SemaDecl.cpp revision 4fb71b0cc3c199cc0c736b4ec4fabdd01f56f4e8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  }
303
304  IdResolver.AddDecl(D);
305}
306
307void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
308  if (S->decl_empty()) return;
309  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
310	 "Scope shouldn't contain decls!");
311
312  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
313       I != E; ++I) {
314    Decl *TmpD = (*I).getAs<Decl>();
315    assert(TmpD && "This decl didn't get pushed??");
316
317    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
318    NamedDecl *D = cast<NamedDecl>(TmpD);
319
320    if (!D->getDeclName()) continue;
321
322    // Remove this name from our lexical scope.
323    IdResolver.RemoveDecl(D);
324  }
325}
326
327/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
328/// return 0 if one not found.
329ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
330  // The third "scope" argument is 0 since we aren't enabling lazy built-in
331  // creation from this context.
332  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
333
334  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
335}
336
337/// getNonFieldDeclScope - Retrieves the innermost scope, starting
338/// from S, where a non-field would be declared. This routine copes
339/// with the difference between C and C++ scoping rules in structs and
340/// unions. For example, the following code is well-formed in C but
341/// ill-formed in C++:
342/// @code
343/// struct S6 {
344///   enum { BAR } e;
345/// };
346///
347/// void test_S6() {
348///   struct S6 a;
349///   a.e = BAR;
350/// }
351/// @endcode
352/// For the declaration of BAR, this routine will return a different
353/// scope. The scope S will be the scope of the unnamed enumeration
354/// within S6. In C++, this routine will return the scope associated
355/// with S6, because the enumeration's scope is a transparent
356/// context but structures can contain non-field names. In C, this
357/// routine will return the translation unit scope, since the
358/// enumeration's scope is a transparent context and structures cannot
359/// contain non-field names.
360Scope *Sema::getNonFieldDeclScope(Scope *S) {
361  while (((S->getFlags() & Scope::DeclScope) == 0) ||
362         (S->getEntity() &&
363          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
364         (S->isClassScope() && !getLangOptions().CPlusPlus))
365    S = S->getParent();
366  return S;
367}
368
369void Sema::InitBuiltinVaListType() {
370  if (!Context.getBuiltinVaListType().isNull())
371    return;
372
373  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
374  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
375  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
376  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
377}
378
379/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
380/// file scope.  lazily create a decl for it. ForRedeclaration is true
381/// if we're creating this built-in in anticipation of redeclaring the
382/// built-in.
383NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
384                                     Scope *S, bool ForRedeclaration,
385                                     SourceLocation Loc) {
386  Builtin::ID BID = (Builtin::ID)bid;
387
388  if (Context.BuiltinInfo.hasVAListUse(BID))
389    InitBuiltinVaListType();
390
391  Builtin::Context::GetBuiltinTypeError Error;
392  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
393  switch (Error) {
394  case Builtin::Context::GE_None:
395    // Okay
396    break;
397
398  case Builtin::Context::GE_Missing_FILE:
399    if (ForRedeclaration)
400      Diag(Loc, diag::err_implicit_decl_requires_stdio)
401        << Context.BuiltinInfo.GetName(BID);
402    return 0;
403  }
404
405  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
406    Diag(Loc, diag::ext_implicit_lib_function_decl)
407      << Context.BuiltinInfo.GetName(BID)
408      << R;
409    if (Context.BuiltinInfo.getHeaderName(BID) &&
410        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
411          != Diagnostic::Ignored)
412      Diag(Loc, diag::note_please_include_header)
413        << Context.BuiltinInfo.getHeaderName(BID)
414        << Context.BuiltinInfo.GetName(BID);
415  }
416
417  FunctionDecl *New = FunctionDecl::Create(Context,
418                                           Context.getTranslationUnitDecl(),
419                                           Loc, II, R,
420                                           FunctionDecl::Extern, false,
421                                           /*hasPrototype=*/true);
422  New->setImplicit();
423
424  // Create Decl objects for each parameter, adding them to the
425  // FunctionDecl.
426  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
427    llvm::SmallVector<ParmVarDecl*, 16> Params;
428    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
429      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
430                                           FT->getArgType(i), VarDecl::None, 0));
431    New->setParams(Context, &Params[0], Params.size());
432  }
433
434  AddKnownFunctionAttributes(New);
435
436  // TUScope is the translation-unit scope to insert this function into.
437  // FIXME: This is hideous. We need to teach PushOnScopeChains to
438  // relate Scopes to DeclContexts, and probably eliminate CurContext
439  // entirely, but we're not there yet.
440  DeclContext *SavedContext = CurContext;
441  CurContext = Context.getTranslationUnitDecl();
442  PushOnScopeChains(New, TUScope);
443  CurContext = SavedContext;
444  return New;
445}
446
447/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
448/// everything from the standard library is defined.
449NamespaceDecl *Sema::GetStdNamespace() {
450  if (!StdNamespace) {
451    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
452    DeclContext *Global = Context.getTranslationUnitDecl();
453    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
454    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
455  }
456  return StdNamespace;
457}
458
459/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
460/// same name and scope as a previous declaration 'Old'.  Figure out
461/// how to resolve this situation, merging decls or emitting
462/// diagnostics as appropriate. Returns true if there was an error,
463/// false otherwise.
464///
465bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
466  bool objc_types = false;
467  // Allow multiple definitions for ObjC built-in typedefs.
468  // FIXME: Verify the underlying types are equivalent!
469  if (getLangOptions().ObjC1) {
470    const IdentifierInfo *TypeID = New->getIdentifier();
471    switch (TypeID->getLength()) {
472    default: break;
473    case 2:
474      if (!TypeID->isStr("id"))
475        break;
476      Context.setObjCIdType(New);
477      objc_types = true;
478      break;
479    case 5:
480      if (!TypeID->isStr("Class"))
481        break;
482      Context.setObjCClassType(New);
483      objc_types = true;
484      return false;
485    case 3:
486      if (!TypeID->isStr("SEL"))
487        break;
488      Context.setObjCSelType(New);
489      objc_types = true;
490      return false;
491    case 8:
492      if (!TypeID->isStr("Protocol"))
493        break;
494      Context.setObjCProtoType(New->getUnderlyingType());
495      objc_types = true;
496      return false;
497    }
498    // Fall through - the typedef name was not a builtin type.
499  }
500  // Verify the old decl was also a type.
501  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
502  if (!Old) {
503    Diag(New->getLocation(), diag::err_redefinition_different_kind)
504      << New->getDeclName();
505    if (!objc_types)
506      Diag(OldD->getLocation(), diag::note_previous_definition);
507    return true;
508  }
509
510  // Determine the "old" type we'll use for checking and diagnostics.
511  QualType OldType;
512  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
513    OldType = OldTypedef->getUnderlyingType();
514  else
515    OldType = Context.getTypeDeclType(Old);
516
517  // If the typedef types are not identical, reject them in all languages and
518  // with any extensions enabled.
519
520  if (OldType != New->getUnderlyingType() &&
521      Context.getCanonicalType(OldType) !=
522      Context.getCanonicalType(New->getUnderlyingType())) {
523    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
524      << New->getUnderlyingType() << OldType;
525    if (!objc_types)
526      Diag(Old->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529  if (objc_types) return false;
530  if (getLangOptions().Microsoft) return false;
531
532  // C++ [dcl.typedef]p2:
533  //   In a given non-class scope, a typedef specifier can be used to
534  //   redefine the name of any type declared in that scope to refer
535  //   to the type to which it already refers.
536  if (getLangOptions().CPlusPlus) {
537    if (!isa<CXXRecordDecl>(CurContext))
538      return false;
539    Diag(New->getLocation(), diag::err_redefinition)
540      << New->getDeclName();
541    Diag(Old->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // If we have a redefinition of a typedef in C, emit a warning.  This warning
546  // is normally mapped to an error, but can be controlled with
547  // -Wtypedef-redefinition.
548  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
549    << New->getDeclName();
550  Diag(Old->getLocation(), diag::note_previous_definition);
551  return false;
552}
553
554/// DeclhasAttr - returns true if decl Declaration already has the target
555/// attribute.
556static bool DeclHasAttr(const Decl *decl, const Attr *target) {
557  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
558    if (attr->getKind() == target->getKind())
559      return true;
560
561  return false;
562}
563
564/// MergeAttributes - append attributes from the Old decl to the New one.
565static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
566  Attr *attr = const_cast<Attr*>(Old->getAttrs());
567
568  while (attr) {
569    Attr *tmp = attr;
570    attr = attr->getNext();
571
572    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
573      tmp->setInherited(true);
574      New->addAttr(tmp);
575    } else {
576      tmp->setNext(0);
577      tmp->Destroy(C);
578    }
579  }
580
581  Old->invalidateAttrs();
582}
583
584/// Used in MergeFunctionDecl to keep track of function parameters in
585/// C.
586struct GNUCompatibleParamWarning {
587  ParmVarDecl *OldParm;
588  ParmVarDecl *NewParm;
589  QualType PromotedType;
590};
591
592/// MergeFunctionDecl - We just parsed a function 'New' from
593/// declarator D which has the same name and scope as a previous
594/// declaration 'Old'.  Figure out how to resolve this situation,
595/// merging decls or emitting diagnostics as appropriate.
596///
597/// In C++, New and Old must be declarations that are not
598/// overloaded. Use IsOverload to determine whether New and Old are
599/// overloaded, and to select the Old declaration that New should be
600/// merged with.
601///
602/// Returns true if there was an error, false otherwise.
603bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
604  assert(!isa<OverloadedFunctionDecl>(OldD) &&
605         "Cannot merge with an overloaded function declaration");
606
607  // Verify the old decl was also a function.
608  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
609  if (!Old) {
610    Diag(New->getLocation(), diag::err_redefinition_different_kind)
611      << New->getDeclName();
612    Diag(OldD->getLocation(), diag::note_previous_definition);
613    return true;
614  }
615
616  // Determine whether the previous declaration was a definition,
617  // implicit declaration, or a declaration.
618  diag::kind PrevDiag;
619  if (Old->isThisDeclarationADefinition())
620    PrevDiag = diag::note_previous_definition;
621  else if (Old->isImplicit())
622    PrevDiag = diag::note_previous_implicit_declaration;
623  else
624    PrevDiag = diag::note_previous_declaration;
625
626  QualType OldQType = Context.getCanonicalType(Old->getType());
627  QualType NewQType = Context.getCanonicalType(New->getType());
628
629  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
630      New->getStorageClass() == FunctionDecl::Static &&
631      Old->getStorageClass() != FunctionDecl::Static) {
632    Diag(New->getLocation(), diag::err_static_non_static)
633      << New;
634    Diag(Old->getLocation(), PrevDiag);
635    return true;
636  }
637
638  if (getLangOptions().CPlusPlus) {
639    // (C++98 13.1p2):
640    //   Certain function declarations cannot be overloaded:
641    //     -- Function declarations that differ only in the return type
642    //        cannot be overloaded.
643    QualType OldReturnType
644      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
645    QualType NewReturnType
646      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
647    if (OldReturnType != NewReturnType) {
648      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
649      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
650      return true;
651    }
652
653    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
654    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
655    if (OldMethod && NewMethod &&
656        OldMethod->getLexicalDeclContext() ==
657          NewMethod->getLexicalDeclContext()) {
658      //    -- Member function declarations with the same name and the
659      //       same parameter types cannot be overloaded if any of them
660      //       is a static member function declaration.
661      if (OldMethod->isStatic() || NewMethod->isStatic()) {
662        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
663        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
664        return true;
665      }
666
667      // C++ [class.mem]p1:
668      //   [...] A member shall not be declared twice in the
669      //   member-specification, except that a nested class or member
670      //   class template can be declared and then later defined.
671      unsigned NewDiag;
672      if (isa<CXXConstructorDecl>(OldMethod))
673        NewDiag = diag::err_constructor_redeclared;
674      else if (isa<CXXDestructorDecl>(NewMethod))
675        NewDiag = diag::err_destructor_redeclared;
676      else if (isa<CXXConversionDecl>(NewMethod))
677        NewDiag = diag::err_conv_function_redeclared;
678      else
679        NewDiag = diag::err_member_redeclared;
680
681      Diag(New->getLocation(), NewDiag);
682      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
683    }
684
685    // (C++98 8.3.5p3):
686    //   All declarations for a function shall agree exactly in both the
687    //   return type and the parameter-type-list.
688    if (OldQType == NewQType)
689      return MergeCompatibleFunctionDecls(New, Old);
690
691    // Fall through for conflicting redeclarations and redefinitions.
692  }
693
694  // C: Function types need to be compatible, not identical. This handles
695  // duplicate function decls like "void f(int); void f(enum X);" properly.
696  if (!getLangOptions().CPlusPlus &&
697      Context.typesAreCompatible(OldQType, NewQType)) {
698    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
699    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
700    const FunctionProtoType *OldProto = 0;
701    if (isa<FunctionNoProtoType>(NewFuncType) &&
702        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
703      // The old declaration provided a function prototype, but the
704      // new declaration does not. Merge in the prototype.
705      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
706                                                 OldProto->arg_type_end());
707      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
708                                         &ParamTypes[0], ParamTypes.size(),
709                                         OldProto->isVariadic(),
710                                         OldProto->getTypeQuals());
711      New->setType(NewQType);
712      New->setInheritedPrototype();
713
714      // Synthesize a parameter for each argument type.
715      llvm::SmallVector<ParmVarDecl*, 16> Params;
716      for (FunctionProtoType::arg_type_iterator
717             ParamType = OldProto->arg_type_begin(),
718             ParamEnd = OldProto->arg_type_end();
719           ParamType != ParamEnd; ++ParamType) {
720        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
721                                                 SourceLocation(), 0,
722                                                 *ParamType, VarDecl::None,
723                                                 0);
724        Param->setImplicit();
725        Params.push_back(Param);
726      }
727
728      New->setParams(Context, &Params[0], Params.size());
729    }
730
731    return MergeCompatibleFunctionDecls(New, Old);
732  }
733
734  // GNU C permits a K&R definition to follow a prototype declaration
735  // if the declared types of the parameters in the K&R definition
736  // match the types in the prototype declaration, even when the
737  // promoted types of the parameters from the K&R definition differ
738  // from the types in the prototype. GCC then keeps the types from
739  // the prototype.
740  if (!getLangOptions().CPlusPlus &&
741      !getLangOptions().NoExtensions &&
742      Old->hasPrototype() && !New->hasPrototype() &&
743      New->getType()->getAsFunctionProtoType() &&
744      Old->getNumParams() == New->getNumParams()) {
745    llvm::SmallVector<QualType, 16> ArgTypes;
746    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
747    const FunctionProtoType *OldProto
748      = Old->getType()->getAsFunctionProtoType();
749    const FunctionProtoType *NewProto
750      = New->getType()->getAsFunctionProtoType();
751
752    // Determine whether this is the GNU C extension.
753    bool GNUCompatible =
754      Context.typesAreCompatible(OldProto->getResultType(),
755                                 NewProto->getResultType()) &&
756      (OldProto->isVariadic() == NewProto->isVariadic());
757    for (unsigned Idx = 0, End = Old->getNumParams();
758         GNUCompatible && Idx != End; ++Idx) {
759      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
760      ParmVarDecl *NewParm = New->getParamDecl(Idx);
761      if (Context.typesAreCompatible(OldParm->getType(),
762                                     NewProto->getArgType(Idx))) {
763        ArgTypes.push_back(NewParm->getType());
764      } else if (Context.typesAreCompatible(OldParm->getType(),
765                                            NewParm->getType())) {
766        GNUCompatibleParamWarning Warn
767          = { OldParm, NewParm, NewProto->getArgType(Idx) };
768        Warnings.push_back(Warn);
769        ArgTypes.push_back(NewParm->getType());
770      } else
771        GNUCompatible = false;
772    }
773
774    if (GNUCompatible) {
775      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
776        Diag(Warnings[Warn].NewParm->getLocation(),
777             diag::ext_param_promoted_not_compatible_with_prototype)
778          << Warnings[Warn].PromotedType
779          << Warnings[Warn].OldParm->getType();
780        Diag(Warnings[Warn].OldParm->getLocation(),
781             diag::note_previous_declaration);
782      }
783
784      New->setType(Context.getFunctionType(NewProto->getResultType(),
785                                           &ArgTypes[0], ArgTypes.size(),
786                                           NewProto->isVariadic(),
787                                           NewProto->getTypeQuals()));
788      return MergeCompatibleFunctionDecls(New, Old);
789    }
790
791    // Fall through to diagnose conflicting types.
