SemaDecl.cpp revision 5764f613e61cb3183f3d7ceeafd23396de96ed16
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(),
94                                 II, SS->getRange()).getAsOpaquePtr();
95      }
96
97      return 0;
98    }
99
100    if (!LookupCtx->isDependentContext() &&
101        RequireCompleteDeclContext(*SS, LookupCtx))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getDependentNameType(ETK_None,
202                                     UUDecl->getTargetNestedNameSpecifier(),
203                                     &II);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return 0;
208  }
209
210  return T.getAsOpaquePtr();
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227      case TagDecl::TK_union:  return DeclSpec::TST_union;
228      case TagDecl::TK_class:  return DeclSpec::TST_class;
229      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230      }
231    }
232
233  return DeclSpec::TST_unspecified;
234}
235
236bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237                                   SourceLocation IILoc,
238                                   Scope *S,
239                                   CXXScopeSpec *SS,
240                                   TypeTy *&SuggestedType) {
241  // We don't have anything to suggest (yet).
242  SuggestedType = 0;
243
244  // There may have been a typo in the name of the type. Look up typo
245  // results, in case we have something that we can suggest.
246  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247                      NotForRedeclaration);
248
249  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
250    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
251      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
252          !Result->isInvalidDecl()) {
253        // We found a similarly-named type or interface; suggest that.
254        if (!SS || !SS->isSet())
255          Diag(IILoc, diag::err_unknown_typename_suggest)
256            << &II << Lookup.getLookupName()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else if (DeclContext *DC = computeDeclContext(*SS, false))
260          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
261            << &II << DC << Lookup.getLookupName() << SS->getRange()
262            << FixItHint::CreateReplacement(SourceRange(IILoc),
263                                            Result->getNameAsString());
264        else
265          llvm_unreachable("could not have corrected a typo here");
266
267        Diag(Result->getLocation(), diag::note_previous_decl)
268          << Result->getDeclName();
269
270        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
271        return true;
272      }
273    } else if (Lookup.empty()) {
274      // We corrected to a keyword.
275      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
276      Diag(IILoc, diag::err_unknown_typename_suggest)
277        << &II << Corrected;
278      return true;
279    }
280  }
281
282  if (getLangOptions().CPlusPlus) {
283    // See if II is a class template that the user forgot to pass arguments to.
284    UnqualifiedId Name;
285    Name.setIdentifier(&II, IILoc);
286    CXXScopeSpec EmptySS;
287    TemplateTy TemplateResult;
288    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
289        == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  if (isa<ObjCMethodDecl>(DC))
350    return Context.getTranslationUnitDecl();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    // If we failed to complete the type for some reason, or if the type is
548    // dependent, don't diagnose the variable.
549    if (Ty->isIncompleteType() || Ty->isDependentType())
550      return false;
551
552    if (const TagType *TT = Ty->getAs<TagType>()) {
553      const TagDecl *Tag = TT->getDecl();
554      if (Tag->hasAttr<UnusedAttr>())
555        return false;
556
557      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
558        // FIXME: Checking for the presence of a user-declared constructor
559        // isn't completely accurate; we'd prefer to check that the initializer
560        // has no side effects.
561        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
562          return false;
563      }
564    }
565
566    // TODO: __attribute__((unused)) templates?
567  }
568
569  return true;
570}
571
572void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
573  if (!ShouldDiagnoseUnusedDecl(D))
574    return;
575
576  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
577    Diag(D->getLocation(), diag::warn_unused_exception_param)
578    << D->getDeclName();
579  else
580    Diag(D->getLocation(), diag::warn_unused_variable)
581    << D->getDeclName();
582}
583
584void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
585  if (S->decl_empty()) return;
586  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
587         "Scope shouldn't contain decls!");
588
589  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
590       I != E; ++I) {
591    Decl *TmpD = (*I).getAs<Decl>();
592    assert(TmpD && "This decl didn't get pushed??");
593
594    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
595    NamedDecl *D = cast<NamedDecl>(TmpD);
596
597    if (!D->getDeclName()) continue;
598
599    // Diagnose unused variables in this scope.
600    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
601      DiagnoseUnusedDecl(D);
602
603    // Remove this name from our lexical scope.
604    IdResolver.RemoveDecl(D);
605  }
606}
607
608/// \brief Look for an Objective-C class in the translation unit.
609///
610/// \param Id The name of the Objective-C class we're looking for. If
611/// typo-correction fixes this name, the Id will be updated
612/// to the fixed name.
613///
614/// \param IdLoc The location of the name in the translation unit.
615///
616/// \param TypoCorrection If true, this routine will attempt typo correction
617/// if there is no class with the given name.
618///
619/// \returns The declaration of the named Objective-C class, or NULL if the
620/// class could not be found.
621ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
622                                              SourceLocation IdLoc,
623                                              bool TypoCorrection) {
624  // The third "scope" argument is 0 since we aren't enabling lazy built-in
625  // creation from this context.
626  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
627
628  if (!IDecl && TypoCorrection) {
629    // Perform typo correction at the given location, but only if we
630    // find an Objective-C class name.
631    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
632    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
633        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
634      Diag(IdLoc, diag::err_undef_interface_suggest)
635        << Id << IDecl->getDeclName()
636        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
637      Diag(IDecl->getLocation(), diag::note_previous_decl)
638        << IDecl->getDeclName();
639
640      Id = IDecl->getIdentifier();
641    }
642  }
643
644  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
645}
646
647/// getNonFieldDeclScope - Retrieves the innermost scope, starting
648/// from S, where a non-field would be declared. This routine copes
649/// with the difference between C and C++ scoping rules in structs and
650/// unions. For example, the following code is well-formed in C but
651/// ill-formed in C++:
652/// @code
653/// struct S6 {
654///   enum { BAR } e;
655/// };
656///
657/// void test_S6() {
658///   struct S6 a;
659///   a.e = BAR;
660/// }
661/// @endcode
662/// For the declaration of BAR, this routine will return a different
663/// scope. The scope S will be the scope of the unnamed enumeration
664/// within S6. In C++, this routine will return the scope associated
665/// with S6, because the enumeration's scope is a transparent
666/// context but structures can contain non-field names. In C, this
667/// routine will return the translation unit scope, since the
668/// enumeration's scope is a transparent context and structures cannot
669/// contain non-field names.
670Scope *Sema::getNonFieldDeclScope(Scope *S) {
671  while (((S->getFlags() & Scope::DeclScope) == 0) ||
672         (S->getEntity() &&
673          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
674         (S->isClassScope() && !getLangOptions().CPlusPlus))
675    S = S->getParent();
676  return S;
677}
678
679void Sema::InitBuiltinVaListType() {
680  if (!Context.getBuiltinVaListType().isNull())
681    return;
682
683  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
684  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
685                                       LookupOrdinaryName, ForRedeclaration);
686  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
687  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
688}
689
690/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
691/// file scope.  lazily create a decl for it. ForRedeclaration is true
692/// if we're creating this built-in in anticipation of redeclaring the
693/// built-in.
694NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
695                                     Scope *S, bool ForRedeclaration,
696                                     SourceLocation Loc) {
697  Builtin::ID BID = (Builtin::ID)bid;
698
699  if (Context.BuiltinInfo.hasVAListUse(BID))
700    InitBuiltinVaListType();
701
702  ASTContext::GetBuiltinTypeError Error;
703  QualType R = Context.GetBuiltinType(BID, Error);
704  switch (Error) {
705  case ASTContext::GE_None:
706    // Okay
707    break;
708
709  case ASTContext::GE_Missing_stdio:
710    if (ForRedeclaration)
711      Diag(Loc, diag::err_implicit_decl_requires_stdio)
712        << Context.BuiltinInfo.GetName(BID);
713    return 0;
714
715  case ASTContext::GE_Missing_setjmp:
716    if (ForRedeclaration)
717      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
718        << Context.BuiltinInfo.GetName(BID);
719    return 0;
720  }
721
722  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
723    Diag(Loc, diag::ext_implicit_lib_function_decl)
724      << Context.BuiltinInfo.GetName(BID)
725      << R;
726    if (Context.BuiltinInfo.getHeaderName(BID) &&
727        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
728          != Diagnostic::Ignored)
729      Diag(Loc, diag::note_please_include_header)
730        << Context.BuiltinInfo.getHeaderName(BID)
731        << Context.BuiltinInfo.GetName(BID);
732  }
733
734  FunctionDecl *New = FunctionDecl::Create(Context,
735                                           Context.getTranslationUnitDecl(),
736                                           Loc, II, R, /*TInfo=*/0,
737                                           FunctionDecl::Extern,
738                                           FunctionDecl::None, false,
739                                           /*hasPrototype=*/true);
740  New->setImplicit();
741
742  // Create Decl objects for each parameter, adding them to the
743  // FunctionDecl.
744  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
745    llvm::SmallVector<ParmVarDecl*, 16> Params;
746    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
747      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
748                                           FT->getArgType(i), /*TInfo=*/0,
749                                           VarDecl::None, VarDecl::None, 0));
750    New->setParams(Params.data(), Params.size());
751  }
752
753  AddKnownFunctionAttributes(New);
754
755  // TUScope is the translation-unit scope to insert this function into.
756  // FIXME: This is hideous. We need to teach PushOnScopeChains to
757  // relate Scopes to DeclContexts, and probably eliminate CurContext
758  // entirely, but we're not there yet.
759  DeclContext *SavedContext = CurContext;
760  CurContext = Context.getTranslationUnitDecl();
761  PushOnScopeChains(New, TUScope);
762  CurContext = SavedContext;
763  return New;
764}
765
766/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
767/// same name and scope as a previous declaration 'Old'.  Figure out
768/// how to resolve this situation, merging decls or emitting
769/// diagnostics as appropriate. If there was an error, set New to be invalid.
770///
771void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
772  // If the new decl is known invalid already, don't bother doing any
773  // merging checks.
774  if (New->isInvalidDecl()) return;
775
776  // Allow multiple definitions for ObjC built-in typedefs.
777  // FIXME: Verify the underlying types are equivalent!
778  if (getLangOptions().ObjC1) {
779    const IdentifierInfo *TypeID = New->getIdentifier();
780    switch (TypeID->getLength()) {
781    default: break;
782    case 2:
783      if (!TypeID->isStr("id"))
784        break;
785      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
786      // Install the built-in type for 'id', ignoring the current definition.
787      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
788      return;
789    case 5:
790      if (!TypeID->isStr("Class"))
791        break;
792      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
793      // Install the built-in type for 'Class', ignoring the current definition.
794      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
795      return;
796    case 3:
797      if (!TypeID->isStr("SEL"))
798        break;
799      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
800      // Install the built-in type for 'SEL', ignoring the current definition.
801      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
802      return;
803    case 8:
804      if (!TypeID->isStr("Protocol"))
805        break;
806      Context.setObjCProtoType(New->getUnderlyingType());
807      return;
808    }
809    // Fall through - the typedef name was not a builtin type.
810  }
811
812  // Verify the old decl was also a type.
813  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
814  if (!Old) {
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817
818    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
819    if (OldD->getLocation().isValid())
820      Diag(OldD->getLocation(), diag::note_previous_definition);
821
822    return New->setInvalidDecl();
823  }
824
825  // If the old declaration is invalid, just give up here.
826  if (Old->isInvalidDecl())
827    return New->setInvalidDecl();
828
829  // Determine the "old" type we'll use for checking and diagnostics.
830  QualType OldType;
831  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
832    OldType = OldTypedef->getUnderlyingType();
833  else
834    OldType = Context.getTypeDeclType(Old);
835
836  // If the typedef types are not identical, reject them in all languages and
837  // with any extensions enabled.
838
839  if (OldType != New->getUnderlyingType() &&
840      Context.getCanonicalType(OldType) !=
841      Context.getCanonicalType(New->getUnderlyingType())) {
842    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
843      << New->getUnderlyingType() << OldType;
844    if (Old->getLocation().isValid())
845      Diag(Old->getLocation(), diag::note_previous_definition);
846    return New->setInvalidDecl();
847  }
848
849  // The types match.  Link up the redeclaration chain if the old
850  // declaration was a typedef.
851  // FIXME: this is a potential source of wierdness if the type
852  // spellings don't match exactly.
853  if (isa<TypedefDecl>(Old))
854    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
855
856  if (getLangOptions().Microsoft)
857    return;
858
859  if (getLangOptions().CPlusPlus) {
860    // C++ [dcl.typedef]p2:
861    //   In a given non-class scope, a typedef specifier can be used to
862    //   redefine the name of any type declared in that scope to refer
863    //   to the type to which it already refers.
864    if (!isa<CXXRecordDecl>(CurContext))
865      return;
866
867    // C++0x [dcl.typedef]p4:
868    //   In a given class scope, a typedef specifier can be used to redefine
869    //   any class-name declared in that scope that is not also a typedef-name
870    //   to refer to the type to which it already refers.
871    //
872    // This wording came in via DR424, which was a correction to the
873    // wording in DR56, which accidentally banned code like:
874    //
875    //   struct S {
876    //     typedef struct A { } A;
877    //   };
878    //
879    // in the C++03 standard. We implement the C++0x semantics, which
880    // allow the above but disallow
881    //
882    //   struct S {
883    //     typedef int I;
884    //     typedef int I;
885    //   };
886    //
887    // since that was the intent of DR56.
888    if (!isa<TypedefDecl >(Old))
889      return;
890
891    Diag(New->getLocation(), diag::err_redefinition)
892      << New->getDeclName();
893    Diag(Old->getLocation(), diag::note_previous_definition);
894    return New->setInvalidDecl();
895  }
896
897  // If we have a redefinition of a typedef in C, emit a warning.  This warning
898  // is normally mapped to an error, but can be controlled with
899  // -Wtypedef-redefinition.  If either the original or the redefinition is
900  // in a system header, don't emit this for compatibility with GCC.
901  if (getDiagnostics().getSuppressSystemWarnings() &&
902      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
903       Context.getSourceManager().isInSystemHeader(New->getLocation())))
904    return;
905
906  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
907    << New->getDeclName();
908  Diag(Old->getLocation(), diag::note_previous_definition);
909  return;
910}
911
912/// DeclhasAttr - returns true if decl Declaration already has the target
913/// attribute.
914static bool
915DeclHasAttr(const Decl *decl, const Attr *target) {
916  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
917    if (attr->getKind() == target->getKind())
918      return true;
919
920  return false;
921}
922
923/// MergeAttributes - append attributes from the Old decl to the New one.
924static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
925  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
926    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
927      Attr *NewAttr = attr->clone(C);
928      NewAttr->setInherited(true);
929      New->addAttr(NewAttr);
930    }
931  }
932}
933
934/// Used in MergeFunctionDecl to keep track of function parameters in
935/// C.
936struct GNUCompatibleParamWarning {
937  ParmVarDecl *OldParm;
938  ParmVarDecl *NewParm;
939  QualType PromotedType;
940};
941
942
943/// getSpecialMember - get the special member enum for a method.
944Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
945  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
946    if (Ctor->isCopyConstructor())
947      return Sema::CXXCopyConstructor;
948
949    return Sema::CXXConstructor;
950  }
951
952  if (isa<CXXDestructorDecl>(MD))
953    return Sema::CXXDestructor;
954
955  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
956  return Sema::CXXCopyAssignment;
957}
958
959/// canREdefineFunction - checks if a function can be redefined. Currently,
960/// only extern inline functions can be redefined, and even then only in
961/// GNU89 mode.
962static bool canRedefineFunction(const FunctionDecl *FD,
963                                const LangOptions& LangOpts) {
964  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
965          FD->isInlineSpecified() &&
966          FD->getStorageClass() == FunctionDecl::Extern);
967}
968
969/// MergeFunctionDecl - We just parsed a function 'New' from
970/// declarator D which has the same name and scope as a previous
971/// declaration 'Old'.  Figure out how to resolve this situation,
972/// merging decls or emitting diagnostics as appropriate.
973///
974/// In C++, New and Old must be declarations that are not
975/// overloaded. Use IsOverload to determine whether New and Old are
976/// overloaded, and to select the Old declaration that New should be
977/// merged with.
978///
979/// Returns true if there was an error, false otherwise.
980bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
981  // Verify the old decl was also a function.
982  FunctionDecl *Old = 0;
983  if (FunctionTemplateDecl *OldFunctionTemplate
984        = dyn_cast<FunctionTemplateDecl>(OldD))
985    Old = OldFunctionTemplate->getTemplatedDecl();
986  else
987    Old = dyn_cast<FunctionDecl>(OldD);
988  if (!Old) {
989    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
990      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
991      Diag(Shadow->getTargetDecl()->getLocation(),
992           diag::note_using_decl_target);
993      Diag(Shadow->getUsingDecl()->getLocation(),
994           diag::note_using_decl) << 0;
995      return true;
996    }
997
998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
999      << New->getDeclName();
1000    Diag(OldD->getLocation(), diag::note_previous_definition);
1001    return true;
1002  }
1003
1004  // Determine whether the previous declaration was a definition,
1005  // implicit declaration, or a declaration.
1006  diag::kind PrevDiag;
1007  if (Old->isThisDeclarationADefinition())
1008    PrevDiag = diag::note_previous_definition;
1009  else if (Old->isImplicit())
1010    PrevDiag = diag::note_previous_implicit_declaration;
1011  else
1012    PrevDiag = diag::note_previous_declaration;
1013
1014  QualType OldQType = Context.getCanonicalType(Old->getType());
1015  QualType NewQType = Context.getCanonicalType(New->getType());
1016
1017  // Don't complain about this if we're in GNU89 mode and the old function
1018  // is an extern inline function.
1019  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1020      New->getStorageClass() == FunctionDecl::Static &&
1021      Old->getStorageClass() != FunctionDecl::Static &&
1022      !canRedefineFunction(Old, getLangOptions())) {
1023    Diag(New->getLocation(), diag::err_static_non_static)
1024      << New;
1025    Diag(Old->getLocation(), PrevDiag);
1026    return true;
1027  }
1028
1029  // If a function is first declared with a calling convention, but is
1030  // later declared or defined without one, the second decl assumes the
1031  // calling convention of the first.
1032  //
1033  // For the new decl, we have to look at the NON-canonical type to tell the
1034  // difference between a function that really doesn't have a calling
1035  // convention and one that is declared cdecl. That's because in
1036  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1037  // because it is the default calling convention.
1038  //
1039  // Note also that we DO NOT return at this point, because we still have
1040  // other tests to run.
1041  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1042  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1043  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1044  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1045  if (OldTypeInfo.getCC() != CC_Default &&
1046      NewTypeInfo.getCC() == CC_Default) {
1047    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1048    New->setType(NewQType);
1049    NewQType = Context.getCanonicalType(NewQType);
1050  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1051                                     NewTypeInfo.getCC())) {
1052    // Calling conventions really aren't compatible, so complain.
