" flag.
910  if (Old->isDeleted())
911    New->setDeleted();
912
913  if (getLangOptions().CPlusPlus)
914    return MergeCXXFunctionDecl(New, Old);
915
916  return false;
917}
918
919/// MergeVarDecl - We just parsed a variable 'New' which has the same name
920/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
921/// situation, merging decls or emitting diagnostics as appropriate.
922///
923/// Tentative definition rules (C99 6.9.2p2) are checked by
924/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
925/// definitions here, since the initializer hasn't been attached.
926///
927void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
928  // If either decl is invalid, make sure the new one is marked invalid and
929  // don't do any other checking.
930  if (New->isInvalidDecl() || OldD->isInvalidDecl())
931    return New->setInvalidDecl();
932
933  // Verify the old decl was also a variable.
934  VarDecl *Old = dyn_cast<VarDecl>(OldD);
935  if (!Old) {
936    Diag(New->getLocation(), diag::err_redefinition_different_kind)
937      << New->getDeclName();
938    Diag(OldD->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  MergeAttributes(New, Old, Context);
943
944  // Merge the types
945  QualType MergedT;
946  if (getLangOptions().CPlusPlus) {
947    if (Context.hasSameType(New->getType(), Old->getType()))
948      MergedT = New->getType();
949    // C++ [basic.types]p7:
950    //   [...] The declared type of an array object might be an array of
951    //   unknown size and therefore be incomplete at one point in a
952    //   translation unit and complete later on; [...]
953    else if (Old->getType()->isIncompleteArrayType() &&
954             New->getType()->isArrayType()) {
955      CanQual<ArrayType> OldArray
956        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
957      CanQual<ArrayType> NewArray
958        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
959      if (OldArray->getElementType() == NewArray->getElementType())
960        MergedT = New->getType();
961    }
962  } else {
963    MergedT = Context.mergeTypes(New->getType(), Old->getType());
964  }
965  if (MergedT.isNull()) {
966    Diag(New->getLocation(), diag::err_redefinition_different_type)
967      << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  New->setType(MergedT);
972
973  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
974  if (New->getStorageClass() == VarDecl::Static &&
975      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
976    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  // C99 6.2.2p4:
981  //   For an identifier declared with the storage-class specifier
982  //   extern in a scope in which a prior declaration of that
983  //   identifier is visible,23) if the prior declaration specifies
984  //   internal or external linkage, the linkage of the identifier at
985  //   the later declaration is the same as the linkage specified at
986  //   the prior declaration. If no prior declaration is visible, or
987  //   if the prior declaration specifies no linkage, then the
988  //   identifier has external linkage.
989  if (New->hasExternalStorage() && Old->hasLinkage())
990    /* Okay */;
991  else if (New->getStorageClass() != VarDecl::Static &&
992           Old->getStorageClass() == VarDecl::Static) {
993    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
999
1000  // FIXME: The test for external storage here seems wrong? We still
1001  // need to check for mismatches.
1002  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1003      // Don't complain about out-of-line definitions of static members.
1004      !(Old->getLexicalDeclContext()->isRecord() &&
1005        !New->getLexicalDeclContext()->isRecord())) {
1006    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008    return New->setInvalidDecl();
1009  }
1010
1011  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1012    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1015    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017  }
1018
1019  // Keep a chain of previous declarations.
1020  New->setPreviousDeclaration(Old);
1021}
1022
1023/// CheckFallThrough - Check that we don't fall off the end of a
1024/// Statement that should return a value.
1025///
1026/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1027/// MaybeFallThrough iff we might or might not fall off the end and
1028/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1029/// that functions not marked noreturn will return.
1030Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1031  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1032
1033  // FIXME: They should never return 0, fix that, delete this code.
1034  if (cfg == 0)
1035    return NeverFallThrough;
1036  // The CFG leaves in dead things, and we don't want to dead code paths to
1037  // confuse us, so we mark all live things first.
1038  std::queue<CFGBlock*> workq;
1039  llvm::BitVector live(cfg->getNumBlockIDs());
1040  // Prep work queue
1041  workq.push(&cfg->getEntry());
1042  // Solve
1043  while (!workq.empty()) {
1044    CFGBlock *item = workq.front();
1045    workq.pop();
1046    live.set(item->getBlockID());
1047    for (CFGBlock::succ_iterator I=item->succ_begin(),
1048           E=item->succ_end();
1049         I != E;
1050         ++I) {
1051      if ((*I) && !live[(*I)->getBlockID()]) {
1052        live.set((*I)->getBlockID());
1053        workq.push(*I);
1054      }
1055    }
1056  }
1057
1058  // Now we know what is live, we check the live precessors of the exit block
1059  // and look for fall through paths, being careful to ignore normal returns,
1060  // and exceptional paths.
1061  bool HasLiveReturn = false;
1062  bool HasFakeEdge = false;
1063  bool HasPlainEdge = false;
1064  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1065         E = cfg->getExit().pred_end();
1066       I != E;
1067       ++I) {
1068    CFGBlock& B = **I;
1069    if (!live[B.getBlockID()])
1070      continue;
1071    if (B.size() == 0) {
1072      // A labeled empty statement, or the entry block...
1073      HasPlainEdge = true;
1074      continue;
1075    }
1076    Stmt *S = B[B.size()-1];
1077    if (isa<ReturnStmt>(S)) {
1078      HasLiveReturn = true;
1079      continue;
1080    }
1081    if (isa<ObjCAtThrowStmt>(S)) {
1082      HasFakeEdge = true;
1083      continue;
1084    }
1085    if (isa<CXXThrowExpr>(S)) {
1086      HasFakeEdge = true;
1087      continue;
1088    }
1089    bool NoReturnEdge = false;
1090    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1091      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1092      if (CEE->getType().getNoReturnAttr()) {
1093        NoReturnEdge = true;
1094        HasFakeEdge = true;
1095      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1096        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1097          if (FD->hasAttr<NoReturnAttr>()) {
1098            NoReturnEdge = true;
1099            HasFakeEdge = true;
1100          }
1101        }
1102      }
1103    }
1104    // FIXME: Add noreturn message sends.
1105    if (NoReturnEdge == false)
1106      HasPlainEdge = true;
1107  }
1108  if (!HasPlainEdge)
1109    return NeverFallThrough;
1110  if (HasFakeEdge || HasLiveReturn)
1111    return MaybeFallThrough;
1112  // This says AlwaysFallThrough for calls to functions that are not marked
1113  // noreturn, that don't return.  If people would like this warning to be more
1114  // accurate, such functions should be marked as noreturn.
1115  return AlwaysFallThrough;
1116}
1117
1118/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1119/// function that should return a value.  Check that we don't fall off the end
1120/// of a noreturn function.  We assume that functions and blocks not marked
1121/// noreturn will return.
1122void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1123  // FIXME: Would be nice if we had a better way to control cascading errors,
1124  // but for now, avoid them.  The problem is that when Parse sees:
1125  //   int foo() { return a; }
1126  // The return is eaten and the Sema code sees just:
1127  //   int foo() { }
1128  // which this code would then warn about.
1129  if (getDiagnostics().hasErrorOccurred())
1130    return;
1131  bool ReturnsVoid = false;
1132  bool HasNoReturn = false;
1133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1134    // If the result type of the function is a dependent type, we don't know
1135    // whether it will be void or not, so don't
1136    if (FD->getResultType()->isDependentType())
1137      return;
1138    if (FD->getResultType()->isVoidType())
1139      ReturnsVoid = true;
1140    if (FD->hasAttr<NoReturnAttr>())
1141      HasNoReturn = true;
1142  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1143    if (MD->getResultType()->isVoidType())
1144      ReturnsVoid = true;
1145    if (MD->hasAttr<NoReturnAttr>())
1146      HasNoReturn = true;
1147  }
1148
1149  // Short circuit for compilation speed.
1150  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1151       == Diagnostic::Ignored || ReturnsVoid)
1152      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1153          == Diagnostic::Ignored || !HasNoReturn)
1154      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1155          == Diagnostic::Ignored || !ReturnsVoid))
1156    return;
1157  // FIXME: Function try block
1158  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1159    switch (CheckFallThrough(Body)) {
1160    case MaybeFallThrough:
1161      if (HasNoReturn)
1162        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1163      else if (!ReturnsVoid)
1164        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1165      break;
1166    case AlwaysFallThrough:
1167      if (HasNoReturn)
1168        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1169      else if (!ReturnsVoid)
1170        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1171      break;
1172    case NeverFallThrough:
1173      if (ReturnsVoid)
1174        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1175      break;
1176    }
1177  }
1178}
1179
1180/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1181/// that should return a value.  Check that we don't fall off the end of a
1182/// noreturn block.  We assume that functions and blocks not marked noreturn
1183/// will return.
1184void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1185  // FIXME: Would be nice if we had a better way to control cascading errors,
1186  // but for now, avoid them.  The problem is that when Parse sees:
1187  //   int foo() { return a; }
1188  // The return is eaten and the Sema code sees just:
1189  //   int foo() { }
1190  // which this code would then warn about.
1191  if (getDiagnostics().hasErrorOccurred())
1192    return;
1193  bool ReturnsVoid = false;
1194  bool HasNoReturn = false;
1195  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1196    if (FT->getResultType()->isVoidType())
1197      ReturnsVoid = true;
1198    if (FT->getNoReturnAttr())
1199      HasNoReturn = true;
1200  }
1201
1202  // Short circuit for compilation speed.
1203  if (ReturnsVoid
1204      && !HasNoReturn
1205      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1206          == Diagnostic::Ignored || !ReturnsVoid))
1207    return;
1208  // FIXME: Funtion try block
1209  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1210    switch (CheckFallThrough(Body)) {
1211    case MaybeFallThrough:
1212      if (HasNoReturn)
1213        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1214      else if (!ReturnsVoid)
1215        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1216      break;
1217    case AlwaysFallThrough:
1218      if (HasNoReturn)
1219        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1220      else if (!ReturnsVoid)
1221        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1222      break;
1223    case NeverFallThrough:
1224      if (ReturnsVoid)
1225        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1226      break;
1227    }
1228  }
1229}
1230
1231/// CheckParmsForFunctionDef - Check that the parameters of the given
1232/// function are appropriate for the definition of a function. This
1233/// takes care of any checks that cannot be performed on the
1234/// declaration itself, e.g., that the types of each of the function
1235/// parameters are complete.
1236bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1237  bool HasInvalidParm = false;
1238  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1239    ParmVarDecl *Param = FD->getParamDecl(p);
1240
1241    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1242    // function declarator that is part of a function definition of
1243    // that function shall not have incomplete type.
1244    //
1245    // This is also C++ [dcl.fct]p6.
1246    if (!Param->isInvalidDecl() &&
1247        RequireCompleteType(Param->getLocation(), Param->getType(),
1248                               diag::err_typecheck_decl_incomplete_type)) {
1249      Param->setInvalidDecl();
1250      HasInvalidParm = true;
1251    }
1252
1253    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1254    // declaration of each parameter shall include an identifier.
1255    if (Param->getIdentifier() == 0 &&
1256        !Param->isImplicit() &&
1257        !getLangOptions().CPlusPlus)
1258      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1259  }
1260
1261  return HasInvalidParm;
1262}
1263
1264/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1265/// no declarator (e.g. "struct foo;") is parsed.
1266Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1267  // FIXME: Error on auto/register at file scope
1268  // FIXME: Error on inline/virtual/explicit
1269  // FIXME: Error on invalid restrict
1270  // FIXME: Warn on useless __thread
1271  // FIXME: Warn on useless const/volatile
1272  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1273  // FIXME: Warn on useless attributes
1274  Decl *TagD = 0;
1275  TagDecl *Tag = 0;
1276  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1277      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1278      DS.getTypeSpecType() == DeclSpec::TST_union ||
1279      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1280    TagD = static_cast<Decl *>(DS.getTypeRep());
1281
1282    if (!TagD) // We probably had an error
1283      return DeclPtrTy();
1284
1285    // Note that the above type specs guarantee that the
1286    // type rep is a Decl, whereas in many of the others
1287    // it's a Type.
1288    Tag = dyn_cast<TagDecl>(TagD);
1289  }
1290
1291  if (DS.isFriendSpecified()) {
1292    // If we're dealing with a class template decl, assume that the
1293    // template routines are handling it.
1294    if (TagD && isa<ClassTemplateDecl>(TagD))
1295      return DeclPtrTy();
1296    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1297  }
1298
1299  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1300    if (!Record->getDeclName() && Record->isDefinition() &&
1301        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1302      if (getLangOptions().CPlusPlus ||
1303          Record->getDeclContext()->isRecord())
1304        return BuildAnonymousStructOrUnion(S, DS, Record);
1305
1306      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1307        << DS.getSourceRange();
1308    }
1309
1310    // Microsoft allows unnamed struct/union fields. Don't complain
1311    // about them.
1312    // FIXME: Should we support Microsoft's extensions in this area?
1313    if (Record->getDeclName() && getLangOptions().Microsoft)
1314      return DeclPtrTy::make(Tag);
1315  }
1316
1317  if (!DS.isMissingDeclaratorOk() &&
1318      DS.getTypeSpecType() != DeclSpec::TST_error) {
1319    // Warn about typedefs of enums without names, since this is an
1320    // extension in both Microsoft an GNU.
1321    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1322        Tag && isa<EnumDecl>(Tag)) {
1323      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1324        << DS.getSourceRange();
1325      return DeclPtrTy::make(Tag);
1326    }
1327
1328    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1329      << DS.getSourceRange();
1330    return DeclPtrTy();
1331  }
1332
1333  return DeclPtrTy::make(Tag);
1334}
1335
1336/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1337/// anonymous struct or union AnonRecord into the owning context Owner
1338/// and scope S. This routine will be invoked just after we realize
1339/// that an unnamed union or struct is actually an anonymous union or
1340/// struct, e.g.,
1341///
1342/// @code
1343/// union {
1344///   int i;
1345///   float f;
1346/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1347///    // f into the surrounding scope.x
1348/// @endcode
1349///
1350/// This routine is recursive, injecting the names of nested anonymous
1351/// structs/unions into the owning context and scope as well.
1352bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1353                                               RecordDecl *AnonRecord) {
1354  bool Invalid = false;
1355  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1356                               FEnd = AnonRecord->field_end();
1357       F != FEnd; ++F) {
1358    if ((*F)->getDeclName()) {
1359      LookupResult R;
1360      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1361                          LookupOrdinaryName, true);
1362      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1363      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1364        // C++ [class.union]p2:
1365        //   The names of the members of an anonymous union shall be
1366        //   distinct from the names of any other entity in the
1367        //   scope in which the anonymous union is declared.
1368        unsigned diagKind
1369          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1370                                 : diag::err_anonymous_struct_member_redecl;
1371        Diag((*F)->getLocation(), diagKind)
1372          << (*F)->getDeclName();
1373        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1374        Invalid = true;
1375      } else {
1376        // C++ [class.union]p2:
1377        //   For the purpose of name lookup, after the anonymous union
1378        //   definition, the members of the anonymous union are
1379        //   considered to have been defined in the scope in which the
1380        //   anonymous union is declared.
1381        Owner->makeDeclVisibleInContext(*F);
1382        S->AddDecl(DeclPtrTy::make(*F));
1383        IdResolver.AddDecl(*F);
1384      }
1385    } else if (const RecordType *InnerRecordType
1386                 = (*F)->getType()->getAs<RecordType>()) {
1387      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1388      if (InnerRecord->isAnonymousStructOrUnion())
1389        Invalid = Invalid ||
1390          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1391    }
1392  }
1393
1394  return Invalid;
1395}
1396
1397/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1398/// anonymous structure or union. Anonymous unions are a C++ feature
1399/// (C++ [class.union]) and a GNU C extension; anonymous structures
1400/// are a GNU C and GNU C++ extension.
1401Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1402                                                  RecordDecl *Record) {
1403  DeclContext *Owner = Record->getDeclContext();
1404
1405  // Diagnose whether this anonymous struct/union is an extension.
1406  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1407    Diag(Record->getLocation(), diag::ext_anonymous_union);
1408  else if (!Record->isUnion())
1409    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1410
1411  // C and C++ require different kinds of checks for anonymous
1412  // structs/unions.
1413  bool Invalid = false;
1414  if (getLangOptions().CPlusPlus) {
1415    const char* PrevSpec = 0;
1416    unsigned DiagID;
1417    // C++ [class.union]p3:
1418    //   Anonymous unions declared in a named namespace or in the
1419    //   global namespace shall be declared static.
1420    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1421        (isa<TranslationUnitDecl>(Owner) ||
1422         (isa<NamespaceDecl>(Owner) &&
1423          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1424      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1425      Invalid = true;
1426
1427      // Recover by adding 'static'.
1428      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1429                             PrevSpec, DiagID);
1430    }
1431    // C++ [class.union]p3:
1432    //   A storage class is not allowed in a declaration of an
1433    //   anonymous union in a class scope.
1434    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1435             isa<RecordDecl>(Owner)) {
1436      Diag(DS.getStorageClassSpecLoc(),
1437           diag::err_anonymous_union_with_storage_spec);
1438      Invalid = true;
1439
1440      // Recover by removing the storage specifier.
1441      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1442                             PrevSpec, DiagID);
1443    }
1444
1445    // C++ [class.union]p2:
1446    //   The member-specification of an anonymous union shall only
1447    //   define non-static data members. [Note: nested types and
1448    //   functions cannot be declared within an anonymous union. ]
1449    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1450                                 MemEnd = Record->decls_end();
1451         Mem != MemEnd; ++Mem) {
1452      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1453        // C++ [class.union]p3:
1454        //   An anonymous union shall not have private or protected
1455        //   members (clause 11).
1456        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1457          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1458            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1459          Invalid = true;
1460        }
1461      } else if ((*Mem)->isImplicit()) {
1462        // Any implicit members are fine.
1463      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1464        // This is a type that showed up in an
1465        // elaborated-type-specifier inside the anonymous struct or
1466        // union, but which actually declares a type outside of the
1467        // anonymous struct or union. It's okay.
1468      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1469        if (!MemRecord->isAnonymousStructOrUnion() &&
1470            MemRecord->getDeclName()) {
1471          // This is a nested type declaration.
1472          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1473            << (int)Record->isUnion();
1474          Invalid = true;
1475        }
1476      } else {
1477        // We have something that isn't a non-static data
1478        // member. Complain about it.
1479        unsigned DK = diag::err_anonymous_record_bad_member;
1480        if (isa<TypeDecl>(*Mem))
1481          DK = diag::err_anonymous_record_with_type;
1482        else if (isa<FunctionDecl>(*Mem))
1483          DK = diag::err_anonymous_record_with_function;
1484        else if (isa<VarDecl>(*Mem))
1485          DK = diag::err_anonymous_record_with_static;
1486        Diag((*Mem)->getLocation(), DK)
1487            << (int)Record->isUnion();
1488          Invalid = true;
1489      }
1490    }
1491  }
1492
1493  if (!Record->isUnion() && !Owner->isRecord()) {
1494    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1495      << (int)getLangOptions().CPlusPlus;
1496    Invalid = true;
1497  }
1498
1499  // Create a declaration for this anonymous struct/union.
1500  NamedDecl *Anon = 0;
1501  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1502    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1503                             /*IdentifierInfo=*/0,
1504                             Context.getTypeDeclType(Record),
1505                             // FIXME: Type source info.
