SemaDecl.cpp revision 4b99bae3bf2395f732eaadb9edc07690ae177f54
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34/// \brief If the identifier refers to a type name within this scope,
35/// return the declaration of that type.
36///
37/// This routine performs ordinary name lookup of the identifier II
38/// within the given scope, with optional C++ scope specifier SS, to
39/// determine whether the name refers to a type. If so, returns the
40/// declaration corresponding to that type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::DeclTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false);
48  switch (Result.getKind()) {
49    case LookupResult::NotFound:
50    case LookupResult::FoundOverloaded:
51      return 0;
52
53    case LookupResult::AmbiguousBaseSubobjectTypes:
54    case LookupResult::AmbiguousBaseSubobjects:
55    case LookupResult::AmbiguousReference:
56      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
57      return 0;
58
59    case LookupResult::Found:
60      IIDecl = Result.getAsDecl();
61      break;
62  }
63
64  if (IIDecl) {
65    if (isa<TypedefDecl>(IIDecl) ||
66        isa<ObjCInterfaceDecl>(IIDecl) ||
67        isa<TagDecl>(IIDecl) ||
68        isa<TemplateTypeParmDecl>(IIDecl))
69      return IIDecl;
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared in
81    // is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// Add this decl to the scope shadowed decl chains.
117void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
118  // Move up the scope chain until we find the nearest enclosing
119  // non-transparent context. The declaration will be introduced into this
120  // scope.
121  while (S->getEntity() &&
122         ((DeclContext *)S->getEntity())->isTransparentContext())
123    S = S->getParent();
124
125  S->AddDecl(D);
126
127  // Add scoped declarations into their context, so that they can be
128  // found later. Declarations without a context won't be inserted
129  // into any context.
130  CurContext->addDecl(D);
131
132  // C++ [basic.scope]p4:
133  //   -- exactly one declaration shall declare a class name or
134  //   enumeration name that is not a typedef name and the other
135  //   declarations shall all refer to the same object or
136  //   enumerator, or all refer to functions and function templates;
137  //   in this case the class name or enumeration name is hidden.
138  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
139    // We are pushing the name of a tag (enum or class).
140    if (CurContext->getLookupContext()
141          == TD->getDeclContext()->getLookupContext()) {
142      // We're pushing the tag into the current context, which might
143      // require some reshuffling in the identifier resolver.
144      IdentifierResolver::iterator
145        I = IdResolver.begin(TD->getDeclName()),
146        IEnd = IdResolver.end();
147      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
148        NamedDecl *PrevDecl = *I;
149        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
150             PrevDecl = *I, ++I) {
151          if (TD->declarationReplaces(*I)) {
152            // This is a redeclaration. Remove it from the chain and
153            // break out, so that we'll add in the shadowed
154            // declaration.
155            S->RemoveDecl(*I);
156            if (PrevDecl == *I) {
157              IdResolver.RemoveDecl(*I);
158              IdResolver.AddDecl(TD);
159              return;
160            } else {
161              IdResolver.RemoveDecl(*I);
162              break;
163            }
164          }
165        }
166
167        // There is already a declaration with the same name in the same
168        // scope, which is not a tag declaration. It must be found
169        // before we find the new declaration, so insert the new
170        // declaration at the end of the chain.
171        IdResolver.AddShadowedDecl(TD, PrevDecl);
172
173        return;
174      }
175    }
176  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
177    // We are pushing the name of a function, which might be an
178    // overloaded name.
179    FunctionDecl *FD = cast<FunctionDecl>(D);
180    IdentifierResolver::iterator Redecl
181      = std::find_if(IdResolver.begin(FD->getDeclName()),
182                     IdResolver.end(),
183                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
184                                  FD));
185    if (Redecl != IdResolver.end()) {
186      // There is already a declaration of a function on our
187      // IdResolver chain. Replace it with this declaration.
188      S->RemoveDecl(*Redecl);
189      IdResolver.RemoveDecl(*Redecl);
190    }
191  }
192
193  IdResolver.AddDecl(D);
194}
195
196void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
197  if (S->decl_empty()) return;
198  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
199	 "Scope shouldn't contain decls!");
200
201  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
202       I != E; ++I) {
203    Decl *TmpD = static_cast<Decl*>(*I);
204    assert(TmpD && "This decl didn't get pushed??");
205
206    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
207    NamedDecl *D = cast<NamedDecl>(TmpD);
208
209    if (!D->getDeclName()) continue;
210
211    // Remove this name from our lexical scope.
212    IdResolver.RemoveDecl(D);
213  }
214}
215
216/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
217/// return 0 if one not found.
218ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
219  // The third "scope" argument is 0 since we aren't enabling lazy built-in
220  // creation from this context.
221  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
222
223  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
224}
225
226/// getNonFieldDeclScope - Retrieves the innermost scope, starting
227/// from S, where a non-field would be declared. This routine copes
228/// with the difference between C and C++ scoping rules in structs and
229/// unions. For example, the following code is well-formed in C but
230/// ill-formed in C++:
231/// @code
232/// struct S6 {
233///   enum { BAR } e;
234/// };
235///
236/// void test_S6() {
237///   struct S6 a;
238///   a.e = BAR;
239/// }
240/// @endcode
241/// For the declaration of BAR, this routine will return a different
242/// scope. The scope S will be the scope of the unnamed enumeration
243/// within S6. In C++, this routine will return the scope associated
244/// with S6, because the enumeration's scope is a transparent
245/// context but structures can contain non-field names. In C, this
246/// routine will return the translation unit scope, since the
247/// enumeration's scope is a transparent context and structures cannot
248/// contain non-field names.
249Scope *Sema::getNonFieldDeclScope(Scope *S) {
250  while (((S->getFlags() & Scope::DeclScope) == 0) ||
251         (S->getEntity() &&
252          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
253         (S->isClassScope() && !getLangOptions().CPlusPlus))
254    S = S->getParent();
255  return S;
256}
257
258void Sema::InitBuiltinVaListType() {
259  if (!Context.getBuiltinVaListType().isNull())
260    return;
261
262  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
263  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
264  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
265  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
266}
267
268/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
269/// lazily create a decl for it.
270NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
271                                     Scope *S) {
272  Builtin::ID BID = (Builtin::ID)bid;
273
274  if (Context.BuiltinInfo.hasVAListUse(BID))
275    InitBuiltinVaListType();
276
277  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
278  FunctionDecl *New = FunctionDecl::Create(Context,
279                                           Context.getTranslationUnitDecl(),
280                                           SourceLocation(), II, R,
281                                           FunctionDecl::Extern, false);
282
283  // Create Decl objects for each parameter, adding them to the
284  // FunctionDecl.
285  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
286    llvm::SmallVector<ParmVarDecl*, 16> Params;
287    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
288      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
289                                           FT->getArgType(i), VarDecl::None, 0));
290    New->setParams(Context, &Params[0], Params.size());
291  }
292
293
294
295  // TUScope is the translation-unit scope to insert this function into.
296  // FIXME: This is hideous. We need to teach PushOnScopeChains to
297  // relate Scopes to DeclContexts, and probably eliminate CurContext
298  // entirely, but we're not there yet.
299  DeclContext *SavedContext = CurContext;
300  CurContext = Context.getTranslationUnitDecl();
301  PushOnScopeChains(New, TUScope);
302  CurContext = SavedContext;
303  return New;
304}
305
306/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
307/// everything from the standard library is defined.
308NamespaceDecl *Sema::GetStdNamespace() {
309  if (!StdNamespace) {
310    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
311    DeclContext *Global = Context.getTranslationUnitDecl();
312    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
313    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
314  }
315  return StdNamespace;
316}
317
318/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
319/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
320/// situation, merging decls or emitting diagnostics as appropriate.
321///
322TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
323  bool objc_types = false;
324  // Allow multiple definitions for ObjC built-in typedefs.
325  // FIXME: Verify the underlying types are equivalent!
326  if (getLangOptions().ObjC1) {
327    const IdentifierInfo *TypeID = New->getIdentifier();
328    switch (TypeID->getLength()) {
329    default: break;
330    case 2:
331      if (!TypeID->isStr("id"))
332        break;
333      Context.setObjCIdType(New);
334      objc_types = true;
335      break;
336    case 5:
337      if (!TypeID->isStr("Class"))
338        break;
339      Context.setObjCClassType(New);
340      objc_types = true;
341      return New;
342    case 3:
343      if (!TypeID->isStr("SEL"))
344        break;
345      Context.setObjCSelType(New);
346      objc_types = true;
347      return New;
348    case 8:
349      if (!TypeID->isStr("Protocol"))
350        break;
351      Context.setObjCProtoType(New->getUnderlyingType());
352      objc_types = true;
353      return New;
354    }
355    // Fall through - the typedef name was not a builtin type.
356  }
357  // Verify the old decl was also a type.
358  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
359  if (!Old) {
360    Diag(New->getLocation(), diag::err_redefinition_different_kind)
361      << New->getDeclName();
362    if (!objc_types)
363      Diag(OldD->getLocation(), diag::note_previous_definition);
364    return New;
365  }
366
367  // Determine the "old" type we'll use for checking and diagnostics.
368  QualType OldType;
369  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
370    OldType = OldTypedef->getUnderlyingType();
371  else
372    OldType = Context.getTypeDeclType(Old);
373
374  // If the typedef types are not identical, reject them in all languages and
375  // with any extensions enabled.
376
377  if (OldType != New->getUnderlyingType() &&
378      Context.getCanonicalType(OldType) !=
379      Context.getCanonicalType(New->getUnderlyingType())) {
380    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
381      << New->getUnderlyingType() << OldType;
382    if (!objc_types)
383      Diag(Old->getLocation(), diag::note_previous_definition);
384    return New;
385  }
386  if (objc_types) return New;
387  if (getLangOptions().Microsoft) return New;
388
389  // C++ [dcl.typedef]p2:
390  //   In a given non-class scope, a typedef specifier can be used to
391  //   redefine the name of any type declared in that scope to refer
392  //   to the type to which it already refers.
393  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
394    return New;
395
396  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
397  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
398  // *either* declaration is in a system header. The code below implements
399  // this adhoc compatibility rule. FIXME: The following code will not
400  // work properly when compiling ".i" files (containing preprocessed output).
401  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
402    SourceManager &SrcMgr = Context.getSourceManager();
403    if (SrcMgr.isInSystemHeader(Old->getLocation()))
404      return New;
405    if (SrcMgr.isInSystemHeader(New->getLocation()))
406      return New;
407  }
408
409  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
410  Diag(Old->getLocation(), diag::note_previous_definition);
411  return New;
412}
413
414/// DeclhasAttr - returns true if decl Declaration already has the target
415/// attribute.
416static bool DeclHasAttr(const Decl *decl, const Attr *target) {
417  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
418    if (attr->getKind() == target->getKind())
419      return true;
420
421  return false;
422}
423
424/// MergeAttributes - append attributes from the Old decl to the New one.
425static void MergeAttributes(Decl *New, Decl *Old) {
426  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
427
428  while (attr) {
429     tmp = attr;
430     attr = attr->getNext();
431
432    if (!DeclHasAttr(New, tmp)) {
433       tmp->setInherited(true);
434       New->addAttr(tmp);
435    } else {
436       tmp->setNext(0);
437       delete(tmp);
438    }
439  }
440
441  Old->invalidateAttrs();
442}
443
444/// MergeFunctionDecl - We just parsed a function 'New' from
445/// declarator D which has the same name and scope as a previous
446/// declaration 'Old'.  Figure out how to resolve this situation,
447/// merging decls or emitting diagnostics as appropriate.
448/// Redeclaration will be set true if this New is a redeclaration OldD.
449///
450/// In C++, New and Old must be declarations that are not
451/// overloaded. Use IsOverload to determine whether New and Old are
452/// overloaded, and to select the Old declaration that New should be
453/// merged with.
454FunctionDecl *
455Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
456  assert(!isa<OverloadedFunctionDecl>(OldD) &&
457         "Cannot merge with an overloaded function declaration");
458
459  Redeclaration = false;
460  // Verify the old decl was also a function.
461  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
462  if (!Old) {
463    Diag(New->getLocation(), diag::err_redefinition_different_kind)
464      << New->getDeclName();
465    Diag(OldD->getLocation(), diag::note_previous_definition);
466    return New;
467  }
468
469  // Determine whether the previous declaration was a definition,
470  // implicit declaration, or a declaration.
471  diag::kind PrevDiag;
472  if (Old->isThisDeclarationADefinition())
473    PrevDiag = diag::note_previous_definition;
474  else if (Old->isImplicit())
475    PrevDiag = diag::note_previous_implicit_declaration;
476  else
477    PrevDiag = diag::note_previous_declaration;
478
479  QualType OldQType = Context.getCanonicalType(Old->getType());
480  QualType NewQType = Context.getCanonicalType(New->getType());
481
482  if (getLangOptions().CPlusPlus) {
483    // (C++98 13.1p2):
484    //   Certain function declarations cannot be overloaded:
485    //     -- Function declarations that differ only in the return type
486    //        cannot be overloaded.
487    QualType OldReturnType
488      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
489    QualType NewReturnType
490      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
491    if (OldReturnType != NewReturnType) {
492      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
493      Diag(Old->getLocation(), PrevDiag);
494      Redeclaration = true;
495      return New;
496    }
497
498    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
499    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
500    if (OldMethod && NewMethod) {
501      //    -- Member function declarations with the same name and the
502      //       same parameter types cannot be overloaded if any of them
503      //       is a static member function declaration.
504      if (OldMethod->isStatic() || NewMethod->isStatic()) {
505        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
506        Diag(Old->getLocation(), PrevDiag);
507        return New;
508      }
509
510      // C++ [class.mem]p1:
511      //   [...] A member shall not be declared twice in the
512      //   member-specification, except that a nested class or member
513      //   class template can be declared and then later defined.
514      if (OldMethod->getLexicalDeclContext() ==
515            NewMethod->getLexicalDeclContext()) {
516        unsigned NewDiag;
517        if (isa<CXXConstructorDecl>(OldMethod))
518          NewDiag = diag::err_constructor_redeclared;
519        else if (isa<CXXDestructorDecl>(NewMethod))
520          NewDiag = diag::err_destructor_redeclared;
521        else if (isa<CXXConversionDecl>(NewMethod))
522          NewDiag = diag::err_conv_function_redeclared;
523        else
524          NewDiag = diag::err_member_redeclared;
525
526        Diag(New->getLocation(), NewDiag);
527        Diag(Old->getLocation(), PrevDiag);
528      }
529    }
530
531    // (C++98 8.3.5p3):
532    //   All declarations for a function shall agree exactly in both the
533    //   return type and the parameter-type-list.
534    if (OldQType == NewQType) {
535      // We have a redeclaration.
536      MergeAttributes(New, Old);
537      Redeclaration = true;
538      return MergeCXXFunctionDecl(New, Old);
539    }
540
541    // Fall through for conflicting redeclarations and redefinitions.
542  }
543
544  // C: Function types need to be compatible, not identical. This handles
545  // duplicate function decls like "void f(int); void f(enum X);" properly.
546  if (!getLangOptions().CPlusPlus &&
547      Context.typesAreCompatible(OldQType, NewQType)) {
548    MergeAttributes(New, Old);
549    Redeclaration = true;
550    return New;
551  }
552
553  // A function that has already been declared has been redeclared or defined
554  // with a different type- show appropriate diagnostic
555
556  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
557  // TODO: This is totally simplistic.  It should handle merging functions
558  // together etc, merging extern int X; int X; ...