792  }
793
794  // A function that has already been declared has been redeclared or defined
795  // with a different type- show appropriate diagnostic
796  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
797    // The user has declared a builtin function with an incompatible
798    // signature.
799    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
800      // The function the user is redeclaring is a library-defined
801      // function like 'malloc' or 'printf'. Warn about the
802      // redeclaration, then pretend that we don't know about this
803      // library built-in.
804      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
805      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
806        << Old << Old->getType();
807      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
808      Old->setInvalidDecl();
809      return false;
810    }
811
812    PrevDiag = diag::note_previous_builtin_declaration;
813  }
814
815  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
816  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
817  return true;
818}
819
820/// \brief Completes the merge of two function declarations that are
821/// known to be compatible.
822///
823/// This routine handles the merging of attributes and other
824/// properties of function declarations form the old declaration to
825/// the new declaration, once we know that New is in fact a
826/// redeclaration of Old.
827///
828/// \returns false
829bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
830  // Merge the attributes
831  MergeAttributes(New, Old, Context);
832
833  // Merge the storage class.
834  New->setStorageClass(Old->getStorageClass());
835
836  // FIXME: need to implement inline semantics
837
838  // Merge "pure" flag.
839  if (Old->isPure())
840    New->setPure();
841
842  // Merge the "deleted" flag.
843  if (Old->isDeleted())
844    New->setDeleted();
845
846  if (getLangOptions().CPlusPlus)
847    return MergeCXXFunctionDecl(New, Old);
848
849  return false;
850}
851
852/// MergeVarDecl - We just parsed a variable 'New' which has the same name
853/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
854/// situation, merging decls or emitting diagnostics as appropriate.
855///
856/// Tentative definition rules (C99 6.9.2p2) are checked by
857/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
858/// definitions here, since the initializer hasn't been attached.
859///
860bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
861  // Verify the old decl was also a variable.
862  VarDecl *Old = dyn_cast<VarDecl>(OldD);
863  if (!Old) {
864    Diag(New->getLocation(), diag::err_redefinition_different_kind)
865      << New->getDeclName();
866    Diag(OldD->getLocation(), diag::note_previous_definition);
867    return true;
868  }
869
870  MergeAttributes(New, Old, Context);
871
872  // Merge the types
873  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
874  if (MergedT.isNull()) {
875    Diag(New->getLocation(), diag::err_redefinition_different_type)
876      << New->getDeclName();
877    Diag(Old->getLocation(), diag::note_previous_definition);
878    return true;
879  }
880  New->setType(MergedT);
881
882  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
883  if (New->getStorageClass() == VarDecl::Static &&
884      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
885    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
886    Diag(Old->getLocation(), diag::note_previous_definition);
887    return true;
888  }
889  // C99 6.2.2p4:
890  //   For an identifier declared with the storage-class specifier
891  //   extern in a scope in which a prior declaration of that
892  //   identifier is visible,23) if the prior declaration specifies
893  //   internal or external linkage, the linkage of the identifier at
894  //   the later declaration is the same as the linkage specified at
895  //   the prior declaration. If no prior declaration is visible, or
896  //   if the prior declaration specifies no linkage, then the
897  //   identifier has external linkage.
898  if (New->hasExternalStorage() && Old->hasLinkage())
899    /* Okay */;
900  else if (New->getStorageClass() != VarDecl::Static &&
901           Old->getStorageClass() == VarDecl::Static) {
902    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
903    Diag(Old->getLocation(), diag::note_previous_definition);
904    return true;
905  }
906
907  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
908
909  // FIXME: The test for external storage here seems wrong? We still
910  // need to check for mismatches.
911  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
912      // Don't complain about out-of-line definitions of static members.
913      !(Old->getLexicalDeclContext()->isRecord() &&
914        !New->getLexicalDeclContext()->isRecord())) {
915    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
916    Diag(Old->getLocation(), diag::note_previous_definition);
917    return true;
918  }
919
920  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
921    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
922    Diag(Old->getLocation(), diag::note_previous_definition);
923  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
924    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
925    Diag(Old->getLocation(), diag::note_previous_definition);
926  }
927
928  // Keep a chain of previous declarations.
929  New->setPreviousDeclaration(Old);
930
931  return false;
932}
933
934/// CheckParmsForFunctionDef - Check that the parameters of the given
935/// function are appropriate for the definition of a function. This
936/// takes care of any checks that cannot be performed on the
937/// declaration itself, e.g., that the types of each of the function
938/// parameters are complete.
939bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
940  bool HasInvalidParm = false;
941  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
942    ParmVarDecl *Param = FD->getParamDecl(p);
943
944    // C99 6.7.5.3p4: the parameters in a parameter type list in a
945    // function declarator that is part of a function definition of
946    // that function shall not have incomplete type.
947    //
948    // This is also C++ [dcl.fct]p6.
949    if (!Param->isInvalidDecl() &&
950        RequireCompleteType(Param->getLocation(), Param->getType(),
951                               diag::err_typecheck_decl_incomplete_type)) {
952      Param->setInvalidDecl();
953      HasInvalidParm = true;
954    }
955
956    // C99 6.9.1p5: If the declarator includes a parameter type list, the
957    // declaration of each parameter shall include an identifier.
958    if (Param->getIdentifier() == 0 &&
959        !Param->isImplicit() &&
960        !getLangOptions().CPlusPlus)
961      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
962  }
963
964  return HasInvalidParm;
965}
966
967/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
968/// no declarator (e.g. "struct foo;") is parsed.
969Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
970  // FIXME: Error on auto/register at file scope
971  // FIXME: Error on inline/virtual/explicit
972  // FIXME: Error on invalid restrict
973  // FIXME: Warn on useless __thread
974  // FIXME: Warn on useless const/volatile
975  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
976  // FIXME: Warn on useless attributes
977
978  TagDecl *Tag = 0;
979  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
980      DS.getTypeSpecType() == DeclSpec::TST_struct ||
981      DS.getTypeSpecType() == DeclSpec::TST_union ||
982      DS.getTypeSpecType() == DeclSpec::TST_enum)
983    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
984
985  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
986    if (!Record->getDeclName() && Record->isDefinition() &&
987        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
988      if (getLangOptions().CPlusPlus ||
989          Record->getDeclContext()->isRecord())
990        return BuildAnonymousStructOrUnion(S, DS, Record);
991
992      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
993        << DS.getSourceRange();
994    }
995
996    // Microsoft allows unnamed struct/union fields. Don't complain
997    // about them.
998    // FIXME: Should we support Microsoft's extensions in this area?
999    if (Record->getDeclName() && getLangOptions().Microsoft)
1000      return DeclPtrTy::make(Tag);
1001  }
1002
1003  if (!DS.isMissingDeclaratorOk() &&
1004      DS.getTypeSpecType() != DeclSpec::TST_error) {
1005    // Warn about typedefs of enums without names, since this is an
1006    // extension in both Microsoft an GNU.
1007    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1008        Tag && isa<EnumDecl>(Tag)) {
1009      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1010        << DS.getSourceRange();
1011      return DeclPtrTy::make(Tag);
1012    }
1013
1014    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1015      << DS.getSourceRange();
1016    return DeclPtrTy();
1017  }
1018
1019  return DeclPtrTy::make(Tag);
1020}
1021
1022/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1023/// anonymous struct or union AnonRecord into the owning context Owner
1024/// and scope S. This routine will be invoked just after we realize
1025/// that an unnamed union or struct is actually an anonymous union or
1026/// struct, e.g.,
1027///
1028/// @code
1029/// union {
1030///   int i;
1031///   float f;
1032/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1033///    // f into the surrounding scope.x
1034/// @endcode
1035///
1036/// This routine is recursive, injecting the names of nested anonymous
1037/// structs/unions into the owning context and scope as well.
1038bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1039                                               RecordDecl *AnonRecord) {
1040  bool Invalid = false;
1041  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1042                               FEnd = AnonRecord->field_end(Context);
1043       F != FEnd; ++F) {
1044    if ((*F)->getDeclName()) {
1045      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1046                                                LookupOrdinaryName, true);
1047      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1048        // C++ [class.union]p2:
1049        //   The names of the members of an anonymous union shall be
1050        //   distinct from the names of any other entity in the
1051        //   scope in which the anonymous union is declared.
1052        unsigned diagKind
1053          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1054                                 : diag::err_anonymous_struct_member_redecl;
1055        Diag((*F)->getLocation(), diagKind)
1056          << (*F)->getDeclName();
1057        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1058        Invalid = true;
1059      } else {
1060        // C++ [class.union]p2:
1061        //   For the purpose of name lookup, after the anonymous union
1062        //   definition, the members of the anonymous union are
1063        //   considered to have been defined in the scope in which the
1064        //   anonymous union is declared.
1065        Owner->makeDeclVisibleInContext(Context, *F);
1066        S->AddDecl(DeclPtrTy::make(*F));
1067        IdResolver.AddDecl(*F);
1068      }
1069    } else if (const RecordType *InnerRecordType
1070                 = (*F)->getType()->getAsRecordType()) {
1071      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1072      if (InnerRecord->isAnonymousStructOrUnion())
1073        Invalid = Invalid ||
1074          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1075    }
1076  }
1077
1078  return Invalid;
1079}
1080
1081/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1082/// anonymous structure or union. Anonymous unions are a C++ feature
1083/// (C++ [class.union]) and a GNU C extension; anonymous structures
1084/// are a GNU C and GNU C++ extension.
1085Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1086                                                  RecordDecl *Record) {
1087  DeclContext *Owner = Record->getDeclContext();
1088
1089  // Diagnose whether this anonymous struct/union is an extension.
1090  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1091    Diag(Record->getLocation(), diag::ext_anonymous_union);
1092  else if (!Record->isUnion())
1093    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1094
1095  // C and C++ require different kinds of checks for anonymous
1096  // structs/unions.
1097  bool Invalid = false;
1098  if (getLangOptions().CPlusPlus) {
1099    const char* PrevSpec = 0;
1100    // C++ [class.union]p3:
1101    //   Anonymous unions declared in a named namespace or in the
1102    //   global namespace shall be declared static.
1103    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1104        (isa<TranslationUnitDecl>(Owner) ||
1105         (isa<NamespaceDecl>(Owner) &&
1106          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1107      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1108      Invalid = true;
1109
1110      // Recover by adding 'static'.
1111      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1112    }
1113    // C++ [class.union]p3:
1114    //   A storage class is not allowed in a declaration of an
1115    //   anonymous union in a class scope.
1116    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1117             isa<RecordDecl>(Owner)) {
1118      Diag(DS.getStorageClassSpecLoc(),
1119           diag::err_anonymous_union_with_storage_spec);
1120      Invalid = true;
1121
1122      // Recover by removing the storage specifier.
1123      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1124                             PrevSpec);
1125    }
1126
1127    // C++ [class.union]p2:
1128    //   The member-specification of an anonymous union shall only
1129    //   define non-static data members. [Note: nested types and
1130    //   functions cannot be declared within an anonymous union. ]
1131    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1132                                 MemEnd = Record->decls_end(Context);
1133         Mem != MemEnd; ++Mem) {
1134      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1135        // C++ [class.union]p3:
1136        //   An anonymous union shall not have private or protected
1137        //   members (clause 11).
1138        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1139          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1140            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1141          Invalid = true;
1142        }
1143      } else if ((*Mem)->isImplicit()) {
1144        // Any implicit members are fine.
1145      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1146        // This is a type that showed up in an
1147        // elaborated-type-specifier inside the anonymous struct or
1148        // union, but which actually declares a type outside of the
1149        // anonymous struct or union. It's okay.
1150      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1151        if (!MemRecord->isAnonymousStructOrUnion() &&
1152            MemRecord->getDeclName()) {
1153          // This is a nested type declaration.
1154          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1155            << (int)Record->isUnion();
1156          Invalid = true;
1157        }
1158      } else {
1159        // We have something that isn't a non-static data
1160        // member. Complain about it.
1161        unsigned DK = diag::err_anonymous_record_bad_member;
1162        if (isa<TypeDecl>(*Mem))
1163          DK = diag::err_anonymous_record_with_type;
1164        else if (isa<FunctionDecl>(*Mem))
1165          DK = diag::err_anonymous_record_with_function;
1166        else if (isa<VarDecl>(*Mem))
1167          DK = diag::err_anonymous_record_with_static;
1168        Diag((*Mem)->getLocation(), DK)
1169            << (int)Record->isUnion();
1170          Invalid = true;
1171      }
1172    }
1173  }
1174
1175  if (!Record->isUnion() && !Owner->isRecord()) {
1176    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1177      << (int)getLangOptions().CPlusPlus;
1178    Invalid = true;
1179  }
1180
1181  // Create a declaration for this anonymous struct/union.
1182  NamedDecl *Anon = 0;
1183  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1184    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1185                             /*IdentifierInfo=*/0,
1186                             Context.getTypeDeclType(Record),
1187                             /*BitWidth=*/0, /*Mutable=*/false);
1188    Anon->setAccess(AS_public);
1189    if (getLangOptions().CPlusPlus)
1190      FieldCollector->Add(cast<FieldDecl>(Anon));
1191  } else {
1192    VarDecl::StorageClass SC;
1193    switch (DS.getStorageClassSpec()) {
1194    default: assert(0 && "Unknown storage class!");
1195    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1196    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1197    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1198    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1199    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1200    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1201    case DeclSpec::SCS_mutable:
1202      // mutable can only appear on non-static class members, so it's always
1203      // an error here
1204      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1205      Invalid = true;
1206      SC = VarDecl::None;
1207      break;
1208    }
1209
1210    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1211                           /*IdentifierInfo=*/0,
1212                           Context.getTypeDeclType(Record),
1213                           SC, DS.getSourceRange().getBegin());
1214  }
1215  Anon->setImplicit();
1216
1217  // Add the anonymous struct/union object to the current
1218  // context. We'll be referencing this object when we refer to one of
1219  // its members.
1220  Owner->addDecl(Context, Anon);
1221
1222  // Inject the members of the anonymous struct/union into the owning
1223  // context and into the identifier resolver chain for name lookup
1224  // purposes.
1225  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1226    Invalid = true;
1227
1228  // Mark this as an anonymous struct/union type. Note that we do not
1229  // do this until after we have already checked and injected the
1230  // members of this anonymous struct/union type, because otherwise
1231  // the members could be injected twice: once by DeclContext when it
1232  // builds its lookup table, and once by
1233  // InjectAnonymousStructOrUnionMembers.
1234  Record->setAnonymousStructOrUnion(true);
1235
1236  if (Invalid)
1237    Anon->setInvalidDecl();
1238
1239  return DeclPtrTy::make(Anon);
1240}
1241
1242
1243/// GetNameForDeclarator - Determine the full declaration name for the
1244/// given Declarator.
1245DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1246  switch (D.getKind()) {
1247  case Declarator::DK_Abstract:
1248    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1249    return DeclarationName();
1250
1251  case Declarator::DK_Normal:
1252    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1253    return DeclarationName(D.getIdentifier());
1254
1255  case Declarator::DK_Constructor: {
1256    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1257    Ty = Context.getCanonicalType(Ty);
1258    return Context.DeclarationNames.getCXXConstructorName(Ty);
1259  }
1260
1261  case Declarator::DK_Destructor: {
1262    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1263    Ty = Context.getCanonicalType(Ty);
1264    return Context.DeclarationNames.getCXXDestructorName(Ty);
1265  }
1266
1267  case Declarator::DK_Conversion: {
1268    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1269    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1270    Ty = Context.getCanonicalType(Ty);
1271    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1272  }
1273
1274  case Declarator::DK_Operator:
1275    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1276    return Context.DeclarationNames.getCXXOperatorName(
1277                                                D.getOverloadedOperator());
1278  }
1279
1280  assert(false && "Unknown name kind");
1281  return DeclarationName();
1282}
1283
1284/// isNearlyMatchingFunction - Determine whether the C++ functions
1285/// Declaration and Definition are "nearly" matching. This heuristic
1286/// is used to improve diagnostics in the case where an out-of-line
1287/// function definition doesn't match any declaration within
1288/// the class or namespace.