1506                             /*DInfo=*/0,
1507                             /*BitWidth=*/0, /*Mutable=*/false);
1508    Anon->setAccess(AS_public);
1509    if (getLangOptions().CPlusPlus)
1510      FieldCollector->Add(cast<FieldDecl>(Anon));
1511  } else {
1512    VarDecl::StorageClass SC;
1513    switch (DS.getStorageClassSpec()) {
1514    default: assert(0 && "Unknown storage class!");
1515    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1516    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1517    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1518    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1519    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1520    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1521    case DeclSpec::SCS_mutable:
1522      // mutable can only appear on non-static class members, so it's always
1523      // an error here
1524      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1525      Invalid = true;
1526      SC = VarDecl::None;
1527      break;
1528    }
1529
1530    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1531                           /*IdentifierInfo=*/0,
1532                           Context.getTypeDeclType(Record),
1533                           // FIXME: Type source info.
1534                           /*DInfo=*/0,
1535                           SC);
1536  }
1537  Anon->setImplicit();
1538
1539  // Add the anonymous struct/union object to the current
1540  // context. We'll be referencing this object when we refer to one of
1541  // its members.
1542  Owner->addDecl(Anon);
1543
1544  // Inject the members of the anonymous struct/union into the owning
1545  // context and into the identifier resolver chain for name lookup
1546  // purposes.
1547  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1548    Invalid = true;
1549
1550  // Mark this as an anonymous struct/union type. Note that we do not
1551  // do this until after we have already checked and injected the
1552  // members of this anonymous struct/union type, because otherwise
1553  // the members could be injected twice: once by DeclContext when it
1554  // builds its lookup table, and once by
1555  // InjectAnonymousStructOrUnionMembers.
1556  Record->setAnonymousStructOrUnion(true);
1557
1558  if (Invalid)
1559    Anon->setInvalidDecl();
1560
1561  return DeclPtrTy::make(Anon);
1562}
1563
1564
1565/// GetNameForDeclarator - Determine the full declaration name for the
1566/// given Declarator.
1567DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1568  switch (D.getKind()) {
1569  case Declarator::DK_Abstract:
1570    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1571    return DeclarationName();
1572
1573  case Declarator::DK_Normal:
1574    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1575    return DeclarationName(D.getIdentifier());
1576
1577  case Declarator::DK_Constructor: {
1578    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1579    return Context.DeclarationNames.getCXXConstructorName(
1580                                                Context.getCanonicalType(Ty));
1581  }
1582
1583  case Declarator::DK_Destructor: {
1584    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1585    return Context.DeclarationNames.getCXXDestructorName(
1586                                                Context.getCanonicalType(Ty));
1587  }
1588
1589  case Declarator::DK_Conversion: {
1590    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1591    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1592    return Context.DeclarationNames.getCXXConversionFunctionName(
1593                                                Context.getCanonicalType(Ty));
1594  }
1595
1596  case Declarator::DK_Operator:
1597    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1598    return Context.DeclarationNames.getCXXOperatorName(
1599                                                D.getOverloadedOperator());
1600
1601  case Declarator::DK_TemplateId: {
1602    TemplateName Name
1603      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1604    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1605      return Template->getDeclName();
1606    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1607      return Ovl->getDeclName();
1608
1609    return DeclarationName();
1610  }
1611  }
1612
1613  assert(false && "Unknown name kind");
1614  return DeclarationName();
1615}
1616
1617/// isNearlyMatchingFunction - Determine whether the C++ functions
1618/// Declaration and Definition are "nearly" matching. This heuristic
1619/// is used to improve diagnostics in the case where an out-of-line
1620/// function definition doesn't match any declaration within
1621/// the class or namespace.
1622static bool isNearlyMatchingFunction(ASTContext &Context,
1623                                     FunctionDecl *Declaration,
1624                                     FunctionDecl *Definition) {
1625  if (Declaration->param_size() != Definition->param_size())
1626    return false;
1627  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1628    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1629    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1630
1631    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1632    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1633    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1634      return false;
1635  }
1636
1637  return true;
1638}
1639
1640Sema::DeclPtrTy
1641Sema::HandleDeclarator(Scope *S, Declarator &D,
1642                       MultiTemplateParamsArg TemplateParamLists,
1643                       bool IsFunctionDefinition) {
1644  DeclarationName Name = GetNameForDeclarator(D);
1645
1646  // All of these full declarators require an identifier.  If it doesn't have
1647  // one, the ParsedFreeStandingDeclSpec action should be used.
1648  if (!Name) {
1649    if (!D.isInvalidType())  // Reject this if we think it is valid.
1650      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1651           diag::err_declarator_need_ident)
1652        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1653    return DeclPtrTy();
1654  }
1655
1656  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1657  // we find one that is.
1658  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1659         (S->getFlags() & Scope::TemplateParamScope) != 0)
1660    S = S->getParent();
1661
1662  // If this is an out-of-line definition of a member of a class template
1663  // or class template partial specialization, we may need to rebuild the
1664  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1665  // for more information.
1666  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1667  // handle expressions properly.
1668  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1669  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1670      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1671      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1672       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1673       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1674       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1675    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1676      // FIXME: Preserve type source info.
1677      QualType T = GetTypeFromParser(DS.getTypeRep());
1678      EnterDeclaratorContext(S, DC);
1679      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1680      ExitDeclaratorContext(S);
1681      if (T.isNull())
1682        return DeclPtrTy();
1683      DS.UpdateTypeRep(T.getAsOpaquePtr());
1684    }
1685  }
1686
1687  DeclContext *DC;
1688  NamedDecl *PrevDecl;
1689  NamedDecl *New;
1690
1691  DeclaratorInfo *DInfo = 0;
1692  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1693
1694  // See if this is a redefinition of a variable in the same scope.
1695  if (D.getCXXScopeSpec().isInvalid()) {
1696    DC = CurContext;
1697    PrevDecl = 0;
1698    D.setInvalidType();
1699  } else if (!D.getCXXScopeSpec().isSet()) {
1700    LookupNameKind NameKind = LookupOrdinaryName;
1701
1702    // If the declaration we're planning to build will be a function
1703    // or object with linkage, then look for another declaration with
1704    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1705    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1706      /* Do nothing*/;
1707    else if (R->isFunctionType()) {
1708      if (CurContext->isFunctionOrMethod() ||
1709          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1710        NameKind = LookupRedeclarationWithLinkage;
1711    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1712      NameKind = LookupRedeclarationWithLinkage;
1713    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1714             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1715      NameKind = LookupRedeclarationWithLinkage;
1716
1717    DC = CurContext;
1718    LookupResult R;
1719    LookupName(R, S, Name, NameKind, true,
1720               NameKind == LookupRedeclarationWithLinkage,
1721               D.getIdentifierLoc());
1722    PrevDecl = R.getAsSingleDecl(Context);
1723  } else { // Something like "int foo::x;"
1724    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1725
1726    if (!DC) {
1727      // If we could not compute the declaration context, it's because the
1728      // declaration context is dependent but does not refer to a class,
1729      // class template, or class template partial specialization. Complain
1730      // and return early, to avoid the coming semantic disaster.
1731      Diag(D.getIdentifierLoc(),
1732           diag::err_template_qualified_declarator_no_match)
1733        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1734        << D.getCXXScopeSpec().getRange();
1735      return DeclPtrTy();
1736    }
1737
1738    if (!DC->isDependentContext() &&
1739        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1740      return DeclPtrTy();
1741
1742    LookupResult Res;
1743    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1744    PrevDecl = Res.getAsSingleDecl(Context);
1745
1746    // C++ 7.3.1.2p2:
1747    // Members (including explicit specializations of templates) of a named
1748    // namespace can also be defined outside that namespace by explicit
1749    // qualification of the name being defined, provided that the entity being
1750    // defined was already declared in the namespace and the definition appears
1751    // after the point of declaration in a namespace that encloses the
1752    // declarations namespace.
1753    //
1754    // Note that we only check the context at this point. We don't yet
1755    // have enough information to make sure that PrevDecl is actually
1756    // the declaration we want to match. For example, given:
1757    //
1758    //   class X {
1759    //     void f();
1760    //     void f(float);
1761    //   };
1762    //
1763    //   void X::f(int) { } // ill-formed
1764    //
1765    // In this case, PrevDecl will point to the overload set
1766    // containing the two f's declared in X, but neither of them
1767    // matches.
1768
1769    // First check whether we named the global scope.
1770    if (isa<TranslationUnitDecl>(DC)) {
1771      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1772        << Name << D.getCXXScopeSpec().getRange();
1773    } else if (!CurContext->Encloses(DC)) {
1774      // The qualifying scope doesn't enclose the original declaration.
1775      // Emit diagnostic based on current scope.
1776      SourceLocation L = D.getIdentifierLoc();
1777      SourceRange R = D.getCXXScopeSpec().getRange();
1778      if (isa<FunctionDecl>(CurContext))
1779        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1780      else
1781        Diag(L, diag::err_invalid_declarator_scope)
1782          << Name << cast<NamedDecl>(DC) << R;
1783      D.setInvalidType();
1784    }
1785  }
1786
1787  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1788    // Maybe we will complain about the shadowed template parameter.
1789    if (!D.isInvalidType())
1790      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1791        D.setInvalidType();
1792
1793    // Just pretend that we didn't see the previous declaration.
1794    PrevDecl = 0;
1795  }
1796
1797  // In C++, the previous declaration we find might be a tag type
1798  // (class or enum). In this case, the new declaration will hide the
1799  // tag type. Note that this does does not apply if we're declaring a
1800  // typedef (C++ [dcl.typedef]p4).
1801  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1802      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1803    PrevDecl = 0;
1804
1805  bool Redeclaration = false;
1806  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1807    if (TemplateParamLists.size()) {
1808      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1809      return DeclPtrTy();
1810    }
1811
1812    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1813  } else if (R->isFunctionType()) {
1814    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1815                                  move(TemplateParamLists),
1816                                  IsFunctionDefinition, Redeclaration);
1817  } else {
1818    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1819                                  move(TemplateParamLists),
1820                                  Redeclaration);
1821  }
1822
1823  if (New == 0)
1824    return DeclPtrTy();
1825
1826  // If this has an identifier and is not an invalid redeclaration or
1827  // function template specialization, add it to the scope stack.
1828  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1829      !(isa<FunctionDecl>(New) &&
1830        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1831    PushOnScopeChains(New, S);
1832
1833  return DeclPtrTy::make(New);
1834}
1835
1836/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1837/// types into constant array types in certain situations which would otherwise
1838/// be errors (for GCC compatibility).
1839static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1840                                                    ASTContext &Context,
1841                                                    bool &SizeIsNegative) {
1842  // This method tries to turn a variable array into a constant
1843  // array even when the size isn't an ICE.  This is necessary
1844  // for compatibility with code that depends on gcc's buggy
1845  // constant expression folding, like struct {char x[(int)(char*)2];}
1846  SizeIsNegative = false;
1847
1848  QualifierCollector Qs;
1849  const Type *Ty = Qs.strip(T);
1850
1851  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1852    QualType Pointee = PTy->getPointeeType();
1853    QualType FixedType =
1854        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1855    if (FixedType.isNull()) return FixedType;
1856    FixedType = Context.getPointerType(FixedType);
1857    return Qs.apply(FixedType);
1858  }
1859
1860  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1861  if (!VLATy)
1862    return QualType();
1863  // FIXME: We should probably handle this case
1864  if (VLATy->getElementType()->isVariablyModifiedType())
1865    return QualType();
1866
1867  Expr::EvalResult EvalResult;
1868  if (!VLATy->getSizeExpr() ||
1869      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1870      !EvalResult.Val.isInt())
1871    return QualType();
1872
1873  llvm::APSInt &Res = EvalResult.Val.getInt();
1874  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1875    Expr* ArySizeExpr = VLATy->getSizeExpr();
1876    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1877    // so as to transfer ownership to the ConstantArrayWithExpr.
1878    // Alternatively, we could "clone" it (how?).
1879    // Since we don't know how to do things above, we just use the
1880    // very same Expr*.
1881    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1882                                                Res, ArySizeExpr,
1883                                                ArrayType::Normal, 0,
1884                                                VLATy->getBracketsRange());
1885  }
1886
1887  SizeIsNegative = true;
1888  return QualType();
1889}
1890
1891/// \brief Register the given locally-scoped external C declaration so
1892/// that it can be found later for redeclarations
1893void
1894Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1895                                       Scope *S) {
1896  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1897         "Decl is not a locally-scoped decl!");
1898  // Note that we have a locally-scoped external with this name.
1899  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1900
1901  if (!PrevDecl)
1902    return;
1903
1904  // If there was a previous declaration of this variable, it may be
1905  // in our identifier chain. Update the identifier chain with the new
1906  // declaration.
1907  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1908    // The previous declaration was found on the identifer resolver
1909    // chain, so remove it from its scope.
1910    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1911      S = S->getParent();
1912
1913    if (S)
1914      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1915  }
1916}
1917
1918/// \brief Diagnose function specifiers on a declaration of an identifier that
1919/// does not identify a function.
1920void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1921  // FIXME: We should probably indicate the identifier in question to avoid
1922  // confusion for constructs like "inline int a(), b;"
1923  if (D.getDeclSpec().isInlineSpecified())
1924    Diag(D.getDeclSpec().getInlineSpecLoc(),
1925         diag::err_inline_non_function);
1926
1927  if (D.getDeclSpec().isVirtualSpecified())
1928    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1929         diag::err_virtual_non_function);
1930
1931  if (D.getDeclSpec().isExplicitSpecified())
1932    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1933         diag::err_explicit_non_function);
1934}
1935
1936NamedDecl*
1937Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1938                             QualType R,  DeclaratorInfo *DInfo,
1939                             NamedDecl* PrevDecl, bool &Redeclaration) {
1940  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1941  if (D.getCXXScopeSpec().isSet()) {
1942    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1943      << D.getCXXScopeSpec().getRange();
1944    D.setInvalidType();
1945    // Pretend we didn't see the scope specifier.
1946    DC = 0;
1947  }
1948
1949  if (getLangOptions().CPlusPlus) {
1950    // Check that there are no default arguments (C++ only).
1951    CheckExtraCXXDefaultArguments(D);
1952  }
1953
1954  DiagnoseFunctionSpecifiers(D);
1955
1956  if (D.getDeclSpec().isThreadSpecified())
1957    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1958
1959  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1960  if (!NewTD) return 0;
1961
1962  if (D.isInvalidType())
1963    NewTD->setInvalidDecl();
1964
1965  // Handle attributes prior to checking for duplicates in MergeVarDecl
1966  ProcessDeclAttributes(S, NewTD, D);
1967  // Merge the decl with the existing one if appropriate. If the decl is
1968  // in an outer scope, it isn't the same thing.
1969  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1970    Redeclaration = true;
1971    MergeTypeDefDecl(NewTD, PrevDecl);
1972  }
1973
1974  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1975  // then it shall have block scope.
1976  QualType T = NewTD->getUnderlyingType();
1977  if (T->isVariablyModifiedType()) {
1978    CurFunctionNeedsScopeChecking = true;
1979
1980    if (S->getFnParent() == 0) {
1981      bool SizeIsNegative;
1982      QualType FixedTy =
1983          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1984      if (!FixedTy.isNull()) {
1985        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1986        NewTD->setUnderlyingType(FixedTy);
1987      } else {
1988        if (SizeIsNegative)
1989          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1990        else if (T->isVariableArrayType())
1991          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1992        else
1993          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1994        NewTD->setInvalidDecl();
1995      }
1996    }
1997  }
1998
1999  // If this is the C FILE type, notify the AST context.
2000  if (IdentifierInfo *II = NewTD->getIdentifier())
2001    if (!NewTD->isInvalidDecl() &&
2002        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2003      if (II->isStr("FILE"))
2004        Context.setFILEDecl(NewTD);
2005      else if (II->isStr("jmp_buf"))
2006        Context.setjmp_bufDecl(NewTD);
2007      else if (II->isStr("sigjmp_buf"))
2008        Context.setsigjmp_bufDecl(NewTD);
2009    }
2010
2011  return NewTD;
2012}
2013
2014/// \brief Determines whether the given declaration is an out-of-scope
2015/// previous declaration.
2016///
2017/// This routine should be invoked when name lookup has found a
2018/// previous declaration (PrevDecl) that is not in the scope where a
2019/// new declaration by the same name is being introduced. If the new
2020/// declaration occurs in a local scope, previous declarations with
2021/// linkage may still be considered previous declarations (C99
2022/// 6.2.2p4-5, C++ [basic.link]p6).
2023///
2024/// \param PrevDecl the previous declaration found by name
2025/// lookup
2026///
2027/// \param DC the context in which the new declaration is being
2028/// declared.
2029///
2030/// \returns true if PrevDecl is an out-of-scope previous declaration
2031/// for a new delcaration with the same name.
2032static bool
2033isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2034                                ASTContext &Context) {
2035  if (!PrevDecl)
2036    return 0;
2037
2038  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2039  // case we need to check each of the overloaded functions.
2040  if (!PrevDecl->hasLinkage())
2041    return false;
2042
2043  if (Context.getLangOptions().CPlusPlus) {
2044    // C++ [basic.link]p6:
2045    //   If there is a visible declaration of an entity with linkage
2046    //   having the same name and type, ignoring entities declared
2047    //   outside the innermost enclosing namespace scope, the block
2048    //   scope declaration declares that same entity and receives the
2049    //   linkage of the previous declaration.
2050    DeclContext *OuterContext = DC->getLookupContext();
2051    if (!OuterContext->isFunctionOrMethod())
2052      // This rule only applies to block-scope declarations.
2053      return false;
2054    else {
2055      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2056      if (PrevOuterContext->isRecord())
2057        // We found a member function: ignore it.
2058        return false;
2059      else {
2060        // Find the innermost enclosing namespace for the new and
2061        // previous declarations.
2062        while (!OuterContext->isFileContext())
2063          OuterContext = OuterContext->getParent();
2064        while (!PrevOuterContext->isFileContext())
2065          PrevOuterContext = PrevOuterContext->getParent();
2066
2067        // The previous declaration is in a different namespace, so it
2068        // isn't the same function.
2069        if (OuterContext->getPrimaryContext() !=
2070            PrevOuterContext->getPrimaryContext())
2071          return false;
2072      }
2073    }
2074  }
2075
2076  return true;
2077}
2078
2079NamedDecl*
2080Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2081                              QualType R, DeclaratorInfo *DInfo,
2082                              NamedDecl* PrevDecl,
2083                              MultiTemplateParamsArg TemplateParamLists,
2084                              bool &Redeclaration) {
2085  DeclarationName Name = GetNameForDeclarator(D);
2086
2087  // Check that there are no default arguments (C++ only).
2088  if (getLangOptions().CPlusPlus)
2089    CheckExtraCXXDefaultArguments(D);
2090
2091  VarDecl *NewVD;
2092  VarDecl::StorageClass SC;
2093  switch (D.getDeclSpec().getStorageClassSpec()) {
2094  default: assert(0 && "Unknown storage class!");
2095  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2096  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2097  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2098  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2099  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2100  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2101  case DeclSpec::SCS_mutable:
2102    // mutable can only appear on non-static class members, so it's always
2103    // an error here
2104    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2105    D.setInvalidType();
2106    SC = VarDecl::None;
2107    break;
2108  }
2109
2110  IdentifierInfo *II = Name.getAsIdentifierInfo();
2111  if (!II) {
2112    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2113      << Name.getAsString();
2114    return 0;
2115  }
2116
2117  DiagnoseFunctionSpecifiers(D);
2118
2119  if (!DC->isRecord() && S->getFnParent() == 0) {
2120    // C99 6.9p2: The storage-class specifiers auto and register shall not
2121    // appear in the declaration specifiers in an external declaration.