559  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
560  Diag(Old->getLocation(), PrevDiag);
561  return New;
562}
563
564/// Predicate for C "tentative" external object definitions (C99 6.9.2).
565static bool isTentativeDefinition(VarDecl *VD) {
566  if (VD->isFileVarDecl())
567    return (!VD->getInit() &&
568            (VD->getStorageClass() == VarDecl::None ||
569             VD->getStorageClass() == VarDecl::Static));
570  return false;
571}
572
573/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
574/// when dealing with C "tentative" external object definitions (C99 6.9.2).
575void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
576  bool VDIsTentative = isTentativeDefinition(VD);
577  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
578
579  // FIXME: I don't think this will actually see all of the
580  // redefinitions. Can't we check this property on-the-fly?
581  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
582                                    E = IdResolver.end();
583       I != E; ++I) {
584    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
585      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
586
587      // Handle the following case:
588      //   int a[10];
589      //   int a[];   - the code below makes sure we set the correct type.
590      //   int a[11]; - this is an error, size isn't 10.
591      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
592          OldDecl->getType()->isConstantArrayType())
593        VD->setType(OldDecl->getType());
594
595      // Check for "tentative" definitions. We can't accomplish this in
596      // MergeVarDecl since the initializer hasn't been attached.
597      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
598        continue;
599
600      // Handle __private_extern__ just like extern.
601      if (OldDecl->getStorageClass() != VarDecl::Extern &&
602          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
603          VD->getStorageClass() != VarDecl::Extern &&
604          VD->getStorageClass() != VarDecl::PrivateExtern) {
605        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
606        Diag(OldDecl->getLocation(), diag::note_previous_definition);
607      }
608    }
609  }
610}
611
612/// MergeVarDecl - We just parsed a variable 'New' which has the same name
613/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
614/// situation, merging decls or emitting diagnostics as appropriate.
615///
616/// Tentative definition rules (C99 6.9.2p2) are checked by
617/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
618/// definitions here, since the initializer hasn't been attached.
619///
620VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
621  // Verify the old decl was also a variable.
622  VarDecl *Old = dyn_cast<VarDecl>(OldD);
623  if (!Old) {
624    Diag(New->getLocation(), diag::err_redefinition_different_kind)
625      << New->getDeclName();
626    Diag(OldD->getLocation(), diag::note_previous_definition);
627    return New;
628  }
629
630  MergeAttributes(New, Old);
631
632  // Merge the types
633  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
634  if (MergedT.isNull()) {
635    Diag(New->getLocation(), diag::err_redefinition_different_type)
636      << New->getDeclName();
637    Diag(Old->getLocation(), diag::note_previous_definition);
638    return New;
639  }
640  New->setType(MergedT);
641  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
642  if (New->getStorageClass() == VarDecl::Static &&
643      (Old->getStorageClass() == VarDecl::None ||
644       Old->getStorageClass() == VarDecl::Extern)) {
645    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
646    Diag(Old->getLocation(), diag::note_previous_definition);
647    return New;
648  }
649  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
650  if (New->getStorageClass() != VarDecl::Static &&
651      Old->getStorageClass() == VarDecl::Static) {
652    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
653    Diag(Old->getLocation(), diag::note_previous_definition);
654    return New;
655  }
656  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
657  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
658    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
659    Diag(Old->getLocation(), diag::note_previous_definition);
660  }
661  return New;
662}
663
664/// CheckParmsForFunctionDef - Check that the parameters of the given
665/// function are appropriate for the definition of a function. This
666/// takes care of any checks that cannot be performed on the
667/// declaration itself, e.g., that the types of each of the function
668/// parameters are complete.
669bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
670  bool HasInvalidParm = false;
671  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
672    ParmVarDecl *Param = FD->getParamDecl(p);
673
674    // C99 6.7.5.3p4: the parameters in a parameter type list in a
675    // function declarator that is part of a function definition of
676    // that function shall not have incomplete type.
677    if (!Param->isInvalidDecl() &&
678        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
679                               diag::err_typecheck_decl_incomplete_type)) {
680      Param->setInvalidDecl();
681      HasInvalidParm = true;
682    }
683
684    // C99 6.9.1p5: If the declarator includes a parameter type list, the
685    // declaration of each parameter shall include an identifier.
686    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
687      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
688  }
689
690  return HasInvalidParm;
691}
692
693/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
694/// no declarator (e.g. "struct foo;") is parsed.
695Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
696  TagDecl *Tag
697    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
698  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
699    if (!Record->getDeclName() && Record->isDefinition() &&
700        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
701      return BuildAnonymousStructOrUnion(S, DS, Record);
702
703    // Microsoft allows unnamed struct/union fields. Don't complain
704    // about them.
705    // FIXME: Should we support Microsoft's extensions in this area?
706    if (Record->getDeclName() && getLangOptions().Microsoft)
707      return Tag;
708  }
709
710  if (!DS.isMissingDeclaratorOk() &&
711      DS.getTypeSpecType() != DeclSpec::TST_error) {
712    // Warn about typedefs of enums without names, since this is an
713    // extension in both Microsoft an GNU.
714    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
715        Tag && isa<EnumDecl>(Tag)) {
716      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
717        << DS.getSourceRange();
718      return Tag;
719    }
720
721    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
722      << DS.getSourceRange();
723    return 0;
724  }
725
726  return Tag;
727}
728
729/// InjectAnonymousStructOrUnionMembers - Inject the members of the
730/// anonymous struct or union AnonRecord into the owning context Owner
731/// and scope S. This routine will be invoked just after we realize
732/// that an unnamed union or struct is actually an anonymous union or
733/// struct, e.g.,
734///
735/// @code
736/// union {
737///   int i;
738///   float f;
739/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
740///    // f into the surrounding scope.x
741/// @endcode
742///
743/// This routine is recursive, injecting the names of nested anonymous
744/// structs/unions into the owning context and scope as well.
745bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
746                                               RecordDecl *AnonRecord) {
747  bool Invalid = false;
748  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
749                               FEnd = AnonRecord->field_end();
750       F != FEnd; ++F) {
751    if ((*F)->getDeclName()) {
752      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
753                                                LookupOrdinaryName, true);
754      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
755        // C++ [class.union]p2:
756        //   The names of the members of an anonymous union shall be
757        //   distinct from the names of any other entity in the
758        //   scope in which the anonymous union is declared.
759        unsigned diagKind
760          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
761                                 : diag::err_anonymous_struct_member_redecl;
762        Diag((*F)->getLocation(), diagKind)
763          << (*F)->getDeclName();
764        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
765        Invalid = true;
766      } else {
767        // C++ [class.union]p2:
768        //   For the purpose of name lookup, after the anonymous union
769        //   definition, the members of the anonymous union are
770        //   considered to have been defined in the scope in which the
771        //   anonymous union is declared.
772        Owner->makeDeclVisibleInContext(*F);
773        S->AddDecl(*F);
774        IdResolver.AddDecl(*F);
775      }
776    } else if (const RecordType *InnerRecordType
777                 = (*F)->getType()->getAsRecordType()) {
778      RecordDecl *InnerRecord = InnerRecordType->getDecl();
779      if (InnerRecord->isAnonymousStructOrUnion())
780        Invalid = Invalid ||
781          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
782    }
783  }
784
785  return Invalid;
786}
787
788/// ActOnAnonymousStructOrUnion - Handle the declaration of an
789/// anonymous structure or union. Anonymous unions are a C++ feature
790/// (C++ [class.union]) and a GNU C extension; anonymous structures
791/// are a GNU C and GNU C++ extension.
792Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
793                                                RecordDecl *Record) {
794  DeclContext *Owner = Record->getDeclContext();
795
796  // Diagnose whether this anonymous struct/union is an extension.
797  if (Record->isUnion() && !getLangOptions().CPlusPlus)
798    Diag(Record->getLocation(), diag::ext_anonymous_union);
799  else if (!Record->isUnion())
800    Diag(Record->getLocation(), diag::ext_anonymous_struct);
801
802  // C and C++ require different kinds of checks for anonymous
803  // structs/unions.
804  bool Invalid = false;
805  if (getLangOptions().CPlusPlus) {
806    const char* PrevSpec = 0;
807    // C++ [class.union]p3:
808    //   Anonymous unions declared in a named namespace or in the
809    //   global namespace shall be declared static.
810    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
811        (isa<TranslationUnitDecl>(Owner) ||
812         (isa<NamespaceDecl>(Owner) &&
813          cast<NamespaceDecl>(Owner)->getDeclName()))) {
814      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
815      Invalid = true;
816
817      // Recover by adding 'static'.
818      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
819    }
820    // C++ [class.union]p3:
821    //   A storage class is not allowed in a declaration of an
822    //   anonymous union in a class scope.
823    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
824             isa<RecordDecl>(Owner)) {
825      Diag(DS.getStorageClassSpecLoc(),
826           diag::err_anonymous_union_with_storage_spec);
827      Invalid = true;
828
829      // Recover by removing the storage specifier.
830      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
831                             PrevSpec);
832    }
833
834    // C++ [class.union]p2:
835    //   The member-specification of an anonymous union shall only
836    //   define non-static data members. [Note: nested types and
837    //   functions cannot be declared within an anonymous union. ]
838    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
839                                 MemEnd = Record->decls_end();
840         Mem != MemEnd; ++Mem) {
841      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
842        // C++ [class.union]p3:
843        //   An anonymous union shall not have private or protected
844        //   members (clause 11).
845        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
846          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
847            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
848          Invalid = true;
849        }
850      } else if ((*Mem)->isImplicit()) {
851        // Any implicit members are fine.
852      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
853        // This is a type that showed up in an
854        // elaborated-type-specifier inside the anonymous struct or
855        // union, but which actually declares a type outside of the
856        // anonymous struct or union. It's okay.
857      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
858        if (!MemRecord->isAnonymousStructOrUnion() &&
859            MemRecord->getDeclName()) {
860          // This is a nested type declaration.
861          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
862            << (int)Record->isUnion();
863          Invalid = true;
864        }
865      } else {
866        // We have something that isn't a non-static data
867        // member. Complain about it.
868        unsigned DK = diag::err_anonymous_record_bad_member;
869        if (isa<TypeDecl>(*Mem))
870          DK = diag::err_anonymous_record_with_type;
871        else if (isa<FunctionDecl>(*Mem))
872          DK = diag::err_anonymous_record_with_function;
873        else if (isa<VarDecl>(*Mem))
874          DK = diag::err_anonymous_record_with_static;
875        Diag((*Mem)->getLocation(), DK)
876            << (int)Record->isUnion();
877          Invalid = true;
878      }
879    }
880  } else {
881    // FIXME: Check GNU C semantics
882    if (Record->isUnion() && !Owner->isRecord()) {
883      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
884        << (int)getLangOptions().CPlusPlus;
885      Invalid = true;
886    }
887  }
888
889  if (!Record->isUnion() && !Owner->isRecord()) {
890    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
891      << (int)getLangOptions().CPlusPlus;
892    Invalid = true;
893  }
894
895  // Create a declaration for this anonymous struct/union.
896  NamedDecl *Anon = 0;
897  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
898    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
899                             /*IdentifierInfo=*/0,
900                             Context.getTypeDeclType(Record),
901                             /*BitWidth=*/0, /*Mutable=*/false);
902    Anon->setAccess(AS_public);
903    if (getLangOptions().CPlusPlus)
904      FieldCollector->Add(cast<FieldDecl>(Anon));
905  } else {
906    VarDecl::StorageClass SC;
907    switch (DS.getStorageClassSpec()) {
908    default: assert(0 && "Unknown storage class!");
909    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
910    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
911    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
912    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
913    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
914    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
915    case DeclSpec::SCS_mutable:
916      // mutable can only appear on non-static class members, so it's always
917      // an error here
918      Diag(Record->getLocation(), diag::err_mutable_nonmember);
919      Invalid = true;
920      SC = VarDecl::None;
921      break;
922    }
923
924    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
925                           /*IdentifierInfo=*/0,
926                           Context.getTypeDeclType(Record),
927                           SC, DS.getSourceRange().getBegin());
928  }
929  Anon->setImplicit();
930
931  // Add the anonymous struct/union object to the current
932  // context. We'll be referencing this object when we refer to one of
933  // its members.
934  Owner->addDecl(Anon);
935
936  // Inject the members of the anonymous struct/union into the owning
937  // context and into the identifier resolver chain for name lookup
938  // purposes.
939  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
940    Invalid = true;
941
942  // Mark this as an anonymous struct/union type. Note that we do not
943  // do this until after we have already checked and injected the
944  // members of this anonymous struct/union type, because otherwise
945  // the members could be injected twice: once by DeclContext when it
946  // builds its lookup table, and once by
947  // InjectAnonymousStructOrUnionMembers.
948  Record->setAnonymousStructOrUnion(true);
949
950  if (Invalid)
951    Anon->setInvalidDecl();
952
953  return Anon;
954}
955
956bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
957                                  bool DirectInit) {
958  // Get the type before calling CheckSingleAssignmentConstraints(), since
959  // it can promote the expression.
960  QualType InitType = Init->getType();
961
962  if (getLangOptions().CPlusPlus) {
963    // FIXME: I dislike this error message. A lot.
964    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
965      return Diag(Init->getSourceRange().getBegin(),
966                  diag::err_typecheck_convert_incompatible)
967        << DeclType << Init->getType() << "initializing"
968        << Init->getSourceRange();
969
970    return false;
971  }
972
973  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
974  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
975                                  InitType, Init, "initializing");
976}
977
978bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
979  const ArrayType *AT = Context.getAsArrayType(DeclT);
980
981  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
982    // C99 6.7.8p14. We have an array of character type with unknown size
983    // being initialized to a string literal.
984    llvm::APSInt ConstVal(32);
985    ConstVal = strLiteral->getByteLength() + 1;
986    // Return a new array type (C99 6.7.8p22).
987    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
988                                         ArrayType::Normal, 0);
989  } else {
990    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
991    // C99 6.7.8p14. We have an array of character type with known size.
992    // FIXME: Avoid truncation for 64-bit length strings.
993    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
994      Diag(strLiteral->getSourceRange().getBegin(),
995           diag::warn_initializer_string_for_char_array_too_long)
996        << strLiteral->getSourceRange();
997  }
998  // Set type from "char *" to "constant array of char".
999  strLiteral->setType(DeclT);
1000  // For now, we always return false (meaning success).
1001  return false;
1002}
1003
1004StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1005  const ArrayType *AT = Context.getAsArrayType(DeclType);
1006  if (AT && AT->getElementType()->isCharType()) {
1007    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1008  }
1009  return 0;
1010}
1011
1012bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1013                                 SourceLocation InitLoc,
1014                                 DeclarationName InitEntity,
1015                                 bool DirectInit) {
1016  if (DeclType->isDependentType() || Init->isTypeDependent())
1017    return false;
1018
1019  // C++ [dcl.init.ref]p1:
1020  //   A variable declared to be a T&, that is "reference to type T"
1021  //   (8.3.2), shall be initialized by an object, or function, of
1022  //   type T or by an object that can be converted into a T.
1023  if (DeclType->isReferenceType())
1024    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1025
1026  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1027  // of unknown size ("[]") or an object type that is not a variable array type.