1289static bool isNearlyMatchingFunction(ASTContext &Context,
1290                                     FunctionDecl *Declaration,
1291                                     FunctionDecl *Definition) {
1292  if (Declaration->param_size() != Definition->param_size())
1293    return false;
1294  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1295    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1296    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1297
1298    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1299    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1300    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1301      return false;
1302  }
1303
1304  return true;
1305}
1306
1307Sema::DeclPtrTy
1308Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1309  DeclarationName Name = GetNameForDeclarator(D);
1310
1311  // All of these full declarators require an identifier.  If it doesn't have
1312  // one, the ParsedFreeStandingDeclSpec action should be used.
1313  if (!Name) {
1314    if (!D.getInvalidType())  // Reject this if we think it is valid.
1315      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1316           diag::err_declarator_need_ident)
1317        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1318    return DeclPtrTy();
1319  }
1320
1321  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1322  // we find one that is.
1323  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1324         (S->getFlags() & Scope::TemplateParamScope) != 0)
1325    S = S->getParent();
1326
1327  DeclContext *DC;
1328  NamedDecl *PrevDecl;
1329  NamedDecl *New;
1330  bool InvalidDecl = false;
1331
1332  QualType R = GetTypeForDeclarator(D, S);
1333  if (R.isNull()) {
1334    InvalidDecl = true;
1335    R = Context.IntTy;
1336    if (IsFunctionDefinition) // int(...)
1337      R = Context.getFunctionType(R, 0, 0, true, 0);
1338
1339  }
1340
1341  // See if this is a redefinition of a variable in the same scope.
1342  if (D.getCXXScopeSpec().isInvalid()) {
1343    DC = CurContext;
1344    PrevDecl = 0;
1345    InvalidDecl = true;
1346  } else if (!D.getCXXScopeSpec().isSet()) {
1347    LookupNameKind NameKind = LookupOrdinaryName;
1348
1349    // If the declaration we're planning to build will be a function
1350    // or object with linkage, then look for another declaration with
1351    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1352    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1353      /* Do nothing*/;
1354    else if (R->isFunctionType()) {
1355      if (CurContext->isFunctionOrMethod())
1356        NameKind = LookupRedeclarationWithLinkage;
1357    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1358      NameKind = LookupRedeclarationWithLinkage;
1359
1360    DC = CurContext;
1361    PrevDecl = LookupName(S, Name, NameKind, true,
1362                          D.getDeclSpec().getStorageClassSpec() !=
1363                            DeclSpec::SCS_static,
1364                          D.getIdentifierLoc());
1365  } else { // Something like "int foo::x;"
1366    DC = computeDeclContext(D.getCXXScopeSpec());
1367    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1368    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1369
1370    // C++ 7.3.1.2p2:
1371    // Members (including explicit specializations of templates) of a named
1372    // namespace can also be defined outside that namespace by explicit
1373    // qualification of the name being defined, provided that the entity being
1374    // defined was already declared in the namespace and the definition appears
1375    // after the point of declaration in a namespace that encloses the
1376    // declarations namespace.
1377    //
1378    // Note that we only check the context at this point. We don't yet
1379    // have enough information to make sure that PrevDecl is actually
1380    // the declaration we want to match. For example, given:
1381    //
1382    //   class X {
1383    //     void f();
1384    //     void f(float);
1385    //   };
1386    //
1387    //   void X::f(int) { } // ill-formed
1388    //
1389    // In this case, PrevDecl will point to the overload set
1390    // containing the two f's declared in X, but neither of them
1391    // matches.
1392
1393    // First check whether we named the global scope.
1394    if (isa<TranslationUnitDecl>(DC)) {
1395      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1396        << Name << D.getCXXScopeSpec().getRange();
1397    } else if (!CurContext->Encloses(DC)) {
1398      // The qualifying scope doesn't enclose the original declaration.
1399      // Emit diagnostic based on current scope.
1400      SourceLocation L = D.getIdentifierLoc();
1401      SourceRange R = D.getCXXScopeSpec().getRange();
1402      if (isa<FunctionDecl>(CurContext))
1403        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1404      else
1405        Diag(L, diag::err_invalid_declarator_scope)
1406          << Name << cast<NamedDecl>(DC) << R;
1407      InvalidDecl = true;
1408    }
1409  }
1410
1411  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1412    // Maybe we will complain about the shadowed template parameter.
1413    InvalidDecl = InvalidDecl
1414      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1415    // Just pretend that we didn't see the previous declaration.
1416    PrevDecl = 0;
1417  }
1418
1419  // In C++, the previous declaration we find might be a tag type
1420  // (class or enum). In this case, the new declaration will hide the
1421  // tag type. Note that this does does not apply if we're declaring a
1422  // typedef (C++ [dcl.typedef]p4).
1423  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1424      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1425    PrevDecl = 0;
1426
1427  bool Redeclaration = false;
1428  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1429    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1430                                 InvalidDecl, Redeclaration);
1431  } else if (R->isFunctionType()) {
1432    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1433                                  IsFunctionDefinition, InvalidDecl,
1434                                  Redeclaration);
1435  } else {
1436    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1437                                  InvalidDecl, Redeclaration);
1438  }
1439
1440  if (New == 0)
1441    return DeclPtrTy();
1442
1443  // If this has an identifier and is not an invalid redeclaration,
1444  // add it to the scope stack.
1445  if (Name && !(Redeclaration && InvalidDecl))
1446    PushOnScopeChains(New, S);
1447  // If any semantic error occurred, mark the decl as invalid.
1448  if (D.getInvalidType() || InvalidDecl)
1449    New->setInvalidDecl();
1450
1451  return DeclPtrTy::make(New);
1452}
1453
1454/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1455/// types into constant array types in certain situations which would otherwise
1456/// be errors (for GCC compatibility).
1457static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1458                                                    ASTContext &Context,
1459                                                    bool &SizeIsNegative) {
1460  // This method tries to turn a variable array into a constant
1461  // array even when the size isn't an ICE.  This is necessary
1462  // for compatibility with code that depends on gcc's buggy
1463  // constant expression folding, like struct {char x[(int)(char*)2];}
1464  SizeIsNegative = false;
1465
1466  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1467    QualType Pointee = PTy->getPointeeType();
1468    QualType FixedType =
1469        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1470    if (FixedType.isNull()) return FixedType;
1471    FixedType = Context.getPointerType(FixedType);
1472    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1473    return FixedType;
1474  }
1475
1476  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1477  if (!VLATy)
1478    return QualType();
1479  // FIXME: We should probably handle this case
1480  if (VLATy->getElementType()->isVariablyModifiedType())
1481    return QualType();
1482
1483  Expr::EvalResult EvalResult;
1484  if (!VLATy->getSizeExpr() ||
1485      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1486      !EvalResult.Val.isInt())
1487    return QualType();
1488
1489  llvm::APSInt &Res = EvalResult.Val.getInt();
1490  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1491    return Context.getConstantArrayType(VLATy->getElementType(),
1492                                        Res, ArrayType::Normal, 0);
1493
1494  SizeIsNegative = true;
1495  return QualType();
1496}
1497
1498/// \brief Register the given locally-scoped external C declaration so
1499/// that it can be found later for redeclarations
1500void
1501Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1502                                       Scope *S) {
1503  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1504         "Decl is not a locally-scoped decl!");
1505  // Note that we have a locally-scoped external with this name.
1506  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1507
1508  if (!PrevDecl)
1509    return;
1510
1511  // If there was a previous declaration of this variable, it may be
1512  // in our identifier chain. Update the identifier chain with the new
1513  // declaration.
1514  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1515    // The previous declaration was found on the identifer resolver
1516    // chain, so remove it from its scope.
1517    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1518      S = S->getParent();
1519
1520    if (S)
1521      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1522  }
1523}
1524
1525/// \brief Diagnose function specifiers on a declaration of an identifier that
1526/// does not identify a function.
1527void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1528  // FIXME: We should probably indicate the identifier in question to avoid
1529  // confusion for constructs like "inline int a(), b;"
1530  if (D.getDeclSpec().isInlineSpecified())
1531    Diag(D.getDeclSpec().getInlineSpecLoc(),
1532         diag::err_inline_non_function);
1533
1534  if (D.getDeclSpec().isVirtualSpecified())
1535    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1536         diag::err_virtual_non_function);
1537
1538  if (D.getDeclSpec().isExplicitSpecified())
1539    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1540         diag::err_explicit_non_function);
1541}
1542
1543NamedDecl*
1544Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1545                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1546                             bool &Redeclaration) {
1547  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1548  if (D.getCXXScopeSpec().isSet()) {
1549    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1550      << D.getCXXScopeSpec().getRange();
1551    InvalidDecl = true;
1552    // Pretend we didn't see the scope specifier.
1553    DC = 0;
1554  }
1555
1556  if (getLangOptions().CPlusPlus) {
1557    // Check that there are no default arguments (C++ only).
1558    CheckExtraCXXDefaultArguments(D);
1559  }
1560
1561  DiagnoseFunctionSpecifiers(D);
1562
1563  if (D.getDeclSpec().isThreadSpecified())
1564    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1565
1566  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1567  if (!NewTD) return 0;
1568
1569  // Handle attributes prior to checking for duplicates in MergeVarDecl
1570  ProcessDeclAttributes(NewTD, D);
1571  // Merge the decl with the existing one if appropriate. If the decl is
1572  // in an outer scope, it isn't the same thing.
1573  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1574    Redeclaration = true;
1575    if (MergeTypeDefDecl(NewTD, PrevDecl))
1576      InvalidDecl = true;
1577  }
1578
1579  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1580  // then it shall have block scope.
1581  QualType T = NewTD->getUnderlyingType();
1582  if (T->isVariablyModifiedType()) {
1583    CurFunctionNeedsScopeChecking = true;
1584
1585    if (S->getFnParent() == 0) {
1586      bool SizeIsNegative;
1587      QualType FixedTy =
1588          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1589      if (!FixedTy.isNull()) {
1590        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1591        NewTD->setUnderlyingType(FixedTy);
1592      } else {
1593        if (SizeIsNegative)
1594          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1595        else if (T->isVariableArrayType())
1596          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1597        else
1598          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1599        InvalidDecl = true;
1600      }
1601    }
1602  }
1603  return NewTD;
1604}
1605
1606/// \brief Determines whether the given declaration is an out-of-scope
1607/// previous declaration.
1608///
1609/// This routine should be invoked when name lookup has found a
1610/// previous declaration (PrevDecl) that is not in the scope where a
1611/// new declaration by the same name is being introduced. If the new
1612/// declaration occurs in a local scope, previous declarations with
1613/// linkage may still be considered previous declarations (C99
1614/// 6.2.2p4-5, C++ [basic.link]p6).
1615///
1616/// \param PrevDecl the previous declaration found by name
1617/// lookup
1618///
1619/// \param DC the context in which the new declaration is being
1620/// declared.
1621///
1622/// \returns true if PrevDecl is an out-of-scope previous declaration
1623/// for a new delcaration with the same name.
1624static bool
1625isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1626                                ASTContext &Context) {
1627  if (!PrevDecl)
1628    return 0;
1629
1630  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1631  // case we need to check each of the overloaded functions.
1632  if (!PrevDecl->hasLinkage())
1633    return false;
1634
1635  if (Context.getLangOptions().CPlusPlus) {
1636    // C++ [basic.link]p6:
1637    //   If there is a visible declaration of an entity with linkage
1638    //   having the same name and type, ignoring entities declared
1639    //   outside the innermost enclosing namespace scope, the block
1640    //   scope declaration declares that same entity and receives the
1641    //   linkage of the previous declaration.
1642    DeclContext *OuterContext = DC->getLookupContext();
1643    if (!OuterContext->isFunctionOrMethod())
1644      // This rule only applies to block-scope declarations.
1645      return false;
1646    else {
1647      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1648      if (PrevOuterContext->isRecord())
1649        // We found a member function: ignore it.
1650        return false;
1651      else {
1652        // Find the innermost enclosing namespace for the new and
1653        // previous declarations.
1654        while (!OuterContext->isFileContext())
1655          OuterContext = OuterContext->getParent();
1656        while (!PrevOuterContext->isFileContext())
1657          PrevOuterContext = PrevOuterContext->getParent();
1658
1659        // The previous declaration is in a different namespace, so it
1660        // isn't the same function.
1661        if (OuterContext->getPrimaryContext() !=
1662            PrevOuterContext->getPrimaryContext())
1663          return false;
1664      }
1665    }
1666  }
1667
1668  return true;
1669}
1670
1671NamedDecl*
1672Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1673                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1674                              bool &Redeclaration) {
1675  DeclarationName Name = GetNameForDeclarator(D);
1676
1677  // Check that there are no default arguments (C++ only).
1678  if (getLangOptions().CPlusPlus)
1679    CheckExtraCXXDefaultArguments(D);
1680
1681  VarDecl *NewVD;
1682  VarDecl::StorageClass SC;
1683  switch (D.getDeclSpec().getStorageClassSpec()) {
1684  default: assert(0 && "Unknown storage class!");
1685  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1686  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1687  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1688  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1689  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1690  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1691  case DeclSpec::SCS_mutable:
1692    // mutable can only appear on non-static class members, so it's always
1693    // an error here
1694    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1695    InvalidDecl = true;
1696    SC = VarDecl::None;
1697    break;
1698  }
1699
1700  IdentifierInfo *II = Name.getAsIdentifierInfo();
1701  if (!II) {
1702    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1703      << Name.getAsString();
1704    return 0;
1705  }
1706
1707  DiagnoseFunctionSpecifiers(D);
1708
1709  if (!DC->isRecord() && S->getFnParent() == 0) {
1710    // C99 6.9p2: The storage-class specifiers auto and register shall not
1711    // appear in the declaration specifiers in an external declaration.
1712    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1713      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1714      InvalidDecl = true;
1715    }
1716  }
1717  if (DC->isRecord() && !CurContext->isRecord()) {
1718    // This is an out-of-line definition of a static data member.
1719    if (SC == VarDecl::Static) {
1720      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1721           diag::err_static_out_of_line)
1722        << CodeModificationHint::CreateRemoval(
1723                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1724    } else if (SC == VarDecl::None)
1725      SC = VarDecl::Static;
1726  }
1727
1728  // The variable can not
1729  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1730                          II, R, SC,
1731                          // FIXME: Move to DeclGroup...
1732                          D.getDeclSpec().getSourceRange().getBegin());
1733
1734  if (D.getDeclSpec().isThreadSpecified()) {
1735    if (NewVD->hasLocalStorage())
1736      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1737    else if (!Context.Target.isTLSSupported())
1738      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1739    else
1740      NewVD->setThreadSpecified(true);
1741  }
1742
1743  // Set the lexical context. If the declarator has a C++ scope specifier, the
1744  // lexical context will be different from the semantic context.
1745  NewVD->setLexicalDeclContext(CurContext);
1746
1747  // Handle attributes prior to checking for duplicates in MergeVarDecl
1748  ProcessDeclAttributes(NewVD, D);
1749
1750  // Handle GNU asm-label extension (encoded as an attribute).
1751  if (Expr *E = (Expr*) D.getAsmLabel()) {
1752    // The parser guarantees this is a string.
1753    StringLiteral *SE = cast<StringLiteral>(E);
1754    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1755                                                        SE->getByteLength())));
1756  }
1757
1758  // If name lookup finds a previous declaration that is not in the
1759  // same scope as the new declaration, this may still be an
1760  // acceptable redeclaration.
1761  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1762      !(NewVD->hasLinkage() &&
1763        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1764    PrevDecl = 0;
1765
1766  // Merge the decl with the existing one if appropriate.
1767  if (PrevDecl) {
1768    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1769      // The user tried to define a non-static data member
1770      // out-of-line (C++ [dcl.meaning]p1).
1771      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1772        << D.getCXXScopeSpec().getRange();
1773      PrevDecl = 0;
1774      InvalidDecl = true;
1775    }
1776  } else if (D.getCXXScopeSpec().isSet()) {
1777    // No previous declaration in the qualifying scope.