2122    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2123
2124      // If this is a register variable with an asm label specified, then this
2125      // is a GNU extension.
2126      if (SC == VarDecl::Register && D.getAsmLabel())
2127        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2128      else
2129        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2130      D.setInvalidType();
2131    }
2132  }
2133  if (DC->isRecord() && !CurContext->isRecord()) {
2134    // This is an out-of-line definition of a static data member.
2135    if (SC == VarDecl::Static) {
2136      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2137           diag::err_static_out_of_line)
2138        << CodeModificationHint::CreateRemoval(
2139                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2140    } else if (SC == VarDecl::None)
2141      SC = VarDecl::Static;
2142  }
2143  if (SC == VarDecl::Static) {
2144    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2145      if (RD->isLocalClass())
2146        Diag(D.getIdentifierLoc(),
2147             diag::err_static_data_member_not_allowed_in_local_class)
2148          << Name << RD->getDeclName();
2149    }
2150  }
2151
2152  // Match up the template parameter lists with the scope specifier, then
2153  // determine whether we have a template or a template specialization.
2154  bool isExplicitSpecialization = false;
2155  if (TemplateParameterList *TemplateParams
2156        = MatchTemplateParametersToScopeSpecifier(
2157                                  D.getDeclSpec().getSourceRange().getBegin(),
2158                                                  D.getCXXScopeSpec(),
2159                        (TemplateParameterList**)TemplateParamLists.get(),
2160                                                   TemplateParamLists.size(),
2161                                                  isExplicitSpecialization)) {
2162    if (TemplateParams->size() > 0) {
2163      // There is no such thing as a variable template.
2164      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2165        << II
2166        << SourceRange(TemplateParams->getTemplateLoc(),
2167                       TemplateParams->getRAngleLoc());
2168      return 0;
2169    } else {
2170      // There is an extraneous 'template<>' for this variable. Complain
2171      // about it, but allow the declaration of the variable.
2172      Diag(TemplateParams->getTemplateLoc(),
2173           diag::err_template_variable_noparams)
2174        << II
2175        << SourceRange(TemplateParams->getTemplateLoc(),
2176                       TemplateParams->getRAngleLoc());
2177
2178      isExplicitSpecialization = true;
2179    }
2180  }
2181
2182  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2183                          II, R, DInfo, SC);
2184
2185  if (D.isInvalidType())
2186    NewVD->setInvalidDecl();
2187
2188  if (D.getDeclSpec().isThreadSpecified()) {
2189    if (NewVD->hasLocalStorage())
2190      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2191    else if (!Context.Target.isTLSSupported())
2192      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2193    else
2194      NewVD->setThreadSpecified(true);
2195  }
2196
2197  // Set the lexical context. If the declarator has a C++ scope specifier, the
2198  // lexical context will be different from the semantic context.
2199  NewVD->setLexicalDeclContext(CurContext);
2200
2201  // Handle attributes prior to checking for duplicates in MergeVarDecl
2202  ProcessDeclAttributes(S, NewVD, D);
2203
2204  // Handle GNU asm-label extension (encoded as an attribute).
2205  if (Expr *E = (Expr*) D.getAsmLabel()) {
2206    // The parser guarantees this is a string.
2207    StringLiteral *SE = cast<StringLiteral>(E);
2208    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2209                                                        SE->getByteLength())));
2210  }
2211
2212  // If name lookup finds a previous declaration that is not in the
2213  // same scope as the new declaration, this may still be an
2214  // acceptable redeclaration.
2215  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2216      !(NewVD->hasLinkage() &&
2217        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2218    PrevDecl = 0;
2219
2220  // Merge the decl with the existing one if appropriate.
2221  if (PrevDecl) {
2222    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2223      // The user tried to define a non-static data member
2224      // out-of-line (C++ [dcl.meaning]p1).
2225      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2226        << D.getCXXScopeSpec().getRange();
2227      PrevDecl = 0;
2228      NewVD->setInvalidDecl();
2229    }
2230  } else if (D.getCXXScopeSpec().isSet()) {
2231    // No previous declaration in the qualifying scope.
2232    Diag(D.getIdentifierLoc(), diag::err_no_member)
2233      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2234      << D.getCXXScopeSpec().getRange();
2235    NewVD->setInvalidDecl();
2236  }
2237
2238  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2239
2240  // This is an explicit specialization of a static data member. Check it.
2241  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2242      CheckMemberSpecialization(NewVD, PrevDecl))
2243    NewVD->setInvalidDecl();
2244
2245  // attributes declared post-definition are currently ignored
2246  if (PrevDecl) {
2247    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2248    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2249      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2250      Diag(Def->getLocation(), diag::note_previous_definition);
2251    }
2252  }
2253
2254  // If this is a locally-scoped extern C variable, update the map of
2255  // such variables.
2256  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2257      !NewVD->isInvalidDecl())
2258    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2259
2260  return NewVD;
2261}
2262
2263/// \brief Perform semantic checking on a newly-created variable
2264/// declaration.
2265///
2266/// This routine performs all of the type-checking required for a
2267/// variable declaration once it has been built. It is used both to
2268/// check variables after they have been parsed and their declarators
2269/// have been translated into a declaration, and to check variables
2270/// that have been instantiated from a template.
2271///
2272/// Sets NewVD->isInvalidDecl() if an error was encountered.
2273void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2274                                    bool &Redeclaration) {
2275  // If the decl is already known invalid, don't check it.
2276  if (NewVD->isInvalidDecl())
2277    return;
2278
2279  QualType T = NewVD->getType();
2280
2281  if (T->isObjCInterfaceType()) {
2282    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2283    return NewVD->setInvalidDecl();
2284  }
2285
2286  // The variable can not have an abstract class type.
2287  if (RequireNonAbstractType(NewVD->getLocation(), T,
2288                             diag::err_abstract_type_in_decl,
2289                             AbstractVariableType))
2290    return NewVD->setInvalidDecl();
2291
2292  // Emit an error if an address space was applied to decl with local storage.
2293  // This includes arrays of objects with address space qualifiers, but not
2294  // automatic variables that point to other address spaces.
2295  // ISO/IEC TR 18037 S5.1.2
2296  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2297    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2298    return NewVD->setInvalidDecl();
2299  }
2300
2301  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2302      && !NewVD->hasAttr<BlocksAttr>())
2303    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2304
2305  bool isVM = T->isVariablyModifiedType();
2306  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2307      NewVD->hasAttr<BlocksAttr>())
2308    CurFunctionNeedsScopeChecking = true;
2309
2310  if ((isVM && NewVD->hasLinkage()) ||
2311      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2312    bool SizeIsNegative;
2313    QualType FixedTy =
2314        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2315
2316    if (FixedTy.isNull() && T->isVariableArrayType()) {
2317      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2318      // FIXME: This won't give the correct result for
2319      // int a[10][n];
2320      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2321
2322      if (NewVD->isFileVarDecl())
2323        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2324        << SizeRange;
2325      else if (NewVD->getStorageClass() == VarDecl::Static)
2326        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2327        << SizeRange;
2328      else
2329        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2330        << SizeRange;
2331      return NewVD->setInvalidDecl();
2332    }
2333
2334    if (FixedTy.isNull()) {
2335      if (NewVD->isFileVarDecl())
2336        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2337      else
2338        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2339      return NewVD->setInvalidDecl();
2340    }
2341
2342    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2343    NewVD->setType(FixedTy);
2344  }
2345
2346  if (!PrevDecl && NewVD->isExternC()) {
2347    // Since we did not find anything by this name and we're declaring
2348    // an extern "C" variable, look for a non-visible extern "C"
2349    // declaration with the same name.
2350    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2351      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2352    if (Pos != LocallyScopedExternalDecls.end())
2353      PrevDecl = Pos->second;
2354  }
2355
2356  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2357    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2358      << T;
2359    return NewVD->setInvalidDecl();
2360  }
2361
2362  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2363    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2364    return NewVD->setInvalidDecl();
2365  }
2366
2367  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2368    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2369    return NewVD->setInvalidDecl();
2370  }
2371
2372  if (PrevDecl) {
2373    Redeclaration = true;
2374    MergeVarDecl(NewVD, PrevDecl);
2375  }
2376}
2377
2378static bool isUsingDecl(Decl *D) {
2379  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2380}
2381
2382/// \brief Data used with FindOverriddenMethod
2383struct FindOverriddenMethodData {
2384  Sema *S;
2385  CXXMethodDecl *Method;
2386};
2387
2388/// \brief Member lookup function that determines whether a given C++
2389/// method overrides a method in a base class, to be used with
2390/// CXXRecordDecl::lookupInBases().
2391static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2392                                 CXXBasePath &Path,
2393                                 void *UserData) {
2394  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2395
2396  FindOverriddenMethodData *Data
2397    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2398  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2399       Path.Decls.first != Path.Decls.second;
2400       ++Path.Decls.first) {
2401    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2402      OverloadedFunctionDecl::function_iterator MatchedDecl;
2403      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2404        return true;
2405    }
2406  }
2407
2408  return false;
2409}
2410
2411NamedDecl*
2412Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2413                              QualType R, DeclaratorInfo *DInfo,
2414                              NamedDecl* PrevDecl,
2415                              MultiTemplateParamsArg TemplateParamLists,
2416                              bool IsFunctionDefinition, bool &Redeclaration) {
2417  assert(R.getTypePtr()->isFunctionType());
2418
2419  DeclarationName Name = GetNameForDeclarator(D);
2420  FunctionDecl::StorageClass SC = FunctionDecl::None;
2421  switch (D.getDeclSpec().getStorageClassSpec()) {
2422  default: assert(0 && "Unknown storage class!");
2423  case DeclSpec::SCS_auto:
2424  case DeclSpec::SCS_register:
2425  case DeclSpec::SCS_mutable:
2426    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2427         diag::err_typecheck_sclass_func);
2428    D.setInvalidType();
2429    break;
2430  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2431  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2432  case DeclSpec::SCS_static: {
2433    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2434      // C99 6.7.1p5:
2435      //   The declaration of an identifier for a function that has
2436      //   block scope shall have no explicit storage-class specifier
2437      //   other than extern
2438      // See also (C++ [dcl.stc]p4).
2439      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2440           diag::err_static_block_func);
2441      SC = FunctionDecl::None;
2442    } else
2443      SC = FunctionDecl::Static;
2444    break;
2445  }
2446  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2447  }
2448
2449  if (D.getDeclSpec().isThreadSpecified())
2450    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2451
2452  bool isFriend = D.getDeclSpec().isFriendSpecified();
2453  bool isInline = D.getDeclSpec().isInlineSpecified();
2454  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2455  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2456
2457  // Check that the return type is not an abstract class type.
2458  // For record types, this is done by the AbstractClassUsageDiagnoser once
2459  // the class has been completely parsed.
2460  if (!DC->isRecord() &&
2461      RequireNonAbstractType(D.getIdentifierLoc(),
2462                             R->getAs<FunctionType>()->getResultType(),
2463                             diag::err_abstract_type_in_decl,
2464                             AbstractReturnType))
2465    D.setInvalidType();
2466
2467  // Do not allow returning a objc interface by-value.
2468  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2469    Diag(D.getIdentifierLoc(),
2470         diag::err_object_cannot_be_passed_returned_by_value) << 0
2471      << R->getAs<FunctionType>()->getResultType();
2472    D.setInvalidType();
2473  }
2474
2475  bool isVirtualOkay = false;
2476  FunctionDecl *NewFD;
2477
2478  if (isFriend) {
2479    // DC is the namespace in which the function is being declared.
2480    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2481           "friend function being created in a non-namespace context");
2482
2483    // C++ [class.friend]p5
2484    //   A function can be defined in a friend declaration of a
2485    //   class . . . . Such a function is implicitly inline.
2486    isInline |= IsFunctionDefinition;
2487  }
2488
2489  if (D.getKind() == Declarator::DK_Constructor) {
2490    // This is a C++ constructor declaration.
2491    assert(DC->isRecord() &&
2492           "Constructors can only be declared in a member context");
2493
2494    R = CheckConstructorDeclarator(D, R, SC);
2495
2496    // Create the new declaration
2497    NewFD = CXXConstructorDecl::Create(Context,
2498                                       cast<CXXRecordDecl>(DC),
2499                                       D.getIdentifierLoc(), Name, R, DInfo,
2500                                       isExplicit, isInline,
2501                                       /*isImplicitlyDeclared=*/false);
2502  } else if (D.getKind() == Declarator::DK_Destructor) {
2503    // This is a C++ destructor declaration.
2504    if (DC->isRecord()) {
2505      R = CheckDestructorDeclarator(D, SC);
2506
2507      NewFD = CXXDestructorDecl::Create(Context,
2508                                        cast<CXXRecordDecl>(DC),
2509                                        D.getIdentifierLoc(), Name, R,
2510                                        isInline,
2511                                        /*isImplicitlyDeclared=*/false);
2512
2513      isVirtualOkay = true;
2514    } else {
2515      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2516
2517      // Create a FunctionDecl to satisfy the function definition parsing
2518      // code path.
2519      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2520                                   Name, R, DInfo, SC, isInline,
2521                                   /*hasPrototype=*/true);
2522      D.setInvalidType();
2523    }
2524  } else if (D.getKind() == Declarator::DK_Conversion) {
2525    if (!DC->isRecord()) {
2526      Diag(D.getIdentifierLoc(),
2527           diag::err_conv_function_not_member);
2528      return 0;
2529    }
2530
2531    CheckConversionDeclarator(D, R, SC);
2532    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2533                                      D.getIdentifierLoc(), Name, R, DInfo,
2534                                      isInline, isExplicit);
2535
2536    isVirtualOkay = true;
2537  } else if (DC->isRecord()) {
2538    // If the of the function is the same as the name of the record, then this
2539    // must be an invalid constructor that has a return type.
2540    // (The parser checks for a return type and makes the declarator a
2541    // constructor if it has no return type).
2542    // must have an invalid constructor that has a return type
2543    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2544      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2545        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2546        << SourceRange(D.getIdentifierLoc());
2547      return 0;
2548    }
2549
2550    // This is a C++ method declaration.
2551    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2552                                  D.getIdentifierLoc(), Name, R, DInfo,
2553                                  (SC == FunctionDecl::Static), isInline);
2554
2555    isVirtualOkay = (SC != FunctionDecl::Static);
2556  } else {
2557    // Determine whether the function was written with a
2558    // prototype. This true when:
2559    //   - we're in C++ (where every function has a prototype),
2560    //   - there is a prototype in the declarator, or
2561    //   - the type R of the function is some kind of typedef or other reference
2562    //     to a type name (which eventually refers to a function type).
2563    bool HasPrototype =
2564       getLangOptions().CPlusPlus ||
2565       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2566       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2567
2568    NewFD = FunctionDecl::Create(Context, DC,
2569                                 D.getIdentifierLoc(),
2570                                 Name, R, DInfo, SC, isInline, HasPrototype);
2571  }
2572
2573  if (D.isInvalidType())
2574    NewFD->setInvalidDecl();
2575
2576  // Set the lexical context. If the declarator has a C++
2577  // scope specifier, or is the object of a friend declaration, the
2578  // lexical context will be different from the semantic context.
2579  NewFD->setLexicalDeclContext(CurContext);
2580
2581  // Match up the template parameter lists with the scope specifier, then
2582  // determine whether we have a template or a template specialization.
2583  FunctionTemplateDecl *FunctionTemplate = 0;
2584  bool isExplicitSpecialization = false;
2585  bool isFunctionTemplateSpecialization = false;
2586  if (TemplateParameterList *TemplateParams
2587        = MatchTemplateParametersToScopeSpecifier(
2588                                  D.getDeclSpec().getSourceRange().getBegin(),
2589                                  D.getCXXScopeSpec(),
2590                           (TemplateParameterList**)TemplateParamLists.get(),
2591                                                  TemplateParamLists.size(),
2592                                                  isExplicitSpecialization)) {
2593    if (TemplateParams->size() > 0) {
2594      // This is a function template
2595
2596      // Check that we can declare a template here.
2597      if (CheckTemplateDeclScope(S, TemplateParams))
2598        return 0;
2599
2600      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2601                                                      NewFD->getLocation(),
2602                                                      Name, TemplateParams,
2603                                                      NewFD);
2604      FunctionTemplate->setLexicalDeclContext(CurContext);
2605      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2606    } else {
2607      // This is a function template specialization.
2608      isFunctionTemplateSpecialization = true;
2609    }
2610
2611    // FIXME: Free this memory properly.
2612    TemplateParamLists.release();
2613  }
2614
2615  // C++ [dcl.fct.spec]p5:
2616  //   The virtual specifier shall only be used in declarations of
2617  //   nonstatic class member functions that appear within a
2618  //   member-specification of a class declaration; see 10.3.
2619  //
2620  if (isVirtual && !NewFD->isInvalidDecl()) {
2621    if (!isVirtualOkay) {
2622       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2623           diag::err_virtual_non_function);
2624    } else if (!CurContext->isRecord()) {
2625      // 'virtual' was specified outside of the class.
2626      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2627        << CodeModificationHint::CreateRemoval(
2628                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2629    } else {
2630      // Okay: Add virtual to the method.
2631      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2632      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2633      CurClass->setAggregate(false);
2634      CurClass->setPOD(false);
2635      CurClass->setEmpty(false);
2636      CurClass->setPolymorphic(true);
2637      CurClass->setHasTrivialConstructor(false);
2638      CurClass->setHasTrivialCopyConstructor(false);
2639      CurClass->setHasTrivialCopyAssignment(false);
2640    }
2641  }
2642
2643  if (isFriend) {
2644    if (FunctionTemplate) {
2645      FunctionTemplate->setObjectOfFriendDecl(
2646                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2647      FunctionTemplate->setAccess(AS_public);
2648    }
2649    else
2650      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2651
2652    NewFD->setAccess(AS_public);
2653  }
2654
2655
2656  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2657    // Look for virtual methods in base classes that this method might override.
2658    CXXBasePaths Paths;
2659    FindOverriddenMethodData Data;
2660    Data.Method = NewMD;
2661    Data.S = this;
2662    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2663                                                Paths)) {
2664      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2665           E = Paths.found_decls_end(); I != E; ++I) {
2666        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2667          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2668              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2669            NewMD->addOverriddenMethod(OldMD);
2670        }
2671      }
2672    }
2673  }
2674
2675  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2676      !CurContext->isRecord()) {
2677    // C++ [class.static]p1:
2678    //   A data or function member of a class may be declared static
2679    //   in a class definition, in which case it is a static member of
2680    //   the class.
2681
2682    // Complain about the 'static' specifier if it's on an out-of-line
2683    // member function definition.
2684    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2685         diag::err_static_out_of_line)
2686      << CodeModificationHint::CreateRemoval(
2687                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2688  }
2689
2690  // Handle GNU asm-label extension (encoded as an attribute).
2691  if (Expr *E = (Expr*) D.getAsmLabel()) {
2692    // The parser guarantees this is a string.
2693    StringLiteral *SE = cast<StringLiteral>(E);
2694    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2695                                                        SE->getByteLength())));
2696  }
2697
2698  // Copy the parameter declarations from the declarator D to the function
2699  // declaration NewFD, if they are available.  First scavenge them into Params.