1028  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1029    return Diag(InitLoc,  diag::err_variable_object_no_init)
1030      << VAT->getSizeExpr()->getSourceRange();
1031
1032  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1033  if (!InitList) {
1034    // FIXME: Handle wide strings
1035    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1036      return CheckStringLiteralInit(strLiteral, DeclType);
1037
1038    // C++ [dcl.init]p14:
1039    //   -- If the destination type is a (possibly cv-qualified) class
1040    //      type:
1041    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1042      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1043      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1044
1045      //   -- If the initialization is direct-initialization, or if it is
1046      //      copy-initialization where the cv-unqualified version of the
1047      //      source type is the same class as, or a derived class of, the
1048      //      class of the destination, constructors are considered.
1049      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1050          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1051        CXXConstructorDecl *Constructor
1052          = PerformInitializationByConstructor(DeclType, &Init, 1,
1053                                               InitLoc, Init->getSourceRange(),
1054                                               InitEntity,
1055                                               DirectInit? IK_Direct : IK_Copy);
1056        return Constructor == 0;
1057      }
1058
1059      //   -- Otherwise (i.e., for the remaining copy-initialization
1060      //      cases), user-defined conversion sequences that can
1061      //      convert from the source type to the destination type or
1062      //      (when a conversion function is used) to a derived class
1063      //      thereof are enumerated as described in 13.3.1.4, and the
1064      //      best one is chosen through overload resolution
1065      //      (13.3). If the conversion cannot be done or is
1066      //      ambiguous, the initialization is ill-formed. The
1067      //      function selected is called with the initializer
1068      //      expression as its argument; if the function is a
1069      //      constructor, the call initializes a temporary of the
1070      //      destination type.
1071      // FIXME: We're pretending to do copy elision here; return to
1072      // this when we have ASTs for such things.
1073      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1074        return false;
1075
1076      if (InitEntity)
1077        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1078          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1079          << Init->getType() << Init->getSourceRange();
1080      else
1081        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1082          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1083          << Init->getType() << Init->getSourceRange();
1084    }
1085
1086    // C99 6.7.8p16.
1087    if (DeclType->isArrayType())
1088      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1089        << Init->getSourceRange();
1090
1091    return CheckSingleInitializer(Init, DeclType, DirectInit);
1092  }
1093
1094  bool hadError = CheckInitList(InitList, DeclType);
1095  Init = InitList;
1096  return hadError;
1097}
1098
1099/// GetNameForDeclarator - Determine the full declaration name for the
1100/// given Declarator.
1101DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1102  switch (D.getKind()) {
1103  case Declarator::DK_Abstract:
1104    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1105    return DeclarationName();
1106
1107  case Declarator::DK_Normal:
1108    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1109    return DeclarationName(D.getIdentifier());
1110
1111  case Declarator::DK_Constructor: {
1112    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1113    Ty = Context.getCanonicalType(Ty);
1114    return Context.DeclarationNames.getCXXConstructorName(Ty);
1115  }
1116
1117  case Declarator::DK_Destructor: {
1118    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXDestructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Conversion: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1127  }
1128
1129  case Declarator::DK_Operator:
1130    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1131    return Context.DeclarationNames.getCXXOperatorName(
1132                                                D.getOverloadedOperator());
1133  }
1134
1135  assert(false && "Unknown name kind");
1136  return DeclarationName();
1137}
1138
1139/// isNearlyMatchingFunction - Determine whether the C++ functions
1140/// Declaration and Definition are "nearly" matching. This heuristic
1141/// is used to improve diagnostics in the case where an out-of-line
1142/// function definition doesn't match any declaration within
1143/// the class or namespace.
1144static bool isNearlyMatchingFunction(ASTContext &Context,
1145                                     FunctionDecl *Declaration,
1146                                     FunctionDecl *Definition) {
1147  if (Declaration->param_size() != Definition->param_size())
1148    return false;
1149  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1150    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1151    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1152
1153    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1154    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1155    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1156      return false;
1157  }
1158
1159  return true;
1160}
1161
1162Sema::DeclTy *
1163Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1164                      bool IsFunctionDefinition) {
1165  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1166  DeclarationName Name = GetNameForDeclarator(D);
1167
1168  // All of these full declarators require an identifier.  If it doesn't have
1169  // one, the ParsedFreeStandingDeclSpec action should be used.
1170  if (!Name) {
1171    if (!D.getInvalidType())  // Reject this if we think it is valid.
1172      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1173           diag::err_declarator_need_ident)
1174        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1175    return 0;
1176  }
1177
1178  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1179  // we find one that is.
1180  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1181         (S->getFlags() & Scope::TemplateParamScope) != 0)
1182    S = S->getParent();
1183
1184  DeclContext *DC;
1185  NamedDecl *PrevDecl;
1186  NamedDecl *New;
1187  bool InvalidDecl = false;
1188
1189  // See if this is a redefinition of a variable in the same scope.
1190  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1191    DC = CurContext;
1192    PrevDecl = LookupName(S, Name, LookupOrdinaryName);
1193  } else { // Something like "int foo::x;"
1194    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1195    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1196
1197    // C++ 7.3.1.2p2:
1198    // Members (including explicit specializations of templates) of a named
1199    // namespace can also be defined outside that namespace by explicit
1200    // qualification of the name being defined, provided that the entity being
1201    // defined was already declared in the namespace and the definition appears
1202    // after the point of declaration in a namespace that encloses the
1203    // declarations namespace.
1204    //
1205    // Note that we only check the context at this point. We don't yet
1206    // have enough information to make sure that PrevDecl is actually
1207    // the declaration we want to match. For example, given:
1208    //
1209    //   class X {
1210    //     void f();
1211    //     void f(float);
1212    //   };
1213    //
1214    //   void X::f(int) { } // ill-formed
1215    //
1216    // In this case, PrevDecl will point to the overload set
1217    // containing the two f's declared in X, but neither of them
1218    // matches.
1219
1220    // First check whether we named the global scope.
1221    if (isa<TranslationUnitDecl>(DC)) {
1222      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1223        << Name << D.getCXXScopeSpec().getRange();
1224    } else if (!CurContext->Encloses(DC)) {
1225      // The qualifying scope doesn't enclose the original declaration.
1226      // Emit diagnostic based on current scope.
1227      SourceLocation L = D.getIdentifierLoc();
1228      SourceRange R = D.getCXXScopeSpec().getRange();
1229      if (isa<FunctionDecl>(CurContext))
1230        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1231      else
1232        Diag(L, diag::err_invalid_declarator_scope)
1233          << Name << cast<NamedDecl>(DC) << R;
1234      InvalidDecl = true;
1235    }
1236  }
1237
1238  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1239    // Maybe we will complain about the shadowed template parameter.
1240    InvalidDecl = InvalidDecl
1241      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1242    // Just pretend that we didn't see the previous declaration.
1243    PrevDecl = 0;
1244  }
1245
1246  // In C++, the previous declaration we find might be a tag type
1247  // (class or enum). In this case, the new declaration will hide the
1248  // tag type. Note that this does does not apply if we're declaring a
1249  // typedef (C++ [dcl.typedef]p4).
1250  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1251      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1252    PrevDecl = 0;
1253
1254  QualType R = GetTypeForDeclarator(D, S);
1255  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1256
1257  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1258    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1259                                 InvalidDecl);
1260  } else if (R.getTypePtr()->isFunctionType()) {
1261    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1262                                  IsFunctionDefinition, InvalidDecl);
1263  } else {
1264    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1265                                  InvalidDecl);
1266  }
1267
1268  if (New == 0)
1269    return 0;
1270
1271  // Set the lexical context. If the declarator has a C++ scope specifier, the
1272  // lexical context will be different from the semantic context.
1273  New->setLexicalDeclContext(CurContext);
1274
1275  // If this has an identifier, add it to the scope stack.
1276  if (Name)
1277    PushOnScopeChains(New, S);
1278  // If any semantic error occurred, mark the decl as invalid.
1279  if (D.getInvalidType() || InvalidDecl)
1280    New->setInvalidDecl();
1281
1282  return New;
1283}
1284
1285NamedDecl*
1286Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1287                             QualType R, Decl* LastDeclarator,
1288                             Decl* PrevDecl, bool& InvalidDecl) {
1289  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1290  if (D.getCXXScopeSpec().isSet()) {
1291    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1292      << D.getCXXScopeSpec().getRange();
1293    InvalidDecl = true;
1294    // Pretend we didn't see the scope specifier.
1295    DC = 0;
1296  }
1297
1298  // Check that there are no default arguments (C++ only).
1299  if (getLangOptions().CPlusPlus)
1300    CheckExtraCXXDefaultArguments(D);
1301
1302  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1303  if (!NewTD) return 0;
1304
1305  // Handle attributes prior to checking for duplicates in MergeVarDecl
1306  ProcessDeclAttributes(NewTD, D);
1307  // Merge the decl with the existing one if appropriate. If the decl is
1308  // in an outer scope, it isn't the same thing.
1309  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1310    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1311    if (NewTD == 0) return 0;
1312  }
1313
1314  if (S->getFnParent() == 0) {
1315    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1316    // then it shall have block scope.
1317    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1318      if (NewTD->getUnderlyingType()->isVariableArrayType())
1319        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1320      else
1321        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1322
1323      InvalidDecl = true;
1324    }
1325  }
1326  return NewTD;
1327}
1328
1329NamedDecl*
1330Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1331                              QualType R, Decl* LastDeclarator,
1332                              Decl* PrevDecl, bool& InvalidDecl) {
1333  DeclarationName Name = GetNameForDeclarator(D);
1334
1335  // Check that there are no default arguments (C++ only).
1336  if (getLangOptions().CPlusPlus)
1337    CheckExtraCXXDefaultArguments(D);
1338
1339  if (R.getTypePtr()->isObjCInterfaceType()) {
1340    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1341      << D.getIdentifier();
1342    InvalidDecl = true;
1343  }
1344
1345  VarDecl *NewVD;
1346  VarDecl::StorageClass SC;
1347  switch (D.getDeclSpec().getStorageClassSpec()) {
1348  default: assert(0 && "Unknown storage class!");
1349  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1350  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1351  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1352  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1353  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1354  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1355  case DeclSpec::SCS_mutable:
1356    // mutable can only appear on non-static class members, so it's always
1357    // an error here
1358    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1359    InvalidDecl = true;
1360    SC = VarDecl::None;
1361    break;
1362  }
1363
1364  IdentifierInfo *II = Name.getAsIdentifierInfo();
1365  if (!II) {
1366    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1367      << Name.getAsString();
1368    return 0;
1369  }
1370
1371  if (DC->isRecord()) {
1372    // This is a static data member for a C++ class.
1373    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1374                                    D.getIdentifierLoc(), II,
1375                                    R);
1376  } else {
1377    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1378    if (S->getFnParent() == 0) {
1379      // C99 6.9p2: The storage-class specifiers auto and register shall not
1380      // appear in the declaration specifiers in an external declaration.
1381      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1382        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1383        InvalidDecl = true;
1384      }
1385    }
1386    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1387                            II, R, SC,
1388                            // FIXME: Move to DeclGroup...
1389                            D.getDeclSpec().getSourceRange().getBegin());
1390    NewVD->setThreadSpecified(ThreadSpecified);
1391  }
1392  NewVD->setNextDeclarator(LastDeclarator);
1393
1394  // Handle attributes prior to checking for duplicates in MergeVarDecl
1395  ProcessDeclAttributes(NewVD, D);
1396
1397  // Handle GNU asm-label extension (encoded as an attribute).
1398  if (Expr *E = (Expr*) D.getAsmLabel()) {
1399    // The parser guarantees this is a string.
1400    StringLiteral *SE = cast<StringLiteral>(E);
1401    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1402                                                SE->getByteLength())));
1403  }
1404
1405  // Emit an error if an address space was applied to decl with local storage.
1406  // This includes arrays of objects with address space qualifiers, but not
1407  // automatic variables that point to other address spaces.
1408  // ISO/IEC TR 18037 S5.1.2
1409  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1410    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1411    InvalidDecl = true;
1412  }
1413  // Merge the decl with the existing one if appropriate. If the decl is
1414  // in an outer scope, it isn't the same thing.
1415  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1416    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1417      // The user tried to define a non-static data member
1418      // out-of-line (C++ [dcl.meaning]p1).
1419      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1420        << D.getCXXScopeSpec().getRange();
1421      NewVD->Destroy(Context);
1422      return 0;
1423    }
1424
1425    NewVD = MergeVarDecl(NewVD, PrevDecl);
1426    if (NewVD == 0) return 0;
1427
1428    if (D.getCXXScopeSpec().isSet()) {
1429      // No previous declaration in the qualifying scope.
1430      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1431        << Name << D.getCXXScopeSpec().getRange();
1432      InvalidDecl = true;
1433    }
1434  }
1435  return NewVD;
1436}
1437
1438NamedDecl*
1439Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1440                              QualType R, Decl *LastDeclarator,
1441                              Decl* PrevDecl, bool IsFunctionDefinition,
1442                              bool& InvalidDecl) {
1443  assert(R.getTypePtr()->isFunctionType());
1444
1445  DeclarationName Name = GetNameForDeclarator(D);
1446  FunctionDecl::StorageClass SC = FunctionDecl::None;
1447  switch (D.getDeclSpec().getStorageClassSpec()) {
1448  default: assert(0 && "Unknown storage class!");
1449  case DeclSpec::SCS_auto:
1450  case DeclSpec::SCS_register:
1451  case DeclSpec::SCS_mutable:
1452    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1453    InvalidDecl = true;
1454    break;
1455  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1456  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1457  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1458  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1459  }
1460
1461  bool isInline = D.getDeclSpec().isInlineSpecified();
1462  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1463  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1464
1465  FunctionDecl *NewFD;
1466  if (D.getKind() == Declarator::DK_Constructor) {
1467    // This is a C++ constructor declaration.
1468    assert(DC->isRecord() &&
1469           "Constructors can only be declared in a member context");
1470
1471    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1472
1473    // Create the new declaration
1474    NewFD = CXXConstructorDecl::Create(Context,
1475                                       cast<CXXRecordDecl>(DC),
1476                                       D.getIdentifierLoc(), Name, R,
1477                                       isExplicit, isInline,
1478                                       /*isImplicitlyDeclared=*/false);
1479
1480    if (InvalidDecl)
1481      NewFD->setInvalidDecl();
1482  } else if (D.getKind() == Declarator::DK_Destructor) {
1483    // This is a C++ destructor declaration.
1484    if (DC->isRecord()) {
1485      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1486
1487      NewFD = CXXDestructorDecl::Create(Context,
1488                                        cast<CXXRecordDecl>(DC),
1489                                        D.getIdentifierLoc(), Name, R,
1490                                        isInline,
1491                                        /*isImplicitlyDeclared=*/false);
1492
1493      if (InvalidDecl)
1494        NewFD->setInvalidDecl();
1495    } else {
1496      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1497
1498      // Create a FunctionDecl to satisfy the function definition parsing
1499      // code path.
1500      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1501                                   Name, R, SC, isInline,
1502                                   // FIXME: Move to DeclGroup...