1778    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1779      << Name << D.getCXXScopeSpec().getRange();
1780    InvalidDecl = true;
1781  }
1782
1783  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1784    InvalidDecl = true;
1785
1786  // If this is a locally-scoped extern C variable, update the map of
1787  // such variables.
1788  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1789      !InvalidDecl)
1790    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1791
1792  return NewVD;
1793}
1794
1795/// \brief Perform semantic checking on a newly-created variable
1796/// declaration.
1797///
1798/// This routine performs all of the type-checking required for a
1799/// variable declaration once it has been build. It is used both to
1800/// check variables after they have been parsed and their declarators
1801/// have been translated into a declaration, and to check
1802///
1803/// \returns true if an error was encountered, false otherwise.
1804bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1805                                    bool &Redeclaration) {
1806  bool Invalid = false;
1807
1808  QualType T = NewVD->getType();
1809
1810  if (T->isObjCInterfaceType()) {
1811    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1812    Invalid = true;
1813  }
1814
1815  // The variable can not have an abstract class type.
1816  if (RequireNonAbstractType(NewVD->getLocation(), T,
1817                             diag::err_abstract_type_in_decl,
1818                             AbstractVariableType))
1819    Invalid = true;
1820
1821  // Emit an error if an address space was applied to decl with local storage.
1822  // This includes arrays of objects with address space qualifiers, but not
1823  // automatic variables that point to other address spaces.
1824  // ISO/IEC TR 18037 S5.1.2
1825  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1826    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1827    Invalid = true;
1828  }
1829
1830  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1831      && !NewVD->hasAttr<BlocksAttr>())
1832    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1833
1834  bool isVM = T->isVariablyModifiedType();
1835  if (isVM || NewVD->hasAttr<CleanupAttr>())
1836    CurFunctionNeedsScopeChecking = true;
1837
1838  if ((isVM && NewVD->hasLinkage()) ||
1839      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1840    bool SizeIsNegative;
1841    QualType FixedTy =
1842        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1843    if (!FixedTy.isNull()) {
1844      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1845      NewVD->setType(FixedTy);
1846    } else if (T->isVariableArrayType()) {
1847      Invalid = true;
1848
1849      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1850      // FIXME: This won't give the correct result for
1851      // int a[10][n];
1852      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1853
1854      if (NewVD->isFileVarDecl())
1855        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1856          << SizeRange;
1857      else if (NewVD->getStorageClass() == VarDecl::Static)
1858        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1859          << SizeRange;
1860      else
1861        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1862            << SizeRange;
1863    } else {
1864      Invalid = true;
1865
1866      if (NewVD->isFileVarDecl())
1867        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1868      else
1869        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1870    }
1871  }
1872
1873  if (!PrevDecl && NewVD->isExternC(Context)) {
1874    // Since we did not find anything by this name and we're declaring
1875    // an extern "C" variable, look for a non-visible extern "C"
1876    // declaration with the same name.
1877    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1878      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1879    if (Pos != LocallyScopedExternalDecls.end())
1880      PrevDecl = Pos->second;
1881  }
1882
1883  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1884    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1885      << T;
1886    Invalid = true;
1887  }
1888
1889  if (PrevDecl) {
1890    Redeclaration = true;
1891    if (MergeVarDecl(NewVD, PrevDecl))
1892      Invalid = true;
1893  }
1894
1895  return NewVD->isInvalidDecl() || Invalid;
1896}
1897
1898NamedDecl*
1899Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1900                              QualType R, NamedDecl* PrevDecl,
1901                              bool IsFunctionDefinition,
1902                              bool& InvalidDecl, bool &Redeclaration) {
1903  assert(R.getTypePtr()->isFunctionType());
1904
1905  DeclarationName Name = GetNameForDeclarator(D);
1906  FunctionDecl::StorageClass SC = FunctionDecl::None;
1907  switch (D.getDeclSpec().getStorageClassSpec()) {
1908  default: assert(0 && "Unknown storage class!");
1909  case DeclSpec::SCS_auto:
1910  case DeclSpec::SCS_register:
1911  case DeclSpec::SCS_mutable:
1912    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1913         diag::err_typecheck_sclass_func);
1914    InvalidDecl = true;
1915    break;
1916  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1917  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1918  case DeclSpec::SCS_static: {
1919    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1920      // C99 6.7.1p5:
1921      //   The declaration of an identifier for a function that has
1922      //   block scope shall have no explicit storage-class specifier
1923      //   other than extern
1924      // See also (C++ [dcl.stc]p4).
1925      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1926           diag::err_static_block_func);
1927      SC = FunctionDecl::None;
1928    } else
1929      SC = FunctionDecl::Static;
1930    break;
1931  }
1932  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1933  }
1934
1935  if (D.getDeclSpec().isThreadSpecified())
1936    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1937
1938  bool isInline = D.getDeclSpec().isInlineSpecified();
1939  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1940  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1941
1942  // Check that the return type is not an abstract class type.
1943  // For record types, this is done by the AbstractClassUsageDiagnoser once
1944  // the class has been completely parsed.
1945  if (!DC->isRecord() &&
1946      RequireNonAbstractType(D.getIdentifierLoc(),
1947                             R->getAsFunctionType()->getResultType(),
1948                             diag::err_abstract_type_in_decl,
1949                             AbstractReturnType))
1950    InvalidDecl = true;
1951
1952  // Do not allow returning a objc interface by-value.
1953  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1954    Diag(D.getIdentifierLoc(),
1955         diag::err_object_cannot_be_passed_returned_by_value) << 0
1956      << R->getAsFunctionType()->getResultType();
1957    InvalidDecl = true;
1958  }
1959
1960  bool isVirtualOkay = false;
1961  FunctionDecl *NewFD;
1962  if (D.getKind() == Declarator::DK_Constructor) {
1963    // This is a C++ constructor declaration.
1964    assert(DC->isRecord() &&
1965           "Constructors can only be declared in a member context");
1966
1967    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1968
1969    // Create the new declaration
1970    NewFD = CXXConstructorDecl::Create(Context,
1971                                       cast<CXXRecordDecl>(DC),
1972                                       D.getIdentifierLoc(), Name, R,
1973                                       isExplicit, isInline,
1974                                       /*isImplicitlyDeclared=*/false);
1975
1976    if (InvalidDecl)
1977      NewFD->setInvalidDecl();
1978  } else if (D.getKind() == Declarator::DK_Destructor) {
1979    // This is a C++ destructor declaration.
1980    if (DC->isRecord()) {
1981      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1982
1983      NewFD = CXXDestructorDecl::Create(Context,
1984                                        cast<CXXRecordDecl>(DC),
1985                                        D.getIdentifierLoc(), Name, R,
1986                                        isInline,
1987                                        /*isImplicitlyDeclared=*/false);
1988
1989      if (InvalidDecl)
1990        NewFD->setInvalidDecl();
1991
1992      isVirtualOkay = true;
1993    } else {
1994      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1995
1996      // Create a FunctionDecl to satisfy the function definition parsing
1997      // code path.
1998      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1999                                   Name, R, SC, isInline,
2000                                   /*hasPrototype=*/true,
2001                                   // FIXME: Move to DeclGroup...
2002                                   D.getDeclSpec().getSourceRange().getBegin());
2003      InvalidDecl = true;
2004      NewFD->setInvalidDecl();
2005    }
2006  } else if (D.getKind() == Declarator::DK_Conversion) {
2007    if (!DC->isRecord()) {
2008      Diag(D.getIdentifierLoc(),
2009           diag::err_conv_function_not_member);
2010      return 0;
2011    } else {
2012      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
2013
2014      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2015                                        D.getIdentifierLoc(), Name, R,
2016                                        isInline, isExplicit);
2017
2018      if (InvalidDecl)
2019        NewFD->setInvalidDecl();
2020
2021      isVirtualOkay = true;
2022    }
2023  } else if (DC->isRecord()) {
2024    // This is a C++ method declaration.
2025    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2026                                  D.getIdentifierLoc(), Name, R,
2027                                  (SC == FunctionDecl::Static), isInline);
2028
2029    isVirtualOkay = (SC != FunctionDecl::Static);
2030  } else {
2031    // Determine whether the function was written with a
2032    // prototype. This true when:
2033    //   - we're in C++ (where every function has a prototype),
2034    //   - there is a prototype in the declarator, or
2035    //   - the type R of the function is some kind of typedef or other reference
2036    //     to a type name (which eventually refers to a function type).
2037    bool HasPrototype =
2038       getLangOptions().CPlusPlus ||
2039       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2040       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2041
2042    NewFD = FunctionDecl::Create(Context, DC,
2043                                 D.getIdentifierLoc(),
2044                                 Name, R, SC, isInline, HasPrototype,
2045                                 // FIXME: Move to DeclGroup...
2046                                 D.getDeclSpec().getSourceRange().getBegin());
2047  }
2048
2049  // Set the lexical context. If the declarator has a C++
2050  // scope specifier, the lexical context will be different
2051  // from the semantic context.
2052  NewFD->setLexicalDeclContext(CurContext);
2053
2054  // C++ [dcl.fct.spec]p5:
2055  //   The virtual specifier shall only be used in declarations of
2056  //   nonstatic class member functions that appear within a
2057  //   member-specification of a class declaration; see 10.3.
2058  //
2059  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2060  // function is also virtual if it overrides an already virtual
2061  // function. This is important to do here because it's part of the
2062  // declaration.
2063  if (isVirtual && !InvalidDecl) {
2064    if (!isVirtualOkay) {
2065       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2066           diag::err_virtual_non_function);
2067    } else if (!CurContext->isRecord()) {
2068      // 'virtual' was specified outside of the class.
2069      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2070        << CodeModificationHint::CreateRemoval(
2071                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2072    } else {
2073      // Okay: Add virtual to the method.
2074      cast<CXXMethodDecl>(NewFD)->setVirtual();
2075      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2076      CurClass->setAggregate(false);
2077      CurClass->setPOD(false);
2078      CurClass->setPolymorphic(true);
2079      CurClass->setHasTrivialConstructor(false);
2080    }
2081  }
2082
2083  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2084      !CurContext->isRecord()) {
2085    // C++ [class.static]p1:
2086    //   A data or function member of a class may be declared static
2087    //   in a class definition, in which case it is a static member of
2088    //   the class.
2089
2090    // Complain about the 'static' specifier if it's on an out-of-line
2091    // member function definition.
2092    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2093         diag::err_static_out_of_line)
2094      << CodeModificationHint::CreateRemoval(
2095                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2096  }
2097
2098  // Handle GNU asm-label extension (encoded as an attribute).
2099  if (Expr *E = (Expr*) D.getAsmLabel()) {
2100    // The parser guarantees this is a string.
2101    StringLiteral *SE = cast<StringLiteral>(E);
2102    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2103                                                        SE->getByteLength())));
2104  }
2105
2106  // Copy the parameter declarations from the declarator D to
2107  // the function declaration NewFD, if they are available.
2108  if (D.getNumTypeObjects() > 0) {
2109    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2110
2111    // Create Decl objects for each parameter, adding them to the
2112    // FunctionDecl.
2113    llvm::SmallVector<ParmVarDecl*, 16> Params;
2114
2115    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2116    // function that takes no arguments, not a function that takes a
2117    // single void argument.
2118    // We let through "const void" here because Sema::GetTypeForDeclarator
2119    // already checks for that case.
2120    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2121        FTI.ArgInfo[0].Param &&
2122        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2123      // empty arg list, don't push any params.
2124      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2125
2126      // In C++, the empty parameter-type-list must be spelled "void"; a
2127      // typedef of void is not permitted.
2128      if (getLangOptions().CPlusPlus &&
2129          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2130        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2131      }
2132    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2133      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2134        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2135    }
2136
2137    NewFD->setParams(Context, &Params[0], Params.size());
2138  } else if (R->getAsTypedefType()) {
2139    // When we're declaring a function with a typedef, as in the
2140    // following example, we'll need to synthesize (unnamed)
2141    // parameters for use in the declaration.
2142    //
2143    // @code
2144    // typedef void fn(int);
2145    // fn f;
2146    // @endcode
2147    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2148    if (!FT) {
2149      // This is a typedef of a function with no prototype, so we
2150      // don't need to do anything.
2151    } else if ((FT->getNumArgs() == 0) ||
2152               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2153                FT->getArgType(0)->isVoidType())) {
2154      // This is a zero-argument function. We don't need to do anything.
2155    } else {
2156      // Synthesize a parameter for each argument type.
2157      llvm::SmallVector<ParmVarDecl*, 16> Params;
2158      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2159           ArgType != FT->arg_type_end(); ++ArgType) {
2160        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2161                                                 SourceLocation(), 0,
2162                                                 *ArgType, VarDecl::None,
2163                                                 0);
2164        Param->setImplicit();
2165        Params.push_back(Param);
2166      }
2167
2168      NewFD->setParams(Context, &Params[0], Params.size());
2169    }
2170  }
2171
2172  // If name lookup finds a previous declaration that is not in the
2173  // same scope as the new declaration, this may still be an
2174  // acceptable redeclaration.
2175  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2176      !(NewFD->hasLinkage() &&
2177        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2178    PrevDecl = 0;
2179
2180  // Perform semantic checking on the function declaration.
2181  bool OverloadableAttrRequired = false; // FIXME: HACK!
2182  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2183                               /*FIXME:*/OverloadableAttrRequired))
2184    InvalidDecl = true;
2185
2186  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2187    // An out-of-line member function declaration must also be a
2188    // definition (C++ [dcl.meaning]p1).
2189    if (!IsFunctionDefinition) {
2190      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2191        << D.getCXXScopeSpec().getRange();
2192      InvalidDecl = true;
2193    } else if (!Redeclaration) {
2194      // The user tried to provide an out-of-line definition for a
2195      // function that is a member of a class or namespace, but there
2196      // was no such member function declared (C++ [class.mfct]p2,
2197      // C++ [namespace.memdef]p2). For example:
2198      //
2199      // class X {
2200      //   void f() const;
2201      // };
2202      //
2203      // void X::f() { } // ill-formed
2204      //
2205      // Complain about this problem, and attempt to suggest close
2206      // matches (e.g., those that differ only in cv-qualifiers and
2207      // whether the parameter types are references).
2208      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2209        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2210      InvalidDecl = true;
2211
2212      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2213                                              true);
2214      assert(!Prev.isAmbiguous() &&
2215             "Cannot have an ambiguity in previous-declaration lookup");
2216      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2217           Func != FuncEnd; ++Func) {
2218        if (isa<FunctionDecl>(*Func) &&
2219            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2220          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2221      }
2222
2223      PrevDecl = 0;
2224    }
2225  }
2226
2227  // Handle attributes. We need to have merged decls when handling attributes
2228  // (for example to check for conflicts, etc).
2229  // FIXME: This needs to happen before we merge declarations. Then,
2230  // let attribute merging cope with attribute conflicts.
2231  ProcessDeclAttributes(NewFD, D);
2232  AddKnownFunctionAttributes(NewFD);
2233
2234  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2235    // If a function name is overloadable in C, then every function
2236    // with that name must be marked "overloadable".
2237    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2238      << Redeclaration << NewFD;
2239    if (PrevDecl)
2240      Diag(PrevDecl->getLocation(),
2241           diag::note_attribute_overloadable_prev_overload);
2242    NewFD->addAttr(::new (Context) OverloadableAttr());
2243  }
2244
2245  // If this is a locally-scoped extern C function, update the
2246  // map of such names.
2247  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2248      && !InvalidDecl)
2249    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2250
2251  return NewFD;
2252}
2253
2254/// \brief Perform semantic checking of a new function declaration.
2255///
2256/// Performs semantic analysis of the new function declaration
2257/// NewFD. This routine performs all semantic checking that does not
2258/// require the actual declarator involved in the declaration, and is
2259/// used both for the declaration of functions as they are parsed
2260/// (called via ActOnDeclarator) and for the declaration of functions
2261/// that have been instantiated via C++ template instantiation (called
2262/// via InstantiateDecl).
2263///
2264/// \returns true if there was an error, false otherwise.