2700  llvm::SmallVector<ParmVarDecl*, 16> Params;
2701  if (D.getNumTypeObjects() > 0) {
2702    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2703
2704    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2705    // function that takes no arguments, not a function that takes a
2706    // single void argument.
2707    // We let through "const void" here because Sema::GetTypeForDeclarator
2708    // already checks for that case.
2709    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2710        FTI.ArgInfo[0].Param &&
2711        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2712      // Empty arg list, don't push any params.
2713      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2714
2715      // In C++, the empty parameter-type-list must be spelled "void"; a
2716      // typedef of void is not permitted.
2717      if (getLangOptions().CPlusPlus &&
2718          Param->getType().getUnqualifiedType() != Context.VoidTy)
2719        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2720      // FIXME: Leaks decl?
2721    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2722      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2723        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2724        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2725        Param->setDeclContext(NewFD);
2726        Params.push_back(Param);
2727      }
2728    }
2729
2730  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2731    // When we're declaring a function with a typedef, typeof, etc as in the
2732    // following example, we'll need to synthesize (unnamed)
2733    // parameters for use in the declaration.
2734    //
2735    // @code
2736    // typedef void fn(int);
2737    // fn f;
2738    // @endcode
2739
2740    // Synthesize a parameter for each argument type.
2741    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2742         AE = FT->arg_type_end(); AI != AE; ++AI) {
2743      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2744                                               SourceLocation(), 0,
2745                                               *AI, /*DInfo=*/0,
2746                                               VarDecl::None, 0);
2747      Param->setImplicit();
2748      Params.push_back(Param);
2749    }
2750  } else {
2751    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2752           "Should not need args for typedef of non-prototype fn");
2753  }
2754  // Finally, we know we have the right number of parameters, install them.
2755  NewFD->setParams(Context, Params.data(), Params.size());
2756
2757  // If name lookup finds a previous declaration that is not in the
2758  // same scope as the new declaration, this may still be an
2759  // acceptable redeclaration.
2760  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2761      !(NewFD->hasLinkage() &&
2762        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2763    PrevDecl = 0;
2764
2765  // If the declarator is a template-id, translate the parser's template
2766  // argument list into our AST format.
2767  bool HasExplicitTemplateArgs = false;
2768  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2769  SourceLocation LAngleLoc, RAngleLoc;
2770  if (D.getKind() == Declarator::DK_TemplateId) {
2771    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2772    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2773                                       TemplateId->getTemplateArgs(),
2774                                       TemplateId->getTemplateArgIsType(),
2775                                       TemplateId->NumArgs);
2776    translateTemplateArguments(TemplateArgsPtr,
2777                               TemplateId->getTemplateArgLocations(),
2778                               TemplateArgs);
2779    TemplateArgsPtr.release();
2780
2781    HasExplicitTemplateArgs = true;
2782    LAngleLoc = TemplateId->LAngleLoc;
2783    RAngleLoc = TemplateId->RAngleLoc;
2784
2785    if (FunctionTemplate) {
2786      // FIXME: Diagnose function template with explicit template
2787      // arguments.
2788      HasExplicitTemplateArgs = false;
2789    } else if (!isFunctionTemplateSpecialization &&
2790               !D.getDeclSpec().isFriendSpecified()) {
2791      // We have encountered something that the user meant to be a
2792      // specialization (because it has explicitly-specified template
2793      // arguments) but that was not introduced with a "template<>" (or had
2794      // too few of them).
2795      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2796        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2797        << CodeModificationHint::CreateInsertion(
2798                                   D.getDeclSpec().getSourceRange().getBegin(),
2799                                                 "template<> ");
2800      isFunctionTemplateSpecialization = true;
2801    }
2802  }
2803
2804  if (isFunctionTemplateSpecialization) {
2805      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2806                                              LAngleLoc, TemplateArgs.data(),
2807                                              TemplateArgs.size(), RAngleLoc,
2808                                              PrevDecl))
2809        NewFD->setInvalidDecl();
2810  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2811             CheckMemberSpecialization(NewFD, PrevDecl))
2812    NewFD->setInvalidDecl();
2813
2814  // Perform semantic checking on the function declaration.
2815  bool OverloadableAttrRequired = false; // FIXME: HACK!
2816  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2817                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2818
2819  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2820    // An out-of-line member function declaration must also be a
2821    // definition (C++ [dcl.meaning]p1).
2822    // Note that this is not the case for explicit specializations of
2823    // function templates or member functions of class templates, per
2824    // C++ [temp.expl.spec]p2.
2825    if (!IsFunctionDefinition && !isFriend &&
2826        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2827      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2828        << D.getCXXScopeSpec().getRange();
2829      NewFD->setInvalidDecl();
2830    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2831      // The user tried to provide an out-of-line definition for a
2832      // function that is a member of a class or namespace, but there
2833      // was no such member function declared (C++ [class.mfct]p2,
2834      // C++ [namespace.memdef]p2). For example:
2835      //
2836      // class X {
2837      //   void f() const;
2838      // };
2839      //
2840      // void X::f() { } // ill-formed
2841      //
2842      // Complain about this problem, and attempt to suggest close
2843      // matches (e.g., those that differ only in cv-qualifiers and
2844      // whether the parameter types are references).
2845      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2846        << Name << DC << D.getCXXScopeSpec().getRange();
2847      NewFD->setInvalidDecl();
2848
2849      LookupResult Prev;
2850      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2851      assert(!Prev.isAmbiguous() &&
2852             "Cannot have an ambiguity in previous-declaration lookup");
2853      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2854           Func != FuncEnd; ++Func) {
2855        if (isa<FunctionDecl>(*Func) &&
2856            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2857          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2858      }
2859
2860      PrevDecl = 0;
2861    }
2862  }
2863
2864  // Handle attributes. We need to have merged decls when handling attributes
2865  // (for example to check for conflicts, etc).
2866  // FIXME: This needs to happen before we merge declarations. Then,
2867  // let attribute merging cope with attribute conflicts.
2868  ProcessDeclAttributes(S, NewFD, D);
2869
2870  // attributes declared post-definition are currently ignored
2871  if (Redeclaration && PrevDecl) {
2872    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2873    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2874      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2875      Diag(Def->getLocation(), diag::note_previous_definition);
2876    }
2877  }
2878
2879  AddKnownFunctionAttributes(NewFD);
2880
2881  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2882    // If a function name is overloadable in C, then every function
2883    // with that name must be marked "overloadable".
2884    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2885      << Redeclaration << NewFD;
2886    if (PrevDecl)
2887      Diag(PrevDecl->getLocation(),
2888           diag::note_attribute_overloadable_prev_overload);
2889    NewFD->addAttr(::new (Context) OverloadableAttr());
2890  }
2891
2892  // If this is a locally-scoped extern C function, update the
2893  // map of such names.
2894  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2895      && !NewFD->isInvalidDecl())
2896    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2897
2898  // Set this FunctionDecl's range up to the right paren.
2899  NewFD->setLocEnd(D.getSourceRange().getEnd());
2900
2901  if (FunctionTemplate && NewFD->isInvalidDecl())
2902    FunctionTemplate->setInvalidDecl();
2903
2904  if (FunctionTemplate)
2905    return FunctionTemplate;
2906
2907  return NewFD;
2908}
2909
2910/// \brief Perform semantic checking of a new function declaration.
2911///
2912/// Performs semantic analysis of the new function declaration
2913/// NewFD. This routine performs all semantic checking that does not
2914/// require the actual declarator involved in the declaration, and is
2915/// used both for the declaration of functions as they are parsed
2916/// (called via ActOnDeclarator) and for the declaration of functions
2917/// that have been instantiated via C++ template instantiation (called
2918/// via InstantiateDecl).
2919///
2920/// \param IsExplicitSpecialiation whether this new function declaration is
2921/// an explicit specialization of the previous declaration.
2922///
2923/// This sets NewFD->isInvalidDecl() to true if there was an error.
2924void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2925                                    bool IsExplicitSpecialization,
2926                                    bool &Redeclaration,
2927                                    bool &OverloadableAttrRequired) {
2928  // If NewFD is already known erroneous, don't do any of this checking.
2929  if (NewFD->isInvalidDecl())
2930    return;
2931
2932  if (NewFD->getResultType()->isVariablyModifiedType()) {
2933    // Functions returning a variably modified type violate C99 6.7.5.2p2
2934    // because all functions have linkage.
2935    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2936    return NewFD->setInvalidDecl();
2937  }
2938
2939  if (NewFD->isMain())
2940    CheckMain(NewFD);
2941
2942  // Check for a previous declaration of this name.
2943  if (!PrevDecl && NewFD->isExternC()) {
2944    // Since we did not find anything by this name and we're declaring
2945    // an extern "C" function, look for a non-visible extern "C"
2946    // declaration with the same name.
2947    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2948      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2949    if (Pos != LocallyScopedExternalDecls.end())
2950      PrevDecl = Pos->second;
2951  }
2952
2953  // Merge or overload the declaration with an existing declaration of
2954  // the same name, if appropriate.
2955  if (PrevDecl) {
2956    // Determine whether NewFD is an overload of PrevDecl or
2957    // a declaration that requires merging. If it's an overload,
2958    // there's no more work to do here; we'll just add the new
2959    // function to the scope.
2960    OverloadedFunctionDecl::function_iterator MatchedDecl;
2961
2962    if (!getLangOptions().CPlusPlus &&
2963        AllowOverloadingOfFunction(PrevDecl, Context)) {
2964      OverloadableAttrRequired = true;
2965
2966      // Functions marked "overloadable" must have a prototype (that
2967      // we can't get through declaration merging).
2968      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2969        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2970          << NewFD;
2971        Redeclaration = true;
2972
2973        // Turn this into a variadic function with no parameters.
2974        QualType R = Context.getFunctionType(
2975                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2976                       0, 0, true, 0);
2977        NewFD->setType(R);
2978        return NewFD->setInvalidDecl();
2979      }
2980    }
2981
2982    if (PrevDecl &&
2983        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2984         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2985      Redeclaration = true;
2986      Decl *OldDecl = PrevDecl;
2987
2988      // If PrevDecl was an overloaded function, extract the
2989      // FunctionDecl that matched.
2990      if (isa<OverloadedFunctionDecl>(PrevDecl))
2991        OldDecl = *MatchedDecl;
2992
2993      // NewFD and OldDecl represent declarations that need to be
2994      // merged.
2995      if (MergeFunctionDecl(NewFD, OldDecl))
2996        return NewFD->setInvalidDecl();
2997
2998      if (FunctionTemplateDecl *OldTemplateDecl
2999                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3000        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3001        FunctionTemplateDecl *NewTemplateDecl
3002          = NewFD->getDescribedFunctionTemplate();
3003        assert(NewTemplateDecl && "Template/non-template mismatch");
3004        if (CXXMethodDecl *Method
3005              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3006          Method->setAccess(OldTemplateDecl->getAccess());
3007          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3008        }
3009
3010        // If this is an explicit specialization of a member that is a function
3011        // template, mark it as a member specialization.
3012        if (IsExplicitSpecialization &&
3013            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3014          NewTemplateDecl->setMemberSpecialization();
3015          assert(OldTemplateDecl->isMemberSpecialization());
3016        }
3017      } else {
3018        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3019          NewFD->setAccess(OldDecl->getAccess());
3020        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3021      }
3022    }
3023  }
3024
3025  // Semantic checking for this function declaration (in isolation).
3026  if (getLangOptions().CPlusPlus) {
3027    // C++-specific checks.
3028    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3029      CheckConstructor(Constructor);
3030    } else if (isa<CXXDestructorDecl>(NewFD)) {
3031      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3032      QualType ClassType = Context.getTypeDeclType(Record);
3033      if (!ClassType->isDependentType()) {
3034        DeclarationName Name
3035          = Context.DeclarationNames.getCXXDestructorName(
3036                                        Context.getCanonicalType(ClassType));
3037        if (NewFD->getDeclName() != Name) {
3038          Diag(NewFD->getLocation(), diag::err_destructor_name);
3039          return NewFD->setInvalidDecl();
3040        }
3041      }
3042      Record->setUserDeclaredDestructor(true);
3043      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3044      // user-defined destructor.
3045      Record->setPOD(false);
3046
3047      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3048      // declared destructor.
3049      // FIXME: C++0x: don't do this for "= default" destructors
3050      Record->setHasTrivialDestructor(false);
3051    } else if (CXXConversionDecl *Conversion
3052               = dyn_cast<CXXConversionDecl>(NewFD))
3053      ActOnConversionDeclarator(Conversion);
3054
3055    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3056    if (NewFD->isOverloadedOperator() &&
3057        CheckOverloadedOperatorDeclaration(NewFD))
3058      return NewFD->setInvalidDecl();
3059
3060    // In C++, check default arguments now that we have merged decls. Unless
3061    // the lexical context is the class, because in this case this is done
3062    // during delayed parsing anyway.
3063    if (!CurContext->isRecord())
3064      CheckCXXDefaultArguments(NewFD);
3065  }
3066}
3067
3068void Sema::CheckMain(FunctionDecl* FD) {
3069  // C++ [basic.start.main]p3:  A program that declares main to be inline
3070  //   or static is ill-formed.
3071  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3072  //   shall not appear in a declaration of main.
3073  // static main is not an error under C99, but we should warn about it.
3074  bool isInline = FD->isInline();
3075  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3076  if (isInline || isStatic) {
3077    unsigned diagID = diag::warn_unusual_main_decl;
3078    if (isInline || getLangOptions().CPlusPlus)
3079      diagID = diag::err_unusual_main_decl;
3080
3081    int which = isStatic + (isInline << 1) - 1;
3082    Diag(FD->getLocation(), diagID) << which;
3083  }
3084
3085  QualType T = FD->getType();
3086  assert(T->isFunctionType() && "function decl is not of function type");
3087  const FunctionType* FT = T->getAs<FunctionType>();
3088
3089  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3090    // TODO: add a replacement fixit to turn the return type into 'int'.
3091    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3092    FD->setInvalidDecl(true);
3093  }
3094
3095  // Treat protoless main() as nullary.
3096  if (isa<FunctionNoProtoType>(FT)) return;
3097
3098  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3099  unsigned nparams = FTP->getNumArgs();
3100  assert(FD->getNumParams() == nparams);
3101
3102  if (nparams > 3) {
3103    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3104    FD->setInvalidDecl(true);
3105    nparams = 3;
3106  }
3107
3108  // FIXME: a lot of the following diagnostics would be improved
3109  // if we had some location information about types.
3110
3111  QualType CharPP =
3112    Context.getPointerType(Context.getPointerType(Context.CharTy));
3113  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3114
3115  for (unsigned i = 0; i < nparams; ++i) {
3116    QualType AT = FTP->getArgType(i);
3117
3118    bool mismatch = true;
3119
3120    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3121      mismatch = false;
3122    else if (Expected[i] == CharPP) {
3123      // As an extension, the following forms are okay:
3124      //   char const **
3125      //   char const * const *
3126      //   char * const *
3127
3128      QualifierCollector qs;
3129      const PointerType* PT;
3130      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3131          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3132          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3133        qs.removeConst();
3134        mismatch = !qs.empty();
3135      }
3136    }
3137
3138    if (mismatch) {
3139      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3140      // TODO: suggest replacing given type with expected type
3141      FD->setInvalidDecl(true);
3142    }
3143  }
3144
3145  if (nparams == 1 && !FD->isInvalidDecl()) {
3146    Diag(FD->getLocation(), diag::warn_main_one_arg);
3147  }
3148}
3149
3150bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3151  // FIXME: Need strict checking.  In C89, we need to check for
3152  // any assignment, increment, decrement, function-calls, or
3153  // commas outside of a sizeof.  In C99, it's the same list,
3154  // except that the aforementioned are allowed in unevaluated
3155  // expressions.  Everything else falls under the
3156  // "may accept other forms of constant expressions" exception.
3157  // (We never end up here for C++, so the constant expression
3158  // rules there don't matter.)
3159  if (Init->isConstantInitializer(Context))
3160    return false;
3161  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3162    << Init->getSourceRange();
3163  return true;
3164}
3165
3166void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3167  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3168}
3169
3170/// AddInitializerToDecl - Adds the initializer Init to the
3171/// declaration dcl. If DirectInit is true, this is C++ direct
3172/// initialization rather than copy initialization.
3173void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3174  Decl *RealDecl = dcl.getAs<Decl>();
3175  // If there is no declaration, there was an error parsing it.  Just ignore
3176  // the initializer.
3177  if (RealDecl == 0)
3178    return;
3179
3180  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3181    // With declarators parsed the way they are, the parser cannot
3182    // distinguish between a normal initializer and a pure-specifier.
3183    // Thus this grotesque test.
3184    IntegerLiteral *IL;
3185    Expr *Init = static_cast<Expr *>(init.get());
3186    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3187        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3188      if (Method->isVirtualAsWritten()) {
3189        Method->setPure();
3190
3191        // A class is abstract if at least one function is pure virtual.
3192        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3193      } else if (!Method->isInvalidDecl()) {
3194        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3195          << Method->getDeclName() << Init->getSourceRange();
3196        Method->setInvalidDecl();
3197      }
3198    } else {
3199      Diag(Method->getLocation(), diag::err_member_function_initialization)
3200        << Method->getDeclName() << Init->getSourceRange();
3201      Method->setInvalidDecl();
3202    }
3203    return;
3204  }
3205
3206  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3207  if (!VDecl) {
3208    if (getLangOptions().CPlusPlus &&
3209        RealDecl->getLexicalDeclContext()->isRecord() &&
3210        isa<NamedDecl>(RealDecl))
3211      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3212        << cast<NamedDecl>(RealDecl)->getDeclName();
3213    else
3214      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3215    RealDecl->setInvalidDecl();
3216    return;
3217  }
3218
3219  if (!VDecl->getType()->isArrayType() &&
3220      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3221                          diag::err_typecheck_decl_incomplete_type)) {
3222    RealDecl->setInvalidDecl();
3223    return;
3224  }
3225
3226  const VarDecl *Def = 0;
3227  if (VDecl->getDefinition(Def)) {
3228    Diag(VDecl->getLocation(), diag::err_redefinition)
3229      << VDecl->getDeclName();
3230    Diag(Def->getLocation(), diag::note_previous_definition);
3231    VDecl->setInvalidDecl();
3232    return;
3233  }
3234
3235  // Take ownership of the expression, now that we're sure we have somewhere
3236  // to put it.
3237  Expr *Init = init.takeAs<Expr>();
3238  assert(Init && "missing initializer");
3239
3240  // Get the decls type and save a reference for later, since
3241  // CheckInitializerTypes may change it.
3242  QualType DclT = VDecl->getType(), SavT = DclT;
3243  if (VDecl->isBlockVarDecl()) {
3244    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3245      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3246      VDecl->setInvalidDecl();
3247    } else if (!VDecl->isInvalidDecl()) {
3248      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3249                                VDecl->getDeclName(), DirectInit))
3250        VDecl->setInvalidDecl();
3251
3252      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3253      // Don't check invalid declarations to avoid emitting useless diagnostics.
3254      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3255        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3256          CheckForConstantInitializer(Init, DclT);
3257      }
3258    }
3259  } else if (VDecl->isStaticDataMember() &&
3260             VDecl->getLexicalDeclContext()->isRecord()) {
3261    // This is an in-class initialization for a static data member, e.g.,
3262    //
3263    // struct S {
3264    //   static const int value = 17;
3265    // };
3266
3267    // Attach the initializer
3268    VDecl->setInit(Context, Init);
3269
3270    // C++ [class.mem]p4:
3271    //   A member-declarator can contain a constant-initializer only
3272    //   if it declares a static member (9.4) of const integral or
3273    //   const enumeration type, see 9.4.2.