1053    Diag(New->getLocation(), diag::err_cconv_change)
1054      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1055      << (OldTypeInfo.getCC() == CC_Default)
1056      << (OldTypeInfo.getCC() == CC_Default ? "" :
1057          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1058    Diag(Old->getLocation(), diag::note_previous_declaration);
1059    return true;
1060  }
1061
1062  // FIXME: diagnose the other way around?
1063  if (OldType->getNoReturnAttr() &&
1064      !NewType->getNoReturnAttr()) {
1065    NewQType = Context.getNoReturnType(NewQType);
1066    New->setType(NewQType);
1067    assert(NewQType.isCanonical());
1068  }
1069
1070  if (getLangOptions().CPlusPlus) {
1071    // (C++98 13.1p2):
1072    //   Certain function declarations cannot be overloaded:
1073    //     -- Function declarations that differ only in the return type
1074    //        cannot be overloaded.
1075    QualType OldReturnType
1076      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1077    QualType NewReturnType
1078      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1079    if (OldReturnType != NewReturnType) {
1080      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1081      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1082      return true;
1083    }
1084
1085    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1086    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1087    if (OldMethod && NewMethod) {
1088      // Preserve triviality.
1089      NewMethod->setTrivial(OldMethod->isTrivial());
1090
1091      bool isFriend = NewMethod->getFriendObjectKind();
1092
1093      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1094        //    -- Member function declarations with the same name and the
1095        //       same parameter types cannot be overloaded if any of them
1096        //       is a static member function declaration.
1097        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1098          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1099          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1100          return true;
1101        }
1102
1103        // C++ [class.mem]p1:
1104        //   [...] A member shall not be declared twice in the
1105        //   member-specification, except that a nested class or member
1106        //   class template can be declared and then later defined.
1107        unsigned NewDiag;
1108        if (isa<CXXConstructorDecl>(OldMethod))
1109          NewDiag = diag::err_constructor_redeclared;
1110        else if (isa<CXXDestructorDecl>(NewMethod))
1111          NewDiag = diag::err_destructor_redeclared;
1112        else if (isa<CXXConversionDecl>(NewMethod))
1113          NewDiag = diag::err_conv_function_redeclared;
1114        else
1115          NewDiag = diag::err_member_redeclared;
1116
1117        Diag(New->getLocation(), NewDiag);
1118        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1119
1120      // Complain if this is an explicit declaration of a special
1121      // member that was initially declared implicitly.
1122      //
1123      // As an exception, it's okay to befriend such methods in order
1124      // to permit the implicit constructor/destructor/operator calls.
1125      } else if (OldMethod->isImplicit()) {
1126        if (isFriend) {
1127          NewMethod->setImplicit();
1128        } else {
1129          Diag(NewMethod->getLocation(),
1130               diag::err_definition_of_implicitly_declared_member)
1131            << New << getSpecialMember(OldMethod);
1132          return true;
1133        }
1134      }
1135    }
1136
1137    // (C++98 8.3.5p3):
1138    //   All declarations for a function shall agree exactly in both the
1139    //   return type and the parameter-type-list.
1140    // attributes should be ignored when comparing.
1141    if (Context.getNoReturnType(OldQType, false) ==
1142        Context.getNoReturnType(NewQType, false))
1143      return MergeCompatibleFunctionDecls(New, Old);
1144
1145    // Fall through for conflicting redeclarations and redefinitions.
1146  }
1147
1148  // C: Function types need to be compatible, not identical. This handles
1149  // duplicate function decls like "void f(int); void f(enum X);" properly.
1150  if (!getLangOptions().CPlusPlus &&
1151      Context.typesAreCompatible(OldQType, NewQType)) {
1152    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1153    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1154    const FunctionProtoType *OldProto = 0;
1155    if (isa<FunctionNoProtoType>(NewFuncType) &&
1156        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1157      // The old declaration provided a function prototype, but the
1158      // new declaration does not. Merge in the prototype.
1159      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1160      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1161                                                 OldProto->arg_type_end());
1162      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1163                                         ParamTypes.data(), ParamTypes.size(),
1164                                         OldProto->isVariadic(),
1165                                         OldProto->getTypeQuals(),
1166                                         false, false, 0, 0,
1167                                         OldProto->getExtInfo());
1168      New->setType(NewQType);
1169      New->setHasInheritedPrototype();
1170
1171      // Synthesize a parameter for each argument type.
1172      llvm::SmallVector<ParmVarDecl*, 16> Params;
1173      for (FunctionProtoType::arg_type_iterator
1174             ParamType = OldProto->arg_type_begin(),
1175             ParamEnd = OldProto->arg_type_end();
1176           ParamType != ParamEnd; ++ParamType) {
1177        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1178                                                 SourceLocation(), 0,
1179                                                 *ParamType, /*TInfo=*/0,
1180                                                 VarDecl::None, VarDecl::None,
1181                                                 0);
1182        Param->setImplicit();
1183        Params.push_back(Param);
1184      }
1185
1186      New->setParams(Params.data(), Params.size());
1187    }
1188
1189    return MergeCompatibleFunctionDecls(New, Old);
1190  }
1191
1192  // GNU C permits a K&R definition to follow a prototype declaration
1193  // if the declared types of the parameters in the K&R definition
1194  // match the types in the prototype declaration, even when the
1195  // promoted types of the parameters from the K&R definition differ
1196  // from the types in the prototype. GCC then keeps the types from
1197  // the prototype.
1198  //
1199  // If a variadic prototype is followed by a non-variadic K&R definition,
1200  // the K&R definition becomes variadic.  This is sort of an edge case, but
1201  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1202  // C99 6.9.1p8.
1203  if (!getLangOptions().CPlusPlus &&
1204      Old->hasPrototype() && !New->hasPrototype() &&
1205      New->getType()->getAs<FunctionProtoType>() &&
1206      Old->getNumParams() == New->getNumParams()) {
1207    llvm::SmallVector<QualType, 16> ArgTypes;
1208    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1209    const FunctionProtoType *OldProto
1210      = Old->getType()->getAs<FunctionProtoType>();
1211    const FunctionProtoType *NewProto
1212      = New->getType()->getAs<FunctionProtoType>();
1213
1214    // Determine whether this is the GNU C extension.
1215    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1216                                               NewProto->getResultType());
1217    bool LooseCompatible = !MergedReturn.isNull();
1218    for (unsigned Idx = 0, End = Old->getNumParams();
1219         LooseCompatible && Idx != End; ++Idx) {
1220      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1221      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1222      if (Context.typesAreCompatible(OldParm->getType(),
1223                                     NewProto->getArgType(Idx))) {
1224        ArgTypes.push_back(NewParm->getType());
1225      } else if (Context.typesAreCompatible(OldParm->getType(),
1226                                            NewParm->getType())) {
1227        GNUCompatibleParamWarning Warn
1228          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1229        Warnings.push_back(Warn);
1230        ArgTypes.push_back(NewParm->getType());
1231      } else
1232        LooseCompatible = false;
1233    }
1234
1235    if (LooseCompatible) {
1236      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1237        Diag(Warnings[Warn].NewParm->getLocation(),
1238             diag::ext_param_promoted_not_compatible_with_prototype)
1239          << Warnings[Warn].PromotedType
1240          << Warnings[Warn].OldParm->getType();
1241        Diag(Warnings[Warn].OldParm->getLocation(),
1242             diag::note_previous_declaration);
1243      }
1244
1245      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1246                                           ArgTypes.size(),
1247                                           OldProto->isVariadic(), 0,
1248                                           false, false, 0, 0,
1249                                           OldProto->getExtInfo()));
1250      return MergeCompatibleFunctionDecls(New, Old);
1251    }
1252
1253    // Fall through to diagnose conflicting types.
1254  }
1255
1256  // A function that has already been declared has been redeclared or defined
1257  // with a different type- show appropriate diagnostic
1258  if (unsigned BuiltinID = Old->getBuiltinID()) {
1259    // The user has declared a builtin function with an incompatible
1260    // signature.
1261    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1262      // The function the user is redeclaring is a library-defined
1263      // function like 'malloc' or 'printf'. Warn about the
1264      // redeclaration, then pretend that we don't know about this
1265      // library built-in.
1266      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1267      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1268        << Old << Old->getType();
1269      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1270      Old->setInvalidDecl();
1271      return false;
1272    }
1273
1274    PrevDiag = diag::note_previous_builtin_declaration;
1275  }
1276
1277  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1278  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1279  return true;
1280}
1281
1282/// \brief Completes the merge of two function declarations that are
1283/// known to be compatible.
1284///
1285/// This routine handles the merging of attributes and other
1286/// properties of function declarations form the old declaration to
1287/// the new declaration, once we know that New is in fact a
1288/// redeclaration of Old.
1289///
1290/// \returns false
1291bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1292  // Merge the attributes
1293  MergeAttributes(New, Old, Context);
1294
1295  // Merge the storage class.
1296  if (Old->getStorageClass() != FunctionDecl::Extern &&
1297      Old->getStorageClass() != FunctionDecl::None)
1298    New->setStorageClass(Old->getStorageClass());
1299
1300  // Merge "pure" flag.
1301  if (Old->isPure())
1302    New->setPure();
1303
1304  // Merge the "deleted" flag.
1305  if (Old->isDeleted())
1306    New->setDeleted();
1307
1308  if (getLangOptions().CPlusPlus)
1309    return MergeCXXFunctionDecl(New, Old);
1310
1311  return false;
1312}
1313
1314/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1315/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1316/// situation, merging decls or emitting diagnostics as appropriate.
1317///
1318/// Tentative definition rules (C99 6.9.2p2) are checked by
1319/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1320/// definitions here, since the initializer hasn't been attached.
1321///
1322void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1323  // If the new decl is already invalid, don't do any other checking.
1324  if (New->isInvalidDecl())
1325    return;
1326
1327  // Verify the old decl was also a variable.
1328  VarDecl *Old = 0;
1329  if (!Previous.isSingleResult() ||
1330      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1331    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1332      << New->getDeclName();
1333    Diag(Previous.getRepresentativeDecl()->getLocation(),
1334         diag::note_previous_definition);
1335    return New->setInvalidDecl();
1336  }
1337
1338  MergeAttributes(New, Old, Context);
1339
1340  // Merge the types
1341  QualType MergedT;
1342  if (getLangOptions().CPlusPlus) {
1343    if (Context.hasSameType(New->getType(), Old->getType()))
1344      MergedT = New->getType();
1345    // C++ [basic.link]p10:
1346    //   [...] the types specified by all declarations referring to a given
1347    //   object or function shall be identical, except that declarations for an
1348    //   array object can specify array types that differ by the presence or
1349    //   absence of a major array bound (8.3.4).
1350    else if (Old->getType()->isIncompleteArrayType() &&
1351             New->getType()->isArrayType()) {
1352      CanQual<ArrayType> OldArray
1353        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1354      CanQual<ArrayType> NewArray
1355        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1356      if (OldArray->getElementType() == NewArray->getElementType())
1357        MergedT = New->getType();
1358    } else if (Old->getType()->isArrayType() &&
1359             New->getType()->isIncompleteArrayType()) {
1360      CanQual<ArrayType> OldArray
1361        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1362      CanQual<ArrayType> NewArray
1363        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1364      if (OldArray->getElementType() == NewArray->getElementType())
1365        MergedT = Old->getType();
1366    }
1367  } else {
1368    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1369  }
1370  if (MergedT.isNull()) {
1371    Diag(New->getLocation(), diag::err_redefinition_different_type)
1372      << New->getDeclName();
1373    Diag(Old->getLocation(), diag::note_previous_definition);
1374    return New->setInvalidDecl();
1375  }
1376  New->setType(MergedT);
1377
1378  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1379  if (New->getStorageClass() == VarDecl::Static &&
1380      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1381    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1382    Diag(Old->getLocation(), diag::note_previous_definition);
1383    return New->setInvalidDecl();
1384  }
1385  // C99 6.2.2p4:
1386  //   For an identifier declared with the storage-class specifier
1387  //   extern in a scope in which a prior declaration of that
1388  //   identifier is visible,23) if the prior declaration specifies
1389  //   internal or external linkage, the linkage of the identifier at
1390  //   the later declaration is the same as the linkage specified at
1391  //   the prior declaration. If no prior declaration is visible, or
1392  //   if the prior declaration specifies no linkage, then the
1393  //   identifier has external linkage.
1394  if (New->hasExternalStorage() && Old->hasLinkage())
1395    /* Okay */;
1396  else if (New->getStorageClass() != VarDecl::Static &&
1397           Old->getStorageClass() == VarDecl::Static) {
1398    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1399    Diag(Old->getLocation(), diag::note_previous_definition);
1400    return New->setInvalidDecl();
1401  }
1402
1403  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1404
1405  // FIXME: The test for external storage here seems wrong? We still
1406  // need to check for mismatches.
1407  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1408      // Don't complain about out-of-line definitions of static members.
1409      !(Old->getLexicalDeclContext()->isRecord() &&
1410        !New->getLexicalDeclContext()->isRecord())) {
1411    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1412    Diag(Old->getLocation(), diag::note_previous_definition);
1413    return New->setInvalidDecl();
1414  }
1415
1416  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1417    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1418    Diag(Old->getLocation(), diag::note_previous_definition);
1419  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1420    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1421    Diag(Old->getLocation(), diag::note_previous_definition);
1422  }
1423
1424  // C++ doesn't have tentative definitions, so go right ahead and check here.
1425  const VarDecl *Def;
1426  if (getLangOptions().CPlusPlus &&
1427      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1428      (Def = Old->getDefinition())) {
1429    Diag(New->getLocation(), diag::err_redefinition)
1430      << New->getDeclName();
1431    Diag(Def->getLocation(), diag::note_previous_definition);
1432    New->setInvalidDecl();
1433    return;
1434  }
1435
1436  // Keep a chain of previous declarations.
1437  New->setPreviousDeclaration(Old);
1438
1439  // Inherit access appropriately.
1440  New->setAccess(Old->getAccess());
1441}
1442
1443/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1444/// no declarator (e.g. "struct foo;") is parsed.
1445Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1446  // FIXME: Error on auto/register at file scope
1447  // FIXME: Error on inline/virtual/explicit
1448  // FIXME: Warn on useless __thread
1449  // FIXME: Warn on useless const/volatile
1450  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1451  // FIXME: Warn on useless attributes
1452  Decl *TagD = 0;
1453  TagDecl *Tag = 0;
1454  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1455      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1456      DS.getTypeSpecType() == DeclSpec::TST_union ||
1457      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1458    TagD = static_cast<Decl *>(DS.getTypeRep());
1459
1460    if (!TagD) // We probably had an error
1461      return DeclPtrTy();
1462
1463    // Note that the above type specs guarantee that the
1464    // type rep is a Decl, whereas in many of the others
1465    // it's a Type.
1466    Tag = dyn_cast<TagDecl>(TagD);
1467  }
1468
1469  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1470    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1471    // or incomplete types shall not be restrict-qualified."
1472    if (TypeQuals & DeclSpec::TQ_restrict)
1473      Diag(DS.getRestrictSpecLoc(),
1474           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1475           << DS.getSourceRange();
1476  }
1477
1478  if (DS.isFriendSpecified()) {
1479    // If we're dealing with a class template decl, assume that the
1480    // template routines are handling it.
1481    if (TagD && isa<ClassTemplateDecl>(TagD))
1482      return DeclPtrTy();
1483    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1484  }
1485
1486  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1487    // If there are attributes in the DeclSpec, apply them to the record.
1488    if (const AttributeList *AL = DS.getAttributes())
1489      ProcessDeclAttributeList(S, Record, AL);
1490
1491    if (!Record->getDeclName() && Record->isDefinition() &&
1492        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1493      if (getLangOptions().CPlusPlus ||
1494          Record->getDeclContext()->isRecord())
1495        return BuildAnonymousStructOrUnion(S, DS, Record);
1496
1497      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1498        << DS.getSourceRange();
1499    }
1500
1501    // Microsoft allows unnamed struct/union fields. Don't complain
1502    // about them.
1503    // FIXME: Should we support Microsoft's extensions in this area?
1504    if (Record->getDeclName() && getLangOptions().Microsoft)
1505      return DeclPtrTy::make(Tag);
1506  }
1507
1508  if (!DS.isMissingDeclaratorOk() &&
1509      DS.getTypeSpecType() != DeclSpec::TST_error) {
1510    // Warn about typedefs of enums without names, since this is an
1511    // extension in both Microsoft an GNU.
1512    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1513        Tag && isa<EnumDecl>(Tag)) {
1514      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1515        << DS.getSourceRange();
1516      return DeclPtrTy::make(Tag);
1517    }
1518
1519    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1520      << DS.getSourceRange();
1521  }
1522
1523  return DeclPtrTy::make(Tag);
1524}
1525
1526/// We are trying to inject an anonymous member into the given scope;
1527/// check if there's an existing declaration that can't be overloaded.
1528///
1529/// \return true if this is a forbidden redeclaration
1530static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1531                                         Scope *S,
1532                                         DeclContext *Owner,
1533                                         DeclarationName Name,
1534                                         SourceLocation NameLoc,
1535                                         unsigned diagnostic) {
1536  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1537                 Sema::ForRedeclaration);
1538  if (!SemaRef.LookupName(R, S)) return false;
1539
1540  if (R.getAsSingle<TagDecl>())
1541    return false;
1542
1543  // Pick a representative declaration.
1544  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1545  if (PrevDecl && Owner->isRecord()) {
1546    RecordDecl *Record = cast<RecordDecl>(Owner);
1547    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1548      return false;
1549  }
1550
1551  SemaRef.Diag(NameLoc, diagnostic) << Name;
1552  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1553
1554  return true;
1555}
1556
1557/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1558/// anonymous struct or union AnonRecord into the owning context Owner
1559/// and scope S. This routine will be invoked just after we realize
1560/// that an unnamed union or struct is actually an anonymous union or
1561/// struct, e.g.,
1562///
1563/// @code
1564/// union {
1565///   int i;
1566///   float f;
1567/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1568///    // f into the surrounding scope.x
1569/// @endcode
1570///
1571/// This routine is recursive, injecting the names of nested anonymous
1572/// structs/unions into the owning context and scope as well.
1573bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1574                                               RecordDecl *AnonRecord) {
1575  unsigned diagKind
1576    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1577                            : diag::err_anonymous_struct_member_redecl;
1578
1579  bool Invalid = false;
1580  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1581                               FEnd = AnonRecord->field_end();
1582       F != FEnd; ++F) {
1583    if ((*F)->getDeclName()) {
1584      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1585                                       (*F)->getLocation(), diagKind)) {
1586        // C++ [class.union]p2:
1587        //   The names of the members of an anonymous union shall be
1588        //   distinct from the names of any other entity in the
1589        //   scope in which the anonymous union is declared.