1503                                   D.getDeclSpec().getSourceRange().getBegin());
1504      InvalidDecl = true;
1505      NewFD->setInvalidDecl();
1506    }
1507  } else if (D.getKind() == Declarator::DK_Conversion) {
1508    if (!DC->isRecord()) {
1509      Diag(D.getIdentifierLoc(),
1510           diag::err_conv_function_not_member);
1511      return 0;
1512    } else {
1513      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1514
1515      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1516                                        D.getIdentifierLoc(), Name, R,
1517                                        isInline, isExplicit);
1518
1519      if (InvalidDecl)
1520        NewFD->setInvalidDecl();
1521    }
1522  } else if (DC->isRecord()) {
1523    // This is a C++ method declaration.
1524    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1525                                  D.getIdentifierLoc(), Name, R,
1526                                  (SC == FunctionDecl::Static), isInline);
1527  } else {
1528    NewFD = FunctionDecl::Create(Context, DC,
1529                                 D.getIdentifierLoc(),
1530                                 Name, R, SC, isInline,
1531                                 // FIXME: Move to DeclGroup...
1532                                 D.getDeclSpec().getSourceRange().getBegin());
1533  }
1534  NewFD->setNextDeclarator(LastDeclarator);
1535
1536  // Set the lexical context. If the declarator has a C++
1537  // scope specifier, the lexical context will be different
1538  // from the semantic context.
1539  NewFD->setLexicalDeclContext(CurContext);
1540
1541  // Handle GNU asm-label extension (encoded as an attribute).
1542  if (Expr *E = (Expr*) D.getAsmLabel()) {
1543    // The parser guarantees this is a string.
1544    StringLiteral *SE = cast<StringLiteral>(E);
1545    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1546                                                SE->getByteLength())));
1547  }
1548
1549  // Copy the parameter declarations from the declarator D to
1550  // the function declaration NewFD, if they are available.
1551  if (D.getNumTypeObjects() > 0) {
1552    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1553
1554    // Create Decl objects for each parameter, adding them to the
1555    // FunctionDecl.
1556    llvm::SmallVector<ParmVarDecl*, 16> Params;
1557
1558    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1559    // function that takes no arguments, not a function that takes a
1560    // single void argument.
1561    // We let through "const void" here because Sema::GetTypeForDeclarator
1562    // already checks for that case.
1563    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1564        FTI.ArgInfo[0].Param &&
1565        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1566      // empty arg list, don't push any params.
1567      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1568
1569      // In C++, the empty parameter-type-list must be spelled "void"; a
1570      // typedef of void is not permitted.
1571      if (getLangOptions().CPlusPlus &&
1572          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1573        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1574      }
1575    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1576      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1577        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1578    }
1579
1580    NewFD->setParams(Context, &Params[0], Params.size());
1581  } else if (R->getAsTypedefType()) {
1582    // When we're declaring a function with a typedef, as in the
1583    // following example, we'll need to synthesize (unnamed)
1584    // parameters for use in the declaration.
1585    //
1586    // @code
1587    // typedef void fn(int);
1588    // fn f;
1589    // @endcode
1590    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1591    if (!FT) {
1592      // This is a typedef of a function with no prototype, so we
1593      // don't need to do anything.
1594    } else if ((FT->getNumArgs() == 0) ||
1595               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1596                FT->getArgType(0)->isVoidType())) {
1597      // This is a zero-argument function. We don't need to do anything.
1598    } else {
1599      // Synthesize a parameter for each argument type.
1600      llvm::SmallVector<ParmVarDecl*, 16> Params;
1601      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1602           ArgType != FT->arg_type_end(); ++ArgType) {
1603        Params.push_back(ParmVarDecl::Create(Context, DC,
1604                                             SourceLocation(), 0,
1605                                             *ArgType, VarDecl::None,
1606                                             0));
1607      }
1608
1609      NewFD->setParams(Context, &Params[0], Params.size());
1610    }
1611  }
1612
1613  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1614    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1615  else if (isa<CXXDestructorDecl>(NewFD)) {
1616    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1617    Record->setUserDeclaredDestructor(true);
1618    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1619    // user-defined destructor.
1620    Record->setPOD(false);
1621  } else if (CXXConversionDecl *Conversion =
1622             dyn_cast<CXXConversionDecl>(NewFD))
1623    ActOnConversionDeclarator(Conversion);
1624
1625  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1626  if (NewFD->isOverloadedOperator() &&
1627      CheckOverloadedOperatorDeclaration(NewFD))
1628    NewFD->setInvalidDecl();
1629
1630  // Merge the decl with the existing one if appropriate. Since C functions
1631  // are in a flat namespace, make sure we consider decls in outer scopes.
1632  bool Redeclaration = false;
1633  if (PrevDecl &&
1634      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1635    // If C++, determine whether NewFD is an overload of PrevDecl or
1636    // a declaration that requires merging. If it's an overload,
1637    // there's no more work to do here; we'll just add the new
1638    // function to the scope.
1639    OverloadedFunctionDecl::function_iterator MatchedDecl;
1640    if (!getLangOptions().CPlusPlus ||
1641        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1642      Decl *OldDecl = PrevDecl;
1643
1644      // If PrevDecl was an overloaded function, extract the
1645      // FunctionDecl that matched.
1646      if (isa<OverloadedFunctionDecl>(PrevDecl))
1647        OldDecl = *MatchedDecl;
1648
1649      // NewFD and PrevDecl represent declarations that need to be
1650      // merged.
1651      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1652
1653      if (NewFD == 0) return 0;
1654      if (Redeclaration) {
1655        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1656
1657        // An out-of-line member function declaration must also be a
1658        // definition (C++ [dcl.meaning]p1).
1659        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1660            !InvalidDecl) {
1661          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1662            << D.getCXXScopeSpec().getRange();
1663          NewFD->setInvalidDecl();
1664        }
1665      }
1666    }
1667  }
1668
1669  if (D.getCXXScopeSpec().isSet() &&
1670      (!PrevDecl || !Redeclaration)) {
1671    // The user tried to provide an out-of-line definition for a
1672    // function that is a member of a class or namespace, but there
1673    // was no such member function declared (C++ [class.mfct]p2,
1674    // C++ [namespace.memdef]p2). For example:
1675    //
1676    // class X {
1677    //   void f() const;
1678    // };
1679    //
1680    // void X::f() { } // ill-formed
1681    //
1682    // Complain about this problem, and attempt to suggest close
1683    // matches (e.g., those that differ only in cv-qualifiers and
1684    // whether the parameter types are references).
1685    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1686      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1687    InvalidDecl = true;
1688
1689    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1690                                            true);
1691    assert(!Prev.isAmbiguous() &&
1692           "Cannot have an ambiguity in previous-declaration lookup");
1693    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1694         Func != FuncEnd; ++Func) {
1695      if (isa<FunctionDecl>(*Func) &&
1696          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1697        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1698    }
1699
1700    PrevDecl = 0;
1701  }
1702
1703  // Handle attributes. We need to have merged decls when handling attributes
1704  // (for example to check for conflicts, etc).
1705  ProcessDeclAttributes(NewFD, D);
1706
1707  if (getLangOptions().CPlusPlus) {
1708    // In C++, check default arguments now that we have merged decls.
1709    CheckCXXDefaultArguments(NewFD);
1710
1711    // An out-of-line member function declaration must also be a
1712    // definition (C++ [dcl.meaning]p1).
1713    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1714      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1715        << D.getCXXScopeSpec().getRange();
1716      InvalidDecl = true;
1717    }
1718  }
1719  return NewFD;
1720}
1721
1722void Sema::InitializerElementNotConstant(const Expr *Init) {
1723  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1724    << Init->getSourceRange();
1725}
1726
1727bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1728  switch (Init->getStmtClass()) {
1729  default:
1730    InitializerElementNotConstant(Init);
1731    return true;
1732  case Expr::ParenExprClass: {
1733    const ParenExpr* PE = cast<ParenExpr>(Init);
1734    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1735  }
1736  case Expr::CompoundLiteralExprClass:
1737    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1738  case Expr::DeclRefExprClass:
1739  case Expr::QualifiedDeclRefExprClass: {
1740    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1741    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1742      if (VD->hasGlobalStorage())
1743        return false;
1744      InitializerElementNotConstant(Init);
1745      return true;
1746    }
1747    if (isa<FunctionDecl>(D))
1748      return false;
1749    InitializerElementNotConstant(Init);
1750    return true;
1751  }
1752  case Expr::MemberExprClass: {
1753    const MemberExpr *M = cast<MemberExpr>(Init);
1754    if (M->isArrow())
1755      return CheckAddressConstantExpression(M->getBase());
1756    return CheckAddressConstantExpressionLValue(M->getBase());
1757  }
1758  case Expr::ArraySubscriptExprClass: {
1759    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1760    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1761    return CheckAddressConstantExpression(ASE->getBase()) ||
1762           CheckArithmeticConstantExpression(ASE->getIdx());
1763  }
1764  case Expr::StringLiteralClass:
1765  case Expr::PredefinedExprClass:
1766    return false;
1767  case Expr::UnaryOperatorClass: {
1768    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1769
1770    // C99 6.6p9
1771    if (Exp->getOpcode() == UnaryOperator::Deref)
1772      return CheckAddressConstantExpression(Exp->getSubExpr());
1773
1774    InitializerElementNotConstant(Init);
1775    return true;
1776  }
1777  }
1778}
1779
1780bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1781  switch (Init->getStmtClass()) {
1782  default:
1783    InitializerElementNotConstant(Init);
1784    return true;
1785  case Expr::ParenExprClass:
1786    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1787  case Expr::StringLiteralClass:
1788  case Expr::ObjCStringLiteralClass:
1789    return false;
1790  case Expr::CallExprClass:
1791  case Expr::CXXOperatorCallExprClass:
1792    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1793    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1794           Builtin::BI__builtin___CFStringMakeConstantString)
1795      return false;
1796
1797    InitializerElementNotConstant(Init);
1798    return true;
1799
1800  case Expr::UnaryOperatorClass: {
1801    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1802
1803    // C99 6.6p9
1804    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1805      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1806
1807    if (Exp->getOpcode() == UnaryOperator::Extension)
1808      return CheckAddressConstantExpression(Exp->getSubExpr());
1809
1810    InitializerElementNotConstant(Init);
1811    return true;
1812  }
1813  case Expr::BinaryOperatorClass: {
1814    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1815    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1816
1817    Expr *PExp = Exp->getLHS();
1818    Expr *IExp = Exp->getRHS();
1819    if (IExp->getType()->isPointerType())
1820      std::swap(PExp, IExp);
1821
1822    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1823    return CheckAddressConstantExpression(PExp) ||
1824           CheckArithmeticConstantExpression(IExp);
1825  }
1826  case Expr::ImplicitCastExprClass:
1827  case Expr::CStyleCastExprClass: {
1828    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1829    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1830      // Check for implicit promotion
1831      if (SubExpr->getType()->isFunctionType() ||
1832          SubExpr->getType()->isArrayType())
1833        return CheckAddressConstantExpressionLValue(SubExpr);
1834    }
1835
1836    // Check for pointer->pointer cast
1837    if (SubExpr->getType()->isPointerType())
1838      return CheckAddressConstantExpression(SubExpr);
1839
1840    if (SubExpr->getType()->isIntegralType()) {
1841      // Check for the special-case of a pointer->int->pointer cast;
1842      // this isn't standard, but some code requires it. See
1843      // PR2720 for an example.
1844      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1845        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1846          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1847          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1848          if (IntWidth >= PointerWidth) {
1849            return CheckAddressConstantExpression(SubCast->getSubExpr());
1850          }
1851        }
1852      }
1853    }
1854    if (SubExpr->getType()->isArithmeticType()) {
1855      return CheckArithmeticConstantExpression(SubExpr);
1856    }
1857
1858    InitializerElementNotConstant(Init);
1859    return true;
1860  }
1861  case Expr::ConditionalOperatorClass: {
1862    // FIXME: Should we pedwarn here?
1863    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1864    if (!Exp->getCond()->getType()->isArithmeticType()) {
1865      InitializerElementNotConstant(Init);
1866      return true;
1867    }
1868    if (CheckArithmeticConstantExpression(Exp->getCond()))
1869      return true;
1870    if (Exp->getLHS() &&
1871        CheckAddressConstantExpression(Exp->getLHS()))
1872      return true;
1873    return CheckAddressConstantExpression(Exp->getRHS());
1874  }
1875  case Expr::AddrLabelExprClass:
1876    return false;
1877  }
1878}
1879
1880static const Expr* FindExpressionBaseAddress(const Expr* E);
1881
1882static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1883  switch (E->getStmtClass()) {
1884  default:
1885    return E;
1886  case Expr::ParenExprClass: {
1887    const ParenExpr* PE = cast<ParenExpr>(E);
1888    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1889  }
1890  case Expr::MemberExprClass: {
1891    const MemberExpr *M = cast<MemberExpr>(E);
1892    if (M->isArrow())
1893      return FindExpressionBaseAddress(M->getBase());
1894    return FindExpressionBaseAddressLValue(M->getBase());
1895  }
1896  case Expr::ArraySubscriptExprClass: {
1897    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1898    return FindExpressionBaseAddress(ASE->getBase());
1899  }
1900  case Expr::UnaryOperatorClass: {
1901    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1902
1903    if (Exp->getOpcode() == UnaryOperator::Deref)
1904      return FindExpressionBaseAddress(Exp->getSubExpr());
1905
1906    return E;
1907  }
1908  }
1909}
1910
1911static const Expr* FindExpressionBaseAddress(const Expr* E) {
1912  switch (E->getStmtClass()) {
1913  default:
1914    return E;
1915  case Expr::ParenExprClass: {
1916    const ParenExpr* PE = cast<ParenExpr>(E);
1917    return FindExpressionBaseAddress(PE->getSubExpr());
1918  }
1919  case Expr::UnaryOperatorClass: {
1920    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1921
1922    // C99 6.6p9
1923    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1924      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1925
1926    if (Exp->getOpcode() == UnaryOperator::Extension)
1927      return FindExpressionBaseAddress(Exp->getSubExpr());
1928
1929    return E;
1930  }
1931  case Expr::BinaryOperatorClass: {
1932    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1933
1934    Expr *PExp = Exp->getLHS();
1935    Expr *IExp = Exp->getRHS();
1936    if (IExp->getType()->isPointerType())
1937      std::swap(PExp, IExp);
1938
1939    return FindExpressionBaseAddress(PExp);
1940  }
1941  case Expr::ImplicitCastExprClass: {
1942    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1943
1944    // Check for implicit promotion
1945    if (SubExpr->getType()->isFunctionType() ||
1946        SubExpr->getType()->isArrayType())
1947      return FindExpressionBaseAddressLValue(SubExpr);
1948
1949    // Check for pointer->pointer cast
1950    if (SubExpr->getType()->isPointerType())
1951      return FindExpressionBaseAddress(SubExpr);
1952
1953    // We assume that we have an arithmetic expression here;
1954    // if we don't, we'll figure it out later
1955    return 0;
1956  }
1957  case Expr::CStyleCastExprClass: {
1958    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1959
1960    // Check for pointer->pointer cast
1961    if (SubExpr->getType()->isPointerType())
1962      return FindExpressionBaseAddress(SubExpr);
1963
1964    // We assume that we have an arithmetic expression here;
1965    // if we don't, we'll figure it out later
1966    return 0;
1967  }
1968  }
1969}
1970
1971bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1972  switch (Init->getStmtClass()) {
1973  default:
1974    InitializerElementNotConstant(Init);
1975    return true;
1976  case Expr::ParenExprClass: {
1977    const ParenExpr* PE = cast<ParenExpr>(Init);
1978    return CheckArithmeticConstantExpression(PE->getSubExpr());
1979  }
1980  case Expr::FloatingLiteralClass:
1981  case Expr::IntegerLiteralClass:
1982  case Expr::CharacterLiteralClass:
1983  case Expr::ImaginaryLiteralClass:
1984  case Expr::TypesCompatibleExprClass:
1985  case Expr::CXXBoolLiteralExprClass:
1986    return false;
1987  case Expr::CallExprClass:
1988  case Expr::CXXOperatorCallExprClass: {
1989    const CallExpr *CE = cast<CallExpr>(Init);
1990
1991    // Allow any constant foldable calls to builtins.