2265bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2266                                    bool &Redeclaration,
2267                                    bool &OverloadableAttrRequired) {
2268  bool InvalidDecl = false;
2269
2270  // Semantic checking for this function declaration (in isolation).
2271  if (getLangOptions().CPlusPlus) {
2272    // C++-specific checks.
2273    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2274      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2275    else if (isa<CXXDestructorDecl>(NewFD)) {
2276      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2277      Record->setUserDeclaredDestructor(true);
2278      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2279      // user-defined destructor.
2280      Record->setPOD(false);
2281
2282      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2283      // declared destructor.
2284      Record->setHasTrivialDestructor(false);
2285    } else if (CXXConversionDecl *Conversion
2286               = dyn_cast<CXXConversionDecl>(NewFD))
2287      ActOnConversionDeclarator(Conversion);
2288
2289    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2290    if (NewFD->isOverloadedOperator() &&
2291        CheckOverloadedOperatorDeclaration(NewFD))
2292      InvalidDecl = true;
2293  }
2294
2295  // Check for a previous declaration of this name.
2296  if (!PrevDecl && NewFD->isExternC(Context)) {
2297    // Since we did not find anything by this name and we're declaring
2298    // an extern "C" function, look for a non-visible extern "C"
2299    // declaration with the same name.
2300    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2301      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2302    if (Pos != LocallyScopedExternalDecls.end())
2303      PrevDecl = Pos->second;
2304  }
2305
2306  // Merge or overload the declaration with an existing declaration of
2307  // the same name, if appropriate.
2308  if (PrevDecl) {
2309    // Determine whether NewFD is an overload of PrevDecl or
2310    // a declaration that requires merging. If it's an overload,
2311    // there's no more work to do here; we'll just add the new
2312    // function to the scope.
2313    OverloadedFunctionDecl::function_iterator MatchedDecl;
2314
2315    if (!getLangOptions().CPlusPlus &&
2316        AllowOverloadingOfFunction(PrevDecl, Context)) {
2317      OverloadableAttrRequired = true;
2318
2319      // Functions marked "overloadable" must have a prototype (that
2320      // we can't get through declaration merging).
2321      if (!NewFD->getType()->getAsFunctionProtoType()) {
2322        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2323          << NewFD;
2324        InvalidDecl = true;
2325        Redeclaration = true;
2326
2327        // Turn this into a variadic function with no parameters.
2328        QualType R = Context.getFunctionType(
2329                       NewFD->getType()->getAsFunctionType()->getResultType(),
2330                       0, 0, true, 0);
2331        NewFD->setType(R);
2332      }
2333    }
2334
2335    if (PrevDecl &&
2336        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2337         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2338      Redeclaration = true;
2339      Decl *OldDecl = PrevDecl;
2340
2341      // If PrevDecl was an overloaded function, extract the
2342      // FunctionDecl that matched.
2343      if (isa<OverloadedFunctionDecl>(PrevDecl))
2344        OldDecl = *MatchedDecl;
2345
2346      // NewFD and OldDecl represent declarations that need to be
2347      // merged.
2348      if (MergeFunctionDecl(NewFD, OldDecl))
2349        InvalidDecl = true;
2350
2351      if (!InvalidDecl)
2352        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2353    }
2354  }
2355
2356  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2357    // In C++, check default arguments now that we have merged decls. Unless
2358    // the lexical context is the class, because in this case this is done
2359    // during delayed parsing anyway.
2360    CheckCXXDefaultArguments(NewFD);
2361  }
2362
2363  return InvalidDecl || NewFD->isInvalidDecl();
2364}
2365
2366bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2367  // FIXME: Need strict checking.  In C89, we need to check for
2368  // any assignment, increment, decrement, function-calls, or
2369  // commas outside of a sizeof.  In C99, it's the same list,
2370  // except that the aforementioned are allowed in unevaluated
2371  // expressions.  Everything else falls under the
2372  // "may accept other forms of constant expressions" exception.
2373  // (We never end up here for C++, so the constant expression
2374  // rules there don't matter.)
2375  if (Init->isConstantInitializer(Context))
2376    return false;
2377  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2378    << Init->getSourceRange();
2379  return true;
2380}
2381
2382void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2383  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2384}
2385
2386/// AddInitializerToDecl - Adds the initializer Init to the
2387/// declaration dcl. If DirectInit is true, this is C++ direct
2388/// initialization rather than copy initialization.
2389void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2390  Decl *RealDecl = dcl.getAs<Decl>();
2391  // If there is no declaration, there was an error parsing it.  Just ignore
2392  // the initializer.
2393  if (RealDecl == 0)
2394    return;
2395
2396  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2397    // With declarators parsed the way they are, the parser cannot
2398    // distinguish between a normal initializer and a pure-specifier.
2399    // Thus this grotesque test.
2400    IntegerLiteral *IL;
2401    Expr *Init = static_cast<Expr *>(init.get());
2402    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2403        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2404      if (Method->isVirtual()) {
2405        Method->setPure();
2406
2407        // A class is abstract if at least one function is pure virtual.
2408        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2409      } else if (!Method->isInvalidDecl()) {
2410        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2411          << Method->getDeclName() << Init->getSourceRange();
2412        Method->setInvalidDecl();
2413      }
2414    } else {
2415      Diag(Method->getLocation(), diag::err_member_function_initialization)
2416        << Method->getDeclName() << Init->getSourceRange();
2417      Method->setInvalidDecl();
2418    }
2419    return;
2420  }
2421
2422  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2423  if (!VDecl) {
2424    if (getLangOptions().CPlusPlus &&
2425        RealDecl->getLexicalDeclContext()->isRecord() &&
2426        isa<NamedDecl>(RealDecl))
2427      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2428        << cast<NamedDecl>(RealDecl)->getDeclName();
2429    else
2430      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2431    RealDecl->setInvalidDecl();
2432    return;
2433  }
2434
2435  if (!VDecl->getType()->isArrayType() &&
2436      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2437                          diag::err_typecheck_decl_incomplete_type)) {
2438    RealDecl->setInvalidDecl();
2439    return;
2440  }
2441
2442  const VarDecl *Def = 0;
2443  if (VDecl->getDefinition(Def)) {
2444    Diag(VDecl->getLocation(), diag::err_redefinition)
2445      << VDecl->getDeclName();
2446    Diag(Def->getLocation(), diag::note_previous_definition);
2447    VDecl->setInvalidDecl();
2448    return;
2449  }
2450
2451  // Take ownership of the expression, now that we're sure we have somewhere
2452  // to put it.
2453  Expr *Init = static_cast<Expr *>(init.release());
2454  assert(Init && "missing initializer");
2455
2456  // Get the decls type and save a reference for later, since
2457  // CheckInitializerTypes may change it.
2458  QualType DclT = VDecl->getType(), SavT = DclT;
2459  if (VDecl->isBlockVarDecl()) {
2460    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2461      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2462      VDecl->setInvalidDecl();
2463    } else if (!VDecl->isInvalidDecl()) {
2464      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2465                                VDecl->getDeclName(), DirectInit))
2466        VDecl->setInvalidDecl();
2467
2468      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2469      // Don't check invalid declarations to avoid emitting useless diagnostics.
2470      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2471        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2472          CheckForConstantInitializer(Init, DclT);
2473      }
2474    }
2475  } else if (VDecl->isStaticDataMember() &&
2476             VDecl->getLexicalDeclContext()->isRecord()) {
2477    // This is an in-class initialization for a static data member, e.g.,
2478    //
2479    // struct S {
2480    //   static const int value = 17;
2481    // };
2482
2483    // Attach the initializer
2484    VDecl->setInit(Init);
2485
2486    // C++ [class.mem]p4:
2487    //   A member-declarator can contain a constant-initializer only
2488    //   if it declares a static member (9.4) of const integral or
2489    //   const enumeration type, see 9.4.2.
2490    QualType T = VDecl->getType();
2491    if (!T->isDependentType() &&
2492        (!Context.getCanonicalType(T).isConstQualified() ||
2493         !T->isIntegralType())) {
2494      Diag(VDecl->getLocation(), diag::err_member_initialization)
2495        << VDecl->getDeclName() << Init->getSourceRange();
2496      VDecl->setInvalidDecl();
2497    } else {
2498      // C++ [class.static.data]p4:
2499      //   If a static data member is of const integral or const
2500      //   enumeration type, its declaration in the class definition
2501      //   can specify a constant-initializer which shall be an
2502      //   integral constant expression (5.19).
2503      if (!Init->isTypeDependent() &&
2504          !Init->getType()->isIntegralType()) {
2505        // We have a non-dependent, non-integral or enumeration type.
2506        Diag(Init->getSourceRange().getBegin(),
2507             diag::err_in_class_initializer_non_integral_type)
2508          << Init->getType() << Init->getSourceRange();
2509        VDecl->setInvalidDecl();
2510      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2511        // Check whether the expression is a constant expression.
2512        llvm::APSInt Value;
2513        SourceLocation Loc;
2514        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2515          Diag(Loc, diag::err_in_class_initializer_non_constant)
2516            << Init->getSourceRange();
2517          VDecl->setInvalidDecl();
2518        } else if (!VDecl->getType()->isDependentType())
2519          ImpCastExprToType(Init, VDecl->getType());
2520      }
2521    }
2522  } else if (VDecl->isFileVarDecl()) {
2523    if (VDecl->getStorageClass() == VarDecl::Extern)
2524      Diag(VDecl->getLocation(), diag::warn_extern_init);
2525    if (!VDecl->isInvalidDecl())
2526      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2527                                VDecl->getDeclName(), DirectInit))
2528        VDecl->setInvalidDecl();
2529
2530    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2531    // Don't check invalid declarations to avoid emitting useless diagnostics.
2532    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2533      // C99 6.7.8p4. All file scoped initializers need to be constant.
2534      CheckForConstantInitializer(Init, DclT);
2535    }
2536  }
2537  // If the type changed, it means we had an incomplete type that was
2538  // completed by the initializer. For example:
2539  //   int ary[] = { 1, 3, 5 };
2540  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2541  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2542    VDecl->setType(DclT);
2543    Init->setType(DclT);
2544  }
2545
2546  // Attach the initializer to the decl.
2547  VDecl->setInit(Init);
2548  return;
2549}
2550
2551void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2552  Decl *RealDecl = dcl.getAs<Decl>();
2553
2554  // If there is no declaration, there was an error parsing it. Just ignore it.
2555  if (RealDecl == 0)
2556    return;
2557
2558  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2559    QualType Type = Var->getType();
2560    // C++ [dcl.init.ref]p3:
2561    //   The initializer can be omitted for a reference only in a
2562    //   parameter declaration (8.3.5), in the declaration of a
2563    //   function return type, in the declaration of a class member
2564    //   within its class declaration (9.2), and where the extern
2565    //   specifier is explicitly used.
2566    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2567      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2568        << Var->getDeclName()
2569        << SourceRange(Var->getLocation(), Var->getLocation());
2570      Var->setInvalidDecl();
2571      return;
2572    }
2573
2574    // C++ [dcl.init]p9:
2575    //
2576    //   If no initializer is specified for an object, and the object
2577    //   is of (possibly cv-qualified) non-POD class type (or array
2578    //   thereof), the object shall be default-initialized; if the
2579    //   object is of const-qualified type, the underlying class type
2580    //   shall have a user-declared default constructor.
2581    if (getLangOptions().CPlusPlus) {
2582      QualType InitType = Type;
2583      if (const ArrayType *Array = Context.getAsArrayType(Type))
2584        InitType = Array->getElementType();
2585      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2586        CXXRecordDecl *RD =
2587          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2588        CXXConstructorDecl *Constructor = 0;
2589        if (!RequireCompleteType(Var->getLocation(), InitType,
2590                                    diag::err_invalid_incomplete_type_use))
2591          Constructor
2592            = PerformInitializationByConstructor(InitType, 0, 0,
2593                                                 Var->getLocation(),
2594                                               SourceRange(Var->getLocation(),
2595                                                           Var->getLocation()),
2596                                                 Var->getDeclName(),
2597                                                 IK_Default);
2598        if (!Constructor)
2599          Var->setInvalidDecl();
2600        else if (!RD->hasTrivialConstructor())
2601          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2602      }
2603    }
2604
2605#if 0
2606    // FIXME: Temporarily disabled because we are not properly parsing
2607    // linkage specifications on declarations, e.g.,
2608    //
2609    //   extern "C" const CGPoint CGPointerZero;
2610    //
2611    // C++ [dcl.init]p9:
2612    //
2613    //     If no initializer is specified for an object, and the
2614    //     object is of (possibly cv-qualified) non-POD class type (or
2615    //     array thereof), the object shall be default-initialized; if
2616    //     the object is of const-qualified type, the underlying class
2617    //     type shall have a user-declared default
2618    //     constructor. Otherwise, if no initializer is specified for
2619    //     an object, the object and its subobjects, if any, have an
2620    //     indeterminate initial value; if the object or any of its
2621    //     subobjects are of const-qualified type, the program is
2622    //     ill-formed.
2623    //
2624    // This isn't technically an error in C, so we don't diagnose it.
2625    //
2626    // FIXME: Actually perform the POD/user-defined default
2627    // constructor check.
2628    if (getLangOptions().CPlusPlus &&
2629        Context.getCanonicalType(Type).isConstQualified() &&
2630        !Var->hasExternalStorage())
2631      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2632        << Var->getName()
2633        << SourceRange(Var->getLocation(), Var->getLocation());
2634#endif
2635  }
2636}
2637
2638Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2639                                                   unsigned NumDecls) {
2640  llvm::SmallVector<Decl*, 8> Decls;
2641
2642  for (unsigned i = 0; i != NumDecls; ++i)
2643    if (Decl *D = Group[i].getAs<Decl>())
2644      Decls.push_back(D);
2645
2646  // Perform semantic analysis that depends on having fully processed both
2647  // the declarator and initializer.
2648  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2649    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2650    if (!IDecl)
2651      continue;
2652    QualType T = IDecl->getType();
2653
2654    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2655    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2656    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2657      if (!IDecl->isInvalidDecl() &&
2658          RequireCompleteType(IDecl->getLocation(), T,
2659                              diag::err_typecheck_decl_incomplete_type))
2660        IDecl->setInvalidDecl();
2661    }
2662    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2663    // object that has file scope without an initializer, and without a
2664    // storage-class specifier or with the storage-class specifier "static",
2665    // constitutes a tentative definition. Note: A tentative definition with
2666    // external linkage is valid (C99 6.2.2p5).
2667    if (IDecl->isTentativeDefinition(Context)) {
2668      QualType CheckType = T;
2669      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2670
2671      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2672      if (ArrayT) {
2673        CheckType = ArrayT->getElementType();
2674        DiagID = diag::err_illegal_decl_array_incomplete_type;
2675      }
2676
2677      if (IDecl->isInvalidDecl()) {
2678        // Do nothing with invalid declarations
2679      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2680                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2681        // C99 6.9.2p3: If the declaration of an identifier for an object is
2682        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2683        // declared type shall not be an incomplete type.
2684        IDecl->setInvalidDecl();
2685      }
2686    }
2687  }
2688  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2689                                                   &Decls[0], Decls.size()));
2690}
2691
2692
2693/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2694/// to introduce parameters into function prototype scope.
2695Sema::DeclPtrTy
2696Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2697  const DeclSpec &DS = D.getDeclSpec();
2698
2699  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2700  VarDecl::StorageClass StorageClass = VarDecl::None;
2701  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2702    StorageClass = VarDecl::Register;
2703  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2704    Diag(DS.getStorageClassSpecLoc(),
2705         diag::err_invalid_storage_class_in_func_decl);
2706    D.getMutableDeclSpec().ClearStorageClassSpecs();
2707  }
2708
2709  if (D.getDeclSpec().isThreadSpecified())
2710    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2711
2712  DiagnoseFunctionSpecifiers(D);
2713
2714  // Check that there are no default arguments inside the type of this
2715  // parameter (C++ only).
2716  if (getLangOptions().CPlusPlus)
2717    CheckExtraCXXDefaultArguments(D);
2718
2719  // In this context, we *do not* check D.getInvalidType(). If the declarator
2720  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2721  // though it will not reflect the user specified type.