1590        Invalid = true;
1591      } else {
1592        // C++ [class.union]p2:
1593        //   For the purpose of name lookup, after the anonymous union
1594        //   definition, the members of the anonymous union are
1595        //   considered to have been defined in the scope in which the
1596        //   anonymous union is declared.
1597        Owner->makeDeclVisibleInContext(*F);
1598        S->AddDecl(DeclPtrTy::make(*F));
1599        IdResolver.AddDecl(*F);
1600      }
1601    } else if (const RecordType *InnerRecordType
1602                 = (*F)->getType()->getAs<RecordType>()) {
1603      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1604      if (InnerRecord->isAnonymousStructOrUnion())
1605        Invalid = Invalid ||
1606          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1607    }
1608  }
1609
1610  return Invalid;
1611}
1612
1613/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1614/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1615/// illegal input values are mapped to VarDecl::None.
1616/// If the input declaration context is a linkage specification
1617/// with no braces, then Extern is mapped to None.
1618static VarDecl::StorageClass
1619StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1620                                      DeclContext *DC) {
1621  switch (StorageClassSpec) {
1622  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1623  case DeclSpec::SCS_extern:
1624    // If the current context is a C++ linkage specification
1625    // having no braces, then the keyword "extern" is properly part
1626    // of the linkage specification itself, rather than being
1627    // the written storage class specifier.
1628    return (DC && isa<LinkageSpecDecl>(DC) &&
1629            !cast<LinkageSpecDecl>(DC)->hasBraces())
1630      ? VarDecl::None : VarDecl::Extern;
1631  case DeclSpec::SCS_static:         return VarDecl::Static;
1632  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1633  case DeclSpec::SCS_register:       return VarDecl::Register;
1634  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1635    // Illegal SCSs map to None: error reporting is up to the caller.
1636  case DeclSpec::SCS_mutable:        // Fall through.
1637  case DeclSpec::SCS_typedef:        return VarDecl::None;
1638  }
1639  llvm_unreachable("unknown storage class specifier");
1640}
1641
1642/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1643/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1644/// illegal input values are mapped to FunctionDecl::None.
1645/// If the input declaration context is a linkage specification
1646/// with no braces, then Extern is mapped to None.
1647static FunctionDecl::StorageClass
1648StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1649                                           DeclContext *DC) {
1650  switch (StorageClassSpec) {
1651  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1652  case DeclSpec::SCS_extern:
1653    // If the current context is a C++ linkage specification
1654    // having no braces, then the keyword "extern" is properly part
1655    // of the linkage specification itself, rather than being
1656    // the written storage class specifier.
1657    return (DC && isa<LinkageSpecDecl>(DC) &&
1658            !cast<LinkageSpecDecl>(DC)->hasBraces())
1659      ? FunctionDecl::None : FunctionDecl::Extern;
1660  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1661  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1662    // Illegal SCSs map to None: error reporting is up to the caller.
1663  case DeclSpec::SCS_auto:           // Fall through.
1664  case DeclSpec::SCS_mutable:        // Fall through.
1665  case DeclSpec::SCS_register:       // Fall through.
1666  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1667  }
1668  llvm_unreachable("unknown storage class specifier");
1669}
1670
1671/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1672/// anonymous structure or union. Anonymous unions are a C++ feature
1673/// (C++ [class.union]) and a GNU C extension; anonymous structures
1674/// are a GNU C and GNU C++ extension.
1675Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1676                                                  RecordDecl *Record) {
1677  DeclContext *Owner = Record->getDeclContext();
1678
1679  // Diagnose whether this anonymous struct/union is an extension.
1680  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1681    Diag(Record->getLocation(), diag::ext_anonymous_union);
1682  else if (!Record->isUnion())
1683    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1684
1685  // C and C++ require different kinds of checks for anonymous
1686  // structs/unions.
1687  bool Invalid = false;
1688  if (getLangOptions().CPlusPlus) {
1689    const char* PrevSpec = 0;
1690    unsigned DiagID;
1691    // C++ [class.union]p3:
1692    //   Anonymous unions declared in a named namespace or in the
1693    //   global namespace shall be declared static.
1694    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1695        (isa<TranslationUnitDecl>(Owner) ||
1696         (isa<NamespaceDecl>(Owner) &&
1697          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1698      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1699      Invalid = true;
1700
1701      // Recover by adding 'static'.
1702      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1703                             PrevSpec, DiagID);
1704    }
1705    // C++ [class.union]p3:
1706    //   A storage class is not allowed in a declaration of an
1707    //   anonymous union in a class scope.
1708    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1709             isa<RecordDecl>(Owner)) {
1710      Diag(DS.getStorageClassSpecLoc(),
1711           diag::err_anonymous_union_with_storage_spec);
1712      Invalid = true;
1713
1714      // Recover by removing the storage specifier.
1715      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1716                             PrevSpec, DiagID);
1717    }
1718
1719    // C++ [class.union]p2:
1720    //   The member-specification of an anonymous union shall only
1721    //   define non-static data members. [Note: nested types and
1722    //   functions cannot be declared within an anonymous union. ]
1723    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1724                                 MemEnd = Record->decls_end();
1725         Mem != MemEnd; ++Mem) {
1726      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1727        // C++ [class.union]p3:
1728        //   An anonymous union shall not have private or protected
1729        //   members (clause 11).
1730        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1731          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1732            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1733          Invalid = true;
1734        }
1735      } else if ((*Mem)->isImplicit()) {
1736        // Any implicit members are fine.
1737      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1738        // This is a type that showed up in an
1739        // elaborated-type-specifier inside the anonymous struct or
1740        // union, but which actually declares a type outside of the
1741        // anonymous struct or union. It's okay.
1742      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1743        if (!MemRecord->isAnonymousStructOrUnion() &&
1744            MemRecord->getDeclName()) {
1745          // This is a nested type declaration.
1746          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1747            << (int)Record->isUnion();
1748          Invalid = true;
1749        }
1750      } else {
1751        // We have something that isn't a non-static data
1752        // member. Complain about it.
1753        unsigned DK = diag::err_anonymous_record_bad_member;
1754        if (isa<TypeDecl>(*Mem))
1755          DK = diag::err_anonymous_record_with_type;
1756        else if (isa<FunctionDecl>(*Mem))
1757          DK = diag::err_anonymous_record_with_function;
1758        else if (isa<VarDecl>(*Mem))
1759          DK = diag::err_anonymous_record_with_static;
1760        Diag((*Mem)->getLocation(), DK)
1761            << (int)Record->isUnion();
1762          Invalid = true;
1763      }
1764    }
1765  }
1766
1767  if (!Record->isUnion() && !Owner->isRecord()) {
1768    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1769      << (int)getLangOptions().CPlusPlus;
1770    Invalid = true;
1771  }
1772
1773  // Mock up a declarator.
1774  Declarator Dc(DS, Declarator::TypeNameContext);
1775  TypeSourceInfo *TInfo = 0;
1776  GetTypeForDeclarator(Dc, S, &TInfo);
1777  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1778
1779  // Create a declaration for this anonymous struct/union.
1780  NamedDecl *Anon = 0;
1781  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1782    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1783                             /*IdentifierInfo=*/0,
1784                             Context.getTypeDeclType(Record),
1785                             TInfo,
1786                             /*BitWidth=*/0, /*Mutable=*/false);
1787    Anon->setAccess(AS_public);
1788    if (getLangOptions().CPlusPlus) {
1789      FieldCollector->Add(cast<FieldDecl>(Anon));
1790      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1791        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1792    }
1793  } else {
1794    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1795    assert(SCSpec != DeclSpec::SCS_typedef &&
1796           "Parser allowed 'typedef' as storage class VarDecl.");
1797    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1798    if (SCSpec == DeclSpec::SCS_mutable) {
1799      // mutable can only appear on non-static class members, so it's always
1800      // an error here
1801      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1802      Invalid = true;
1803      SC = VarDecl::None;
1804    }
1805    SCSpec = DS.getStorageClassSpecAsWritten();
1806    VarDecl::StorageClass SCAsWritten
1807      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1808
1809    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1810                           /*IdentifierInfo=*/0,
1811                           Context.getTypeDeclType(Record),
1812                           TInfo, SC, SCAsWritten);
1813  }
1814  Anon->setImplicit();
1815
1816  // Add the anonymous struct/union object to the current
1817  // context. We'll be referencing this object when we refer to one of
1818  // its members.
1819  Owner->addDecl(Anon);
1820
1821  // Inject the members of the anonymous struct/union into the owning
1822  // context and into the identifier resolver chain for name lookup
1823  // purposes.
1824  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1825    Invalid = true;
1826
1827  // Mark this as an anonymous struct/union type. Note that we do not
1828  // do this until after we have already checked and injected the
1829  // members of this anonymous struct/union type, because otherwise
1830  // the members could be injected twice: once by DeclContext when it
1831  // builds its lookup table, and once by
1832  // InjectAnonymousStructOrUnionMembers.
1833  Record->setAnonymousStructOrUnion(true);
1834
1835  if (Invalid)
1836    Anon->setInvalidDecl();
1837
1838  return DeclPtrTy::make(Anon);
1839}
1840
1841
1842/// GetNameForDeclarator - Determine the full declaration name for the
1843/// given Declarator.
1844DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1845  return GetNameFromUnqualifiedId(D.getName());
1846}
1847
1848/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1849DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1850  switch (Name.getKind()) {
1851    case UnqualifiedId::IK_Identifier:
1852      return DeclarationName(Name.Identifier);
1853
1854    case UnqualifiedId::IK_OperatorFunctionId:
1855      return Context.DeclarationNames.getCXXOperatorName(
1856                                              Name.OperatorFunctionId.Operator);
1857
1858    case UnqualifiedId::IK_LiteralOperatorId:
1859      return Context.DeclarationNames.getCXXLiteralOperatorName(
1860                                                               Name.Identifier);
1861
1862    case UnqualifiedId::IK_ConversionFunctionId: {
1863      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1864      if (Ty.isNull())
1865        return DeclarationName();
1866
1867      return Context.DeclarationNames.getCXXConversionFunctionName(
1868                                                  Context.getCanonicalType(Ty));
1869    }
1870
1871    case UnqualifiedId::IK_ConstructorName: {
1872      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1873      if (Ty.isNull())
1874        return DeclarationName();
1875
1876      return Context.DeclarationNames.getCXXConstructorName(
1877                                                  Context.getCanonicalType(Ty));
1878    }
1879
1880    case UnqualifiedId::IK_ConstructorTemplateId: {
1881      // In well-formed code, we can only have a constructor
1882      // template-id that refers to the current context, so go there
1883      // to find the actual type being constructed.
1884      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1885      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1886        return DeclarationName();
1887
1888      // Determine the type of the class being constructed.
1889      QualType CurClassType = Context.getTypeDeclType(CurClass);
1890
1891      // FIXME: Check two things: that the template-id names the same type as
1892      // CurClassType, and that the template-id does not occur when the name
1893      // was qualified.
1894
1895      return Context.DeclarationNames.getCXXConstructorName(
1896                                       Context.getCanonicalType(CurClassType));
1897    }
1898
1899    case UnqualifiedId::IK_DestructorName: {
1900      QualType Ty = GetTypeFromParser(Name.DestructorName);
1901      if (Ty.isNull())
1902        return DeclarationName();
1903
1904      return Context.DeclarationNames.getCXXDestructorName(
1905                                                           Context.getCanonicalType(Ty));
1906    }
1907
1908    case UnqualifiedId::IK_TemplateId: {
1909      TemplateName TName
1910        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1911      return Context.getNameForTemplate(TName);
1912    }
1913  }
1914
1915  assert(false && "Unknown name kind");
1916  return DeclarationName();
1917}
1918
1919/// isNearlyMatchingFunction - Determine whether the C++ functions
1920/// Declaration and Definition are "nearly" matching. This heuristic
1921/// is used to improve diagnostics in the case where an out-of-line
1922/// function definition doesn't match any declaration within
1923/// the class or namespace.
1924static bool isNearlyMatchingFunction(ASTContext &Context,
1925                                     FunctionDecl *Declaration,
1926                                     FunctionDecl *Definition) {
1927  if (Declaration->param_size() != Definition->param_size())
1928    return false;
1929  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1930    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1931    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1932
1933    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1934                                        DefParamTy.getNonReferenceType()))
1935      return false;
1936  }
1937
1938  return true;
1939}
1940
1941/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1942/// declarator needs to be rebuilt in the current instantiation.
1943/// Any bits of declarator which appear before the name are valid for
1944/// consideration here.  That's specifically the type in the decl spec
1945/// and the base type in any member-pointer chunks.
1946static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1947                                                    DeclarationName Name) {
1948  // The types we specifically need to rebuild are:
1949  //   - typenames, typeofs, and decltypes
1950  //   - types which will become injected class names
1951  // Of course, we also need to rebuild any type referencing such a
1952  // type.  It's safest to just say "dependent", but we call out a
1953  // few cases here.
1954
1955  DeclSpec &DS = D.getMutableDeclSpec();
1956  switch (DS.getTypeSpecType()) {
1957  case DeclSpec::TST_typename:
1958  case DeclSpec::TST_typeofType:
1959  case DeclSpec::TST_typeofExpr:
1960  case DeclSpec::TST_decltype: {
1961    // Grab the type from the parser.
1962    TypeSourceInfo *TSI = 0;
1963    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1964    if (T.isNull() || !T->isDependentType()) break;
1965
1966    // Make sure there's a type source info.  This isn't really much
1967    // of a waste; most dependent types should have type source info
1968    // attached already.
1969    if (!TSI)
1970      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
1971
1972    // Rebuild the type in the current instantiation.
1973    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
1974    if (!TSI) return true;
1975
1976    // Store the new type back in the decl spec.
1977    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
1978    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
1979    break;
1980  }
1981
1982  default:
1983    // Nothing to do for these decl specs.
1984    break;
1985  }
1986
1987  // It doesn't matter what order we do this in.
1988  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
1989    DeclaratorChunk &Chunk = D.getTypeObject(I);
1990
1991    // The only type information in the declarator which can come
1992    // before the declaration name is the base type of a member
1993    // pointer.
1994    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
1995      continue;
1996
1997    // Rebuild the scope specifier in-place.
1998    CXXScopeSpec &SS = Chunk.Mem.Scope();
1999    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2000      return true;
2001  }
2002
2003  return false;
2004}
2005
2006Sema::DeclPtrTy
2007Sema::HandleDeclarator(Scope *S, Declarator &D,
2008                       MultiTemplateParamsArg TemplateParamLists,
2009                       bool IsFunctionDefinition) {
2010  DeclarationName Name = GetNameForDeclarator(D);
2011
2012  // All of these full declarators require an identifier.  If it doesn't have
2013  // one, the ParsedFreeStandingDeclSpec action should be used.
2014  if (!Name) {
2015    if (!D.isInvalidType())  // Reject this if we think it is valid.
2016      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2017           diag::err_declarator_need_ident)
2018        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2019    return DeclPtrTy();
2020  }
2021
2022  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2023  // we find one that is.
2024  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2025         (S->getFlags() & Scope::TemplateParamScope) != 0)
2026    S = S->getParent();
2027
2028  DeclContext *DC = CurContext;
2029  if (D.getCXXScopeSpec().isInvalid())
2030    D.setInvalidType();
2031  else if (D.getCXXScopeSpec().isSet()) {
2032    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2033    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2034    if (!DC) {
2035      // If we could not compute the declaration context, it's because the
2036      // declaration context is dependent but does not refer to a class,
2037      // class template, or class template partial specialization. Complain
2038      // and return early, to avoid the coming semantic disaster.
2039      Diag(D.getIdentifierLoc(),
2040           diag::err_template_qualified_declarator_no_match)
2041        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2042        << D.getCXXScopeSpec().getRange();
2043      return DeclPtrTy();
2044    }
2045
2046    bool IsDependentContext = DC->isDependentContext();
2047
2048    if (!IsDependentContext &&
2049        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2050      return DeclPtrTy();
2051
2052    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2053      Diag(D.getIdentifierLoc(),
2054           diag::err_member_def_undefined_record)
2055        << Name << DC << D.getCXXScopeSpec().getRange();
2056      D.setInvalidType();
2057    }
2058
2059    // Check whether we need to rebuild the type of the given
2060    // declaration in the current instantiation.
2061    if (EnteringContext && IsDependentContext &&
2062        TemplateParamLists.size() != 0) {
2063      ContextRAII SavedContext(*this, DC);
2064      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2065        D.setInvalidType();
2066    }
2067  }
2068
2069  NamedDecl *New;
2070
2071  TypeSourceInfo *TInfo = 0;
2072  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2073
2074  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2075                        ForRedeclaration);
2076
2077  // See if this is a redefinition of a variable in the same scope.
2078  if (!D.getCXXScopeSpec().isSet()) {
2079    bool IsLinkageLookup = false;
2080
2081    // If the declaration we're planning to build will be a function
2082    // or object with linkage, then look for another declaration with
2083    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2084    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2085      /* Do nothing*/;
2086    else if (R->isFunctionType()) {
2087      if (CurContext->isFunctionOrMethod() ||
2088          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2089        IsLinkageLookup = true;
2090    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2091      IsLinkageLookup = true;
2092    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2093             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2094      IsLinkageLookup = true;
2095
2096    if (IsLinkageLookup)
2097      Previous.clear(LookupRedeclarationWithLinkage);
2098
2099    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2100  } else { // Something like "int foo::x;"
2101    LookupQualifiedName(Previous, DC);
2102
2103    // Don't consider using declarations as previous declarations for
2104    // out-of-line members.
2105    RemoveUsingDecls(Previous);
2106
2107    // C++ 7.3.1.2p2:
2108    // Members (including explicit specializations of templates) of a named
2109    // namespace can also be defined outside that namespace by explicit
2110    // qualification of the name being defined, provided that the entity being
2111    // defined was already declared in the namespace and the definition appears
2112    // after the point of declaration in a namespace that encloses the
2113    // declarations namespace.
2114    //
2115    // Note that we only check the context at this point. We don't yet
2116    // have enough information to make sure that PrevDecl is actually
2117    // the declaration we want to match. For example, given:
2118    //
2119    //   class X {
2120    //     void f();
2121    //     void f(float);
2122    //   };
2123    //
2124    //   void X::f(int) { } // ill-formed
2125    //
2126    // In this case, PrevDecl will point to the overload set
2127    // containing the two f's declared in X, but neither of them
2128    // matches.