3274    QualType T = VDecl->getType();
3275    if (!T->isDependentType() &&
3276        (!Context.getCanonicalType(T).isConstQualified() ||
3277         !T->isIntegralType())) {
3278      Diag(VDecl->getLocation(), diag::err_member_initialization)
3279        << VDecl->getDeclName() << Init->getSourceRange();
3280      VDecl->setInvalidDecl();
3281    } else {
3282      // C++ [class.static.data]p4:
3283      //   If a static data member is of const integral or const
3284      //   enumeration type, its declaration in the class definition
3285      //   can specify a constant-initializer which shall be an
3286      //   integral constant expression (5.19).
3287      if (!Init->isTypeDependent() &&
3288          !Init->getType()->isIntegralType()) {
3289        // We have a non-dependent, non-integral or enumeration type.
3290        Diag(Init->getSourceRange().getBegin(),
3291             diag::err_in_class_initializer_non_integral_type)
3292          << Init->getType() << Init->getSourceRange();
3293        VDecl->setInvalidDecl();
3294      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3295        // Check whether the expression is a constant expression.
3296        llvm::APSInt Value;
3297        SourceLocation Loc;
3298        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3299          Diag(Loc, diag::err_in_class_initializer_non_constant)
3300            << Init->getSourceRange();
3301          VDecl->setInvalidDecl();
3302        } else if (!VDecl->getType()->isDependentType())
3303          ImpCastExprToType(Init, VDecl->getType());
3304      }
3305    }
3306  } else if (VDecl->isFileVarDecl()) {
3307    if (VDecl->getStorageClass() == VarDecl::Extern)
3308      Diag(VDecl->getLocation(), diag::warn_extern_init);
3309    if (!VDecl->isInvalidDecl())
3310      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3311                                VDecl->getDeclName(), DirectInit))
3312        VDecl->setInvalidDecl();
3313
3314    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3315    // Don't check invalid declarations to avoid emitting useless diagnostics.
3316    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3317      // C99 6.7.8p4. All file scoped initializers need to be constant.
3318      CheckForConstantInitializer(Init, DclT);
3319    }
3320  }
3321  // If the type changed, it means we had an incomplete type that was
3322  // completed by the initializer. For example:
3323  //   int ary[] = { 1, 3, 5 };
3324  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3325  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3326    VDecl->setType(DclT);
3327    Init->setType(DclT);
3328  }
3329
3330  Init = MaybeCreateCXXExprWithTemporaries(Init,
3331                                           /*ShouldDestroyTemporaries=*/true);
3332  // Attach the initializer to the decl.
3333  VDecl->setInit(Context, Init);
3334
3335  // If the previous declaration of VDecl was a tentative definition,
3336  // remove it from the set of tentative definitions.
3337  if (VDecl->getPreviousDeclaration() &&
3338      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3339    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3340    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3341  }
3342
3343  return;
3344}
3345
3346void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3347                                  bool TypeContainsUndeducedAuto) {
3348  Decl *RealDecl = dcl.getAs<Decl>();
3349
3350  // If there is no declaration, there was an error parsing it. Just ignore it.
3351  if (RealDecl == 0)
3352    return;
3353
3354  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3355    QualType Type = Var->getType();
3356
3357    // Record tentative definitions.
3358    if (Var->isTentativeDefinition(Context)) {
3359      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3360        InsertPair =
3361           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3362
3363      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3364      // want the second one in the map.
3365      InsertPair.first->second = Var;
3366
3367      // However, for the list, we don't care about the order, just make sure
3368      // that there are no dupes for a given declaration name.
3369      if (InsertPair.second)
3370        TentativeDefinitionList.push_back(Var->getDeclName());
3371    }
3372
3373    // C++ [dcl.init.ref]p3:
3374    //   The initializer can be omitted for a reference only in a
3375    //   parameter declaration (8.3.5), in the declaration of a
3376    //   function return type, in the declaration of a class member
3377    //   within its class declaration (9.2), and where the extern
3378    //   specifier is explicitly used.
3379    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3380      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3381        << Var->getDeclName()
3382        << SourceRange(Var->getLocation(), Var->getLocation());
3383      Var->setInvalidDecl();
3384      return;
3385    }
3386
3387    // C++0x [dcl.spec.auto]p3
3388    if (TypeContainsUndeducedAuto) {
3389      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3390        << Var->getDeclName() << Type;
3391      Var->setInvalidDecl();
3392      return;
3393    }
3394
3395    // C++ [temp.expl.spec]p15:
3396    //   An explicit specialization of a static data member of a template is a
3397    //   definition if the declaration includes an initializer; otherwise, it
3398    //   is a declaration.
3399    if (Var->isStaticDataMember() &&
3400        Var->getInstantiatedFromStaticDataMember() &&
3401        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3402      return;
3403
3404    // C++ [dcl.init]p9:
3405    //   If no initializer is specified for an object, and the object
3406    //   is of (possibly cv-qualified) non-POD class type (or array
3407    //   thereof), the object shall be default-initialized; if the
3408    //   object is of const-qualified type, the underlying class type
3409    //   shall have a user-declared default constructor.
3410    //
3411    // FIXME: Diagnose the "user-declared default constructor" bit.
3412    if (getLangOptions().CPlusPlus) {
3413      QualType InitType = Type;
3414      if (const ArrayType *Array = Context.getAsArrayType(Type))
3415        InitType = Array->getElementType();
3416      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3417          InitType->isRecordType() && !InitType->isDependentType()) {
3418        if (!RequireCompleteType(Var->getLocation(), InitType,
3419                                 diag::err_invalid_incomplete_type_use)) {
3420          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3421
3422          CXXConstructorDecl *Constructor
3423            = PerformInitializationByConstructor(InitType,
3424                                                 MultiExprArg(*this, 0, 0),
3425                                                 Var->getLocation(),
3426                                               SourceRange(Var->getLocation(),
3427                                                           Var->getLocation()),
3428                                                 Var->getDeclName(),
3429                                                 IK_Default,
3430                                                 ConstructorArgs);
3431
3432          // FIXME: Location info for the variable initialization?
3433          if (!Constructor)
3434            Var->setInvalidDecl();
3435          else {
3436            // FIXME: Cope with initialization of arrays
3437            if (!Constructor->isTrivial() &&
3438                InitializeVarWithConstructor(Var, Constructor, InitType,
3439                                             move_arg(ConstructorArgs)))
3440              Var->setInvalidDecl();
3441
3442            FinalizeVarWithDestructor(Var, InitType);
3443          }
3444        } else {
3445          Var->setInvalidDecl();
3446        }
3447      }
3448    }
3449
3450#if 0
3451    // FIXME: Temporarily disabled because we are not properly parsing
3452    // linkage specifications on declarations, e.g.,
3453    //
3454    //   extern "C" const CGPoint CGPointerZero;
3455    //
3456    // C++ [dcl.init]p9:
3457    //
3458    //     If no initializer is specified for an object, and the
3459    //     object is of (possibly cv-qualified) non-POD class type (or
3460    //     array thereof), the object shall be default-initialized; if
3461    //     the object is of const-qualified type, the underlying class
3462    //     type shall have a user-declared default
3463    //     constructor. Otherwise, if no initializer is specified for
3464    //     an object, the object and its subobjects, if any, have an
3465    //     indeterminate initial value; if the object or any of its
3466    //     subobjects are of const-qualified type, the program is
3467    //     ill-formed.
3468    //
3469    // This isn't technically an error in C, so we don't diagnose it.
3470    //
3471    // FIXME: Actually perform the POD/user-defined default
3472    // constructor check.
3473    if (getLangOptions().CPlusPlus &&
3474        Context.getCanonicalType(Type).isConstQualified() &&
3475        !Var->hasExternalStorage())
3476      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3477        << Var->getName()
3478        << SourceRange(Var->getLocation(), Var->getLocation());
3479#endif
3480  }
3481}
3482
3483Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3484                                                   DeclPtrTy *Group,
3485                                                   unsigned NumDecls) {
3486  llvm::SmallVector<Decl*, 8> Decls;
3487
3488  if (DS.isTypeSpecOwned())
3489    Decls.push_back((Decl*)DS.getTypeRep());
3490
3491  for (unsigned i = 0; i != NumDecls; ++i)
3492    if (Decl *D = Group[i].getAs<Decl>())
3493      Decls.push_back(D);
3494
3495  // Perform semantic analysis that depends on having fully processed both
3496  // the declarator and initializer.
3497  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3498    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3499    if (!IDecl)
3500      continue;
3501    QualType T = IDecl->getType();
3502
3503    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3504    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3505    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3506      if (!IDecl->isInvalidDecl() &&
3507          RequireCompleteType(IDecl->getLocation(), T,
3508                              diag::err_typecheck_decl_incomplete_type))
3509        IDecl->setInvalidDecl();
3510    }
3511    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3512    // object that has file scope without an initializer, and without a
3513    // storage-class specifier or with the storage-class specifier "static",
3514    // constitutes a tentative definition. Note: A tentative definition with
3515    // external linkage is valid (C99 6.2.2p5).
3516    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3517      if (const IncompleteArrayType *ArrayT
3518          = Context.getAsIncompleteArrayType(T)) {
3519        if (RequireCompleteType(IDecl->getLocation(),
3520                                ArrayT->getElementType(),
3521                                diag::err_illegal_decl_array_incomplete_type))
3522          IDecl->setInvalidDecl();
3523      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3524        // C99 6.9.2p3: If the declaration of an identifier for an object is
3525        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3526        // declared type shall not be an incomplete type.
3527        // NOTE: code such as the following
3528        //     static struct s;
3529        //     struct s { int a; };
3530        // is accepted by gcc. Hence here we issue a warning instead of
3531        // an error and we do not invalidate the static declaration.
3532        // NOTE: to avoid multiple warnings, only check the first declaration.
3533        if (IDecl->getPreviousDeclaration() == 0)
3534          RequireCompleteType(IDecl->getLocation(), T,
3535                              diag::ext_typecheck_decl_incomplete_type);
3536      }
3537    }
3538  }
3539  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3540                                                   Decls.data(), Decls.size()));
3541}
3542
3543
3544/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3545/// to introduce parameters into function prototype scope.
3546Sema::DeclPtrTy
3547Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3548  const DeclSpec &DS = D.getDeclSpec();
3549
3550  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3551  VarDecl::StorageClass StorageClass = VarDecl::None;
3552  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3553    StorageClass = VarDecl::Register;
3554  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3555    Diag(DS.getStorageClassSpecLoc(),
3556         diag::err_invalid_storage_class_in_func_decl);
3557    D.getMutableDeclSpec().ClearStorageClassSpecs();
3558  }
3559
3560  if (D.getDeclSpec().isThreadSpecified())
3561    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3562
3563  DiagnoseFunctionSpecifiers(D);
3564
3565  // Check that there are no default arguments inside the type of this
3566  // parameter (C++ only).
3567  if (getLangOptions().CPlusPlus)
3568    CheckExtraCXXDefaultArguments(D);
3569
3570  DeclaratorInfo *DInfo = 0;
3571  TagDecl *OwnedDecl = 0;
3572  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3573                                               &OwnedDecl);
3574
3575  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3576    // C++ [dcl.fct]p6:
3577    //   Types shall not be defined in return or parameter types.
3578    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3579      << Context.getTypeDeclType(OwnedDecl);
3580  }
3581
3582  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3583  // Can this happen for params?  We already checked that they don't conflict
3584  // among each other.  Here they can only shadow globals, which is ok.
3585  IdentifierInfo *II = D.getIdentifier();
3586  if (II) {
3587    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3588      if (PrevDecl->isTemplateParameter()) {
3589        // Maybe we will complain about the shadowed template parameter.
3590        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3591        // Just pretend that we didn't see the previous declaration.
3592        PrevDecl = 0;
3593      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3594        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3595
3596        // Recover by removing the name
3597        II = 0;
3598        D.SetIdentifier(0, D.getIdentifierLoc());
3599      }
3600    }
3601  }
3602
3603  // Parameters can not be abstract class types.
3604  // For record types, this is done by the AbstractClassUsageDiagnoser once
3605  // the class has been completely parsed.
3606  if (!CurContext->isRecord() &&
3607      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3608                             diag::err_abstract_type_in_decl,
3609                             AbstractParamType))
3610    D.setInvalidType(true);
3611
3612  QualType T = adjustParameterType(parmDeclType);
3613
3614  ParmVarDecl *New;
3615  if (T == parmDeclType) // parameter type did not need adjustment
3616    New = ParmVarDecl::Create(Context, CurContext,
3617                              D.getIdentifierLoc(), II,
3618                              parmDeclType, DInfo, StorageClass,
3619                              0);
3620  else // keep track of both the adjusted and unadjusted types
3621    New = OriginalParmVarDecl::Create(Context, CurContext,
3622                                      D.getIdentifierLoc(), II, T, DInfo,
3623                                      parmDeclType, StorageClass, 0);
3624
3625  if (D.isInvalidType())
3626    New->setInvalidDecl();
3627
3628  // Parameter declarators cannot be interface types. All ObjC objects are
3629  // passed by reference.
3630  if (T->isObjCInterfaceType()) {
3631    Diag(D.getIdentifierLoc(),
3632         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3633    New->setInvalidDecl();
3634  }
3635
3636  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3637  if (D.getCXXScopeSpec().isSet()) {
3638    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3639      << D.getCXXScopeSpec().getRange();
3640    New->setInvalidDecl();
3641  }
3642
3643  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3644  // duration shall not be qualified by an address-space qualifier."
3645  // Since all parameters have automatic store duration, they can not have
3646  // an address space.
3647  if (T.getAddressSpace() != 0) {
3648    Diag(D.getIdentifierLoc(),
3649         diag::err_arg_with_address_space);
3650    New->setInvalidDecl();
3651  }
3652
3653
3654  // Add the parameter declaration into this scope.
3655  S->AddDecl(DeclPtrTy::make(New));
3656  if (II)
3657    IdResolver.AddDecl(New);
3658
3659  ProcessDeclAttributes(S, New, D);
3660
3661  if (New->hasAttr<BlocksAttr>()) {
3662    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3663  }
3664  return DeclPtrTy::make(New);
3665}
3666
3667void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3668                                           SourceLocation LocAfterDecls) {
3669  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3670         "Not a function declarator!");
3671  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3672
3673  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3674  // for a K&R function.
3675  if (!FTI.hasPrototype) {
3676    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3677      --i;
3678      if (FTI.ArgInfo[i].Param == 0) {
3679        std::string Code = "  int ";
3680        Code += FTI.ArgInfo[i].Ident->getName();
3681        Code += ";\n";
3682        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3683          << FTI.ArgInfo[i].Ident
3684          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3685
3686        // Implicitly declare the argument as type 'int' for lack of a better
3687        // type.
3688        DeclSpec DS;
3689        const char* PrevSpec; // unused
3690        unsigned DiagID; // unused
3691        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3692                           PrevSpec, DiagID);
3693        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3694        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3695        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3696      }
3697    }
3698  }
3699}
3700
3701Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3702                                              Declarator &D) {
3703  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3704  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3705         "Not a function declarator!");
3706  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3707
3708  if (FTI.hasPrototype) {
3709    // FIXME: Diagnose arguments without names in C.
3710  }
3711
3712  Scope *ParentScope = FnBodyScope->getParent();
3713
3714  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3715                                  MultiTemplateParamsArg(*this),
3716                                  /*IsFunctionDefinition=*/true);
3717  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3718}
3719
3720Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3721  if (!D)
3722    return D;
3723  FunctionDecl *FD = 0;
3724
3725  if (FunctionTemplateDecl *FunTmpl
3726        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3727    FD = FunTmpl->getTemplatedDecl();
3728  else
3729    FD = cast<FunctionDecl>(D.getAs<Decl>());
3730
3731  CurFunctionNeedsScopeChecking = false;
3732
3733  // See if this is a redefinition.
3734  const FunctionDecl *Definition;
3735  if (FD->getBody(Definition)) {
3736    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3737    Diag(Definition->getLocation(), diag::note_previous_definition);
3738  }
3739
3740  // Builtin functions cannot be defined.
3741  if (unsigned BuiltinID = FD->getBuiltinID()) {
3742    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3743      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3744      FD->setInvalidDecl();
3745    }
3746  }
3747
3748  // The return type of a function definition must be complete
3749  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3750  QualType ResultType = FD->getResultType();
3751  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3752      !FD->isInvalidDecl() &&
3753      RequireCompleteType(FD->getLocation(), ResultType,
3754                          diag::err_func_def_incomplete_result))
3755    FD->setInvalidDecl();
3756
3757  // GNU warning -Wmissing-prototypes:
3758  //   Warn if a global function is defined without a previous
3759  //   prototype declaration. This warning is issued even if the
3760  //   definition itself provides a prototype. The aim is to detect
3761  //   global functions that fail to be declared in header files.
3762  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3763      !FD->isMain()) {
3764    bool MissingPrototype = true;
3765    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3766         Prev; Prev = Prev->getPreviousDeclaration()) {
3767      // Ignore any declarations that occur in function or method
3768      // scope, because they aren't visible from the header.
3769      if (Prev->getDeclContext()->isFunctionOrMethod())
3770        continue;
3771
3772      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3773      break;
3774    }
3775
3776    if (MissingPrototype)
3777      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3778  }
3779
3780  if (FnBodyScope)
3781    PushDeclContext(FnBodyScope, FD);
3782
3783  // Check the validity of our function parameters
3784  CheckParmsForFunctionDef(FD);
3785
3786  // Introduce our parameters into the function scope
3787  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3788    ParmVarDecl *Param = FD->getParamDecl(p);
3789    Param->setOwningFunction(FD);
3790
3791    // If this has an identifier, add it to the scope stack.
3792    if (Param->getIdentifier() && FnBodyScope)
3793      PushOnScopeChains(Param, FnBodyScope);
3794  }
3795
3796  // Checking attributes of current function definition
3797  // dllimport attribute.
3798  if (FD->getAttr<DLLImportAttr>() &&
3799      (!FD->getAttr<DLLExportAttr>())) {
3800    // dllimport attribute cannot be applied to definition.
3801    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3802      Diag(FD->getLocation(),
3803           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3804        << "dllimport";
3805      FD->setInvalidDecl();
3806      return DeclPtrTy::make(FD);
3807    } else {
3808      // If a symbol previously declared dllimport is later defined, the
3809      // attribute is ignored in subsequent references, and a warning is
3810      // emitted.
3811      Diag(FD->getLocation(),
3812           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3813        << FD->getNameAsCString() << "dllimport";
3814    }
3815  }
3816  return DeclPtrTy::make(FD);
3817}
3818
3819Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3820  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3821}
3822
3823Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3824                                              bool IsInstantiation) {
3825  Decl *dcl = D.getAs<Decl>();
3826  Stmt *Body = BodyArg.takeAs<Stmt>();
3827
3828  FunctionDecl *FD = 0;
3829  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3830  if (FunTmpl)
3831    FD = FunTmpl->getTemplatedDecl();
3832  else
3833    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3834
3835  if (FD) {
3836    FD->setBody(Body);
3837    if (FD->isMain())
3838      // C and C++ allow for main to automagically return 0.
