SemaDecl.cpp revision 429bb276991ff2dbc7c5b438828b9b7737cb15eb
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
254                                   SourceLocation IILoc,
255                                   Scope *S,
256                                   CXXScopeSpec *SS,
257                                   ParsedType &SuggestedType) {
258  // We don't have anything to suggest (yet).
259  SuggestedType = ParsedType();
260
261  // There may have been a typo in the name of the type. Look up typo
262  // results, in case we have something that we can suggest.
263  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
264                      NotForRedeclaration);
265
266  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
267    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
268      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
269          !Result->isInvalidDecl()) {
270        // We found a similarly-named type or interface; suggest that.
271        if (!SS || !SS->isSet())
272          Diag(IILoc, diag::err_unknown_typename_suggest)
273            << &II << Lookup.getLookupName()
274            << FixItHint::CreateReplacement(SourceRange(IILoc),
275                                            Result->getNameAsString());
276        else if (DeclContext *DC = computeDeclContext(*SS, false))
277          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
278            << &II << DC << Lookup.getLookupName() << SS->getRange()
279            << FixItHint::CreateReplacement(SourceRange(IILoc),
280                                            Result->getNameAsString());
281        else
282          llvm_unreachable("could not have corrected a typo here");
283
284        Diag(Result->getLocation(), diag::note_previous_decl)
285          << Result->getDeclName();
286
287        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
288                                    false, false, ParsedType(),
289                                    /*NonTrivialTypeSourceInfo=*/true);
290        return true;
291      }
292    } else if (Lookup.empty()) {
293      // We corrected to a keyword.
294      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
295      Diag(IILoc, diag::err_unknown_typename_suggest)
296        << &II << Corrected;
297      return true;
298    }
299  }
300
301  if (getLangOptions().CPlusPlus) {
302    // See if II is a class template that the user forgot to pass arguments to.
303    UnqualifiedId Name;
304    Name.setIdentifier(&II, IILoc);
305    CXXScopeSpec EmptySS;
306    TemplateTy TemplateResult;
307    bool MemberOfUnknownSpecialization;
308    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
309                       Name, ParsedType(), true, TemplateResult,
310                       MemberOfUnknownSpecialization) == TNK_Type_template) {
311      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
312      Diag(IILoc, diag::err_template_missing_args) << TplName;
313      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
314        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
315          << TplDecl->getTemplateParameters()->getSourceRange();
316      }
317      return true;
318    }
319  }
320
321  // FIXME: Should we move the logic that tries to recover from a missing tag
322  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
323
324  if (!SS || (!SS->isSet() && !SS->isInvalid()))
325    Diag(IILoc, diag::err_unknown_typename) << &II;
326  else if (DeclContext *DC = computeDeclContext(*SS, false))
327    Diag(IILoc, diag::err_typename_nested_not_found)
328      << &II << DC << SS->getRange();
329  else if (isDependentScopeSpecifier(*SS)) {
330    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
331      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
332      << SourceRange(SS->getRange().getBegin(), IILoc)
333      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
334    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
335  } else {
336    assert(SS && SS->isInvalid() &&
337           "Invalid scope specifier has already been diagnosed");
338  }
339
340  return true;
341}
342
343// Determines the context to return to after temporarily entering a
344// context.  This depends in an unnecessarily complicated way on the
345// exact ordering of callbacks from the parser.
346DeclContext *Sema::getContainingDC(DeclContext *DC) {
347
348  // Functions defined inline within classes aren't parsed until we've
349  // finished parsing the top-level class, so the top-level class is
350  // the context we'll need to return to.
351  if (isa<FunctionDecl>(DC)) {
352    DC = DC->getLexicalParent();
353
354    // A function not defined within a class will always return to its
355    // lexical context.
356    if (!isa<CXXRecordDecl>(DC))
357      return DC;
358
359    // A C++ inline method/friend is parsed *after* the topmost class
360    // it was declared in is fully parsed ("complete");  the topmost
361    // class is the context we need to return to.
362    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
363      DC = RD;
364
365    // Return the declaration context of the topmost class the inline method is
366    // declared in.
367    return DC;
368  }
369
370  // ObjCMethodDecls are parsed (for some reason) outside the context
371  // of the class.
372  if (isa<ObjCMethodDecl>(DC))
373    return DC->getLexicalParent()->getLexicalParent();
374
375  return DC->getLexicalParent();
376}
377
378void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
379  assert(getContainingDC(DC) == CurContext &&
380      "The next DeclContext should be lexically contained in the current one.");
381  CurContext = DC;
382  S->setEntity(DC);
383}
384
385void Sema::PopDeclContext() {
386  assert(CurContext && "DeclContext imbalance!");
387
388  CurContext = getContainingDC(CurContext);
389  assert(CurContext && "Popped translation unit!");
390}
391
392/// EnterDeclaratorContext - Used when we must lookup names in the context
393/// of a declarator's nested name specifier.
394///
395void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
396  // C++0x [basic.lookup.unqual]p13:
397  //   A name used in the definition of a static data member of class
398  //   X (after the qualified-id of the static member) is looked up as
399  //   if the name was used in a member function of X.
400  // C++0x [basic.lookup.unqual]p14:
401  //   If a variable member of a namespace is defined outside of the
402  //   scope of its namespace then any name used in the definition of
403  //   the variable member (after the declarator-id) is looked up as
404  //   if the definition of the variable member occurred in its
405  //   namespace.
406  // Both of these imply that we should push a scope whose context
407  // is the semantic context of the declaration.  We can't use
408  // PushDeclContext here because that context is not necessarily
409  // lexically contained in the current context.  Fortunately,
410  // the containing scope should have the appropriate information.
411
412  assert(!S->getEntity() && "scope already has entity");
413
414#ifndef NDEBUG
415  Scope *Ancestor = S->getParent();
416  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
417  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
418#endif
419
420  CurContext = DC;
421  S->setEntity(DC);
422}
423
424void Sema::ExitDeclaratorContext(Scope *S) {
425  assert(S->getEntity() == CurContext && "Context imbalance!");
426
427  // Switch back to the lexical context.  The safety of this is
428  // enforced by an assert in EnterDeclaratorContext.
429  Scope *Ancestor = S->getParent();
430  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
431  CurContext = (DeclContext*) Ancestor->getEntity();
432
433  // We don't need to do anything with the scope, which is going to
434  // disappear.
435}
436
437/// \brief Determine whether we allow overloading of the function
438/// PrevDecl with another declaration.
439///
440/// This routine determines whether overloading is possible, not
441/// whether some new function is actually an overload. It will return
442/// true in C++ (where we can always provide overloads) or, as an
443/// extension, in C when the previous function is already an
444/// overloaded function declaration or has the "overloadable"
445/// attribute.
446static bool AllowOverloadingOfFunction(LookupResult &Previous,
447                                       ASTContext &Context) {
448  if (Context.getLangOptions().CPlusPlus)
449    return true;
450
451  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
452    return true;
453
454  return (Previous.getResultKind() == LookupResult::Found
455          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
456}
457
458/// Add this decl to the scope shadowed decl chains.
459void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
460  // Move up the scope chain until we find the nearest enclosing
461  // non-transparent context. The declaration will be introduced into this
462  // scope.
463  while (S->getEntity() &&
464         ((DeclContext *)S->getEntity())->isTransparentContext())
465    S = S->getParent();
466
467  // Add scoped declarations into their context, so that they can be
468  // found later. Declarations without a context won't be inserted
469  // into any context.
470  if (AddToContext)
471    CurContext->addDecl(D);
472
473  // Out-of-line definitions shouldn't be pushed into scope in C++.
474  // Out-of-line variable and function definitions shouldn't even in C.
475  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
476      D->isOutOfLine())
477    return;
478
479  // Template instantiations should also not be pushed into scope.
480  if (isa<FunctionDecl>(D) &&
481      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
482    return;
483
484  // If this replaces anything in the current scope,
485  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
486                               IEnd = IdResolver.end();
487  for (; I != IEnd; ++I) {
488    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
489      S->RemoveDecl(*I);
490      IdResolver.RemoveDecl(*I);
491
492      // Should only need to replace one decl.
493      break;
494    }
495  }
496
497  S->AddDecl(D);
498
499  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
500    // Implicitly-generated labels may end up getting generated in an order that
501    // isn't strictly lexical, which breaks name lookup. Be careful to insert
502    // the label at the appropriate place in the identifier chain.
503    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
504      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
505      if (IDC == CurContext) {
506        if (!S->isDeclScope(*I))
507          continue;
508      } else if (IDC->Encloses(CurContext))
509        break;
510    }
511
512    IdResolver.InsertDeclAfter(I, D);
513  } else {
514    IdResolver.AddDecl(D);
515  }
516}
517
518bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
519                         bool ExplicitInstantiationOrSpecialization) {
520  return IdResolver.isDeclInScope(D, Ctx, Context, S,
521                                  ExplicitInstantiationOrSpecialization);
522}
523
524Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
525  DeclContext *TargetDC = DC->getPrimaryContext();
526  do {
527    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
528      if (ScopeDC->getPrimaryContext() == TargetDC)
529        return S;
530  } while ((S = S->getParent()));
531
532  return 0;
533}
534
535static bool isOutOfScopePreviousDeclaration(NamedDecl *,
536                                            DeclContext*,
537                                            ASTContext&);
538
539/// Filters out lookup results that don't fall within the given scope
540/// as determined by isDeclInScope.
541static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
542                                 DeclContext *Ctx, Scope *S,
543                                 bool ConsiderLinkage,
544                                 bool ExplicitInstantiationOrSpecialization) {
545  LookupResult::Filter F = R.makeFilter();
546  while (F.hasNext()) {
547    NamedDecl *D = F.next();
548
549    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
550      continue;
551
552    if (ConsiderLinkage &&
553        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
554      continue;
555
556    F.erase();
557  }
558
559  F.done();
560}
561
562static bool isUsingDecl(NamedDecl *D) {
563  return isa<UsingShadowDecl>(D) ||
564         isa<UnresolvedUsingTypenameDecl>(D) ||
565         isa<UnresolvedUsingValueDecl>(D);
566}
567
568/// Removes using shadow declarations from the lookup results.
569static void RemoveUsingDecls(LookupResult &R) {
570  LookupResult::Filter F = R.makeFilter();
571  while (F.hasNext())
572    if (isUsingDecl(F.next()))
573      F.erase();
574
575  F.done();
576}
577
578/// \brief Check for this common pattern:
579/// @code
580/// class S {
581///   S(const S&); // DO NOT IMPLEMENT
582///   void operator=(const S&); // DO NOT IMPLEMENT
583/// };
584/// @endcode
585static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
586  // FIXME: Should check for private access too but access is set after we get
587  // the decl here.
588  if (D->isThisDeclarationADefinition())
589    return false;
590
591  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
592    return CD->isCopyConstructor();
593  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
594    return Method->isCopyAssignmentOperator();
595  return false;
596}
597
598bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
599  assert(D);
600
601  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
602    return false;
603
604  // Ignore class templates.
605  if (D->getDeclContext()->isDependentContext() ||
606      D->getLexicalDeclContext()->isDependentContext())
607    return false;
608
609  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
610    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
611      return false;
612
613    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
614      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
615        return false;
616    } else {
617      // 'static inline' functions are used in headers; don't warn.
618      if (FD->getStorageClass() == SC_Static &&
619          FD->isInlineSpecified())
620        return false;
621    }
622
623    if (FD->isThisDeclarationADefinition() &&
624        Context.DeclMustBeEmitted(FD))
625      return false;
626
627  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
628    if (!VD->isFileVarDecl() ||
629        VD->getType().isConstant(Context) ||
630        Context.DeclMustBeEmitted(VD))
631      return false;
632
633    if (VD->isStaticDataMember() &&
634        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
635      return false;
636
637  } else {
638    return false;
639  }
640
641  // Only warn for unused decls internal to the translation unit.
642  if (D->getLinkage() == ExternalLinkage)
643    return false;
644
645  return true;
646}
647
648void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
649  if (!D)
650    return;
651
652  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
653    const FunctionDecl *First = FD->getFirstDeclaration();
654    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
655      return; // First should already be in the vector.
656  }
657
658  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
659    const VarDecl *First = VD->getFirstDeclaration();
660    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
661      return; // First should already be in the vector.
662  }
663
664   if (ShouldWarnIfUnusedFileScopedDecl(D))
665     UnusedFileScopedDecls.push_back(D);
666 }
667
668static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
669  if (D->isInvalidDecl())
670    return false;
671
672  if (D->isUsed() || D->hasAttr<UnusedAttr>())
673    return false;
674
675  if (isa<LabelDecl>(D))
676    return true;
677
678  // White-list anything that isn't a local variable.
679  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
680      !D->getDeclContext()->isFunctionOrMethod())
681    return false;
682
683  // Types of valid local variables should be complete, so this should succeed.
684  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
685
686    // White-list anything with an __attribute__((unused)) type.
687    QualType Ty = VD->getType();
688
689    // Only look at the outermost level of typedef.
690    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
691      if (TT->getDecl()->hasAttr<UnusedAttr>())
692        return false;
693    }
694
695    // If we failed to complete the type for some reason, or if the type is
696    // dependent, don't diagnose the variable.
697    if (Ty->isIncompleteType() || Ty->isDependentType())
698      return false;
699
700    if (const TagType *TT = Ty->getAs<TagType>()) {
701      const TagDecl *Tag = TT->getDecl();
702      if (Tag->hasAttr<UnusedAttr>())
703        return false;
704
705      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
706        // FIXME: Checking for the presence of a user-declared constructor
707        // isn't completely accurate; we'd prefer to check that the initializer
708        // has no side effects.
709        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
710          return false;
711      }
712    }
713
714    // TODO: __attribute__((unused)) templates?
715  }
716
717  return true;
718}
719
720/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
721/// unless they are marked attr(unused).
722void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
723  if (!ShouldDiagnoseUnusedDecl(D))
724    return;
725
726  unsigned DiagID;
727  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
728    DiagID = diag::warn_unused_exception_param;
729  else if (isa<LabelDecl>(D))
730    DiagID = diag::warn_unused_label;
731  else
732    DiagID = diag::warn_unused_variable;
733
734  Diag(D->getLocation(), DiagID) << D->getDeclName();
735}
736
737static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
738  // Verify that we have no forward references left.  If so, there was a goto
739  // or address of a label taken, but no definition of it.  Label fwd
740  // definitions are indicated with a null substmt.
741  if (L->getStmt() == 0)
742    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
743}
744
745void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
746  if (S->decl_empty()) return;
747  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
748         "Scope shouldn't contain decls!");
749
750  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
751       I != E; ++I) {
752    Decl *TmpD = (*I);
753    assert(TmpD && "This decl didn't get pushed??");
754
755    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
756    NamedDecl *D = cast<NamedDecl>(TmpD);
757
758    if (!D->getDeclName()) continue;
759
760    // Diagnose unused variables in this scope.
761    if (!S->hasErrorOccurred())
762      DiagnoseUnusedDecl(D);
763
764    // If this was a forward reference to a label, verify it was defined.
765    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
766      CheckPoppedLabel(LD, *this);
767
768    // Remove this name from our lexical scope.
769    IdResolver.RemoveDecl(D);
770  }
771}
772
773/// \brief Look for an Objective-C class in the translation unit.
774///
775/// \param Id The name of the Objective-C class we're looking for. If
776/// typo-correction fixes this name, the Id will be updated
777/// to the fixed name.
778///
779/// \param IdLoc The location of the name in the translation unit.
780///
781/// \param TypoCorrection If true, this routine will attempt typo correction
782/// if there is no class with the given name.
783///
784/// \returns The declaration of the named Objective-C class, or NULL if the
785/// class could not be found.
786ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
787                                              SourceLocation IdLoc,
788                                              bool TypoCorrection) {
789  // The third "scope" argument is 0 since we aren't enabling lazy built-in
790  // creation from this context.
791  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
792
793  if (!IDecl && TypoCorrection) {
794    // Perform typo correction at the given location, but only if we
795    // find an Objective-C class name.
796    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
797    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
798        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
799      Diag(IdLoc, diag::err_undef_interface_suggest)
800        << Id << IDecl->getDeclName()
801        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
802      Diag(IDecl->getLocation(), diag::note_previous_decl)
803        << IDecl->getDeclName();
804
805      Id = IDecl->getIdentifier();
806    }
807  }
808
809  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
810}
811
812/// getNonFieldDeclScope - Retrieves the innermost scope, starting
813/// from S, where a non-field would be declared. This routine copes
814/// with the difference between C and C++ scoping rules in structs and
815/// unions. For example, the following code is well-formed in C but
816/// ill-formed in C++:
817/// @code
818/// struct S6 {
819///   enum { BAR } e;
820/// };
821///
822/// void test_S6() {
823///   struct S6 a;
824///   a.e = BAR;
825/// }
826/// @endcode
827/// For the declaration of BAR, this routine will return a different
828/// scope. The scope S will be the scope of the unnamed enumeration
829/// within S6. In C++, this routine will return the scope associated
830/// with S6, because the enumeration's scope is a transparent
831/// context but structures can contain non-field names. In C, this
832/// routine will return the translation unit scope, since the
833/// enumeration's scope is a transparent context and structures cannot
834/// contain non-field names.
835Scope *Sema::getNonFieldDeclScope(Scope *S) {
836  while (((S->getFlags() & Scope::DeclScope) == 0) ||
837         (S->getEntity() &&
838          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
839         (S->isClassScope() && !getLangOptions().CPlusPlus))
840    S = S->getParent();
841  return S;
842}
843
844/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
845/// file scope.  lazily create a decl for it. ForRedeclaration is true
846/// if we're creating this built-in in anticipation of redeclaring the
847/// built-in.
848NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
849                                     Scope *S, bool ForRedeclaration,
850                                     SourceLocation Loc) {
851  Builtin::ID BID = (Builtin::ID)bid;
852
853  ASTContext::GetBuiltinTypeError Error;
854  QualType R = Context.GetBuiltinType(BID, Error);
855  switch (Error) {
856  case ASTContext::GE_None:
857    // Okay
858    break;
859
860  case ASTContext::GE_Missing_stdio:
861    if (ForRedeclaration)
862      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
863        << Context.BuiltinInfo.GetName(BID);
864    return 0;
865
866  case ASTContext::GE_Missing_setjmp:
867    if (ForRedeclaration)
868      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
869        << Context.BuiltinInfo.GetName(BID);
870    return 0;
871  }
872
873  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
874    Diag(Loc, diag::ext_implicit_lib_function_decl)
875      << Context.BuiltinInfo.GetName(BID)
876      << R;
877    if (Context.BuiltinInfo.getHeaderName(BID) &&
878        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
879          != Diagnostic::Ignored)
880      Diag(Loc, diag::note_please_include_header)
881        << Context.BuiltinInfo.getHeaderName(BID)
882        << Context.BuiltinInfo.GetName(BID);
883  }
884
885  FunctionDecl *New = FunctionDecl::Create(Context,
886                                           Context.getTranslationUnitDecl(),
887                                           Loc, Loc, II, R, /*TInfo=*/0,
888                                           SC_Extern,
889                                           SC_None, false,
890                                           /*hasPrototype=*/true);
891  New->setImplicit();
892
893  // Create Decl objects for each parameter, adding them to the
894  // FunctionDecl.
895  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
896    llvm::SmallVector<ParmVarDecl*, 16> Params;
897    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
898      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
899                                           SourceLocation(), 0,
900                                           FT->getArgType(i), /*TInfo=*/0,
901                                           SC_None, SC_None, 0));
902    New->setParams(Params.data(), Params.size());
903  }
904
905  AddKnownFunctionAttributes(New);
906
907  // TUScope is the translation-unit scope to insert this function into.
908  // FIXME: This is hideous. We need to teach PushOnScopeChains to
909  // relate Scopes to DeclContexts, and probably eliminate CurContext
910  // entirely, but we're not there yet.
911  DeclContext *SavedContext = CurContext;
912  CurContext = Context.getTranslationUnitDecl();
913  PushOnScopeChains(New, TUScope);
914  CurContext = SavedContext;
915  return New;
916}
917
918/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
919/// same name and scope as a previous declaration 'Old'.  Figure out
920/// how to resolve this situation, merging decls or emitting
921/// diagnostics as appropriate. If there was an error, set New to be invalid.
922///
923void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
924  // If the new decl is known invalid already, don't bother doing any
925  // merging checks.
926  if (New->isInvalidDecl()) return;
927
928  // Allow multiple definitions for ObjC built-in typedefs.
929  // FIXME: Verify the underlying types are equivalent!
930  if (getLangOptions().ObjC1) {
931    const IdentifierInfo *TypeID = New->getIdentifier();
932    switch (TypeID->getLength()) {
933    default: break;
934    case 2:
935      if (!TypeID->isStr("id"))
936        break;
937      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
938      // Install the built-in type for 'id', ignoring the current definition.
939      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
940      return;
941    case 5:
942      if (!TypeID->isStr("Class"))
943        break;
944      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
945      // Install the built-in type for 'Class', ignoring the current definition.
946      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
947      return;
948    case 3:
949      if (!TypeID->isStr("SEL"))
950        break;
951      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
952      // Install the built-in type for 'SEL', ignoring the current definition.
953      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
954      return;
955    case 8:
956      if (!TypeID->isStr("Protocol"))
957        break;
958      Context.setObjCProtoType(New->getUnderlyingType());
959      return;
960    }
961    // Fall through - the typedef name was not a builtin type.
962  }
963
964  // Verify the old decl was also a type.
965  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
966  if (!Old) {
967    Diag(New->getLocation(), diag::err_redefinition_different_kind)
968      << New->getDeclName();
969
970    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
971    if (OldD->getLocation().isValid())
972      Diag(OldD->getLocation(), diag::note_previous_definition);
973
974    return New->setInvalidDecl();
975  }
976
977  // If the old declaration is invalid, just give up here.
978  if (Old->isInvalidDecl())
979    return New->setInvalidDecl();
980
981  // Determine the "old" type we'll use for checking and diagnostics.
982  QualType OldType;
983  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
984    OldType = OldTypedef->getUnderlyingType();
985  else
986    OldType = Context.getTypeDeclType(Old);
987
988  // If the typedef types are not identical, reject them in all languages and
989  // with any extensions enabled.
990
991  if (OldType != New->getUnderlyingType() &&
992      Context.getCanonicalType(OldType) !=
993      Context.getCanonicalType(New->getUnderlyingType())) {
994    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
995      << New->getUnderlyingType() << OldType;
996    if (Old->getLocation().isValid())
997      Diag(Old->getLocation(), diag::note_previous_definition);
998    return New->setInvalidDecl();
999  }
1000
1001  // The types match.  Link up the redeclaration chain if the old
1002  // declaration was a typedef.
1003  // FIXME: this is a potential source of wierdness if the type
1004  // spellings don't match exactly.
1005  if (isa<TypedefDecl>(Old))
1006    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1007
1008  if (getLangOptions().Microsoft)
1009    return;
1010
1011  if (getLangOptions().CPlusPlus) {
1012    // C++ [dcl.typedef]p2:
1013    //   In a given non-class scope, a typedef specifier can be used to
1014    //   redefine the name of any type declared in that scope to refer
1015    //   to the type to which it already refers.
1016    if (!isa<CXXRecordDecl>(CurContext))
1017      return;
1018
1019    // C++0x [dcl.typedef]p4:
1020    //   In a given class scope, a typedef specifier can be used to redefine
1021    //   any class-name declared in that scope that is not also a typedef-name
1022    //   to refer to the type to which it already refers.
1023    //
1024    // This wording came in via DR424, which was a correction to the
1025    // wording in DR56, which accidentally banned code like:
1026    //
1027    //   struct S {
1028    //     typedef struct A { } A;
1029    //   };
1030    //
1031    // in the C++03 standard. We implement the C++0x semantics, which
1032    // allow the above but disallow
1033    //
1034    //   struct S {
1035    //     typedef int I;
1036    //     typedef int I;
1037    //   };
1038    //
1039    // since that was the intent of DR56.
1040    if (!isa<TypedefDecl >(Old))
1041      return;
1042
1043    Diag(New->getLocation(), diag::err_redefinition)
1044      << New->getDeclName();
1045    Diag(Old->getLocation(), diag::note_previous_definition);
1046    return New->setInvalidDecl();
1047  }
1048
1049  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1050  // is normally mapped to an error, but can be controlled with
1051  // -Wtypedef-redefinition.  If either the original or the redefinition is
1052  // in a system header, don't emit this for compatibility with GCC.
1053  if (getDiagnostics().getSuppressSystemWarnings() &&
1054      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1055       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1056    return;
1057
1058  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1059    << New->getDeclName();
1060  Diag(Old->getLocation(), diag::note_previous_definition);
1061  return;
1062}
1063
1064/// DeclhasAttr - returns true if decl Declaration already has the target
1065/// attribute.
1066static bool
1067DeclHasAttr(const Decl *D, const Attr *A) {
1068  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1069  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1070    if ((*i)->getKind() == A->getKind()) {
1071      // FIXME: Don't hardcode this check
1072      if (OA && isa<OwnershipAttr>(*i))
1073        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1074      return true;
1075    }
1076
1077  return false;
1078}
1079
1080/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1081static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1082                                ASTContext &C) {
1083  if (!oldDecl->hasAttrs())
1084    return;
1085
1086  bool foundAny = newDecl->hasAttrs();
1087
1088  // Ensure that any moving of objects within the allocated map is done before
1089  // we process them.
1090  if (!foundAny) newDecl->setAttrs(AttrVec());
1091
1092  for (specific_attr_iterator<InheritableAttr>
1093       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1094       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1095    if (!DeclHasAttr(newDecl, *i)) {
1096      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1097      newAttr->setInherited(true);
1098      newDecl->addAttr(newAttr);
1099      foundAny = true;
1100    }
1101  }
1102
1103  if (!foundAny) newDecl->dropAttrs();
1104}
1105
1106/// mergeParamDeclAttributes - Copy attributes from the old parameter
1107/// to the new one.
1108static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1109                                     const ParmVarDecl *oldDecl,
1110                                     ASTContext &C) {
1111  if (!oldDecl->hasAttrs())
1112    return;
1113
1114  bool foundAny = newDecl->hasAttrs();
1115
1116  // Ensure that any moving of objects within the allocated map is
1117  // done before we process them.
1118  if (!foundAny) newDecl->setAttrs(AttrVec());
1119
1120  for (specific_attr_iterator<InheritableParamAttr>
1121       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1122       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1123    if (!DeclHasAttr(newDecl, *i)) {
1124      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1125      newAttr->setInherited(true);
1126      newDecl->addAttr(newAttr);
1127      foundAny = true;
1128    }
1129  }
1130
1131  if (!foundAny) newDecl->dropAttrs();
1132}
1133
1134namespace {
1135
1136/// Used in MergeFunctionDecl to keep track of function parameters in
1137/// C.
1138struct GNUCompatibleParamWarning {
1139  ParmVarDecl *OldParm;
1140  ParmVarDecl *NewParm;
1141  QualType PromotedType;
1142};
1143
1144}
1145
1146/// getSpecialMember - get the special member enum for a method.
1147Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1148  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1149    if (Ctor->isCopyConstructor())
1150      return Sema::CXXCopyConstructor;
1151
1152    return Sema::CXXConstructor;
1153  }
1154
1155  if (isa<CXXDestructorDecl>(MD))
1156    return Sema::CXXDestructor;
1157
1158  assert(MD->isCopyAssignmentOperator() &&
1159         "Must have copy assignment operator");
1160  return Sema::CXXCopyAssignment;
1161}
1162
1163/// canRedefineFunction - checks if a function can be redefined. Currently,
1164/// only extern inline functions can be redefined, and even then only in
1165/// GNU89 mode.
1166static bool canRedefineFunction(const FunctionDecl *FD,
1167                                const LangOptions& LangOpts) {
1168  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1169          FD->isInlineSpecified() &&
1170          FD->getStorageClass() == SC_Extern);
1171}
1172
1173/// MergeFunctionDecl - We just parsed a function 'New' from
1174/// declarator D which has the same name and scope as a previous
1175/// declaration 'Old'.  Figure out how to resolve this situation,
1176/// merging decls or emitting diagnostics as appropriate.
1177///
1178/// In C++, New and Old must be declarations that are not
1179/// overloaded. Use IsOverload to determine whether New and Old are
1180/// overloaded, and to select the Old declaration that New should be
1181/// merged with.
1182///
1183/// Returns true if there was an error, false otherwise.
1184bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1185  // Verify the old decl was also a function.
1186  FunctionDecl *Old = 0;
1187  if (FunctionTemplateDecl *OldFunctionTemplate
1188        = dyn_cast<FunctionTemplateDecl>(OldD))
1189    Old = OldFunctionTemplate->getTemplatedDecl();
1190  else
1191    Old = dyn_cast<FunctionDecl>(OldD);
1192  if (!Old) {
1193    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1194      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1195      Diag(Shadow->getTargetDecl()->getLocation(),
1196           diag::note_using_decl_target);
1197      Diag(Shadow->getUsingDecl()->getLocation(),
1198           diag::note_using_decl) << 0;
1199      return true;
1200    }
1201
1202    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1203      << New->getDeclName();
1204    Diag(OldD->getLocation(), diag::note_previous_definition);
1205    return true;
1206  }
1207
1208  // Determine whether the previous declaration was a definition,
1209  // implicit declaration, or a declaration.
1210  diag::kind PrevDiag;
1211  if (Old->isThisDeclarationADefinition())
1212    PrevDiag = diag::note_previous_definition;
1213  else if (Old->isImplicit())
1214    PrevDiag = diag::note_previous_implicit_declaration;
1215  else
1216    PrevDiag = diag::note_previous_declaration;
1217
1218  QualType OldQType = Context.getCanonicalType(Old->getType());
1219  QualType NewQType = Context.getCanonicalType(New->getType());
1220
1221  // Don't complain about this if we're in GNU89 mode and the old function
1222  // is an extern inline function.
1223  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1224      New->getStorageClass() == SC_Static &&
1225      Old->getStorageClass() != SC_Static &&
1226      !canRedefineFunction(Old, getLangOptions())) {
1227    Diag(New->getLocation(), diag::err_static_non_static)
1228      << New;
1229    Diag(Old->getLocation(), PrevDiag);
1230    return true;
1231  }
1232
1233  // If a function is first declared with a calling convention, but is
1234  // later declared or defined without one, the second decl assumes the
1235  // calling convention of the first.
1236  //
1237  // For the new decl, we have to look at the NON-canonical type to tell the
1238  // difference between a function that really doesn't have a calling
1239  // convention and one that is declared cdecl. That's because in
1240  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1241  // because it is the default calling convention.
1242  //
1243  // Note also that we DO NOT return at this point, because we still have
1244  // other tests to run.
1245  const FunctionType *OldType = cast<FunctionType>(OldQType);
1246  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1247  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1248  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1249  bool RequiresAdjustment = false;
1250  if (OldTypeInfo.getCC() != CC_Default &&
1251      NewTypeInfo.getCC() == CC_Default) {
1252    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1253    RequiresAdjustment = true;
1254  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1255                                     NewTypeInfo.getCC())) {
1256    // Calling conventions really aren't compatible, so complain.
1257    Diag(New->getLocation(), diag::err_cconv_change)
1258      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1259      << (OldTypeInfo.getCC() == CC_Default)
1260      << (OldTypeInfo.getCC() == CC_Default ? "" :
1261          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1262    Diag(Old->getLocation(), diag::note_previous_declaration);
1263    return true;
1264  }
1265
1266  // FIXME: diagnose the other way around?
1267  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1268    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1269    RequiresAdjustment = true;
1270  }
1271
1272  // Merge regparm attribute.
1273  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1274    if (NewTypeInfo.getRegParm()) {
1275      Diag(New->getLocation(), diag::err_regparm_mismatch)
1276        << NewType->getRegParmType()
1277        << OldType->getRegParmType();
1278      Diag(Old->getLocation(), diag::note_previous_declaration);
1279      return true;
1280    }
1281
1282    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1283    RequiresAdjustment = true;
1284  }
1285
1286  if (RequiresAdjustment) {
1287    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1288    New->setType(QualType(NewType, 0));
1289    NewQType = Context.getCanonicalType(New->getType());
1290  }
1291
1292  if (getLangOptions().CPlusPlus) {
1293    // (C++98 13.1p2):
1294    //   Certain function declarations cannot be overloaded:
1295    //     -- Function declarations that differ only in the return type
1296    //        cannot be overloaded.