2129
2130    // First check whether we named the global scope.
2131    if (isa<TranslationUnitDecl>(DC)) {
2132      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2133        << Name << D.getCXXScopeSpec().getRange();
2134    } else {
2135      DeclContext *Cur = CurContext;
2136      while (isa<LinkageSpecDecl>(Cur))
2137        Cur = Cur->getParent();
2138      if (!Cur->Encloses(DC)) {
2139        // The qualifying scope doesn't enclose the original declaration.
2140        // Emit diagnostic based on current scope.
2141        SourceLocation L = D.getIdentifierLoc();
2142        SourceRange R = D.getCXXScopeSpec().getRange();
2143        if (isa<FunctionDecl>(Cur))
2144          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2145        else
2146          Diag(L, diag::err_invalid_declarator_scope)
2147            << Name << cast<NamedDecl>(DC) << R;
2148        D.setInvalidType();
2149      }
2150    }
2151  }
2152
2153  if (Previous.isSingleResult() &&
2154      Previous.getFoundDecl()->isTemplateParameter()) {
2155    // Maybe we will complain about the shadowed template parameter.
2156    if (!D.isInvalidType())
2157      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2158                                          Previous.getFoundDecl()))
2159        D.setInvalidType();
2160
2161    // Just pretend that we didn't see the previous declaration.
2162    Previous.clear();
2163  }
2164
2165  // In C++, the previous declaration we find might be a tag type
2166  // (class or enum). In this case, the new declaration will hide the
2167  // tag type. Note that this does does not apply if we're declaring a
2168  // typedef (C++ [dcl.typedef]p4).
2169  if (Previous.isSingleTagDecl() &&
2170      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2171    Previous.clear();
2172
2173  bool Redeclaration = false;
2174  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2175    if (TemplateParamLists.size()) {
2176      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2177      return DeclPtrTy();
2178    }
2179
2180    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2181  } else if (R->isFunctionType()) {
2182    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2183                                  move(TemplateParamLists),
2184                                  IsFunctionDefinition, Redeclaration);
2185  } else {
2186    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2187                                  move(TemplateParamLists),
2188                                  Redeclaration);
2189  }
2190
2191  if (New == 0)
2192    return DeclPtrTy();
2193
2194  // If this has an identifier and is not an invalid redeclaration or
2195  // function template specialization, add it to the scope stack.
2196  if (Name && !(Redeclaration && New->isInvalidDecl()))
2197    PushOnScopeChains(New, S);
2198
2199  return DeclPtrTy::make(New);
2200}
2201
2202/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2203/// types into constant array types in certain situations which would otherwise
2204/// be errors (for GCC compatibility).
2205static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2206                                                    ASTContext &Context,
2207                                                    bool &SizeIsNegative) {
2208  // This method tries to turn a variable array into a constant
2209  // array even when the size isn't an ICE.  This is necessary
2210  // for compatibility with code that depends on gcc's buggy
2211  // constant expression folding, like struct {char x[(int)(char*)2];}
2212  SizeIsNegative = false;
2213
2214  QualifierCollector Qs;
2215  const Type *Ty = Qs.strip(T);
2216
2217  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2218    QualType Pointee = PTy->getPointeeType();
2219    QualType FixedType =
2220        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2221    if (FixedType.isNull()) return FixedType;
2222    FixedType = Context.getPointerType(FixedType);
2223    return Qs.apply(FixedType);
2224  }
2225
2226  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2227  if (!VLATy)
2228    return QualType();
2229  // FIXME: We should probably handle this case
2230  if (VLATy->getElementType()->isVariablyModifiedType())
2231    return QualType();
2232
2233  Expr::EvalResult EvalResult;
2234  if (!VLATy->getSizeExpr() ||
2235      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2236      !EvalResult.Val.isInt())
2237    return QualType();
2238
2239  llvm::APSInt &Res = EvalResult.Val.getInt();
2240  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2241    // TODO: preserve the size expression in declarator info
2242    return Context.getConstantArrayType(VLATy->getElementType(),
2243                                        Res, ArrayType::Normal, 0);
2244  }
2245
2246  SizeIsNegative = true;
2247  return QualType();
2248}
2249
2250/// \brief Register the given locally-scoped external C declaration so
2251/// that it can be found later for redeclarations
2252void
2253Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2254                                       const LookupResult &Previous,
2255                                       Scope *S) {
2256  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2257         "Decl is not a locally-scoped decl!");
2258  // Note that we have a locally-scoped external with this name.
2259  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2260
2261  if (!Previous.isSingleResult())
2262    return;
2263
2264  NamedDecl *PrevDecl = Previous.getFoundDecl();
2265
2266  // If there was a previous declaration of this variable, it may be
2267  // in our identifier chain. Update the identifier chain with the new
2268  // declaration.
2269  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2270    // The previous declaration was found on the identifer resolver
2271    // chain, so remove it from its scope.
2272    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2273      S = S->getParent();
2274
2275    if (S)
2276      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2277  }
2278}
2279
2280/// \brief Diagnose function specifiers on a declaration of an identifier that
2281/// does not identify a function.
2282void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2283  // FIXME: We should probably indicate the identifier in question to avoid
2284  // confusion for constructs like "inline int a(), b;"
2285  if (D.getDeclSpec().isInlineSpecified())
2286    Diag(D.getDeclSpec().getInlineSpecLoc(),
2287         diag::err_inline_non_function);
2288
2289  if (D.getDeclSpec().isVirtualSpecified())
2290    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2291         diag::err_virtual_non_function);
2292
2293  if (D.getDeclSpec().isExplicitSpecified())
2294    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2295         diag::err_explicit_non_function);
2296}
2297
2298NamedDecl*
2299Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2300                             QualType R,  TypeSourceInfo *TInfo,
2301                             LookupResult &Previous, bool &Redeclaration) {
2302  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2303  if (D.getCXXScopeSpec().isSet()) {
2304    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2305      << D.getCXXScopeSpec().getRange();
2306    D.setInvalidType();
2307    // Pretend we didn't see the scope specifier.
2308    DC = CurContext;
2309    Previous.clear();
2310  }
2311
2312  if (getLangOptions().CPlusPlus) {
2313    // Check that there are no default arguments (C++ only).
2314    CheckExtraCXXDefaultArguments(D);
2315  }
2316
2317  DiagnoseFunctionSpecifiers(D);
2318
2319  if (D.getDeclSpec().isThreadSpecified())
2320    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2321
2322  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2323  if (!NewTD) return 0;
2324
2325  // Handle attributes prior to checking for duplicates in MergeVarDecl
2326  ProcessDeclAttributes(S, NewTD, D);
2327
2328  // Merge the decl with the existing one if appropriate. If the decl is
2329  // in an outer scope, it isn't the same thing.
2330  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2331  if (!Previous.empty()) {
2332    Redeclaration = true;
2333    MergeTypeDefDecl(NewTD, Previous);
2334  }
2335
2336  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2337  // then it shall have block scope.
2338  QualType T = NewTD->getUnderlyingType();
2339  if (T->isVariablyModifiedType()) {
2340    FunctionNeedsScopeChecking() = true;
2341
2342    if (S->getFnParent() == 0) {
2343      bool SizeIsNegative;
2344      QualType FixedTy =
2345          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2346      if (!FixedTy.isNull()) {
2347        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2348        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2349      } else {
2350        if (SizeIsNegative)
2351          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2352        else if (T->isVariableArrayType())
2353          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2354        else
2355          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2356        NewTD->setInvalidDecl();
2357      }
2358    }
2359  }
2360
2361  // If this is the C FILE type, notify the AST context.
2362  if (IdentifierInfo *II = NewTD->getIdentifier())
2363    if (!NewTD->isInvalidDecl() &&
2364        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2365      if (II->isStr("FILE"))
2366        Context.setFILEDecl(NewTD);
2367      else if (II->isStr("jmp_buf"))
2368        Context.setjmp_bufDecl(NewTD);
2369      else if (II->isStr("sigjmp_buf"))
2370        Context.setsigjmp_bufDecl(NewTD);
2371    }
2372
2373  return NewTD;
2374}
2375
2376/// \brief Determines whether the given declaration is an out-of-scope
2377/// previous declaration.
2378///
2379/// This routine should be invoked when name lookup has found a
2380/// previous declaration (PrevDecl) that is not in the scope where a
2381/// new declaration by the same name is being introduced. If the new
2382/// declaration occurs in a local scope, previous declarations with
2383/// linkage may still be considered previous declarations (C99
2384/// 6.2.2p4-5, C++ [basic.link]p6).
2385///
2386/// \param PrevDecl the previous declaration found by name
2387/// lookup
2388///
2389/// \param DC the context in which the new declaration is being
2390/// declared.
2391///
2392/// \returns true if PrevDecl is an out-of-scope previous declaration
2393/// for a new delcaration with the same name.
2394static bool
2395isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2396                                ASTContext &Context) {
2397  if (!PrevDecl)
2398    return 0;
2399
2400  if (!PrevDecl->hasLinkage())
2401    return false;
2402
2403  if (Context.getLangOptions().CPlusPlus) {
2404    // C++ [basic.link]p6:
2405    //   If there is a visible declaration of an entity with linkage
2406    //   having the same name and type, ignoring entities declared
2407    //   outside the innermost enclosing namespace scope, the block
2408    //   scope declaration declares that same entity and receives the
2409    //   linkage of the previous declaration.
2410    DeclContext *OuterContext = DC->getLookupContext();
2411    if (!OuterContext->isFunctionOrMethod())
2412      // This rule only applies to block-scope declarations.
2413      return false;
2414    else {
2415      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2416      if (PrevOuterContext->isRecord())
2417        // We found a member function: ignore it.
2418        return false;
2419      else {
2420        // Find the innermost enclosing namespace for the new and
2421        // previous declarations.
2422        while (!OuterContext->isFileContext())
2423          OuterContext = OuterContext->getParent();
2424        while (!PrevOuterContext->isFileContext())
2425          PrevOuterContext = PrevOuterContext->getParent();
2426
2427        // The previous declaration is in a different namespace, so it
2428        // isn't the same function.
2429        if (OuterContext->getPrimaryContext() !=
2430            PrevOuterContext->getPrimaryContext())
2431          return false;
2432      }
2433    }
2434  }
2435
2436  return true;
2437}
2438
2439static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2440  CXXScopeSpec &SS = D.getCXXScopeSpec();
2441  if (!SS.isSet()) return;
2442  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2443                       SS.getRange());
2444}
2445
2446NamedDecl*
2447Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2448                              QualType R, TypeSourceInfo *TInfo,
2449                              LookupResult &Previous,
2450                              MultiTemplateParamsArg TemplateParamLists,
2451                              bool &Redeclaration) {
2452  DeclarationName Name = GetNameForDeclarator(D);
2453
2454  // Check that there are no default arguments (C++ only).
2455  if (getLangOptions().CPlusPlus)
2456    CheckExtraCXXDefaultArguments(D);
2457
2458  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2459  assert(SCSpec != DeclSpec::SCS_typedef &&
2460         "Parser allowed 'typedef' as storage class VarDecl.");
2461  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2462  if (SCSpec == DeclSpec::SCS_mutable) {
2463    // mutable can only appear on non-static class members, so it's always
2464    // an error here
2465    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2466    D.setInvalidType();
2467    SC = VarDecl::None;
2468  }
2469  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2470  VarDecl::StorageClass SCAsWritten
2471    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2472
2473  IdentifierInfo *II = Name.getAsIdentifierInfo();
2474  if (!II) {
2475    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2476      << Name.getAsString();
2477    return 0;
2478  }
2479
2480  DiagnoseFunctionSpecifiers(D);
2481
2482  if (!DC->isRecord() && S->getFnParent() == 0) {
2483    // C99 6.9p2: The storage-class specifiers auto and register shall not
2484    // appear in the declaration specifiers in an external declaration.
2485    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2486
2487      // If this is a register variable with an asm label specified, then this
2488      // is a GNU extension.
2489      if (SC == VarDecl::Register && D.getAsmLabel())
2490        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2491      else
2492        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2493      D.setInvalidType();
2494    }
2495  }
2496  if (DC->isRecord() && !CurContext->isRecord()) {
2497    // This is an out-of-line definition of a static data member.
2498    if (SC == VarDecl::Static) {
2499      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2500           diag::err_static_out_of_line)
2501        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2502    } else if (SC == VarDecl::None)
2503      SC = VarDecl::Static;
2504  }
2505  if (SC == VarDecl::Static) {
2506    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2507      if (RD->isLocalClass())
2508        Diag(D.getIdentifierLoc(),
2509             diag::err_static_data_member_not_allowed_in_local_class)
2510          << Name << RD->getDeclName();
2511    }
2512  }
2513
2514  // Match up the template parameter lists with the scope specifier, then
2515  // determine whether we have a template or a template specialization.
2516  bool isExplicitSpecialization = false;
2517  if (TemplateParameterList *TemplateParams
2518        = MatchTemplateParametersToScopeSpecifier(
2519                                  D.getDeclSpec().getSourceRange().getBegin(),
2520                                                  D.getCXXScopeSpec(),
2521                        (TemplateParameterList**)TemplateParamLists.get(),
2522                                                   TemplateParamLists.size(),
2523                                                  /*never a friend*/ false,
2524                                                  isExplicitSpecialization)) {
2525    if (TemplateParams->size() > 0) {
2526      // There is no such thing as a variable template.
2527      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2528        << II
2529        << SourceRange(TemplateParams->getTemplateLoc(),
2530                       TemplateParams->getRAngleLoc());
2531      return 0;
2532    } else {
2533      // There is an extraneous 'template<>' for this variable. Complain
2534      // about it, but allow the declaration of the variable.
2535      Diag(TemplateParams->getTemplateLoc(),
2536           diag::err_template_variable_noparams)
2537        << II
2538        << SourceRange(TemplateParams->getTemplateLoc(),
2539                       TemplateParams->getRAngleLoc());
2540
2541      isExplicitSpecialization = true;
2542    }
2543  }
2544
2545  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2546                                   II, R, TInfo, SC, SCAsWritten);
2547
2548  if (D.isInvalidType())
2549    NewVD->setInvalidDecl();
2550
2551  SetNestedNameSpecifier(NewVD, D);
2552
2553  if (D.getDeclSpec().isThreadSpecified()) {
2554    if (NewVD->hasLocalStorage())
2555      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2556    else if (!Context.Target.isTLSSupported())
2557      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2558    else
2559      NewVD->setThreadSpecified(true);
2560  }
2561
2562  // Set the lexical context. If the declarator has a C++ scope specifier, the
2563  // lexical context will be different from the semantic context.
2564  NewVD->setLexicalDeclContext(CurContext);
2565
2566  // Handle attributes prior to checking for duplicates in MergeVarDecl
2567  ProcessDeclAttributes(S, NewVD, D);
2568
2569  // Handle GNU asm-label extension (encoded as an attribute).
2570  if (Expr *E = (Expr*) D.getAsmLabel()) {
2571    // The parser guarantees this is a string.
2572    StringLiteral *SE = cast<StringLiteral>(E);
2573    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2574  }
2575
2576  // Diagnose shadowed variables before filtering for scope.
2577  if (!D.getCXXScopeSpec().isSet())
2578    CheckShadow(S, NewVD, Previous);
2579
2580  // Don't consider existing declarations that are in a different
2581  // scope and are out-of-semantic-context declarations (if the new
2582  // declaration has linkage).
2583  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2584
2585  // Merge the decl with the existing one if appropriate.
2586  if (!Previous.empty()) {
2587    if (Previous.isSingleResult() &&
2588        isa<FieldDecl>(Previous.getFoundDecl()) &&
2589        D.getCXXScopeSpec().isSet()) {
2590      // The user tried to define a non-static data member
2591      // out-of-line (C++ [dcl.meaning]p1).
2592      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2593        << D.getCXXScopeSpec().getRange();
2594      Previous.clear();
2595      NewVD->setInvalidDecl();
2596    }
2597  } else if (D.getCXXScopeSpec().isSet()) {
2598    // No previous declaration in the qualifying scope.
2599    Diag(D.getIdentifierLoc(), diag::err_no_member)
2600      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2601      << D.getCXXScopeSpec().getRange();
2602    NewVD->setInvalidDecl();
2603  }
2604
2605  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2606
2607  // This is an explicit specialization of a static data member. Check it.
2608  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2609      CheckMemberSpecialization(NewVD, Previous))
2610    NewVD->setInvalidDecl();
2611
2612  // attributes declared post-definition are currently ignored
2613  if (Previous.isSingleResult()) {
2614    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2615    if (Def && (Def = Def->getDefinition()) &&
2616        Def != NewVD && D.hasAttributes()) {
2617      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2618      Diag(Def->getLocation(), diag::note_previous_definition);
2619    }
2620  }
2621
2622  // If this is a locally-scoped extern C variable, update the map of
2623  // such variables.
2624  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2625      !NewVD->isInvalidDecl())
2626    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2627
2628  return NewVD;
2629}
2630
2631/// \brief Diagnose variable or built-in function shadowing.  Implements
2632/// -Wshadow.
2633///
2634/// This method is called whenever a VarDecl is added to a "useful"
2635/// scope.
2636///
2637/// \param S the scope in which the shadowing name is being declared
2638/// \param R the lookup of the name
2639///
2640void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2641  // Return if warning is ignored.
2642  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2643    return;
2644
2645  // Don't diagnose declarations at file scope.  The scope might not
2646  // have a DeclContext if (e.g.) we're parsing a function prototype.
2647  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2648  if (NewDC && NewDC->isFileContext())
2649    return;
2650
2651  // Only diagnose if we're shadowing an unambiguous field or variable.
2652  if (R.getResultKind() != LookupResult::Found)
2653    return;
2654
2655  NamedDecl* ShadowedDecl = R.getFoundDecl();
2656  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2657    return;
2658
2659  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2660
2661  // Only warn about certain kinds of shadowing for class members.
2662  if (NewDC && NewDC->isRecord()) {
2663    // In particular, don't warn about shadowing non-class members.
2664    if (!OldDC->isRecord())
2665      return;
2666
2667    // TODO: should we warn about static data members shadowing
2668    // static data members from base classes?
2669
2670    // TODO: don't diagnose for inaccessible shadowed members.
2671    // This is hard to do perfectly because we might friend the
2672    // shadowing context, but that's just a false negative.
2673  }
2674
2675  // Determine what kind of declaration we're shadowing.
2676  unsigned Kind;
2677  if (isa<RecordDecl>(OldDC)) {
2678    if (isa<FieldDecl>(ShadowedDecl))
2679      Kind = 3; // field
2680    else
2681      Kind = 2; // static data member
2682  } else if (OldDC->isFileContext())
2683    Kind = 1; // global
2684  else
2685    Kind = 0; // local
2686
2687  DeclarationName Name = R.getLookupName();
2688
2689  // Emit warning and note.