2722  QualType parmDeclType = GetTypeForDeclarator(D, S);
2723  if (parmDeclType.isNull()) {
2724    D.setInvalidType(true);
2725    parmDeclType = Context.IntTy;
2726  }
2727
2728  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2729  // Can this happen for params?  We already checked that they don't conflict
2730  // among each other.  Here they can only shadow globals, which is ok.
2731  IdentifierInfo *II = D.getIdentifier();
2732  if (II) {
2733    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2734      if (PrevDecl->isTemplateParameter()) {
2735        // Maybe we will complain about the shadowed template parameter.
2736        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2737        // Just pretend that we didn't see the previous declaration.
2738        PrevDecl = 0;
2739      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2740        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2741
2742        // Recover by removing the name
2743        II = 0;
2744        D.SetIdentifier(0, D.getIdentifierLoc());
2745      }
2746    }
2747  }
2748
2749  // Parameters can not be abstract class types.
2750  // For record types, this is done by the AbstractClassUsageDiagnoser once
2751  // the class has been completely parsed.
2752  if (!CurContext->isRecord() &&
2753      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2754                             diag::err_abstract_type_in_decl,
2755                             AbstractParamType))
2756    D.setInvalidType(true);
2757
2758  QualType T = adjustParameterType(parmDeclType);
2759
2760  ParmVarDecl *New;
2761  if (T == parmDeclType) // parameter type did not need adjustment
2762    New = ParmVarDecl::Create(Context, CurContext,
2763                              D.getIdentifierLoc(), II,
2764                              parmDeclType, StorageClass,
2765                              0);
2766  else // keep track of both the adjusted and unadjusted types
2767    New = OriginalParmVarDecl::Create(Context, CurContext,
2768                                      D.getIdentifierLoc(), II, T,
2769                                      parmDeclType, StorageClass, 0);
2770
2771  if (D.getInvalidType())
2772    New->setInvalidDecl();
2773
2774  // Parameter declarators cannot be interface types. All ObjC objects are
2775  // passed by reference.
2776  if (T->isObjCInterfaceType()) {
2777    Diag(D.getIdentifierLoc(),
2778         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2779    New->setInvalidDecl();
2780  }
2781
2782  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2783  if (D.getCXXScopeSpec().isSet()) {
2784    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2785      << D.getCXXScopeSpec().getRange();
2786    New->setInvalidDecl();
2787  }
2788
2789  // Add the parameter declaration into this scope.
2790  S->AddDecl(DeclPtrTy::make(New));
2791  if (II)
2792    IdResolver.AddDecl(New);
2793
2794  ProcessDeclAttributes(New, D);
2795  return DeclPtrTy::make(New);
2796}
2797
2798void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2799                                           SourceLocation LocAfterDecls) {
2800  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2801         "Not a function declarator!");
2802  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2803
2804  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2805  // for a K&R function.
2806  if (!FTI.hasPrototype) {
2807    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2808      --i;
2809      if (FTI.ArgInfo[i].Param == 0) {
2810        std::string Code = "  int ";
2811        Code += FTI.ArgInfo[i].Ident->getName();
2812        Code += ";\n";
2813        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2814          << FTI.ArgInfo[i].Ident
2815          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2816
2817        // Implicitly declare the argument as type 'int' for lack of a better
2818        // type.
2819        DeclSpec DS;
2820        const char* PrevSpec; // unused
2821        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2822                           PrevSpec);
2823        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2824        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2825        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2826      }
2827    }
2828  }
2829}
2830
2831Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2832                                              Declarator &D) {
2833  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2834  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2835         "Not a function declarator!");
2836  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2837
2838  if (FTI.hasPrototype) {
2839    // FIXME: Diagnose arguments without names in C.
2840  }
2841
2842  Scope *ParentScope = FnBodyScope->getParent();
2843
2844  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2845  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2846}
2847
2848Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2849  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2850
2851  CurFunctionNeedsScopeChecking = false;
2852
2853  // See if this is a redefinition.
2854  const FunctionDecl *Definition;
2855  if (FD->getBody(Context, Definition)) {
2856    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2857    Diag(Definition->getLocation(), diag::note_previous_definition);
2858  }
2859
2860  // Builtin functions cannot be defined.
2861  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2862    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2863      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2864      FD->setInvalidDecl();
2865    }
2866  }
2867
2868  // The return type of a function definition must be complete
2869  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2870  QualType ResultType = FD->getResultType();
2871  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2872      RequireCompleteType(FD->getLocation(), ResultType,
2873                          diag::err_func_def_incomplete_result))
2874    FD->setInvalidDecl();
2875
2876  // GNU warning -Wmissing-prototypes:
2877  //   Warn if a global function is defined without a previous
2878  //   prototype declaration. This warning is issued even if the
2879  //   definition itself provides a prototype. The aim is to detect
2880  //   global functions that fail to be declared in header files.
2881  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2882      !FD->isMain()) {
2883    bool MissingPrototype = true;
2884    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2885         Prev; Prev = Prev->getPreviousDeclaration()) {
2886      // Ignore any declarations that occur in function or method
2887      // scope, because they aren't visible from the header.
2888      if (Prev->getDeclContext()->isFunctionOrMethod())
2889        continue;
2890
2891      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2892      break;
2893    }
2894
2895    if (MissingPrototype)
2896      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2897  }
2898
2899  PushDeclContext(FnBodyScope, FD);
2900
2901  // Check the validity of our function parameters
2902  CheckParmsForFunctionDef(FD);
2903
2904  // Introduce our parameters into the function scope
2905  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2906    ParmVarDecl *Param = FD->getParamDecl(p);
2907    Param->setOwningFunction(FD);
2908
2909    // If this has an identifier, add it to the scope stack.
2910    if (Param->getIdentifier())
2911      PushOnScopeChains(Param, FnBodyScope);
2912  }
2913
2914  // Checking attributes of current function definition
2915  // dllimport attribute.
2916  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2917    // dllimport attribute cannot be applied to definition.
2918    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2919      Diag(FD->getLocation(),
2920           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2921        << "dllimport";
2922      FD->setInvalidDecl();
2923      return DeclPtrTy::make(FD);
2924    } else {
2925      // If a symbol previously declared dllimport is later defined, the
2926      // attribute is ignored in subsequent references, and a warning is
2927      // emitted.
2928      Diag(FD->getLocation(),
2929           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2930        << FD->getNameAsCString() << "dllimport";
2931    }
2932  }
2933  return DeclPtrTy::make(FD);
2934}
2935
2936
2937Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2938  Decl *dcl = D.getAs<Decl>();
2939  CompoundStmt *Body =cast<CompoundStmt>(static_cast<Stmt*>(BodyArg.release()));
2940  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2941    FD->setBody(Body);
2942    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2943  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2944    assert(MD == getCurMethodDecl() && "Method parsing confused");
2945    MD->setBody(Body);
2946  } else {
2947    Body->Destroy(Context);
2948    return DeclPtrTy();
2949  }
2950  PopDeclContext();
2951  // Verify and clean out per-function state.
2952
2953  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
2954
2955  // Check goto/label use.
2956  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2957       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
2958    LabelStmt *L = I->second;
2959
2960    // Verify that we have no forward references left.  If so, there was a goto
2961    // or address of a label taken, but no definition of it.  Label fwd
2962    // definitions are indicated with a null substmt.
2963    if (L->getSubStmt() != 0)
2964      continue;
2965
2966    // Emit error.
2967    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2968
2969    // At this point, we have gotos that use the bogus label.  Stitch it into
2970    // the function body so that they aren't leaked and that the AST is well
2971    // formed.
2972    if (Body == 0) {
2973      // The whole function wasn't parsed correctly, just delete this.
2974      L->Destroy(Context);
2975      continue;
2976    }
2977
2978    // Otherwise, the body is valid: we want to stitch the label decl into the
2979    // function somewhere so that it is properly owned and so that the goto
2980    // has a valid target.  Do this by creating a new compound stmt with the
2981    // label in it.
2982
2983    // Give the label a sub-statement.
2984    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2985
2986    std::vector<Stmt*> Elements(Body->body_begin(), Body->body_end());
2987    Elements.push_back(L);
2988    Body->setStmts(Context, &Elements[0], Elements.size());
2989  }
2990  FunctionLabelMap.clear();
2991
2992  if (!Body) return D;
2993
2994  // Verify that that gotos and switch cases don't jump into scopes illegally.
2995  if (CurFunctionNeedsScopeChecking)
2996    DiagnoseInvalidJumps(Body);
2997
2998  return D;
2999}
3000
3001/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3002/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3003NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3004                                          IdentifierInfo &II, Scope *S) {
3005  // Before we produce a declaration for an implicitly defined
3006  // function, see whether there was a locally-scoped declaration of
3007  // this name as a function or variable. If so, use that
3008  // (non-visible) declaration, and complain about it.
3009  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3010    = LocallyScopedExternalDecls.find(&II);
3011  if (Pos != LocallyScopedExternalDecls.end()) {
3012    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3013    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3014    return Pos->second;
3015  }
3016
3017  // Extension in C99.  Legal in C90, but warn about it.
3018  if (getLangOptions().C99)
3019    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3020  else
3021    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3022
3023  // FIXME: handle stuff like:
3024  // void foo() { extern float X(); }
3025  // void bar() { X(); }  <-- implicit decl for X in another scope.
3026
3027  // Set a Declarator for the implicit definition: int foo();
3028  const char *Dummy;
3029  DeclSpec DS;
3030  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3031  Error = Error; // Silence warning.
3032  assert(!Error && "Error setting up implicit decl!");
3033  Declarator D(DS, Declarator::BlockContext);
3034  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3035                                             0, 0, 0, Loc, D),
3036                SourceLocation());
3037  D.SetIdentifier(&II, Loc);
3038
3039  // Insert this function into translation-unit scope.
3040
3041  DeclContext *PrevDC = CurContext;
3042  CurContext = Context.getTranslationUnitDecl();
3043
3044  FunctionDecl *FD =
3045 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3046  FD->setImplicit();
3047
3048  CurContext = PrevDC;
3049
3050  AddKnownFunctionAttributes(FD);
3051
3052  return FD;
3053}
3054
3055/// \brief Adds any function attributes that we know a priori based on
3056/// the declaration of this function.
3057///
3058/// These attributes can apply both to implicitly-declared builtins
3059/// (like __builtin___printf_chk) or to library-declared functions
3060/// like NSLog or printf.
3061void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3062  if (FD->isInvalidDecl())
3063    return;
3064
3065  // If this is a built-in function, map its builtin attributes to
3066  // actual attributes.
3067  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3068    // Handle printf-formatting attributes.
3069    unsigned FormatIdx;
3070    bool HasVAListArg;
3071    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3072      if (!FD->getAttr<FormatAttr>())
3073        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3074                                               FormatIdx + 2));
3075    }
3076
3077    // Mark const if we don't care about errno and that is the only
3078    // thing preventing the function from being const. This allows
3079    // IRgen to use LLVM intrinsics for such functions.
3080    if (!getLangOptions().MathErrno &&
3081        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3082      if (!FD->getAttr<ConstAttr>())
3083        FD->addAttr(::new (Context) ConstAttr());
3084    }
3085  }
3086
3087  IdentifierInfo *Name = FD->getIdentifier();
3088  if (!Name)
3089    return;
3090  if ((!getLangOptions().CPlusPlus &&
3091       FD->getDeclContext()->isTranslationUnit()) ||
3092      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3093       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3094       LinkageSpecDecl::lang_c)) {
3095    // Okay: this could be a libc/libm/Objective-C function we know
3096    // about.
3097  } else
3098    return;
3099
3100  unsigned KnownID;
3101  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3102    if (KnownFunctionIDs[KnownID] == Name)
3103      break;
3104
3105  switch (KnownID) {
3106  case id_NSLog:
3107  case id_NSLogv:
3108    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3109      // FIXME: We known better than our headers.
3110      const_cast<FormatAttr *>(Format)->setType("printf");
3111    } else
3112      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3113    break;
3114
3115  case id_asprintf:
3116  case id_vasprintf:
3117    if (!FD->getAttr<FormatAttr>())
3118      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3119    break;
3120
3121  default:
3122    // Unknown function or known function without any attributes to
3123    // add. Do nothing.
3124    break;
3125  }
3126}
3127
3128TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3129  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3130  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3131
3132  // Scope manipulation handled by caller.
3133  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3134                                           D.getIdentifierLoc(),
3135                                           D.getIdentifier(),
3136                                           T);
3137
3138  if (TagType *TT = dyn_cast<TagType>(T)) {
3139    TagDecl *TD = TT->getDecl();
3140
3141    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3142    // keep track of the TypedefDecl.
3143    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3144      TD->setTypedefForAnonDecl(NewTD);
3145  }
3146
3147  if (D.getInvalidType())
3148    NewTD->setInvalidDecl();
3149  return NewTD;
3150}
3151
3152/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3153/// former case, Name will be non-null.  In the later case, Name will be null.
3154/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3155/// reference/declaration/definition of a tag.
3156Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3157                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3158                               IdentifierInfo *Name, SourceLocation NameLoc,
3159                               AttributeList *Attr, AccessSpecifier AS) {
3160  // If this is not a definition, it must have a name.
3161  assert((Name != 0 || TK == TK_Definition) &&
3162         "Nameless record must be a definition!");
3163
3164  TagDecl::TagKind Kind;
3165  switch (TagSpec) {
3166  default: assert(0 && "Unknown tag type!");
3167  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3168  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3169  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3170  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3171  }
3172
3173  DeclContext *SearchDC = CurContext;
3174  DeclContext *DC = CurContext;
3175  NamedDecl *PrevDecl = 0;
3176
3177  bool Invalid = false;
3178
3179  if (Name && SS.isNotEmpty()) {
3180    // We have a nested-name tag ('struct foo::bar').
3181
3182    // Check for invalid 'foo::'.
3183    if (SS.isInvalid()) {
3184      Name = 0;
3185      goto CreateNewDecl;
3186    }
3187
3188    // FIXME: RequireCompleteDeclContext(SS)?
3189    DC = computeDeclContext(SS);
3190    SearchDC = DC;
3191    // Look-up name inside 'foo::'.
3192    PrevDecl = dyn_cast_or_null<TagDecl>(
3193                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3194
3195    // A tag 'foo::bar' must already exist.
3196    if (PrevDecl == 0) {
3197      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3198      Name = 0;
3199      goto CreateNewDecl;
3200    }
3201  } else if (Name) {
3202    // If this is a named struct, check to see if there was a previous forward
3203    // declaration or definition.
3204    // FIXME: We're looking into outer scopes here, even when we
3205    // shouldn't be. Doing so can result in ambiguities that we
3206    // shouldn't be diagnosing.
3207    LookupResult R = LookupName(S, Name, LookupTagName,
3208                                /*RedeclarationOnly=*/(TK != TK_Reference));
3209    if (R.isAmbiguous()) {
3210      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3211      // FIXME: This is not best way to recover from case like:
3212      //
3213      // struct S s;
3214      //
3215      // causes needless "incomplete type" error later.
3216      Name = 0;
3217      PrevDecl = 0;
3218      Invalid = true;
3219    }
3220    else
3221      PrevDecl = R;
3222
3223    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3224      // FIXME: This makes sure that we ignore the contexts associated
3225      // with C structs, unions, and enums when looking for a matching
3226      // tag declaration or definition. See the similar lookup tweak
3227      // in Sema::LookupName; is there a better way to deal with this?
3228      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3229        SearchDC = SearchDC->getParent();
3230    }
3231  }
3232
3233  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3234    // Maybe we will complain about the shadowed template parameter.
3235    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3236    // Just pretend that we didn't see the previous declaration.
3237    PrevDecl = 0;
3238  }
3239
3240  if (PrevDecl) {
3241    // Check whether the previous declaration is usable.
3242    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3243
3244    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3245      // If this is a use of a previous tag, or if the tag is already declared
3246      // in the same scope (so that the definition/declaration completes or
3247      // rementions the tag), reuse the decl.
3248      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3249        // Make sure that this wasn't declared as an enum and now used as a
3250        // struct or something similar.