1297    QualType OldReturnType = OldType->getResultType();
1298    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1299    QualType ResQT;
1300    if (OldReturnType != NewReturnType) {
1301      if (NewReturnType->isObjCObjectPointerType()
1302          && OldReturnType->isObjCObjectPointerType())
1303        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1304      if (ResQT.isNull()) {
1305        if (New->isCXXClassMember() && New->isOutOfLine())
1306          Diag(New->getLocation(),
1307               diag::err_member_def_does_not_match_ret_type) << New;
1308        else
1309          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1310        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1311        return true;
1312      }
1313      else
1314        NewQType = ResQT;
1315    }
1316
1317    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1318    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1319    if (OldMethod && NewMethod) {
1320      // Preserve triviality.
1321      NewMethod->setTrivial(OldMethod->isTrivial());
1322
1323      bool isFriend = NewMethod->getFriendObjectKind();
1324
1325      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1326        //    -- Member function declarations with the same name and the
1327        //       same parameter types cannot be overloaded if any of them
1328        //       is a static member function declaration.
1329        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1330          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1331          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1332          return true;
1333        }
1334
1335        // C++ [class.mem]p1:
1336        //   [...] A member shall not be declared twice in the
1337        //   member-specification, except that a nested class or member
1338        //   class template can be declared and then later defined.
1339        unsigned NewDiag;
1340        if (isa<CXXConstructorDecl>(OldMethod))
1341          NewDiag = diag::err_constructor_redeclared;
1342        else if (isa<CXXDestructorDecl>(NewMethod))
1343          NewDiag = diag::err_destructor_redeclared;
1344        else if (isa<CXXConversionDecl>(NewMethod))
1345          NewDiag = diag::err_conv_function_redeclared;
1346        else
1347          NewDiag = diag::err_member_redeclared;
1348
1349        Diag(New->getLocation(), NewDiag);
1350        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1351
1352      // Complain if this is an explicit declaration of a special
1353      // member that was initially declared implicitly.
1354      //
1355      // As an exception, it's okay to befriend such methods in order
1356      // to permit the implicit constructor/destructor/operator calls.
1357      } else if (OldMethod->isImplicit()) {
1358        if (isFriend) {
1359          NewMethod->setImplicit();
1360        } else {
1361          Diag(NewMethod->getLocation(),
1362               diag::err_definition_of_implicitly_declared_member)
1363            << New << getSpecialMember(OldMethod);
1364          return true;
1365        }
1366      }
1367    }
1368
1369    // (C++98 8.3.5p3):
1370    //   All declarations for a function shall agree exactly in both the
1371    //   return type and the parameter-type-list.
1372    // We also want to respect all the extended bits except noreturn.
1373
1374    // noreturn should now match unless the old type info didn't have it.
1375    QualType OldQTypeForComparison = OldQType;
1376    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1377      assert(OldQType == QualType(OldType, 0));
1378      const FunctionType *OldTypeForComparison
1379        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1380      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1381      assert(OldQTypeForComparison.isCanonical());
1382    }
1383
1384    if (OldQTypeForComparison == NewQType)
1385      return MergeCompatibleFunctionDecls(New, Old);
1386
1387    // Fall through for conflicting redeclarations and redefinitions.
1388  }
1389
1390  // C: Function types need to be compatible, not identical. This handles
1391  // duplicate function decls like "void f(int); void f(enum X);" properly.
1392  if (!getLangOptions().CPlusPlus &&
1393      Context.typesAreCompatible(OldQType, NewQType)) {
1394    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1395    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1396    const FunctionProtoType *OldProto = 0;
1397    if (isa<FunctionNoProtoType>(NewFuncType) &&
1398        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1399      // The old declaration provided a function prototype, but the
1400      // new declaration does not. Merge in the prototype.
1401      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1402      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1403                                                 OldProto->arg_type_end());
1404      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1405                                         ParamTypes.data(), ParamTypes.size(),
1406                                         OldProto->getExtProtoInfo());
1407      New->setType(NewQType);
1408      New->setHasInheritedPrototype();
1409
1410      // Synthesize a parameter for each argument type.
1411      llvm::SmallVector<ParmVarDecl*, 16> Params;
1412      for (FunctionProtoType::arg_type_iterator
1413             ParamType = OldProto->arg_type_begin(),
1414             ParamEnd = OldProto->arg_type_end();
1415           ParamType != ParamEnd; ++ParamType) {
1416        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1417                                                 SourceLocation(),
1418                                                 SourceLocation(), 0,
1419                                                 *ParamType, /*TInfo=*/0,
1420                                                 SC_None, SC_None,
1421                                                 0);
1422        Param->setImplicit();
1423        Params.push_back(Param);
1424      }
1425
1426      New->setParams(Params.data(), Params.size());
1427    }
1428
1429    return MergeCompatibleFunctionDecls(New, Old);
1430  }
1431
1432  // GNU C permits a K&R definition to follow a prototype declaration
1433  // if the declared types of the parameters in the K&R definition
1434  // match the types in the prototype declaration, even when the
1435  // promoted types of the parameters from the K&R definition differ
1436  // from the types in the prototype. GCC then keeps the types from
1437  // the prototype.
1438  //
1439  // If a variadic prototype is followed by a non-variadic K&R definition,
1440  // the K&R definition becomes variadic.  This is sort of an edge case, but
1441  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1442  // C99 6.9.1p8.
1443  if (!getLangOptions().CPlusPlus &&
1444      Old->hasPrototype() && !New->hasPrototype() &&
1445      New->getType()->getAs<FunctionProtoType>() &&
1446      Old->getNumParams() == New->getNumParams()) {
1447    llvm::SmallVector<QualType, 16> ArgTypes;
1448    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1449    const FunctionProtoType *OldProto
1450      = Old->getType()->getAs<FunctionProtoType>();
1451    const FunctionProtoType *NewProto
1452      = New->getType()->getAs<FunctionProtoType>();
1453
1454    // Determine whether this is the GNU C extension.
1455    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1456                                               NewProto->getResultType());
1457    bool LooseCompatible = !MergedReturn.isNull();
1458    for (unsigned Idx = 0, End = Old->getNumParams();
1459         LooseCompatible && Idx != End; ++Idx) {
1460      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1461      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1462      if (Context.typesAreCompatible(OldParm->getType(),
1463                                     NewProto->getArgType(Idx))) {
1464        ArgTypes.push_back(NewParm->getType());
1465      } else if (Context.typesAreCompatible(OldParm->getType(),
1466                                            NewParm->getType(),
1467                                            /*CompareUnqualified=*/true)) {
1468        GNUCompatibleParamWarning Warn
1469          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1470        Warnings.push_back(Warn);
1471        ArgTypes.push_back(NewParm->getType());
1472      } else
1473        LooseCompatible = false;
1474    }
1475
1476    if (LooseCompatible) {
1477      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1478        Diag(Warnings[Warn].NewParm->getLocation(),
1479             diag::ext_param_promoted_not_compatible_with_prototype)
1480          << Warnings[Warn].PromotedType
1481          << Warnings[Warn].OldParm->getType();
1482        if (Warnings[Warn].OldParm->getLocation().isValid())
1483          Diag(Warnings[Warn].OldParm->getLocation(),
1484               diag::note_previous_declaration);
1485      }
1486
1487      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1488                                           ArgTypes.size(),
1489                                           OldProto->getExtProtoInfo()));
1490      return MergeCompatibleFunctionDecls(New, Old);
1491    }
1492
1493    // Fall through to diagnose conflicting types.
1494  }
1495
1496  // A function that has already been declared has been redeclared or defined
1497  // with a different type- show appropriate diagnostic
1498  if (unsigned BuiltinID = Old->getBuiltinID()) {
1499    // The user has declared a builtin function with an incompatible
1500    // signature.
1501    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1502      // The function the user is redeclaring is a library-defined
1503      // function like 'malloc' or 'printf'. Warn about the
1504      // redeclaration, then pretend that we don't know about this
1505      // library built-in.
1506      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1507      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1508        << Old << Old->getType();
1509      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1510      Old->setInvalidDecl();
1511      return false;
1512    }
1513
1514    PrevDiag = diag::note_previous_builtin_declaration;
1515  }
1516
1517  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1518  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1519  return true;
1520}
1521
1522/// \brief Completes the merge of two function declarations that are
1523/// known to be compatible.
1524///
1525/// This routine handles the merging of attributes and other
1526/// properties of function declarations form the old declaration to
1527/// the new declaration, once we know that New is in fact a
1528/// redeclaration of Old.
1529///
1530/// \returns false
1531bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1532  // Merge the attributes
1533  mergeDeclAttributes(New, Old, Context);
1534
1535  // Merge the storage class.
1536  if (Old->getStorageClass() != SC_Extern &&
1537      Old->getStorageClass() != SC_None)
1538    New->setStorageClass(Old->getStorageClass());
1539
1540  // Merge "pure" flag.
1541  if (Old->isPure())
1542    New->setPure();
1543
1544  // Merge the "deleted" flag.
1545  if (Old->isDeleted())
1546    New->setDeleted();
1547
1548  // Merge attributes from the parameters.  These can mismatch with K&R
1549  // declarations.
1550  if (New->getNumParams() == Old->getNumParams())
1551    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1552      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1553                               Context);
1554
1555  if (getLangOptions().CPlusPlus)
1556    return MergeCXXFunctionDecl(New, Old);
1557
1558  return false;
1559}
1560
1561void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1562                                const ObjCMethodDecl *oldMethod) {
1563  // Merge the attributes.
1564  mergeDeclAttributes(newMethod, oldMethod, Context);
1565
1566  // Merge attributes from the parameters.
1567  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1568         ni = newMethod->param_begin(), ne = newMethod->param_end();
1569       ni != ne; ++ni, ++oi)
1570    mergeParamDeclAttributes(*ni, *oi, Context);
1571}
1572
1573/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1574/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1575/// emitting diagnostics as appropriate.
1576///
1577/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1578/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1579/// check them before the initializer is attached.
1580///
1581void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1582  if (New->isInvalidDecl() || Old->isInvalidDecl())
1583    return;
1584
1585  QualType MergedT;
1586  if (getLangOptions().CPlusPlus) {
1587    AutoType *AT = New->getType()->getContainedAutoType();
1588    if (AT && !AT->isDeduced()) {
1589      // We don't know what the new type is until the initializer is attached.
1590      return;
1591    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1592      // These could still be something that needs exception specs checked.
1593      return MergeVarDeclExceptionSpecs(New, Old);
1594    }
1595    // C++ [basic.link]p10:
1596    //   [...] the types specified by all declarations referring to a given
1597    //   object or function shall be identical, except that declarations for an
1598    //   array object can specify array types that differ by the presence or
1599    //   absence of a major array bound (8.3.4).
1600    else if (Old->getType()->isIncompleteArrayType() &&
1601             New->getType()->isArrayType()) {
1602      CanQual<ArrayType> OldArray
1603        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1604      CanQual<ArrayType> NewArray
1605        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1606      if (OldArray->getElementType() == NewArray->getElementType())
1607        MergedT = New->getType();
1608    } else if (Old->getType()->isArrayType() &&
1609             New->getType()->isIncompleteArrayType()) {
1610      CanQual<ArrayType> OldArray
1611        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1612      CanQual<ArrayType> NewArray
1613        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1614      if (OldArray->getElementType() == NewArray->getElementType())
1615        MergedT = Old->getType();
1616    } else if (New->getType()->isObjCObjectPointerType()
1617               && Old->getType()->isObjCObjectPointerType()) {
1618        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1619                                                        Old->getType());
1620    }
1621  } else {
1622    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1623  }
1624  if (MergedT.isNull()) {
1625    Diag(New->getLocation(), diag::err_redefinition_different_type)
1626      << New->getDeclName();
1627    Diag(Old->getLocation(), diag::note_previous_definition);
1628    return New->setInvalidDecl();
1629  }
1630  New->setType(MergedT);
1631}
1632
1633/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1634/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1635/// situation, merging decls or emitting diagnostics as appropriate.
1636///
1637/// Tentative definition rules (C99 6.9.2p2) are checked by
1638/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1639/// definitions here, since the initializer hasn't been attached.
1640///
1641void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1642  // If the new decl is already invalid, don't do any other checking.
1643  if (New->isInvalidDecl())
1644    return;
1645
1646  // Verify the old decl was also a variable.
1647  VarDecl *Old = 0;
1648  if (!Previous.isSingleResult() ||
1649      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1650    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1651      << New->getDeclName();
1652    Diag(Previous.getRepresentativeDecl()->getLocation(),
1653         diag::note_previous_definition);
1654    return New->setInvalidDecl();
1655  }
1656
1657  // C++ [class.mem]p1:
1658  //   A member shall not be declared twice in the member-specification [...]
1659  //
1660  // Here, we need only consider static data members.
1661  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1662    Diag(New->getLocation(), diag::err_duplicate_member)
1663      << New->getIdentifier();
1664    Diag(Old->getLocation(), diag::note_previous_declaration);
1665    New->setInvalidDecl();
1666  }
1667
1668  mergeDeclAttributes(New, Old, Context);
1669
1670  // Merge the types.
1671  MergeVarDeclTypes(New, Old);
1672  if (New->isInvalidDecl())
1673    return;
1674
1675  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1676  if (New->getStorageClass() == SC_Static &&
1677      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1678    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1679    Diag(Old->getLocation(), diag::note_previous_definition);
1680    return New->setInvalidDecl();
1681  }
1682  // C99 6.2.2p4:
1683  //   For an identifier declared with the storage-class specifier
1684  //   extern in a scope in which a prior declaration of that
1685  //   identifier is visible,23) if the prior declaration specifies
1686  //   internal or external linkage, the linkage of the identifier at
1687  //   the later declaration is the same as the linkage specified at
1688  //   the prior declaration. If no prior declaration is visible, or
1689  //   if the prior declaration specifies no linkage, then the
1690  //   identifier has external linkage.
1691  if (New->hasExternalStorage() && Old->hasLinkage())
1692    /* Okay */;
1693  else if (New->getStorageClass() != SC_Static &&
1694           Old->getStorageClass() == SC_Static) {
1695    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1696    Diag(Old->getLocation(), diag::note_previous_definition);
1697    return New->setInvalidDecl();
1698  }
1699
1700  // Check if extern is followed by non-extern and vice-versa.
1701  if (New->hasExternalStorage() &&
1702      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1703    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1704    Diag(Old->getLocation(), diag::note_previous_definition);
1705    return New->setInvalidDecl();
1706  }
1707  if (Old->hasExternalStorage() &&
1708      !New->hasLinkage() && New->isLocalVarDecl()) {
1709    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1710    Diag(Old->getLocation(), diag::note_previous_definition);
1711    return New->setInvalidDecl();
1712  }
1713
1714  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1715
1716  // FIXME: The test for external storage here seems wrong? We still
1717  // need to check for mismatches.
1718  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1719      // Don't complain about out-of-line definitions of static members.
1720      !(Old->getLexicalDeclContext()->isRecord() &&
1721        !New->getLexicalDeclContext()->isRecord())) {
1722    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1723    Diag(Old->getLocation(), diag::note_previous_definition);
1724    return New->setInvalidDecl();
1725  }
1726
1727  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1728    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1729    Diag(Old->getLocation(), diag::note_previous_definition);
1730  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1731    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1732    Diag(Old->getLocation(), diag::note_previous_definition);
1733  }
1734
1735  // C++ doesn't have tentative definitions, so go right ahead and check here.
1736  const VarDecl *Def;
1737  if (getLangOptions().CPlusPlus &&
1738      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1739      (Def = Old->getDefinition())) {
1740    Diag(New->getLocation(), diag::err_redefinition)
1741      << New->getDeclName();
1742    Diag(Def->getLocation(), diag::note_previous_definition);
1743    New->setInvalidDecl();
1744    return;
1745  }
1746  // c99 6.2.2 P4.
1747  // For an identifier declared with the storage-class specifier extern in a
1748  // scope in which a prior declaration of that identifier is visible, if
1749  // the prior declaration specifies internal or external linkage, the linkage
1750  // of the identifier at the later declaration is the same as the linkage
1751  // specified at the prior declaration.
1752  // FIXME. revisit this code.
1753  if (New->hasExternalStorage() &&
1754      Old->getLinkage() == InternalLinkage &&
1755      New->getDeclContext() == Old->getDeclContext())
1756    New->setStorageClass(Old->getStorageClass());
1757
1758  // Keep a chain of previous declarations.
1759  New->setPreviousDeclaration(Old);
1760
1761  // Inherit access appropriately.
1762  New->setAccess(Old->getAccess());
1763}
1764
1765/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1766/// no declarator (e.g. "struct foo;") is parsed.
1767Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1768                                       DeclSpec &DS) {
1769  Decl *TagD = 0;
1770  TagDecl *Tag = 0;
1771  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1772      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1773      DS.getTypeSpecType() == DeclSpec::TST_union ||
1774      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1775    TagD = DS.getRepAsDecl();
1776
1777    if (!TagD) // We probably had an error
1778      return 0;
1779
1780    // Note that the above type specs guarantee that the
1781    // type rep is a Decl, whereas in many of the others
1782    // it's a Type.
1783    Tag = dyn_cast<TagDecl>(TagD);
1784  }
1785
1786  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1787    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1788    // or incomplete types shall not be restrict-qualified."
1789    if (TypeQuals & DeclSpec::TQ_restrict)
1790      Diag(DS.getRestrictSpecLoc(),
1791           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1792           << DS.getSourceRange();
1793  }
1794
1795  if (DS.isFriendSpecified()) {
1796    // If we're dealing with a decl but not a TagDecl, assume that
1797    // whatever routines created it handled the friendship aspect.
1798    if (TagD && !Tag)
1799      return 0;
1800    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1801  }
1802
1803  // Track whether we warned about the fact that there aren't any
1804  // declarators.
1805  bool emittedWarning = false;
1806
1807  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1808    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1809
1810    if (!Record->getDeclName() && Record->isDefinition() &&
1811        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1812      if (getLangOptions().CPlusPlus ||
1813          Record->getDeclContext()->isRecord())
1814        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1815
1816      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1817        << DS.getSourceRange();
1818      emittedWarning = true;
1819    }
1820  }
1821
1822  // Check for Microsoft C extension: anonymous struct.
1823  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1824      CurContext->isRecord() &&
1825      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1826    // Handle 2 kinds of anonymous struct:
1827    //   struct STRUCT;
1828    // and
1829    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1830    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1831    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1832        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1833         DS.getRepAsType().get()->isStructureType())) {
1834      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1835        << DS.getSourceRange();
1836      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1837    }
1838  }
1839
1840  if (getLangOptions().CPlusPlus &&
1841      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1842    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1843      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1844          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
1845        Diag(Enum->getLocation(), diag::ext_no_declarators)
1846          << DS.getSourceRange();
1847        emittedWarning = true;
1848      }
1849
1850  // Skip all the checks below if we have a type error.
1851  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
1852
1853  if (!DS.isMissingDeclaratorOk()) {
1854    // Warn about typedefs of enums without names, since this is an
1855    // extension in both Microsoft and GNU.
1856    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1857        Tag && isa<EnumDecl>(Tag)) {
1858      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1859        << DS.getSourceRange();
1860      return Tag;
1861    }
1862
1863    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1864      << DS.getSourceRange();
1865    emittedWarning = true;
1866  }
1867
1868  // We're going to complain about a bunch of spurious specifiers;
1869  // only do this if we're declaring a tag, because otherwise we
1870  // should be getting diag::ext_no_declarators.
1871  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
1872    return TagD;
1873
1874  // Note that a linkage-specification sets a storage class, but
1875  // 'extern "C" struct foo;' is actually valid and not theoretically
1876  // useless.
1877  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
1878    if (!DS.isExternInLinkageSpec())
1879      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
1880        << DeclSpec::getSpecifierName(scs);
1881
1882  if (DS.isThreadSpecified())
1883    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
1884  if (DS.getTypeQualifiers()) {
1885    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1886      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
1887    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1888      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
1889    // Restrict is covered above.
1890  }
1891  if (DS.isInlineSpecified())
1892    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
1893  if (DS.isVirtualSpecified())
1894    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
1895  if (DS.isExplicitSpecified())
1896    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
1897
1898  // FIXME: Warn on useless attributes
1899
1900  return TagD;
1901}
1902
1903/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1904/// builds a statement for it and returns it so it is evaluated.
1905StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1906  StmtResult R;
1907  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1908    Expr *Exp = DS.getRepAsExpr();
1909    QualType Ty = Exp->getType();
1910    if (Ty->isPointerType()) {
1911      do
1912        Ty = Ty->getAs<PointerType>()->getPointeeType();
1913      while (Ty->isPointerType());
1914    }
1915    if (Ty->isVariableArrayType()) {
1916      R = ActOnExprStmt(MakeFullExpr(Exp));
1917    }
1918  }
1919  return R;
1920}
1921
1922/// We are trying to inject an anonymous member into the given scope;
1923/// check if there's an existing declaration that can't be overloaded.
1924///
1925/// \return true if this is a forbidden redeclaration
1926static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1927                                         Scope *S,
1928                                         DeclContext *Owner,
1929                                         DeclarationName Name,
1930                                         SourceLocation NameLoc,
1931                                         unsigned diagnostic) {
1932  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1933                 Sema::ForRedeclaration);
1934  if (!SemaRef.LookupName(R, S)) return false;
1935
1936  if (R.getAsSingle<TagDecl>())
1937    return false;
1938
1939  // Pick a representative declaration.
1940  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1941  assert(PrevDecl && "Expected a non-null Decl");
1942
1943  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1944    return false;
1945
1946  SemaRef.Diag(NameLoc, diagnostic) << Name;
1947  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1948
1949  return true;
1950}
1951
1952/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1953/// anonymous struct or union AnonRecord into the owning context Owner
1954/// and scope S. This routine will be invoked just after we realize
1955/// that an unnamed union or struct is actually an anonymous union or
1956/// struct, e.g.,
1957///
1958/// @code
1959/// union {
1960///   int i;
1961///   float f;
1962/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1963///    // f into the surrounding scope.x
1964/// @endcode
1965///
1966/// This routine is recursive, injecting the names of nested anonymous
1967/// structs/unions into the owning context and scope as well.
1968static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1969                                                DeclContext *Owner,
1970                                                RecordDecl *AnonRecord,
1971                                                AccessSpecifier AS,
1972                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1973                                                      bool MSAnonStruct) {
1974  unsigned diagKind
1975    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1976                            : diag::err_anonymous_struct_member_redecl;
1977
1978  bool Invalid = false;
1979
1980  // Look every FieldDecl and IndirectFieldDecl with a name.
1981  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1982                               DEnd = AnonRecord->decls_end();
1983       D != DEnd; ++D) {
1984    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1985        cast<NamedDecl>(*D)->getDeclName()) {
1986      ValueDecl *VD = cast<ValueDecl>(*D);
1987      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1988                                       VD->getLocation(), diagKind)) {
1989        // C++ [class.union]p2:
1990        //   The names of the members of an anonymous union shall be
1991        //   distinct from the names of any other entity in the
1992        //   scope in which the anonymous union is declared.
1993        Invalid = true;
1994      } else {
1995        // C++ [class.union]p2:
1996        //   For the purpose of name lookup, after the anonymous union
1997        //   definition, the members of the anonymous union are
1998        //   considered to have been defined in the scope in which the
1999        //   anonymous union is declared.
2000        unsigned OldChainingSize = Chaining.size();
2001        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2002          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2003               PE = IF->chain_end(); PI != PE; ++PI)
2004            Chaining.push_back(*PI);
2005        else
2006          Chaining.push_back(VD);
2007
2008        assert(Chaining.size() >= 2);
2009        NamedDecl **NamedChain =
2010          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2011        for (unsigned i = 0; i < Chaining.size(); i++)
2012          NamedChain[i] = Chaining[i];
2013
2014        IndirectFieldDecl* IndirectField =
2015          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2016                                    VD->getIdentifier(), VD->getType(),
2017                                    NamedChain, Chaining.size());
2018
2019        IndirectField->setAccess(AS);
2020        IndirectField->setImplicit();
2021        SemaRef.PushOnScopeChains(IndirectField, S);
2022
2023        // That includes picking up the appropriate access specifier.
2024        if (AS != AS_none) IndirectField->setAccess(AS);
2025
2026        Chaining.resize(OldChainingSize);
2027      }
2028    }
2029  }
2030
2031  return Invalid;
2032}
2033
2034/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2035/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2036/// illegal input values are mapped to SC_None.
2037static StorageClass
2038StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2039  switch (StorageClassSpec) {
2040  case DeclSpec::SCS_unspecified:    return SC_None;
2041  case DeclSpec::SCS_extern:         return SC_Extern;
2042  case DeclSpec::SCS_static:         return SC_Static;
2043  case DeclSpec::SCS_auto:           return SC_Auto;
2044  case DeclSpec::SCS_register:       return SC_Register;
2045  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2046    // Illegal SCSs map to None: error reporting is up to the caller.
2047  case DeclSpec::SCS_mutable:        // Fall through.
2048  case DeclSpec::SCS_typedef:        return SC_None;
2049  }
2050  llvm_unreachable("unknown storage class specifier");
2051}
2052
2053/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2054/// a StorageClass. Any error reporting is up to the caller:
2055/// illegal input values are mapped to SC_None.
2056static StorageClass
2057StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2058  switch (StorageClassSpec) {
2059  case DeclSpec::SCS_unspecified:    return SC_None;
2060  case DeclSpec::SCS_extern:         return SC_Extern;
2061  case DeclSpec::SCS_static:         return SC_Static;
2062  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2063    // Illegal SCSs map to None: error reporting is up to the caller.
2064  case DeclSpec::SCS_auto:           // Fall through.
2065  case DeclSpec::SCS_mutable:        // Fall through.
2066  case DeclSpec::SCS_register:       // Fall through.
2067  case DeclSpec::SCS_typedef:        return SC_None;
2068  }
2069  llvm_unreachable("unknown storage class specifier");
2070}
2071
2072/// BuildAnonymousStructOrUnion - Handle the declaration of an
2073/// anonymous structure or union. Anonymous unions are a C++ feature
2074/// (C++ [class.union]) and a GNU C extension; anonymous structures
2075/// are a GNU C and GNU C++ extension.
2076Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2077                                             AccessSpecifier AS,
2078                                             RecordDecl *Record) {
2079  DeclContext *Owner = Record->getDeclContext();
2080
2081  // Diagnose whether this anonymous struct/union is an extension.
2082  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2083    Diag(Record->getLocation(), diag::ext_anonymous_union);
2084  else if (!Record->isUnion())
2085    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2086
2087  // C and C++ require different kinds of checks for anonymous
2088  // structs/unions.
2089  bool Invalid = false;
2090  if (getLangOptions().CPlusPlus) {
2091    const char* PrevSpec = 0;
2092    unsigned DiagID;
2093    // C++ [class.union]p3:
2094    //   Anonymous unions declared in a named namespace or in the
2095    //   global namespace shall be declared static.
2096    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2097        (isa<TranslationUnitDecl>(Owner) ||
2098         (isa<NamespaceDecl>(Owner) &&
2099          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2100      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2101      Invalid = true;
2102
2103      // Recover by adding 'static'.
2104      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2105                             PrevSpec, DiagID, getLangOptions());
2106    }
2107    // C++ [class.union]p3:
2108    //   A storage class is not allowed in a declaration of an
2109    //   anonymous union in a class scope.
2110    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2111             isa<RecordDecl>(Owner)) {
2112      Diag(DS.getStorageClassSpecLoc(),
2113           diag::err_anonymous_union_with_storage_spec);
2114      Invalid = true;
2115
2116      // Recover by removing the storage specifier.
2117      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2118                             PrevSpec, DiagID, getLangOptions());
2119    }
2120
2121    // C++ [class.union]p2:
2122    //   The member-specification of an anonymous union shall only
2123    //   define non-static data members. [Note: nested types and
2124    //   functions cannot be declared within an anonymous union. ]
2125    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2126                                 MemEnd = Record->decls_end();
2127         Mem != MemEnd; ++Mem) {
2128      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2129        // C++ [class.union]p3:
2130        //   An anonymous union shall not have private or protected
2131        //   members (clause 11).
2132        assert(FD->getAccess() != AS_none);
2133        if (FD->getAccess() != AS_public) {
2134          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2135            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2136          Invalid = true;
2137        }
2138
2139        if (CheckNontrivialField(FD))
2140          Invalid = true;
2141      } else if ((*Mem)->isImplicit()) {
2142        // Any implicit members are fine.
2143      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2144        // This is a type that showed up in an
2145        // elaborated-type-specifier inside the anonymous struct or
2146        // union, but which actually declares a type outside of the
2147        // anonymous struct or union. It's okay.
2148      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2149        if (!MemRecord->isAnonymousStructOrUnion() &&
2150            MemRecord->getDeclName()) {
2151          // Visual C++ allows type definition in anonymous struct or union.
2152          if (getLangOptions().Microsoft)
2153            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2154              << (int)Record->isUnion();
2155          else {
2156            // This is a nested type declaration.
2157            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2158              << (int)Record->isUnion();
2159            Invalid = true;
2160          }
2161        }
2162      } else if (isa<AccessSpecDecl>(*Mem)) {
2163        // Any access specifier is fine.
2164      } else {
2165        // We have something that isn't a non-static data
2166        // member. Complain about it.
2167        unsigned DK = diag::err_anonymous_record_bad_member;
2168        if (isa<TypeDecl>(*Mem))
2169          DK = diag::err_anonymous_record_with_type;
2170        else if (isa<FunctionDecl>(*Mem))
2171          DK = diag::err_anonymous_record_with_function;
2172        else if (isa<VarDecl>(*Mem))
2173          DK = diag::err_anonymous_record_with_static;
2174
2175        // Visual C++ allows type definition in anonymous struct or union.
2176        if (getLangOptions().Microsoft &&
2177            DK == diag::err_anonymous_record_with_type)
2178          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2179            << (int)Record->isUnion();
2180        else {
2181          Diag((*Mem)->getLocation(), DK)
2182              << (int)Record->isUnion();
2183          Invalid = true;
2184        }
2185      }
2186    }
2187  }
2188
2189  if (!Record->isUnion() && !Owner->isRecord()) {
2190    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2191      << (int)getLangOptions().CPlusPlus;
2192    Invalid = true;
2193  }
2194
2195  // Mock up a declarator.
2196  Declarator Dc(DS, Declarator::TypeNameContext);
2197  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2198  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2199
2200  // Create a declaration for this anonymous struct/union.
2201  NamedDecl *Anon = 0;
2202  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2203    Anon = FieldDecl::Create(Context, OwningClass,
2204                             DS.getSourceRange().getBegin(),
2205                             Record->getLocation(),
2206                             /*IdentifierInfo=*/0,
2207                             Context.getTypeDeclType(Record),
2208                             TInfo,
2209                             /*BitWidth=*/0, /*Mutable=*/false);
2210    Anon->setAccess(AS);
2211    if (getLangOptions().CPlusPlus)
2212      FieldCollector->Add(cast<FieldDecl>(Anon));
2213  } else {
2214    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2215    assert(SCSpec != DeclSpec::SCS_typedef &&
2216           "Parser allowed 'typedef' as storage class VarDecl.");
2217    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2218    if (SCSpec == DeclSpec::SCS_mutable) {
2219      // mutable can only appear on non-static class members, so it's always
2220      // an error here
2221      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2222      Invalid = true;
2223      SC = SC_None;
2224    }
2225    SCSpec = DS.getStorageClassSpecAsWritten();
2226    VarDecl::StorageClass SCAsWritten
2227      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2228
2229    Anon = VarDecl::Create(Context, Owner,
2230                           DS.getSourceRange().getBegin(),
2231                           Record->getLocation(), /*IdentifierInfo=*/0,
2232                           Context.getTypeDeclType(Record),
2233                           TInfo, SC, SCAsWritten);
2234  }
2235  Anon->setImplicit();
2236
2237  // Add the anonymous struct/union object to the current
2238  // context. We'll be referencing this object when we refer to one of
2239  // its members.
2240  Owner->addDecl(Anon);
2241
2242  // Inject the members of the anonymous struct/union into the owning
2243  // context and into the identifier resolver chain for name lookup
2244  // purposes.
2245  llvm::SmallVector<NamedDecl*, 2> Chain;
2246  Chain.push_back(Anon);
2247
2248  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2249                                          Chain, false))
2250    Invalid = true;
2251
2252  // Mark this as an anonymous struct/union type. Note that we do not
2253  // do this until after we have already checked and injected the
2254  // members of this anonymous struct/union type, because otherwise
2255  // the members could be injected twice: once by DeclContext when it
2256  // builds its lookup table, and once by
2257  // InjectAnonymousStructOrUnionMembers.