3839      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3840      FD->setHasImplicitReturnZero(true);
3841    else
3842      CheckFallThroughForFunctionDef(FD, Body);
3843
3844    if (!FD->isInvalidDecl())
3845      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3846
3847    // C++ [basic.def.odr]p2:
3848    //   [...] A virtual member function is used if it is not pure. [...]
3849    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3850      if (Method->isVirtual() && !Method->isPure())
3851        MarkDeclarationReferenced(Method->getLocation(), Method);
3852
3853    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3854  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3855    assert(MD == getCurMethodDecl() && "Method parsing confused");
3856    MD->setBody(Body);
3857    CheckFallThroughForFunctionDef(MD, Body);
3858    MD->setEndLoc(Body->getLocEnd());
3859
3860    if (!MD->isInvalidDecl())
3861      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3862  } else {
3863    Body->Destroy(Context);
3864    return DeclPtrTy();
3865  }
3866  if (!IsInstantiation)
3867    PopDeclContext();
3868
3869  // Verify and clean out per-function state.
3870
3871  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3872
3873  // Check goto/label use.
3874  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3875       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3876    LabelStmt *L = I->second;
3877
3878    // Verify that we have no forward references left.  If so, there was a goto
3879    // or address of a label taken, but no definition of it.  Label fwd
3880    // definitions are indicated with a null substmt.
3881    if (L->getSubStmt() != 0)
3882      continue;
3883
3884    // Emit error.
3885    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3886
3887    // At this point, we have gotos that use the bogus label.  Stitch it into
3888    // the function body so that they aren't leaked and that the AST is well
3889    // formed.
3890    if (Body == 0) {
3891      // The whole function wasn't parsed correctly, just delete this.
3892      L->Destroy(Context);
3893      continue;
3894    }
3895
3896    // Otherwise, the body is valid: we want to stitch the label decl into the
3897    // function somewhere so that it is properly owned and so that the goto
3898    // has a valid target.  Do this by creating a new compound stmt with the
3899    // label in it.
3900
3901    // Give the label a sub-statement.
3902    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3903
3904    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3905                               cast<CXXTryStmt>(Body)->getTryBlock() :
3906                               cast<CompoundStmt>(Body);
3907    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3908    Elements.push_back(L);
3909    Compound->setStmts(Context, &Elements[0], Elements.size());
3910  }
3911  FunctionLabelMap.clear();
3912
3913  if (!Body) return D;
3914
3915  // Verify that that gotos and switch cases don't jump into scopes illegally.
3916  if (CurFunctionNeedsScopeChecking)
3917    DiagnoseInvalidJumps(Body);
3918
3919  // C++ constructors that have function-try-blocks can't have return
3920  // statements in the handlers of that block. (C++ [except.handle]p14)
3921  // Verify this.
3922  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3923    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3924
3925  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3926    computeBaseOrMembersToDestroy(Destructor);
3927  return D;
3928}
3929
3930/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3931/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3932NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3933                                          IdentifierInfo &II, Scope *S) {
3934  // Before we produce a declaration for an implicitly defined
3935  // function, see whether there was a locally-scoped declaration of
3936  // this name as a function or variable. If so, use that
3937  // (non-visible) declaration, and complain about it.
3938  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3939    = LocallyScopedExternalDecls.find(&II);
3940  if (Pos != LocallyScopedExternalDecls.end()) {
3941    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3942    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3943    return Pos->second;
3944  }
3945
3946  // Extension in C99.  Legal in C90, but warn about it.
3947  static const unsigned int BuiltinLen = strlen("__builtin_");
3948  if (II.getLength() > BuiltinLen &&
3949      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3950    Diag(Loc, diag::warn_builtin_unknown) << &II;
3951  else if (getLangOptions().C99)
3952    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3953  else
3954    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3955
3956  // Set a Declarator for the implicit definition: int foo();
3957  const char *Dummy;
3958  DeclSpec DS;
3959  unsigned DiagID;
3960  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3961  Error = Error; // Silence warning.
3962  assert(!Error && "Error setting up implicit decl!");
3963  Declarator D(DS, Declarator::BlockContext);
3964  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3965                                             0, 0, false, SourceLocation(),
3966                                             false, 0,0,0, Loc, Loc, D),
3967                SourceLocation());
3968  D.SetIdentifier(&II, Loc);
3969
3970  // Insert this function into translation-unit scope.
3971
3972  DeclContext *PrevDC = CurContext;
3973  CurContext = Context.getTranslationUnitDecl();
3974
3975  FunctionDecl *FD =
3976 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3977  FD->setImplicit();
3978
3979  CurContext = PrevDC;
3980
3981  AddKnownFunctionAttributes(FD);
3982
3983  return FD;
3984}
3985
3986/// \brief Adds any function attributes that we know a priori based on
3987/// the declaration of this function.
3988///
3989/// These attributes can apply both to implicitly-declared builtins
3990/// (like __builtin___printf_chk) or to library-declared functions
3991/// like NSLog or printf.
3992void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3993  if (FD->isInvalidDecl())
3994    return;
3995
3996  // If this is a built-in function, map its builtin attributes to
3997  // actual attributes.
3998  if (unsigned BuiltinID = FD->getBuiltinID()) {
3999    // Handle printf-formatting attributes.
4000    unsigned FormatIdx;
4001    bool HasVAListArg;
4002    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4003      if (!FD->getAttr<FormatAttr>())
4004        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4005                                             HasVAListArg ? 0 : FormatIdx + 2));
4006    }
4007
4008    // Mark const if we don't care about errno and that is the only
4009    // thing preventing the function from being const. This allows
4010    // IRgen to use LLVM intrinsics for such functions.
4011    if (!getLangOptions().MathErrno &&
4012        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4013      if (!FD->getAttr<ConstAttr>())
4014        FD->addAttr(::new (Context) ConstAttr());
4015    }
4016
4017    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4018      FD->addAttr(::new (Context) NoReturnAttr());
4019  }
4020
4021  IdentifierInfo *Name = FD->getIdentifier();
4022  if (!Name)
4023    return;
4024  if ((!getLangOptions().CPlusPlus &&
4025       FD->getDeclContext()->isTranslationUnit()) ||
4026      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4027       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4028       LinkageSpecDecl::lang_c)) {
4029    // Okay: this could be a libc/libm/Objective-C function we know
4030    // about.
4031  } else
4032    return;
4033
4034  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4035    // FIXME: NSLog and NSLogv should be target specific
4036    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4037      // FIXME: We known better than our headers.
4038      const_cast<FormatAttr *>(Format)->setType("printf");
4039    } else
4040      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4041                                             Name->isStr("NSLogv") ? 0 : 2));
4042  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4043    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4044    // target-specific builtins, perhaps?
4045    if (!FD->getAttr<FormatAttr>())
4046      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4047                                             Name->isStr("vasprintf") ? 0 : 3));
4048  }
4049}
4050
4051TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4052  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4053  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4054
4055  // Scope manipulation handled by caller.
4056  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4057                                           D.getIdentifierLoc(),
4058                                           D.getIdentifier(),
4059                                           T);
4060
4061  if (const TagType *TT = T->getAs<TagType>()) {
4062    TagDecl *TD = TT->getDecl();
4063
4064    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4065    // keep track of the TypedefDecl.
4066    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4067      TD->setTypedefForAnonDecl(NewTD);
4068  }
4069
4070  if (D.isInvalidType())
4071    NewTD->setInvalidDecl();
4072  return NewTD;
4073}
4074
4075
4076/// \brief Determine whether a tag with a given kind is acceptable
4077/// as a redeclaration of the given tag declaration.
4078///
4079/// \returns true if the new tag kind is acceptable, false otherwise.
4080bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4081                                        TagDecl::TagKind NewTag,
4082                                        SourceLocation NewTagLoc,
4083                                        const IdentifierInfo &Name) {
4084  // C++ [dcl.type.elab]p3:
4085  //   The class-key or enum keyword present in the
4086  //   elaborated-type-specifier shall agree in kind with the
4087  //   declaration to which the name in theelaborated-type-specifier
4088  //   refers. This rule also applies to the form of
4089  //   elaborated-type-specifier that declares a class-name or
4090  //   friend class since it can be construed as referring to the
4091  //   definition of the class. Thus, in any
4092  //   elaborated-type-specifier, the enum keyword shall be used to
4093  //   refer to an enumeration (7.2), the union class-keyshall be
4094  //   used to refer to a union (clause 9), and either the class or
4095  //   struct class-key shall be used to refer to a class (clause 9)
4096  //   declared using the class or struct class-key.
4097  TagDecl::TagKind OldTag = Previous->getTagKind();
4098  if (OldTag == NewTag)
4099    return true;
4100
4101  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4102      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4103    // Warn about the struct/class tag mismatch.
4104    bool isTemplate = false;
4105    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4106      isTemplate = Record->getDescribedClassTemplate();
4107
4108    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4109      << (NewTag == TagDecl::TK_class)
4110      << isTemplate << &Name
4111      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4112                              OldTag == TagDecl::TK_class? "class" : "struct");
4113    Diag(Previous->getLocation(), diag::note_previous_use);
4114    return true;
4115  }
4116  return false;
4117}
4118
4119/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4120/// former case, Name will be non-null.  In the later case, Name will be null.
4121/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4122/// reference/declaration/definition of a tag.
4123Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4124                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4125                               IdentifierInfo *Name, SourceLocation NameLoc,
4126                               AttributeList *Attr, AccessSpecifier AS,
4127                               MultiTemplateParamsArg TemplateParameterLists,
4128                               bool &OwnedDecl, bool &IsDependent) {
4129  // If this is not a definition, it must have a name.
4130  assert((Name != 0 || TUK == TUK_Definition) &&
4131         "Nameless record must be a definition!");
4132
4133  OwnedDecl = false;
4134  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4135
4136  // FIXME: Check explicit specializations more carefully.
4137  bool isExplicitSpecialization = false;
4138  if (TUK != TUK_Reference) {
4139    if (TemplateParameterList *TemplateParams
4140          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4141                        (TemplateParameterList**)TemplateParameterLists.get(),
4142                                              TemplateParameterLists.size(),
4143                                                    isExplicitSpecialization)) {
4144      if (TemplateParams->size() > 0) {
4145        // This is a declaration or definition of a class template (which may
4146        // be a member of another template).
4147        OwnedDecl = false;
4148        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4149                                               SS, Name, NameLoc, Attr,
4150                                               TemplateParams,
4151                                               AS);
4152        TemplateParameterLists.release();
4153        return Result.get();
4154      } else {
4155        // The "template<>" header is extraneous.
4156        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4157          << ElaboratedType::getNameForTagKind(Kind) << Name;
4158        isExplicitSpecialization = true;
4159      }
4160    }
4161
4162    TemplateParameterLists.release();
4163  }
4164
4165  DeclContext *SearchDC = CurContext;
4166  DeclContext *DC = CurContext;
4167  NamedDecl *PrevDecl = 0;
4168  bool isStdBadAlloc = false;
4169  bool Invalid = false;
4170
4171  bool RedeclarationOnly = (TUK != TUK_Reference);
4172
4173  if (Name && SS.isNotEmpty()) {
4174    // We have a nested-name tag ('struct foo::bar').
4175
4176    // Check for invalid 'foo::'.
4177    if (SS.isInvalid()) {
4178      Name = 0;
4179      goto CreateNewDecl;
4180    }
4181
4182    // If this is a friend or a reference to a class in a dependent
4183    // context, don't try to make a decl for it.
4184    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4185      DC = computeDeclContext(SS, false);
4186      if (!DC) {
4187        IsDependent = true;
4188        return DeclPtrTy();
4189      }
4190    }
4191
4192    if (RequireCompleteDeclContext(SS))
4193      return DeclPtrTy::make((Decl *)0);
4194
4195    DC = computeDeclContext(SS, true);
4196    SearchDC = DC;
4197    // Look-up name inside 'foo::'.
4198    LookupResult R;
4199    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4200
4201    if (R.isAmbiguous()) {
4202      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4203      return DeclPtrTy();
4204    }
4205
4206    if (R.getKind() == LookupResult::Found)
4207      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4208
4209    // A tag 'foo::bar' must already exist.
4210    if (!PrevDecl) {
4211      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4212      Name = 0;
4213      Invalid = true;
4214      goto CreateNewDecl;
4215    }
4216  } else if (Name) {
4217    // If this is a named struct, check to see if there was a previous forward
4218    // declaration or definition.
4219    // FIXME: We're looking into outer scopes here, even when we
4220    // shouldn't be. Doing so can result in ambiguities that we
4221    // shouldn't be diagnosing.
4222    LookupResult R;
4223    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4224    if (R.isAmbiguous()) {
4225      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4226      // FIXME: This is not best way to recover from case like:
4227      //
4228      // struct S s;
4229      //
4230      // causes needless "incomplete type" error later.
4231      Name = 0;
4232      PrevDecl = 0;
4233      Invalid = true;
4234    } else
4235      PrevDecl = R.getAsSingleDecl(Context);
4236
4237    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4238      // FIXME: This makes sure that we ignore the contexts associated
4239      // with C structs, unions, and enums when looking for a matching
4240      // tag declaration or definition. See the similar lookup tweak
4241      // in Sema::LookupName; is there a better way to deal with this?
4242      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4243        SearchDC = SearchDC->getParent();
4244    }
4245  }
4246
4247  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4248    // Maybe we will complain about the shadowed template parameter.
4249    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4250    // Just pretend that we didn't see the previous declaration.
4251    PrevDecl = 0;
4252  }
4253
4254  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4255      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4256    // This is a declaration of or a reference to "std::bad_alloc".
4257    isStdBadAlloc = true;
4258
4259    if (!PrevDecl && StdBadAlloc) {
4260      // std::bad_alloc has been implicitly declared (but made invisible to
4261      // name lookup). Fill in this implicit declaration as the previous
4262      // declaration, so that the declarations get chained appropriately.
4263      PrevDecl = StdBadAlloc;
4264    }
4265  }
4266
4267  if (PrevDecl) {
4268    // Check whether the previous declaration is usable.
4269    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4270
4271    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4272      // If this is a use of a previous tag, or if the tag is already declared
4273      // in the same scope (so that the definition/declaration completes or
4274      // rementions the tag), reuse the decl.
4275      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4276          isDeclInScope(PrevDecl, SearchDC, S)) {
4277        // Make sure that this wasn't declared as an enum and now used as a
4278        // struct or something similar.
4279        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4280          bool SafeToContinue
4281            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4282               Kind != TagDecl::TK_enum);
4283          if (SafeToContinue)
4284            Diag(KWLoc, diag::err_use_with_wrong_tag)
4285              << Name
4286              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4287                                                  PrevTagDecl->getKindName());
4288          else
4289            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4290          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4291
4292          if (SafeToContinue)
4293            Kind = PrevTagDecl->getTagKind();
4294          else {
4295            // Recover by making this an anonymous redefinition.
4296            Name = 0;
4297            PrevDecl = 0;
4298            Invalid = true;
4299          }
4300        }
4301
4302        if (!Invalid) {
4303          // If this is a use, just return the declaration we found.
4304
4305          // FIXME: In the future, return a variant or some other clue
4306          // for the consumer of this Decl to know it doesn't own it.
4307          // For our current ASTs this shouldn't be a problem, but will
4308          // need to be changed with DeclGroups.
4309          if (TUK == TUK_Reference || TUK == TUK_Friend)
4310            return DeclPtrTy::make(PrevDecl);
4311
4312          // Diagnose attempts to redefine a tag.
4313          if (TUK == TUK_Definition) {
4314            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4315              // If we're defining a specialization and the previous definition
4316              // is from an implicit instantiation, don't emit an error
4317              // here; we'll catch this in the general case below.
4318              if (!isExplicitSpecialization ||
4319                  !isa<CXXRecordDecl>(Def) ||
4320                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4321                                               == TSK_ExplicitSpecialization) {
4322                Diag(NameLoc, diag::err_redefinition) << Name;
4323                Diag(Def->getLocation(), diag::note_previous_definition);
4324                // If this is a redefinition, recover by making this
4325                // struct be anonymous, which will make any later
4326                // references get the previous definition.
4327                Name = 0;
4328                PrevDecl = 0;
4329                Invalid = true;
4330              }
4331            } else {
4332              // If the type is currently being defined, complain
4333              // about a nested redefinition.
4334              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4335              if (Tag->isBeingDefined()) {
4336                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4337                Diag(PrevTagDecl->getLocation(),
4338                     diag::note_previous_definition);
4339                Name = 0;
4340                PrevDecl = 0;
4341                Invalid = true;
4342              }
4343            }
4344
4345            // Okay, this is definition of a previously declared or referenced
4346            // tag PrevDecl. We're going to create a new Decl for it.
4347          }
4348        }
4349        // If we get here we have (another) forward declaration or we
4350        // have a definition.  Just create a new decl.
4351
4352      } else {
4353        // If we get here, this is a definition of a new tag type in a nested
4354        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4355        // new decl/type.  We set PrevDecl to NULL so that the entities
4356        // have distinct types.
4357        PrevDecl = 0;
4358      }
4359      // If we get here, we're going to create a new Decl. If PrevDecl
4360      // is non-NULL, it's a definition of the tag declared by
4361      // PrevDecl. If it's NULL, we have a new definition.
4362    } else {
4363      // PrevDecl is a namespace, template, or anything else
4364      // that lives in the IDNS_Tag identifier namespace.
4365      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4366        // The tag name clashes with a namespace name, issue an error and
4367        // recover by making this tag be anonymous.
4368        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4369        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4370        Name = 0;
4371        PrevDecl = 0;
4372        Invalid = true;
4373      } else {
4374        // The existing declaration isn't relevant to us; we're in a
4375        // new scope, so clear out the previous declaration.
4376        PrevDecl = 0;
4377      }
4378    }
4379  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4380             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4381    // C++ [basic.scope.pdecl]p5:
4382    //   -- for an elaborated-type-specifier of the form
4383    //
4384    //          class-key identifier
4385    //
4386    //      if the elaborated-type-specifier is used in the
4387    //      decl-specifier-seq or parameter-declaration-clause of a
4388    //      function defined in namespace scope, the identifier is
4389    //      declared as a class-name in the namespace that contains
4390    //      the declaration; otherwise, except as a friend
4391    //      declaration, the identifier is declared in the smallest
4392    //      non-class, non-function-prototype scope that contains the
4393    //      declaration.
4394    //
4395    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4396    // C structs and unions.
4397    //
4398    // GNU C also supports this behavior as part of its incomplete
4399    // enum types extension, while GNU C++ does not.
4400    //
4401    // Find the context where we'll be declaring the tag.
4402    // FIXME: We would like to maintain the current DeclContext as the
4403    // lexical context,
4404    while (SearchDC->isRecord())
4405      SearchDC = SearchDC->getParent();
4406
4407    // Find the scope where we'll be declaring the tag.
4408    while (S->isClassScope() ||
4409           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4410           ((S->getFlags() & Scope::DeclScope) == 0) ||
4411           (S->getEntity() &&
4412            ((DeclContext *)S->getEntity())->isTransparentContext()))
4413      S = S->getParent();
4414
4415  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4416    // C++ [namespace.memdef]p3:
4417    //   If a friend declaration in a non-local class first declares a
4418    //   class or function, the friend class or function is a member of
4419    //   the innermost enclosing namespace.