1992    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1993      return false;
1994
1995    InitializerElementNotConstant(Init);
1996    return true;
1997  }
1998  case Expr::DeclRefExprClass:
1999  case Expr::QualifiedDeclRefExprClass: {
2000    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2001    if (isa<EnumConstantDecl>(D))
2002      return false;
2003    InitializerElementNotConstant(Init);
2004    return true;
2005  }
2006  case Expr::CompoundLiteralExprClass:
2007    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2008    // but vectors are allowed to be magic.
2009    if (Init->getType()->isVectorType())
2010      return false;
2011    InitializerElementNotConstant(Init);
2012    return true;
2013  case Expr::UnaryOperatorClass: {
2014    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2015
2016    switch (Exp->getOpcode()) {
2017    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2018    // See C99 6.6p3.
2019    default:
2020      InitializerElementNotConstant(Init);
2021      return true;
2022    case UnaryOperator::OffsetOf:
2023      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2024        return false;
2025      InitializerElementNotConstant(Init);
2026      return true;
2027    case UnaryOperator::Extension:
2028    case UnaryOperator::LNot:
2029    case UnaryOperator::Plus:
2030    case UnaryOperator::Minus:
2031    case UnaryOperator::Not:
2032      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2033    }
2034  }
2035  case Expr::SizeOfAlignOfExprClass: {
2036    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2037    // Special check for void types, which are allowed as an extension
2038    if (Exp->getTypeOfArgument()->isVoidType())
2039      return false;
2040    // alignof always evaluates to a constant.
2041    // FIXME: is sizeof(int[3.0]) a constant expression?
2042    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2043      InitializerElementNotConstant(Init);
2044      return true;
2045    }
2046    return false;
2047  }
2048  case Expr::BinaryOperatorClass: {
2049    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2050
2051    if (Exp->getLHS()->getType()->isArithmeticType() &&
2052        Exp->getRHS()->getType()->isArithmeticType()) {
2053      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2054             CheckArithmeticConstantExpression(Exp->getRHS());
2055    }
2056
2057    if (Exp->getLHS()->getType()->isPointerType() &&
2058        Exp->getRHS()->getType()->isPointerType()) {
2059      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2060      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2061
2062      // Only allow a null (constant integer) base; we could
2063      // allow some additional cases if necessary, but this
2064      // is sufficient to cover offsetof-like constructs.
2065      if (!LHSBase && !RHSBase) {
2066        return CheckAddressConstantExpression(Exp->getLHS()) ||
2067               CheckAddressConstantExpression(Exp->getRHS());
2068      }
2069    }
2070
2071    InitializerElementNotConstant(Init);
2072    return true;
2073  }
2074  case Expr::ImplicitCastExprClass:
2075  case Expr::CStyleCastExprClass: {
2076    const CastExpr *CE = cast<CastExpr>(Init);
2077    const Expr *SubExpr = CE->getSubExpr();
2078
2079    if (SubExpr->getType()->isArithmeticType())
2080      return CheckArithmeticConstantExpression(SubExpr);
2081
2082    if (SubExpr->getType()->isPointerType()) {
2083      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2084      if (Base) {
2085        // the cast is only valid if done to a wide enough type
2086        if (Context.getTypeSize(CE->getType()) >=
2087            Context.getTypeSize(SubExpr->getType()))
2088          return false;
2089      } else {
2090        // If the pointer has a null base, this is an offsetof-like construct
2091        return CheckAddressConstantExpression(SubExpr);
2092      }
2093    }
2094
2095    InitializerElementNotConstant(Init);
2096    return true;
2097  }
2098  case Expr::ConditionalOperatorClass: {
2099    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2100
2101    // If GNU extensions are disabled, we require all operands to be arithmetic
2102    // constant expressions.
2103    if (getLangOptions().NoExtensions) {
2104      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2105          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2106             CheckArithmeticConstantExpression(Exp->getRHS());
2107    }
2108
2109    // Otherwise, we have to emulate some of the behavior of fold here.
2110    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2111    // because it can constant fold things away.  To retain compatibility with
2112    // GCC code, we see if we can fold the condition to a constant (which we
2113    // should always be able to do in theory).  If so, we only require the
2114    // specified arm of the conditional to be a constant.  This is a horrible
2115    // hack, but is require by real world code that uses __builtin_constant_p.
2116    Expr::EvalResult EvalResult;
2117    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2118        EvalResult.HasSideEffects) {
2119      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2120      // won't be able to either.  Use it to emit the diagnostic though.
2121      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2122      assert(Res && "Evaluate couldn't evaluate this constant?");
2123      return Res;
2124    }
2125
2126    // Verify that the side following the condition is also a constant.
2127    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2128    if (EvalResult.Val.getInt() == 0)
2129      std::swap(TrueSide, FalseSide);
2130
2131    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2132      return true;
2133
2134    // Okay, the evaluated side evaluates to a constant, so we accept this.
2135    // Check to see if the other side is obviously not a constant.  If so,
2136    // emit a warning that this is a GNU extension.
2137    if (FalseSide && !FalseSide->isEvaluatable(Context))
2138      Diag(Init->getExprLoc(),
2139           diag::ext_typecheck_expression_not_constant_but_accepted)
2140        << FalseSide->getSourceRange();
2141    return false;
2142  }
2143  }
2144}
2145
2146bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2147  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2148    Init = DIE->getInit();
2149
2150  Init = Init->IgnoreParens();
2151
2152  if (Init->isEvaluatable(Context))
2153    return false;
2154
2155  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2156  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2157    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2158
2159  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2160    return CheckForConstantInitializer(e->getInitializer(), DclT);
2161
2162  if (isa<ImplicitValueInitExpr>(Init)) {
2163    // FIXME: In C++, check for non-POD types.
2164    return false;
2165  }
2166
2167  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2168    unsigned numInits = Exp->getNumInits();
2169    for (unsigned i = 0; i < numInits; i++) {
2170      // FIXME: Need to get the type of the declaration for C++,
2171      // because it could be a reference?
2172
2173      if (CheckForConstantInitializer(Exp->getInit(i),
2174                                      Exp->getInit(i)->getType()))
2175        return true;
2176    }
2177    return false;
2178  }
2179
2180  // FIXME: We can probably remove some of this code below, now that
2181  // Expr::Evaluate is doing the heavy lifting for scalars.
2182
2183  if (Init->isNullPointerConstant(Context))
2184    return false;
2185  if (Init->getType()->isArithmeticType()) {
2186    QualType InitTy = Context.getCanonicalType(Init->getType())
2187                             .getUnqualifiedType();
2188    if (InitTy == Context.BoolTy) {
2189      // Special handling for pointers implicitly cast to bool;
2190      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2191      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2192        Expr* SubE = ICE->getSubExpr();
2193        if (SubE->getType()->isPointerType() ||
2194            SubE->getType()->isArrayType() ||
2195            SubE->getType()->isFunctionType()) {
2196          return CheckAddressConstantExpression(Init);
2197        }
2198      }
2199    } else if (InitTy->isIntegralType()) {
2200      Expr* SubE = 0;
2201      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2202        SubE = CE->getSubExpr();
2203      // Special check for pointer cast to int; we allow as an extension
2204      // an address constant cast to an integer if the integer
2205      // is of an appropriate width (this sort of code is apparently used
2206      // in some places).
2207      // FIXME: Add pedwarn?
2208      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2209      if (SubE && (SubE->getType()->isPointerType() ||
2210                   SubE->getType()->isArrayType() ||
2211                   SubE->getType()->isFunctionType())) {
2212        unsigned IntWidth = Context.getTypeSize(Init->getType());
2213        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2214        if (IntWidth >= PointerWidth)
2215          return CheckAddressConstantExpression(Init);
2216      }
2217    }
2218
2219    return CheckArithmeticConstantExpression(Init);
2220  }
2221
2222  if (Init->getType()->isPointerType())
2223    return CheckAddressConstantExpression(Init);
2224
2225  // An array type at the top level that isn't an init-list must
2226  // be a string literal
2227  if (Init->getType()->isArrayType())
2228    return false;
2229
2230  if (Init->getType()->isFunctionType())
2231    return false;
2232
2233  // Allow block exprs at top level.
2234  if (Init->getType()->isBlockPointerType())
2235    return false;
2236
2237  // GCC cast to union extension
2238  // note: the validity of the cast expr is checked by CheckCastTypes()
2239  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2240    QualType T = C->getType();
2241    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2242  }
2243
2244  InitializerElementNotConstant(Init);
2245  return true;
2246}
2247
2248void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2249  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2250}
2251
2252/// AddInitializerToDecl - Adds the initializer Init to the
2253/// declaration dcl. If DirectInit is true, this is C++ direct
2254/// initialization rather than copy initialization.
2255void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2256  Decl *RealDecl = static_cast<Decl *>(dcl);
2257  Expr *Init = static_cast<Expr *>(init.release());
2258  assert(Init && "missing initializer");
2259
2260  // If there is no declaration, there was an error parsing it.  Just ignore
2261  // the initializer.
2262  if (RealDecl == 0) {
2263    delete Init;
2264    return;
2265  }
2266
2267  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2268  if (!VDecl) {
2269    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2270    RealDecl->setInvalidDecl();
2271    return;
2272  }
2273  // Get the decls type and save a reference for later, since
2274  // CheckInitializerTypes may change it.
2275  QualType DclT = VDecl->getType(), SavT = DclT;
2276  if (VDecl->isBlockVarDecl()) {
2277    VarDecl::StorageClass SC = VDecl->getStorageClass();
2278    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2279      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2280      VDecl->setInvalidDecl();
2281    } else if (!VDecl->isInvalidDecl()) {
2282      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2283                                VDecl->getDeclName(), DirectInit))
2284        VDecl->setInvalidDecl();
2285
2286      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2287      if (!getLangOptions().CPlusPlus) {
2288        if (SC == VarDecl::Static) // C99 6.7.8p4.
2289          CheckForConstantInitializer(Init, DclT);
2290      }
2291    }
2292  } else if (VDecl->isFileVarDecl()) {
2293    if (VDecl->getStorageClass() == VarDecl::Extern)
2294      Diag(VDecl->getLocation(), diag::warn_extern_init);
2295    if (!VDecl->isInvalidDecl())
2296      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2297                                VDecl->getDeclName(), DirectInit))
2298        VDecl->setInvalidDecl();
2299
2300    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2301    if (!getLangOptions().CPlusPlus) {
2302      // C99 6.7.8p4. All file scoped initializers need to be constant.
2303      CheckForConstantInitializer(Init, DclT);
2304    }
2305  }
2306  // If the type changed, it means we had an incomplete type that was
2307  // completed by the initializer. For example:
2308  //   int ary[] = { 1, 3, 5 };
2309  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2310  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2311    VDecl->setType(DclT);
2312    Init->setType(DclT);
2313  }
2314
2315  // Attach the initializer to the decl.
2316  VDecl->setInit(Init);
2317  return;
2318}
2319
2320void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2321  Decl *RealDecl = static_cast<Decl *>(dcl);
2322
2323  // If there is no declaration, there was an error parsing it. Just ignore it.
2324  if (RealDecl == 0)
2325    return;
2326
2327  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2328    QualType Type = Var->getType();
2329    // C++ [dcl.init.ref]p3:
2330    //   The initializer can be omitted for a reference only in a
2331    //   parameter declaration (8.3.5), in the declaration of a
2332    //   function return type, in the declaration of a class member
2333    //   within its class declaration (9.2), and where the extern
2334    //   specifier is explicitly used.
2335    if (Type->isReferenceType() &&
2336        Var->getStorageClass() != VarDecl::Extern &&
2337        Var->getStorageClass() != VarDecl::PrivateExtern) {
2338      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2339        << Var->getDeclName()
2340        << SourceRange(Var->getLocation(), Var->getLocation());
2341      Var->setInvalidDecl();
2342      return;
2343    }
2344
2345    // C++ [dcl.init]p9:
2346    //
2347    //   If no initializer is specified for an object, and the object
2348    //   is of (possibly cv-qualified) non-POD class type (or array
2349    //   thereof), the object shall be default-initialized; if the
2350    //   object is of const-qualified type, the underlying class type
2351    //   shall have a user-declared default constructor.
2352    if (getLangOptions().CPlusPlus) {
2353      QualType InitType = Type;
2354      if (const ArrayType *Array = Context.getAsArrayType(Type))
2355        InitType = Array->getElementType();
2356      if (Var->getStorageClass() != VarDecl::Extern &&
2357          Var->getStorageClass() != VarDecl::PrivateExtern &&
2358          InitType->isRecordType()) {
2359        const CXXConstructorDecl *Constructor
2360          = PerformInitializationByConstructor(InitType, 0, 0,
2361                                               Var->getLocation(),
2362                                               SourceRange(Var->getLocation(),
2363                                                           Var->getLocation()),
2364                                               Var->getDeclName(),
2365                                               IK_Default);
2366        if (!Constructor)
2367          Var->setInvalidDecl();
2368      }
2369    }
2370
2371#if 0
2372    // FIXME: Temporarily disabled because we are not properly parsing
2373    // linkage specifications on declarations, e.g.,
2374    //
2375    //   extern "C" const CGPoint CGPointerZero;
2376    //
2377    // C++ [dcl.init]p9:
2378    //
2379    //     If no initializer is specified for an object, and the
2380    //     object is of (possibly cv-qualified) non-POD class type (or
2381    //     array thereof), the object shall be default-initialized; if
2382    //     the object is of const-qualified type, the underlying class
2383    //     type shall have a user-declared default
2384    //     constructor. Otherwise, if no initializer is specified for
2385    //     an object, the object and its subobjects, if any, have an
2386    //     indeterminate initial value; if the object or any of its
2387    //     subobjects are of const-qualified type, the program is
2388    //     ill-formed.
2389    //
2390    // This isn't technically an error in C, so we don't diagnose it.
2391    //
2392    // FIXME: Actually perform the POD/user-defined default
2393    // constructor check.
2394    if (getLangOptions().CPlusPlus &&
2395        Context.getCanonicalType(Type).isConstQualified() &&
2396        Var->getStorageClass() != VarDecl::Extern)
2397      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2398        << Var->getName()
2399        << SourceRange(Var->getLocation(), Var->getLocation());
2400#endif
2401  }
2402}
2403
2404/// The declarators are chained together backwards, reverse the list.
2405Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2406  // Often we have single declarators, handle them quickly.