2258  Record->setAnonymousStructOrUnion(true);
2259
2260  if (Invalid)
2261    Anon->setInvalidDecl();
2262
2263  return Anon;
2264}
2265
2266/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2267/// Microsoft C anonymous structure.
2268/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2269/// Example:
2270///
2271/// struct A { int a; };
2272/// struct B { struct A; int b; };
2273///
2274/// void foo() {
2275///   B var;
2276///   var.a = 3;
2277/// }
2278///
2279Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2280                                           RecordDecl *Record) {
2281
2282  // If there is no Record, get the record via the typedef.
2283  if (!Record)
2284    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2285
2286  // Mock up a declarator.
2287  Declarator Dc(DS, Declarator::TypeNameContext);
2288  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2289  assert(TInfo && "couldn't build declarator info for anonymous struct");
2290
2291  // Create a declaration for this anonymous struct.
2292  NamedDecl* Anon = FieldDecl::Create(Context,
2293                             cast<RecordDecl>(CurContext),
2294                             DS.getSourceRange().getBegin(),
2295                             DS.getSourceRange().getBegin(),
2296                             /*IdentifierInfo=*/0,
2297                             Context.getTypeDeclType(Record),
2298                             TInfo,
2299                             /*BitWidth=*/0, /*Mutable=*/false);
2300  Anon->setImplicit();
2301
2302  // Add the anonymous struct object to the current context.
2303  CurContext->addDecl(Anon);
2304
2305  // Inject the members of the anonymous struct into the current
2306  // context and into the identifier resolver chain for name lookup
2307  // purposes.
2308  llvm::SmallVector<NamedDecl*, 2> Chain;
2309  Chain.push_back(Anon);
2310
2311  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2312                                          Record->getDefinition(),
2313                                          AS_none, Chain, true))
2314    Anon->setInvalidDecl();
2315
2316  return Anon;
2317}
2318
2319/// GetNameForDeclarator - Determine the full declaration name for the
2320/// given Declarator.
2321DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2322  return GetNameFromUnqualifiedId(D.getName());
2323}
2324
2325/// \brief Retrieves the declaration name from a parsed unqualified-id.
2326DeclarationNameInfo
2327Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2328  DeclarationNameInfo NameInfo;
2329  NameInfo.setLoc(Name.StartLocation);
2330
2331  switch (Name.getKind()) {
2332
2333  case UnqualifiedId::IK_Identifier:
2334    NameInfo.setName(Name.Identifier);
2335    NameInfo.setLoc(Name.StartLocation);
2336    return NameInfo;
2337
2338  case UnqualifiedId::IK_OperatorFunctionId:
2339    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2340                                           Name.OperatorFunctionId.Operator));
2341    NameInfo.setLoc(Name.StartLocation);
2342    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2343      = Name.OperatorFunctionId.SymbolLocations[0];
2344    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2345      = Name.EndLocation.getRawEncoding();
2346    return NameInfo;
2347
2348  case UnqualifiedId::IK_LiteralOperatorId:
2349    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2350                                                           Name.Identifier));
2351    NameInfo.setLoc(Name.StartLocation);
2352    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2353    return NameInfo;
2354
2355  case UnqualifiedId::IK_ConversionFunctionId: {
2356    TypeSourceInfo *TInfo;
2357    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2358    if (Ty.isNull())
2359      return DeclarationNameInfo();
2360    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2361                                               Context.getCanonicalType(Ty)));
2362    NameInfo.setLoc(Name.StartLocation);
2363    NameInfo.setNamedTypeInfo(TInfo);
2364    return NameInfo;
2365  }
2366
2367  case UnqualifiedId::IK_ConstructorName: {
2368    TypeSourceInfo *TInfo;
2369    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2370    if (Ty.isNull())
2371      return DeclarationNameInfo();
2372    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2373                                              Context.getCanonicalType(Ty)));
2374    NameInfo.setLoc(Name.StartLocation);
2375    NameInfo.setNamedTypeInfo(TInfo);
2376    return NameInfo;
2377  }
2378
2379  case UnqualifiedId::IK_ConstructorTemplateId: {
2380    // In well-formed code, we can only have a constructor
2381    // template-id that refers to the current context, so go there
2382    // to find the actual type being constructed.
2383    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2384    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2385      return DeclarationNameInfo();
2386
2387    // Determine the type of the class being constructed.
2388    QualType CurClassType = Context.getTypeDeclType(CurClass);
2389
2390    // FIXME: Check two things: that the template-id names the same type as
2391    // CurClassType, and that the template-id does not occur when the name
2392    // was qualified.
2393
2394    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2395                                    Context.getCanonicalType(CurClassType)));
2396    NameInfo.setLoc(Name.StartLocation);
2397    // FIXME: should we retrieve TypeSourceInfo?
2398    NameInfo.setNamedTypeInfo(0);
2399    return NameInfo;
2400  }
2401
2402  case UnqualifiedId::IK_DestructorName: {
2403    TypeSourceInfo *TInfo;
2404    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2405    if (Ty.isNull())
2406      return DeclarationNameInfo();
2407    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2408                                              Context.getCanonicalType(Ty)));
2409    NameInfo.setLoc(Name.StartLocation);
2410    NameInfo.setNamedTypeInfo(TInfo);
2411    return NameInfo;
2412  }
2413
2414  case UnqualifiedId::IK_TemplateId: {
2415    TemplateName TName = Name.TemplateId->Template.get();
2416    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2417    return Context.getNameForTemplate(TName, TNameLoc);
2418  }
2419
2420  } // switch (Name.getKind())
2421
2422  assert(false && "Unknown name kind");
2423  return DeclarationNameInfo();
2424}
2425
2426/// isNearlyMatchingFunction - Determine whether the C++ functions
2427/// Declaration and Definition are "nearly" matching. This heuristic
2428/// is used to improve diagnostics in the case where an out-of-line
2429/// function definition doesn't match any declaration within
2430/// the class or namespace.
2431static bool isNearlyMatchingFunction(ASTContext &Context,
2432                                     FunctionDecl *Declaration,
2433                                     FunctionDecl *Definition) {
2434  if (Declaration->param_size() != Definition->param_size())
2435    return false;
2436  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2437    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2438    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2439
2440    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2441                                        DefParamTy.getNonReferenceType()))
2442      return false;
2443  }
2444
2445  return true;
2446}
2447
2448/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2449/// declarator needs to be rebuilt in the current instantiation.
2450/// Any bits of declarator which appear before the name are valid for
2451/// consideration here.  That's specifically the type in the decl spec
2452/// and the base type in any member-pointer chunks.
2453static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2454                                                    DeclarationName Name) {
2455  // The types we specifically need to rebuild are:
2456  //   - typenames, typeofs, and decltypes
2457  //   - types which will become injected class names
2458  // Of course, we also need to rebuild any type referencing such a
2459  // type.  It's safest to just say "dependent", but we call out a
2460  // few cases here.
2461
2462  DeclSpec &DS = D.getMutableDeclSpec();
2463  switch (DS.getTypeSpecType()) {
2464  case DeclSpec::TST_typename:
2465  case DeclSpec::TST_typeofType:
2466  case DeclSpec::TST_decltype: {
2467    // Grab the type from the parser.
2468    TypeSourceInfo *TSI = 0;
2469    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2470    if (T.isNull() || !T->isDependentType()) break;
2471
2472    // Make sure there's a type source info.  This isn't really much
2473    // of a waste; most dependent types should have type source info
2474    // attached already.
2475    if (!TSI)
2476      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2477
2478    // Rebuild the type in the current instantiation.
2479    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2480    if (!TSI) return true;
2481
2482    // Store the new type back in the decl spec.
2483    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2484    DS.UpdateTypeRep(LocType);
2485    break;
2486  }
2487
2488  case DeclSpec::TST_typeofExpr: {
2489    Expr *E = DS.getRepAsExpr();
2490    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2491    if (Result.isInvalid()) return true;
2492    DS.UpdateExprRep(Result.get());
2493    break;
2494  }
2495
2496  default:
2497    // Nothing to do for these decl specs.
2498    break;
2499  }
2500
2501  // It doesn't matter what order we do this in.
2502  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2503    DeclaratorChunk &Chunk = D.getTypeObject(I);
2504
2505    // The only type information in the declarator which can come
2506    // before the declaration name is the base type of a member
2507    // pointer.
2508    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2509      continue;
2510
2511    // Rebuild the scope specifier in-place.
2512    CXXScopeSpec &SS = Chunk.Mem.Scope();
2513    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2514      return true;
2515  }
2516
2517  return false;
2518}
2519
2520Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2521  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2522}
2523
2524Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2525                             MultiTemplateParamsArg TemplateParamLists,
2526                             bool IsFunctionDefinition) {
2527  // TODO: consider using NameInfo for diagnostic.
2528  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2529  DeclarationName Name = NameInfo.getName();
2530
2531  // All of these full declarators require an identifier.  If it doesn't have
2532  // one, the ParsedFreeStandingDeclSpec action should be used.
2533  if (!Name) {
2534    if (!D.isInvalidType())  // Reject this if we think it is valid.
2535      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2536           diag::err_declarator_need_ident)
2537        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2538    return 0;
2539  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2540    return 0;
2541
2542  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2543  // we find one that is.
2544  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2545         (S->getFlags() & Scope::TemplateParamScope) != 0)
2546    S = S->getParent();
2547
2548  DeclContext *DC = CurContext;
2549  if (D.getCXXScopeSpec().isInvalid())
2550    D.setInvalidType();
2551  else if (D.getCXXScopeSpec().isSet()) {
2552    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2553                                        UPPC_DeclarationQualifier))
2554      return 0;
2555
2556    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2557    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2558    if (!DC) {
2559      // If we could not compute the declaration context, it's because the
2560      // declaration context is dependent but does not refer to a class,
2561      // class template, or class template partial specialization. Complain
2562      // and return early, to avoid the coming semantic disaster.
2563      Diag(D.getIdentifierLoc(),
2564           diag::err_template_qualified_declarator_no_match)
2565        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2566        << D.getCXXScopeSpec().getRange();
2567      return 0;
2568    }
2569
2570    bool IsDependentContext = DC->isDependentContext();
2571
2572    if (!IsDependentContext &&
2573        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2574      return 0;
2575
2576    if (isa<CXXRecordDecl>(DC)) {
2577      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2578        Diag(D.getIdentifierLoc(),
2579             diag::err_member_def_undefined_record)
2580          << Name << DC << D.getCXXScopeSpec().getRange();
2581        D.setInvalidType();
2582      } else if (isa<CXXRecordDecl>(CurContext) &&
2583                 !D.getDeclSpec().isFriendSpecified()) {
2584        // The user provided a superfluous scope specifier inside a class
2585        // definition:
2586        //
2587        // class X {
2588        //   void X::f();
2589        // };
2590        if (CurContext->Equals(DC))
2591          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2592            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2593        else
2594          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2595            << Name << D.getCXXScopeSpec().getRange();
2596
2597        // Pretend that this qualifier was not here.
2598        D.getCXXScopeSpec().clear();
2599      }
2600    }
2601
2602    // Check whether we need to rebuild the type of the given
2603    // declaration in the current instantiation.
2604    if (EnteringContext && IsDependentContext &&
2605        TemplateParamLists.size() != 0) {
2606      ContextRAII SavedContext(*this, DC);
2607      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2608        D.setInvalidType();
2609    }
2610  }
2611
2612  // C++ [class.mem]p13:
2613  //   If T is the name of a class, then each of the following shall have a
2614  //   name different from T:
2615  //     - every static data member of class T;
2616  //     - every member function of class T
2617  //     - every member of class T that is itself a type;
2618  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2619    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2620      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2621        << Name;
2622
2623      // If this is a typedef, we'll end up spewing multiple diagnostics.
2624      // Just return early; it's safer.
2625      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2626        return 0;
2627    }
2628
2629  NamedDecl *New;
2630
2631  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2632  QualType R = TInfo->getType();
2633
2634  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2635                                      UPPC_DeclarationType))
2636    D.setInvalidType();
2637
2638  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2639                        ForRedeclaration);
2640
2641  // See if this is a redefinition of a variable in the same scope.
2642  if (!D.getCXXScopeSpec().isSet()) {
2643    bool IsLinkageLookup = false;
2644
2645    // If the declaration we're planning to build will be a function
2646    // or object with linkage, then look for another declaration with
2647    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2648    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2649      /* Do nothing*/;
2650    else if (R->isFunctionType()) {
2651      if (CurContext->isFunctionOrMethod() ||
2652          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2653        IsLinkageLookup = true;
2654    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2655      IsLinkageLookup = true;
2656    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2657             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2658      IsLinkageLookup = true;
2659
2660    if (IsLinkageLookup)
2661      Previous.clear(LookupRedeclarationWithLinkage);
2662
2663    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2664  } else { // Something like "int foo::x;"
2665    LookupQualifiedName(Previous, DC);
2666
2667    // Don't consider using declarations as previous declarations for
2668    // out-of-line members.
2669    RemoveUsingDecls(Previous);
2670
2671    // C++ 7.3.1.2p2:
2672    // Members (including explicit specializations of templates) of a named
2673    // namespace can also be defined outside that namespace by explicit
2674    // qualification of the name being defined, provided that the entity being
2675    // defined was already declared in the namespace and the definition appears
2676    // after the point of declaration in a namespace that encloses the
2677    // declarations namespace.
2678    //
2679    // Note that we only check the context at this point. We don't yet
2680    // have enough information to make sure that PrevDecl is actually
2681    // the declaration we want to match. For example, given:
2682    //
2683    //   class X {
2684    //     void f();
2685    //     void f(float);
2686    //   };
2687    //
2688    //   void X::f(int) { } // ill-formed
2689    //
2690    // In this case, PrevDecl will point to the overload set
2691    // containing the two f's declared in X, but neither of them
2692    // matches.
2693
2694    // First check whether we named the global scope.
2695    if (isa<TranslationUnitDecl>(DC)) {
2696      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2697        << Name << D.getCXXScopeSpec().getRange();
2698    } else {
2699      DeclContext *Cur = CurContext;
2700      while (isa<LinkageSpecDecl>(Cur))
2701        Cur = Cur->getParent();
2702      if (!Cur->Encloses(DC)) {
2703        // The qualifying scope doesn't enclose the original declaration.
2704        // Emit diagnostic based on current scope.
2705        SourceLocation L = D.getIdentifierLoc();
2706        SourceRange R = D.getCXXScopeSpec().getRange();
2707        if (isa<FunctionDecl>(Cur))
2708          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2709        else
2710          Diag(L, diag::err_invalid_declarator_scope)
2711            << Name << cast<NamedDecl>(DC) << R;
2712        D.setInvalidType();
2713      }
2714    }
2715  }
2716
2717  if (Previous.isSingleResult() &&
2718      Previous.getFoundDecl()->isTemplateParameter()) {
2719    // Maybe we will complain about the shadowed template parameter.
2720    if (!D.isInvalidType())
2721      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2722                                          Previous.getFoundDecl()))
2723        D.setInvalidType();
2724
2725    // Just pretend that we didn't see the previous declaration.
2726    Previous.clear();
2727  }
2728
2729  // In C++, the previous declaration we find might be a tag type
2730  // (class or enum). In this case, the new declaration will hide the
2731  // tag type. Note that this does does not apply if we're declaring a
2732  // typedef (C++ [dcl.typedef]p4).
2733  if (Previous.isSingleTagDecl() &&
2734      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2735    Previous.clear();
2736
2737  bool Redeclaration = false;
2738  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2739    if (TemplateParamLists.size()) {
2740      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2741      return 0;
2742    }
2743
2744    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2745  } else if (R->isFunctionType()) {
2746    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2747                                  move(TemplateParamLists),
2748                                  IsFunctionDefinition, Redeclaration);
2749  } else {
2750    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2751                                  move(TemplateParamLists),
2752                                  Redeclaration);
2753  }
2754
2755  if (New == 0)
2756    return 0;
2757
2758  // If this has an identifier and is not an invalid redeclaration or
2759  // function template specialization, add it to the scope stack.
2760  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2761    PushOnScopeChains(New, S);
2762
2763  return New;
2764}
2765
2766/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2767/// types into constant array types in certain situations which would otherwise
2768/// be errors (for GCC compatibility).
2769static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2770                                                    ASTContext &Context,
2771                                                    bool &SizeIsNegative,
2772                                                    llvm::APSInt &Oversized) {
2773  // This method tries to turn a variable array into a constant
2774  // array even when the size isn't an ICE.  This is necessary
2775  // for compatibility with code that depends on gcc's buggy
2776  // constant expression folding, like struct {char x[(int)(char*)2];}
2777  SizeIsNegative = false;
2778  Oversized = 0;
2779
2780  if (T->isDependentType())
2781    return QualType();
2782
2783  QualifierCollector Qs;
2784  const Type *Ty = Qs.strip(T);
2785
2786  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2787    QualType Pointee = PTy->getPointeeType();
2788    QualType FixedType =
2789        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2790                                            Oversized);
2791    if (FixedType.isNull()) return FixedType;
2792    FixedType = Context.getPointerType(FixedType);
2793    return Qs.apply(Context, FixedType);
2794  }
2795  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2796    QualType Inner = PTy->getInnerType();
2797    QualType FixedType =
2798        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2799                                            Oversized);
2800    if (FixedType.isNull()) return FixedType;
2801    FixedType = Context.getParenType(FixedType);
2802    return Qs.apply(Context, FixedType);
2803  }
2804
2805  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2806  if (!VLATy)
2807    return QualType();
2808  // FIXME: We should probably handle this case
2809  if (VLATy->getElementType()->isVariablyModifiedType())
2810    return QualType();
2811
2812  Expr::EvalResult EvalResult;
2813  if (!VLATy->getSizeExpr() ||
2814      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2815      !EvalResult.Val.isInt())
2816    return QualType();
2817
2818  // Check whether the array size is negative.
2819  llvm::APSInt &Res = EvalResult.Val.getInt();
2820  if (Res.isSigned() && Res.isNegative()) {
2821    SizeIsNegative = true;
2822    return QualType();
2823  }
2824
2825  // Check whether the array is too large to be addressed.
2826  unsigned ActiveSizeBits
2827    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2828                                              Res);
2829  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2830    Oversized = Res;
2831    return QualType();
2832  }
2833
2834  return Context.getConstantArrayType(VLATy->getElementType(),
2835                                      Res, ArrayType::Normal, 0);
2836}
2837
2838/// \brief Register the given locally-scoped external C declaration so
2839/// that it can be found later for redeclarations
2840void
2841Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2842                                       const LookupResult &Previous,
2843                                       Scope *S) {
2844  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2845         "Decl is not a locally-scoped decl!");
2846  // Note that we have a locally-scoped external with this name.
2847  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2848
2849  if (!Previous.isSingleResult())
2850    return;
2851
2852  NamedDecl *PrevDecl = Previous.getFoundDecl();
2853
2854  // If there was a previous declaration of this variable, it may be
2855  // in our identifier chain. Update the identifier chain with the new
2856  // declaration.
2857  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2858    // The previous declaration was found on the identifer resolver
2859    // chain, so remove it from its scope.
2860    while (S && !S->isDeclScope(PrevDecl))
2861      S = S->getParent();
2862
2863    if (S)
2864      S->RemoveDecl(PrevDecl);
2865  }
2866}
2867
2868/// \brief Diagnose function specifiers on a declaration of an identifier that
2869/// does not identify a function.
2870void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2871  // FIXME: We should probably indicate the identifier in question to avoid
2872  // confusion for constructs like "inline int a(), b;"
2873  if (D.getDeclSpec().isInlineSpecified())
2874    Diag(D.getDeclSpec().getInlineSpecLoc(),
2875         diag::err_inline_non_function);
2876
2877  if (D.getDeclSpec().isVirtualSpecified())
2878    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2879         diag::err_virtual_non_function);
2880
2881  if (D.getDeclSpec().isExplicitSpecified())
2882    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2883         diag::err_explicit_non_function);
2884}
2885
2886NamedDecl*
2887Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2888                             QualType R,  TypeSourceInfo *TInfo,
2889                             LookupResult &Previous, bool &Redeclaration) {
2890  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2891  if (D.getCXXScopeSpec().isSet()) {
2892    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2893      << D.getCXXScopeSpec().getRange();
2894    D.setInvalidType();
2895    // Pretend we didn't see the scope specifier.
2896    DC = CurContext;
2897    Previous.clear();
2898  }
2899
2900  if (getLangOptions().CPlusPlus) {
2901    // Check that there are no default arguments (C++ only).
2902    CheckExtraCXXDefaultArguments(D);
2903  }
2904
2905  DiagnoseFunctionSpecifiers(D);
2906
2907  if (D.getDeclSpec().isThreadSpecified())
2908    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2909
2910  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2911    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2912      << D.getName().getSourceRange();
2913    return 0;
2914  }
2915
2916  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2917  if (!NewTD) return 0;
2918
2919  // Handle attributes prior to checking for duplicates in MergeVarDecl
2920  ProcessDeclAttributes(S, NewTD, D);
2921
2922  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2923  // then it shall have block scope.
2924  // Note that variably modified types must be fixed before merging the decl so
2925  // that redeclarations will match.
2926  QualType T = NewTD->getUnderlyingType();
2927  if (T->isVariablyModifiedType()) {
2928    getCurFunction()->setHasBranchProtectedScope();
2929
2930    if (S->getFnParent() == 0) {
2931      bool SizeIsNegative;
2932      llvm::APSInt Oversized;
2933      QualType FixedTy =
2934          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2935                                              Oversized);
2936      if (!FixedTy.isNull()) {
2937        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2938        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2939      } else {
2940        if (SizeIsNegative)
2941          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2942        else if (T->isVariableArrayType())
2943          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2944        else if (Oversized.getBoolValue())
2945          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2946            << Oversized.toString(10);
2947        else
2948          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2949        NewTD->setInvalidDecl();
2950      }
2951    }
2952  }
2953
2954  // Merge the decl with the existing one if appropriate. If the decl is
2955  // in an outer scope, it isn't the same thing.
2956  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2957                       /*ExplicitInstantiationOrSpecialization=*/false);
2958  if (!Previous.empty()) {
2959    Redeclaration = true;
2960    MergeTypeDefDecl(NewTD, Previous);
2961  }
2962
2963  // If this is the C FILE type, notify the AST context.
2964  if (IdentifierInfo *II = NewTD->getIdentifier())
2965    if (!NewTD->isInvalidDecl() &&
2966        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2967      if (II->isStr("FILE"))
2968        Context.setFILEDecl(NewTD);
2969      else if (II->isStr("jmp_buf"))
2970        Context.setjmp_bufDecl(NewTD);
2971      else if (II->isStr("sigjmp_buf"))
2972        Context.setsigjmp_bufDecl(NewTD);
2973      else if (II->isStr("__builtin_va_list"))
2974        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2975    }
2976
2977  return NewTD;
2978}
2979
2980/// \brief Determines whether the given declaration is an out-of-scope
2981/// previous declaration.
2982///
2983/// This routine should be invoked when name lookup has found a
2984/// previous declaration (PrevDecl) that is not in the scope where a
2985/// new declaration by the same name is being introduced. If the new
2986/// declaration occurs in a local scope, previous declarations with
2987/// linkage may still be considered previous declarations (C99
2988/// 6.2.2p4-5, C++ [basic.link]p6).
2989///
2990/// \param PrevDecl the previous declaration found by name
2991/// lookup
2992///
2993/// \param DC the context in which the new declaration is being
2994/// declared.
2995///
2996/// \returns true if PrevDecl is an out-of-scope previous declaration
2997/// for a new delcaration with the same name.
2998static bool
2999isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3000                                ASTContext &Context) {
3001  if (!PrevDecl)
3002    return false;
3003
3004  if (!PrevDecl->hasLinkage())
3005    return false;
3006
3007  if (Context.getLangOptions().CPlusPlus) {
3008    // C++ [basic.link]p6:
3009    //   If there is a visible declaration of an entity with linkage
3010    //   having the same name and type, ignoring entities declared
3011    //   outside the innermost enclosing namespace scope, the block
3012    //   scope declaration declares that same entity and receives the
3013    //   linkage of the previous declaration.
3014    DeclContext *OuterContext = DC->getRedeclContext();
3015    if (!OuterContext->isFunctionOrMethod())
3016      // This rule only applies to block-scope declarations.
3017      return false;
3018
3019    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3020    if (PrevOuterContext->isRecord())
3021      // We found a member function: ignore it.
3022      return false;
3023
3024    // Find the innermost enclosing namespace for the new and
3025    // previous declarations.
3026    OuterContext = OuterContext->getEnclosingNamespaceContext();
3027    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3028
3029    // The previous declaration is in a different namespace, so it
3030    // isn't the same function.
3031    if (!OuterContext->Equals(PrevOuterContext))
3032      return false;
3033  }
3034
3035  return true;
3036}
3037
3038static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3039  CXXScopeSpec &SS = D.getCXXScopeSpec();
3040  if (!SS.isSet()) return;
3041  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3042}
3043
3044NamedDecl*
3045Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3046                              QualType R, TypeSourceInfo *TInfo,
3047                              LookupResult &Previous,
3048                              MultiTemplateParamsArg TemplateParamLists,
3049                              bool &Redeclaration) {
3050  DeclarationName Name = GetNameForDeclarator(D).getName();
3051
3052  // Check that there are no default arguments (C++ only).
3053  if (getLangOptions().CPlusPlus)
3054    CheckExtraCXXDefaultArguments(D);
3055
3056  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3057  assert(SCSpec != DeclSpec::SCS_typedef &&
3058         "Parser allowed 'typedef' as storage class VarDecl.");
3059  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3060  if (SCSpec == DeclSpec::SCS_mutable) {
3061    // mutable can only appear on non-static class members, so it's always
3062    // an error here
3063    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3064    D.setInvalidType();
3065    SC = SC_None;
3066  }
3067  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3068  VarDecl::StorageClass SCAsWritten
3069    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3070
3071  IdentifierInfo *II = Name.getAsIdentifierInfo();
3072  if (!II) {
3073    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3074      << Name.getAsString();
3075    return 0;
3076  }
3077
3078  DiagnoseFunctionSpecifiers(D);
3079
3080  if (!DC->isRecord() && S->getFnParent() == 0) {
3081    // C99 6.9p2: The storage-class specifiers auto and register shall not
3082    // appear in the declaration specifiers in an external declaration.
3083    if (SC == SC_Auto || SC == SC_Register) {
3084
3085      // If this is a register variable with an asm label specified, then this
3086      // is a GNU extension.
3087      if (SC == SC_Register && D.getAsmLabel())
3088        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3089      else
3090        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3091      D.setInvalidType();
3092    }
3093  }
3094
3095  bool isExplicitSpecialization = false;
3096  VarDecl *NewVD;
3097  if (!getLangOptions().CPlusPlus) {
3098    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3099                            D.getIdentifierLoc(), II,
3100                            R, TInfo, SC, SCAsWritten);
3101
3102    if (D.isInvalidType())
3103      NewVD->setInvalidDecl();
3104  } else {
3105    if (DC->isRecord() && !CurContext->isRecord()) {
3106      // This is an out-of-line definition of a static data member.
3107      if (SC == SC_Static) {
3108        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3109             diag::err_static_out_of_line)
3110          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3111      } else if (SC == SC_None)
3112        SC = SC_Static;
3113    }
3114    if (SC == SC_Static) {
3115      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3116        if (RD->isLocalClass())
3117          Diag(D.getIdentifierLoc(),
3118               diag::err_static_data_member_not_allowed_in_local_class)
3119            << Name << RD->getDeclName();
3120
3121        // C++ [class.union]p1: If a union contains a static data member,
3122        // the program is ill-formed.
3123        //
3124        // We also disallow static data members in anonymous structs.
3125        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3126          Diag(D.getIdentifierLoc(),
3127               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3128            << Name << RD->isUnion();
3129      }
3130    }
3131
3132    // Match up the template parameter lists with the scope specifier, then
3133    // determine whether we have a template or a template specialization.
3134    isExplicitSpecialization = false;
3135    bool Invalid = false;
3136    if (TemplateParameterList *TemplateParams
3137        = MatchTemplateParametersToScopeSpecifier(
3138                                                  D.getDeclSpec().getSourceRange().getBegin(),
3139                                                  D.getCXXScopeSpec(),
3140                                                  TemplateParamLists.get(),
3141                                                  TemplateParamLists.size(),
3142                                                  /*never a friend*/ false,
3143                                                  isExplicitSpecialization,
3144                                                  Invalid)) {
3145      if (TemplateParams->size() > 0) {
3146        // There is no such thing as a variable template.
3147        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3148          << II
3149          << SourceRange(TemplateParams->getTemplateLoc(),
3150                         TemplateParams->getRAngleLoc());
3151        return 0;
3152      } else {
3153        // There is an extraneous 'template<>' for this variable. Complain
3154        // about it, but allow the declaration of the variable.
3155        Diag(TemplateParams->getTemplateLoc(),
3156             diag::err_template_variable_noparams)
3157          << II
3158          << SourceRange(TemplateParams->getTemplateLoc(),
3159                         TemplateParams->getRAngleLoc());
3160        isExplicitSpecialization = true;
3161      }
3162    }
3163
3164    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3165                            D.getIdentifierLoc(), II,
3166                            R, TInfo, SC, SCAsWritten);
3167
3168    // If this decl has an auto type in need of deduction, make a note of the
3169    // Decl so we can diagnose uses of it in its own initializer.
3170    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3171        R->getContainedAutoType())
3172      ParsingInitForAutoVars.insert(NewVD);
3173
3174    if (D.isInvalidType() || Invalid)
3175      NewVD->setInvalidDecl();
3176
3177    SetNestedNameSpecifier(NewVD, D);
3178
3179    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3180      NewVD->setTemplateParameterListsInfo(Context,
3181                                           TemplateParamLists.size(),
3182                                           TemplateParamLists.release());
3183    }
3184  }
3185
3186  if (D.getDeclSpec().isThreadSpecified()) {
3187    if (NewVD->hasLocalStorage())
3188      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3189    else if (!Context.Target.isTLSSupported())
3190      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3191    else
3192      NewVD->setThreadSpecified(true);
3193  }
3194
3195  // Set the lexical context. If the declarator has a C++ scope specifier, the
3196  // lexical context will be different from the semantic context.
3197  NewVD->setLexicalDeclContext(CurContext);
3198
3199  // Handle attributes prior to checking for duplicates in MergeVarDecl
3200  ProcessDeclAttributes(S, NewVD, D);
3201
3202  // Handle GNU asm-label extension (encoded as an attribute).
3203  if (Expr *E = (Expr*)D.getAsmLabel()) {
3204    // The parser guarantees this is a string.
3205    StringLiteral *SE = cast<StringLiteral>(E);
3206    llvm::StringRef Label = SE->getString();
3207    if (S->getFnParent() != 0) {
3208      switch (SC) {
3209      case SC_None:
3210      case SC_Auto:
3211        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3212        break;
3213      case SC_Register:
3214        if (!Context.Target.isValidGCCRegisterName(Label))
3215          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3216        break;
3217      case SC_Static:
3218      case SC_Extern:
3219      case SC_PrivateExtern:
3220        break;
3221      }
3222    }
3223
3224    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3225                                                Context, Label));
3226  }
3227
3228  // Diagnose shadowed variables before filtering for scope.
3229  if (!D.getCXXScopeSpec().isSet())
3230    CheckShadow(S, NewVD, Previous);
3231
3232  // Don't consider existing declarations that are in a different
3233  // scope and are out-of-semantic-context declarations (if the new
3234  // declaration has linkage).
3235  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3236                       isExplicitSpecialization);
3237
3238  if (!getLangOptions().CPlusPlus)
3239    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3240  else {
3241    // Merge the decl with the existing one if appropriate.
3242    if (!Previous.empty()) {
3243      if (Previous.isSingleResult() &&
3244          isa<FieldDecl>(Previous.getFoundDecl()) &&
3245          D.getCXXScopeSpec().isSet()) {
3246        // The user tried to define a non-static data member
3247        // out-of-line (C++ [dcl.meaning]p1).
3248        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3249          << D.getCXXScopeSpec().getRange();
3250        Previous.clear();
3251        NewVD->setInvalidDecl();
3252      }
3253    } else if (D.getCXXScopeSpec().isSet()) {
3254      // No previous declaration in the qualifying scope.