4420    while (!SearchDC->isFileContext())
4421      SearchDC = SearchDC->getParent();
4422
4423    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4424    while (S->getEntity() != SearchDC)
4425      S = S->getParent();
4426  }
4427
4428CreateNewDecl:
4429
4430  // If there is an identifier, use the location of the identifier as the
4431  // location of the decl, otherwise use the location of the struct/union
4432  // keyword.
4433  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4434
4435  // Otherwise, create a new declaration. If there is a previous
4436  // declaration of the same entity, the two will be linked via
4437  // PrevDecl.
4438  TagDecl *New;
4439
4440  if (Kind == TagDecl::TK_enum) {
4441    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4442    // enum X { A, B, C } D;    D should chain to X.
4443    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4444                           cast_or_null<EnumDecl>(PrevDecl));
4445    // If this is an undefined enum, warn.
4446    if (TUK != TUK_Definition && !Invalid)  {
4447      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4448                                              : diag::ext_forward_ref_enum;
4449      Diag(Loc, DK);
4450    }
4451  } else {
4452    // struct/union/class
4453
4454    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4455    // struct X { int A; } D;    D should chain to X.
4456    if (getLangOptions().CPlusPlus) {
4457      // FIXME: Look for a way to use RecordDecl for simple structs.
4458      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4459                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4460
4461      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4462        StdBadAlloc = cast<CXXRecordDecl>(New);
4463    } else
4464      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4465                               cast_or_null<RecordDecl>(PrevDecl));
4466  }
4467
4468  if (Kind != TagDecl::TK_enum) {
4469    // Handle #pragma pack: if the #pragma pack stack has non-default
4470    // alignment, make up a packed attribute for this decl. These
4471    // attributes are checked when the ASTContext lays out the
4472    // structure.
4473    //
4474    // It is important for implementing the correct semantics that this
4475    // happen here (in act on tag decl). The #pragma pack stack is
4476    // maintained as a result of parser callbacks which can occur at
4477    // many points during the parsing of a struct declaration (because
4478    // the #pragma tokens are effectively skipped over during the
4479    // parsing of the struct).
4480    if (unsigned Alignment = getPragmaPackAlignment())
4481      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4482  }
4483
4484  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4485    // C++ [dcl.typedef]p3:
4486    //   [...] Similarly, in a given scope, a class or enumeration
4487    //   shall not be declared with the same name as a typedef-name
4488    //   that is declared in that scope and refers to a type other
4489    //   than the class or enumeration itself.
4490    LookupResult Lookup;
4491    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4492    TypedefDecl *PrevTypedef = 0;
4493    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4494      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4495
4496    NamedDecl *PrevTypedefNamed = PrevTypedef;
4497    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4498        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4499          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4500      Diag(Loc, diag::err_tag_definition_of_typedef)
4501        << Context.getTypeDeclType(New)
4502        << PrevTypedef->getUnderlyingType();
4503      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4504      Invalid = true;
4505    }
4506  }
4507
4508  // If this is a specialization of a member class (of a class template),
4509  // check the specialization.
4510  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4511    Invalid = true;
4512
4513  if (Invalid)
4514    New->setInvalidDecl();
4515
4516  if (Attr)
4517    ProcessDeclAttributeList(S, New, Attr);
4518
4519  // If we're declaring or defining a tag in function prototype scope
4520  // in C, note that this type can only be used within the function.
4521  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4522    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4523
4524  // Set the lexical context. If the tag has a C++ scope specifier, the
4525  // lexical context will be different from the semantic context.
4526  New->setLexicalDeclContext(CurContext);
4527
4528  // Mark this as a friend decl if applicable.
4529  if (TUK == TUK_Friend)
4530    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4531
4532  // Set the access specifier.
4533  if (!Invalid && TUK != TUK_Friend)
4534    SetMemberAccessSpecifier(New, PrevDecl, AS);
4535
4536  if (TUK == TUK_Definition)
4537    New->startDefinition();
4538
4539  // If this has an identifier, add it to the scope stack.
4540  if (TUK == TUK_Friend) {
4541    // We might be replacing an existing declaration in the lookup tables;
4542    // if so, borrow its access specifier.
4543    if (PrevDecl)
4544      New->setAccess(PrevDecl->getAccess());
4545
4546    // Friend tag decls are visible in fairly strange ways.
4547    if (!CurContext->isDependentContext()) {
4548      DeclContext *DC = New->getDeclContext()->getLookupContext();
4549      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4550      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4551        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4552    }
4553  } else if (Name) {
4554    S = getNonFieldDeclScope(S);
4555    PushOnScopeChains(New, S);
4556  } else {
4557    CurContext->addDecl(New);
4558  }
4559
4560  // If this is the C FILE type, notify the AST context.
4561  if (IdentifierInfo *II = New->getIdentifier())
4562    if (!New->isInvalidDecl() &&
4563        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4564        II->isStr("FILE"))
4565      Context.setFILEDecl(New);
4566
4567  OwnedDecl = true;
4568  return DeclPtrTy::make(New);
4569}
4570
4571void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4572  AdjustDeclIfTemplate(TagD);
4573  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4574
4575  // Enter the tag context.
4576  PushDeclContext(S, Tag);
4577
4578  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4579    FieldCollector->StartClass();
4580
4581    if (Record->getIdentifier()) {
4582      // C++ [class]p2:
4583      //   [...] The class-name is also inserted into the scope of the
4584      //   class itself; this is known as the injected-class-name. For
4585      //   purposes of access checking, the injected-class-name is treated
4586      //   as if it were a public member name.
4587      CXXRecordDecl *InjectedClassName
4588        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4589                                CurContext, Record->getLocation(),
4590                                Record->getIdentifier(),
4591                                Record->getTagKeywordLoc(),
4592                                Record);
4593      InjectedClassName->setImplicit();
4594      InjectedClassName->setAccess(AS_public);
4595      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4596        InjectedClassName->setDescribedClassTemplate(Template);
4597      PushOnScopeChains(InjectedClassName, S);
4598      assert(InjectedClassName->isInjectedClassName() &&
4599             "Broken injected-class-name");
4600    }
4601  }
4602}
4603
4604void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4605                                    SourceLocation RBraceLoc) {
4606  AdjustDeclIfTemplate(TagD);
4607  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4608  Tag->setRBraceLoc(RBraceLoc);
4609
4610  if (isa<CXXRecordDecl>(Tag))
4611    FieldCollector->FinishClass();
4612
4613  // Exit this scope of this tag's definition.
4614  PopDeclContext();
4615
4616  // Notify the consumer that we've defined a tag.
4617  Consumer.HandleTagDeclDefinition(Tag);
4618}
4619
4620// Note that FieldName may be null for anonymous bitfields.
4621bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4622                          QualType FieldTy, const Expr *BitWidth,
4623                          bool *ZeroWidth) {
4624  // Default to true; that shouldn't confuse checks for emptiness
4625  if (ZeroWidth)
4626    *ZeroWidth = true;
4627
4628  // C99 6.7.2.1p4 - verify the field type.
4629  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4630  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4631    // Handle incomplete types with specific error.
4632    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4633      return true;
4634    if (FieldName)
4635      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4636        << FieldName << FieldTy << BitWidth->getSourceRange();
4637    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4638      << FieldTy << BitWidth->getSourceRange();
4639  }
4640
4641  // If the bit-width is type- or value-dependent, don't try to check
4642  // it now.
4643  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4644    return false;
4645
4646  llvm::APSInt Value;
4647  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4648    return true;
4649
4650  if (Value != 0 && ZeroWidth)
4651    *ZeroWidth = false;
4652
4653  // Zero-width bitfield is ok for anonymous field.
4654  if (Value == 0 && FieldName)
4655    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4656
4657  if (Value.isSigned() && Value.isNegative()) {
4658    if (FieldName)
4659      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4660               << FieldName << Value.toString(10);
4661    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4662      << Value.toString(10);
4663  }
4664
4665  if (!FieldTy->isDependentType()) {
4666    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4667    if (Value.getZExtValue() > TypeSize) {
4668      if (FieldName)
4669        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4670          << FieldName << (unsigned)TypeSize;
4671      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4672        << (unsigned)TypeSize;
4673    }
4674  }
4675
4676  return false;
4677}
4678
4679/// ActOnField - Each field of a struct/union/class is passed into this in order
4680/// to create a FieldDecl object for it.
4681Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4682                                 SourceLocation DeclStart,
4683                                 Declarator &D, ExprTy *BitfieldWidth) {
4684  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4685                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4686                               AS_public);
4687  return DeclPtrTy::make(Res);
4688}
4689
4690/// HandleField - Analyze a field of a C struct or a C++ data member.
4691///
4692FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4693                             SourceLocation DeclStart,
4694                             Declarator &D, Expr *BitWidth,
4695                             AccessSpecifier AS) {
4696  IdentifierInfo *II = D.getIdentifier();
4697  SourceLocation Loc = DeclStart;
4698  if (II) Loc = D.getIdentifierLoc();
4699
4700  DeclaratorInfo *DInfo = 0;
4701  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4702  if (getLangOptions().CPlusPlus)
4703    CheckExtraCXXDefaultArguments(D);
4704
4705  DiagnoseFunctionSpecifiers(D);
4706
4707  if (D.getDeclSpec().isThreadSpecified())
4708    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4709
4710  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4711
4712  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4713    // Maybe we will complain about the shadowed template parameter.
4714    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4715    // Just pretend that we didn't see the previous declaration.
4716    PrevDecl = 0;
4717  }
4718
4719  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4720    PrevDecl = 0;
4721
4722  bool Mutable
4723    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4724  SourceLocation TSSL = D.getSourceRange().getBegin();
4725  FieldDecl *NewFD
4726    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4727                     AS, PrevDecl, &D);
4728  if (NewFD->isInvalidDecl() && PrevDecl) {
4729    // Don't introduce NewFD into scope; there's already something
4730    // with the same name in the same scope.
4731  } else if (II) {
4732    PushOnScopeChains(NewFD, S);
4733  } else
4734    Record->addDecl(NewFD);
4735
4736  return NewFD;
4737}
4738
4739/// \brief Build a new FieldDecl and check its well-formedness.
4740///
4741/// This routine builds a new FieldDecl given the fields name, type,
4742/// record, etc. \p PrevDecl should refer to any previous declaration
4743/// with the same name and in the same scope as the field to be
4744/// created.
4745///
4746/// \returns a new FieldDecl.
4747///
4748/// \todo The Declarator argument is a hack. It will be removed once
4749FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4750                                DeclaratorInfo *DInfo,
4751                                RecordDecl *Record, SourceLocation Loc,
4752                                bool Mutable, Expr *BitWidth,
4753                                SourceLocation TSSL,
4754                                AccessSpecifier AS, NamedDecl *PrevDecl,
4755                                Declarator *D) {
4756  IdentifierInfo *II = Name.getAsIdentifierInfo();
4757  bool InvalidDecl = false;
4758  if (D) InvalidDecl = D->isInvalidType();
4759
4760  // If we receive a broken type, recover by assuming 'int' and
4761  // marking this declaration as invalid.
4762  if (T.isNull()) {
4763    InvalidDecl = true;
4764    T = Context.IntTy;
4765  }
4766
4767  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4768  // than a variably modified type.
4769  if (T->isVariablyModifiedType()) {
4770    bool SizeIsNegative;
4771    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4772                                                           SizeIsNegative);
4773    if (!FixedTy.isNull()) {
4774      Diag(Loc, diag::warn_illegal_constant_array_size);
4775      T = FixedTy;
4776    } else {
4777      if (SizeIsNegative)
4778        Diag(Loc, diag::err_typecheck_negative_array_size);
4779      else
4780        Diag(Loc, diag::err_typecheck_field_variable_size);
4781      InvalidDecl = true;
4782    }
4783  }
4784
4785  // Fields can not have abstract class types
4786  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4787                             AbstractFieldType))
4788    InvalidDecl = true;
4789
4790  bool ZeroWidth = false;
4791  // If this is declared as a bit-field, check the bit-field.
4792  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4793    InvalidDecl = true;
4794    DeleteExpr(BitWidth);
4795    BitWidth = 0;
4796    ZeroWidth = false;
4797  }
4798
4799  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4800                                       BitWidth, Mutable);
4801  if (InvalidDecl)
4802    NewFD->setInvalidDecl();
4803
4804  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4805    Diag(Loc, diag::err_duplicate_member) << II;
4806    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4807    NewFD->setInvalidDecl();
4808  }
4809
4810  if (getLangOptions().CPlusPlus) {
4811    QualType EltTy = Context.getBaseElementType(T);
4812
4813    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4814
4815    if (!T->isPODType())
4816      CXXRecord->setPOD(false);
4817    if (!ZeroWidth)
4818      CXXRecord->setEmpty(false);
4819
4820    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4821      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4822
4823      if (!RDecl->hasTrivialConstructor())
4824        CXXRecord->setHasTrivialConstructor(false);
4825      if (!RDecl->hasTrivialCopyConstructor())
4826        CXXRecord->setHasTrivialCopyConstructor(false);
4827      if (!RDecl->hasTrivialCopyAssignment())
4828        CXXRecord->setHasTrivialCopyAssignment(false);
4829      if (!RDecl->hasTrivialDestructor())
4830        CXXRecord->setHasTrivialDestructor(false);
4831
4832      // C++ 9.5p1: An object of a class with a non-trivial
4833      // constructor, a non-trivial copy constructor, a non-trivial
4834      // destructor, or a non-trivial copy assignment operator
4835      // cannot be a member of a union, nor can an array of such
4836      // objects.
4837      // TODO: C++0x alters this restriction significantly.
4838      if (Record->isUnion()) {
4839        // We check for copy constructors before constructors
4840        // because otherwise we'll never get complaints about
4841        // copy constructors.
4842
4843        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4844
4845        CXXSpecialMember member;
4846        if (!RDecl->hasTrivialCopyConstructor())
4847          member = CXXCopyConstructor;
4848        else if (!RDecl->hasTrivialConstructor())
4849          member = CXXDefaultConstructor;
4850        else if (!RDecl->hasTrivialCopyAssignment())
4851          member = CXXCopyAssignment;
4852        else if (!RDecl->hasTrivialDestructor())
4853          member = CXXDestructor;
4854        else
4855          member = invalid;
4856
4857        if (member != invalid) {
4858          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4859          DiagnoseNontrivial(RT, member);
4860          NewFD->setInvalidDecl();
4861        }
4862      }
4863    }
4864  }
4865
4866  // FIXME: We need to pass in the attributes given an AST
4867  // representation, not a parser representation.
4868  if (D)
4869    // FIXME: What to pass instead of TUScope?
4870    ProcessDeclAttributes(TUScope, NewFD, *D);
4871
4872  if (T.isObjCGCWeak())
4873    Diag(Loc, diag::warn_attribute_weak_on_field);
4874
4875  NewFD->setAccess(AS);
4876
4877  // C++ [dcl.init.aggr]p1:
4878  //   An aggregate is an array or a class (clause 9) with [...] no
4879  //   private or protected non-static data members (clause 11).
4880  // A POD must be an aggregate.
4881  if (getLangOptions().CPlusPlus &&
4882      (AS == AS_private || AS == AS_protected)) {
4883    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4884    CXXRecord->setAggregate(false);
4885    CXXRecord->setPOD(false);
4886  }
4887
4888  return NewFD;
4889}
4890
4891/// DiagnoseNontrivial - Given that a class has a non-trivial
4892/// special member, figure out why.
4893void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4894  QualType QT(T, 0U);
4895  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4896
4897  // Check whether the member was user-declared.
4898  switch (member) {
4899  case CXXDefaultConstructor:
4900    if (RD->hasUserDeclaredConstructor()) {
4901      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4902      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4903        if (!ci->isImplicitlyDefined(Context)) {
4904          SourceLocation CtorLoc = ci->getLocation();
4905          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4906          return;
4907        }
4908
4909      assert(0 && "found no user-declared constructors");
4910      return;
4911    }
4912    break;
4913
4914  case CXXCopyConstructor:
4915    if (RD->hasUserDeclaredCopyConstructor()) {
4916      SourceLocation CtorLoc =
4917        RD->getCopyConstructor(Context, 0)->getLocation();
4918      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4919      return;
4920    }
4921    break;
4922
4923  case CXXCopyAssignment:
4924    if (RD->hasUserDeclaredCopyAssignment()) {
4925      // FIXME: this should use the location of the copy
4926      // assignment, not the type.
4927      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4928      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4929      return;
4930    }
4931    break;
4932
4933  case CXXDestructor:
4934    if (RD->hasUserDeclaredDestructor()) {
4935      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4936      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4937      return;
4938    }
4939    break;
4940  }
4941
4942  typedef CXXRecordDecl::base_class_iterator base_iter;
4943
4944  // Virtual bases and members inhibit trivial copying/construction,
4945  // but not trivial destruction.
4946  if (member != CXXDestructor) {
4947    // Check for virtual bases.  vbases includes indirect virtual bases,
4948    // so we just iterate through the direct bases.
4949    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4950      if (bi->isVirtual()) {
4951        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4952        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4953        return;
4954      }
4955
4956    // Check for virtual methods.
4957    typedef CXXRecordDecl::method_iterator meth_iter;
4958    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4959         ++mi) {
4960      if (mi->isVirtual()) {
4961        SourceLocation MLoc = mi->getSourceRange().getBegin();
4962        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4963        return;
4964      }
4965    }
4966  }
4967
4968  bool (CXXRecordDecl::*hasTrivial)() const;
4969  switch (member) {
4970  case CXXDefaultConstructor:
4971    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4972  case CXXCopyConstructor:
4973    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4974  case CXXCopyAssignment:
4975    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4976  case CXXDestructor:
4977    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4978  default:
4979    assert(0 && "unexpected special member"); return;
4980  }
4981
4982  // Check for nontrivial bases (and recurse).
4983  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4984    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4985    assert(BaseRT);
4986    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4987    if (!(BaseRecTy->*hasTrivial)()) {
4988      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4989      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4990      DiagnoseNontrivial(BaseRT, member);
4991      return;
4992    }
4993  }
4994
4995  // Check for nontrivial members (and recurse).
4996  typedef RecordDecl::field_iterator field_iter;
4997  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4998       ++fi) {
4999    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5000    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5001      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5002
5003      if (!(EltRD->*hasTrivial)()) {
5004        SourceLocation FLoc = (*fi)->getLocation();
5005        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5006        DiagnoseNontrivial(EltRT, member);
5007        return;
5008      }
5009    }
5010  }
5011
5012  assert(0 && "found no explanation for non-trivial member");
5013}
5014
5015/// TranslateIvarVisibility - Translate visibility from a token ID to an
5016///  AST enum value.
5017static ObjCIvarDecl::AccessControl
5018TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5019  switch (ivarVisibility) {
5020  default: assert(0 && "Unknown visitibility kind");
5021  case tok::objc_private: return ObjCIvarDecl::Private;
5022  case tok::objc_public: return ObjCIvarDecl::Public;
5023  case tok::objc_protected: return ObjCIvarDecl::Protected;
5024  case tok::objc_package: return ObjCIvarDecl::Package;
5025  }
5026}
5027
5028/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5029/// in order to create an IvarDecl object for it.
5030Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5031                                SourceLocation DeclStart,
5032                                DeclPtrTy IntfDecl,
5033                                Declarator &D, ExprTy *BitfieldWidth,
5034                                tok::ObjCKeywordKind Visibility) {
5035
5036  IdentifierInfo *II = D.getIdentifier();
5037  Expr *BitWidth = (Expr*)BitfieldWidth;
5038  SourceLocation Loc = DeclStart;
5039  if (II) Loc = D.getIdentifierLoc();
5040
5041  // FIXME: Unnamed fields can be handled in various different ways, for
5042  // example, unnamed unions inject all members into the struct namespace!