2690  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2691  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2692}
2693
2694/// \brief Check -Wshadow without the advantage of a previous lookup.
2695void Sema::CheckShadow(Scope *S, VarDecl *D) {
2696  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2697                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2698  LookupName(R, S);
2699  CheckShadow(S, D, R);
2700}
2701
2702/// \brief Perform semantic checking on a newly-created variable
2703/// declaration.
2704///
2705/// This routine performs all of the type-checking required for a
2706/// variable declaration once it has been built. It is used both to
2707/// check variables after they have been parsed and their declarators
2708/// have been translated into a declaration, and to check variables
2709/// that have been instantiated from a template.
2710///
2711/// Sets NewVD->isInvalidDecl() if an error was encountered.
2712void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2713                                    LookupResult &Previous,
2714                                    bool &Redeclaration) {
2715  // If the decl is already known invalid, don't check it.
2716  if (NewVD->isInvalidDecl())
2717    return;
2718
2719  QualType T = NewVD->getType();
2720
2721  if (T->isObjCInterfaceType()) {
2722    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2723    return NewVD->setInvalidDecl();
2724  }
2725
2726  // Emit an error if an address space was applied to decl with local storage.
2727  // This includes arrays of objects with address space qualifiers, but not
2728  // automatic variables that point to other address spaces.
2729  // ISO/IEC TR 18037 S5.1.2
2730  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2731    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2732    return NewVD->setInvalidDecl();
2733  }
2734
2735  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2736      && !NewVD->hasAttr<BlocksAttr>())
2737    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2738
2739  bool isVM = T->isVariablyModifiedType();
2740  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2741      NewVD->hasAttr<BlocksAttr>() ||
2742      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2743      // However, this turns on the scope checker for everything with a variable
2744      // which may impact compile time.  See if we can find a better solution
2745      // to this, perhaps only checking functions that contain gotos in C++?
2746      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2747    FunctionNeedsScopeChecking() = true;
2748
2749  if ((isVM && NewVD->hasLinkage()) ||
2750      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2751    bool SizeIsNegative;
2752    QualType FixedTy =
2753        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2754
2755    if (FixedTy.isNull() && T->isVariableArrayType()) {
2756      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2757      // FIXME: This won't give the correct result for
2758      // int a[10][n];
2759      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2760
2761      if (NewVD->isFileVarDecl())
2762        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2763        << SizeRange;
2764      else if (NewVD->getStorageClass() == VarDecl::Static)
2765        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2766        << SizeRange;
2767      else
2768        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2769        << SizeRange;
2770      return NewVD->setInvalidDecl();
2771    }
2772
2773    if (FixedTy.isNull()) {
2774      if (NewVD->isFileVarDecl())
2775        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2776      else
2777        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2778      return NewVD->setInvalidDecl();
2779    }
2780
2781    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2782    NewVD->setType(FixedTy);
2783  }
2784
2785  if (Previous.empty() && NewVD->isExternC()) {
2786    // Since we did not find anything by this name and we're declaring
2787    // an extern "C" variable, look for a non-visible extern "C"
2788    // declaration with the same name.
2789    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2790      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2791    if (Pos != LocallyScopedExternalDecls.end())
2792      Previous.addDecl(Pos->second);
2793  }
2794
2795  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2796    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2797      << T;
2798    return NewVD->setInvalidDecl();
2799  }
2800
2801  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2802    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2803    return NewVD->setInvalidDecl();
2804  }
2805
2806  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2807    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2808    return NewVD->setInvalidDecl();
2809  }
2810
2811  if (!Previous.empty()) {
2812    Redeclaration = true;
2813    MergeVarDecl(NewVD, Previous);
2814  }
2815}
2816
2817/// \brief Data used with FindOverriddenMethod
2818struct FindOverriddenMethodData {
2819  Sema *S;
2820  CXXMethodDecl *Method;
2821};
2822
2823/// \brief Member lookup function that determines whether a given C++
2824/// method overrides a method in a base class, to be used with
2825/// CXXRecordDecl::lookupInBases().
2826static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2827                                 CXXBasePath &Path,
2828                                 void *UserData) {
2829  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2830
2831  FindOverriddenMethodData *Data
2832    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2833
2834  DeclarationName Name = Data->Method->getDeclName();
2835
2836  // FIXME: Do we care about other names here too?
2837  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2838    // We really want to find the base class constructor here.
2839    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2840    CanQualType CT = Data->S->Context.getCanonicalType(T);
2841
2842    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2843  }
2844
2845  for (Path.Decls = BaseRecord->lookup(Name);
2846       Path.Decls.first != Path.Decls.second;
2847       ++Path.Decls.first) {
2848    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2849      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2850        return true;
2851    }
2852  }
2853
2854  return false;
2855}
2856
2857/// AddOverriddenMethods - See if a method overrides any in the base classes,
2858/// and if so, check that it's a valid override and remember it.
2859void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2860  // Look for virtual methods in base classes that this method might override.
2861  CXXBasePaths Paths;
2862  FindOverriddenMethodData Data;
2863  Data.Method = MD;
2864  Data.S = this;
2865  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2866    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2867         E = Paths.found_decls_end(); I != E; ++I) {
2868      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2869        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2870            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2871            !CheckOverridingFunctionAttributes(MD, OldMD))
2872          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2873      }
2874    }
2875  }
2876}
2877
2878NamedDecl*
2879Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2880                              QualType R, TypeSourceInfo *TInfo,
2881                              LookupResult &Previous,
2882                              MultiTemplateParamsArg TemplateParamLists,
2883                              bool IsFunctionDefinition, bool &Redeclaration) {
2884  assert(R.getTypePtr()->isFunctionType());
2885
2886  DeclarationName Name = GetNameForDeclarator(D);
2887  FunctionDecl::StorageClass SC = FunctionDecl::None;
2888  switch (D.getDeclSpec().getStorageClassSpec()) {
2889  default: assert(0 && "Unknown storage class!");
2890  case DeclSpec::SCS_auto:
2891  case DeclSpec::SCS_register:
2892  case DeclSpec::SCS_mutable:
2893    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2894         diag::err_typecheck_sclass_func);
2895    D.setInvalidType();
2896    break;
2897  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2898  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2899  case DeclSpec::SCS_static: {
2900    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2901      // C99 6.7.1p5:
2902      //   The declaration of an identifier for a function that has
2903      //   block scope shall have no explicit storage-class specifier
2904      //   other than extern
2905      // See also (C++ [dcl.stc]p4).
2906      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2907           diag::err_static_block_func);
2908      SC = FunctionDecl::None;
2909    } else
2910      SC = FunctionDecl::Static;
2911    break;
2912  }
2913  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2914  }
2915
2916  if (D.getDeclSpec().isThreadSpecified())
2917    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2918
2919  bool isFriend = D.getDeclSpec().isFriendSpecified();
2920  bool isInline = D.getDeclSpec().isInlineSpecified();
2921  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2922  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2923
2924  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2925  FunctionDecl::StorageClass SCAsWritten
2926    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2927
2928  // Check that the return type is not an abstract class type.
2929  // For record types, this is done by the AbstractClassUsageDiagnoser once
2930  // the class has been completely parsed.
2931  if (!DC->isRecord() &&
2932      RequireNonAbstractType(D.getIdentifierLoc(),
2933                             R->getAs<FunctionType>()->getResultType(),
2934                             diag::err_abstract_type_in_decl,
2935                             AbstractReturnType))
2936    D.setInvalidType();
2937
2938  // Do not allow returning a objc interface by-value.
2939  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2940    Diag(D.getIdentifierLoc(),
2941         diag::err_object_cannot_be_passed_returned_by_value) << 0
2942      << R->getAs<FunctionType>()->getResultType();
2943    D.setInvalidType();
2944  }
2945
2946  bool isVirtualOkay = false;
2947  FunctionDecl *NewFD;
2948
2949  if (isFriend) {
2950    // C++ [class.friend]p5
2951    //   A function can be defined in a friend declaration of a
2952    //   class . . . . Such a function is implicitly inline.
2953    isInline |= IsFunctionDefinition;
2954  }
2955
2956  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2957    // This is a C++ constructor declaration.
2958    assert(DC->isRecord() &&
2959           "Constructors can only be declared in a member context");
2960
2961    R = CheckConstructorDeclarator(D, R, SC);
2962
2963    // Create the new declaration
2964    NewFD = CXXConstructorDecl::Create(Context,
2965                                       cast<CXXRecordDecl>(DC),
2966                                       D.getIdentifierLoc(), Name, R, TInfo,
2967                                       isExplicit, isInline,
2968                                       /*isImplicitlyDeclared=*/false);
2969  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2970    // This is a C++ destructor declaration.
2971    if (DC->isRecord()) {
2972      R = CheckDestructorDeclarator(D, SC);
2973
2974      NewFD = CXXDestructorDecl::Create(Context,
2975                                        cast<CXXRecordDecl>(DC),
2976                                        D.getIdentifierLoc(), Name, R,
2977                                        isInline,
2978                                        /*isImplicitlyDeclared=*/false);
2979      NewFD->setTypeSourceInfo(TInfo);
2980
2981      isVirtualOkay = true;
2982    } else {
2983      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2984
2985      // Create a FunctionDecl to satisfy the function definition parsing
2986      // code path.
2987      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2988                                   Name, R, TInfo, SC, SCAsWritten, isInline,
2989                                   /*hasPrototype=*/true);
2990      D.setInvalidType();
2991    }
2992  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2993    if (!DC->isRecord()) {
2994      Diag(D.getIdentifierLoc(),
2995           diag::err_conv_function_not_member);
2996      return 0;
2997    }
2998
2999    CheckConversionDeclarator(D, R, SC);
3000    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3001                                      D.getIdentifierLoc(), Name, R, TInfo,
3002                                      isInline, isExplicit);
3003
3004    isVirtualOkay = true;
3005  } else if (DC->isRecord()) {
3006    // If the of the function is the same as the name of the record, then this
3007    // must be an invalid constructor that has a return type.
3008    // (The parser checks for a return type and makes the declarator a
3009    // constructor if it has no return type).
3010    // must have an invalid constructor that has a return type
3011    if (Name.getAsIdentifierInfo() &&
3012        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3013      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3014        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3015        << SourceRange(D.getIdentifierLoc());
3016      return 0;
3017    }
3018
3019    bool isStatic = SC == FunctionDecl::Static;
3020
3021    // [class.free]p1:
3022    // Any allocation function for a class T is a static member
3023    // (even if not explicitly declared static).
3024    if (Name.getCXXOverloadedOperator() == OO_New ||
3025        Name.getCXXOverloadedOperator() == OO_Array_New)
3026      isStatic = true;
3027
3028    // [class.free]p6 Any deallocation function for a class X is a static member
3029    // (even if not explicitly declared static).
3030    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3031        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3032      isStatic = true;
3033
3034    // This is a C++ method declaration.
3035    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3036                                  D.getIdentifierLoc(), Name, R, TInfo,
3037                                  isStatic, SCAsWritten, isInline);
3038
3039    isVirtualOkay = !isStatic;
3040  } else {
3041    // Determine whether the function was written with a
3042    // prototype. This true when:
3043    //   - we're in C++ (where every function has a prototype),
3044    //   - there is a prototype in the declarator, or
3045    //   - the type R of the function is some kind of typedef or other reference
3046    //     to a type name (which eventually refers to a function type).
3047    bool HasPrototype =
3048       getLangOptions().CPlusPlus ||
3049       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3050       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3051
3052    NewFD = FunctionDecl::Create(Context, DC,
3053                                 D.getIdentifierLoc(),
3054                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3055                                 HasPrototype);
3056  }
3057
3058  if (D.isInvalidType())
3059    NewFD->setInvalidDecl();
3060
3061  SetNestedNameSpecifier(NewFD, D);
3062
3063  // Set the lexical context. If the declarator has a C++
3064  // scope specifier, or is the object of a friend declaration, the
3065  // lexical context will be different from the semantic context.
3066  NewFD->setLexicalDeclContext(CurContext);
3067
3068  // Match up the template parameter lists with the scope specifier, then
3069  // determine whether we have a template or a template specialization.
3070  FunctionTemplateDecl *FunctionTemplate = 0;
3071  bool isExplicitSpecialization = false;
3072  bool isFunctionTemplateSpecialization = false;
3073  if (TemplateParameterList *TemplateParams
3074        = MatchTemplateParametersToScopeSpecifier(
3075                                  D.getDeclSpec().getSourceRange().getBegin(),
3076                                  D.getCXXScopeSpec(),
3077                           (TemplateParameterList**)TemplateParamLists.get(),
3078                                                  TemplateParamLists.size(),
3079                                                  isFriend,
3080                                                  isExplicitSpecialization)) {
3081    if (TemplateParams->size() > 0) {
3082      // This is a function template
3083
3084      // Check that we can declare a template here.
3085      if (CheckTemplateDeclScope(S, TemplateParams))
3086        return 0;
3087
3088      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3089                                                      NewFD->getLocation(),
3090                                                      Name, TemplateParams,
3091                                                      NewFD);
3092      FunctionTemplate->setLexicalDeclContext(CurContext);
3093      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3094    } else {
3095      // This is a function template specialization.
3096      isFunctionTemplateSpecialization = true;
3097
3098      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3099      if (isFriend && isFunctionTemplateSpecialization) {
3100        // We want to remove the "template<>", found here.
3101        SourceRange RemoveRange = TemplateParams->getSourceRange();
3102
3103        // If we remove the template<> and the name is not a
3104        // template-id, we're actually silently creating a problem:
3105        // the friend declaration will refer to an untemplated decl,
3106        // and clearly the user wants a template specialization.  So
3107        // we need to insert '<>' after the name.
3108        SourceLocation InsertLoc;
3109        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3110          InsertLoc = D.getName().getSourceRange().getEnd();
3111          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3112        }
3113
3114        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3115          << Name << RemoveRange
3116          << FixItHint::CreateRemoval(RemoveRange)
3117          << FixItHint::CreateInsertion(InsertLoc, "<>");
3118      }
3119    }
3120
3121    // FIXME: Free this memory properly.
3122    TemplateParamLists.release();
3123  }
3124
3125  // C++ [dcl.fct.spec]p5:
3126  //   The virtual specifier shall only be used in declarations of
3127  //   nonstatic class member functions that appear within a
3128  //   member-specification of a class declaration; see 10.3.
3129  //
3130  if (isVirtual && !NewFD->isInvalidDecl()) {
3131    if (!isVirtualOkay) {
3132       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3133           diag::err_virtual_non_function);
3134    } else if (!CurContext->isRecord()) {
3135      // 'virtual' was specified outside of the class.
3136      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3137        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3138    } else {
3139      // Okay: Add virtual to the method.
3140      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3141      CurClass->setMethodAsVirtual(NewFD);
3142    }
3143  }
3144
3145  // C++ [dcl.fct.spec]p6:
3146  //  The explicit specifier shall be used only in the declaration of a
3147  //  constructor or conversion function within its class definition; see 12.3.1
3148  //  and 12.3.2.
3149  if (isExplicit && !NewFD->isInvalidDecl()) {
3150    if (!CurContext->isRecord()) {
3151      // 'explicit' was specified outside of the class.
3152      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3153           diag::err_explicit_out_of_class)
3154        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3155    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3156               !isa<CXXConversionDecl>(NewFD)) {
3157      // 'explicit' was specified on a function that wasn't a constructor
3158      // or conversion function.
3159      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3160           diag::err_explicit_non_ctor_or_conv_function)
3161        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3162    }
3163  }
3164
3165  // Filter out previous declarations that don't match the scope.
3166  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3167
3168  if (isFriend) {
3169    // DC is the namespace in which the function is being declared.
3170    assert((DC->isFileContext() || !Previous.empty()) &&
3171           "previously-undeclared friend function being created "
3172           "in a non-namespace context");
3173
3174    // For now, claim that the objects have no previous declaration.
3175    if (FunctionTemplate) {
3176      FunctionTemplate->setObjectOfFriendDecl(false);
3177      FunctionTemplate->setAccess(AS_public);
3178    }
3179    NewFD->setObjectOfFriendDecl(false);
3180    NewFD->setAccess(AS_public);
3181  }
3182
3183  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3184      !CurContext->isRecord()) {
3185    // C++ [class.static]p1:
3186    //   A data or function member of a class may be declared static
3187    //   in a class definition, in which case it is a static member of
3188    //   the class.
3189
3190    // Complain about the 'static' specifier if it's on an out-of-line
3191    // member function definition.
3192    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3193         diag::err_static_out_of_line)
3194      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3195  }
3196
3197  // Handle GNU asm-label extension (encoded as an attribute).
3198  if (Expr *E = (Expr*) D.getAsmLabel()) {
3199    // The parser guarantees this is a string.
3200    StringLiteral *SE = cast<StringLiteral>(E);
3201    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3202  }
3203
3204  // Copy the parameter declarations from the declarator D to the function
3205  // declaration NewFD, if they are available.  First scavenge them into Params.
3206  llvm::SmallVector<ParmVarDecl*, 16> Params;
3207  if (D.getNumTypeObjects() > 0) {
3208    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3209
3210    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3211    // function that takes no arguments, not a function that takes a
3212    // single void argument.
3213    // We let through "const void" here because Sema::GetTypeForDeclarator
3214    // already checks for that case.
3215    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3216        FTI.ArgInfo[0].Param &&
3217        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3218      // Empty arg list, don't push any params.
3219      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3220
3221      // In C++, the empty parameter-type-list must be spelled "void"; a
3222      // typedef of void is not permitted.
3223      if (getLangOptions().CPlusPlus &&
3224          Param->getType().getUnqualifiedType() != Context.VoidTy)
3225        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3226      // FIXME: Leaks decl?
3227    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3228      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3229        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3230        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3231        Param->setDeclContext(NewFD);
3232        Params.push_back(Param);
3233
3234        if (Param->isInvalidDecl())
3235          NewFD->setInvalidDecl();
3236      }
3237    }
3238
3239  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3240    // When we're declaring a function with a typedef, typeof, etc as in the
3241    // following example, we'll need to synthesize (unnamed)
3242    // parameters for use in the declaration.
3243    //
3244    // @code
3245    // typedef void fn(int);
3246    // fn f;
3247    // @endcode
3248
3249    // Synthesize a parameter for each argument type.