3255      Diag(D.getIdentifierLoc(), diag::err_no_member)
3256        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3257        << D.getCXXScopeSpec().getRange();
3258      NewVD->setInvalidDecl();
3259    }
3260
3261    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3262
3263    // This is an explicit specialization of a static data member. Check it.
3264    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3265        CheckMemberSpecialization(NewVD, Previous))
3266      NewVD->setInvalidDecl();
3267  }
3268
3269  // attributes declared post-definition are currently ignored
3270  // FIXME: This should be handled in attribute merging, not
3271  // here.
3272  if (Previous.isSingleResult()) {
3273    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3274    if (Def && (Def = Def->getDefinition()) &&
3275        Def != NewVD && D.hasAttributes()) {
3276      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3277      Diag(Def->getLocation(), diag::note_previous_definition);
3278    }
3279  }
3280
3281  // If this is a locally-scoped extern C variable, update the map of
3282  // such variables.
3283  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3284      !NewVD->isInvalidDecl())
3285    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3286
3287  // If there's a #pragma GCC visibility in scope, and this isn't a class
3288  // member, set the visibility of this variable.
3289  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3290    AddPushedVisibilityAttribute(NewVD);
3291
3292  MarkUnusedFileScopedDecl(NewVD);
3293
3294  return NewVD;
3295}
3296
3297/// \brief Diagnose variable or built-in function shadowing.  Implements
3298/// -Wshadow.
3299///
3300/// This method is called whenever a VarDecl is added to a "useful"
3301/// scope.
3302///
3303/// \param S the scope in which the shadowing name is being declared
3304/// \param R the lookup of the name
3305///
3306void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3307  // Return if warning is ignored.
3308  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3309        Diagnostic::Ignored)
3310    return;
3311
3312  // Don't diagnose declarations at file scope.
3313  DeclContext *NewDC = D->getDeclContext();
3314  if (NewDC->isFileContext())
3315    return;
3316
3317  // Only diagnose if we're shadowing an unambiguous field or variable.
3318  if (R.getResultKind() != LookupResult::Found)
3319    return;
3320
3321  NamedDecl* ShadowedDecl = R.getFoundDecl();
3322  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3323    return;
3324
3325  // Fields are not shadowed by variables in C++ static methods.
3326  if (isa<FieldDecl>(ShadowedDecl))
3327    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3328      if (MD->isStatic())
3329        return;
3330
3331  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3332    if (shadowedVar->isExternC()) {
3333      // Don't warn for this case:
3334      //
3335      // @code
3336      // extern int bob;
3337      // void f() {
3338      //   extern int bob;
3339      // }
3340      // @endcode
3341      if (D->isExternC())
3342        return;
3343
3344      // For shadowing external vars, make sure that we point to the global
3345      // declaration, not a locally scoped extern declaration.
3346      for (VarDecl::redecl_iterator
3347             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3348           I != E; ++I)
3349        if (I->isFileVarDecl()) {
3350          ShadowedDecl = *I;
3351          break;
3352        }
3353    }
3354
3355  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3356
3357  // Only warn about certain kinds of shadowing for class members.
3358  if (NewDC && NewDC->isRecord()) {
3359    // In particular, don't warn about shadowing non-class members.
3360    if (!OldDC->isRecord())
3361      return;
3362
3363    // TODO: should we warn about static data members shadowing
3364    // static data members from base classes?
3365
3366    // TODO: don't diagnose for inaccessible shadowed members.
3367    // This is hard to do perfectly because we might friend the
3368    // shadowing context, but that's just a false negative.
3369  }
3370
3371  // Determine what kind of declaration we're shadowing.
3372  unsigned Kind;
3373  if (isa<RecordDecl>(OldDC)) {
3374    if (isa<FieldDecl>(ShadowedDecl))
3375      Kind = 3; // field
3376    else
3377      Kind = 2; // static data member
3378  } else if (OldDC->isFileContext())
3379    Kind = 1; // global
3380  else
3381    Kind = 0; // local
3382
3383  DeclarationName Name = R.getLookupName();
3384
3385  // Emit warning and note.
3386  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3387  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3388}
3389
3390/// \brief Check -Wshadow without the advantage of a previous lookup.
3391void Sema::CheckShadow(Scope *S, VarDecl *D) {
3392  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3393        Diagnostic::Ignored)
3394    return;
3395
3396  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3397                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3398  LookupName(R, S);
3399  CheckShadow(S, D, R);
3400}
3401
3402/// \brief Perform semantic checking on a newly-created variable
3403/// declaration.
3404///
3405/// This routine performs all of the type-checking required for a
3406/// variable declaration once it has been built. It is used both to
3407/// check variables after they have been parsed and their declarators
3408/// have been translated into a declaration, and to check variables
3409/// that have been instantiated from a template.
3410///
3411/// Sets NewVD->isInvalidDecl() if an error was encountered.
3412void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3413                                    LookupResult &Previous,
3414                                    bool &Redeclaration) {
3415  // If the decl is already known invalid, don't check it.
3416  if (NewVD->isInvalidDecl())
3417    return;
3418
3419  QualType T = NewVD->getType();
3420
3421  if (T->isObjCObjectType()) {
3422    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3423    return NewVD->setInvalidDecl();
3424  }
3425
3426  // Emit an error if an address space was applied to decl with local storage.
3427  // This includes arrays of objects with address space qualifiers, but not
3428  // automatic variables that point to other address spaces.
3429  // ISO/IEC TR 18037 S5.1.2
3430  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3431    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3432    return NewVD->setInvalidDecl();
3433  }
3434
3435  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3436      && !NewVD->hasAttr<BlocksAttr>())
3437    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3438
3439  bool isVM = T->isVariablyModifiedType();
3440  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3441      NewVD->hasAttr<BlocksAttr>())
3442    getCurFunction()->setHasBranchProtectedScope();
3443
3444  if ((isVM && NewVD->hasLinkage()) ||
3445      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3446    bool SizeIsNegative;
3447    llvm::APSInt Oversized;
3448    QualType FixedTy =
3449        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3450                                            Oversized);
3451
3452    if (FixedTy.isNull() && T->isVariableArrayType()) {
3453      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3454      // FIXME: This won't give the correct result for
3455      // int a[10][n];
3456      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3457
3458      if (NewVD->isFileVarDecl())
3459        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3460        << SizeRange;
3461      else if (NewVD->getStorageClass() == SC_Static)
3462        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3463        << SizeRange;
3464      else
3465        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3466        << SizeRange;
3467      return NewVD->setInvalidDecl();
3468    }
3469
3470    if (FixedTy.isNull()) {
3471      if (NewVD->isFileVarDecl())
3472        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3473      else
3474        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3475      return NewVD->setInvalidDecl();
3476    }
3477
3478    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3479    NewVD->setType(FixedTy);
3480  }
3481
3482  if (Previous.empty() && NewVD->isExternC()) {
3483    // Since we did not find anything by this name and we're declaring
3484    // an extern "C" variable, look for a non-visible extern "C"
3485    // declaration with the same name.
3486    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3487      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3488    if (Pos != LocallyScopedExternalDecls.end())
3489      Previous.addDecl(Pos->second);
3490  }
3491
3492  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3493    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3494      << T;
3495    return NewVD->setInvalidDecl();
3496  }
3497
3498  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3499    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3500    return NewVD->setInvalidDecl();
3501  }
3502
3503  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3504    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3505    return NewVD->setInvalidDecl();
3506  }
3507
3508  // Function pointers and references cannot have qualified function type, only
3509  // function pointer-to-members can do that.
3510  QualType Pointee;
3511  unsigned PtrOrRef = 0;
3512  if (const PointerType *Ptr = T->getAs<PointerType>())
3513    Pointee = Ptr->getPointeeType();
3514  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3515    Pointee = Ref->getPointeeType();
3516    PtrOrRef = 1;
3517  }
3518  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3519      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3520    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3521        << PtrOrRef;
3522    return NewVD->setInvalidDecl();
3523  }
3524
3525  if (!Previous.empty()) {
3526    Redeclaration = true;
3527    MergeVarDecl(NewVD, Previous);
3528  }
3529}
3530
3531/// \brief Data used with FindOverriddenMethod
3532struct FindOverriddenMethodData {
3533  Sema *S;
3534  CXXMethodDecl *Method;
3535};
3536
3537/// \brief Member lookup function that determines whether a given C++
3538/// method overrides a method in a base class, to be used with
3539/// CXXRecordDecl::lookupInBases().
3540static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3541                                 CXXBasePath &Path,
3542                                 void *UserData) {
3543  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3544
3545  FindOverriddenMethodData *Data
3546    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3547
3548  DeclarationName Name = Data->Method->getDeclName();
3549
3550  // FIXME: Do we care about other names here too?
3551  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3552    // We really want to find the base class destructor here.
3553    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3554    CanQualType CT = Data->S->Context.getCanonicalType(T);
3555
3556    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3557  }
3558
3559  for (Path.Decls = BaseRecord->lookup(Name);
3560       Path.Decls.first != Path.Decls.second;
3561       ++Path.Decls.first) {
3562    NamedDecl *D = *Path.Decls.first;
3563    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3564      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3565        return true;
3566    }
3567  }
3568
3569  return false;
3570}
3571
3572/// AddOverriddenMethods - See if a method overrides any in the base classes,
3573/// and if so, check that it's a valid override and remember it.
3574bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3575  // Look for virtual methods in base classes that this method might override.
3576  CXXBasePaths Paths;
3577  FindOverriddenMethodData Data;
3578  Data.Method = MD;
3579  Data.S = this;
3580  bool AddedAny = false;
3581  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3582    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3583         E = Paths.found_decls_end(); I != E; ++I) {
3584      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3585        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3586            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3587            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3588          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3589          AddedAny = true;
3590        }
3591      }
3592    }
3593  }
3594
3595  return AddedAny;
3596}
3597
3598static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3599  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3600                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3601  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3602  assert(!Prev.isAmbiguous() &&
3603         "Cannot have an ambiguity in previous-declaration lookup");
3604  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3605       Func != FuncEnd; ++Func) {
3606    if (isa<FunctionDecl>(*Func) &&
3607        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3608      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3609  }
3610}
3611
3612NamedDecl*
3613Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3614                              QualType R, TypeSourceInfo *TInfo,
3615                              LookupResult &Previous,
3616                              MultiTemplateParamsArg TemplateParamLists,
3617                              bool IsFunctionDefinition, bool &Redeclaration) {
3618  assert(R.getTypePtr()->isFunctionType());
3619
3620  // TODO: consider using NameInfo for diagnostic.
3621  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3622  DeclarationName Name = NameInfo.getName();
3623  FunctionDecl::StorageClass SC = SC_None;
3624  switch (D.getDeclSpec().getStorageClassSpec()) {
3625  default: assert(0 && "Unknown storage class!");
3626  case DeclSpec::SCS_auto:
3627  case DeclSpec::SCS_register:
3628  case DeclSpec::SCS_mutable:
3629    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3630         diag::err_typecheck_sclass_func);
3631    D.setInvalidType();
3632    break;
3633  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3634  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3635  case DeclSpec::SCS_static: {
3636    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3637      // C99 6.7.1p5:
3638      //   The declaration of an identifier for a function that has
3639      //   block scope shall have no explicit storage-class specifier
3640      //   other than extern
3641      // See also (C++ [dcl.stc]p4).
3642      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3643           diag::err_static_block_func);
3644      SC = SC_None;
3645    } else
3646      SC = SC_Static;
3647    break;
3648  }
3649  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3650  }
3651
3652  if (D.getDeclSpec().isThreadSpecified())
3653    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3654
3655  // Do not allow returning a objc interface by-value.
3656  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3657    Diag(D.getIdentifierLoc(),
3658         diag::err_object_cannot_be_passed_returned_by_value) << 0
3659    << R->getAs<FunctionType>()->getResultType();
3660    D.setInvalidType();
3661  }
3662
3663  FunctionDecl *NewFD;
3664  bool isInline = D.getDeclSpec().isInlineSpecified();
3665  bool isFriend = false;
3666  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3667  FunctionDecl::StorageClass SCAsWritten
3668    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3669  FunctionTemplateDecl *FunctionTemplate = 0;
3670  bool isExplicitSpecialization = false;
3671  bool isFunctionTemplateSpecialization = false;
3672
3673  if (!getLangOptions().CPlusPlus) {
3674    // Determine whether the function was written with a
3675    // prototype. This true when:
3676    //   - there is a prototype in the declarator, or
3677    //   - the type R of the function is some kind of typedef or other reference
3678    //     to a type name (which eventually refers to a function type).
3679    bool HasPrototype =
3680    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3681    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3682
3683    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3684                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3685                                 HasPrototype);
3686    if (D.isInvalidType())
3687      NewFD->setInvalidDecl();
3688
3689    // Set the lexical context.
3690    NewFD->setLexicalDeclContext(CurContext);
3691    // Filter out previous declarations that don't match the scope.
3692    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3693                         /*ExplicitInstantiationOrSpecialization=*/false);
3694  } else {
3695    isFriend = D.getDeclSpec().isFriendSpecified();
3696    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3697    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3698    bool isVirtualOkay = false;
3699
3700    // Check that the return type is not an abstract class type.
3701    // For record types, this is done by the AbstractClassUsageDiagnoser once
3702    // the class has been completely parsed.
3703    if (!DC->isRecord() &&
3704      RequireNonAbstractType(D.getIdentifierLoc(),
3705                             R->getAs<FunctionType>()->getResultType(),
3706                             diag::err_abstract_type_in_decl,
3707                             AbstractReturnType))
3708      D.setInvalidType();
3709
3710    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3711      // This is a C++ constructor declaration.
3712      assert(DC->isRecord() &&
3713             "Constructors can only be declared in a member context");
3714
3715      R = CheckConstructorDeclarator(D, R, SC);
3716
3717      // Create the new declaration
3718      NewFD = CXXConstructorDecl::Create(Context,
3719                                         cast<CXXRecordDecl>(DC),
3720                                         D.getSourceRange().getBegin(),
3721                                         NameInfo, R, TInfo,
3722                                         isExplicit, isInline,
3723                                         /*isImplicitlyDeclared=*/false);
3724    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3725      // This is a C++ destructor declaration.
3726      if (DC->isRecord()) {
3727        R = CheckDestructorDeclarator(D, R, SC);
3728
3729        NewFD = CXXDestructorDecl::Create(Context,
3730                                          cast<CXXRecordDecl>(DC),
3731                                          D.getSourceRange().getBegin(),
3732                                          NameInfo, R, TInfo,
3733                                          isInline,
3734                                          /*isImplicitlyDeclared=*/false);
3735        isVirtualOkay = true;
3736      } else {
3737        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3738
3739        // Create a FunctionDecl to satisfy the function definition parsing
3740        // code path.
3741        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3742                                     D.getIdentifierLoc(), Name, R, TInfo,
3743                                     SC, SCAsWritten, isInline,
3744                                     /*hasPrototype=*/true);
3745        D.setInvalidType();
3746      }
3747    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3748      if (!DC->isRecord()) {
3749        Diag(D.getIdentifierLoc(),
3750             diag::err_conv_function_not_member);
3751        return 0;
3752      }
3753
3754      CheckConversionDeclarator(D, R, SC);
3755      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3756                                        D.getSourceRange().getBegin(),
3757                                        NameInfo, R, TInfo,
3758                                        isInline, isExplicit,
3759                                        SourceLocation());
3760
3761      isVirtualOkay = true;
3762    } else if (DC->isRecord()) {
3763      // If the of the function is the same as the name of the record, then this
3764      // must be an invalid constructor that has a return type.
3765      // (The parser checks for a return type and makes the declarator a
3766      // constructor if it has no return type).
3767      // must have an invalid constructor that has a return type
3768      if (Name.getAsIdentifierInfo() &&
3769          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3770        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3771          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3772          << SourceRange(D.getIdentifierLoc());
3773        return 0;
3774      }
3775
3776      bool isStatic = SC == SC_Static;
3777
3778      // [class.free]p1:
3779      // Any allocation function for a class T is a static member
3780      // (even if not explicitly declared static).
3781      if (Name.getCXXOverloadedOperator() == OO_New ||
3782          Name.getCXXOverloadedOperator() == OO_Array_New)
3783        isStatic = true;
3784
3785      // [class.free]p6 Any deallocation function for a class X is a static member
3786      // (even if not explicitly declared static).
3787      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3788          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3789        isStatic = true;
3790
3791      // This is a C++ method declaration.
3792      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3793                                    D.getSourceRange().getBegin(),
3794                                    NameInfo, R, TInfo,
3795                                    isStatic, SCAsWritten, isInline,
3796                                    SourceLocation());
3797
3798      isVirtualOkay = !isStatic;
3799    } else {
3800      // Determine whether the function was written with a
3801      // prototype. This true when:
3802      //   - we're in C++ (where every function has a prototype),
3803      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3804                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3805                                   true/*HasPrototype*/);
3806    }
3807
3808    if (isFriend && !isInline && IsFunctionDefinition) {
3809      // C++ [class.friend]p5
3810      //   A function can be defined in a friend declaration of a
3811      //   class . . . . Such a function is implicitly inline.
3812      NewFD->setImplicitlyInline();
3813    }
3814
3815    SetNestedNameSpecifier(NewFD, D);
3816    isExplicitSpecialization = false;
3817    isFunctionTemplateSpecialization = false;
3818    if (D.isInvalidType())
3819      NewFD->setInvalidDecl();
3820
3821    // Set the lexical context. If the declarator has a C++
3822    // scope specifier, or is the object of a friend declaration, the
3823    // lexical context will be different from the semantic context.
3824    NewFD->setLexicalDeclContext(CurContext);
3825
3826    // Match up the template parameter lists with the scope specifier, then
3827    // determine whether we have a template or a template specialization.
3828    bool Invalid = false;
3829    if (TemplateParameterList *TemplateParams
3830          = MatchTemplateParametersToScopeSpecifier(
3831                                  D.getDeclSpec().getSourceRange().getBegin(),
3832                                  D.getCXXScopeSpec(),
3833                                  TemplateParamLists.get(),
3834                                  TemplateParamLists.size(),
3835                                  isFriend,
3836                                  isExplicitSpecialization,
3837                                  Invalid)) {
3838      if (TemplateParams->size() > 0) {
3839        // This is a function template
3840
3841        // Check that we can declare a template here.
3842        if (CheckTemplateDeclScope(S, TemplateParams))
3843          return 0;
3844
3845        // A destructor cannot be a template.
3846        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3847          Diag(NewFD->getLocation(), diag::err_destructor_template);
3848          return 0;
3849        }
3850
3851        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3852                                                        NewFD->getLocation(),
3853                                                        Name, TemplateParams,
3854                                                        NewFD);
3855        FunctionTemplate->setLexicalDeclContext(CurContext);
3856        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3857
3858        // For source fidelity, store the other template param lists.
3859        if (TemplateParamLists.size() > 1) {
3860          NewFD->setTemplateParameterListsInfo(Context,
3861                                               TemplateParamLists.size() - 1,
3862                                               TemplateParamLists.release());
3863        }
3864      } else {
3865        // This is a function template specialization.
3866        isFunctionTemplateSpecialization = true;
3867        // For source fidelity, store all the template param lists.
3868        NewFD->setTemplateParameterListsInfo(Context,
3869                                             TemplateParamLists.size(),
3870                                             TemplateParamLists.release());
3871
3872        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3873        if (isFriend) {
3874          // We want to remove the "template<>", found here.
3875          SourceRange RemoveRange = TemplateParams->getSourceRange();
3876
3877          // If we remove the template<> and the name is not a
3878          // template-id, we're actually silently creating a problem:
3879          // the friend declaration will refer to an untemplated decl,
3880          // and clearly the user wants a template specialization.  So
3881          // we need to insert '<>' after the name.
3882          SourceLocation InsertLoc;
3883          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3884            InsertLoc = D.getName().getSourceRange().getEnd();
3885            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3886          }
3887
3888          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3889            << Name << RemoveRange
3890            << FixItHint::CreateRemoval(RemoveRange)
3891            << FixItHint::CreateInsertion(InsertLoc, "<>");
3892        }
3893      }
3894    }
3895    else {
3896      // All template param lists were matched against the scope specifier:
3897      // this is NOT (an explicit specialization of) a template.
3898      if (TemplateParamLists.size() > 0)
3899        // For source fidelity, store all the template param lists.
3900        NewFD->setTemplateParameterListsInfo(Context,
3901                                             TemplateParamLists.size(),
3902                                             TemplateParamLists.release());
3903    }
3904
3905    if (Invalid) {
3906      NewFD->setInvalidDecl();
3907      if (FunctionTemplate)
3908        FunctionTemplate->setInvalidDecl();
3909    }
3910
3911    // C++ [dcl.fct.spec]p5:
3912    //   The virtual specifier shall only be used in declarations of
3913    //   nonstatic class member functions that appear within a
3914    //   member-specification of a class declaration; see 10.3.
3915    //
3916    if (isVirtual && !NewFD->isInvalidDecl()) {
3917      if (!isVirtualOkay) {
3918        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3919             diag::err_virtual_non_function);
3920      } else if (!CurContext->isRecord()) {
3921        // 'virtual' was specified outside of the class.
3922        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3923             diag::err_virtual_out_of_class)
3924          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3925      } else if (NewFD->getDescribedFunctionTemplate()) {
3926        // C++ [temp.mem]p3:
3927        //  A member function template shall not be virtual.
3928        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3929             diag::err_virtual_member_function_template)
3930          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3931      } else {
3932        // Okay: Add virtual to the method.
3933        NewFD->setVirtualAsWritten(true);
3934      }
3935    }
3936
3937    // C++ [dcl.fct.spec]p3:
3938    //  The inline specifier shall not appear on a block scope function declaration.
3939    if (isInline && !NewFD->isInvalidDecl()) {
3940      if (CurContext->isFunctionOrMethod()) {
3941        // 'inline' is not allowed on block scope function declaration.
3942        Diag(D.getDeclSpec().getInlineSpecLoc(),
3943             diag::err_inline_declaration_block_scope) << Name
3944          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3945      }
3946    }
3947
3948    // C++ [dcl.fct.spec]p6:
3949    //  The explicit specifier shall be used only in the declaration of a
3950    //  constructor or conversion function within its class definition; see 12.3.1
3951    //  and 12.3.2.
3952    if (isExplicit && !NewFD->isInvalidDecl()) {
3953      if (!CurContext->isRecord()) {
3954        // 'explicit' was specified outside of the class.
3955        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3956             diag::err_explicit_out_of_class)
3957          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3958      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3959                 !isa<CXXConversionDecl>(NewFD)) {
3960        // 'explicit' was specified on a function that wasn't a constructor
3961        // or conversion function.
3962        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3963             diag::err_explicit_non_ctor_or_conv_function)
3964          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3965      }
3966    }
3967
3968    // Filter out previous declarations that don't match the scope.
3969    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3970                         isExplicitSpecialization ||
3971                         isFunctionTemplateSpecialization);
3972
3973    if (isFriend) {
3974      // For now, claim that the objects have no previous declaration.
3975      if (FunctionTemplate) {
3976        FunctionTemplate->setObjectOfFriendDecl(false);
3977        FunctionTemplate->setAccess(AS_public);
3978      }
3979      NewFD->setObjectOfFriendDecl(false);
3980      NewFD->setAccess(AS_public);
3981    }
3982
3983    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3984      // A method is implicitly inline if it's defined in its class
3985      // definition.
3986      NewFD->setImplicitlyInline();
3987    }
3988
3989    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3990        !CurContext->isRecord()) {
3991      // C++ [class.static]p1:
3992      //   A data or function member of a class may be declared static
3993      //   in a class definition, in which case it is a static member of
3994      //   the class.
3995
3996      // Complain about the 'static' specifier if it's on an out-of-line
3997      // member function definition.
3998      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3999           diag::err_static_out_of_line)
4000        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4001    }
4002  }
4003
4004  // Handle GNU asm-label extension (encoded as an attribute).
4005  if (Expr *E = (Expr*) D.getAsmLabel()) {
4006    // The parser guarantees this is a string.
4007    StringLiteral *SE = cast<StringLiteral>(E);
4008    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4009                                                SE->getString()));
4010  }
4011
4012  // Copy the parameter declarations from the declarator D to the function
4013  // declaration NewFD, if they are available.  First scavenge them into Params.
4014  llvm::SmallVector<ParmVarDecl*, 16> Params;
4015  if (D.isFunctionDeclarator()) {
4016    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4017
4018    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4019    // function that takes no arguments, not a function that takes a
4020    // single void argument.
4021    // We let through "const void" here because Sema::GetTypeForDeclarator
4022    // already checks for that case.
4023    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4024        FTI.ArgInfo[0].Param &&
4025        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4026      // Empty arg list, don't push any params.
4027      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4028
4029      // In C++, the empty parameter-type-list must be spelled "void"; a
4030      // typedef of void is not permitted.
4031      if (getLangOptions().CPlusPlus &&
4032          Param->getType().getUnqualifiedType() != Context.VoidTy)
4033        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
4034    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4035      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4036        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4037        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4038        Param->setDeclContext(NewFD);
4039        Params.push_back(Param);
4040
4041        if (Param->isInvalidDecl())
4042          NewFD->setInvalidDecl();
4043      }
4044    }
4045
4046  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4047    // When we're declaring a function with a typedef, typeof, etc as in the
4048    // following example, we'll need to synthesize (unnamed)
4049    // parameters for use in the declaration.
4050    //
4051    // @code
4052    // typedef void fn(int);
4053    // fn f;
4054    // @endcode
4055
4056    // Synthesize a parameter for each argument type.
4057    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4058         AE = FT->arg_type_end(); AI != AE; ++AI) {
4059      ParmVarDecl *Param =
4060        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4061      Params.push_back(Param);
4062    }
4063  } else {
4064    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4065           "Should not need args for typedef of non-prototype fn");
4066  }
4067  // Finally, we know we have the right number of parameters, install them.
4068  NewFD->setParams(Params.data(), Params.size());
4069
4070  // Process the non-inheritable attributes on this declaration.
4071  ProcessDeclAttributes(S, NewFD, D,
4072                        /*NonInheritable=*/true, /*Inheritable=*/false);
4073
4074  if (!getLangOptions().CPlusPlus) {
4075    // Perform semantic checking on the function declaration.
4076    bool isExplctSpecialization=false;
4077    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4078                             Redeclaration);
4079    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4080            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4081           "previous declaration set still overloaded");
4082  } else {
4083    // If the declarator is a template-id, translate the parser's template
4084    // argument list into our AST format.
4085    bool HasExplicitTemplateArgs = false;
4086    TemplateArgumentListInfo TemplateArgs;
4087    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4088      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4089      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4090      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4091      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4092                                         TemplateId->getTemplateArgs(),
4093                                         TemplateId->NumArgs);
4094      translateTemplateArguments(TemplateArgsPtr,
4095                                 TemplateArgs);
4096      TemplateArgsPtr.release();
4097
4098      HasExplicitTemplateArgs = true;
4099
4100      if (FunctionTemplate) {
4101        // Function template with explicit template arguments.
4102        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4103          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4104
4105        HasExplicitTemplateArgs = false;
4106      } else if (!isFunctionTemplateSpecialization &&
4107                 !D.getDeclSpec().isFriendSpecified()) {
4108        // We have encountered something that the user meant to be a
4109        // specialization (because it has explicitly-specified template
4110        // arguments) but that was not introduced with a "template<>" (or had
4111        // too few of them).
4112        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4113          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4114          << FixItHint::CreateInsertion(
4115                                        D.getDeclSpec().getSourceRange().getBegin(),
4116                                                  "template<> ");
4117        isFunctionTemplateSpecialization = true;
4118      } else {
4119        // "friend void foo<>(int);" is an implicit specialization decl.
4120        isFunctionTemplateSpecialization = true;
4121      }
4122    } else if (isFriend && isFunctionTemplateSpecialization) {
4123      // This combination is only possible in a recovery case;  the user
4124      // wrote something like:
4125      //   template <> friend void foo(int);
4126      // which we're recovering from as if the user had written:
4127      //   friend void foo<>(int);
4128      // Go ahead and fake up a template id.
4129      HasExplicitTemplateArgs = true;
4130        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4131      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4132    }
4133
4134    // If it's a friend (and only if it's a friend), it's possible
4135    // that either the specialized function type or the specialized
4136    // template is dependent, and therefore matching will fail.  In
4137    // this case, don't check the specialization yet.
4138    if (isFunctionTemplateSpecialization && isFriend &&
4139        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4140      assert(HasExplicitTemplateArgs &&
4141             "friend function specialization without template args");
4142      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4143                                                       Previous))
4144        NewFD->setInvalidDecl();
4145    } else if (isFunctionTemplateSpecialization) {
4146      if (CurContext->isDependentContext() && CurContext->isRecord()
4147          && !isFriend) {
4148        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4149          << NewFD->getDeclName();
4150        NewFD->setInvalidDecl();
4151        return 0;
4152      } else if (CheckFunctionTemplateSpecialization(NewFD,
4153                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4154                                                     Previous))
4155        NewFD->setInvalidDecl();
4156    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4157      if (CheckMemberSpecialization(NewFD, Previous))
4158          NewFD->setInvalidDecl();
4159    }
4160
4161    // Perform semantic checking on the function declaration.
4162    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4163                             Redeclaration);
4164
4165    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4166            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4167           "previous declaration set still overloaded");
4168
4169    NamedDecl *PrincipalDecl = (FunctionTemplate
4170                                ? cast<NamedDecl>(FunctionTemplate)
4171                                : NewFD);
4172
4173    if (isFriend && Redeclaration) {
4174      AccessSpecifier Access = AS_public;
4175      if (!NewFD->isInvalidDecl())
4176        Access = NewFD->getPreviousDeclaration()->getAccess();
4177
4178      NewFD->setAccess(Access);
4179      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4180
4181      PrincipalDecl->setObjectOfFriendDecl(true);
4182    }
4183
4184    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4185        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4186      PrincipalDecl->setNonMemberOperator();
4187
4188    // If we have a function template, check the template parameter
4189    // list. This will check and merge default template arguments.
4190    if (FunctionTemplate) {
4191      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4192      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4193                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4194                            D.getDeclSpec().isFriendSpecified()
4195                              ? (IsFunctionDefinition
4196                                   ? TPC_FriendFunctionTemplateDefinition
4197                                   : TPC_FriendFunctionTemplate)
4198                              : (D.getCXXScopeSpec().isSet() &&
4199                                 DC && DC->isRecord() &&
4200                                 DC->isDependentContext())
4201                                  ? TPC_ClassTemplateMember
4202                                  : TPC_FunctionTemplate);
4203    }
4204
4205    if (NewFD->isInvalidDecl()) {
4206      // Ignore all the rest of this.
4207    } else if (!Redeclaration) {
4208      // Fake up an access specifier if it's supposed to be a class member.
4209      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4210        NewFD->setAccess(AS_public);
4211
4212      // Qualified decls generally require a previous declaration.
4213      if (D.getCXXScopeSpec().isSet()) {
4214        // ...with the major exception of templated-scope or
4215        // dependent-scope friend declarations.
4216
4217        // TODO: we currently also suppress this check in dependent
4218        // contexts because (1) the parameter depth will be off when
4219        // matching friend templates and (2) we might actually be
4220        // selecting a friend based on a dependent factor.  But there
4221        // are situations where these conditions don't apply and we
4222        // can actually do this check immediately.
4223        if (isFriend &&
4224            (TemplateParamLists.size() ||
4225             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4226             CurContext->isDependentContext())) {
4227              // ignore these
4228            } else {
4229              // The user tried to provide an out-of-line definition for a
4230              // function that is a member of a class or namespace, but there
4231              // was no such member function declared (C++ [class.mfct]p2,
4232              // C++ [namespace.memdef]p2). For example:
4233              //
4234              // class X {
4235              //   void f() const;
4236              // };
4237              //
4238              // void X::f() { } // ill-formed
4239              //
4240              // Complain about this problem, and attempt to suggest close
4241              // matches (e.g., those that differ only in cv-qualifiers and
4242              // whether the parameter types are references).
4243              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4244              << Name << DC << D.getCXXScopeSpec().getRange();
4245              NewFD->setInvalidDecl();
4246
4247              DiagnoseInvalidRedeclaration(*this, NewFD);
4248            }
4249
4250        // Unqualified local friend declarations are required to resolve
4251        // to something.