2407  Decl *GroupDecl = static_cast<Decl*>(group);
2408  if (GroupDecl == 0)
2409    return 0;
2410
2411  Decl *Group = dyn_cast<Decl>(GroupDecl);
2412  Decl *NewGroup = 0;
2413  if (Group->getNextDeclarator() == 0)
2414    NewGroup = Group;
2415  else { // reverse the list.
2416    while (Group) {
2417      Decl *Next = Group->getNextDeclarator();
2418      Group->setNextDeclarator(NewGroup);
2419      NewGroup = Group;
2420      Group = Next;
2421    }
2422  }
2423  // Perform semantic analysis that depends on having fully processed both
2424  // the declarator and initializer.
2425  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2426    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2427    if (!IDecl)
2428      continue;
2429    QualType T = IDecl->getType();
2430
2431    if (T->isVariableArrayType()) {
2432      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2433
2434      // FIXME: This won't give the correct result for
2435      // int a[10][n];
2436      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2437      if (IDecl->isFileVarDecl()) {
2438        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2439          SizeRange;
2440
2441        IDecl->setInvalidDecl();
2442      } else {
2443        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2444        // static storage duration, it shall not have a variable length array.
2445        if (IDecl->getStorageClass() == VarDecl::Static) {
2446          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2447            << SizeRange;
2448          IDecl->setInvalidDecl();
2449        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2450          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2451            << SizeRange;
2452          IDecl->setInvalidDecl();
2453        }
2454      }
2455    } else if (T->isVariablyModifiedType()) {
2456      if (IDecl->isFileVarDecl()) {
2457        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2458        IDecl->setInvalidDecl();
2459      } else {
2460        if (IDecl->getStorageClass() == VarDecl::Extern) {
2461          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2462          IDecl->setInvalidDecl();
2463        }
2464      }
2465    }
2466
2467    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2468    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2469    if (IDecl->isBlockVarDecl() &&
2470        IDecl->getStorageClass() != VarDecl::Extern) {
2471      if (!IDecl->isInvalidDecl() &&
2472          DiagnoseIncompleteType(IDecl->getLocation(), T,
2473                                 diag::err_typecheck_decl_incomplete_type))
2474        IDecl->setInvalidDecl();
2475    }
2476    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2477    // object that has file scope without an initializer, and without a
2478    // storage-class specifier or with the storage-class specifier "static",
2479    // constitutes a tentative definition. Note: A tentative definition with
2480    // external linkage is valid (C99 6.2.2p5).
2481    if (isTentativeDefinition(IDecl)) {
2482      if (T->isIncompleteArrayType()) {
2483        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2484        // array to be completed. Don't issue a diagnostic.
2485      } else if (!IDecl->isInvalidDecl() &&
2486                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2487                                        diag::err_typecheck_decl_incomplete_type))
2488        // C99 6.9.2p3: If the declaration of an identifier for an object is
2489        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2490        // declared type shall not be an incomplete type.
2491        IDecl->setInvalidDecl();
2492    }
2493    if (IDecl->isFileVarDecl())
2494      CheckForFileScopedRedefinitions(S, IDecl);
2495  }
2496  return NewGroup;
2497}
2498
2499/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2500/// to introduce parameters into function prototype scope.
2501Sema::DeclTy *
2502Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2503  const DeclSpec &DS = D.getDeclSpec();
2504
2505  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2506  VarDecl::StorageClass StorageClass = VarDecl::None;
2507  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2508    StorageClass = VarDecl::Register;
2509  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2510    Diag(DS.getStorageClassSpecLoc(),
2511         diag::err_invalid_storage_class_in_func_decl);
2512    D.getMutableDeclSpec().ClearStorageClassSpecs();
2513  }
2514  if (DS.isThreadSpecified()) {
2515    Diag(DS.getThreadSpecLoc(),
2516         diag::err_invalid_storage_class_in_func_decl);
2517    D.getMutableDeclSpec().ClearStorageClassSpecs();
2518  }
2519
2520  // Check that there are no default arguments inside the type of this
2521  // parameter (C++ only).
2522  if (getLangOptions().CPlusPlus)
2523    CheckExtraCXXDefaultArguments(D);
2524
2525  // In this context, we *do not* check D.getInvalidType(). If the declarator
2526  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2527  // though it will not reflect the user specified type.
2528  QualType parmDeclType = GetTypeForDeclarator(D, S);
2529
2530  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2531
2532  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2533  // Can this happen for params?  We already checked that they don't conflict
2534  // among each other.  Here they can only shadow globals, which is ok.
2535  IdentifierInfo *II = D.getIdentifier();
2536  if (II) {
2537    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2538      if (PrevDecl->isTemplateParameter()) {
2539        // Maybe we will complain about the shadowed template parameter.
2540        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2541        // Just pretend that we didn't see the previous declaration.
2542        PrevDecl = 0;
2543      } else if (S->isDeclScope(PrevDecl)) {
2544        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2545
2546        // Recover by removing the name
2547        II = 0;
2548        D.SetIdentifier(0, D.getIdentifierLoc());
2549      }
2550    }
2551  }
2552
2553  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2554  // Doing the promotion here has a win and a loss. The win is the type for
2555  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2556  // code generator). The loss is the orginal type isn't preserved. For example:
2557  //
2558  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2559  //    int blockvardecl[5];
2560  //    sizeof(parmvardecl);  // size == 4
2561  //    sizeof(blockvardecl); // size == 20
2562  // }
2563  //
2564  // For expressions, all implicit conversions are captured using the
2565  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2566  //
2567  // FIXME: If a source translation tool needs to see the original type, then
2568  // we need to consider storing both types (in ParmVarDecl)...
2569  //
2570  if (parmDeclType->isArrayType()) {
2571    // int x[restrict 4] ->  int *restrict
2572    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2573  } else if (parmDeclType->isFunctionType())
2574    parmDeclType = Context.getPointerType(parmDeclType);
2575
2576  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2577                                         D.getIdentifierLoc(), II,
2578                                         parmDeclType, StorageClass,
2579                                         0);
2580
2581  if (D.getInvalidType())
2582    New->setInvalidDecl();
2583
2584  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2585  if (D.getCXXScopeSpec().isSet()) {
2586    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2587      << D.getCXXScopeSpec().getRange();
2588    New->setInvalidDecl();
2589  }
2590
2591  // Add the parameter declaration into this scope.
2592  S->AddDecl(New);
2593  if (II)
2594    IdResolver.AddDecl(New);
2595
2596  ProcessDeclAttributes(New, D);
2597  return New;
2598
2599}
2600
2601void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2602  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2603         "Not a function declarator!");
2604  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2605
2606  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2607  // for a K&R function.
2608  if (!FTI.hasPrototype) {
2609    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2610      if (FTI.ArgInfo[i].Param == 0) {
2611        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2612          << FTI.ArgInfo[i].Ident;
2613        // Implicitly declare the argument as type 'int' for lack of a better
2614        // type.
2615        DeclSpec DS;
2616        const char* PrevSpec; // unused
2617        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2618                           PrevSpec);
2619        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2620        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2621        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2622      }
2623    }
2624  }
2625}
2626
2627Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2628  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2629  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2630         "Not a function declarator!");
2631  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2632
2633  if (FTI.hasPrototype) {
2634    // FIXME: Diagnose arguments without names in C.
2635  }
2636
2637  Scope *ParentScope = FnBodyScope->getParent();
2638
2639  return ActOnStartOfFunctionDef(FnBodyScope,
2640                                 ActOnDeclarator(ParentScope, D, 0,
2641                                                 /*IsFunctionDefinition=*/true));
2642}
2643
2644Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2645  Decl *decl = static_cast<Decl*>(D);
2646  FunctionDecl *FD = cast<FunctionDecl>(decl);
2647
2648  // See if this is a redefinition.
2649  const FunctionDecl *Definition;
2650  if (FD->getBody(Definition)) {
2651    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2652    Diag(Definition->getLocation(), diag::note_previous_definition);
2653  }
2654
2655  PushDeclContext(FnBodyScope, FD);
2656
2657  // Check the validity of our function parameters
2658  CheckParmsForFunctionDef(FD);
2659
2660  // Introduce our parameters into the function scope
2661  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2662    ParmVarDecl *Param = FD->getParamDecl(p);
2663    Param->setOwningFunction(FD);
2664
2665    // If this has an identifier, add it to the scope stack.
2666    if (Param->getIdentifier())
2667      PushOnScopeChains(Param, FnBodyScope);
2668  }
2669
2670  // Checking attributes of current function definition
2671  // dllimport attribute.
2672  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2673    // dllimport attribute cannot be applied to definition.
2674    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2675      Diag(FD->getLocation(),
2676           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2677        << "dllimport";
2678      FD->setInvalidDecl();
2679      return FD;
2680    } else {
2681      // If a symbol previously declared dllimport is later defined, the
2682      // attribute is ignored in subsequent references, and a warning is
2683      // emitted.
2684      Diag(FD->getLocation(),
2685           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2686        << FD->getNameAsCString() << "dllimport";
2687    }
2688  }
2689  return FD;
2690}
2691
2692Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2693  Decl *dcl = static_cast<Decl *>(D);
2694  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2695  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2696    FD->setBody(Body);
2697    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2698  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2699    MD->setBody((Stmt*)Body);
2700  } else
2701    return 0;
2702  PopDeclContext();
2703  // Verify and clean out per-function state.
2704
2705  // Check goto/label use.
2706  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2707       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2708    // Verify that we have no forward references left.  If so, there was a goto
2709    // or address of a label taken, but no definition of it.  Label fwd
2710    // definitions are indicated with a null substmt.
2711    if (I->second->getSubStmt() == 0) {
2712      LabelStmt *L = I->second;
2713      // Emit error.
2714      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2715
2716      // At this point, we have gotos that use the bogus label.  Stitch it into
2717      // the function body so that they aren't leaked and that the AST is well
2718      // formed.
2719      if (Body) {
2720        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2721        cast<CompoundStmt>(Body)->push_back(L);
2722      } else {
2723        // The whole function wasn't parsed correctly, just delete this.
2724        delete L;
2725      }
2726    }
2727  }
2728  LabelMap.clear();
2729
2730  return D;
2731}
2732
2733/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2734/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2735NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2736                                          IdentifierInfo &II, Scope *S) {
2737  // Extension in C99.  Legal in C90, but warn about it.
2738  if (getLangOptions().C99)
2739    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2740  else
2741    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2742
2743  // FIXME: handle stuff like:
2744  // void foo() { extern float X(); }
2745  // void bar() { X(); }  <-- implicit decl for X in another scope.
2746
2747  // Set a Declarator for the implicit definition: int foo();
2748  const char *Dummy;
2749  DeclSpec DS;
2750  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2751  Error = Error; // Silence warning.
2752  assert(!Error && "Error setting up implicit decl!");
2753  Declarator D(DS, Declarator::BlockContext);
2754  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2755  D.SetIdentifier(&II, Loc);
2756
2757  // Insert this function into translation-unit scope.
2758
2759  DeclContext *PrevDC = CurContext;
2760  CurContext = Context.getTranslationUnitDecl();
2761
2762  FunctionDecl *FD =
2763    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2764  FD->setImplicit();
2765
2766  CurContext = PrevDC;
2767
2768  return FD;
2769}
2770
2771
2772TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2773                                    Decl *LastDeclarator) {
2774  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2775  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2776
2777  // Scope manipulation handled by caller.
2778  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2779                                           D.getIdentifierLoc(),
2780                                           D.getIdentifier(),
2781                                           T);
2782  NewTD->setNextDeclarator(LastDeclarator);
2783  if (D.getInvalidType())
2784    NewTD->setInvalidDecl();
2785  return NewTD;
2786}
2787
2788/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2789/// former case, Name will be non-null.  In the later case, Name will be null.
2790/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2791/// reference/declaration/definition of a tag.
2792Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2793                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2794                             IdentifierInfo *Name, SourceLocation NameLoc,
2795                             AttributeList *Attr) {
2796  // If this is not a definition, it must have a name.
2797  assert((Name != 0 || TK == TK_Definition) &&
2798         "Nameless record must be a definition!");
2799
2800  TagDecl::TagKind Kind;
2801  switch (TagSpec) {
2802  default: assert(0 && "Unknown tag type!");
2803  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2804  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2805  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2806  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2807  }
2808
2809  DeclContext *SearchDC = CurContext;
2810  DeclContext *DC = CurContext;
2811  NamedDecl *PrevDecl = 0;
2812
2813  bool Invalid = false;
2814
2815  if (Name && SS.isNotEmpty()) {
2816    // We have a nested-name tag ('struct foo::bar').
2817
2818    // Check for invalid 'foo::'.
2819    if (SS.isInvalid()) {
2820      Name = 0;
2821      goto CreateNewDecl;
2822    }
2823
2824    DC = static_cast<DeclContext*>(SS.getScopeRep());
2825    SearchDC = DC;
2826    // Look-up name inside 'foo::'.
2827    PrevDecl = dyn_cast_or_null<TagDecl>(
2828                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2829
2830    // A tag 'foo::bar' must already exist.
2831    if (PrevDecl == 0) {
2832      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2833      Name = 0;
2834      goto CreateNewDecl;
2835    }
2836  } else if (Name) {
2837    // If this is a named struct, check to see if there was a previous forward
2838    // declaration or definition.
2839    // FIXME: We're looking into outer scopes here, even when we
2840    // shouldn't be. Doing so can result in ambiguities that we
2841    // shouldn't be diagnosing.
2842    LookupResult R = LookupName(S, Name, LookupTagName,
2843                                /*RedeclarationOnly=*/(TK != TK_Reference));
2844    if (R.isAmbiguous()) {
2845      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2846      // FIXME: This is not best way to recover from case like:
2847      //
2848      // struct S s;
2849      //
2850      // causes needless err_ovl_no_viable_function_in_init latter.
2851      Name = 0;
2852      PrevDecl = 0;
2853      Invalid = true;
2854    }
2855    else
2856      PrevDecl = R;
2857
2858    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2859      // FIXME: This makes sure that we ignore the contexts associated
2860      // with C structs, unions, and enums when looking for a matching
2861      // tag declaration or definition. See the similar lookup tweak
2862      // in Sema::LookupName; is there a better way to deal with this?
2863      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2864        SearchDC = SearchDC->getParent();
2865    }
2866  }
2867
2868  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2869    // Maybe we will complain about the shadowed template parameter.
2870    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2871    // Just pretend that we didn't see the previous declaration.
2872    PrevDecl = 0;
2873  }
2874
2875  if (PrevDecl) {
2876    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2877      // If this is a use of a previous tag, or if the tag is already declared
2878      // in the same scope (so that the definition/declaration completes or
2879      // rementions the tag), reuse the decl.
2880      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2881        // Make sure that this wasn't declared as an enum and now used as a
2882        // struct or something similar.
2883        if (PrevTagDecl->getTagKind() != Kind) {
2884          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2885          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2886          // Recover by making this an anonymous redefinition.
2887          Name = 0;
2888          PrevDecl = 0;
2889          Invalid = true;
2890        } else {
2891          // If this is a use, just return the declaration we found.
2892
2893          // FIXME: In the future, return a variant or some other clue
2894          // for the consumer of this Decl to know it doesn't own it.
2895          // For our current ASTs this shouldn't be a problem, but will
2896          // need to be changed with DeclGroups.
2897          if (TK == TK_Reference)
2898            return PrevDecl;
2899
2900          // Diagnose attempts to redefine a tag.