3251        if (PrevTagDecl->getTagKind() != Kind) {
3252          bool SafeToContinue
3253            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3254               Kind != TagDecl::TK_enum);
3255          if (SafeToContinue)
3256            Diag(KWLoc, diag::err_use_with_wrong_tag)
3257              << Name
3258              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3259                                                  PrevTagDecl->getKindName());
3260          else
3261            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3262          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3263
3264          if (SafeToContinue)
3265            Kind = PrevTagDecl->getTagKind();
3266          else {
3267            // Recover by making this an anonymous redefinition.
3268            Name = 0;
3269            PrevDecl = 0;
3270            Invalid = true;
3271          }
3272        }
3273
3274        if (!Invalid) {
3275          // If this is a use, just return the declaration we found.
3276
3277          // FIXME: In the future, return a variant or some other clue
3278          // for the consumer of this Decl to know it doesn't own it.
3279          // For our current ASTs this shouldn't be a problem, but will
3280          // need to be changed with DeclGroups.
3281          if (TK == TK_Reference)
3282            return DeclPtrTy::make(PrevDecl);
3283
3284          // Diagnose attempts to redefine a tag.
3285          if (TK == TK_Definition) {
3286            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3287              Diag(NameLoc, diag::err_redefinition) << Name;
3288              Diag(Def->getLocation(), diag::note_previous_definition);
3289              // If this is a redefinition, recover by making this
3290              // struct be anonymous, which will make any later
3291              // references get the previous definition.
3292              Name = 0;
3293              PrevDecl = 0;
3294              Invalid = true;
3295            } else {
3296              // If the type is currently being defined, complain
3297              // about a nested redefinition.
3298              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3299              if (Tag->isBeingDefined()) {
3300                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3301                Diag(PrevTagDecl->getLocation(),
3302                     diag::note_previous_definition);
3303                Name = 0;
3304                PrevDecl = 0;
3305                Invalid = true;
3306              }
3307            }
3308
3309            // Okay, this is definition of a previously declared or referenced
3310            // tag PrevDecl. We're going to create a new Decl for it.
3311          }
3312        }
3313        // If we get here we have (another) forward declaration or we
3314        // have a definition.  Just create a new decl.
3315      } else {
3316        // If we get here, this is a definition of a new tag type in a nested
3317        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3318        // new decl/type.  We set PrevDecl to NULL so that the entities
3319        // have distinct types.
3320        PrevDecl = 0;
3321      }
3322      // If we get here, we're going to create a new Decl. If PrevDecl
3323      // is non-NULL, it's a definition of the tag declared by
3324      // PrevDecl. If it's NULL, we have a new definition.
3325    } else {
3326      // PrevDecl is a namespace, template, or anything else
3327      // that lives in the IDNS_Tag identifier namespace.
3328      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3329        // The tag name clashes with a namespace name, issue an error and
3330        // recover by making this tag be anonymous.
3331        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3332        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3333        Name = 0;
3334        PrevDecl = 0;
3335        Invalid = true;
3336      } else {
3337        // The existing declaration isn't relevant to us; we're in a
3338        // new scope, so clear out the previous declaration.
3339        PrevDecl = 0;
3340      }
3341    }
3342  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3343             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3344    // C.scope.pdecl]p5:
3345    //   -- for an elaborated-type-specifier of the form
3346    //
3347    //          class-key identifier
3348    //
3349    //      if the elaborated-type-specifier is used in the
3350    //      decl-specifier-seq or parameter-declaration-clause of a
3351    //      function defined in namespace scope, the identifier is
3352    //      declared as a class-name in the namespace that contains
3353    //      the declaration; otherwise, except as a friend
3354    //      declaration, the identifier is declared in the smallest
3355    //      non-class, non-function-prototype scope that contains the
3356    //      declaration.
3357    //
3358    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3359    // C structs and unions.
3360    //
3361    // GNU C also supports this behavior as part of its incomplete
3362    // enum types extension, while GNU C++ does not.
3363    //
3364    // Find the context where we'll be declaring the tag.
3365    // FIXME: We would like to maintain the current DeclContext as the
3366    // lexical context,
3367    while (SearchDC->isRecord())
3368      SearchDC = SearchDC->getParent();
3369
3370    // Find the scope where we'll be declaring the tag.
3371    while (S->isClassScope() ||
3372           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3373           ((S->getFlags() & Scope::DeclScope) == 0) ||
3374           (S->getEntity() &&
3375            ((DeclContext *)S->getEntity())->isTransparentContext()))
3376      S = S->getParent();
3377  }
3378
3379CreateNewDecl:
3380
3381  // If there is an identifier, use the location of the identifier as the
3382  // location of the decl, otherwise use the location of the struct/union
3383  // keyword.
3384  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3385
3386  // Otherwise, create a new declaration. If there is a previous
3387  // declaration of the same entity, the two will be linked via
3388  // PrevDecl.
3389  TagDecl *New;
3390
3391  if (Kind == TagDecl::TK_enum) {
3392    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3393    // enum X { A, B, C } D;    D should chain to X.
3394    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3395                           cast_or_null<EnumDecl>(PrevDecl));
3396    // If this is an undefined enum, warn.
3397    if (TK != TK_Definition && !Invalid)  {
3398      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3399                                              : diag::ext_forward_ref_enum;
3400      Diag(Loc, DK);
3401    }
3402  } else {
3403    // struct/union/class
3404
3405    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3406    // struct X { int A; } D;    D should chain to X.
3407    if (getLangOptions().CPlusPlus)
3408      // FIXME: Look for a way to use RecordDecl for simple structs.
3409      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3410                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3411    else
3412      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3413                               cast_or_null<RecordDecl>(PrevDecl));
3414  }
3415
3416  if (Kind != TagDecl::TK_enum) {
3417    // Handle #pragma pack: if the #pragma pack stack has non-default
3418    // alignment, make up a packed attribute for this decl. These
3419    // attributes are checked when the ASTContext lays out the
3420    // structure.
3421    //
3422    // It is important for implementing the correct semantics that this
3423    // happen here (in act on tag decl). The #pragma pack stack is
3424    // maintained as a result of parser callbacks which can occur at
3425    // many points during the parsing of a struct declaration (because
3426    // the #pragma tokens are effectively skipped over during the
3427    // parsing of the struct).
3428    if (unsigned Alignment = getPragmaPackAlignment())
3429      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3430  }
3431
3432  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3433    // C++ [dcl.typedef]p3:
3434    //   [...] Similarly, in a given scope, a class or enumeration
3435    //   shall not be declared with the same name as a typedef-name
3436    //   that is declared in that scope and refers to a type other
3437    //   than the class or enumeration itself.
3438    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3439    TypedefDecl *PrevTypedef = 0;
3440    if (Lookup.getKind() == LookupResult::Found)
3441      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3442
3443    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3444        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3445          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3446      Diag(Loc, diag::err_tag_definition_of_typedef)
3447        << Context.getTypeDeclType(New)
3448        << PrevTypedef->getUnderlyingType();
3449      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3450      Invalid = true;
3451    }
3452  }
3453
3454  if (Invalid)
3455    New->setInvalidDecl();
3456
3457  if (Attr)
3458    ProcessDeclAttributeList(New, Attr);
3459
3460  // If we're declaring or defining a tag in function prototype scope
3461  // in C, note that this type can only be used within the function.
3462  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3463    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3464
3465  // Set the lexical context. If the tag has a C++ scope specifier, the
3466  // lexical context will be different from the semantic context.
3467  New->setLexicalDeclContext(CurContext);
3468
3469  // Set the access specifier.
3470  SetMemberAccessSpecifier(New, PrevDecl, AS);
3471
3472  if (TK == TK_Definition)
3473    New->startDefinition();
3474
3475  // If this has an identifier, add it to the scope stack.
3476  if (Name) {
3477    S = getNonFieldDeclScope(S);
3478    PushOnScopeChains(New, S);
3479  } else {
3480    CurContext->addDecl(Context, New);
3481  }
3482
3483  return DeclPtrTy::make(New);
3484}
3485
3486void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3487  AdjustDeclIfTemplate(TagD);
3488  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3489
3490  // Enter the tag context.
3491  PushDeclContext(S, Tag);
3492
3493  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3494    FieldCollector->StartClass();
3495
3496    if (Record->getIdentifier()) {
3497      // C++ [class]p2:
3498      //   [...] The class-name is also inserted into the scope of the
3499      //   class itself; this is known as the injected-class-name. For
3500      //   purposes of access checking, the injected-class-name is treated
3501      //   as if it were a public member name.
3502      CXXRecordDecl *InjectedClassName
3503        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3504                                CurContext, Record->getLocation(),
3505                                Record->getIdentifier(), Record);
3506      InjectedClassName->setImplicit();
3507      InjectedClassName->setAccess(AS_public);
3508      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3509        InjectedClassName->setDescribedClassTemplate(Template);
3510      PushOnScopeChains(InjectedClassName, S);
3511      assert(InjectedClassName->isInjectedClassName() &&
3512             "Broken injected-class-name");
3513    }
3514  }
3515}
3516
3517void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3518  AdjustDeclIfTemplate(TagD);
3519  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3520
3521  if (isa<CXXRecordDecl>(Tag))
3522    FieldCollector->FinishClass();
3523
3524  // Exit this scope of this tag's definition.
3525  PopDeclContext();
3526
3527  // Notify the consumer that we've defined a tag.
3528  Consumer.HandleTagDeclDefinition(Tag);
3529}
3530
3531bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3532                          QualType FieldTy, const Expr *BitWidth) {
3533  // C99 6.7.2.1p4 - verify the field type.
3534  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3535  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3536    // Handle incomplete types with specific error.
3537    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3538      return true;
3539    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3540      << FieldName << FieldTy << BitWidth->getSourceRange();
3541  }
3542
3543  // If the bit-width is type- or value-dependent, don't try to check
3544  // it now.
3545  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3546    return false;
3547
3548  llvm::APSInt Value;
3549  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3550    return true;
3551
3552  // Zero-width bitfield is ok for anonymous field.
3553  if (Value == 0 && FieldName)
3554    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3555
3556  if (Value.isSigned() && Value.isNegative())
3557    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3558             << FieldName << Value.toString(10);
3559
3560  if (!FieldTy->isDependentType()) {
3561    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3562    // FIXME: We won't need the 0 size once we check that the field type is valid.
3563    if (TypeSize && Value.getZExtValue() > TypeSize)
3564      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3565        << FieldName << (unsigned)TypeSize;
3566  }
3567
3568  return false;
3569}
3570
3571/// ActOnField - Each field of a struct/union/class is passed into this in order
3572/// to create a FieldDecl object for it.
3573Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3574                                 SourceLocation DeclStart,
3575                                 Declarator &D, ExprTy *BitfieldWidth) {
3576  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3577                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3578                               AS_public);
3579  return DeclPtrTy::make(Res);
3580}
3581
3582/// HandleField - Analyze a field of a C struct or a C++ data member.
3583///
3584FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3585                             SourceLocation DeclStart,
3586                             Declarator &D, Expr *BitWidth,
3587                             AccessSpecifier AS) {
3588  IdentifierInfo *II = D.getIdentifier();
3589  SourceLocation Loc = DeclStart;
3590  if (II) Loc = D.getIdentifierLoc();
3591
3592  QualType T = GetTypeForDeclarator(D, S);
3593  if (getLangOptions().CPlusPlus)
3594    CheckExtraCXXDefaultArguments(D);
3595
3596  DiagnoseFunctionSpecifiers(D);
3597
3598  if (D.getDeclSpec().isThreadSpecified())
3599    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3600
3601  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3602  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3603    PrevDecl = 0;
3604
3605  FieldDecl *NewFD
3606    = CheckFieldDecl(II, T, Record, Loc,
3607               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3608                     BitWidth, AS, PrevDecl, &D);
3609  if (NewFD->isInvalidDecl() && PrevDecl) {
3610    // Don't introduce NewFD into scope; there's already something
3611    // with the same name in the same scope.
3612  } else if (II) {
3613    PushOnScopeChains(NewFD, S);
3614  } else
3615    Record->addDecl(Context, NewFD);
3616
3617  return NewFD;
3618}
3619
3620/// \brief Build a new FieldDecl and check its well-formedness.
3621///
3622/// This routine builds a new FieldDecl given the fields name, type,
3623/// record, etc. \p PrevDecl should refer to any previous declaration
3624/// with the same name and in the same scope as the field to be
3625/// created.
3626///
3627/// \returns a new FieldDecl.
3628///
3629/// \todo The Declarator argument is a hack. It will be removed once
3630FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3631                                RecordDecl *Record, SourceLocation Loc,
3632                                bool Mutable, Expr *BitWidth,
3633                                AccessSpecifier AS, NamedDecl *PrevDecl,
3634                                Declarator *D) {
3635  IdentifierInfo *II = Name.getAsIdentifierInfo();
3636  bool InvalidDecl = false;
3637
3638  // If we receive a broken type, recover by assuming 'int' and
3639  // marking this declaration as invalid.
3640  if (T.isNull()) {
3641    InvalidDecl = true;
3642    T = Context.IntTy;
3643  }
3644
3645  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3646  // than a variably modified type.
3647  if (T->isVariablyModifiedType()) {
3648    bool SizeIsNegative;
3649    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3650                                                           SizeIsNegative);
3651    if (!FixedTy.isNull()) {
3652      Diag(Loc, diag::warn_illegal_constant_array_size);
3653      T = FixedTy;
3654    } else {
3655      if (SizeIsNegative)
3656        Diag(Loc, diag::err_typecheck_negative_array_size);
3657      else
3658        Diag(Loc, diag::err_typecheck_field_variable_size);
3659      T = Context.IntTy;
3660      InvalidDecl = true;
3661    }
3662  }
3663
3664  // Fields can not have abstract class types
3665  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3666                             AbstractFieldType))
3667    InvalidDecl = true;
3668
3669  // If this is declared as a bit-field, check the bit-field.
3670  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3671    InvalidDecl = true;
3672    DeleteExpr(BitWidth);
3673    BitWidth = 0;
3674  }
3675
3676  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3677                                       Mutable);
3678
3679  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3680    Diag(Loc, diag::err_duplicate_member) << II;
3681    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3682    NewFD->setInvalidDecl();
3683    Record->setInvalidDecl();
3684  }
3685
3686  if (getLangOptions().CPlusPlus && !T->isPODType())
3687    cast<CXXRecordDecl>(Record)->setPOD(false);
3688
3689  // FIXME: We need to pass in the attributes given an AST
3690  // representation, not a parser representation.
3691  if (D)
3692    ProcessDeclAttributes(NewFD, *D);
3693
3694  if (T.isObjCGCWeak())
3695    Diag(Loc, diag::warn_attribute_weak_on_field);
3696
3697  if (InvalidDecl)
3698    NewFD->setInvalidDecl();
3699
3700  NewFD->setAccess(AS);
3701
3702  // C++ [dcl.init.aggr]p1:
3703  //   An aggregate is an array or a class (clause 9) with [...] no
3704  //   private or protected non-static data members (clause 11).
3705  // A POD must be an aggregate.
3706  if (getLangOptions().CPlusPlus &&
3707      (AS == AS_private || AS == AS_protected)) {
3708    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3709    CXXRecord->setAggregate(false);
3710    CXXRecord->setPOD(false);
3711  }
3712
3713  return NewFD;
3714}
3715
3716/// TranslateIvarVisibility - Translate visibility from a token ID to an
3717///  AST enum value.
3718static ObjCIvarDecl::AccessControl
3719TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3720  switch (ivarVisibility) {
3721  default: assert(0 && "Unknown visitibility kind");
3722  case tok::objc_private: return ObjCIvarDecl::Private;
3723  case tok::objc_public: return ObjCIvarDecl::Public;
3724  case tok::objc_protected: return ObjCIvarDecl::Protected;
3725  case tok::objc_package: return ObjCIvarDecl::Package;
3726  }
3727}
3728
3729/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3730/// in order to create an IvarDecl object for it.
3731Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3732                                SourceLocation DeclStart,
3733                                Declarator &D, ExprTy *BitfieldWidth,
3734                                tok::ObjCKeywordKind Visibility) {
3735
3736  IdentifierInfo *II = D.getIdentifier();
3737  Expr *BitWidth = (Expr*)BitfieldWidth;
3738  SourceLocation Loc = DeclStart;
3739  if (II) Loc = D.getIdentifierLoc();
3740
3741  // FIXME: Unnamed fields can be handled in various different ways, for
3742  // example, unnamed unions inject all members into the struct namespace!