4252        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4253          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4254          NewFD->setInvalidDecl();
4255          DiagnoseInvalidRedeclaration(*this, NewFD);
4256        }
4257
4258    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4259               !isFriend && !isFunctionTemplateSpecialization &&
4260               !isExplicitSpecialization) {
4261      // An out-of-line member function declaration must also be a
4262      // definition (C++ [dcl.meaning]p1).
4263      // Note that this is not the case for explicit specializations of
4264      // function templates or member functions of class templates, per
4265      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4266      // for compatibility with old SWIG code which likes to generate them.
4267      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4268        << D.getCXXScopeSpec().getRange();
4269    }
4270  }
4271
4272
4273  // Handle attributes. We need to have merged decls when handling attributes
4274  // (for example to check for conflicts, etc).
4275  // FIXME: This needs to happen before we merge declarations. Then,
4276  // let attribute merging cope with attribute conflicts.
4277  ProcessDeclAttributes(S, NewFD, D,
4278                        /*NonInheritable=*/false, /*Inheritable=*/true);
4279
4280  // attributes declared post-definition are currently ignored
4281  // FIXME: This should happen during attribute merging
4282  if (Redeclaration && Previous.isSingleResult()) {
4283    const FunctionDecl *Def;
4284    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4285    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4286      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4287      Diag(Def->getLocation(), diag::note_previous_definition);
4288    }
4289  }
4290
4291  AddKnownFunctionAttributes(NewFD);
4292
4293  if (NewFD->hasAttr<OverloadableAttr>() &&
4294      !NewFD->getType()->getAs<FunctionProtoType>()) {
4295    Diag(NewFD->getLocation(),
4296         diag::err_attribute_overloadable_no_prototype)
4297      << NewFD;
4298
4299    // Turn this into a variadic function with no parameters.
4300    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4301    FunctionProtoType::ExtProtoInfo EPI;
4302    EPI.Variadic = true;
4303    EPI.ExtInfo = FT->getExtInfo();
4304
4305    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4306    NewFD->setType(R);
4307  }
4308
4309  // If there's a #pragma GCC visibility in scope, and this isn't a class
4310  // member, set the visibility of this function.
4311  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4312    AddPushedVisibilityAttribute(NewFD);
4313
4314  // If this is a locally-scoped extern C function, update the
4315  // map of such names.
4316  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4317      && !NewFD->isInvalidDecl())
4318    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4319
4320  // Set this FunctionDecl's range up to the right paren.
4321  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4322
4323  if (getLangOptions().CPlusPlus) {
4324    if (FunctionTemplate) {
4325      if (NewFD->isInvalidDecl())
4326        FunctionTemplate->setInvalidDecl();
4327      return FunctionTemplate;
4328    }
4329  }
4330
4331  MarkUnusedFileScopedDecl(NewFD);
4332
4333  if (getLangOptions().CUDA)
4334    if (IdentifierInfo *II = NewFD->getIdentifier())
4335      if (!NewFD->isInvalidDecl() &&
4336          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4337        if (II->isStr("cudaConfigureCall")) {
4338          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4339            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4340
4341          Context.setcudaConfigureCallDecl(NewFD);
4342        }
4343      }
4344
4345  return NewFD;
4346}
4347
4348/// \brief Perform semantic checking of a new function declaration.
4349///
4350/// Performs semantic analysis of the new function declaration
4351/// NewFD. This routine performs all semantic checking that does not
4352/// require the actual declarator involved in the declaration, and is
4353/// used both for the declaration of functions as they are parsed
4354/// (called via ActOnDeclarator) and for the declaration of functions
4355/// that have been instantiated via C++ template instantiation (called
4356/// via InstantiateDecl).
4357///
4358/// \param IsExplicitSpecialiation whether this new function declaration is
4359/// an explicit specialization of the previous declaration.
4360///
4361/// This sets NewFD->isInvalidDecl() to true if there was an error.
4362void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4363                                    LookupResult &Previous,
4364                                    bool IsExplicitSpecialization,
4365                                    bool &Redeclaration) {
4366  // If NewFD is already known erroneous, don't do any of this checking.
4367  if (NewFD->isInvalidDecl()) {
4368    // If this is a class member, mark the class invalid immediately.
4369    // This avoids some consistency errors later.
4370    if (isa<CXXMethodDecl>(NewFD))
4371      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4372
4373    return;
4374  }
4375
4376  if (NewFD->getResultType()->isVariablyModifiedType()) {
4377    // Functions returning a variably modified type violate C99 6.7.5.2p2
4378    // because all functions have linkage.
4379    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4380    return NewFD->setInvalidDecl();
4381  }
4382
4383  if (NewFD->isMain())
4384    CheckMain(NewFD);
4385
4386  // Check for a previous declaration of this name.
4387  if (Previous.empty() && NewFD->isExternC()) {
4388    // Since we did not find anything by this name and we're declaring
4389    // an extern "C" function, look for a non-visible extern "C"
4390    // declaration with the same name.
4391    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4392      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4393    if (Pos != LocallyScopedExternalDecls.end())
4394      Previous.addDecl(Pos->second);
4395  }
4396
4397  // Merge or overload the declaration with an existing declaration of
4398  // the same name, if appropriate.
4399  if (!Previous.empty()) {
4400    // Determine whether NewFD is an overload of PrevDecl or
4401    // a declaration that requires merging. If it's an overload,
4402    // there's no more work to do here; we'll just add the new
4403    // function to the scope.
4404
4405    NamedDecl *OldDecl = 0;
4406    if (!AllowOverloadingOfFunction(Previous, Context)) {
4407      Redeclaration = true;
4408      OldDecl = Previous.getFoundDecl();
4409    } else {
4410      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4411                            /*NewIsUsingDecl*/ false)) {
4412      case Ovl_Match:
4413        Redeclaration = true;
4414        break;
4415
4416      case Ovl_NonFunction:
4417        Redeclaration = true;
4418        break;
4419
4420      case Ovl_Overload:
4421        Redeclaration = false;
4422        break;
4423      }
4424
4425      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4426        // If a function name is overloadable in C, then every function
4427        // with that name must be marked "overloadable".
4428        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4429          << Redeclaration << NewFD;
4430        NamedDecl *OverloadedDecl = 0;
4431        if (Redeclaration)
4432          OverloadedDecl = OldDecl;
4433        else if (!Previous.empty())
4434          OverloadedDecl = Previous.getRepresentativeDecl();
4435        if (OverloadedDecl)
4436          Diag(OverloadedDecl->getLocation(),
4437               diag::note_attribute_overloadable_prev_overload);
4438        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4439                                                        Context));
4440      }
4441    }
4442
4443    if (Redeclaration) {
4444      // NewFD and OldDecl represent declarations that need to be
4445      // merged.
4446      if (MergeFunctionDecl(NewFD, OldDecl))
4447        return NewFD->setInvalidDecl();
4448
4449      Previous.clear();
4450      Previous.addDecl(OldDecl);
4451
4452      if (FunctionTemplateDecl *OldTemplateDecl
4453                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4454        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4455        FunctionTemplateDecl *NewTemplateDecl
4456          = NewFD->getDescribedFunctionTemplate();
4457        assert(NewTemplateDecl && "Template/non-template mismatch");
4458        if (CXXMethodDecl *Method
4459              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4460          Method->setAccess(OldTemplateDecl->getAccess());
4461          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4462        }
4463
4464        // If this is an explicit specialization of a member that is a function
4465        // template, mark it as a member specialization.
4466        if (IsExplicitSpecialization &&
4467            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4468          NewTemplateDecl->setMemberSpecialization();
4469          assert(OldTemplateDecl->isMemberSpecialization());
4470        }
4471      } else {
4472        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4473          NewFD->setAccess(OldDecl->getAccess());
4474        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4475      }
4476    }
4477  }
4478
4479  // Semantic checking for this function declaration (in isolation).
4480  if (getLangOptions().CPlusPlus) {
4481    // C++-specific checks.
4482    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4483      CheckConstructor(Constructor);
4484    } else if (CXXDestructorDecl *Destructor =
4485                dyn_cast<CXXDestructorDecl>(NewFD)) {
4486      CXXRecordDecl *Record = Destructor->getParent();
4487      QualType ClassType = Context.getTypeDeclType(Record);
4488
4489      // FIXME: Shouldn't we be able to perform this check even when the class
4490      // type is dependent? Both gcc and edg can handle that.
4491      if (!ClassType->isDependentType()) {
4492        DeclarationName Name
4493          = Context.DeclarationNames.getCXXDestructorName(
4494                                        Context.getCanonicalType(ClassType));
4495        if (NewFD->getDeclName() != Name) {
4496          Diag(NewFD->getLocation(), diag::err_destructor_name);
4497          return NewFD->setInvalidDecl();
4498        }
4499      }
4500    } else if (CXXConversionDecl *Conversion
4501               = dyn_cast<CXXConversionDecl>(NewFD)) {
4502      ActOnConversionDeclarator(Conversion);
4503    }
4504
4505    // Find any virtual functions that this function overrides.
4506    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4507      if (!Method->isFunctionTemplateSpecialization() &&
4508          !Method->getDescribedFunctionTemplate()) {
4509        if (AddOverriddenMethods(Method->getParent(), Method)) {
4510          // If the function was marked as "static", we have a problem.
4511          if (NewFD->getStorageClass() == SC_Static) {
4512            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4513              << NewFD->getDeclName();
4514            for (CXXMethodDecl::method_iterator
4515                      Overridden = Method->begin_overridden_methods(),
4516                   OverriddenEnd = Method->end_overridden_methods();
4517                 Overridden != OverriddenEnd;
4518                 ++Overridden) {
4519              Diag((*Overridden)->getLocation(),
4520                   diag::note_overridden_virtual_function);
4521            }
4522          }
4523        }
4524      }
4525    }
4526
4527    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4528    if (NewFD->isOverloadedOperator() &&
4529        CheckOverloadedOperatorDeclaration(NewFD))
4530      return NewFD->setInvalidDecl();
4531
4532    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4533    if (NewFD->getLiteralIdentifier() &&
4534        CheckLiteralOperatorDeclaration(NewFD))
4535      return NewFD->setInvalidDecl();
4536
4537    // In C++, check default arguments now that we have merged decls. Unless
4538    // the lexical context is the class, because in this case this is done
4539    // during delayed parsing anyway.
4540    if (!CurContext->isRecord())
4541      CheckCXXDefaultArguments(NewFD);
4542
4543    // If this function declares a builtin function, check the type of this
4544    // declaration against the expected type for the builtin.
4545    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4546      ASTContext::GetBuiltinTypeError Error;
4547      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4548      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4549        // The type of this function differs from the type of the builtin,
4550        // so forget about the builtin entirely.
4551        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4552      }
4553    }
4554  }
4555}
4556
4557void Sema::CheckMain(FunctionDecl* FD) {
4558  // C++ [basic.start.main]p3:  A program that declares main to be inline
4559  //   or static is ill-formed.
4560  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4561  //   shall not appear in a declaration of main.
4562  // static main is not an error under C99, but we should warn about it.
4563  bool isInline = FD->isInlineSpecified();
4564  bool isStatic = FD->getStorageClass() == SC_Static;
4565  if (isInline || isStatic) {
4566    unsigned diagID = diag::warn_unusual_main_decl;
4567    if (isInline || getLangOptions().CPlusPlus)
4568      diagID = diag::err_unusual_main_decl;
4569
4570    int which = isStatic + (isInline << 1) - 1;
4571    Diag(FD->getLocation(), diagID) << which;
4572  }
4573
4574  QualType T = FD->getType();
4575  assert(T->isFunctionType() && "function decl is not of function type");
4576  const FunctionType* FT = T->getAs<FunctionType>();
4577
4578  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4579    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4580    FD->setInvalidDecl(true);
4581  }
4582
4583  // Treat protoless main() as nullary.
4584  if (isa<FunctionNoProtoType>(FT)) return;
4585
4586  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4587  unsigned nparams = FTP->getNumArgs();
4588  assert(FD->getNumParams() == nparams);
4589
4590  bool HasExtraParameters = (nparams > 3);
4591
4592  // Darwin passes an undocumented fourth argument of type char**.  If
4593  // other platforms start sprouting these, the logic below will start
4594  // getting shifty.
4595  if (nparams == 4 &&
4596      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4597    HasExtraParameters = false;
4598
4599  if (HasExtraParameters) {
4600    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4601    FD->setInvalidDecl(true);
4602    nparams = 3;
4603  }
4604
4605  // FIXME: a lot of the following diagnostics would be improved
4606  // if we had some location information about types.
4607
4608  QualType CharPP =
4609    Context.getPointerType(Context.getPointerType(Context.CharTy));
4610  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4611
4612  for (unsigned i = 0; i < nparams; ++i) {
4613    QualType AT = FTP->getArgType(i);
4614
4615    bool mismatch = true;
4616
4617    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4618      mismatch = false;
4619    else if (Expected[i] == CharPP) {
4620      // As an extension, the following forms are okay:
4621      //   char const **
4622      //   char const * const *
4623      //   char * const *
4624
4625      QualifierCollector qs;
4626      const PointerType* PT;
4627      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4628          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4629          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4630        qs.removeConst();
4631        mismatch = !qs.empty();
4632      }
4633    }
4634
4635    if (mismatch) {
4636      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4637      // TODO: suggest replacing given type with expected type
4638      FD->setInvalidDecl(true);
4639    }
4640  }
4641
4642  if (nparams == 1 && !FD->isInvalidDecl()) {
4643    Diag(FD->getLocation(), diag::warn_main_one_arg);
4644  }
4645
4646  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4647    Diag(FD->getLocation(), diag::err_main_template_decl);
4648    FD->setInvalidDecl();
4649  }
4650}
4651
4652bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4653  // FIXME: Need strict checking.  In C89, we need to check for
4654  // any assignment, increment, decrement, function-calls, or
4655  // commas outside of a sizeof.  In C99, it's the same list,
4656  // except that the aforementioned are allowed in unevaluated
4657  // expressions.  Everything else falls under the
4658  // "may accept other forms of constant expressions" exception.
4659  // (We never end up here for C++, so the constant expression
4660  // rules there don't matter.)
4661  if (Init->isConstantInitializer(Context, false))
4662    return false;
4663  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4664    << Init->getSourceRange();
4665  return true;
4666}
4667
4668namespace {
4669  // Visits an initialization expression to see if OrigDecl is evaluated in
4670  // its own initialization and throws a warning if it does.
4671  class SelfReferenceChecker
4672      : public EvaluatedExprVisitor<SelfReferenceChecker> {
4673    Sema &S;
4674    Decl *OrigDecl;
4675
4676  public:
4677    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
4678
4679    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
4680                                                    S(S), OrigDecl(OrigDecl) { }
4681
4682    void VisitExpr(Expr *E) {
4683      if (isa<ObjCMessageExpr>(*E)) return;
4684      Inherited::VisitExpr(E);
4685    }
4686
4687    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4688      CheckForSelfReference(E);
4689      Inherited::VisitImplicitCastExpr(E);
4690    }
4691
4692    void CheckForSelfReference(ImplicitCastExpr *E) {
4693      if (E->getCastKind() != CK_LValueToRValue) return;
4694      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
4695      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
4696      if (!DRE) return;
4697      Decl* ReferenceDecl = DRE->getDecl();
4698      if (OrigDecl != ReferenceDecl) return;
4699      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
4700                          Sema::NotForRedeclaration);
4701      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
4702        << Result.getLookupName() << OrigDecl->getLocation()
4703        << SubExpr->getSourceRange();
4704    }
4705  };
4706}
4707
4708/// AddInitializerToDecl - Adds the initializer Init to the
4709/// declaration dcl. If DirectInit is true, this is C++ direct
4710/// initialization rather than copy initialization.
4711void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4712                                bool DirectInit, bool TypeMayContainAuto) {
4713  // If there is no declaration, there was an error parsing it.  Just ignore
4714  // the initializer.
4715  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4716    return;
4717
4718  // Check for self-references within variable initializers.
4719  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
4720    // Variables declared within a function/method body are handled
4721    // by a dataflow analysis.
4722    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
4723      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4724  }
4725  else {
4726    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
4727  }
4728
4729  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4730    // With declarators parsed the way they are, the parser cannot
4731    // distinguish between a normal initializer and a pure-specifier.
4732    // Thus this grotesque test.
4733    IntegerLiteral *IL;
4734    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4735        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4736      CheckPureMethod(Method, Init->getSourceRange());
4737    else {
4738      Diag(Method->getLocation(), diag::err_member_function_initialization)
4739        << Method->getDeclName() << Init->getSourceRange();
4740      Method->setInvalidDecl();
4741    }
4742    return;
4743  }
4744
4745  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4746  if (!VDecl) {
4747    if (getLangOptions().CPlusPlus &&
4748        RealDecl->getLexicalDeclContext()->isRecord() &&
4749        isa<NamedDecl>(RealDecl))
4750      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4751    else
4752      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4753    RealDecl->setInvalidDecl();
4754    return;
4755  }
4756
4757  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4758  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4759    TypeSourceInfo *DeducedType = 0;
4760    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4761      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4762        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4763        << Init->getSourceRange();
4764    if (!DeducedType) {
4765      RealDecl->setInvalidDecl();
4766      return;
4767    }
4768    VDecl->setTypeSourceInfo(DeducedType);
4769    VDecl->setType(DeducedType->getType());
4770
4771    // If this is a redeclaration, check that the type we just deduced matches
4772    // the previously declared type.
4773    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4774      MergeVarDeclTypes(VDecl, Old);
4775  }
4776
4777
4778  // A definition must end up with a complete type, which means it must be
4779  // complete with the restriction that an array type might be completed by the
4780  // initializer; note that later code assumes this restriction.
4781  QualType BaseDeclType = VDecl->getType();
4782  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4783    BaseDeclType = Array->getElementType();
4784  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4785                          diag::err_typecheck_decl_incomplete_type)) {
4786    RealDecl->setInvalidDecl();
4787    return;
4788  }
4789
4790  // The variable can not have an abstract class type.
4791  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4792                             diag::err_abstract_type_in_decl,
4793                             AbstractVariableType))
4794    VDecl->setInvalidDecl();
4795
4796  const VarDecl *Def;
4797  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4798    Diag(VDecl->getLocation(), diag::err_redefinition)
4799      << VDecl->getDeclName();
4800    Diag(Def->getLocation(), diag::note_previous_definition);
4801    VDecl->setInvalidDecl();
4802    return;
4803  }
4804
4805  const VarDecl* PrevInit = 0;
4806  if (getLangOptions().CPlusPlus) {
4807    // C++ [class.static.data]p4
4808    //   If a static data member is of const integral or const
4809    //   enumeration type, its declaration in the class definition can
4810    //   specify a constant-initializer which shall be an integral
4811    //   constant expression (5.19). In that case, the member can appear
4812    //   in integral constant expressions. The member shall still be
4813    //   defined in a namespace scope if it is used in the program and the
4814    //   namespace scope definition shall not contain an initializer.
4815    //
4816    // We already performed a redefinition check above, but for static
4817    // data members we also need to check whether there was an in-class
4818    // declaration with an initializer.
4819    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4820      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4821      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4822      return;
4823    }
4824
4825    if (VDecl->hasLocalStorage())
4826      getCurFunction()->setHasBranchProtectedScope();
4827
4828    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4829      VDecl->setInvalidDecl();
4830      return;
4831    }
4832  }
4833
4834  // Capture the variable that is being initialized and the style of
4835  // initialization.
4836  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4837
4838  // FIXME: Poor source location information.
4839  InitializationKind Kind
4840    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4841                                                   Init->getLocStart(),
4842                                                   Init->getLocEnd())
4843                : InitializationKind::CreateCopy(VDecl->getLocation(),
4844                                                 Init->getLocStart());
4845
4846  // Get the decls type and save a reference for later, since
4847  // CheckInitializerTypes may change it.
4848  QualType DclT = VDecl->getType(), SavT = DclT;
4849  if (VDecl->isLocalVarDecl()) {
4850    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4851      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4852      VDecl->setInvalidDecl();
4853    } else if (!VDecl->isInvalidDecl()) {
4854      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4855      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4856                                                MultiExprArg(*this, &Init, 1),
4857                                                &DclT);
4858      if (Result.isInvalid()) {
4859        VDecl->setInvalidDecl();
4860        return;
4861      }
4862
4863      Init = Result.takeAs<Expr>();
4864
4865      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4866      // Don't check invalid declarations to avoid emitting useless diagnostics.
4867      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4868        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4869          CheckForConstantInitializer(Init, DclT);
4870      }
4871    }
4872  } else if (VDecl->isStaticDataMember() &&
4873             VDecl->getLexicalDeclContext()->isRecord()) {
4874    // This is an in-class initialization for a static data member, e.g.,
4875    //
4876    // struct S {
4877    //   static const int value = 17;
4878    // };
4879
4880    // Try to perform the initialization regardless.
4881    if (!VDecl->isInvalidDecl()) {
4882      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4883      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4884                                          MultiExprArg(*this, &Init, 1),
4885                                          &DclT);
4886      if (Result.isInvalid()) {
4887        VDecl->setInvalidDecl();
4888        return;
4889      }
4890
4891      Init = Result.takeAs<Expr>();
4892    }
4893
4894    // C++ [class.mem]p4:
4895    //   A member-declarator can contain a constant-initializer only
4896    //   if it declares a static member (9.4) of const integral or
4897    //   const enumeration type, see 9.4.2.
4898    QualType T = VDecl->getType();
4899
4900    // Do nothing on dependent types.
4901    if (T->isDependentType()) {
4902
4903    // Require constness.
4904    } else if (!T.isConstQualified()) {
4905      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4906        << Init->getSourceRange();
4907      VDecl->setInvalidDecl();
4908
4909    // We allow integer constant expressions in all cases.
4910    } else if (T->isIntegralOrEnumerationType()) {
4911      if (!Init->isValueDependent()) {
4912        // Check whether the expression is a constant expression.
4913        llvm::APSInt Value;
4914        SourceLocation Loc;
4915        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4916          Diag(Loc, diag::err_in_class_initializer_non_constant)
4917            << Init->getSourceRange();
4918          VDecl->setInvalidDecl();
4919        }
4920      }
4921
4922    // We allow floating-point constants as an extension in C++03, and
4923    // C++0x has far more complicated rules that we don't really
4924    // implement fully.
4925    } else {
4926      bool Allowed = false;
4927      if (getLangOptions().CPlusPlus0x) {
4928        Allowed = T->isLiteralType();
4929      } else if (T->isFloatingType()) { // also permits complex, which is ok
4930        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4931          << T << Init->getSourceRange();
4932        Allowed = true;
4933      }
4934
4935      if (!Allowed) {
4936        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4937          << T << Init->getSourceRange();
4938        VDecl->setInvalidDecl();
4939
4940      // TODO: there are probably expressions that pass here that shouldn't.
4941      } else if (!Init->isValueDependent() &&
4942                 !Init->isConstantInitializer(Context, false)) {
4943        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4944          << Init->getSourceRange();
4945        VDecl->setInvalidDecl();
4946      }
4947    }
4948  } else if (VDecl->isFileVarDecl()) {
4949    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4950        (!getLangOptions().CPlusPlus ||
4951         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4952      Diag(VDecl->getLocation(), diag::warn_extern_init);
4953    if (!VDecl->isInvalidDecl()) {
4954      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4955      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4956                                                MultiExprArg(*this, &Init, 1),
4957                                                &DclT);
4958      if (Result.isInvalid()) {
4959        VDecl->setInvalidDecl();
4960        return;
4961      }
4962
4963      Init = Result.takeAs<Expr>();
4964    }
4965
4966    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4967    // Don't check invalid declarations to avoid emitting useless diagnostics.
4968    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4969      // C99 6.7.8p4. All file scoped initializers need to be constant.
4970      CheckForConstantInitializer(Init, DclT);
4971    }
4972  }
4973  // If the type changed, it means we had an incomplete type that was
4974  // completed by the initializer. For example:
4975  //   int ary[] = { 1, 3, 5 };
4976  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4977  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4978    VDecl->setType(DclT);
4979    Init->setType(DclT);
4980  }
4981
4982
4983  // If this variable is a local declaration with record type, make sure it
4984  // doesn't have a flexible member initialization.  We only support this as a
4985  // global/static definition.
4986  if (VDecl->hasLocalStorage())
4987    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4988      if (RT->getDecl()->hasFlexibleArrayMember()) {
4989        // Check whether the initializer tries to initialize the flexible
4990        // array member itself to anything other than an empty initializer list.
4991        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4992          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4993                                         RT->getDecl()->field_end()) - 1;
4994          if (Index < ILE->getNumInits() &&
4995              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4996                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4997            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4998            VDecl->setInvalidDecl();
4999          }
5000        }
5001      }
5002
5003  // Check any implicit conversions within the expression.
5004  CheckImplicitConversions(Init, VDecl->getLocation());
5005
5006  Init = MaybeCreateExprWithCleanups(Init);
5007  // Attach the initializer to the decl.
5008  VDecl->setInit(Init);
5009
5010  CheckCompleteVariableDeclaration(VDecl);
5011}
5012
5013/// ActOnInitializerError - Given that there was an error parsing an
5014/// initializer for the given declaration, try to return to some form
5015/// of sanity.
5016void Sema::ActOnInitializerError(Decl *D) {
5017  // Our main concern here is re-establishing invariants like "a
5018  // variable's type is either dependent or complete".
5019  if (!D || D->isInvalidDecl()) return;
5020
5021  VarDecl *VD = dyn_cast<VarDecl>(D);
5022  if (!VD) return;
5023
5024  // Auto types are meaningless if we can't make sense of the initializer.
5025  if (ParsingInitForAutoVars.count(D)) {
5026    D->setInvalidDecl();
5027    return;
5028  }
5029
5030  QualType Ty = VD->getType();
5031  if (Ty->isDependentType()) return;
5032
5033  // Require a complete type.
5034  if (RequireCompleteType(VD->getLocation(),
5035                          Context.getBaseElementType(Ty),
5036                          diag::err_typecheck_decl_incomplete_type)) {
5037    VD->setInvalidDecl();
5038    return;
5039  }
5040
5041  // Require an abstract type.
5042  if (RequireNonAbstractType(VD->getLocation(), Ty,
5043                             diag::err_abstract_type_in_decl,
5044                             AbstractVariableType)) {
5045    VD->setInvalidDecl();
5046    return;
5047  }
5048
5049  // Don't bother complaining about constructors or destructors,
5050  // though.
5051}
5052
5053void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5054                                  bool TypeMayContainAuto) {
5055  // If there is no declaration, there was an error parsing it. Just ignore it.
5056  if (RealDecl == 0)
5057    return;
5058
5059  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5060    QualType Type = Var->getType();
5061
5062    // C++0x [dcl.spec.auto]p3
5063    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5064      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5065        << Var->getDeclName() << Type;
5066      Var->setInvalidDecl();
5067      return;
5068    }
5069
5070    switch (Var->isThisDeclarationADefinition()) {
5071    case VarDecl::Definition:
5072      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5073        break;
5074
5075      // We have an out-of-line definition of a static data member
5076      // that has an in-class initializer, so we type-check this like
5077      // a declaration.
5078      //
5079      // Fall through
5080
5081    case VarDecl::DeclarationOnly:
5082      // It's only a declaration.
5083
5084      // Block scope. C99 6.7p7: If an identifier for an object is
5085      // declared with no linkage (C99 6.2.2p6), the type for the
5086      // object shall be complete.
5087      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5088          !Var->getLinkage() && !Var->isInvalidDecl() &&
5089          RequireCompleteType(Var->getLocation(), Type,
5090                              diag::err_typecheck_decl_incomplete_type))
5091        Var->setInvalidDecl();
5092
5093      // Make sure that the type is not abstract.
5094      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5095          RequireNonAbstractType(Var->getLocation(), Type,
5096                                 diag::err_abstract_type_in_decl,
5097                                 AbstractVariableType))
5098        Var->setInvalidDecl();
5099      return;
5100
5101    case VarDecl::TentativeDefinition:
5102      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5103      // object that has file scope without an initializer, and without a
5104      // storage-class specifier or with the storage-class specifier "static",
5105      // constitutes a tentative definition. Note: A tentative definition with
5106      // external linkage is valid (C99 6.2.2p5).
5107      if (!Var->isInvalidDecl()) {
5108        if (const IncompleteArrayType *ArrayT
5109                                    = Context.getAsIncompleteArrayType(Type)) {
5110          if (RequireCompleteType(Var->getLocation(),
5111                                  ArrayT->getElementType(),
5112                                  diag::err_illegal_decl_array_incomplete_type))
5113            Var->setInvalidDecl();
5114        } else if (Var->getStorageClass() == SC_Static) {
5115          // C99 6.9.2p3: If the declaration of an identifier for an object is
5116          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5117          // declared type shall not be an incomplete type.
5118          // NOTE: code such as the following
5119          //     static struct s;
5120          //     struct s { int a; };
5121          // is accepted by gcc. Hence here we issue a warning instead of
5122          // an error and we do not invalidate the static declaration.
5123          // NOTE: to avoid multiple warnings, only check the first declaration.
5124          if (Var->getPreviousDeclaration() == 0)
5125            RequireCompleteType(Var->getLocation(), Type,
5126                                diag::ext_typecheck_decl_incomplete_type);
5127        }
5128      }
5129
5130      // Record the tentative definition; we're done.
5131      if (!Var->isInvalidDecl())
5132        TentativeDefinitions.push_back(Var);
5133      return;
5134    }
5135
5136    // Provide a specific diagnostic for uninitialized variable
5137    // definitions with incomplete array type.
5138    if (Type->isIncompleteArrayType()) {
5139      Diag(Var->getLocation(),
5140           diag::err_typecheck_incomplete_array_needs_initializer);
5141      Var->setInvalidDecl();
5142      return;
5143    }
5144
5145    // Provide a specific diagnostic for uninitialized variable
5146    // definitions with reference type.
5147    if (Type->isReferenceType()) {
5148      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5149        << Var->getDeclName()
5150        << SourceRange(Var->getLocation(), Var->getLocation());
5151      Var->setInvalidDecl();
5152      return;
5153    }
5154
5155    // Do not attempt to type-check the default initializer for a
5156    // variable with dependent type.
5157    if (Type->isDependentType())
5158      return;
5159
5160    if (Var->isInvalidDecl())
5161      return;
5162
5163    if (RequireCompleteType(Var->getLocation(),
5164                            Context.getBaseElementType(Type),
5165                            diag::err_typecheck_decl_incomplete_type)) {
5166      Var->setInvalidDecl();
5167      return;
5168    }
5169
5170    // The variable can not have an abstract class type.
5171    if (RequireNonAbstractType(Var->getLocation(), Type,
5172                               diag::err_abstract_type_in_decl,
5173                               AbstractVariableType)) {
5174      Var->setInvalidDecl();
5175      return;
5176    }
5177
5178    const RecordType *Record
5179      = Context.getBaseElementType(Type)->getAs<RecordType>();
5180    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5181        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5182      // C++03 [dcl.init]p9:
5183      //   If no initializer is specified for an object, and the
5184      //   object is of (possibly cv-qualified) non-POD class type (or
5185      //   array thereof), the object shall be default-initialized; if
5186      //   the object is of const-qualified type, the underlying class
5187      //   type shall have a user-declared default
5188      //   constructor. Otherwise, if no initializer is specified for
5189      //   a non- static object, the object and its subobjects, if
5190      //   any, have an indeterminate initial value); if the object
5191      //   or any of its subobjects are of const-qualified type, the
5192      //   program is ill-formed.
5193      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5194    } else {
5195      // Check for jumps past the implicit initializer.  C++0x
5196      // clarifies that this applies to a "variable with automatic
5197      // storage duration", not a "local variable".
5198      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5199        getCurFunction()->setHasBranchProtectedScope();
5200
5201      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5202      InitializationKind Kind
5203        = InitializationKind::CreateDefault(Var->getLocation());
5204
5205      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5206      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5207                                        MultiExprArg(*this, 0, 0));
5208      if (Init.isInvalid())
5209        Var->setInvalidDecl();
5210      else if (Init.get())
5211        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5212    }
5213
5214    CheckCompleteVariableDeclaration(Var);
5215  }
5216}
5217
5218void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5219  if (var->isInvalidDecl()) return;
5220
5221  // All the following checks are C++ only.
5222  if (!getLangOptions().CPlusPlus) return;
5223
5224  QualType baseType = Context.getBaseElementType(var->getType());
5225  if (baseType->isDependentType()) return;
5226
5227  // __block variables might require us to capture a copy-initializer.