2901          if (TK == TK_Definition) {
2902            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2903              Diag(NameLoc, diag::err_redefinition) << Name;
2904              Diag(Def->getLocation(), diag::note_previous_definition);
2905              // If this is a redefinition, recover by making this
2906              // struct be anonymous, which will make any later
2907              // references get the previous definition.
2908              Name = 0;
2909              PrevDecl = 0;
2910              Invalid = true;
2911            } else {
2912              // If the type is currently being defined, complain
2913              // about a nested redefinition.
2914              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2915              if (Tag->isBeingDefined()) {
2916                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2917                Diag(PrevTagDecl->getLocation(),
2918                     diag::note_previous_definition);
2919                Name = 0;
2920                PrevDecl = 0;
2921                Invalid = true;
2922              }
2923            }
2924
2925            // Okay, this is definition of a previously declared or referenced
2926            // tag PrevDecl. We're going to create a new Decl for it.
2927          }
2928        }
2929        // If we get here we have (another) forward declaration or we
2930        // have a definition.  Just create a new decl.
2931      } else {
2932        // If we get here, this is a definition of a new tag type in a nested
2933        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2934        // new decl/type.  We set PrevDecl to NULL so that the entities
2935        // have distinct types.
2936        PrevDecl = 0;
2937      }
2938      // If we get here, we're going to create a new Decl. If PrevDecl
2939      // is non-NULL, it's a definition of the tag declared by
2940      // PrevDecl. If it's NULL, we have a new definition.
2941    } else {
2942      // PrevDecl is a namespace, template, or anything else
2943      // that lives in the IDNS_Tag identifier namespace.
2944      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2945        // The tag name clashes with a namespace name, issue an error and
2946        // recover by making this tag be anonymous.
2947        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2948        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2949        Name = 0;
2950        PrevDecl = 0;
2951        Invalid = true;
2952      } else {
2953        // The existing declaration isn't relevant to us; we're in a
2954        // new scope, so clear out the previous declaration.
2955        PrevDecl = 0;
2956      }
2957    }
2958  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2959             (Kind != TagDecl::TK_enum))  {
2960    // C++ [basic.scope.pdecl]p5:
2961    //   -- for an elaborated-type-specifier of the form
2962    //
2963    //          class-key identifier
2964    //
2965    //      if the elaborated-type-specifier is used in the
2966    //      decl-specifier-seq or parameter-declaration-clause of a
2967    //      function defined in namespace scope, the identifier is
2968    //      declared as a class-name in the namespace that contains
2969    //      the declaration; otherwise, except as a friend
2970    //      declaration, the identifier is declared in the smallest
2971    //      non-class, non-function-prototype scope that contains the
2972    //      declaration.
2973    //
2974    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2975    // C structs and unions.
2976
2977    // Find the context where we'll be declaring the tag.
2978    // FIXME: We would like to maintain the current DeclContext as the
2979    // lexical context,
2980    while (SearchDC->isRecord())
2981      SearchDC = SearchDC->getParent();
2982
2983    // Find the scope where we'll be declaring the tag.
2984    while (S->isClassScope() ||
2985           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2986           ((S->getFlags() & Scope::DeclScope) == 0) ||
2987           (S->getEntity() &&
2988            ((DeclContext *)S->getEntity())->isTransparentContext()))
2989      S = S->getParent();
2990  }
2991
2992CreateNewDecl:
2993
2994  // If there is an identifier, use the location of the identifier as the
2995  // location of the decl, otherwise use the location of the struct/union
2996  // keyword.
2997  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2998
2999  // Otherwise, create a new declaration. If there is a previous
3000  // declaration of the same entity, the two will be linked via
3001  // PrevDecl.
3002  TagDecl *New;
3003
3004  if (Kind == TagDecl::TK_enum) {
3005    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3006    // enum X { A, B, C } D;    D should chain to X.
3007    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3008                           cast_or_null<EnumDecl>(PrevDecl));
3009    // If this is an undefined enum, warn.
3010    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3011  } else {
3012    // struct/union/class
3013
3014    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3015    // struct X { int A; } D;    D should chain to X.
3016    if (getLangOptions().CPlusPlus)
3017      // FIXME: Look for a way to use RecordDecl for simple structs.
3018      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3019                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3020    else
3021      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3022                               cast_or_null<RecordDecl>(PrevDecl));
3023  }
3024
3025  if (Kind != TagDecl::TK_enum) {
3026    // Handle #pragma pack: if the #pragma pack stack has non-default
3027    // alignment, make up a packed attribute for this decl. These
3028    // attributes are checked when the ASTContext lays out the
3029    // structure.
3030    //
3031    // It is important for implementing the correct semantics that this
3032    // happen here (in act on tag decl). The #pragma pack stack is
3033    // maintained as a result of parser callbacks which can occur at
3034    // many points during the parsing of a struct declaration (because
3035    // the #pragma tokens are effectively skipped over during the
3036    // parsing of the struct).
3037    if (unsigned Alignment = PackContext.getAlignment())
3038      New->addAttr(new PackedAttr(Alignment * 8));
3039  }
3040
3041  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3042    // C++ [dcl.typedef]p3:
3043    //   [...] Similarly, in a given scope, a class or enumeration
3044    //   shall not be declared with the same name as a typedef-name
3045    //   that is declared in that scope and refers to a type other
3046    //   than the class or enumeration itself.
3047    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3048    TypedefDecl *PrevTypedef = 0;
3049    if (Lookup.getKind() == LookupResult::Found)
3050      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3051
3052    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3053        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3054          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3055      Diag(Loc, diag::err_tag_definition_of_typedef)
3056        << Context.getTypeDeclType(New)
3057        << PrevTypedef->getUnderlyingType();
3058      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3059      Invalid = true;
3060    }
3061  }
3062
3063  if (Invalid)
3064    New->setInvalidDecl();
3065
3066  if (Attr)
3067    ProcessDeclAttributeList(New, Attr);
3068
3069  // If we're declaring or defining a tag in function prototype scope
3070  // in C, note that this type can only be used within the function.
3071  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3072    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3073
3074  // Set the lexical context. If the tag has a C++ scope specifier, the
3075  // lexical context will be different from the semantic context.
3076  New->setLexicalDeclContext(CurContext);
3077
3078  if (TK == TK_Definition)
3079    New->startDefinition();
3080
3081  // If this has an identifier, add it to the scope stack.
3082  if (Name) {
3083    S = getNonFieldDeclScope(S);
3084    PushOnScopeChains(New, S);
3085  } else {
3086    CurContext->addDecl(New);
3087  }
3088
3089  return New;
3090}
3091
3092void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3093  AdjustDeclIfTemplate(TagD);
3094  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3095
3096  // Enter the tag context.
3097  PushDeclContext(S, Tag);
3098
3099  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3100    FieldCollector->StartClass();
3101
3102    if (Record->getIdentifier()) {
3103      // C++ [class]p2:
3104      //   [...] The class-name is also inserted into the scope of the
3105      //   class itself; this is known as the injected-class-name. For
3106      //   purposes of access checking, the injected-class-name is treated
3107      //   as if it were a public member name.
3108      RecordDecl *InjectedClassName
3109        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3110                                CurContext, Record->getLocation(),
3111                                Record->getIdentifier(), Record);
3112      InjectedClassName->setImplicit();
3113      PushOnScopeChains(InjectedClassName, S);
3114    }
3115  }
3116}
3117
3118void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3119  AdjustDeclIfTemplate(TagD);
3120  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3121
3122  if (isa<CXXRecordDecl>(Tag))
3123    FieldCollector->FinishClass();
3124
3125  // Exit this scope of this tag's definition.
3126  PopDeclContext();
3127
3128  // Notify the consumer that we've defined a tag.
3129  Consumer.HandleTagDeclDefinition(Tag);
3130}
3131
3132/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3133/// types into constant array types in certain situations which would otherwise
3134/// be errors (for GCC compatibility).
3135static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3136                                                    ASTContext &Context) {
3137  // This method tries to turn a variable array into a constant
3138  // array even when the size isn't an ICE.  This is necessary
3139  // for compatibility with code that depends on gcc's buggy
3140  // constant expression folding, like struct {char x[(int)(char*)2];}
3141  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3142  if (!VLATy) return QualType();
3143
3144  Expr::EvalResult EvalResult;
3145  if (!VLATy->getSizeExpr() ||
3146      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3147    return QualType();
3148
3149  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3150  llvm::APSInt &Res = EvalResult.Val.getInt();
3151  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3152    return Context.getConstantArrayType(VLATy->getElementType(),
3153                                        Res, ArrayType::Normal, 0);
3154  return QualType();
3155}
3156
3157bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3158                          QualType FieldTy, const Expr *BitWidth) {
3159  // FIXME: 6.7.2.1p4 - verify the field type.
3160
3161  llvm::APSInt Value;
3162  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3163    return true;
3164
3165  // Zero-width bitfield is ok for anonymous field.
3166  if (Value == 0 && FieldName)
3167    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3168
3169  if (Value.isNegative())
3170    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3171
3172  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3173  // FIXME: We won't need the 0 size once we check that the field type is valid.
3174  if (TypeSize && Value.getZExtValue() > TypeSize)
3175    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3176       << FieldName << (unsigned)TypeSize;
3177
3178  return false;
3179}
3180
3181/// ActOnField - Each field of a struct/union/class is passed into this in order
3182/// to create a FieldDecl object for it.
3183Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3184                               SourceLocation DeclStart,
3185                               Declarator &D, ExprTy *BitfieldWidth) {
3186  IdentifierInfo *II = D.getIdentifier();
3187  Expr *BitWidth = (Expr*)BitfieldWidth;
3188  SourceLocation Loc = DeclStart;
3189  RecordDecl *Record = (RecordDecl *)TagD;
3190  if (II) Loc = D.getIdentifierLoc();
3191
3192  // FIXME: Unnamed fields can be handled in various different ways, for
3193  // example, unnamed unions inject all members into the struct namespace!
3194
3195  QualType T = GetTypeForDeclarator(D, S);
3196  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3197  bool InvalidDecl = false;
3198
3199  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3200  // than a variably modified type.
3201  if (T->isVariablyModifiedType()) {
3202    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3203    if (!FixedTy.isNull()) {
3204      Diag(Loc, diag::warn_illegal_constant_array_size);
3205      T = FixedTy;
3206    } else {
3207      Diag(Loc, diag::err_typecheck_field_variable_size);
3208      T = Context.IntTy;
3209      InvalidDecl = true;
3210    }
3211  }
3212
3213  if (BitWidth) {
3214    if (VerifyBitField(Loc, II, T, BitWidth))
3215      InvalidDecl = true;
3216  } else {
3217    // Not a bitfield.
3218
3219    // validate II.
3220
3221  }
3222
3223  // FIXME: Chain fielddecls together.
3224  FieldDecl *NewFD;
3225
3226  NewFD = FieldDecl::Create(Context, Record,
3227                            Loc, II, T, BitWidth,
3228                            D.getDeclSpec().getStorageClassSpec() ==
3229                              DeclSpec::SCS_mutable);
3230
3231  if (II) {
3232    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3233    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3234        && !isa<TagDecl>(PrevDecl)) {
3235      Diag(Loc, diag::err_duplicate_member) << II;
3236      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3237      NewFD->setInvalidDecl();
3238      Record->setInvalidDecl();
3239    }
3240  }
3241
3242  if (getLangOptions().CPlusPlus) {
3243    CheckExtraCXXDefaultArguments(D);
3244    if (!T->isPODType())
3245      cast<CXXRecordDecl>(Record)->setPOD(false);
3246  }
3247
3248  ProcessDeclAttributes(NewFD, D);
3249
3250  if (D.getInvalidType() || InvalidDecl)
3251    NewFD->setInvalidDecl();
3252
3253  if (II) {
3254    PushOnScopeChains(NewFD, S);
3255  } else
3256    Record->addDecl(NewFD);
3257
3258  return NewFD;
3259}
3260
3261/// TranslateIvarVisibility - Translate visibility from a token ID to an
3262///  AST enum value.
3263static ObjCIvarDecl::AccessControl
3264TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3265  switch (ivarVisibility) {
3266  default: assert(0 && "Unknown visitibility kind");
3267  case tok::objc_private: return ObjCIvarDecl::Private;
3268  case tok::objc_public: return ObjCIvarDecl::Public;
3269  case tok::objc_protected: return ObjCIvarDecl::Protected;
3270  case tok::objc_package: return ObjCIvarDecl::Package;
3271  }
3272}
3273
3274/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3275/// in order to create an IvarDecl object for it.
3276Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3277                              SourceLocation DeclStart,
3278                              Declarator &D, ExprTy *BitfieldWidth,
3279                              tok::ObjCKeywordKind Visibility) {
3280
3281  IdentifierInfo *II = D.getIdentifier();
3282  Expr *BitWidth = (Expr*)BitfieldWidth;
3283  SourceLocation Loc = DeclStart;
3284  if (II) Loc = D.getIdentifierLoc();
3285
3286  // FIXME: Unnamed fields can be handled in various different ways, for
3287  // example, unnamed unions inject all members into the struct namespace!
3288
3289  QualType T = GetTypeForDeclarator(D, S);
3290  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3291  bool InvalidDecl = false;
3292
3293  if (BitWidth) {
3294    // TODO: Validate.
3295    //printf("WARNING: BITFIELDS IGNORED!\n");
3296
3297    // 6.7.2.1p3
3298    // 6.7.2.1p4
3299
3300  } else {
3301    // Not a bitfield.
3302
3303    // validate II.
3304
3305  }
3306
3307  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3308  // than a variably modified type.
3309  if (T->isVariablyModifiedType()) {
3310    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3311    InvalidDecl = true;
3312  }
3313
3314  // Get the visibility (access control) for this ivar.
3315  ObjCIvarDecl::AccessControl ac =
3316    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3317                                        : ObjCIvarDecl::None;
3318
3319  // Construct the decl.
3320  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3321                                             (Expr *)BitfieldWidth);
3322
3323  if (II) {
3324    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3325    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3326        && !isa<TagDecl>(PrevDecl)) {
3327      Diag(Loc, diag::err_duplicate_member) << II;
3328      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3329      NewID->setInvalidDecl();
3330    }
3331  }
3332
3333  // Process attributes attached to the ivar.
3334  ProcessDeclAttributes(NewID, D);
3335
3336  if (D.getInvalidType() || InvalidDecl)
3337    NewID->setInvalidDecl();
3338
3339  if (II) {
3340    // FIXME: When interfaces are DeclContexts, we'll need to add
3341    // these to the interface.
3342    S->AddDecl(NewID);
3343    IdResolver.AddDecl(NewID);
3344  }
3345
3346  return NewID;
3347}
3348
3349void Sema::ActOnFields(Scope* S,
3350                       SourceLocation RecLoc, DeclTy *RecDecl,
3351                       DeclTy **Fields, unsigned NumFields,
3352                       SourceLocation LBrac, SourceLocation RBrac,
3353                       AttributeList *Attr) {
3354  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3355  assert(EnclosingDecl && "missing record or interface decl");
3356  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3357
3358  // Verify that all the fields are okay.
3359  unsigned NumNamedMembers = 0;
3360  llvm::SmallVector<FieldDecl*, 32> RecFields;
3361
3362  for (unsigned i = 0; i != NumFields; ++i) {
3363    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3364    assert(FD && "missing field decl");
3365
3366    // Get the type for the field.