3743
3744  QualType T = GetTypeForDeclarator(D, S);
3745  bool InvalidDecl = false;
3746  if (T.isNull()) {
3747    InvalidDecl = true;
3748    T = Context.IntTy;
3749  }
3750
3751  if (BitWidth) {
3752    // 6.7.2.1p3, 6.7.2.1p4
3753    if (VerifyBitField(Loc, II, T, BitWidth)) {
3754      InvalidDecl = true;
3755      DeleteExpr(BitWidth);
3756      BitWidth = 0;
3757    }
3758  } else {
3759    // Not a bitfield.
3760
3761    // validate II.
3762
3763  }
3764
3765  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3766  // than a variably modified type.
3767  if (T->isVariablyModifiedType()) {
3768    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3769    InvalidDecl = true;
3770  }
3771
3772  // Get the visibility (access control) for this ivar.
3773  ObjCIvarDecl::AccessControl ac =
3774    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3775                                        : ObjCIvarDecl::None;
3776
3777  // Construct the decl.
3778  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3779                                             (Expr *)BitfieldWidth);
3780
3781  if (II) {
3782    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3783    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3784        && !isa<TagDecl>(PrevDecl)) {
3785      Diag(Loc, diag::err_duplicate_member) << II;
3786      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3787      NewID->setInvalidDecl();
3788    }
3789  }
3790
3791  // Process attributes attached to the ivar.
3792  ProcessDeclAttributes(NewID, D);
3793
3794  if (D.getInvalidType() || InvalidDecl)
3795    NewID->setInvalidDecl();
3796
3797  if (II) {
3798    // FIXME: When interfaces are DeclContexts, we'll need to add
3799    // these to the interface.
3800    S->AddDecl(DeclPtrTy::make(NewID));
3801    IdResolver.AddDecl(NewID);
3802  }
3803
3804  return DeclPtrTy::make(NewID);
3805}
3806
3807void Sema::ActOnFields(Scope* S,
3808                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3809                       DeclPtrTy *Fields, unsigned NumFields,
3810                       SourceLocation LBrac, SourceLocation RBrac,
3811                       AttributeList *Attr) {
3812  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3813  assert(EnclosingDecl && "missing record or interface decl");
3814
3815  // If the decl this is being inserted into is invalid, then it may be a
3816  // redeclaration or some other bogus case.  Don't try to add fields to it.
3817  if (EnclosingDecl->isInvalidDecl()) {
3818    // FIXME: Deallocate fields?
3819    return;
3820  }
3821
3822
3823  // Verify that all the fields are okay.
3824  unsigned NumNamedMembers = 0;
3825  llvm::SmallVector<FieldDecl*, 32> RecFields;
3826
3827  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3828  for (unsigned i = 0; i != NumFields; ++i) {
3829    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3830
3831    // Get the type for the field.
3832    Type *FDTy = FD->getType().getTypePtr();
3833
3834    if (!FD->isAnonymousStructOrUnion()) {
3835      // Remember all fields written by the user.
3836      RecFields.push_back(FD);
3837    }
3838
3839    // If the field is already invalid for some reason, don't emit more
3840    // diagnostics about it.
3841    if (FD->isInvalidDecl())
3842      continue;
3843
3844    // C99 6.7.2.1p2:
3845    //   A structure or union shall not contain a member with
3846    //   incomplete or function type (hence, a structure shall not
3847    //   contain an instance of itself, but may contain a pointer to
3848    //   an instance of itself), except that the last member of a
3849    //   structure with more than one named member may have incomplete
3850    //   array type; such a structure (and any union containing,
3851    //   possibly recursively, a member that is such a structure)
3852    //   shall not be a member of a structure or an element of an
3853    //   array.
3854    if (FDTy->isFunctionType()) {
3855      // Field declared as a function.
3856      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3857        << FD->getDeclName();
3858      FD->setInvalidDecl();
3859      EnclosingDecl->setInvalidDecl();
3860      continue;
3861    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3862               Record && Record->isStruct()) {
3863      // Flexible array member.
3864      if (NumNamedMembers < 1) {
3865        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3866          << FD->getDeclName();
3867        FD->setInvalidDecl();
3868        EnclosingDecl->setInvalidDecl();
3869        continue;
3870      }
3871      // Okay, we have a legal flexible array member at the end of the struct.
3872      if (Record)
3873        Record->setHasFlexibleArrayMember(true);
3874    } else if (!FDTy->isDependentType() &&
3875               RequireCompleteType(FD->getLocation(), FD->getType(),
3876                                   diag::err_field_incomplete)) {
3877      // Incomplete type
3878      FD->setInvalidDecl();
3879      EnclosingDecl->setInvalidDecl();
3880      continue;
3881    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3882      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3883        // If this is a member of a union, then entire union becomes "flexible".
3884        if (Record && Record->isUnion()) {
3885          Record->setHasFlexibleArrayMember(true);
3886        } else {
3887          // If this is a struct/class and this is not the last element, reject
3888          // it.  Note that GCC supports variable sized arrays in the middle of
3889          // structures.
3890          if (i != NumFields-1)
3891            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3892              << FD->getDeclName();
3893          else {
3894            // We support flexible arrays at the end of structs in
3895            // other structs as an extension.
3896            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3897              << FD->getDeclName();
3898            if (Record)
3899              Record->setHasFlexibleArrayMember(true);
3900          }
3901        }
3902      }
3903    } else if (FDTy->isObjCInterfaceType()) {
3904      /// A field cannot be an Objective-c object
3905      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3906      FD->setInvalidDecl();
3907      EnclosingDecl->setInvalidDecl();
3908      continue;
3909    }
3910    // Keep track of the number of named members.
3911    if (FD->getIdentifier())
3912      ++NumNamedMembers;
3913  }
3914
3915  // Okay, we successfully defined 'Record'.
3916  if (Record) {
3917    Record->completeDefinition(Context);
3918  } else {
3919    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3920    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3921      ID->setIVarList(ClsFields, RecFields.size(), Context);
3922      ID->setLocEnd(RBrac);
3923
3924      // Must enforce the rule that ivars in the base classes may not be
3925      // duplicates.
3926      if (ID->getSuperClass()) {
3927        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3928             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3929          ObjCIvarDecl* Ivar = (*IVI);
3930          IdentifierInfo *II = Ivar->getIdentifier();
3931          ObjCIvarDecl* prevIvar =
3932            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3933          if (prevIvar) {
3934            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3935            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3936          }
3937        }
3938      }
3939    } else if (ObjCImplementationDecl *IMPDecl =
3940                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3941      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3942      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3943      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3944    }
3945  }
3946
3947  if (Attr)
3948    ProcessDeclAttributeList(Record, Attr);
3949}
3950
3951EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3952                                          EnumConstantDecl *LastEnumConst,
3953                                          SourceLocation IdLoc,
3954                                          IdentifierInfo *Id,
3955                                          ExprArg val) {
3956  Expr *Val = (Expr *)val.get();
3957
3958  llvm::APSInt EnumVal(32);
3959  QualType EltTy;
3960  if (Val && !Val->isTypeDependent()) {
3961    // Make sure to promote the operand type to int.
3962    UsualUnaryConversions(Val);
3963    if (Val != val.get()) {
3964      val.release();
3965      val = Val;
3966    }
3967
3968    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3969    SourceLocation ExpLoc;
3970    if (!Val->isValueDependent() &&
3971        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3972      Val = 0;
3973    } else {
3974      EltTy = Val->getType();
3975    }
3976  }
3977
3978  if (!Val) {
3979    if (LastEnumConst) {
3980      // Assign the last value + 1.
3981      EnumVal = LastEnumConst->getInitVal();
3982      ++EnumVal;
3983
3984      // Check for overflow on increment.
3985      if (EnumVal < LastEnumConst->getInitVal())
3986        Diag(IdLoc, diag::warn_enum_value_overflow);
3987
3988      EltTy = LastEnumConst->getType();
3989    } else {
3990      // First value, set to zero.
3991      EltTy = Context.IntTy;
3992      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3993    }
3994  }
3995
3996  val.release();
3997  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3998                                  Val, EnumVal);
3999}
4000
4001
4002Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4003                                        DeclPtrTy lastEnumConst,
4004                                        SourceLocation IdLoc,
4005                                        IdentifierInfo *Id,
4006                                        SourceLocation EqualLoc, ExprTy *val) {
4007  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4008  EnumConstantDecl *LastEnumConst =
4009    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4010  Expr *Val = static_cast<Expr*>(val);
4011
4012  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4013  // we find one that is.
4014  S = getNonFieldDeclScope(S);
4015
4016  // Verify that there isn't already something declared with this name in this
4017  // scope.
4018  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4019  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4020    // Maybe we will complain about the shadowed template parameter.
4021    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4022    // Just pretend that we didn't see the previous declaration.
4023    PrevDecl = 0;
4024  }
4025
4026  if (PrevDecl) {
4027    // When in C++, we may get a TagDecl with the same name; in this case the
4028    // enum constant will 'hide' the tag.
4029    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4030           "Received TagDecl when not in C++!");
4031    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4032      if (isa<EnumConstantDecl>(PrevDecl))
4033        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4034      else
4035        Diag(IdLoc, diag::err_redefinition) << Id;
4036      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4037      if (Val) Val->Destroy(Context);
4038      return DeclPtrTy();
4039    }
4040  }
4041
4042  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4043                                            IdLoc, Id, Owned(Val));
4044
4045  // Register this decl in the current scope stack.
4046  if (New)
4047    PushOnScopeChains(New, S);
4048
4049  return DeclPtrTy::make(New);
4050}
4051
4052// FIXME: For consistency with ActOnFields(), we should have the parser
4053// pass in the source location for the left/right braces.
4054void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4055                         DeclPtrTy *Elements, unsigned NumElements) {
4056  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4057  QualType EnumType = Context.getTypeDeclType(Enum);
4058
4059  // TODO: If the result value doesn't fit in an int, it must be a long or long
4060  // long value.  ISO C does not support this, but GCC does as an extension,
4061  // emit a warning.
4062  unsigned IntWidth = Context.Target.getIntWidth();
4063
4064  // Verify that all the values are okay, compute the size of the values, and
4065  // reverse the list.
4066  unsigned NumNegativeBits = 0;
4067  unsigned NumPositiveBits = 0;
4068
4069  // Keep track of whether all elements have type int.
4070  bool AllElementsInt = true;
4071
4072  for (unsigned i = 0; i != NumElements; ++i) {
4073    EnumConstantDecl *ECD =
4074      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4075    if (!ECD) continue;  // Already issued a diagnostic.
4076
4077    // If the enum value doesn't fit in an int, emit an extension warning.
4078    const llvm::APSInt &InitVal = ECD->getInitVal();
4079    assert(InitVal.getBitWidth() >= IntWidth &&
4080           "Should have promoted value to int");
4081    if (InitVal.getBitWidth() > IntWidth) {
4082      llvm::APSInt V(InitVal);
4083      V.trunc(IntWidth);
4084      V.extend(InitVal.getBitWidth());
4085      if (V != InitVal)
4086        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4087          << InitVal.toString(10);
4088    }
4089
4090    // Keep track of the size of positive and negative values.
4091    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4092      NumPositiveBits = std::max(NumPositiveBits,
4093                                 (unsigned)InitVal.getActiveBits());
4094    else
4095      NumNegativeBits = std::max(NumNegativeBits,
4096                                 (unsigned)InitVal.getMinSignedBits());
4097
4098    // Keep track of whether every enum element has type int (very commmon).
4099    if (AllElementsInt)
4100      AllElementsInt = ECD->getType() == Context.IntTy;
4101  }
4102
4103  // Figure out the type that should be used for this enum.
4104  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4105  QualType BestType;
4106  unsigned BestWidth;
4107
4108  if (NumNegativeBits) {
4109    // If there is a negative value, figure out the smallest integer type (of
4110    // int/long/longlong) that fits.
4111    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4112      BestType = Context.IntTy;
4113      BestWidth = IntWidth;
4114    } else {
4115      BestWidth = Context.Target.getLongWidth();
4116
4117      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4118        BestType = Context.LongTy;
4119      else {
4120        BestWidth = Context.Target.getLongLongWidth();
4121
4122        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4123          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4124        BestType = Context.LongLongTy;
4125      }
4126    }
4127  } else {
4128    // If there is no negative value, figure out which of uint, ulong, ulonglong
4129    // fits.
4130    if (NumPositiveBits <= IntWidth) {
4131      BestType = Context.UnsignedIntTy;
4132      BestWidth = IntWidth;
4133    } else if (NumPositiveBits <=
4134               (BestWidth = Context.Target.getLongWidth())) {
4135      BestType = Context.UnsignedLongTy;
4136    } else {
4137      BestWidth = Context.Target.getLongLongWidth();
4138      assert(NumPositiveBits <= BestWidth &&
4139             "How could an initializer get larger than ULL?");
4140      BestType = Context.UnsignedLongLongTy;
4141    }
4142  }
4143
4144  // Loop over all of the enumerator constants, changing their types to match
4145  // the type of the enum if needed.
4146  for (unsigned i = 0; i != NumElements; ++i) {
4147    EnumConstantDecl *ECD =
4148      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4149    if (!ECD) continue;  // Already issued a diagnostic.
4150
4151    // Standard C says the enumerators have int type, but we allow, as an
4152    // extension, the enumerators to be larger than int size.  If each
4153    // enumerator value fits in an int, type it as an int, otherwise type it the
4154    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4155    // that X has type 'int', not 'unsigned'.
4156    if (ECD->getType() == Context.IntTy) {
4157      // Make sure the init value is signed.
4158      llvm::APSInt IV = ECD->getInitVal();
4159      IV.setIsSigned(true);
4160      ECD->setInitVal(IV);
4161
4162      if (getLangOptions().CPlusPlus)
4163        // C++ [dcl.enum]p4: Following the closing brace of an
4164        // enum-specifier, each enumerator has the type of its
4165        // enumeration.
4166        ECD->setType(EnumType);
4167      continue;  // Already int type.
4168    }
4169
4170    // Determine whether the value fits into an int.
4171    llvm::APSInt InitVal = ECD->getInitVal();
4172    bool FitsInInt;
4173    if (InitVal.isUnsigned() || !InitVal.isNegative())
4174      FitsInInt = InitVal.getActiveBits() < IntWidth;
4175    else
4176      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4177
4178    // If it fits into an integer type, force it.  Otherwise force it to match
4179    // the enum decl type.
4180    QualType NewTy;
4181    unsigned NewWidth;
4182    bool NewSign;
4183    if (FitsInInt) {
4184      NewTy = Context.IntTy;
4185      NewWidth = IntWidth;
4186      NewSign = true;
4187    } else if (ECD->getType() == BestType) {
4188      // Already the right type!
4189      if (getLangOptions().CPlusPlus)
4190        // C++ [dcl.enum]p4: Following the closing brace of an
4191        // enum-specifier, each enumerator has the type of its
4192        // enumeration.
4193        ECD->setType(EnumType);
4194      continue;
4195    } else {
4196      NewTy = BestType;
4197      NewWidth = BestWidth;
4198      NewSign = BestType->isSignedIntegerType();
4199    }
4200
4201    // Adjust the APSInt value.
4202    InitVal.extOrTrunc(NewWidth);
4203    InitVal.setIsSigned(NewSign);
4204    ECD->setInitVal(InitVal);
4205
4206    // Adjust the Expr initializer and type.
4207    if (ECD->getInitExpr())
4208      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4209                                                      /*isLvalue=*/false));
4210    if (getLangOptions().CPlusPlus)
4211      // C++ [dcl.enum]p4: Following the closing brace of an
4212      // enum-specifier, each enumerator has the type of its
4213      // enumeration.
4214      ECD->setType(EnumType);
4215    else
4216      ECD->setType(NewTy);
4217  }
4218
4219  Enum->completeDefinition(Context, BestType);
4220}
4221
4222Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4223                                            ExprArg expr) {
4224  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4225
4226  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4227                                                  Loc, AsmString));
4228}
4229
4230