5228  if (var->hasAttr<BlocksAttr>()) {
5229    // It's currently invalid to ever have a __block variable with an
5230    // array type; should we diagnose that here?
5231
5232    // Regardless, we don't want to ignore array nesting when
5233    // constructing this copy.
5234    QualType type = var->getType();
5235
5236    if (type->isStructureOrClassType()) {
5237      SourceLocation poi = var->getLocation();
5238      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5239      ExprResult result =
5240        PerformCopyInitialization(
5241                        InitializedEntity::InitializeBlock(poi, type, false),
5242                                  poi, Owned(varRef));
5243      if (!result.isInvalid()) {
5244        result = MaybeCreateExprWithCleanups(result);
5245        Expr *init = result.takeAs<Expr>();
5246        Context.setBlockVarCopyInits(var, init);
5247      }
5248    }
5249  }
5250
5251  // Check for global constructors.
5252  if (!var->getDeclContext()->isDependentContext() &&
5253      var->hasGlobalStorage() &&
5254      !var->isStaticLocal() &&
5255      var->getInit() &&
5256      !var->getInit()->isConstantInitializer(Context,
5257                                             baseType->isReferenceType()))
5258    Diag(var->getLocation(), diag::warn_global_constructor)
5259      << var->getInit()->getSourceRange();
5260
5261  // Require the destructor.
5262  if (const RecordType *recordType = baseType->getAs<RecordType>())
5263    FinalizeVarWithDestructor(var, recordType);
5264}
5265
5266/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5267/// any semantic actions necessary after any initializer has been attached.
5268void
5269Sema::FinalizeDeclaration(Decl *ThisDecl) {
5270  // Note that we are no longer parsing the initializer for this declaration.
5271  ParsingInitForAutoVars.erase(ThisDecl);
5272}
5273
5274Sema::DeclGroupPtrTy
5275Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5276                              Decl **Group, unsigned NumDecls) {
5277  llvm::SmallVector<Decl*, 8> Decls;
5278
5279  if (DS.isTypeSpecOwned())
5280    Decls.push_back(DS.getRepAsDecl());
5281
5282  for (unsigned i = 0; i != NumDecls; ++i)
5283    if (Decl *D = Group[i])
5284      Decls.push_back(D);
5285
5286  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5287                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5288}
5289
5290/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5291/// group, performing any necessary semantic checking.
5292Sema::DeclGroupPtrTy
5293Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5294                           bool TypeMayContainAuto) {
5295  // C++0x [dcl.spec.auto]p7:
5296  //   If the type deduced for the template parameter U is not the same in each
5297  //   deduction, the program is ill-formed.
5298  // FIXME: When initializer-list support is added, a distinction is needed
5299  // between the deduced type U and the deduced type which 'auto' stands for.
5300  //   auto a = 0, b = { 1, 2, 3 };
5301  // is legal because the deduced type U is 'int' in both cases.
5302  if (TypeMayContainAuto && NumDecls > 1) {
5303    QualType Deduced;
5304    CanQualType DeducedCanon;
5305    VarDecl *DeducedDecl = 0;
5306    for (unsigned i = 0; i != NumDecls; ++i) {
5307      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5308        AutoType *AT = D->getType()->getContainedAutoType();
5309        // Don't reissue diagnostics when instantiating a template.
5310        if (AT && D->isInvalidDecl())
5311          break;
5312        if (AT && AT->isDeduced()) {
5313          QualType U = AT->getDeducedType();
5314          CanQualType UCanon = Context.getCanonicalType(U);
5315          if (Deduced.isNull()) {
5316            Deduced = U;
5317            DeducedCanon = UCanon;
5318            DeducedDecl = D;
5319          } else if (DeducedCanon != UCanon) {
5320            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5321                 diag::err_auto_different_deductions)
5322              << Deduced << DeducedDecl->getDeclName()
5323              << U << D->getDeclName()
5324              << DeducedDecl->getInit()->getSourceRange()
5325              << D->getInit()->getSourceRange();
5326            D->setInvalidDecl();
5327            break;
5328          }
5329        }
5330      }
5331    }
5332  }
5333
5334  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5335}
5336
5337
5338/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5339/// to introduce parameters into function prototype scope.
5340Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5341  const DeclSpec &DS = D.getDeclSpec();
5342
5343  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5344  VarDecl::StorageClass StorageClass = SC_None;
5345  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5346  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5347    StorageClass = SC_Register;
5348    StorageClassAsWritten = SC_Register;
5349  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5350    Diag(DS.getStorageClassSpecLoc(),
5351         diag::err_invalid_storage_class_in_func_decl);
5352    D.getMutableDeclSpec().ClearStorageClassSpecs();
5353  }
5354
5355  if (D.getDeclSpec().isThreadSpecified())
5356    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5357
5358  DiagnoseFunctionSpecifiers(D);
5359
5360  TagDecl *OwnedDecl = 0;
5361  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5362  QualType parmDeclType = TInfo->getType();
5363
5364  if (getLangOptions().CPlusPlus) {
5365    // Check that there are no default arguments inside the type of this
5366    // parameter.
5367    CheckExtraCXXDefaultArguments(D);
5368
5369    if (OwnedDecl && OwnedDecl->isDefinition()) {
5370      // C++ [dcl.fct]p6:
5371      //   Types shall not be defined in return or parameter types.
5372      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5373        << Context.getTypeDeclType(OwnedDecl);
5374    }
5375
5376    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5377    if (D.getCXXScopeSpec().isSet()) {
5378      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5379        << D.getCXXScopeSpec().getRange();
5380      D.getCXXScopeSpec().clear();
5381    }
5382  }
5383
5384  // Ensure we have a valid name
5385  IdentifierInfo *II = 0;
5386  if (D.hasName()) {
5387    II = D.getIdentifier();
5388    if (!II) {
5389      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5390        << GetNameForDeclarator(D).getName().getAsString();
5391      D.setInvalidType(true);
5392    }
5393  }
5394
5395  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5396  if (II) {
5397    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5398                   ForRedeclaration);
5399    LookupName(R, S);
5400    if (R.isSingleResult()) {
5401      NamedDecl *PrevDecl = R.getFoundDecl();
5402      if (PrevDecl->isTemplateParameter()) {
5403        // Maybe we will complain about the shadowed template parameter.
5404        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5405        // Just pretend that we didn't see the previous declaration.
5406        PrevDecl = 0;
5407      } else if (S->isDeclScope(PrevDecl)) {
5408        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5409        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5410
5411        // Recover by removing the name
5412        II = 0;
5413        D.SetIdentifier(0, D.getIdentifierLoc());
5414        D.setInvalidType(true);
5415      }
5416    }
5417  }
5418
5419  // Temporarily put parameter variables in the translation unit, not
5420  // the enclosing context.  This prevents them from accidentally
5421  // looking like class members in C++.
5422  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5423                                    D.getSourceRange().getBegin(),
5424                                    D.getIdentifierLoc(), II,
5425                                    parmDeclType, TInfo,
5426                                    StorageClass, StorageClassAsWritten);
5427
5428  if (D.isInvalidType())
5429    New->setInvalidDecl();
5430
5431  // Add the parameter declaration into this scope.
5432  S->AddDecl(New);
5433  if (II)
5434    IdResolver.AddDecl(New);
5435
5436  ProcessDeclAttributes(S, New, D);
5437
5438  if (New->hasAttr<BlocksAttr>()) {
5439    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5440  }
5441  return New;
5442}
5443
5444/// \brief Synthesizes a variable for a parameter arising from a
5445/// typedef.
5446ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5447                                              SourceLocation Loc,
5448                                              QualType T) {
5449  /* FIXME: setting StartLoc == Loc.
5450     Would it be worth to modify callers so as to provide proper source
5451     location for the unnamed parameters, embedding the parameter's type? */
5452  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5453                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5454                                           SC_None, SC_None, 0);
5455  Param->setImplicit();
5456  return Param;
5457}
5458
5459void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5460                                    ParmVarDecl * const *ParamEnd) {
5461  // Don't diagnose unused-parameter errors in template instantiations; we
5462  // will already have done so in the template itself.
5463  if (!ActiveTemplateInstantiations.empty())
5464    return;
5465
5466  for (; Param != ParamEnd; ++Param) {
5467    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5468        !(*Param)->hasAttr<UnusedAttr>()) {
5469      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5470        << (*Param)->getDeclName();
5471    }
5472  }
5473}
5474
5475void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5476                                                  ParmVarDecl * const *ParamEnd,
5477                                                  QualType ReturnTy,
5478                                                  NamedDecl *D) {
5479  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5480    return;
5481
5482  // Warn if the return value is pass-by-value and larger than the specified
5483  // threshold.
5484  if (ReturnTy->isPODType()) {
5485    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5486    if (Size > LangOpts.NumLargeByValueCopy)
5487      Diag(D->getLocation(), diag::warn_return_value_size)
5488          << D->getDeclName() << Size;
5489  }
5490
5491  // Warn if any parameter is pass-by-value and larger than the specified
5492  // threshold.
5493  for (; Param != ParamEnd; ++Param) {
5494    QualType T = (*Param)->getType();
5495    if (!T->isPODType())
5496      continue;
5497    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5498    if (Size > LangOpts.NumLargeByValueCopy)
5499      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5500          << (*Param)->getDeclName() << Size;
5501  }
5502}
5503
5504ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5505                                  SourceLocation NameLoc, IdentifierInfo *Name,
5506                                  QualType T, TypeSourceInfo *TSInfo,
5507                                  VarDecl::StorageClass StorageClass,
5508                                  VarDecl::StorageClass StorageClassAsWritten) {
5509  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5510                                         adjustParameterType(T), TSInfo,
5511                                         StorageClass, StorageClassAsWritten,
5512                                         0);
5513
5514  // Parameters can not be abstract class types.
5515  // For record types, this is done by the AbstractClassUsageDiagnoser once
5516  // the class has been completely parsed.
5517  if (!CurContext->isRecord() &&
5518      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5519                             AbstractParamType))
5520    New->setInvalidDecl();
5521
5522  // Parameter declarators cannot be interface types. All ObjC objects are
5523  // passed by reference.
5524  if (T->isObjCObjectType()) {
5525    Diag(NameLoc,
5526         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5527    New->setInvalidDecl();
5528  }
5529
5530  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5531  // duration shall not be qualified by an address-space qualifier."
5532  // Since all parameters have automatic store duration, they can not have
5533  // an address space.
5534  if (T.getAddressSpace() != 0) {
5535    Diag(NameLoc, diag::err_arg_with_address_space);
5536    New->setInvalidDecl();
5537  }
5538
5539  return New;
5540}
5541
5542void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5543                                           SourceLocation LocAfterDecls) {
5544  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5545
5546  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5547  // for a K&R function.
5548  if (!FTI.hasPrototype) {
5549    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5550      --i;
5551      if (FTI.ArgInfo[i].Param == 0) {
5552        llvm::SmallString<256> Code;
5553        llvm::raw_svector_ostream(Code) << "  int "
5554                                        << FTI.ArgInfo[i].Ident->getName()
5555                                        << ";\n";
5556        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5557          << FTI.ArgInfo[i].Ident
5558          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5559
5560        // Implicitly declare the argument as type 'int' for lack of a better
5561        // type.
5562        AttributeFactory attrs;
5563        DeclSpec DS(attrs);
5564        const char* PrevSpec; // unused
5565        unsigned DiagID; // unused
5566        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5567                           PrevSpec, DiagID);
5568        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5569        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5570        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5571      }
5572    }
5573  }
5574}
5575
5576Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5577                                         Declarator &D) {
5578  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5579  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5580  Scope *ParentScope = FnBodyScope->getParent();
5581
5582  Decl *DP = HandleDeclarator(ParentScope, D,
5583                              MultiTemplateParamsArg(*this),
5584                              /*IsFunctionDefinition=*/true);
5585  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5586}
5587
5588static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5589  // Don't warn about invalid declarations.
5590  if (FD->isInvalidDecl())
5591    return false;
5592
5593  // Or declarations that aren't global.
5594  if (!FD->isGlobal())
5595    return false;
5596
5597  // Don't warn about C++ member functions.
5598  if (isa<CXXMethodDecl>(FD))
5599    return false;
5600
5601  // Don't warn about 'main'.
5602  if (FD->isMain())
5603    return false;
5604
5605  // Don't warn about inline functions.
5606  if (FD->isInlined())
5607    return false;
5608
5609  // Don't warn about function templates.
5610  if (FD->getDescribedFunctionTemplate())
5611    return false;
5612
5613  // Don't warn about function template specializations.
5614  if (FD->isFunctionTemplateSpecialization())
5615    return false;
5616
5617  bool MissingPrototype = true;
5618  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5619       Prev; Prev = Prev->getPreviousDeclaration()) {
5620    // Ignore any declarations that occur in function or method
5621    // scope, because they aren't visible from the header.
5622    if (Prev->getDeclContext()->isFunctionOrMethod())
5623      continue;
5624
5625    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5626    break;
5627  }
5628
5629  return MissingPrototype;
5630}
5631
5632Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5633  // Clear the last template instantiation error context.
5634  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5635
5636  if (!D)
5637    return D;
5638  FunctionDecl *FD = 0;
5639
5640  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5641    FD = FunTmpl->getTemplatedDecl();
5642  else
5643    FD = cast<FunctionDecl>(D);
5644
5645  // Enter a new function scope
5646  PushFunctionScope();
5647
5648  // See if this is a redefinition.
5649  // But don't complain if we're in GNU89 mode and the previous definition
5650  // was an extern inline function.
5651  const FunctionDecl *Definition;
5652  if (FD->hasBody(Definition) &&
5653      !canRedefineFunction(Definition, getLangOptions())) {
5654    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5655        Definition->getStorageClass() == SC_Extern)
5656      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5657        << FD->getDeclName() << getLangOptions().CPlusPlus;
5658    else
5659      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5660    Diag(Definition->getLocation(), diag::note_previous_definition);
5661  }
5662
5663  // Builtin functions cannot be defined.
5664  if (unsigned BuiltinID = FD->getBuiltinID()) {
5665    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5666      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5667      FD->setInvalidDecl();
5668    }
5669  }
5670
5671  // The return type of a function definition must be complete
5672  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5673  QualType ResultType = FD->getResultType();
5674  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5675      !FD->isInvalidDecl() &&
5676      RequireCompleteType(FD->getLocation(), ResultType,
5677                          diag::err_func_def_incomplete_result))
5678    FD->setInvalidDecl();
5679
5680  // GNU warning -Wmissing-prototypes:
5681  //   Warn if a global function is defined without a previous
5682  //   prototype declaration. This warning is issued even if the
5683  //   definition itself provides a prototype. The aim is to detect
5684  //   global functions that fail to be declared in header files.
5685  if (ShouldWarnAboutMissingPrototype(FD))
5686    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5687
5688  if (FnBodyScope)
5689    PushDeclContext(FnBodyScope, FD);
5690
5691  // Check the validity of our function parameters
5692  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5693                           /*CheckParameterNames=*/true);
5694
5695  // Introduce our parameters into the function scope
5696  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5697    ParmVarDecl *Param = FD->getParamDecl(p);
5698    Param->setOwningFunction(FD);
5699
5700    // If this has an identifier, add it to the scope stack.
5701    if (Param->getIdentifier() && FnBodyScope) {
5702      CheckShadow(FnBodyScope, Param);
5703
5704      PushOnScopeChains(Param, FnBodyScope);
5705    }
5706  }
5707
5708  // Checking attributes of current function definition
5709  // dllimport attribute.
5710  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5711  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5712    // dllimport attribute cannot be directly applied to definition.
5713    // Microsoft accepts dllimport for functions defined within class scope.
5714    if (!DA->isInherited() &&
5715        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
5716      Diag(FD->getLocation(),
5717           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5718        << "dllimport";
5719      FD->setInvalidDecl();
5720      return FD;
5721    }
5722
5723    // Visual C++ appears to not think this is an issue, so only issue
5724    // a warning when Microsoft extensions are disabled.
5725    if (!LangOpts.Microsoft) {
5726      // If a symbol previously declared dllimport is later defined, the
5727      // attribute is ignored in subsequent references, and a warning is
5728      // emitted.
5729      Diag(FD->getLocation(),
5730           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5731        << FD->getName() << "dllimport";
5732    }
5733  }
5734  return FD;
5735}
5736
5737/// \brief Given the set of return statements within a function body,
5738/// compute the variables that are subject to the named return value
5739/// optimization.
5740///
5741/// Each of the variables that is subject to the named return value
5742/// optimization will be marked as NRVO variables in the AST, and any
5743/// return statement that has a marked NRVO variable as its NRVO candidate can
5744/// use the named return value optimization.
5745///
5746/// This function applies a very simplistic algorithm for NRVO: if every return
5747/// statement in the function has the same NRVO candidate, that candidate is
5748/// the NRVO variable.
5749///
5750/// FIXME: Employ a smarter algorithm that accounts for multiple return
5751/// statements and the lifetimes of the NRVO candidates. We should be able to
5752/// find a maximal set of NRVO variables.
5753static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5754  ReturnStmt **Returns = Scope->Returns.data();
5755
5756  const VarDecl *NRVOCandidate = 0;
5757  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5758    if (!Returns[I]->getNRVOCandidate())
5759      return;
5760
5761    if (!NRVOCandidate)
5762      NRVOCandidate = Returns[I]->getNRVOCandidate();
5763    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5764      return;
5765  }
5766
5767  if (NRVOCandidate)
5768    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5769}
5770
5771Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5772  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5773}
5774
5775Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5776                                    bool IsInstantiation) {
5777  FunctionDecl *FD = 0;
5778  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5779  if (FunTmpl)
5780    FD = FunTmpl->getTemplatedDecl();
5781  else
5782    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5783
5784  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5785  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5786
5787  if (FD) {
5788    FD->setBody(Body);
5789    if (FD->isMain()) {
5790      // C and C++ allow for main to automagically return 0.
5791      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5792      FD->setHasImplicitReturnZero(true);
5793      WP.disableCheckFallThrough();
5794    }
5795
5796    if (!FD->isInvalidDecl()) {
5797      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5798      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5799                                             FD->getResultType(), FD);
5800
5801      // If this is a constructor, we need a vtable.
5802      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5803        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5804
5805      ComputeNRVO(Body, getCurFunction());
5806    }
5807
5808    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5809  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5810    assert(MD == getCurMethodDecl() && "Method parsing confused");
5811    MD->setBody(Body);
5812    if (Body)
5813      MD->setEndLoc(Body->getLocEnd());
5814    if (!MD->isInvalidDecl()) {
5815      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5816      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5817                                             MD->getResultType(), MD);
5818    }
5819  } else {
5820    return 0;
5821  }
5822
5823  // Verify and clean out per-function state.
5824  if (Body) {
5825    // C++ constructors that have function-try-blocks can't have return
5826    // statements in the handlers of that block. (C++ [except.handle]p14)
5827    // Verify this.
5828    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5829      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5830
5831    // Verify that that gotos and switch cases don't jump into scopes illegally.
5832    // Verify that that gotos and switch cases don't jump into scopes illegally.
5833    if (getCurFunction()->NeedsScopeChecking() &&
5834        !dcl->isInvalidDecl() &&
5835        !hasAnyErrorsInThisFunction())
5836      DiagnoseInvalidJumps(Body);
5837
5838    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5839      if (!Destructor->getParent()->isDependentType())
5840        CheckDestructor(Destructor);
5841
5842      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5843                                             Destructor->getParent());
5844    }
5845
5846    // If any errors have occurred, clear out any temporaries that may have
5847    // been leftover. This ensures that these temporaries won't be picked up for
5848    // deletion in some later function.
5849    if (PP.getDiagnostics().hasErrorOccurred() ||
5850        PP.getDiagnostics().getSuppressAllDiagnostics())
5851      ExprTemporaries.clear();
5852    else if (!isa<FunctionTemplateDecl>(dcl)) {
5853      // Since the body is valid, issue any analysis-based warnings that are
5854      // enabled.
5855      ActivePolicy = &WP;
5856    }
5857
5858    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5859  }
5860
5861  if (!IsInstantiation)
5862    PopDeclContext();
5863
5864  PopFunctionOrBlockScope(ActivePolicy, dcl);
5865
5866  // If any errors have occurred, clear out any temporaries that may have
5867  // been leftover. This ensures that these temporaries won't be picked up for
5868  // deletion in some later function.
5869  if (getDiagnostics().hasErrorOccurred())
5870    ExprTemporaries.clear();
5871
5872  return dcl;
5873}
5874
5875/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5876/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5877NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5878                                          IdentifierInfo &II, Scope *S) {
5879  // Before we produce a declaration for an implicitly defined
5880  // function, see whether there was a locally-scoped declaration of
5881  // this name as a function or variable. If so, use that
5882  // (non-visible) declaration, and complain about it.
5883  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5884    = LocallyScopedExternalDecls.find(&II);
5885  if (Pos != LocallyScopedExternalDecls.end()) {
5886    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5887    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5888    return Pos->second;
5889  }
5890
5891  // Extension in C99.  Legal in C90, but warn about it.
5892  if (II.getName().startswith("__builtin_"))
5893    Diag(Loc, diag::warn_builtin_unknown) << &II;
5894  else if (getLangOptions().C99)
5895    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5896  else
5897    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5898
5899  // Set a Declarator for the implicit definition: int foo();
5900  const char *Dummy;
5901  AttributeFactory attrFactory;
5902  DeclSpec DS(attrFactory);
5903  unsigned DiagID;
5904  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5905  (void)Error; // Silence warning.
5906  assert(!Error && "Error setting up implicit decl!");
5907  Declarator D(DS, Declarator::BlockContext);
5908  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5909                                             0, 0, true, SourceLocation(),
5910                                             EST_None, SourceLocation(),
5911                                             0, 0, 0, 0, Loc, Loc, D),
5912                DS.getAttributes(),
5913                SourceLocation());
5914  D.SetIdentifier(&II, Loc);
5915
5916  // Insert this function into translation-unit scope.
5917
5918  DeclContext *PrevDC = CurContext;
5919  CurContext = Context.getTranslationUnitDecl();
5920
5921  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5922  FD->setImplicit();
5923
5924  CurContext = PrevDC;
5925
5926  AddKnownFunctionAttributes(FD);
5927
5928  return FD;
5929}
5930
5931/// \brief Adds any function attributes that we know a priori based on
5932/// the declaration of this function.
5933///
5934/// These attributes can apply both to implicitly-declared builtins
5935/// (like __builtin___printf_chk) or to library-declared functions
5936/// like NSLog or printf.
5937void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5938  if (FD->isInvalidDecl())
5939    return;
5940
5941  // If this is a built-in function, map its builtin attributes to
5942  // actual attributes.
5943  if (unsigned BuiltinID = FD->getBuiltinID()) {
5944    // Handle printf-formatting attributes.
5945    unsigned FormatIdx;
5946    bool HasVAListArg;
5947    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5948      if (!FD->getAttr<FormatAttr>())
5949        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5950                                                "printf", FormatIdx+1,
5951                                               HasVAListArg ? 0 : FormatIdx+2));
5952    }
5953    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5954                                             HasVAListArg)) {
5955     if (!FD->getAttr<FormatAttr>())
5956       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5957                                              "scanf", FormatIdx+1,
5958                                              HasVAListArg ? 0 : FormatIdx+2));
5959    }
5960
5961    // Mark const if we don't care about errno and that is the only
5962    // thing preventing the function from being const. This allows
5963    // IRgen to use LLVM intrinsics for such functions.
5964    if (!getLangOptions().MathErrno &&
5965        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5966      if (!FD->getAttr<ConstAttr>())
5967        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5968    }
5969
5970    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5971      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5972    if (Context.BuiltinInfo.isConst(BuiltinID))
5973      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5974  }
5975
5976  IdentifierInfo *Name = FD->getIdentifier();
5977  if (!Name)
5978    return;
5979  if ((!getLangOptions().CPlusPlus &&
5980       FD->getDeclContext()->isTranslationUnit()) ||
5981      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5982       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5983       LinkageSpecDecl::lang_c)) {
5984    // Okay: this could be a libc/libm/Objective-C function we know
5985    // about.
5986  } else
5987    return;
5988
5989  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5990    // FIXME: NSLog and NSLogv should be target specific
5991    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5992      // FIXME: We known better than our headers.
5993      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5994    } else
5995      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5996                                             "printf", 1,
5997                                             Name->isStr("NSLogv") ? 0 : 2));
5998  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5999    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6000    // target-specific builtins, perhaps?
6001    if (!FD->getAttr<FormatAttr>())
6002      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6003                                             "printf", 2,
6004                                             Name->isStr("vasprintf") ? 0 : 3));
6005  }
6006}
6007
6008TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6009                                    TypeSourceInfo *TInfo) {
6010  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6011  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6012
6013  if (!TInfo) {
6014    assert(D.isInvalidType() && "no declarator info for valid type");
6015    TInfo = Context.getTrivialTypeSourceInfo(T);
6016  }
6017
6018  // Scope manipulation handled by caller.
6019  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6020                                           D.getSourceRange().getBegin(),
6021                                           D.getIdentifierLoc(),
6022                                           D.getIdentifier(),
6023                                           TInfo);
6024
6025  // Bail out immediately if we have an invalid declaration.
6026  if (D.isInvalidType()) {
6027    NewTD->setInvalidDecl();
6028    return NewTD;
6029  }
6030
6031  // C++ [dcl.typedef]p8:
6032  //   If the typedef declaration defines an unnamed class (or
6033  //   enum), the first typedef-name declared by the declaration
6034  //   to be that class type (or enum type) is used to denote the
6035  //   class type (or enum type) for linkage purposes only.
6036  // We need to check whether the type was declared in the declaration.
6037  switch (D.getDeclSpec().getTypeSpecType()) {
6038  case TST_enum:
6039  case TST_struct:
6040  case TST_union:
6041  case TST_class: {
6042    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6043
6044    // Do nothing if the tag is not anonymous or already has an
6045    // associated typedef (from an earlier typedef in this decl group).
6046    if (tagFromDeclSpec->getIdentifier()) break;
6047    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
6048
6049    // A well-formed anonymous tag must always be a TUK_Definition.
6050    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6051
6052    // The type must match the tag exactly;  no qualifiers allowed.
6053    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6054      break;
6055
6056    // Otherwise, set this is the anon-decl typedef for the tag.
6057    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
6058    break;
6059  }
6060
6061  default:
6062    break;
6063  }
6064
6065  return NewTD;
6066}
6067
6068
6069/// \brief Determine whether a tag with a given kind is acceptable
6070/// as a redeclaration of the given tag declaration.
6071///
6072/// \returns true if the new tag kind is acceptable, false otherwise.
6073bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6074                                        TagTypeKind NewTag,
6075                                        SourceLocation NewTagLoc,
6076                                        const IdentifierInfo &Name) {
6077  // C++ [dcl.type.elab]p3:
6078  //   The class-key or enum keyword present in the
6079  //   elaborated-type-specifier shall agree in kind with the
6080  //   declaration to which the name in the elaborated-type-specifier
6081  //   refers. This rule also applies to the form of
6082  //   elaborated-type-specifier that declares a class-name or
6083  //   friend class since it can be construed as referring to the
6084  //   definition of the class. Thus, in any
6085  //   elaborated-type-specifier, the enum keyword shall be used to
6086  //   refer to an enumeration (7.2), the union class-key shall be
6087  //   used to refer to a union (clause 9), and either the class or
6088  //   struct class-key shall be used to refer to a class (clause 9)
6089  //   declared using the class or struct class-key.
6090  TagTypeKind OldTag = Previous->getTagKind();
6091  if (OldTag == NewTag)
6092    return true;
6093
6094  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6095      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6096    // Warn about the struct/class tag mismatch.
6097    bool isTemplate = false;
6098    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6099      isTemplate = Record->getDescribedClassTemplate();
6100
6101    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6102      << (NewTag == TTK_Class)
6103      << isTemplate << &Name
6104      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6105                              OldTag == TTK_Class? "class" : "struct");
6106    Diag(Previous->getLocation(), diag::note_previous_use);
6107    return true;
6108  }
6109  return false;
6110}
6111
6112/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6113/// former case, Name will be non-null.  In the later case, Name will be null.
6114/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6115/// reference/declaration/definition of a tag.
6116Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6117                     SourceLocation KWLoc, CXXScopeSpec &SS,
6118                     IdentifierInfo *Name, SourceLocation NameLoc,
6119                     AttributeList *Attr, AccessSpecifier AS,
6120                     MultiTemplateParamsArg TemplateParameterLists,
6121                     bool &OwnedDecl, bool &IsDependent,
6122                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6123                     TypeResult UnderlyingType) {
6124  // If this is not a definition, it must have a name.
6125  assert((Name != 0 || TUK == TUK_Definition) &&
6126         "Nameless record must be a definition!");
6127  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6128
6129  OwnedDecl = false;
6130  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6131
6132  // FIXME: Check explicit specializations more carefully.
6133  bool isExplicitSpecialization = false;
6134  bool Invalid = false;
6135
6136  // We only need to do this matching if we have template parameters
6137  // or a scope specifier, which also conveniently avoids this work
6138  // for non-C++ cases.
6139  if (TemplateParameterLists.size() > 0 ||
6140      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6141    if (TemplateParameterList *TemplateParams
6142          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6143                                                TemplateParameterLists.get(),
6144                                                TemplateParameterLists.size(),
6145                                                    TUK == TUK_Friend,
6146                                                    isExplicitSpecialization,
6147                                                    Invalid)) {
6148      if (TemplateParams->size() > 0) {
6149        // This is a declaration or definition of a class template (which may
6150        // be a member of another template).
6151
6152        if (Invalid)
6153          return 0;
6154
6155        OwnedDecl = false;
6156        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6157                                               SS, Name, NameLoc, Attr,
6158                                               TemplateParams, AS,
6159                                           TemplateParameterLists.size() - 1,
6160                 (TemplateParameterList**) TemplateParameterLists.release());
6161        return Result.get();
6162      } else {
6163        // The "template<>" header is extraneous.
6164        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6165          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6166        isExplicitSpecialization = true;
6167      }
6168    }
6169  }
6170
6171  // Figure out the underlying type if this a enum declaration. We need to do
6172  // this early, because it's needed to detect if this is an incompatible
6173  // redeclaration.
6174  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6175
6176  if (Kind == TTK_Enum) {
6177    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6178      // No underlying type explicitly specified, or we failed to parse the
6179      // type, default to int.
6180      EnumUnderlying = Context.IntTy.getTypePtr();
6181    else if (UnderlyingType.get()) {
6182      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6183      // integral type; any cv-qualification is ignored.
6184      TypeSourceInfo *TI = 0;
6185      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6186      EnumUnderlying = TI;
6187
6188      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6189
6190      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6191        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6192          << T;
6193        // Recover by falling back to int.
6194        EnumUnderlying = Context.IntTy.getTypePtr();
6195      }
6196
6197      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6198                                          UPPC_FixedUnderlyingType))
6199        EnumUnderlying = Context.IntTy.getTypePtr();
6200
6201    } else if (getLangOptions().Microsoft)
6202      // Microsoft enums are always of int type.
6203      EnumUnderlying = Context.IntTy.getTypePtr();
6204  }
6205
6206  DeclContext *SearchDC = CurContext;
6207  DeclContext *DC = CurContext;
6208  bool isStdBadAlloc = false;
6209
6210  RedeclarationKind Redecl = ForRedeclaration;
6211  if (TUK == TUK_Friend || TUK == TUK_Reference)
6212    Redecl = NotForRedeclaration;
6213
6214  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6215
6216  if (Name && SS.isNotEmpty()) {
6217    // We have a nested-name tag ('struct foo::bar').
6218
6219    // Check for invalid 'foo::'.
6220    if (SS.isInvalid()) {
6221      Name = 0;
6222      goto CreateNewDecl;
6223    }
6224
6225    // If this is a friend or a reference to a class in a dependent
6226    // context, don't try to make a decl for it.
6227    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6228      DC = computeDeclContext(SS, false);
6229      if (!DC) {
6230        IsDependent = true;
6231        return 0;
6232      }
6233    } else {
6234      DC = computeDeclContext(SS, true);
6235      if (!DC) {
6236        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6237          << SS.getRange();
6238        return 0;
6239      }
6240    }
6241
6242    if (RequireCompleteDeclContext(SS, DC))
6243      return 0;
6244
6245    SearchDC = DC;
6246    // Look-up name inside 'foo::'.