3250    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3251         AE = FT->arg_type_end(); AI != AE; ++AI) {
3252      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3253                                               D.getIdentifierLoc(), 0,
3254                                               *AI,
3255                                         Context.getTrivialTypeSourceInfo(*AI,
3256                                                          D.getIdentifierLoc()),
3257                                               VarDecl::None,
3258                                               VarDecl::None, 0);
3259      Param->setImplicit();
3260      Params.push_back(Param);
3261    }
3262  } else {
3263    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3264           "Should not need args for typedef of non-prototype fn");
3265  }
3266  // Finally, we know we have the right number of parameters, install them.
3267  NewFD->setParams(Params.data(), Params.size());
3268
3269  // If the declarator is a template-id, translate the parser's template
3270  // argument list into our AST format.
3271  bool HasExplicitTemplateArgs = false;
3272  TemplateArgumentListInfo TemplateArgs;
3273  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3274    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3275    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3276    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3277    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3278                                       TemplateId->getTemplateArgs(),
3279                                       TemplateId->NumArgs);
3280    translateTemplateArguments(TemplateArgsPtr,
3281                               TemplateArgs);
3282    TemplateArgsPtr.release();
3283
3284    HasExplicitTemplateArgs = true;
3285
3286    if (FunctionTemplate) {
3287      // FIXME: Diagnose function template with explicit template
3288      // arguments.
3289      HasExplicitTemplateArgs = false;
3290    } else if (!isFunctionTemplateSpecialization &&
3291               !D.getDeclSpec().isFriendSpecified()) {
3292      // We have encountered something that the user meant to be a
3293      // specialization (because it has explicitly-specified template
3294      // arguments) but that was not introduced with a "template<>" (or had
3295      // too few of them).
3296      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3297        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3298        << FixItHint::CreateInsertion(
3299                                   D.getDeclSpec().getSourceRange().getBegin(),
3300                                                 "template<> ");
3301      isFunctionTemplateSpecialization = true;
3302    } else {
3303      // "friend void foo<>(int);" is an implicit specialization decl.
3304      isFunctionTemplateSpecialization = true;
3305    }
3306  } else if (isFriend && isFunctionTemplateSpecialization) {
3307    // This combination is only possible in a recovery case;  the user
3308    // wrote something like:
3309    //   template <> friend void foo(int);
3310    // which we're recovering from as if the user had written:
3311    //   friend void foo<>(int);
3312    // Go ahead and fake up a template id.
3313    HasExplicitTemplateArgs = true;
3314    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3315    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3316  }
3317
3318  // If it's a friend (and only if it's a friend), it's possible
3319  // that either the specialized function type or the specialized
3320  // template is dependent, and therefore matching will fail.  In
3321  // this case, don't check the specialization yet.
3322  if (isFunctionTemplateSpecialization && isFriend &&
3323      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3324    assert(HasExplicitTemplateArgs &&
3325           "friend function specialization without template args");
3326    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3327                                                     Previous))
3328      NewFD->setInvalidDecl();
3329  } else if (isFunctionTemplateSpecialization) {
3330    if (CheckFunctionTemplateSpecialization(NewFD,
3331                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3332                                            Previous))
3333      NewFD->setInvalidDecl();
3334  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3335    if (CheckMemberSpecialization(NewFD, Previous))
3336      NewFD->setInvalidDecl();
3337  }
3338
3339  // Perform semantic checking on the function declaration.
3340  bool OverloadableAttrRequired = false; // FIXME: HACK!
3341  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3342                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3343
3344  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3345          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3346         "previous declaration set still overloaded");
3347
3348  NamedDecl *PrincipalDecl = (FunctionTemplate
3349                              ? cast<NamedDecl>(FunctionTemplate)
3350                              : NewFD);
3351
3352  if (isFriend && Redeclaration) {
3353    AccessSpecifier Access = AS_public;
3354    if (!NewFD->isInvalidDecl())
3355      Access = NewFD->getPreviousDeclaration()->getAccess();
3356
3357    NewFD->setAccess(Access);
3358    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3359
3360    PrincipalDecl->setObjectOfFriendDecl(true);
3361  }
3362
3363  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3364      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3365    PrincipalDecl->setNonMemberOperator();
3366
3367  // If we have a function template, check the template parameter
3368  // list. This will check and merge default template arguments.
3369  if (FunctionTemplate) {
3370    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3371    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3372                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3373             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3374                                                : TPC_FunctionTemplate);
3375  }
3376
3377  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3378    // Fake up an access specifier if it's supposed to be a class member.
3379    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3380      NewFD->setAccess(AS_public);
3381
3382    // An out-of-line member function declaration must also be a
3383    // definition (C++ [dcl.meaning]p1).
3384    // Note that this is not the case for explicit specializations of
3385    // function templates or member functions of class templates, per
3386    // C++ [temp.expl.spec]p2.
3387    if (!IsFunctionDefinition && !isFriend &&
3388        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3389      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3390        << D.getCXXScopeSpec().getRange();
3391      NewFD->setInvalidDecl();
3392    } else if (!Redeclaration &&
3393               !(isFriend && CurContext->isDependentContext())) {
3394      // The user tried to provide an out-of-line definition for a
3395      // function that is a member of a class or namespace, but there
3396      // was no such member function declared (C++ [class.mfct]p2,
3397      // C++ [namespace.memdef]p2). For example:
3398      //
3399      // class X {
3400      //   void f() const;
3401      // };
3402      //
3403      // void X::f() { } // ill-formed
3404      //
3405      // Complain about this problem, and attempt to suggest close
3406      // matches (e.g., those that differ only in cv-qualifiers and
3407      // whether the parameter types are references).
3408      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3409        << Name << DC << D.getCXXScopeSpec().getRange();
3410      NewFD->setInvalidDecl();
3411
3412      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3413                        ForRedeclaration);
3414      LookupQualifiedName(Prev, DC);
3415      assert(!Prev.isAmbiguous() &&
3416             "Cannot have an ambiguity in previous-declaration lookup");
3417      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3418           Func != FuncEnd; ++Func) {
3419        if (isa<FunctionDecl>(*Func) &&
3420            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3421          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3422      }
3423    }
3424  }
3425
3426  // Handle attributes. We need to have merged decls when handling attributes
3427  // (for example to check for conflicts, etc).
3428  // FIXME: This needs to happen before we merge declarations. Then,
3429  // let attribute merging cope with attribute conflicts.
3430  ProcessDeclAttributes(S, NewFD, D);
3431
3432  // attributes declared post-definition are currently ignored
3433  if (Redeclaration && Previous.isSingleResult()) {
3434    const FunctionDecl *Def;
3435    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3436    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3437      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3438      Diag(Def->getLocation(), diag::note_previous_definition);
3439    }
3440  }
3441
3442  AddKnownFunctionAttributes(NewFD);
3443
3444  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3445    // If a function name is overloadable in C, then every function
3446    // with that name must be marked "overloadable".
3447    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3448      << Redeclaration << NewFD;
3449    if (!Previous.empty())
3450      Diag(Previous.getRepresentativeDecl()->getLocation(),
3451           diag::note_attribute_overloadable_prev_overload);
3452    NewFD->addAttr(::new (Context) OverloadableAttr());
3453  }
3454
3455  // If this is a locally-scoped extern C function, update the
3456  // map of such names.
3457  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3458      && !NewFD->isInvalidDecl())
3459    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3460
3461  // Set this FunctionDecl's range up to the right paren.
3462  NewFD->setLocEnd(D.getSourceRange().getEnd());
3463
3464  if (FunctionTemplate && NewFD->isInvalidDecl())
3465    FunctionTemplate->setInvalidDecl();
3466
3467  if (FunctionTemplate)
3468    return FunctionTemplate;
3469
3470
3471  // Keep track of static, non-inlined function definitions that
3472  // have not been used. We will warn later.
3473  // FIXME: Also include static functions declared but not defined.
3474  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3475      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3476      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3477      && !NewFD->hasAttr<ConstructorAttr>()
3478      && !NewFD->hasAttr<DestructorAttr>())
3479    UnusedStaticFuncs.push_back(NewFD);
3480
3481  return NewFD;
3482}
3483
3484/// \brief Perform semantic checking of a new function declaration.
3485///
3486/// Performs semantic analysis of the new function declaration
3487/// NewFD. This routine performs all semantic checking that does not
3488/// require the actual declarator involved in the declaration, and is
3489/// used both for the declaration of functions as they are parsed
3490/// (called via ActOnDeclarator) and for the declaration of functions
3491/// that have been instantiated via C++ template instantiation (called
3492/// via InstantiateDecl).
3493///
3494/// \param IsExplicitSpecialiation whether this new function declaration is
3495/// an explicit specialization of the previous declaration.
3496///
3497/// This sets NewFD->isInvalidDecl() to true if there was an error.
3498void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3499                                    LookupResult &Previous,
3500                                    bool IsExplicitSpecialization,
3501                                    bool &Redeclaration,
3502                                    bool &OverloadableAttrRequired) {
3503  // If NewFD is already known erroneous, don't do any of this checking.
3504  if (NewFD->isInvalidDecl())
3505    return;
3506
3507  if (NewFD->getResultType()->isVariablyModifiedType()) {
3508    // Functions returning a variably modified type violate C99 6.7.5.2p2
3509    // because all functions have linkage.
3510    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3511    return NewFD->setInvalidDecl();
3512  }
3513
3514  if (NewFD->isMain())
3515    CheckMain(NewFD);
3516
3517  // Check for a previous declaration of this name.
3518  if (Previous.empty() && NewFD->isExternC()) {
3519    // Since we did not find anything by this name and we're declaring
3520    // an extern "C" function, look for a non-visible extern "C"
3521    // declaration with the same name.
3522    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3523      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3524    if (Pos != LocallyScopedExternalDecls.end())
3525      Previous.addDecl(Pos->second);
3526  }
3527
3528  // Merge or overload the declaration with an existing declaration of
3529  // the same name, if appropriate.
3530  if (!Previous.empty()) {
3531    // Determine whether NewFD is an overload of PrevDecl or
3532    // a declaration that requires merging. If it's an overload,
3533    // there's no more work to do here; we'll just add the new
3534    // function to the scope.
3535
3536    NamedDecl *OldDecl = 0;
3537    if (!AllowOverloadingOfFunction(Previous, Context)) {
3538      Redeclaration = true;
3539      OldDecl = Previous.getFoundDecl();
3540    } else {
3541      if (!getLangOptions().CPlusPlus) {
3542        OverloadableAttrRequired = true;
3543
3544        // Functions marked "overloadable" must have a prototype (that
3545        // we can't get through declaration merging).
3546        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3547          Diag(NewFD->getLocation(),
3548               diag::err_attribute_overloadable_no_prototype)
3549            << NewFD;
3550          Redeclaration = true;
3551
3552          // Turn this into a variadic function with no parameters.
3553          QualType R = Context.getFunctionType(
3554                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3555                     0, 0, true, 0, false, false, 0, 0,
3556                     FunctionType::ExtInfo());
3557          NewFD->setType(R);
3558          return NewFD->setInvalidDecl();
3559        }
3560      }
3561
3562      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3563      case Ovl_Match:
3564        Redeclaration = true;
3565        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3566          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3567          Redeclaration = false;
3568        }
3569        break;
3570
3571      case Ovl_NonFunction:
3572        Redeclaration = true;
3573        break;
3574
3575      case Ovl_Overload:
3576        Redeclaration = false;
3577        break;
3578      }
3579    }
3580
3581    if (Redeclaration) {
3582      // NewFD and OldDecl represent declarations that need to be
3583      // merged.
3584      if (MergeFunctionDecl(NewFD, OldDecl))
3585        return NewFD->setInvalidDecl();
3586
3587      Previous.clear();
3588      Previous.addDecl(OldDecl);
3589
3590      if (FunctionTemplateDecl *OldTemplateDecl
3591                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3592        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3593        FunctionTemplateDecl *NewTemplateDecl
3594          = NewFD->getDescribedFunctionTemplate();
3595        assert(NewTemplateDecl && "Template/non-template mismatch");
3596        if (CXXMethodDecl *Method
3597              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3598          Method->setAccess(OldTemplateDecl->getAccess());
3599          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3600        }
3601
3602        // If this is an explicit specialization of a member that is a function
3603        // template, mark it as a member specialization.
3604        if (IsExplicitSpecialization &&
3605            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3606          NewTemplateDecl->setMemberSpecialization();
3607          assert(OldTemplateDecl->isMemberSpecialization());
3608        }
3609      } else {
3610        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3611          NewFD->setAccess(OldDecl->getAccess());
3612        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3613      }
3614    }
3615  }
3616
3617  // Semantic checking for this function declaration (in isolation).
3618  if (getLangOptions().CPlusPlus) {
3619    // C++-specific checks.
3620    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3621      CheckConstructor(Constructor);
3622    } else if (CXXDestructorDecl *Destructor =
3623                dyn_cast<CXXDestructorDecl>(NewFD)) {
3624      CXXRecordDecl *Record = Destructor->getParent();
3625      QualType ClassType = Context.getTypeDeclType(Record);
3626
3627      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3628      // type is dependent? Both gcc and edg can handle that.
3629      if (!ClassType->isDependentType()) {
3630        DeclarationName Name
3631          = Context.DeclarationNames.getCXXDestructorName(
3632                                        Context.getCanonicalType(ClassType));
3633        if (NewFD->getDeclName() != Name) {
3634          Diag(NewFD->getLocation(), diag::err_destructor_name);
3635          return NewFD->setInvalidDecl();
3636        }
3637      }
3638
3639      Record->setUserDeclaredDestructor(true);
3640      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3641      // user-defined destructor.
3642      Record->setPOD(false);
3643
3644      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3645      // declared destructor.
3646      // FIXME: C++0x: don't do this for "= default" destructors
3647      Record->setHasTrivialDestructor(false);
3648    } else if (CXXConversionDecl *Conversion
3649               = dyn_cast<CXXConversionDecl>(NewFD)) {
3650      ActOnConversionDeclarator(Conversion);
3651    }
3652
3653    // Find any virtual functions that this function overrides.
3654    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3655      if (!Method->isFunctionTemplateSpecialization() &&
3656          !Method->getDescribedFunctionTemplate())
3657        AddOverriddenMethods(Method->getParent(), Method);
3658    }
3659
3660    // Additional checks for the destructor; make sure we do this after we
3661    // figure out whether the destructor is virtual.
3662    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3663      if (!Destructor->getParent()->isDependentType())
3664        CheckDestructor(Destructor);
3665
3666    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3667    if (NewFD->isOverloadedOperator() &&
3668        CheckOverloadedOperatorDeclaration(NewFD))
3669      return NewFD->setInvalidDecl();
3670
3671    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3672    if (NewFD->getLiteralIdentifier() &&
3673        CheckLiteralOperatorDeclaration(NewFD))
3674      return NewFD->setInvalidDecl();
3675
3676    // In C++, check default arguments now that we have merged decls. Unless
3677    // the lexical context is the class, because in this case this is done
3678    // during delayed parsing anyway.
3679    if (!CurContext->isRecord())
3680      CheckCXXDefaultArguments(NewFD);
3681  }
3682}
3683
3684void Sema::CheckMain(FunctionDecl* FD) {
3685  // C++ [basic.start.main]p3:  A program that declares main to be inline
3686  //   or static is ill-formed.
3687  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3688  //   shall not appear in a declaration of main.
3689  // static main is not an error under C99, but we should warn about it.
3690  bool isInline = FD->isInlineSpecified();
3691  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3692  if (isInline || isStatic) {
3693    unsigned diagID = diag::warn_unusual_main_decl;
3694    if (isInline || getLangOptions().CPlusPlus)
3695      diagID = diag::err_unusual_main_decl;
3696
3697    int which = isStatic + (isInline << 1) - 1;
3698    Diag(FD->getLocation(), diagID) << which;
3699  }
3700
3701  QualType T = FD->getType();
3702  assert(T->isFunctionType() && "function decl is not of function type");
3703  const FunctionType* FT = T->getAs<FunctionType>();
3704
3705  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3706    // TODO: add a replacement fixit to turn the return type into 'int'.
3707    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3708    FD->setInvalidDecl(true);
3709  }
3710
3711  // Treat protoless main() as nullary.
3712  if (isa<FunctionNoProtoType>(FT)) return;
3713
3714  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3715  unsigned nparams = FTP->getNumArgs();
3716  assert(FD->getNumParams() == nparams);
3717
3718  bool HasExtraParameters = (nparams > 3);
3719
3720  // Darwin passes an undocumented fourth argument of type char**.  If
3721  // other platforms start sprouting these, the logic below will start
3722  // getting shifty.
3723  if (nparams == 4 &&
3724      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3725    HasExtraParameters = false;
3726
3727  if (HasExtraParameters) {
3728    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3729    FD->setInvalidDecl(true);
3730    nparams = 3;
3731  }
3732
3733  // FIXME: a lot of the following diagnostics would be improved
3734  // if we had some location information about types.
3735
3736  QualType CharPP =
3737    Context.getPointerType(Context.getPointerType(Context.CharTy));
3738  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3739
3740  for (unsigned i = 0; i < nparams; ++i) {
3741    QualType AT = FTP->getArgType(i);
3742
3743    bool mismatch = true;
3744
3745    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3746      mismatch = false;
3747    else if (Expected[i] == CharPP) {
3748      // As an extension, the following forms are okay:
3749      //   char const **
3750      //   char const * const *
3751      //   char * const *
3752
3753      QualifierCollector qs;
3754      const PointerType* PT;
3755      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3756          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3757          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3758        qs.removeConst();
3759        mismatch = !qs.empty();
3760      }
3761    }
3762
3763    if (mismatch) {
3764      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3765      // TODO: suggest replacing given type with expected type
3766      FD->setInvalidDecl(true);
3767    }
3768  }
3769
3770  if (nparams == 1 && !FD->isInvalidDecl()) {
3771    Diag(FD->getLocation(), diag::warn_main_one_arg);
3772  }
3773}
3774
3775bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3776  // FIXME: Need strict checking.  In C89, we need to check for
3777  // any assignment, increment, decrement, function-calls, or
3778  // commas outside of a sizeof.  In C99, it's the same list,
3779  // except that the aforementioned are allowed in unevaluated
3780  // expressions.  Everything else falls under the
3781  // "may accept other forms of constant expressions" exception.
3782  // (We never end up here for C++, so the constant expression
3783  // rules there don't matter.)
3784  if (Init->isConstantInitializer(Context))
3785    return false;
3786  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3787    << Init->getSourceRange();
3788  return true;
3789}
3790
3791void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3792  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3793}
3794
3795/// AddInitializerToDecl - Adds the initializer Init to the
3796/// declaration dcl. If DirectInit is true, this is C++ direct
3797/// initialization rather than copy initialization.
3798void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3799  Decl *RealDecl = dcl.getAs<Decl>();
3800  // If there is no declaration, there was an error parsing it.  Just ignore
3801  // the initializer.