5043
5044  DeclaratorInfo *DInfo = 0;
5045  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5046
5047  if (BitWidth) {
5048    // 6.7.2.1p3, 6.7.2.1p4
5049    if (VerifyBitField(Loc, II, T, BitWidth)) {
5050      D.setInvalidType();
5051      DeleteExpr(BitWidth);
5052      BitWidth = 0;
5053    }
5054  } else {
5055    // Not a bitfield.
5056
5057    // validate II.
5058
5059  }
5060
5061  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5062  // than a variably modified type.
5063  if (T->isVariablyModifiedType()) {
5064    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5065    D.setInvalidType();
5066  }
5067
5068  // Get the visibility (access control) for this ivar.
5069  ObjCIvarDecl::AccessControl ac =
5070    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5071                                        : ObjCIvarDecl::None;
5072  // Must set ivar's DeclContext to its enclosing interface.
5073  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5074  DeclContext *EnclosingContext;
5075  if (ObjCImplementationDecl *IMPDecl =
5076      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5077    // Case of ivar declared in an implementation. Context is that of its class.
5078    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5079    assert(IDecl && "No class- ActOnIvar");
5080    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5081  } else
5082    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5083  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5084
5085  // Construct the decl.
5086  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5087                                             EnclosingContext, Loc, II, T,
5088                                             DInfo, ac, (Expr *)BitfieldWidth);
5089
5090  if (II) {
5091    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5092    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5093        && !isa<TagDecl>(PrevDecl)) {
5094      Diag(Loc, diag::err_duplicate_member) << II;
5095      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5096      NewID->setInvalidDecl();
5097    }
5098  }
5099
5100  // Process attributes attached to the ivar.
5101  ProcessDeclAttributes(S, NewID, D);
5102
5103  if (D.isInvalidType())
5104    NewID->setInvalidDecl();
5105
5106  if (II) {
5107    // FIXME: When interfaces are DeclContexts, we'll need to add
5108    // these to the interface.
5109    S->AddDecl(DeclPtrTy::make(NewID));
5110    IdResolver.AddDecl(NewID);
5111  }
5112
5113  return DeclPtrTy::make(NewID);
5114}
5115
5116void Sema::ActOnFields(Scope* S,
5117                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5118                       DeclPtrTy *Fields, unsigned NumFields,
5119                       SourceLocation LBrac, SourceLocation RBrac,
5120                       AttributeList *Attr) {
5121  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5122  assert(EnclosingDecl && "missing record or interface decl");
5123
5124  // If the decl this is being inserted into is invalid, then it may be a
5125  // redeclaration or some other bogus case.  Don't try to add fields to it.
5126  if (EnclosingDecl->isInvalidDecl()) {
5127    // FIXME: Deallocate fields?
5128    return;
5129  }
5130
5131
5132  // Verify that all the fields are okay.
5133  unsigned NumNamedMembers = 0;
5134  llvm::SmallVector<FieldDecl*, 32> RecFields;
5135
5136  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5137  for (unsigned i = 0; i != NumFields; ++i) {
5138    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5139
5140    // Get the type for the field.
5141    Type *FDTy = FD->getType().getTypePtr();
5142
5143    if (!FD->isAnonymousStructOrUnion()) {
5144      // Remember all fields written by the user.
5145      RecFields.push_back(FD);
5146    }
5147
5148    // If the field is already invalid for some reason, don't emit more
5149    // diagnostics about it.
5150    if (FD->isInvalidDecl())
5151      continue;
5152
5153    // C99 6.7.2.1p2:
5154    //   A structure or union shall not contain a member with
5155    //   incomplete or function type (hence, a structure shall not
5156    //   contain an instance of itself, but may contain a pointer to
5157    //   an instance of itself), except that the last member of a
5158    //   structure with more than one named member may have incomplete
5159    //   array type; such a structure (and any union containing,
5160    //   possibly recursively, a member that is such a structure)
5161    //   shall not be a member of a structure or an element of an
5162    //   array.
5163    if (FDTy->isFunctionType()) {
5164      // Field declared as a function.
5165      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5166        << FD->getDeclName();
5167      FD->setInvalidDecl();
5168      EnclosingDecl->setInvalidDecl();
5169      continue;
5170    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5171               Record && Record->isStruct()) {
5172      // Flexible array member.
5173      if (NumNamedMembers < 1) {
5174        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5175          << FD->getDeclName();
5176        FD->setInvalidDecl();
5177        EnclosingDecl->setInvalidDecl();
5178        continue;
5179      }
5180      // Okay, we have a legal flexible array member at the end of the struct.
5181      if (Record)
5182        Record->setHasFlexibleArrayMember(true);
5183    } else if (!FDTy->isDependentType() &&
5184               RequireCompleteType(FD->getLocation(), FD->getType(),
5185                                   diag::err_field_incomplete)) {
5186      // Incomplete type
5187      FD->setInvalidDecl();
5188      EnclosingDecl->setInvalidDecl();
5189      continue;
5190    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5191      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5192        // If this is a member of a union, then entire union becomes "flexible".
5193        if (Record && Record->isUnion()) {
5194          Record->setHasFlexibleArrayMember(true);
5195        } else {
5196          // If this is a struct/class and this is not the last element, reject
5197          // it.  Note that GCC supports variable sized arrays in the middle of
5198          // structures.
5199          if (i != NumFields-1)
5200            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5201              << FD->getDeclName() << FD->getType();
5202          else {
5203            // We support flexible arrays at the end of structs in
5204            // other structs as an extension.
5205            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5206              << FD->getDeclName();
5207            if (Record)
5208              Record->setHasFlexibleArrayMember(true);
5209          }
5210        }
5211      }
5212      if (Record && FDTTy->getDecl()->hasObjectMember())
5213        Record->setHasObjectMember(true);
5214    } else if (FDTy->isObjCInterfaceType()) {
5215      /// A field cannot be an Objective-c object
5216      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5217      FD->setInvalidDecl();
5218      EnclosingDecl->setInvalidDecl();
5219      continue;
5220    } else if (getLangOptions().ObjC1 &&
5221               getLangOptions().getGCMode() != LangOptions::NonGC &&
5222               Record &&
5223               (FD->getType()->isObjCObjectPointerType() ||
5224                FD->getType().isObjCGCStrong()))
5225      Record->setHasObjectMember(true);
5226    // Keep track of the number of named members.
5227    if (FD->getIdentifier())
5228      ++NumNamedMembers;
5229  }
5230
5231  // Okay, we successfully defined 'Record'.
5232  if (Record) {
5233    Record->completeDefinition(Context);
5234  } else {
5235    ObjCIvarDecl **ClsFields =
5236      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5237    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5238      ID->setIVarList(ClsFields, RecFields.size(), Context);
5239      ID->setLocEnd(RBrac);
5240      // Add ivar's to class's DeclContext.
5241      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5242        ClsFields[i]->setLexicalDeclContext(ID);
5243        ID->addDecl(ClsFields[i]);
5244      }
5245      // Must enforce the rule that ivars in the base classes may not be
5246      // duplicates.
5247      if (ID->getSuperClass()) {
5248        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5249             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5250          ObjCIvarDecl* Ivar = (*IVI);
5251
5252          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5253            ObjCIvarDecl* prevIvar =
5254              ID->getSuperClass()->lookupInstanceVariable(II);
5255            if (prevIvar) {
5256              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5257              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5258            }
5259          }
5260        }
5261      }
5262    } else if (ObjCImplementationDecl *IMPDecl =
5263                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5264      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5265      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5266        // Ivar declared in @implementation never belongs to the implementation.
5267        // Only it is in implementation's lexical context.
5268        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5269      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5270    }
5271  }
5272
5273  if (Attr)
5274    ProcessDeclAttributeList(S, Record, Attr);
5275}
5276
5277EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5278                                          EnumConstantDecl *LastEnumConst,
5279                                          SourceLocation IdLoc,
5280                                          IdentifierInfo *Id,
5281                                          ExprArg val) {
5282  Expr *Val = (Expr *)val.get();
5283
5284  llvm::APSInt EnumVal(32);
5285  QualType EltTy;
5286  if (Val && !Val->isTypeDependent()) {
5287    // Make sure to promote the operand type to int.
5288    UsualUnaryConversions(Val);
5289    if (Val != val.get()) {
5290      val.release();
5291      val = Val;
5292    }
5293
5294    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5295    SourceLocation ExpLoc;
5296    if (!Val->isValueDependent() &&
5297        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5298      Val = 0;
5299    } else {
5300      EltTy = Val->getType();
5301    }
5302  }
5303
5304  if (!Val) {
5305    if (LastEnumConst) {
5306      // Assign the last value + 1.
5307      EnumVal = LastEnumConst->getInitVal();
5308      ++EnumVal;
5309
5310      // Check for overflow on increment.
5311      if (EnumVal < LastEnumConst->getInitVal())
5312        Diag(IdLoc, diag::warn_enum_value_overflow);
5313
5314      EltTy = LastEnumConst->getType();
5315    } else {
5316      // First value, set to zero.
5317      EltTy = Context.IntTy;
5318      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5319    }
5320  }
5321
5322  val.release();
5323  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5324                                  Val, EnumVal);
5325}
5326
5327
5328Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5329                                        DeclPtrTy lastEnumConst,
5330                                        SourceLocation IdLoc,
5331                                        IdentifierInfo *Id,
5332                                        SourceLocation EqualLoc, ExprTy *val) {
5333  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5334  EnumConstantDecl *LastEnumConst =
5335    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5336  Expr *Val = static_cast<Expr*>(val);
5337
5338  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5339  // we find one that is.
5340  S = getNonFieldDeclScope(S);
5341
5342  // Verify that there isn't already something declared with this name in this
5343  // scope.
5344  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5345  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5346    // Maybe we will complain about the shadowed template parameter.
5347    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5348    // Just pretend that we didn't see the previous declaration.
5349    PrevDecl = 0;
5350  }
5351
5352  if (PrevDecl) {
5353    // When in C++, we may get a TagDecl with the same name; in this case the
5354    // enum constant will 'hide' the tag.
5355    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5356           "Received TagDecl when not in C++!");
5357    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5358      if (isa<EnumConstantDecl>(PrevDecl))
5359        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5360      else
5361        Diag(IdLoc, diag::err_redefinition) << Id;
5362      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5363      if (Val) Val->Destroy(Context);
5364      return DeclPtrTy();
5365    }
5366  }
5367
5368  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5369                                            IdLoc, Id, Owned(Val));
5370
5371  // Register this decl in the current scope stack.
5372  if (New)
5373    PushOnScopeChains(New, S);
5374
5375  return DeclPtrTy::make(New);
5376}
5377
5378void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5379                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5380                         DeclPtrTy *Elements, unsigned NumElements,
5381                         Scope *S, AttributeList *Attr) {
5382  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5383  QualType EnumType = Context.getTypeDeclType(Enum);
5384
5385  if (Attr)
5386    ProcessDeclAttributeList(S, Enum, Attr);
5387
5388  // TODO: If the result value doesn't fit in an int, it must be a long or long
5389  // long value.  ISO C does not support this, but GCC does as an extension,
5390  // emit a warning.
5391  unsigned IntWidth = Context.Target.getIntWidth();
5392  unsigned CharWidth = Context.Target.getCharWidth();
5393  unsigned ShortWidth = Context.Target.getShortWidth();
5394
5395  // Verify that all the values are okay, compute the size of the values, and
5396  // reverse the list.
5397  unsigned NumNegativeBits = 0;
5398  unsigned NumPositiveBits = 0;
5399
5400  // Keep track of whether all elements have type int.
5401  bool AllElementsInt = true;
5402
5403  for (unsigned i = 0; i != NumElements; ++i) {
5404    EnumConstantDecl *ECD =
5405      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5406    if (!ECD) continue;  // Already issued a diagnostic.
5407
5408    // If the enum value doesn't fit in an int, emit an extension warning.
5409    const llvm::APSInt &InitVal = ECD->getInitVal();
5410    assert(InitVal.getBitWidth() >= IntWidth &&
5411           "Should have promoted value to int");
5412    if (InitVal.getBitWidth() > IntWidth) {
5413      llvm::APSInt V(InitVal);
5414      V.trunc(IntWidth);
5415      V.extend(InitVal.getBitWidth());
5416      if (V != InitVal)
5417        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5418          << InitVal.toString(10);
5419    }
5420
5421    // Keep track of the size of positive and negative values.
5422    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5423      NumPositiveBits = std::max(NumPositiveBits,
5424                                 (unsigned)InitVal.getActiveBits());
5425    else
5426      NumNegativeBits = std::max(NumNegativeBits,
5427                                 (unsigned)InitVal.getMinSignedBits());
5428
5429    // Keep track of whether every enum element has type int (very commmon).
5430    if (AllElementsInt)
5431      AllElementsInt = ECD->getType() == Context.IntTy;
5432  }
5433
5434  // Figure out the type that should be used for this enum.
5435  // FIXME: Support -fshort-enums.
5436  QualType BestType;
5437  unsigned BestWidth;
5438
5439  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5440
5441  if (NumNegativeBits) {
5442    // If there is a negative value, figure out the smallest integer type (of
5443    // int/long/longlong) that fits.
5444    // If it's packed, check also if it fits a char or a short.
5445    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5446        BestType = Context.SignedCharTy;
5447        BestWidth = CharWidth;
5448    } else if (Packed && NumNegativeBits <= ShortWidth &&
5449               NumPositiveBits < ShortWidth) {
5450        BestType = Context.ShortTy;
5451        BestWidth = ShortWidth;
5452    }
5453    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5454      BestType = Context.IntTy;
5455      BestWidth = IntWidth;
5456    } else {
5457      BestWidth = Context.Target.getLongWidth();
5458
5459      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5460        BestType = Context.LongTy;
5461      else {
5462        BestWidth = Context.Target.getLongLongWidth();
5463
5464        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5465          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5466        BestType = Context.LongLongTy;
5467      }
5468    }
5469  } else {
5470    // If there is no negative value, figure out which of uint, ulong, ulonglong
5471    // fits.
5472    // If it's packed, check also if it fits a char or a short.
5473    if (Packed && NumPositiveBits <= CharWidth) {
5474        BestType = Context.UnsignedCharTy;
5475        BestWidth = CharWidth;
5476    } else if (Packed && NumPositiveBits <= ShortWidth) {
5477        BestType = Context.UnsignedShortTy;
5478        BestWidth = ShortWidth;
5479    }
5480    else if (NumPositiveBits <= IntWidth) {
5481      BestType = Context.UnsignedIntTy;
5482      BestWidth = IntWidth;
5483    } else if (NumPositiveBits <=
5484               (BestWidth = Context.Target.getLongWidth())) {
5485      BestType = Context.UnsignedLongTy;
5486    } else {
5487      BestWidth = Context.Target.getLongLongWidth();
5488      assert(NumPositiveBits <= BestWidth &&
5489             "How could an initializer get larger than ULL?");
5490      BestType = Context.UnsignedLongLongTy;
5491    }
5492  }
5493
5494  // Loop over all of the enumerator constants, changing their types to match
5495  // the type of the enum if needed.
5496  for (unsigned i = 0; i != NumElements; ++i) {
5497    EnumConstantDecl *ECD =
5498      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5499    if (!ECD) continue;  // Already issued a diagnostic.
5500
5501    // Standard C says the enumerators have int type, but we allow, as an
5502    // extension, the enumerators to be larger than int size.  If each
5503    // enumerator value fits in an int, type it as an int, otherwise type it the
5504    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5505    // that X has type 'int', not 'unsigned'.
5506    if (ECD->getType() == Context.IntTy) {
5507      // Make sure the init value is signed.
5508      llvm::APSInt IV = ECD->getInitVal();
5509      IV.setIsSigned(true);
5510      ECD->setInitVal(IV);
5511
5512      if (getLangOptions().CPlusPlus)
5513        // C++ [dcl.enum]p4: Following the closing brace of an
5514        // enum-specifier, each enumerator has the type of its
5515        // enumeration.
5516        ECD->setType(EnumType);
5517      continue;  // Already int type.
5518    }
5519
5520    // Determine whether the value fits into an int.
5521    llvm::APSInt InitVal = ECD->getInitVal();
5522    bool FitsInInt;
5523    if (InitVal.isUnsigned() || !InitVal.isNegative())
5524      FitsInInt = InitVal.getActiveBits() < IntWidth;
5525    else
5526      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5527
5528    // If it fits into an integer type, force it.  Otherwise force it to match
5529    // the enum decl type.
5530    QualType NewTy;
5531    unsigned NewWidth;
5532    bool NewSign;
5533    if (FitsInInt) {
5534      NewTy = Context.IntTy;
5535      NewWidth = IntWidth;
5536      NewSign = true;
5537    } else if (ECD->getType() == BestType) {
5538      // Already the right type!
5539      if (getLangOptions().CPlusPlus)
5540        // C++ [dcl.enum]p4: Following the closing brace of an
5541        // enum-specifier, each enumerator has the type of its
5542        // enumeration.
5543        ECD->setType(EnumType);
5544      continue;
5545    } else {
5546      NewTy = BestType;
5547      NewWidth = BestWidth;
5548      NewSign = BestType->isSignedIntegerType();
5549    }
5550
5551    // Adjust the APSInt value.
5552    InitVal.extOrTrunc(NewWidth);
5553    InitVal.setIsSigned(NewSign);
5554    ECD->setInitVal(InitVal);
5555
5556    // Adjust the Expr initializer and type.
5557    if (ECD->getInitExpr())
5558      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5559                                                      CastExpr::CK_Unknown,
5560                                                      ECD->getInitExpr(),
5561                                                      /*isLvalue=*/false));
5562    if (getLangOptions().CPlusPlus)
5563      // C++ [dcl.enum]p4: Following the closing brace of an
5564      // enum-specifier, each enumerator has the type of its
5565      // enumeration.
5566      ECD->setType(EnumType);
5567    else
5568      ECD->setType(NewTy);
5569  }
5570
5571  Enum->completeDefinition(Context, BestType);
5572}
5573
5574Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5575                                            ExprArg expr) {
5576  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5577
5578  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5579                                                   Loc, AsmString);
5580  CurContext->addDecl(New);
5581  return DeclPtrTy::make(New);
5582}
5583
5584void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5585                             SourceLocation PragmaLoc,
5586                             SourceLocation NameLoc) {
5587  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5588
5589  if (PrevDecl) {
5590    PrevDecl->addAttr(::new (Context) WeakAttr());
5591  } else {
5592    (void)WeakUndeclaredIdentifiers.insert(
5593      std::pair<IdentifierInfo*,WeakInfo>
5594        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5595  }
5596}
5597
5598void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5599                                IdentifierInfo* AliasName,
5600                                SourceLocation PragmaLoc,
5601                                SourceLocation NameLoc,
5602                                SourceLocation AliasNameLoc) {
5603  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5604  WeakInfo W = WeakInfo(Name, NameLoc);
5605
5606  if (PrevDecl) {
5607    if (!PrevDecl->hasAttr<AliasAttr>())
5608      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5609        DeclApplyPragmaWeak(TUScope, ND, W);
5610  } else {
5611    (void)WeakUndeclaredIdentifiers.insert(
5612      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5613  }
5614}
5615