6247    LookupQualifiedName(Previous, DC);
6248
6249    if (Previous.isAmbiguous())
6250      return 0;
6251
6252    if (Previous.empty()) {
6253      // Name lookup did not find anything. However, if the
6254      // nested-name-specifier refers to the current instantiation,
6255      // and that current instantiation has any dependent base
6256      // classes, we might find something at instantiation time: treat
6257      // this as a dependent elaborated-type-specifier.
6258      // But this only makes any sense for reference-like lookups.
6259      if (Previous.wasNotFoundInCurrentInstantiation() &&
6260          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6261        IsDependent = true;
6262        return 0;
6263      }
6264
6265      // A tag 'foo::bar' must already exist.
6266      Diag(NameLoc, diag::err_not_tag_in_scope)
6267        << Kind << Name << DC << SS.getRange();
6268      Name = 0;
6269      Invalid = true;
6270      goto CreateNewDecl;
6271    }
6272  } else if (Name) {
6273    // If this is a named struct, check to see if there was a previous forward
6274    // declaration or definition.
6275    // FIXME: We're looking into outer scopes here, even when we
6276    // shouldn't be. Doing so can result in ambiguities that we
6277    // shouldn't be diagnosing.
6278    LookupName(Previous, S);
6279
6280    // Note:  there used to be some attempt at recovery here.
6281    if (Previous.isAmbiguous())
6282      return 0;
6283
6284    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6285      // FIXME: This makes sure that we ignore the contexts associated
6286      // with C structs, unions, and enums when looking for a matching
6287      // tag declaration or definition. See the similar lookup tweak
6288      // in Sema::LookupName; is there a better way to deal with this?
6289      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6290        SearchDC = SearchDC->getParent();
6291    }
6292  } else if (S->isFunctionPrototypeScope()) {
6293    // If this is an enum declaration in function prototype scope, set its
6294    // initial context to the translation unit.
6295    SearchDC = Context.getTranslationUnitDecl();
6296  }
6297
6298  if (Previous.isSingleResult() &&
6299      Previous.getFoundDecl()->isTemplateParameter()) {
6300    // Maybe we will complain about the shadowed template parameter.
6301    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6302    // Just pretend that we didn't see the previous declaration.
6303    Previous.clear();
6304  }
6305
6306  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6307      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6308    // This is a declaration of or a reference to "std::bad_alloc".
6309    isStdBadAlloc = true;
6310
6311    if (Previous.empty() && StdBadAlloc) {
6312      // std::bad_alloc has been implicitly declared (but made invisible to
6313      // name lookup). Fill in this implicit declaration as the previous
6314      // declaration, so that the declarations get chained appropriately.
6315      Previous.addDecl(getStdBadAlloc());
6316    }
6317  }
6318
6319  // If we didn't find a previous declaration, and this is a reference
6320  // (or friend reference), move to the correct scope.  In C++, we
6321  // also need to do a redeclaration lookup there, just in case
6322  // there's a shadow friend decl.
6323  if (Name && Previous.empty() &&
6324      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6325    if (Invalid) goto CreateNewDecl;
6326    assert(SS.isEmpty());
6327
6328    if (TUK == TUK_Reference) {
6329      // C++ [basic.scope.pdecl]p5:
6330      //   -- for an elaborated-type-specifier of the form
6331      //
6332      //          class-key identifier
6333      //
6334      //      if the elaborated-type-specifier is used in the
6335      //      decl-specifier-seq or parameter-declaration-clause of a
6336      //      function defined in namespace scope, the identifier is
6337      //      declared as a class-name in the namespace that contains
6338      //      the declaration; otherwise, except as a friend
6339      //      declaration, the identifier is declared in the smallest
6340      //      non-class, non-function-prototype scope that contains the
6341      //      declaration.
6342      //
6343      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6344      // C structs and unions.
6345      //
6346      // It is an error in C++ to declare (rather than define) an enum
6347      // type, including via an elaborated type specifier.  We'll
6348      // diagnose that later; for now, declare the enum in the same
6349      // scope as we would have picked for any other tag type.
6350      //
6351      // GNU C also supports this behavior as part of its incomplete
6352      // enum types extension, while GNU C++ does not.
6353      //
6354      // Find the context where we'll be declaring the tag.
6355      // FIXME: We would like to maintain the current DeclContext as the
6356      // lexical context,
6357      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6358        SearchDC = SearchDC->getParent();
6359
6360      // Find the scope where we'll be declaring the tag.
6361      while (S->isClassScope() ||
6362             (getLangOptions().CPlusPlus &&
6363              S->isFunctionPrototypeScope()) ||
6364             ((S->getFlags() & Scope::DeclScope) == 0) ||
6365             (S->getEntity() &&
6366              ((DeclContext *)S->getEntity())->isTransparentContext()))
6367        S = S->getParent();
6368    } else {
6369      assert(TUK == TUK_Friend);
6370      // C++ [namespace.memdef]p3:
6371      //   If a friend declaration in a non-local class first declares a
6372      //   class or function, the friend class or function is a member of
6373      //   the innermost enclosing namespace.
6374      SearchDC = SearchDC->getEnclosingNamespaceContext();
6375    }
6376
6377    // In C++, we need to do a redeclaration lookup to properly
6378    // diagnose some problems.
6379    if (getLangOptions().CPlusPlus) {
6380      Previous.setRedeclarationKind(ForRedeclaration);
6381      LookupQualifiedName(Previous, SearchDC);
6382    }
6383  }
6384
6385  if (!Previous.empty()) {
6386    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6387
6388    // It's okay to have a tag decl in the same scope as a typedef
6389    // which hides a tag decl in the same scope.  Finding this
6390    // insanity with a redeclaration lookup can only actually happen
6391    // in C++.
6392    //
6393    // This is also okay for elaborated-type-specifiers, which is
6394    // technically forbidden by the current standard but which is
6395    // okay according to the likely resolution of an open issue;
6396    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6397    if (getLangOptions().CPlusPlus) {
6398      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6399        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6400          TagDecl *Tag = TT->getDecl();
6401          if (Tag->getDeclName() == Name &&
6402              Tag->getDeclContext()->getRedeclContext()
6403                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6404            PrevDecl = Tag;
6405            Previous.clear();
6406            Previous.addDecl(Tag);
6407            Previous.resolveKind();
6408          }
6409        }
6410      }
6411    }
6412
6413    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6414      // If this is a use of a previous tag, or if the tag is already declared
6415      // in the same scope (so that the definition/declaration completes or
6416      // rementions the tag), reuse the decl.
6417      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6418          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6419        // Make sure that this wasn't declared as an enum and now used as a
6420        // struct or something similar.
6421        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6422          bool SafeToContinue
6423            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6424               Kind != TTK_Enum);
6425          if (SafeToContinue)
6426            Diag(KWLoc, diag::err_use_with_wrong_tag)
6427              << Name
6428              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6429                                              PrevTagDecl->getKindName());
6430          else
6431            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6432          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6433
6434          if (SafeToContinue)
6435            Kind = PrevTagDecl->getTagKind();
6436          else {
6437            // Recover by making this an anonymous redefinition.
6438            Name = 0;
6439            Previous.clear();
6440            Invalid = true;
6441          }
6442        }
6443
6444        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6445          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6446
6447          // All conflicts with previous declarations are recovered by
6448          // returning the previous declaration.
6449          if (ScopedEnum != PrevEnum->isScoped()) {
6450            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6451              << PrevEnum->isScoped();
6452            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6453            return PrevTagDecl;
6454          }
6455          else if (EnumUnderlying && PrevEnum->isFixed()) {
6456            QualType T;
6457            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6458                T = TI->getType();
6459            else
6460                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6461
6462            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6463              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6464                   diag::err_enum_redeclare_type_mismatch)
6465                << T
6466                << PrevEnum->getIntegerType();
6467              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6468              return PrevTagDecl;
6469            }
6470          }
6471          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6472            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6473              << PrevEnum->isFixed();
6474            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6475            return PrevTagDecl;
6476          }
6477        }
6478
6479        if (!Invalid) {
6480          // If this is a use, just return the declaration we found.
6481
6482          // FIXME: In the future, return a variant or some other clue
6483          // for the consumer of this Decl to know it doesn't own it.
6484          // For our current ASTs this shouldn't be a problem, but will
6485          // need to be changed with DeclGroups.
6486          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6487              TUK == TUK_Friend)
6488            return PrevTagDecl;
6489
6490          // Diagnose attempts to redefine a tag.
6491          if (TUK == TUK_Definition) {
6492            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6493              // If we're defining a specialization and the previous definition
6494              // is from an implicit instantiation, don't emit an error
6495              // here; we'll catch this in the general case below.
6496              if (!isExplicitSpecialization ||
6497                  !isa<CXXRecordDecl>(Def) ||
6498                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6499                                               == TSK_ExplicitSpecialization) {
6500                Diag(NameLoc, diag::err_redefinition) << Name;
6501                Diag(Def->getLocation(), diag::note_previous_definition);
6502                // If this is a redefinition, recover by making this
6503                // struct be anonymous, which will make any later
6504                // references get the previous definition.
6505                Name = 0;
6506                Previous.clear();
6507                Invalid = true;
6508              }
6509            } else {
6510              // If the type is currently being defined, complain
6511              // about a nested redefinition.
6512              const TagType *Tag
6513                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6514              if (Tag->isBeingDefined()) {
6515                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6516                Diag(PrevTagDecl->getLocation(),
6517                     diag::note_previous_definition);
6518                Name = 0;
6519                Previous.clear();
6520                Invalid = true;
6521              }
6522            }
6523
6524            // Okay, this is definition of a previously declared or referenced
6525            // tag PrevDecl. We're going to create a new Decl for it.
6526          }
6527        }
6528        // If we get here we have (another) forward declaration or we
6529        // have a definition.  Just create a new decl.
6530
6531      } else {
6532        // If we get here, this is a definition of a new tag type in a nested
6533        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6534        // new decl/type.  We set PrevDecl to NULL so that the entities
6535        // have distinct types.
6536        Previous.clear();
6537      }
6538      // If we get here, we're going to create a new Decl. If PrevDecl
6539      // is non-NULL, it's a definition of the tag declared by
6540      // PrevDecl. If it's NULL, we have a new definition.
6541
6542
6543    // Otherwise, PrevDecl is not a tag, but was found with tag
6544    // lookup.  This is only actually possible in C++, where a few
6545    // things like templates still live in the tag namespace.
6546    } else {
6547      assert(getLangOptions().CPlusPlus);
6548
6549      // Use a better diagnostic if an elaborated-type-specifier
6550      // found the wrong kind of type on the first
6551      // (non-redeclaration) lookup.
6552      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6553          !Previous.isForRedeclaration()) {
6554        unsigned Kind = 0;
6555        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6556        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6557        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6558        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6559        Invalid = true;
6560
6561      // Otherwise, only diagnose if the declaration is in scope.
6562      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6563                                isExplicitSpecialization)) {
6564        // do nothing
6565
6566      // Diagnose implicit declarations introduced by elaborated types.
6567      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6568        unsigned Kind = 0;
6569        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6570        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6571        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6572        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6573        Invalid = true;
6574
6575      // Otherwise it's a declaration.  Call out a particularly common
6576      // case here.
6577      } else if (isa<TypedefDecl>(PrevDecl)) {
6578        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6579          << Name
6580          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6581        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6582        Invalid = true;
6583
6584      // Otherwise, diagnose.
6585      } else {
6586        // The tag name clashes with something else in the target scope,
6587        // issue an error and recover by making this tag be anonymous.
6588        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6589        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6590        Name = 0;
6591        Invalid = true;
6592      }
6593
6594      // The existing declaration isn't relevant to us; we're in a
6595      // new scope, so clear out the previous declaration.
6596      Previous.clear();
6597    }
6598  }
6599
6600CreateNewDecl:
6601
6602  TagDecl *PrevDecl = 0;
6603  if (Previous.isSingleResult())
6604    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6605
6606  // If there is an identifier, use the location of the identifier as the
6607  // location of the decl, otherwise use the location of the struct/union
6608  // keyword.
6609  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6610
6611  // Otherwise, create a new declaration. If there is a previous
6612  // declaration of the same entity, the two will be linked via
6613  // PrevDecl.
6614  TagDecl *New;
6615
6616  bool IsForwardReference = false;
6617  if (Kind == TTK_Enum) {
6618    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6619    // enum X { A, B, C } D;    D should chain to X.
6620    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6621                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6622                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6623    // If this is an undefined enum, warn.
6624    if (TUK != TUK_Definition && !Invalid) {
6625      TagDecl *Def;
6626      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6627        // C++0x: 7.2p2: opaque-enum-declaration.
6628        // Conflicts are diagnosed above. Do nothing.
6629      }
6630      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6631        Diag(Loc, diag::ext_forward_ref_enum_def)
6632          << New;
6633        Diag(Def->getLocation(), diag::note_previous_definition);
6634      } else {
6635        unsigned DiagID = diag::ext_forward_ref_enum;
6636        if (getLangOptions().Microsoft)
6637          DiagID = diag::ext_ms_forward_ref_enum;
6638        else if (getLangOptions().CPlusPlus)
6639          DiagID = diag::err_forward_ref_enum;
6640        Diag(Loc, DiagID);
6641
6642        // If this is a forward-declared reference to an enumeration, make a
6643        // note of it; we won't actually be introducing the declaration into
6644        // the declaration context.
6645        if (TUK == TUK_Reference)
6646          IsForwardReference = true;
6647      }
6648    }
6649
6650    if (EnumUnderlying) {
6651      EnumDecl *ED = cast<EnumDecl>(New);
6652      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6653        ED->setIntegerTypeSourceInfo(TI);
6654      else
6655        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6656      ED->setPromotionType(ED->getIntegerType());
6657    }
6658
6659  } else {
6660    // struct/union/class
6661
6662    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6663    // struct X { int A; } D;    D should chain to X.
6664    if (getLangOptions().CPlusPlus) {
6665      // FIXME: Look for a way to use RecordDecl for simple structs.
6666      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6667                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6668
6669      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6670        StdBadAlloc = cast<CXXRecordDecl>(New);
6671    } else
6672      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6673                               cast_or_null<RecordDecl>(PrevDecl));
6674  }
6675
6676  // Maybe add qualifier info.
6677  if (SS.isNotEmpty()) {
6678    if (SS.isSet()) {
6679      New->setQualifierInfo(SS.getWithLocInContext(Context));
6680      if (TemplateParameterLists.size() > 0) {
6681        New->setTemplateParameterListsInfo(Context,
6682                                           TemplateParameterLists.size(),
6683                    (TemplateParameterList**) TemplateParameterLists.release());
6684      }
6685    }
6686    else
6687      Invalid = true;
6688  }
6689
6690  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6691    // Add alignment attributes if necessary; these attributes are checked when
6692    // the ASTContext lays out the structure.
6693    //
6694    // It is important for implementing the correct semantics that this
6695    // happen here (in act on tag decl). The #pragma pack stack is
6696    // maintained as a result of parser callbacks which can occur at
6697    // many points during the parsing of a struct declaration (because
6698    // the #pragma tokens are effectively skipped over during the
6699    // parsing of the struct).
6700    AddAlignmentAttributesForRecord(RD);
6701  }
6702
6703  // If this is a specialization of a member class (of a class template),
6704  // check the specialization.
6705  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6706    Invalid = true;
6707
6708  if (Invalid)
6709    New->setInvalidDecl();
6710
6711  if (Attr)
6712    ProcessDeclAttributeList(S, New, Attr);
6713
6714  // If we're declaring or defining a tag in function prototype scope
6715  // in C, note that this type can only be used within the function.
6716  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6717    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6718
6719  // Set the lexical context. If the tag has a C++ scope specifier, the
6720  // lexical context will be different from the semantic context.
6721  New->setLexicalDeclContext(CurContext);
6722
6723  // Mark this as a friend decl if applicable.
6724  if (TUK == TUK_Friend)
6725    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6726
6727  // Set the access specifier.
6728  if (!Invalid && SearchDC->isRecord())
6729    SetMemberAccessSpecifier(New, PrevDecl, AS);
6730
6731  if (TUK == TUK_Definition)
6732    New->startDefinition();
6733
6734  // If this has an identifier, add it to the scope stack.
6735  if (TUK == TUK_Friend) {
6736    // We might be replacing an existing declaration in the lookup tables;
6737    // if so, borrow its access specifier.
6738    if (PrevDecl)
6739      New->setAccess(PrevDecl->getAccess());
6740
6741    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6742    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6743    if (Name) // can be null along some error paths
6744      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6745        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6746  } else if (Name) {
6747    S = getNonFieldDeclScope(S);
6748    PushOnScopeChains(New, S, !IsForwardReference);
6749    if (IsForwardReference)
6750      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6751
6752  } else {
6753    CurContext->addDecl(New);
6754  }
6755
6756  // If this is the C FILE type, notify the AST context.
6757  if (IdentifierInfo *II = New->getIdentifier())
6758    if (!New->isInvalidDecl() &&
6759        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6760        II->isStr("FILE"))
6761      Context.setFILEDecl(New);
6762
6763  OwnedDecl = true;
6764  return New;
6765}
6766
6767void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6768  AdjustDeclIfTemplate(TagD);
6769  TagDecl *Tag = cast<TagDecl>(TagD);
6770
6771  // Enter the tag context.
6772  PushDeclContext(S, Tag);
6773}
6774
6775void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6776                                           SourceLocation FinalLoc,
6777                                           SourceLocation LBraceLoc) {
6778  AdjustDeclIfTemplate(TagD);
6779  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6780
6781  FieldCollector->StartClass();
6782
6783  if (!Record->getIdentifier())
6784    return;
6785
6786  if (FinalLoc.isValid())
6787    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
6788
6789  // C++ [class]p2:
6790  //   [...] The class-name is also inserted into the scope of the
6791  //   class itself; this is known as the injected-class-name. For
6792  //   purposes of access checking, the injected-class-name is treated
6793  //   as if it were a public member name.
6794  CXXRecordDecl *InjectedClassName
6795    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6796                            Record->getLocStart(), Record->getLocation(),
6797                            Record->getIdentifier(),
6798                            /*PrevDecl=*/0,
6799                            /*DelayTypeCreation=*/true);
6800  Context.getTypeDeclType(InjectedClassName, Record);
6801  InjectedClassName->setImplicit();
6802  InjectedClassName->setAccess(AS_public);
6803  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6804      InjectedClassName->setDescribedClassTemplate(Template);
6805  PushOnScopeChains(InjectedClassName, S);
6806  assert(InjectedClassName->isInjectedClassName() &&
6807         "Broken injected-class-name");
6808}
6809
6810void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6811                                    SourceLocation RBraceLoc) {
6812  AdjustDeclIfTemplate(TagD);
6813  TagDecl *Tag = cast<TagDecl>(TagD);
6814  Tag->setRBraceLoc(RBraceLoc);
6815
6816  if (isa<CXXRecordDecl>(Tag))
6817    FieldCollector->FinishClass();
6818
6819  // Exit this scope of this tag's definition.
6820  PopDeclContext();
6821
6822  // Notify the consumer that we've defined a tag.
6823  Consumer.HandleTagDeclDefinition(Tag);
6824}
6825
6826void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6827  AdjustDeclIfTemplate(TagD);
6828  TagDecl *Tag = cast<TagDecl>(TagD);
6829  Tag->setInvalidDecl();
6830
6831  // We're undoing ActOnTagStartDefinition here, not
6832  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6833  // the FieldCollector.
6834
6835  PopDeclContext();
6836}
6837
6838// Note that FieldName may be null for anonymous bitfields.
6839bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6840                          QualType FieldTy, const Expr *BitWidth,
6841                          bool *ZeroWidth) {
6842  // Default to true; that shouldn't confuse checks for emptiness
6843  if (ZeroWidth)
6844    *ZeroWidth = true;
6845
6846  // C99 6.7.2.1p4 - verify the field type.
6847  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6848  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6849    // Handle incomplete types with specific error.
6850    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6851      return true;
6852    if (FieldName)
6853      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6854        << FieldName << FieldTy << BitWidth->getSourceRange();
6855    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6856      << FieldTy << BitWidth->getSourceRange();
6857  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6858                                             UPPC_BitFieldWidth))
6859    return true;
6860
6861  // If the bit-width is type- or value-dependent, don't try to check
6862  // it now.
6863  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6864    return false;
6865
6866  llvm::APSInt Value;
6867  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6868    return true;
6869
6870  if (Value != 0 && ZeroWidth)
6871    *ZeroWidth = false;
6872
6873  // Zero-width bitfield is ok for anonymous field.
6874  if (Value == 0 && FieldName)
6875    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6876
6877  if (Value.isSigned() && Value.isNegative()) {
6878    if (FieldName)
6879      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6880               << FieldName << Value.toString(10);
6881    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6882      << Value.toString(10);
6883  }
6884
6885  if (!FieldTy->isDependentType()) {
6886    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6887    if (Value.getZExtValue() > TypeSize) {
6888      if (!getLangOptions().CPlusPlus) {
6889        if (FieldName)
6890          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6891            << FieldName << (unsigned)Value.getZExtValue()
6892            << (unsigned)TypeSize;
6893
6894        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6895          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6896      }
6897
6898      if (FieldName)
6899        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6900          << FieldName << (unsigned)Value.getZExtValue()
6901          << (unsigned)TypeSize;
6902      else
6903        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6904          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6905    }
6906  }
6907
6908  return false;
6909}
6910
6911/// ActOnField - Each field of a struct/union/class is passed into this in order
6912/// to create a FieldDecl object for it.
6913Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6914                                 SourceLocation DeclStart,
6915                                 Declarator &D, ExprTy *BitfieldWidth) {
6916  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6917                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6918                               AS_public);
6919  return Res;
6920}
6921
6922/// HandleField - Analyze a field of a C struct or a C++ data member.
6923///
6924FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6925                             SourceLocation DeclStart,
6926                             Declarator &D, Expr *BitWidth,
6927                             AccessSpecifier AS) {
6928  IdentifierInfo *II = D.getIdentifier();
6929  SourceLocation Loc = DeclStart;
6930  if (II) Loc = D.getIdentifierLoc();
6931
6932  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6933  QualType T = TInfo->getType();
6934  if (getLangOptions().CPlusPlus) {
6935    CheckExtraCXXDefaultArguments(D);
6936
6937    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6938                                        UPPC_DataMemberType)) {
6939      D.setInvalidType();
6940      T = Context.IntTy;
6941      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6942    }
6943  }
6944
6945  DiagnoseFunctionSpecifiers(D);
6946
6947  if (D.getDeclSpec().isThreadSpecified())
6948    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6949
6950  // Check to see if this name was declared as a member previously
6951  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6952  LookupName(Previous, S);
6953  assert((Previous.empty() || Previous.isOverloadedResult() ||
6954          Previous.isSingleResult())
6955    && "Lookup of member name should be either overloaded, single or null");
6956
6957  // If the name is overloaded then get any declaration else get the single result
6958  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6959    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6960
6961  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6962    // Maybe we will complain about the shadowed template parameter.
6963    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6964    // Just pretend that we didn't see the previous declaration.
6965    PrevDecl = 0;
6966  }
6967
6968  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6969    PrevDecl = 0;
6970
6971  bool Mutable
6972    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6973  SourceLocation TSSL = D.getSourceRange().getBegin();
6974  FieldDecl *NewFD
6975    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6976                     AS, PrevDecl, &D);
6977
6978  if (NewFD->isInvalidDecl())
6979    Record->setInvalidDecl();
6980
6981  if (NewFD->isInvalidDecl() && PrevDecl) {
6982    // Don't introduce NewFD into scope; there's already something
6983    // with the same name in the same scope.
6984  } else if (II) {
6985    PushOnScopeChains(NewFD, S);
6986  } else
6987    Record->addDecl(NewFD);
6988
6989  return NewFD;
6990}
6991
6992/// \brief Build a new FieldDecl and check its well-formedness.
6993///
6994/// This routine builds a new FieldDecl given the fields name, type,
6995/// record, etc. \p PrevDecl should refer to any previous declaration
6996/// with the same name and in the same scope as the field to be
6997/// created.
6998///
6999/// \returns a new FieldDecl.
7000///
7001/// \todo The Declarator argument is a hack. It will be removed once
7002FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7003                                TypeSourceInfo *TInfo,
7004                                RecordDecl *Record, SourceLocation Loc,
7005                                bool Mutable, Expr *BitWidth,
7006                                SourceLocation TSSL,
7007                                AccessSpecifier AS, NamedDecl *PrevDecl,
7008                                Declarator *D) {
7009  IdentifierInfo *II = Name.getAsIdentifierInfo();
7010  bool InvalidDecl = false;
7011  if (D) InvalidDecl = D->isInvalidType();
7012
7013  // If we receive a broken type, recover by assuming 'int' and
7014  // marking this declaration as invalid.
7015  if (T.isNull()) {
7016    InvalidDecl = true;
7017    T = Context.IntTy;
7018  }
7019
7020  QualType EltTy = Context.getBaseElementType(T);
7021  if (!EltTy->isDependentType() &&
7022      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7023    // Fields of incomplete type force their record to be invalid.
7024    Record->setInvalidDecl();
7025    InvalidDecl = true;
7026  }
7027
7028  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7029  // than a variably modified type.
7030  if (!InvalidDecl && T->isVariablyModifiedType()) {
7031    bool SizeIsNegative;
7032    llvm::APSInt Oversized;
7033    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7034                                                           SizeIsNegative,
7035                                                           Oversized);
7036    if (!FixedTy.isNull()) {
7037      Diag(Loc, diag::warn_illegal_constant_array_size);
7038      T = FixedTy;
7039    } else {
7040      if (SizeIsNegative)
7041        Diag(Loc, diag::err_typecheck_negative_array_size);
7042      else if (Oversized.getBoolValue())
7043        Diag(Loc, diag::err_array_too_large)
7044          << Oversized.toString(10);
7045      else
7046        Diag(Loc, diag::err_typecheck_field_variable_size);
7047      InvalidDecl = true;
7048    }
7049  }
7050
7051  // Fields can not have abstract class types
7052  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7053                                             diag::err_abstract_type_in_decl,
7054                                             AbstractFieldType))
7055    InvalidDecl = true;
7056
7057  bool ZeroWidth = false;
7058  // If this is declared as a bit-field, check the bit-field.
7059  if (!InvalidDecl && BitWidth &&
7060      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7061    InvalidDecl = true;
7062    BitWidth = 0;
7063    ZeroWidth = false;
7064  }
7065
7066  // Check that 'mutable' is consistent with the type of the declaration.
7067  if (!InvalidDecl && Mutable) {
7068    unsigned DiagID = 0;
7069    if (T->isReferenceType())
7070      DiagID = diag::err_mutable_reference;
7071    else if (T.isConstQualified())
7072      DiagID = diag::err_mutable_const;
7073
7074    if (DiagID) {
7075      SourceLocation ErrLoc = Loc;
7076      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7077        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7078      Diag(ErrLoc, DiagID);
7079      Mutable = false;
7080      InvalidDecl = true;
7081    }
7082  }
7083
7084  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7085                                       BitWidth, Mutable);
7086  if (InvalidDecl)
7087    NewFD->setInvalidDecl();
7088
7089  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7090    Diag(Loc, diag::err_duplicate_member) << II;
7091    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7092    NewFD->setInvalidDecl();
7093  }
7094
7095  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7096    if (Record->isUnion()) {
7097      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7098        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7099        if (RDecl->getDefinition()) {
7100          // C++ [class.union]p1: An object of a class with a non-trivial
7101          // constructor, a non-trivial copy constructor, a non-trivial
7102          // destructor, or a non-trivial copy assignment operator
7103          // cannot be a member of a union, nor can an array of such
7104          // objects.
7105          // TODO: C++0x alters this restriction significantly.
7106          if (CheckNontrivialField(NewFD))
7107            NewFD->setInvalidDecl();
7108        }
7109      }
7110
7111      // C++ [class.union]p1: If a union contains a member of reference type,
7112      // the program is ill-formed.
7113      if (EltTy->isReferenceType()) {
7114        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7115          << NewFD->getDeclName() << EltTy;
7116        NewFD->setInvalidDecl();
7117      }
7118    }
7119  }
7120
7121  // FIXME: We need to pass in the attributes given an AST
7122  // representation, not a parser representation.
7123  if (D)
7124    // FIXME: What to pass instead of TUScope?
7125    ProcessDeclAttributes(TUScope, NewFD, *D);
7126
7127  if (T.isObjCGCWeak())
7128    Diag(Loc, diag::warn_attribute_weak_on_field);
7129
7130  NewFD->setAccess(AS);
7131  return NewFD;
7132}
7133
7134bool Sema::CheckNontrivialField(FieldDecl *FD) {
7135  assert(FD);
7136  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7137
7138  if (FD->isInvalidDecl())
7139    return true;
7140
7141  QualType EltTy = Context.getBaseElementType(FD->getType());
7142  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7143    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7144    if (RDecl->getDefinition()) {
7145      // We check for copy constructors before constructors
7146      // because otherwise we'll never get complaints about
7147      // copy constructors.
7148
7149      CXXSpecialMember member = CXXInvalid;
7150      if (!RDecl->hasTrivialCopyConstructor())
7151        member = CXXCopyConstructor;
7152      else if (!RDecl->hasTrivialConstructor())
7153        member = CXXConstructor;
7154      else if (!RDecl->hasTrivialCopyAssignment())
7155        member = CXXCopyAssignment;
7156      else if (!RDecl->hasTrivialDestructor())
7157        member = CXXDestructor;
7158
7159      if (member != CXXInvalid) {
7160        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7161              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7162        DiagnoseNontrivial(RT, member);
7163        return true;
7164      }
7165    }
7166  }
7167
7168  return false;
7169}
7170
7171/// DiagnoseNontrivial - Given that a class has a non-trivial
7172/// special member, figure out why.
7173void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7174  QualType QT(T, 0U);
7175  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7176
7177  // Check whether the member was user-declared.
7178  switch (member) {
7179  case CXXInvalid:
7180    break;
7181
7182  case CXXConstructor:
7183    if (RD->hasUserDeclaredConstructor()) {
7184      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7185      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7186        const FunctionDecl *body = 0;
7187        ci->hasBody(body);
7188        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7189          SourceLocation CtorLoc = ci->getLocation();
7190          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7191          return;
7192        }
7193      }
7194
7195      assert(0 && "found no user-declared constructors");
7196      return;
7197    }
7198    break;
7199
7200  case CXXCopyConstructor:
7201    if (RD->hasUserDeclaredCopyConstructor()) {
7202      SourceLocation CtorLoc =
7203        RD->getCopyConstructor(Context, 0)->getLocation();
7204      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7205      return;
7206    }
7207    break;
7208
7209  case CXXCopyAssignment:
7210    if (RD->hasUserDeclaredCopyAssignment()) {
7211      // FIXME: this should use the location of the copy
7212      // assignment, not the type.
7213      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7214      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7215      return;
7216    }
7217    break;
7218
7219  case CXXDestructor:
7220    if (RD->hasUserDeclaredDestructor()) {
7221      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7222      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7223      return;
7224    }
7225    break;
7226  }
7227
7228  typedef CXXRecordDecl::base_class_iterator base_iter;
7229
7230  // Virtual bases and members inhibit trivial copying/construction,
7231  // but not trivial destruction.
7232  if (member != CXXDestructor) {
7233    // Check for virtual bases.  vbases includes indirect virtual bases,
7234    // so we just iterate through the direct bases.
7235    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7236      if (bi->isVirtual()) {
7237        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7238        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7239        return;
7240      }
7241
7242    // Check for virtual methods.
7243    typedef CXXRecordDecl::method_iterator meth_iter;
7244    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7245         ++mi) {
7246      if (mi->isVirtual()) {
7247        SourceLocation MLoc = mi->getSourceRange().getBegin();
7248        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7249        return;
7250      }
7251    }
7252  }
7253
7254  bool (CXXRecordDecl::*hasTrivial)() const;
7255  switch (member) {
7256  case CXXConstructor:
7257    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7258  case CXXCopyConstructor:
7259    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7260  case CXXCopyAssignment:
7261    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7262  case CXXDestructor:
7263    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7264  default:
7265    assert(0 && "unexpected special member"); return;
7266  }
7267
7268  // Check for nontrivial bases (and recurse).
7269  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7270    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7271    assert(BaseRT && "Don't know how to handle dependent bases");
7272    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7273    if (!(BaseRecTy->*hasTrivial)()) {
7274      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7275      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7276      DiagnoseNontrivial(BaseRT, member);
7277      return;
7278    }
7279  }
7280
7281  // Check for nontrivial members (and recurse).