3802  if (RealDecl == 0)
3803    return;
3804
3805  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3806    // With declarators parsed the way they are, the parser cannot
3807    // distinguish between a normal initializer and a pure-specifier.
3808    // Thus this grotesque test.
3809    IntegerLiteral *IL;
3810    Expr *Init = static_cast<Expr *>(init.get());
3811    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3812        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3813      CheckPureMethod(Method, Init->getSourceRange());
3814    else {
3815      Diag(Method->getLocation(), diag::err_member_function_initialization)
3816        << Method->getDeclName() << Init->getSourceRange();
3817      Method->setInvalidDecl();
3818    }
3819    return;
3820  }
3821
3822  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3823  if (!VDecl) {
3824    if (getLangOptions().CPlusPlus &&
3825        RealDecl->getLexicalDeclContext()->isRecord() &&
3826        isa<NamedDecl>(RealDecl))
3827      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3828        << cast<NamedDecl>(RealDecl)->getDeclName();
3829    else
3830      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3831    RealDecl->setInvalidDecl();
3832    return;
3833  }
3834
3835  // A definition must end up with a complete type, which means it must be
3836  // complete with the restriction that an array type might be completed by the
3837  // initializer; note that later code assumes this restriction.
3838  QualType BaseDeclType = VDecl->getType();
3839  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3840    BaseDeclType = Array->getElementType();
3841  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3842                          diag::err_typecheck_decl_incomplete_type)) {
3843    RealDecl->setInvalidDecl();
3844    return;
3845  }
3846
3847  // The variable can not have an abstract class type.
3848  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3849                             diag::err_abstract_type_in_decl,
3850                             AbstractVariableType))
3851    VDecl->setInvalidDecl();
3852
3853  const VarDecl *Def;
3854  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3855    Diag(VDecl->getLocation(), diag::err_redefinition)
3856      << VDecl->getDeclName();
3857    Diag(Def->getLocation(), diag::note_previous_definition);
3858    VDecl->setInvalidDecl();
3859    return;
3860  }
3861
3862  // Take ownership of the expression, now that we're sure we have somewhere
3863  // to put it.
3864  Expr *Init = init.takeAs<Expr>();
3865  assert(Init && "missing initializer");
3866
3867  // Capture the variable that is being initialized and the style of
3868  // initialization.
3869  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3870
3871  // FIXME: Poor source location information.
3872  InitializationKind Kind
3873    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3874                                                   Init->getLocStart(),
3875                                                   Init->getLocEnd())
3876                : InitializationKind::CreateCopy(VDecl->getLocation(),
3877                                                 Init->getLocStart());
3878
3879  // Get the decls type and save a reference for later, since
3880  // CheckInitializerTypes may change it.
3881  QualType DclT = VDecl->getType(), SavT = DclT;
3882  if (VDecl->isBlockVarDecl()) {
3883    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3884      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3885      VDecl->setInvalidDecl();
3886    } else if (!VDecl->isInvalidDecl()) {
3887      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3888      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3889                                          MultiExprArg(*this, (void**)&Init, 1),
3890                                                &DclT);
3891      if (Result.isInvalid()) {
3892        VDecl->setInvalidDecl();
3893        return;
3894      }
3895
3896      Init = Result.takeAs<Expr>();
3897
3898      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3899      // Don't check invalid declarations to avoid emitting useless diagnostics.
3900      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3901        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3902          CheckForConstantInitializer(Init, DclT);
3903      }
3904    }
3905  } else if (VDecl->isStaticDataMember() &&
3906             VDecl->getLexicalDeclContext()->isRecord()) {
3907    // This is an in-class initialization for a static data member, e.g.,
3908    //
3909    // struct S {
3910    //   static const int value = 17;
3911    // };
3912
3913    // Attach the initializer
3914    VDecl->setInit(Init);
3915
3916    // C++ [class.mem]p4:
3917    //   A member-declarator can contain a constant-initializer only
3918    //   if it declares a static member (9.4) of const integral or
3919    //   const enumeration type, see 9.4.2.
3920    QualType T = VDecl->getType();
3921    if (!T->isDependentType() &&
3922        (!Context.getCanonicalType(T).isConstQualified() ||
3923         !T->isIntegralType())) {
3924      Diag(VDecl->getLocation(), diag::err_member_initialization)
3925        << VDecl->getDeclName() << Init->getSourceRange();
3926      VDecl->setInvalidDecl();
3927    } else {
3928      // C++ [class.static.data]p4:
3929      //   If a static data member is of const integral or const
3930      //   enumeration type, its declaration in the class definition
3931      //   can specify a constant-initializer which shall be an
3932      //   integral constant expression (5.19).
3933      if (!Init->isTypeDependent() &&
3934          !Init->getType()->isIntegralType()) {
3935        // We have a non-dependent, non-integral or enumeration type.
3936        Diag(Init->getSourceRange().getBegin(),
3937             diag::err_in_class_initializer_non_integral_type)
3938          << Init->getType() << Init->getSourceRange();
3939        VDecl->setInvalidDecl();
3940      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3941        // Check whether the expression is a constant expression.
3942        llvm::APSInt Value;
3943        SourceLocation Loc;
3944        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3945          Diag(Loc, diag::err_in_class_initializer_non_constant)
3946            << Init->getSourceRange();
3947          VDecl->setInvalidDecl();
3948        } else if (!VDecl->getType()->isDependentType())
3949          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3950      }
3951    }
3952  } else if (VDecl->isFileVarDecl()) {
3953    if (VDecl->getStorageClass() == VarDecl::Extern &&
3954        (!getLangOptions().CPlusPlus ||
3955         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3956      Diag(VDecl->getLocation(), diag::warn_extern_init);
3957    if (!VDecl->isInvalidDecl()) {
3958      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3959      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3960                                          MultiExprArg(*this, (void**)&Init, 1),
3961                                                &DclT);
3962      if (Result.isInvalid()) {
3963        VDecl->setInvalidDecl();
3964        return;
3965      }
3966
3967      Init = Result.takeAs<Expr>();
3968    }
3969
3970    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3971    // Don't check invalid declarations to avoid emitting useless diagnostics.
3972    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3973      // C99 6.7.8p4. All file scoped initializers need to be constant.
3974      CheckForConstantInitializer(Init, DclT);
3975    }
3976  }
3977  // If the type changed, it means we had an incomplete type that was
3978  // completed by the initializer. For example:
3979  //   int ary[] = { 1, 3, 5 };
3980  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3981  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3982    VDecl->setType(DclT);
3983    Init->setType(DclT);
3984  }
3985
3986  Init = MaybeCreateCXXExprWithTemporaries(Init);
3987  // Attach the initializer to the decl.
3988  VDecl->setInit(Init);
3989
3990  if (getLangOptions().CPlusPlus) {
3991    // Make sure we mark the destructor as used if necessary.
3992    QualType InitType = VDecl->getType();
3993    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3994      InitType = Context.getBaseElementType(Array);
3995    if (const RecordType *Record = InitType->getAs<RecordType>())
3996      FinalizeVarWithDestructor(VDecl, Record);
3997  }
3998
3999  return;
4000}
4001
4002/// ActOnInitializerError - Given that there was an error parsing an
4003/// initializer for the given declaration, try to return to some form
4004/// of sanity.
4005void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4006  // Our main concern here is re-establishing invariants like "a
4007  // variable's type is either dependent or complete".
4008  Decl *D = dcl.getAs<Decl>();
4009  if (!D || D->isInvalidDecl()) return;
4010
4011  VarDecl *VD = dyn_cast<VarDecl>(D);
4012  if (!VD) return;
4013
4014  QualType Ty = VD->getType();
4015  if (Ty->isDependentType()) return;
4016
4017  // Require a complete type.
4018  if (RequireCompleteType(VD->getLocation(),
4019                          Context.getBaseElementType(Ty),
4020                          diag::err_typecheck_decl_incomplete_type)) {
4021    VD->setInvalidDecl();
4022    return;
4023  }
4024
4025  // Require an abstract type.
4026  if (RequireNonAbstractType(VD->getLocation(), Ty,
4027                             diag::err_abstract_type_in_decl,
4028                             AbstractVariableType)) {
4029    VD->setInvalidDecl();
4030    return;
4031  }
4032
4033  // Don't bother complaining about constructors or destructors,
4034  // though.
4035}
4036
4037void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4038                                  bool TypeContainsUndeducedAuto) {
4039  Decl *RealDecl = dcl.getAs<Decl>();
4040
4041  // If there is no declaration, there was an error parsing it. Just ignore it.
4042  if (RealDecl == 0)
4043    return;
4044
4045  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4046    QualType Type = Var->getType();
4047
4048    // C++0x [dcl.spec.auto]p3
4049    if (TypeContainsUndeducedAuto) {
4050      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4051        << Var->getDeclName() << Type;
4052      Var->setInvalidDecl();
4053      return;
4054    }
4055
4056    switch (Var->isThisDeclarationADefinition()) {
4057    case VarDecl::Definition:
4058      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4059        break;
4060
4061      // We have an out-of-line definition of a static data member
4062      // that has an in-class initializer, so we type-check this like
4063      // a declaration.
4064      //
4065      // Fall through
4066
4067    case VarDecl::DeclarationOnly:
4068      // It's only a declaration.
4069
4070      // Block scope. C99 6.7p7: If an identifier for an object is
4071      // declared with no linkage (C99 6.2.2p6), the type for the
4072      // object shall be complete.
4073      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4074          !Var->getLinkage() && !Var->isInvalidDecl() &&
4075          RequireCompleteType(Var->getLocation(), Type,
4076                              diag::err_typecheck_decl_incomplete_type))
4077        Var->setInvalidDecl();
4078
4079      // Make sure that the type is not abstract.
4080      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4081          RequireNonAbstractType(Var->getLocation(), Type,
4082                                 diag::err_abstract_type_in_decl,
4083                                 AbstractVariableType))
4084        Var->setInvalidDecl();
4085      return;
4086
4087    case VarDecl::TentativeDefinition:
4088      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4089      // object that has file scope without an initializer, and without a
4090      // storage-class specifier or with the storage-class specifier "static",
4091      // constitutes a tentative definition. Note: A tentative definition with
4092      // external linkage is valid (C99 6.2.2p5).
4093      if (!Var->isInvalidDecl()) {
4094        if (const IncompleteArrayType *ArrayT
4095                                    = Context.getAsIncompleteArrayType(Type)) {
4096          if (RequireCompleteType(Var->getLocation(),
4097                                  ArrayT->getElementType(),
4098                                  diag::err_illegal_decl_array_incomplete_type))
4099            Var->setInvalidDecl();
4100        } else if (Var->getStorageClass() == VarDecl::Static) {
4101          // C99 6.9.2p3: If the declaration of an identifier for an object is
4102          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4103          // declared type shall not be an incomplete type.
4104          // NOTE: code such as the following
4105          //     static struct s;
4106          //     struct s { int a; };
4107          // is accepted by gcc. Hence here we issue a warning instead of
4108          // an error and we do not invalidate the static declaration.
4109          // NOTE: to avoid multiple warnings, only check the first declaration.
4110          if (Var->getPreviousDeclaration() == 0)
4111            RequireCompleteType(Var->getLocation(), Type,
4112                                diag::ext_typecheck_decl_incomplete_type);
4113        }
4114      }
4115
4116      // Record the tentative definition; we're done.
4117      if (!Var->isInvalidDecl())
4118        TentativeDefinitions.push_back(Var);
4119      return;
4120    }
4121
4122    // Provide a specific diagnostic for uninitialized variable
4123    // definitions with incomplete array type.
4124    if (Type->isIncompleteArrayType()) {
4125      Diag(Var->getLocation(),
4126           diag::err_typecheck_incomplete_array_needs_initializer);
4127      Var->setInvalidDecl();
4128      return;
4129    }
4130
4131   // Provide a specific diagnostic for uninitialized variable
4132   // definitions with reference type.
4133   if (Type->isReferenceType()) {
4134     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4135       << Var->getDeclName()
4136       << SourceRange(Var->getLocation(), Var->getLocation());
4137     Var->setInvalidDecl();
4138     return;
4139   }
4140
4141    // Do not attempt to type-check the default initializer for a
4142    // variable with dependent type.
4143    if (Type->isDependentType())
4144      return;
4145
4146    if (Var->isInvalidDecl())
4147      return;
4148
4149    if (RequireCompleteType(Var->getLocation(),
4150                            Context.getBaseElementType(Type),
4151                            diag::err_typecheck_decl_incomplete_type)) {
4152      Var->setInvalidDecl();
4153      return;
4154    }
4155
4156    // The variable can not have an abstract class type.
4157    if (RequireNonAbstractType(Var->getLocation(), Type,
4158                               diag::err_abstract_type_in_decl,
4159                               AbstractVariableType)) {
4160      Var->setInvalidDecl();
4161      return;
4162    }
4163
4164    const RecordType *Record
4165      = Context.getBaseElementType(Type)->getAs<RecordType>();
4166    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4167        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4168      // C++03 [dcl.init]p9:
4169      //   If no initializer is specified for an object, and the
4170      //   object is of (possibly cv-qualified) non-POD class type (or
4171      //   array thereof), the object shall be default-initialized; if
4172      //   the object is of const-qualified type, the underlying class
4173      //   type shall have a user-declared default
4174      //   constructor. Otherwise, if no initializer is specified for
4175      //   a non- static object, the object and its subobjects, if
4176      //   any, have an indeterminate initial value); if the object
4177      //   or any of its subobjects are of const-qualified type, the
4178      //   program is ill-formed.
4179      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4180    } else {
4181      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4182      InitializationKind Kind
4183        = InitializationKind::CreateDefault(Var->getLocation());
4184
4185      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4186      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4187                                              MultiExprArg(*this, 0, 0));
4188      if (Init.isInvalid())
4189        Var->setInvalidDecl();
4190      else if (Init.get())
4191        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4192    }
4193
4194    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4195      FinalizeVarWithDestructor(Var, Record);
4196  }
4197}
4198
4199Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4200                                                   DeclPtrTy *Group,
4201                                                   unsigned NumDecls) {
4202  llvm::SmallVector<Decl*, 8> Decls;
4203
4204  if (DS.isTypeSpecOwned())
4205    Decls.push_back((Decl*)DS.getTypeRep());
4206
4207  for (unsigned i = 0; i != NumDecls; ++i)
4208    if (Decl *D = Group[i].getAs<Decl>())
4209      Decls.push_back(D);
4210
4211  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4212                                                   Decls.data(), Decls.size()));
4213}
4214
4215
4216/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4217/// to introduce parameters into function prototype scope.
4218Sema::DeclPtrTy
4219Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4220  const DeclSpec &DS = D.getDeclSpec();
4221
4222  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4223  VarDecl::StorageClass StorageClass = VarDecl::None;
4224  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4225  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4226    StorageClass = VarDecl::Register;
4227    StorageClassAsWritten = VarDecl::Register;
4228  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4229    Diag(DS.getStorageClassSpecLoc(),
4230         diag::err_invalid_storage_class_in_func_decl);
4231    D.getMutableDeclSpec().ClearStorageClassSpecs();
4232  }
4233
4234  if (D.getDeclSpec().isThreadSpecified())
4235    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4236
4237  DiagnoseFunctionSpecifiers(D);
4238
4239  // Check that there are no default arguments inside the type of this
4240  // parameter (C++ only).
4241  if (getLangOptions().CPlusPlus)
4242    CheckExtraCXXDefaultArguments(D);
4243
4244  TypeSourceInfo *TInfo = 0;
4245  TagDecl *OwnedDecl = 0;
4246  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4247
4248  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4249    // C++ [dcl.fct]p6:
4250    //   Types shall not be defined in return or parameter types.
4251    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4252      << Context.getTypeDeclType(OwnedDecl);
4253  }
4254
4255  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4256  IdentifierInfo *II = D.getIdentifier();
4257  if (II) {
4258    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4259                   ForRedeclaration);
4260    LookupName(R, S);
4261    if (R.isSingleResult()) {
4262      NamedDecl *PrevDecl = R.getFoundDecl();
4263      if (PrevDecl->isTemplateParameter()) {
4264        // Maybe we will complain about the shadowed template parameter.
4265        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4266        // Just pretend that we didn't see the previous declaration.
4267        PrevDecl = 0;
4268      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4269        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4270        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4271
4272        // Recover by removing the name
4273        II = 0;
4274        D.SetIdentifier(0, D.getIdentifierLoc());
4275        D.setInvalidType(true);
4276      }
4277    }
4278  }
4279
4280  // Temporarily put parameter variables in the translation unit, not
4281  // the enclosing context.  This prevents them from accidentally
4282  // looking like class members in C++.
4283  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4284                                    TInfo, parmDeclType, II,
4285                                    D.getIdentifierLoc(),
4286                                    StorageClass, StorageClassAsWritten);
4287
4288  if (D.isInvalidType())
4289    New->setInvalidDecl();
4290
4291  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4292  if (D.getCXXScopeSpec().isSet()) {
4293    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4294      << D.getCXXScopeSpec().getRange();
4295    New->setInvalidDecl();
4296  }
4297
4298  // Add the parameter declaration into this scope.
4299  S->AddDecl(DeclPtrTy::make(New));
4300  if (II)
4301    IdResolver.AddDecl(New);
4302
4303  ProcessDeclAttributes(S, New, D);
4304
4305  if (New->hasAttr<BlocksAttr>()) {
4306    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4307  }
4308  return DeclPtrTy::make(New);
4309}
4310
4311ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4312                                  TypeSourceInfo *TSInfo, QualType T,
4313                                  IdentifierInfo *Name,
4314                                  SourceLocation NameLoc,
4315                                  VarDecl::StorageClass StorageClass,
4316                                  VarDecl::StorageClass StorageClassAsWritten) {
4317  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4318                                         adjustParameterType(T), TSInfo,
4319                                         StorageClass, StorageClassAsWritten,
4320                                         0);
4321
4322  // Parameters can not be abstract class types.
4323  // For record types, this is done by the AbstractClassUsageDiagnoser once
4324  // the class has been completely parsed.
4325  if (!CurContext->isRecord() &&
4326      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4327                             AbstractParamType))
4328    New->setInvalidDecl();
4329
4330  // Parameter declarators cannot be interface types. All ObjC objects are
4331  // passed by reference.
4332  if (T->isObjCInterfaceType()) {
4333    Diag(NameLoc,
4334         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4335    New->setInvalidDecl();
4336  }
4337
4338  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4339  // duration shall not be qualified by an address-space qualifier."
4340  // Since all parameters have automatic store duration, they can not have
4341  // an address space.