3367    Type *FDTy = FD->getType().getTypePtr();
3368
3369    if (!FD->isAnonymousStructOrUnion()) {
3370      // Remember all fields written by the user.
3371      RecFields.push_back(FD);
3372    }
3373
3374    // C99 6.7.2.1p2 - A field may not be a function type.
3375    if (FDTy->isFunctionType()) {
3376      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3377        << FD->getDeclName();
3378      FD->setInvalidDecl();
3379      EnclosingDecl->setInvalidDecl();
3380      continue;
3381    }
3382    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3383    if (FDTy->isIncompleteType()) {
3384      if (!Record) {  // Incomplete ivar type is always an error.
3385        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3386                               diag::err_field_incomplete);
3387        FD->setInvalidDecl();
3388        EnclosingDecl->setInvalidDecl();
3389        continue;
3390      }
3391      if (i != NumFields-1 ||                   // ... that the last member ...
3392          !Record->isStruct() ||  // ... of a structure ...
3393          !FDTy->isArrayType()) {         //... may have incomplete array type.
3394        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3395                               diag::err_field_incomplete);
3396        FD->setInvalidDecl();
3397        EnclosingDecl->setInvalidDecl();
3398        continue;
3399      }
3400      if (NumNamedMembers < 1) {  //... must have more than named member ...
3401        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3402          << FD->getDeclName();
3403        FD->setInvalidDecl();
3404        EnclosingDecl->setInvalidDecl();
3405        continue;
3406      }
3407      // Okay, we have a legal flexible array member at the end of the struct.
3408      if (Record)
3409        Record->setHasFlexibleArrayMember(true);
3410    }
3411    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3412    /// field of another structure or the element of an array.
3413    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3414      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3415        // If this is a member of a union, then entire union becomes "flexible".
3416        if (Record && Record->isUnion()) {
3417          Record->setHasFlexibleArrayMember(true);
3418        } else {
3419          // If this is a struct/class and this is not the last element, reject
3420          // it.  Note that GCC supports variable sized arrays in the middle of
3421          // structures.
3422          if (i != NumFields-1) {
3423            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3424              << FD->getDeclName();
3425            FD->setInvalidDecl();
3426            EnclosingDecl->setInvalidDecl();
3427            continue;
3428          }
3429          // We support flexible arrays at the end of structs in other structs
3430          // as an extension.
3431          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3432            << FD->getDeclName();
3433          if (Record)
3434            Record->setHasFlexibleArrayMember(true);
3435        }
3436      }
3437    }
3438    /// A field cannot be an Objective-c object
3439    if (FDTy->isObjCInterfaceType()) {
3440      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3441        << FD->getDeclName();
3442      FD->setInvalidDecl();
3443      EnclosingDecl->setInvalidDecl();
3444      continue;
3445    }
3446    // Keep track of the number of named members.
3447    if (FD->getIdentifier())
3448      ++NumNamedMembers;
3449  }
3450
3451  // Okay, we successfully defined 'Record'.
3452  if (Record) {
3453    Record->completeDefinition(Context);
3454  } else {
3455    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3456    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3457      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3458      // Must enforce the rule that ivars in the base classes may not be
3459      // duplicates.
3460      if (ID->getSuperClass()) {
3461        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3462             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3463          ObjCIvarDecl* Ivar = (*IVI);
3464          IdentifierInfo *II = Ivar->getIdentifier();
3465          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3466          if (prevIvar) {
3467            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3468            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3469          }
3470        }
3471      }
3472    }
3473    else if (ObjCImplementationDecl *IMPDecl =
3474               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3475      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3476      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3477      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3478    }
3479  }
3480
3481  if (Attr)
3482    ProcessDeclAttributeList(Record, Attr);
3483}
3484
3485Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3486                                      DeclTy *lastEnumConst,
3487                                      SourceLocation IdLoc, IdentifierInfo *Id,
3488                                      SourceLocation EqualLoc, ExprTy *val) {
3489  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3490  EnumConstantDecl *LastEnumConst =
3491    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3492  Expr *Val = static_cast<Expr*>(val);
3493
3494  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3495  // we find one that is.
3496  S = getNonFieldDeclScope(S);
3497
3498  // Verify that there isn't already something declared with this name in this
3499  // scope.
3500  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3501  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3502    // Maybe we will complain about the shadowed template parameter.
3503    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3504    // Just pretend that we didn't see the previous declaration.
3505    PrevDecl = 0;
3506  }
3507
3508  if (PrevDecl) {
3509    // When in C++, we may get a TagDecl with the same name; in this case the
3510    // enum constant will 'hide' the tag.
3511    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3512           "Received TagDecl when not in C++!");
3513    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3514      if (isa<EnumConstantDecl>(PrevDecl))
3515        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3516      else
3517        Diag(IdLoc, diag::err_redefinition) << Id;
3518      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3519      delete Val;
3520      return 0;
3521    }
3522  }
3523
3524  llvm::APSInt EnumVal(32);
3525  QualType EltTy;
3526  if (Val) {
3527    // Make sure to promote the operand type to int.
3528    UsualUnaryConversions(Val);
3529
3530    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3531    SourceLocation ExpLoc;
3532    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3533      delete Val;
3534      Val = 0;  // Just forget about it.
3535    } else {
3536      EltTy = Val->getType();
3537    }
3538  }
3539
3540  if (!Val) {
3541    if (LastEnumConst) {
3542      // Assign the last value + 1.
3543      EnumVal = LastEnumConst->getInitVal();
3544      ++EnumVal;
3545
3546      // Check for overflow on increment.
3547      if (EnumVal < LastEnumConst->getInitVal())
3548        Diag(IdLoc, diag::warn_enum_value_overflow);
3549
3550      EltTy = LastEnumConst->getType();
3551    } else {
3552      // First value, set to zero.
3553      EltTy = Context.IntTy;
3554      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3555    }
3556  }
3557
3558  EnumConstantDecl *New =
3559    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3560                             Val, EnumVal);
3561
3562  // Register this decl in the current scope stack.
3563  PushOnScopeChains(New, S);
3564
3565  return New;
3566}
3567
3568// FIXME: For consistency with ActOnFields(), we should have the parser
3569// pass in the source location for the left/right braces.
3570void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3571                         DeclTy **Elements, unsigned NumElements) {
3572  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3573  QualType EnumType = Context.getTypeDeclType(Enum);
3574
3575  // TODO: If the result value doesn't fit in an int, it must be a long or long
3576  // long value.  ISO C does not support this, but GCC does as an extension,
3577  // emit a warning.
3578  unsigned IntWidth = Context.Target.getIntWidth();
3579
3580  // Verify that all the values are okay, compute the size of the values, and
3581  // reverse the list.
3582  unsigned NumNegativeBits = 0;
3583  unsigned NumPositiveBits = 0;
3584
3585  // Keep track of whether all elements have type int.
3586  bool AllElementsInt = true;
3587
3588  for (unsigned i = 0; i != NumElements; ++i) {
3589    EnumConstantDecl *ECD =
3590      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3591    if (!ECD) continue;  // Already issued a diagnostic.
3592
3593    // If the enum value doesn't fit in an int, emit an extension warning.
3594    const llvm::APSInt &InitVal = ECD->getInitVal();
3595    assert(InitVal.getBitWidth() >= IntWidth &&
3596           "Should have promoted value to int");
3597    if (InitVal.getBitWidth() > IntWidth) {
3598      llvm::APSInt V(InitVal);
3599      V.trunc(IntWidth);
3600      V.extend(InitVal.getBitWidth());
3601      if (V != InitVal)
3602        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3603          << InitVal.toString(10);
3604    }
3605
3606    // Keep track of the size of positive and negative values.
3607    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3608      NumPositiveBits = std::max(NumPositiveBits,
3609                                 (unsigned)InitVal.getActiveBits());
3610    else
3611      NumNegativeBits = std::max(NumNegativeBits,
3612                                 (unsigned)InitVal.getMinSignedBits());
3613
3614    // Keep track of whether every enum element has type int (very commmon).
3615    if (AllElementsInt)
3616      AllElementsInt = ECD->getType() == Context.IntTy;
3617  }
3618
3619  // Figure out the type that should be used for this enum.
3620  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3621  QualType BestType;
3622  unsigned BestWidth;
3623
3624  if (NumNegativeBits) {
3625    // If there is a negative value, figure out the smallest integer type (of
3626    // int/long/longlong) that fits.
3627    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3628      BestType = Context.IntTy;
3629      BestWidth = IntWidth;
3630    } else {
3631      BestWidth = Context.Target.getLongWidth();
3632
3633      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3634        BestType = Context.LongTy;
3635      else {
3636        BestWidth = Context.Target.getLongLongWidth();
3637
3638        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3639          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3640        BestType = Context.LongLongTy;
3641      }
3642    }
3643  } else {
3644    // If there is no negative value, figure out which of uint, ulong, ulonglong
3645    // fits.
3646    if (NumPositiveBits <= IntWidth) {
3647      BestType = Context.UnsignedIntTy;
3648      BestWidth = IntWidth;
3649    } else if (NumPositiveBits <=
3650               (BestWidth = Context.Target.getLongWidth())) {
3651      BestType = Context.UnsignedLongTy;
3652    } else {
3653      BestWidth = Context.Target.getLongLongWidth();
3654      assert(NumPositiveBits <= BestWidth &&
3655             "How could an initializer get larger than ULL?");
3656      BestType = Context.UnsignedLongLongTy;
3657    }
3658  }
3659
3660  // Loop over all of the enumerator constants, changing their types to match
3661  // the type of the enum if needed.
3662  for (unsigned i = 0; i != NumElements; ++i) {
3663    EnumConstantDecl *ECD =
3664      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3665    if (!ECD) continue;  // Already issued a diagnostic.
3666
3667    // Standard C says the enumerators have int type, but we allow, as an
3668    // extension, the enumerators to be larger than int size.  If each
3669    // enumerator value fits in an int, type it as an int, otherwise type it the
3670    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3671    // that X has type 'int', not 'unsigned'.
3672    if (ECD->getType() == Context.IntTy) {
3673      // Make sure the init value is signed.
3674      llvm::APSInt IV = ECD->getInitVal();
3675      IV.setIsSigned(true);
3676      ECD->setInitVal(IV);
3677
3678      if (getLangOptions().CPlusPlus)
3679        // C++ [dcl.enum]p4: Following the closing brace of an
3680        // enum-specifier, each enumerator has the type of its
3681        // enumeration.
3682        ECD->setType(EnumType);
3683      continue;  // Already int type.
3684    }
3685
3686    // Determine whether the value fits into an int.
3687    llvm::APSInt InitVal = ECD->getInitVal();
3688    bool FitsInInt;
3689    if (InitVal.isUnsigned() || !InitVal.isNegative())
3690      FitsInInt = InitVal.getActiveBits() < IntWidth;
3691    else
3692      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3693
3694    // If it fits into an integer type, force it.  Otherwise force it to match
3695    // the enum decl type.
3696    QualType NewTy;
3697    unsigned NewWidth;
3698    bool NewSign;
3699    if (FitsInInt) {
3700      NewTy = Context.IntTy;
3701      NewWidth = IntWidth;
3702      NewSign = true;
3703    } else if (ECD->getType() == BestType) {
3704      // Already the right type!
3705      if (getLangOptions().CPlusPlus)
3706        // C++ [dcl.enum]p4: Following the closing brace of an
3707        // enum-specifier, each enumerator has the type of its
3708        // enumeration.
3709        ECD->setType(EnumType);
3710      continue;
3711    } else {
3712      NewTy = BestType;
3713      NewWidth = BestWidth;
3714      NewSign = BestType->isSignedIntegerType();
3715    }
3716
3717    // Adjust the APSInt value.
3718    InitVal.extOrTrunc(NewWidth);
3719    InitVal.setIsSigned(NewSign);
3720    ECD->setInitVal(InitVal);
3721
3722    // Adjust the Expr initializer and type.
3723    if (ECD->getInitExpr())
3724      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3725                                            /*isLvalue=*/false));
3726    if (getLangOptions().CPlusPlus)
3727      // C++ [dcl.enum]p4: Following the closing brace of an
3728      // enum-specifier, each enumerator has the type of its
3729      // enumeration.
3730      ECD->setType(EnumType);
3731    else
3732      ECD->setType(NewTy);
3733  }
3734
3735  Enum->completeDefinition(Context, BestType);
3736}
3737
3738Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3739                                          ExprArg expr) {
3740  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3741
3742  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3743}
3744
3745
3746void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3747                           ExprTy *alignment, SourceLocation PragmaLoc,
3748                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3749  Expr *Alignment = static_cast<Expr *>(alignment);
3750
3751  // If specified then alignment must be a "small" power of two.
3752  unsigned AlignmentVal = 0;
3753  if (Alignment) {
3754    llvm::APSInt Val;
3755    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3756        !Val.isPowerOf2() ||
3757        Val.getZExtValue() > 16) {
3758      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3759      delete Alignment;
3760      return; // Ignore
3761    }
3762
3763    AlignmentVal = (unsigned) Val.getZExtValue();
3764  }
3765
3766  switch (Kind) {
3767  case Action::PPK_Default: // pack([n])
3768    PackContext.setAlignment(AlignmentVal);
3769    break;
3770
3771  case Action::PPK_Show: // pack(show)
3772    // Show the current alignment, making sure to show the right value
3773    // for the default.
3774    AlignmentVal = PackContext.getAlignment();
3775    // FIXME: This should come from the target.
3776    if (AlignmentVal == 0)
3777      AlignmentVal = 8;
3778    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3779    break;
3780
3781  case Action::PPK_Push: // pack(push [, id] [, [n])
3782    PackContext.push(Name);
3783    // Set the new alignment if specified.
3784    if (Alignment)
3785      PackContext.setAlignment(AlignmentVal);
3786    break;
3787
3788  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3789    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3790    // "#pragma pack(pop, identifier, n) is undefined"
3791    if (Alignment && Name)
3792      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3793
3794    // Do the pop.
3795    if (!PackContext.pop(Name)) {
3796      // If a name was specified then failure indicates the name
3797      // wasn't found. Otherwise failure indicates the stack was
3798      // empty.
3799      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3800        << (Name ? "no record matching name" : "stack empty");
3801
3802      // FIXME: Warn about popping named records as MSVC does.
3803    } else {
3804      // Pop succeeded, set the new alignment if specified.
3805      if (Alignment)
3806        PackContext.setAlignment(AlignmentVal);
3807    }
3808    break;
3809
3810  default:
3811    assert(0 && "Invalid #pragma pack kind.");
3812  }
3813}
3814
3815bool PragmaPackStack::pop(IdentifierInfo *Name) {
3816  if (Stack.empty())
3817    return false;
3818
3819  // If name is empty just pop top.
3820  if (!Name) {
3821    Alignment = Stack.back().first;
3822    Stack.pop_back();
3823    return true;
3824  }
3825
3826  // Otherwise, find the named record.
3827  for (unsigned i = Stack.size(); i != 0; ) {
3828    --i;
3829    if (Stack[i].second == Name) {
3830      // Found it, pop up to and including this record.
3831      Alignment = Stack[i].first;
3832      Stack.erase(Stack.begin() + i, Stack.end());
3833      return true;
3834    }
3835  }
3836
3837  return false;
3838}
3839