7282  typedef RecordDecl::field_iterator field_iter;
7283  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7284       ++fi) {
7285    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7286    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7287      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7288
7289      if (!(EltRD->*hasTrivial)()) {
7290        SourceLocation FLoc = (*fi)->getLocation();
7291        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7292        DiagnoseNontrivial(EltRT, member);
7293        return;
7294      }
7295    }
7296  }
7297
7298  assert(0 && "found no explanation for non-trivial member");
7299}
7300
7301/// TranslateIvarVisibility - Translate visibility from a token ID to an
7302///  AST enum value.
7303static ObjCIvarDecl::AccessControl
7304TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7305  switch (ivarVisibility) {
7306  default: assert(0 && "Unknown visitibility kind");
7307  case tok::objc_private: return ObjCIvarDecl::Private;
7308  case tok::objc_public: return ObjCIvarDecl::Public;
7309  case tok::objc_protected: return ObjCIvarDecl::Protected;
7310  case tok::objc_package: return ObjCIvarDecl::Package;
7311  }
7312}
7313
7314/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7315/// in order to create an IvarDecl object for it.
7316Decl *Sema::ActOnIvar(Scope *S,
7317                                SourceLocation DeclStart,
7318                                Decl *IntfDecl,
7319                                Declarator &D, ExprTy *BitfieldWidth,
7320                                tok::ObjCKeywordKind Visibility) {
7321
7322  IdentifierInfo *II = D.getIdentifier();
7323  Expr *BitWidth = (Expr*)BitfieldWidth;
7324  SourceLocation Loc = DeclStart;
7325  if (II) Loc = D.getIdentifierLoc();
7326
7327  // FIXME: Unnamed fields can be handled in various different ways, for
7328  // example, unnamed unions inject all members into the struct namespace!
7329
7330  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7331  QualType T = TInfo->getType();
7332
7333  if (BitWidth) {
7334    // 6.7.2.1p3, 6.7.2.1p4
7335    if (VerifyBitField(Loc, II, T, BitWidth)) {
7336      D.setInvalidType();
7337      BitWidth = 0;
7338    }
7339  } else {
7340    // Not a bitfield.
7341
7342    // validate II.
7343
7344  }
7345  if (T->isReferenceType()) {
7346    Diag(Loc, diag::err_ivar_reference_type);
7347    D.setInvalidType();
7348  }
7349  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7350  // than a variably modified type.
7351  else if (T->isVariablyModifiedType()) {
7352    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7353    D.setInvalidType();
7354  }
7355
7356  // Get the visibility (access control) for this ivar.
7357  ObjCIvarDecl::AccessControl ac =
7358    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7359                                        : ObjCIvarDecl::None;
7360  // Must set ivar's DeclContext to its enclosing interface.
7361  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7362  ObjCContainerDecl *EnclosingContext;
7363  if (ObjCImplementationDecl *IMPDecl =
7364      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7365    if (!LangOpts.ObjCNonFragileABI2) {
7366    // Case of ivar declared in an implementation. Context is that of its class.
7367      EnclosingContext = IMPDecl->getClassInterface();
7368      assert(EnclosingContext && "Implementation has no class interface!");
7369    }
7370    else
7371      EnclosingContext = EnclosingDecl;
7372  } else {
7373    if (ObjCCategoryDecl *CDecl =
7374        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7375      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7376        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7377        return 0;
7378      }
7379    }
7380    EnclosingContext = EnclosingDecl;
7381  }
7382
7383  // Construct the decl.
7384  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7385                                             DeclStart, Loc, II, T,
7386                                             TInfo, ac, (Expr *)BitfieldWidth);
7387
7388  if (II) {
7389    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7390                                           ForRedeclaration);
7391    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7392        && !isa<TagDecl>(PrevDecl)) {
7393      Diag(Loc, diag::err_duplicate_member) << II;
7394      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7395      NewID->setInvalidDecl();
7396    }
7397  }
7398
7399  // Process attributes attached to the ivar.
7400  ProcessDeclAttributes(S, NewID, D);
7401
7402  if (D.isInvalidType())
7403    NewID->setInvalidDecl();
7404
7405  if (II) {
7406    // FIXME: When interfaces are DeclContexts, we'll need to add
7407    // these to the interface.
7408    S->AddDecl(NewID);
7409    IdResolver.AddDecl(NewID);
7410  }
7411
7412  return NewID;
7413}
7414
7415/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7416/// class and class extensions. For every class @interface and class
7417/// extension @interface, if the last ivar is a bitfield of any type,
7418/// then add an implicit `char :0` ivar to the end of that interface.
7419void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7420                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7421  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7422    return;
7423
7424  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7425  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7426
7427  if (!Ivar->isBitField())
7428    return;
7429  uint64_t BitFieldSize =
7430    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7431  if (BitFieldSize == 0)
7432    return;
7433  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7434  if (!ID) {
7435    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7436      if (!CD->IsClassExtension())
7437        return;
7438    }
7439    // No need to add this to end of @implementation.
7440    else
7441      return;
7442  }
7443  // All conditions are met. Add a new bitfield to the tail end of ivars.
7444  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7445  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7446
7447  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7448                              DeclLoc, DeclLoc, 0,
7449                              Context.CharTy,
7450                              Context.CreateTypeSourceInfo(Context.CharTy),
7451                              ObjCIvarDecl::Private, BW,
7452                              true);
7453  AllIvarDecls.push_back(Ivar);
7454}
7455
7456void Sema::ActOnFields(Scope* S,
7457                       SourceLocation RecLoc, Decl *EnclosingDecl,
7458                       Decl **Fields, unsigned NumFields,
7459                       SourceLocation LBrac, SourceLocation RBrac,
7460                       AttributeList *Attr) {
7461  assert(EnclosingDecl && "missing record or interface decl");
7462
7463  // If the decl this is being inserted into is invalid, then it may be a
7464  // redeclaration or some other bogus case.  Don't try to add fields to it.
7465  if (EnclosingDecl->isInvalidDecl()) {
7466    // FIXME: Deallocate fields?
7467    return;
7468  }
7469
7470
7471  // Verify that all the fields are okay.
7472  unsigned NumNamedMembers = 0;
7473  llvm::SmallVector<FieldDecl*, 32> RecFields;
7474
7475  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7476  for (unsigned i = 0; i != NumFields; ++i) {
7477    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7478
7479    // Get the type for the field.
7480    const Type *FDTy = FD->getType().getTypePtr();
7481
7482    if (!FD->isAnonymousStructOrUnion()) {
7483      // Remember all fields written by the user.
7484      RecFields.push_back(FD);
7485    }
7486
7487    // If the field is already invalid for some reason, don't emit more
7488    // diagnostics about it.
7489    if (FD->isInvalidDecl()) {
7490      EnclosingDecl->setInvalidDecl();
7491      continue;
7492    }
7493
7494    // C99 6.7.2.1p2:
7495    //   A structure or union shall not contain a member with
7496    //   incomplete or function type (hence, a structure shall not
7497    //   contain an instance of itself, but may contain a pointer to
7498    //   an instance of itself), except that the last member of a
7499    //   structure with more than one named member may have incomplete
7500    //   array type; such a structure (and any union containing,
7501    //   possibly recursively, a member that is such a structure)
7502    //   shall not be a member of a structure or an element of an
7503    //   array.
7504    if (FDTy->isFunctionType()) {
7505      // Field declared as a function.
7506      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7507        << FD->getDeclName();
7508      FD->setInvalidDecl();
7509      EnclosingDecl->setInvalidDecl();
7510      continue;
7511    } else if (FDTy->isIncompleteArrayType() && Record &&
7512               ((i == NumFields - 1 && !Record->isUnion()) ||
7513                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7514                 (i == NumFields - 1 || Record->isUnion())))) {
7515      // Flexible array member.
7516      // Microsoft and g++ is more permissive regarding flexible array.
7517      // It will accept flexible array in union and also
7518      // as the sole element of a struct/class.
7519      if (getLangOptions().Microsoft) {
7520        if (Record->isUnion())
7521          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7522            << FD->getDeclName();
7523        else if (NumFields == 1)
7524          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7525            << FD->getDeclName() << Record->getTagKind();
7526      } else if (getLangOptions().CPlusPlus) {
7527        if (Record->isUnion())
7528          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7529            << FD->getDeclName();
7530        else if (NumFields == 1)
7531          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7532            << FD->getDeclName() << Record->getTagKind();
7533      } else if (NumNamedMembers < 1) {
7534        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7535          << FD->getDeclName();
7536        FD->setInvalidDecl();
7537        EnclosingDecl->setInvalidDecl();
7538        continue;
7539      }
7540      if (!FD->getType()->isDependentType() &&
7541          !Context.getBaseElementType(FD->getType())->isPODType()) {
7542        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7543          << FD->getDeclName() << FD->getType();
7544        FD->setInvalidDecl();
7545        EnclosingDecl->setInvalidDecl();
7546        continue;
7547      }
7548      // Okay, we have a legal flexible array member at the end of the struct.
7549      if (Record)
7550        Record->setHasFlexibleArrayMember(true);
7551    } else if (!FDTy->isDependentType() &&
7552               RequireCompleteType(FD->getLocation(), FD->getType(),
7553                                   diag::err_field_incomplete)) {
7554      // Incomplete type
7555      FD->setInvalidDecl();
7556      EnclosingDecl->setInvalidDecl();
7557      continue;
7558    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7559      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7560        // If this is a member of a union, then entire union becomes "flexible".
7561        if (Record && Record->isUnion()) {
7562          Record->setHasFlexibleArrayMember(true);
7563        } else {
7564          // If this is a struct/class and this is not the last element, reject
7565          // it.  Note that GCC supports variable sized arrays in the middle of
7566          // structures.
7567          if (i != NumFields-1)
7568            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7569              << FD->getDeclName() << FD->getType();
7570          else {
7571            // We support flexible arrays at the end of structs in
7572            // other structs as an extension.
7573            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7574              << FD->getDeclName();
7575            if (Record)
7576              Record->setHasFlexibleArrayMember(true);
7577          }
7578        }
7579      }
7580      if (Record && FDTTy->getDecl()->hasObjectMember())
7581        Record->setHasObjectMember(true);
7582    } else if (FDTy->isObjCObjectType()) {
7583      /// A field cannot be an Objective-c object
7584      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7585      FD->setInvalidDecl();
7586      EnclosingDecl->setInvalidDecl();
7587      continue;
7588    } else if (getLangOptions().ObjC1 &&
7589               getLangOptions().getGCMode() != LangOptions::NonGC &&
7590               Record &&
7591               (FD->getType()->isObjCObjectPointerType() ||
7592                FD->getType().isObjCGCStrong()))
7593      Record->setHasObjectMember(true);
7594    else if (Context.getAsArrayType(FD->getType())) {
7595      QualType BaseType = Context.getBaseElementType(FD->getType());
7596      if (Record && BaseType->isRecordType() &&
7597          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7598        Record->setHasObjectMember(true);
7599    }
7600    // Keep track of the number of named members.
7601    if (FD->getIdentifier())
7602      ++NumNamedMembers;
7603  }
7604
7605  // Okay, we successfully defined 'Record'.
7606  if (Record) {
7607    bool Completed = false;
7608    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7609      if (!CXXRecord->isInvalidDecl()) {
7610        // Set access bits correctly on the directly-declared conversions.
7611        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7612        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7613             I != E; ++I)
7614          Convs->setAccess(I, (*I)->getAccess());
7615
7616        if (!CXXRecord->isDependentType()) {
7617          // Add any implicitly-declared members to this class.
7618          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7619
7620          // If we have virtual base classes, we may end up finding multiple
7621          // final overriders for a given virtual function. Check for this
7622          // problem now.
7623          if (CXXRecord->getNumVBases()) {
7624            CXXFinalOverriderMap FinalOverriders;
7625            CXXRecord->getFinalOverriders(FinalOverriders);
7626
7627            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7628                                             MEnd = FinalOverriders.end();
7629                 M != MEnd; ++M) {
7630              for (OverridingMethods::iterator SO = M->second.begin(),
7631                                            SOEnd = M->second.end();
7632                   SO != SOEnd; ++SO) {
7633                assert(SO->second.size() > 0 &&
7634                       "Virtual function without overridding functions?");
7635                if (SO->second.size() == 1)
7636                  continue;
7637
7638                // C++ [class.virtual]p2:
7639                //   In a derived class, if a virtual member function of a base
7640                //   class subobject has more than one final overrider the
7641                //   program is ill-formed.
7642                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7643                  << (NamedDecl *)M->first << Record;
7644                Diag(M->first->getLocation(),
7645                     diag::note_overridden_virtual_function);
7646                for (OverridingMethods::overriding_iterator
7647                          OM = SO->second.begin(),
7648                       OMEnd = SO->second.end();
7649                     OM != OMEnd; ++OM)
7650                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7651                    << (NamedDecl *)M->first << OM->Method->getParent();
7652
7653                Record->setInvalidDecl();
7654              }
7655            }
7656            CXXRecord->completeDefinition(&FinalOverriders);
7657            Completed = true;
7658          }
7659        }
7660      }
7661    }
7662
7663    if (!Completed)
7664      Record->completeDefinition();
7665  } else {
7666    ObjCIvarDecl **ClsFields =
7667      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7668    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7669      ID->setLocEnd(RBrac);
7670      // Add ivar's to class's DeclContext.
7671      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7672        ClsFields[i]->setLexicalDeclContext(ID);
7673        ID->addDecl(ClsFields[i]);
7674      }
7675      // Must enforce the rule that ivars in the base classes may not be
7676      // duplicates.
7677      if (ID->getSuperClass())
7678        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7679    } else if (ObjCImplementationDecl *IMPDecl =
7680                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7681      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7682      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7683        // Ivar declared in @implementation never belongs to the implementation.
7684        // Only it is in implementation's lexical context.
7685        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7686      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7687    } else if (ObjCCategoryDecl *CDecl =
7688                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7689      // case of ivars in class extension; all other cases have been
7690      // reported as errors elsewhere.
7691      // FIXME. Class extension does not have a LocEnd field.
7692      // CDecl->setLocEnd(RBrac);
7693      // Add ivar's to class extension's DeclContext.
7694      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7695        ClsFields[i]->setLexicalDeclContext(CDecl);
7696        CDecl->addDecl(ClsFields[i]);
7697      }
7698    }
7699  }
7700
7701  if (Attr)
7702    ProcessDeclAttributeList(S, Record, Attr);
7703
7704  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7705  // set the visibility of this record.
7706  if (Record && !Record->getDeclContext()->isRecord())
7707    AddPushedVisibilityAttribute(Record);
7708}
7709
7710/// \brief Determine whether the given integral value is representable within
7711/// the given type T.
7712static bool isRepresentableIntegerValue(ASTContext &Context,
7713                                        llvm::APSInt &Value,
7714                                        QualType T) {
7715  assert(T->isIntegralType(Context) && "Integral type required!");
7716  unsigned BitWidth = Context.getIntWidth(T);
7717
7718  if (Value.isUnsigned() || Value.isNonNegative()) {
7719    if (T->isSignedIntegerType())
7720      --BitWidth;
7721    return Value.getActiveBits() <= BitWidth;
7722  }
7723  return Value.getMinSignedBits() <= BitWidth;
7724}
7725
7726// \brief Given an integral type, return the next larger integral type
7727// (or a NULL type of no such type exists).
7728static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7729  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7730  // enum checking below.
7731  assert(T->isIntegralType(Context) && "Integral type required!");
7732  const unsigned NumTypes = 4;
7733  QualType SignedIntegralTypes[NumTypes] = {
7734    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7735  };
7736  QualType UnsignedIntegralTypes[NumTypes] = {
7737    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7738    Context.UnsignedLongLongTy
7739  };
7740
7741  unsigned BitWidth = Context.getTypeSize(T);
7742  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7743                                            : UnsignedIntegralTypes;
7744  for (unsigned I = 0; I != NumTypes; ++I)
7745    if (Context.getTypeSize(Types[I]) > BitWidth)
7746      return Types[I];
7747
7748  return QualType();
7749}
7750
7751EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7752                                          EnumConstantDecl *LastEnumConst,
7753                                          SourceLocation IdLoc,
7754                                          IdentifierInfo *Id,
7755                                          Expr *Val) {
7756  unsigned IntWidth = Context.Target.getIntWidth();
7757  llvm::APSInt EnumVal(IntWidth);
7758  QualType EltTy;
7759
7760  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7761    Val = 0;
7762
7763  if (Val) {
7764    if (Enum->isDependentType() || Val->isTypeDependent())
7765      EltTy = Context.DependentTy;
7766    else {
7767      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7768      SourceLocation ExpLoc;
7769      if (!Val->isValueDependent() &&
7770          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7771        Val = 0;
7772      } else {
7773        if (!getLangOptions().CPlusPlus) {
7774          // C99 6.7.2.2p2:
7775          //   The expression that defines the value of an enumeration constant
7776          //   shall be an integer constant expression that has a value
7777          //   representable as an int.
7778
7779          // Complain if the value is not representable in an int.
7780          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7781            Diag(IdLoc, diag::ext_enum_value_not_int)
7782              << EnumVal.toString(10) << Val->getSourceRange()
7783              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7784          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7785            // Force the type of the expression to 'int'.
7786            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
7787          }
7788        }
7789
7790        if (Enum->isFixed()) {
7791          EltTy = Enum->getIntegerType();
7792
7793          // C++0x [dcl.enum]p5:
7794          //   ... if the initializing value of an enumerator cannot be
7795          //   represented by the underlying type, the program is ill-formed.
7796          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7797            if (getLangOptions().Microsoft) {
7798              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7799              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7800            } else
7801              Diag(IdLoc, diag::err_enumerator_too_large)
7802                << EltTy;
7803          } else
7804            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
7805        }
7806        else {
7807          // C++0x [dcl.enum]p5:
7808          //   If the underlying type is not fixed, the type of each enumerator
7809          //   is the type of its initializing value:
7810          //     - If an initializer is specified for an enumerator, the
7811          //       initializing value has the same type as the expression.
7812          EltTy = Val->getType();
7813        }
7814      }
7815    }
7816  }
7817
7818  if (!Val) {
7819    if (Enum->isDependentType())
7820      EltTy = Context.DependentTy;
7821    else if (!LastEnumConst) {
7822      // C++0x [dcl.enum]p5:
7823      //   If the underlying type is not fixed, the type of each enumerator
7824      //   is the type of its initializing value:
7825      //     - If no initializer is specified for the first enumerator, the
7826      //       initializing value has an unspecified integral type.
7827      //
7828      // GCC uses 'int' for its unspecified integral type, as does
7829      // C99 6.7.2.2p3.
7830      if (Enum->isFixed()) {
7831        EltTy = Enum->getIntegerType();
7832      }
7833      else {
7834        EltTy = Context.IntTy;
7835      }
7836    } else {
7837      // Assign the last value + 1.
7838      EnumVal = LastEnumConst->getInitVal();
7839      ++EnumVal;
7840      EltTy = LastEnumConst->getType();
7841
7842      // Check for overflow on increment.
7843      if (EnumVal < LastEnumConst->getInitVal()) {
7844        // C++0x [dcl.enum]p5:
7845        //   If the underlying type is not fixed, the type of each enumerator
7846        //   is the type of its initializing value:
7847        //
7848        //     - Otherwise the type of the initializing value is the same as
7849        //       the type of the initializing value of the preceding enumerator
7850        //       unless the incremented value is not representable in that type,
7851        //       in which case the type is an unspecified integral type
7852        //       sufficient to contain the incremented value. If no such type
7853        //       exists, the program is ill-formed.
7854        QualType T = getNextLargerIntegralType(Context, EltTy);
7855        if (T.isNull() || Enum->isFixed()) {
7856          // There is no integral type larger enough to represent this
7857          // value. Complain, then allow the value to wrap around.
7858          EnumVal = LastEnumConst->getInitVal();
7859          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7860          ++EnumVal;
7861          if (Enum->isFixed())
7862            // When the underlying type is fixed, this is ill-formed.
7863            Diag(IdLoc, diag::err_enumerator_wrapped)
7864              << EnumVal.toString(10)
7865              << EltTy;
7866          else
7867            Diag(IdLoc, diag::warn_enumerator_too_large)
7868              << EnumVal.toString(10);
7869        } else {
7870          EltTy = T;
7871        }
7872
7873        // Retrieve the last enumerator's value, extent that type to the
7874        // type that is supposed to be large enough to represent the incremented
7875        // value, then increment.
7876        EnumVal = LastEnumConst->getInitVal();
7877        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7878        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7879        ++EnumVal;
7880
7881        // If we're not in C++, diagnose the overflow of enumerator values,
7882        // which in C99 means that the enumerator value is not representable in
7883        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7884        // permits enumerator values that are representable in some larger
7885        // integral type.
7886        if (!getLangOptions().CPlusPlus && !T.isNull())
7887          Diag(IdLoc, diag::warn_enum_value_overflow);
7888      } else if (!getLangOptions().CPlusPlus &&
7889                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7890        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7891        Diag(IdLoc, diag::ext_enum_value_not_int)
7892          << EnumVal.toString(10) << 1;
7893      }
7894    }
7895  }
7896
7897  if (!EltTy->isDependentType()) {
7898    // Make the enumerator value match the signedness and size of the
7899    // enumerator's type.
7900    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7901    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7902  }
7903
7904  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7905                                  Val, EnumVal);
7906}
7907
7908
7909Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7910                              SourceLocation IdLoc, IdentifierInfo *Id,
7911                              AttributeList *Attr,
7912                              SourceLocation EqualLoc, ExprTy *val) {
7913  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7914  EnumConstantDecl *LastEnumConst =
7915    cast_or_null<EnumConstantDecl>(lastEnumConst);
7916  Expr *Val = static_cast<Expr*>(val);
7917
7918  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7919  // we find one that is.
7920  S = getNonFieldDeclScope(S);
7921
7922  // Verify that there isn't already something declared with this name in this
7923  // scope.
7924  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7925                                         ForRedeclaration);
7926  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7927    // Maybe we will complain about the shadowed template parameter.
7928    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7929    // Just pretend that we didn't see the previous declaration.
7930    PrevDecl = 0;
7931  }
7932
7933  if (PrevDecl) {
7934    // When in C++, we may get a TagDecl with the same name; in this case the
7935    // enum constant will 'hide' the tag.
7936    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7937           "Received TagDecl when not in C++!");
7938    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7939      if (isa<EnumConstantDecl>(PrevDecl))
7940        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7941      else
7942        Diag(IdLoc, diag::err_redefinition) << Id;
7943      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7944      return 0;
7945    }
7946  }
7947
7948  // C++ [class.mem]p13:
7949  //   If T is the name of a class, then each of the following shall have a
7950  //   name different from T:
7951  //     - every enumerator of every member of class T that is an enumerated
7952  //       type
7953  if (CXXRecordDecl *Record
7954                      = dyn_cast<CXXRecordDecl>(
7955                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7956    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7957      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7958
7959  EnumConstantDecl *New =
7960    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7961
7962  if (New) {
7963    // Process attributes.
7964    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7965
7966    // Register this decl in the current scope stack.
7967    New->setAccess(TheEnumDecl->getAccess());
7968    PushOnScopeChains(New, S);
7969  }
7970
7971  return New;
7972}
7973
7974void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7975                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7976                         Decl **Elements, unsigned NumElements,
7977                         Scope *S, AttributeList *Attr) {
7978  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7979  QualType EnumType = Context.getTypeDeclType(Enum);
7980
7981  if (Attr)
7982    ProcessDeclAttributeList(S, Enum, Attr);
7983
7984  if (Enum->isDependentType()) {
7985    for (unsigned i = 0; i != NumElements; ++i) {
7986      EnumConstantDecl *ECD =
7987        cast_or_null<EnumConstantDecl>(Elements[i]);
7988      if (!ECD) continue;
7989
7990      ECD->setType(EnumType);
7991    }
7992
7993    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7994    return;
7995  }
7996
7997  // TODO: If the result value doesn't fit in an int, it must be a long or long
7998  // long value.  ISO C does not support this, but GCC does as an extension,
7999  // emit a warning.
8000  unsigned IntWidth = Context.Target.getIntWidth();
8001  unsigned CharWidth = Context.Target.getCharWidth();
8002  unsigned ShortWidth = Context.Target.getShortWidth();
8003
8004  // Verify that all the values are okay, compute the size of the values, and
8005  // reverse the list.
8006  unsigned NumNegativeBits = 0;
8007  unsigned NumPositiveBits = 0;
8008
8009  // Keep track of whether all elements have type int.
8010  bool AllElementsInt = true;
8011
8012  for (unsigned i = 0; i != NumElements; ++i) {
8013    EnumConstantDecl *ECD =
8014      cast_or_null<EnumConstantDecl>(Elements[i]);
8015    if (!ECD) continue;  // Already issued a diagnostic.
8016
8017    const llvm::APSInt &InitVal = ECD->getInitVal();
8018
8019    // Keep track of the size of positive and negative values.
8020    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8021      NumPositiveBits = std::max(NumPositiveBits,
8022                                 (unsigned)InitVal.getActiveBits());
8023    else
8024      NumNegativeBits = std::max(NumNegativeBits,
8025                                 (unsigned)InitVal.getMinSignedBits());
8026
8027    // Keep track of whether every enum element has type int (very commmon).
8028    if (AllElementsInt)
8029      AllElementsInt = ECD->getType() == Context.IntTy;
8030  }
8031
8032  // Figure out the type that should be used for this enum.
8033  QualType BestType;
8034  unsigned BestWidth;
8035
8036  // C++0x N3000 [conv.prom]p3:
8037  //   An rvalue of an unscoped enumeration type whose underlying
8038  //   type is not fixed can be converted to an rvalue of the first
8039  //   of the following types that can represent all the values of
8040  //   the enumeration: int, unsigned int, long int, unsigned long
8041  //   int, long long int, or unsigned long long int.
8042  // C99 6.4.4.3p2:
8043  //   An identifier declared as an enumeration constant has type int.
8044  // The C99 rule is modified by a gcc extension
8045  QualType BestPromotionType;
8046
8047  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8048  // -fshort-enums is the equivalent to specifying the packed attribute on all
8049  // enum definitions.
8050  if (LangOpts.ShortEnums)
8051    Packed = true;
8052
8053  if (Enum->isFixed()) {
8054    BestType = BestPromotionType = Enum->getIntegerType();
8055    // We don't need to set BestWidth, because BestType is going to be the type
8056    // of the enumerators, but we do anyway because otherwise some compilers
8057    // warn that it might be used uninitialized.
8058    BestWidth = CharWidth;
8059  }
8060  else if (NumNegativeBits) {
8061    // If there is a negative value, figure out the smallest integer type (of
8062    // int/long/longlong) that fits.
8063    // If it's packed, check also if it fits a char or a short.
8064    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8065      BestType = Context.SignedCharTy;
8066      BestWidth = CharWidth;
8067    } else if (Packed && NumNegativeBits <= ShortWidth &&
8068               NumPositiveBits < ShortWidth) {
8069      BestType = Context.ShortTy;
8070      BestWidth = ShortWidth;
8071    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8072      BestType = Context.IntTy;
8073      BestWidth = IntWidth;
8074    } else {
8075      BestWidth = Context.Target.getLongWidth();
8076
8077      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8078        BestType = Context.LongTy;
8079      } else {
8080        BestWidth = Context.Target.getLongLongWidth();
8081
8082        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8083          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8084        BestType = Context.LongLongTy;
8085      }
8086    }
8087    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8088  } else {
8089    // If there is no negative value, figure out the smallest type that fits
8090    // all of the enumerator values.
8091    // If it's packed, check also if it fits a char or a short.
8092    if (Packed && NumPositiveBits <= CharWidth) {
8093      BestType = Context.UnsignedCharTy;
8094      BestPromotionType = Context.IntTy;
8095      BestWidth = CharWidth;
8096    } else if (Packed && NumPositiveBits <= ShortWidth) {
8097      BestType = Context.UnsignedShortTy;
8098      BestPromotionType = Context.IntTy;
8099      BestWidth = ShortWidth;
8100    } else if (NumPositiveBits <= IntWidth) {
8101      BestType = Context.UnsignedIntTy;
8102      BestWidth = IntWidth;
8103      BestPromotionType
8104        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8105                           ? Context.UnsignedIntTy : Context.IntTy;
8106    } else if (NumPositiveBits <=
8107               (BestWidth = Context.Target.getLongWidth())) {
8108      BestType = Context.UnsignedLongTy;
8109      BestPromotionType
8110        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8111                           ? Context.UnsignedLongTy : Context.LongTy;
8112    } else {
8113      BestWidth = Context.Target.getLongLongWidth();
8114      assert(NumPositiveBits <= BestWidth &&
8115             "How could an initializer get larger than ULL?");
8116      BestType = Context.UnsignedLongLongTy;
8117      BestPromotionType
8118        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8119                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8120    }
8121  }
8122
8123  // Loop over all of the enumerator constants, changing their types to match
8124  // the type of the enum if needed.
8125  for (unsigned i = 0; i != NumElements; ++i) {
8126    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8127    if (!ECD) continue;  // Already issued a diagnostic.
8128
8129    // Standard C says the enumerators have int type, but we allow, as an
8130    // extension, the enumerators to be larger than int size.  If each
8131    // enumerator value fits in an int, type it as an int, otherwise type it the
8132    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8133    // that X has type 'int', not 'unsigned'.
8134
8135    // Determine whether the value fits into an int.
8136    llvm::APSInt InitVal = ECD->getInitVal();
8137
8138    // If it fits into an integer type, force it.  Otherwise force it to match
8139    // the enum decl type.
8140    QualType NewTy;
8141    unsigned NewWidth;
8142    bool NewSign;
8143    if (!getLangOptions().CPlusPlus &&
8144        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8145      NewTy = Context.IntTy;
8146      NewWidth = IntWidth;
8147      NewSign = true;
8148    } else if (ECD->getType() == BestType) {
8149      // Already the right type!
8150      if (getLangOptions().CPlusPlus)
8151        // C++ [dcl.enum]p4: Following the closing brace of an
8152        // enum-specifier, each enumerator has the type of its
8153        // enumeration.
8154        ECD->setType(EnumType);
8155      continue;
8156    } else {
8157      NewTy = BestType;
8158      NewWidth = BestWidth;
8159      NewSign = BestType->isSignedIntegerType();
8160    }
8161
8162    // Adjust the APSInt value.
8163    InitVal = InitVal.extOrTrunc(NewWidth);
8164    InitVal.setIsSigned(NewSign);
8165    ECD->setInitVal(InitVal);
8166
8167    // Adjust the Expr initializer and type.
8168    if (ECD->getInitExpr() &&
8169	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8170      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8171                                                CK_IntegralCast,
8172                                                ECD->getInitExpr(),
8173                                                /*base paths*/ 0,
8174                                                VK_RValue));
8175    if (getLangOptions().CPlusPlus)
8176      // C++ [dcl.enum]p4: Following the closing brace of an
8177      // enum-specifier, each enumerator has the type of its
8178      // enumeration.
8179      ECD->setType(EnumType);
8180    else
8181      ECD->setType(NewTy);
8182  }
8183
8184  Enum->completeDefinition(BestType, BestPromotionType,
8185                           NumPositiveBits, NumNegativeBits);
8186}
8187
8188Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8189                                  SourceLocation StartLoc,
8190                                  SourceLocation EndLoc) {
8191  StringLiteral *AsmString = cast<StringLiteral>(expr);
8192
8193  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8194                                                   AsmString, StartLoc,
8195                                                   EndLoc);
8196  CurContext->addDecl(New);
8197  return New;
8198}
8199
8200void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8201                             SourceLocation PragmaLoc,
8202                             SourceLocation NameLoc) {
8203  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8204
8205  if (PrevDecl) {
8206    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8207  } else {
8208    (void)WeakUndeclaredIdentifiers.insert(
8209      std::pair<IdentifierInfo*,WeakInfo>
8210        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8211  }
8212}
8213
8214void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8215                                IdentifierInfo* AliasName,
8216                                SourceLocation PragmaLoc,
8217                                SourceLocation NameLoc,
8218                                SourceLocation AliasNameLoc) {
8219  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8220                                    LookupOrdinaryName);
8221  WeakInfo W = WeakInfo(Name, NameLoc);
8222
8223  if (PrevDecl) {
8224    if (!PrevDecl->hasAttr<AliasAttr>())
8225      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8226        DeclApplyPragmaWeak(TUScope, ND, W);
8227  } else {
8228    (void)WeakUndeclaredIdentifiers.insert(
8229      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8230  }
8231}
8232