4342  if (T.getAddressSpace() != 0) {
4343    Diag(NameLoc, diag::err_arg_with_address_space);
4344    New->setInvalidDecl();
4345  }
4346
4347  return New;
4348}
4349
4350void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4351                                           SourceLocation LocAfterDecls) {
4352  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4353         "Not a function declarator!");
4354  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4355
4356  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4357  // for a K&R function.
4358  if (!FTI.hasPrototype) {
4359    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4360      --i;
4361      if (FTI.ArgInfo[i].Param == 0) {
4362        llvm::SmallString<256> Code;
4363        llvm::raw_svector_ostream(Code) << "  int "
4364                                        << FTI.ArgInfo[i].Ident->getName()
4365                                        << ";\n";
4366        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4367          << FTI.ArgInfo[i].Ident
4368          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4369
4370        // Implicitly declare the argument as type 'int' for lack of a better
4371        // type.
4372        DeclSpec DS;
4373        const char* PrevSpec; // unused
4374        unsigned DiagID; // unused
4375        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4376                           PrevSpec, DiagID);
4377        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4378        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4379        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4380      }
4381    }
4382  }
4383}
4384
4385Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4386                                              Declarator &D) {
4387  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4388  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4389         "Not a function declarator!");
4390  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4391
4392  if (FTI.hasPrototype) {
4393    // FIXME: Diagnose arguments without names in C.
4394  }
4395
4396  Scope *ParentScope = FnBodyScope->getParent();
4397
4398  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4399                                  MultiTemplateParamsArg(*this),
4400                                  /*IsFunctionDefinition=*/true);
4401  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4402}
4403
4404static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4405  // Don't warn about invalid declarations.
4406  if (FD->isInvalidDecl())
4407    return false;
4408
4409  // Or declarations that aren't global.
4410  if (!FD->isGlobal())
4411    return false;
4412
4413  // Don't warn about C++ member functions.
4414  if (isa<CXXMethodDecl>(FD))
4415    return false;
4416
4417  // Don't warn about 'main'.
4418  if (FD->isMain())
4419    return false;
4420
4421  // Don't warn about inline functions.
4422  if (FD->isInlineSpecified())
4423    return false;
4424
4425  // Don't warn about function templates.
4426  if (FD->getDescribedFunctionTemplate())
4427    return false;
4428
4429  // Don't warn about function template specializations.
4430  if (FD->isFunctionTemplateSpecialization())
4431    return false;
4432
4433  bool MissingPrototype = true;
4434  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4435       Prev; Prev = Prev->getPreviousDeclaration()) {
4436    // Ignore any declarations that occur in function or method
4437    // scope, because they aren't visible from the header.
4438    if (Prev->getDeclContext()->isFunctionOrMethod())
4439      continue;
4440
4441    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4442    break;
4443  }
4444
4445  return MissingPrototype;
4446}
4447
4448Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4449  // Clear the last template instantiation error context.
4450  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4451
4452  if (!D)
4453    return D;
4454  FunctionDecl *FD = 0;
4455
4456  if (FunctionTemplateDecl *FunTmpl
4457        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4458    FD = FunTmpl->getTemplatedDecl();
4459  else
4460    FD = cast<FunctionDecl>(D.getAs<Decl>());
4461
4462  // Enter a new function scope
4463  PushFunctionScope();
4464
4465  // See if this is a redefinition.
4466  // But don't complain if we're in GNU89 mode and the previous definition
4467  // was an extern inline function.
4468  const FunctionDecl *Definition;
4469  if (FD->getBody(Definition) &&
4470      !canRedefineFunction(Definition, getLangOptions())) {
4471    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4472    Diag(Definition->getLocation(), diag::note_previous_definition);
4473  }
4474
4475  // Builtin functions cannot be defined.
4476  if (unsigned BuiltinID = FD->getBuiltinID()) {
4477    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4478      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4479      FD->setInvalidDecl();
4480    }
4481  }
4482
4483  // The return type of a function definition must be complete
4484  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4485  QualType ResultType = FD->getResultType();
4486  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4487      !FD->isInvalidDecl() &&
4488      RequireCompleteType(FD->getLocation(), ResultType,
4489                          diag::err_func_def_incomplete_result))
4490    FD->setInvalidDecl();
4491
4492  // GNU warning -Wmissing-prototypes:
4493  //   Warn if a global function is defined without a previous
4494  //   prototype declaration. This warning is issued even if the
4495  //   definition itself provides a prototype. The aim is to detect
4496  //   global functions that fail to be declared in header files.
4497  if (ShouldWarnAboutMissingPrototype(FD))
4498    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4499
4500  if (FnBodyScope)
4501    PushDeclContext(FnBodyScope, FD);
4502
4503  // Check the validity of our function parameters
4504  CheckParmsForFunctionDef(FD);
4505
4506  bool ShouldCheckShadow =
4507    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4508
4509  // Introduce our parameters into the function scope
4510  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4511    ParmVarDecl *Param = FD->getParamDecl(p);
4512    Param->setOwningFunction(FD);
4513
4514    // If this has an identifier, add it to the scope stack.
4515    if (Param->getIdentifier() && FnBodyScope) {
4516      if (ShouldCheckShadow)
4517        CheckShadow(FnBodyScope, Param);
4518
4519      PushOnScopeChains(Param, FnBodyScope);
4520    }
4521  }
4522
4523  // Checking attributes of current function definition
4524  // dllimport attribute.
4525  if (FD->getAttr<DLLImportAttr>() &&
4526      (!FD->getAttr<DLLExportAttr>())) {
4527    // dllimport attribute cannot be applied to definition.
4528    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4529      Diag(FD->getLocation(),
4530           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4531        << "dllimport";
4532      FD->setInvalidDecl();
4533      return DeclPtrTy::make(FD);
4534    }
4535
4536    // Visual C++ appears to not think this is an issue, so only issue
4537    // a warning when Microsoft extensions are disabled.
4538    if (!LangOpts.Microsoft) {
4539      // If a symbol previously declared dllimport is later defined, the
4540      // attribute is ignored in subsequent references, and a warning is
4541      // emitted.
4542      Diag(FD->getLocation(),
4543           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4544        << FD->getNameAsCString() << "dllimport";
4545    }
4546  }
4547  return DeclPtrTy::make(FD);
4548}
4549
4550Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4551  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4552}
4553
4554Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4555                                              bool IsInstantiation) {
4556  Decl *dcl = D.getAs<Decl>();
4557  Stmt *Body = BodyArg.takeAs<Stmt>();
4558
4559  FunctionDecl *FD = 0;
4560  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4561  if (FunTmpl)
4562    FD = FunTmpl->getTemplatedDecl();
4563  else
4564    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4565
4566  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4567
4568  if (FD) {
4569    FD->setBody(Body);
4570    if (FD->isMain()) {
4571      // C and C++ allow for main to automagically return 0.
4572      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4573      FD->setHasImplicitReturnZero(true);
4574      WP.disableCheckFallThrough();
4575    }
4576
4577    if (!FD->isInvalidDecl())
4578      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4579
4580    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4581      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4582
4583    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4584  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4585    assert(MD == getCurMethodDecl() && "Method parsing confused");
4586    MD->setBody(Body);
4587    MD->setEndLoc(Body->getLocEnd());
4588    if (!MD->isInvalidDecl())
4589      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4590  } else {
4591    Body->Destroy(Context);
4592    return DeclPtrTy();
4593  }
4594
4595  // Verify and clean out per-function state.
4596
4597  // Check goto/label use.
4598  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4599       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4600    LabelStmt *L = I->second;
4601
4602    // Verify that we have no forward references left.  If so, there was a goto
4603    // or address of a label taken, but no definition of it.  Label fwd
4604    // definitions are indicated with a null substmt.
4605    if (L->getSubStmt() != 0)
4606      continue;
4607
4608    // Emit error.
4609    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4610
4611    // At this point, we have gotos that use the bogus label.  Stitch it into
4612    // the function body so that they aren't leaked and that the AST is well
4613    // formed.
4614    if (Body == 0) {
4615      // The whole function wasn't parsed correctly, just delete this.
4616      L->Destroy(Context);
4617      continue;
4618    }
4619
4620    // Otherwise, the body is valid: we want to stitch the label decl into the
4621    // function somewhere so that it is properly owned and so that the goto
4622    // has a valid target.  Do this by creating a new compound stmt with the
4623    // label in it.
4624
4625    // Give the label a sub-statement.
4626    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4627
4628    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4629                               cast<CXXTryStmt>(Body)->getTryBlock() :
4630                               cast<CompoundStmt>(Body);
4631    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4632                                          Compound->body_end());
4633    Elements.push_back(L);
4634    Compound->setStmts(Context, Elements.data(), Elements.size());
4635  }
4636
4637  if (Body) {
4638    // C++ constructors that have function-try-blocks can't have return
4639    // statements in the handlers of that block. (C++ [except.handle]p14)
4640    // Verify this.
4641    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4642      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4643
4644    // Verify that that gotos and switch cases don't jump into scopes illegally.
4645    // Verify that that gotos and switch cases don't jump into scopes illegally.
4646    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4647      DiagnoseInvalidJumps(Body);
4648
4649    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4650      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4651                                             Destructor->getParent());
4652
4653    // If any errors have occurred, clear out any temporaries that may have
4654    // been leftover. This ensures that these temporaries won't be picked up for
4655    // deletion in some later function.
4656    if (PP.getDiagnostics().hasErrorOccurred())
4657      ExprTemporaries.clear();
4658    else if (!isa<FunctionTemplateDecl>(dcl)) {
4659      // Since the body is valid, issue any analysis-based warnings that are
4660      // enabled.
4661      QualType ResultType;
4662      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4663        ResultType = FD->getResultType();
4664      }
4665      else {
4666        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4667        ResultType = MD->getResultType();
4668      }
4669      AnalysisWarnings.IssueWarnings(WP, dcl);
4670    }
4671
4672    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4673  }
4674
4675  if (!IsInstantiation)
4676    PopDeclContext();
4677
4678  PopFunctionOrBlockScope();
4679
4680  // If any errors have occurred, clear out any temporaries that may have
4681  // been leftover. This ensures that these temporaries won't be picked up for
4682  // deletion in some later function.
4683  if (getDiagnostics().hasErrorOccurred())
4684    ExprTemporaries.clear();
4685
4686  return D;
4687}
4688
4689/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4690/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4691NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4692                                          IdentifierInfo &II, Scope *S) {
4693  // Before we produce a declaration for an implicitly defined
4694  // function, see whether there was a locally-scoped declaration of
4695  // this name as a function or variable. If so, use that
4696  // (non-visible) declaration, and complain about it.
4697  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4698    = LocallyScopedExternalDecls.find(&II);
4699  if (Pos != LocallyScopedExternalDecls.end()) {
4700    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4701    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4702    return Pos->second;
4703  }
4704
4705  // Extension in C99.  Legal in C90, but warn about it.
4706  if (II.getName().startswith("__builtin_"))
4707    Diag(Loc, diag::warn_builtin_unknown) << &II;
4708  else if (getLangOptions().C99)
4709    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4710  else
4711    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4712
4713  // Set a Declarator for the implicit definition: int foo();
4714  const char *Dummy;
4715  DeclSpec DS;
4716  unsigned DiagID;
4717  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4718  Error = Error; // Silence warning.
4719  assert(!Error && "Error setting up implicit decl!");
4720  Declarator D(DS, Declarator::BlockContext);
4721  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4722                                             0, 0, false, SourceLocation(),
4723                                             false, 0,0,0, Loc, Loc, D),
4724                SourceLocation());
4725  D.SetIdentifier(&II, Loc);
4726
4727  // Insert this function into translation-unit scope.
4728
4729  DeclContext *PrevDC = CurContext;
4730  CurContext = Context.getTranslationUnitDecl();
4731
4732  FunctionDecl *FD =
4733 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4734  FD->setImplicit();
4735
4736  CurContext = PrevDC;
4737
4738  AddKnownFunctionAttributes(FD);
4739
4740  return FD;
4741}
4742
4743/// \brief Adds any function attributes that we know a priori based on
4744/// the declaration of this function.
4745///
4746/// These attributes can apply both to implicitly-declared builtins
4747/// (like __builtin___printf_chk) or to library-declared functions
4748/// like NSLog or printf.
4749void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4750  if (FD->isInvalidDecl())
4751    return;
4752
4753  // If this is a built-in function, map its builtin attributes to
4754  // actual attributes.
4755  if (unsigned BuiltinID = FD->getBuiltinID()) {
4756    // Handle printf-formatting attributes.
4757    unsigned FormatIdx;
4758    bool HasVAListArg;
4759    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4760      if (!FD->getAttr<FormatAttr>())
4761        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4762                                               HasVAListArg ? 0 : FormatIdx+2));
4763    }
4764
4765    // Mark const if we don't care about errno and that is the only
4766    // thing preventing the function from being const. This allows
4767    // IRgen to use LLVM intrinsics for such functions.
4768    if (!getLangOptions().MathErrno &&
4769        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4770      if (!FD->getAttr<ConstAttr>())
4771        FD->addAttr(::new (Context) ConstAttr());
4772    }
4773
4774    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4775      FD->setType(Context.getNoReturnType(FD->getType()));
4776    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4777      FD->addAttr(::new (Context) NoThrowAttr());
4778    if (Context.BuiltinInfo.isConst(BuiltinID))
4779      FD->addAttr(::new (Context) ConstAttr());
4780  }
4781
4782  IdentifierInfo *Name = FD->getIdentifier();
4783  if (!Name)
4784    return;
4785  if ((!getLangOptions().CPlusPlus &&
4786       FD->getDeclContext()->isTranslationUnit()) ||
4787      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4788       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4789       LinkageSpecDecl::lang_c)) {
4790    // Okay: this could be a libc/libm/Objective-C function we know
4791    // about.
4792  } else
4793    return;
4794
4795  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4796    // FIXME: NSLog and NSLogv should be target specific
4797    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4798      // FIXME: We known better than our headers.
4799      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4800    } else
4801      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4802                                             Name->isStr("NSLogv") ? 0 : 2));
4803  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4804    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4805    // target-specific builtins, perhaps?
4806    if (!FD->getAttr<FormatAttr>())
4807      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4808                                             Name->isStr("vasprintf") ? 0 : 3));
4809  }
4810}
4811
4812TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4813                                    TypeSourceInfo *TInfo) {
4814  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4815  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4816
4817  if (!TInfo) {
4818    assert(D.isInvalidType() && "no declarator info for valid type");
4819    TInfo = Context.getTrivialTypeSourceInfo(T);
4820  }
4821
4822  // Scope manipulation handled by caller.
4823  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4824                                           D.getIdentifierLoc(),
4825                                           D.getIdentifier(),
4826                                           TInfo);
4827
4828  if (const TagType *TT = T->getAs<TagType>()) {
4829    TagDecl *TD = TT->getDecl();
4830
4831    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4832    // keep track of the TypedefDecl.
4833    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4834      TD->setTypedefForAnonDecl(NewTD);
4835  }
4836
4837  if (D.isInvalidType())
4838    NewTD->setInvalidDecl();
4839  return NewTD;
4840}
4841
4842
4843/// \brief Determine whether a tag with a given kind is acceptable
4844/// as a redeclaration of the given tag declaration.
4845///
4846/// \returns true if the new tag kind is acceptable, false otherwise.
4847bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4848                                        TagDecl::TagKind NewTag,
4849                                        SourceLocation NewTagLoc,
4850                                        const IdentifierInfo &Name) {
4851  // C++ [dcl.type.elab]p3:
4852  //   The class-key or enum keyword present in the
4853  //   elaborated-type-specifier shall agree in kind with the
4854  //   declaration to which the name in theelaborated-type-specifier
4855  //   refers. This rule also applies to the form of
4856  //   elaborated-type-specifier that declares a class-name or
4857  //   friend class since it can be construed as referring to the
4858  //   definition of the class. Thus, in any
4859  //   elaborated-type-specifier, the enum keyword shall be used to
4860  //   refer to an enumeration (7.2), the union class-keyshall be
4861  //   used to refer to a union (clause 9), and either the class or
4862  //   struct class-key shall be used to refer to a class (clause 9)
4863  //   declared using the class or struct class-key.
4864  TagDecl::TagKind OldTag = Previous->getTagKind();
4865  if (OldTag == NewTag)
4866    return true;
4867
4868  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4869      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4870    // Warn about the struct/class tag mismatch.
4871    bool isTemplate = false;
4872    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4873      isTemplate = Record->getDescribedClassTemplate();
4874
4875    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4876      << (NewTag == TagDecl::TK_class)
4877      << isTemplate << &Name
4878      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4879                              OldTag == TagDecl::TK_class? "class" : "struct");
4880    Diag(Previous->getLocation(), diag::note_previous_use);
4881    return true;
4882  }
4883  return false;
4884}
4885
4886/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4887/// former case, Name will be non-null.  In the later case, Name will be null.
4888/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4889/// reference/declaration/definition of a tag.
4890Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4891                               SourceLocation KWLoc, CXXScopeSpec &SS,
4892                               IdentifierInfo *Name, SourceLocation NameLoc,
4893                               AttributeList *Attr, AccessSpecifier AS,
4894                               MultiTemplateParamsArg TemplateParameterLists,
4895                               bool &OwnedDecl, bool &IsDependent) {
4896  // If this is not a definition, it must have a name.
4897  assert((Name != 0 || TUK == TUK_Definition) &&
4898         "Nameless record must be a definition!");
4899
4900  OwnedDecl = false;
4901  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4902
4903  // FIXME: Check explicit specializations more carefully.
4904  bool isExplicitSpecialization = false;
4905  if (TUK != TUK_Reference) {
4906    if (TemplateParameterList *TemplateParams
4907          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4908                        (TemplateParameterList**)TemplateParameterLists.get(),
4909                                              TemplateParameterLists.size(),
4910                                                    TUK == TUK_Friend,
4911                                                    isExplicitSpecialization)) {
4912      if (TemplateParams->size() > 0) {
4913        // This is a declaration or definition of a class template (which may
4914        // be a member of another template).
4915        OwnedDecl = false;
4916        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4917                                               SS, Name, NameLoc, Attr,
4918                                               TemplateParams,
4919                                               AS);
4920        TemplateParameterLists.release();
4921        return Result.get();
4922      } else {
4923        // The "template<>" header is extraneous.
4924        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4925          << ElaboratedType::getNameForTagKind(Kind) << Name;
4926        isExplicitSpecialization = true;
4927      }
4928    }
4929
4930    TemplateParameterLists.release();
4931  }
4932
4933  DeclContext *SearchDC = CurContext;
4934  DeclContext *DC = CurContext;
4935  bool isStdBadAlloc = false;
4936  bool Invalid = false;
4937
4938  RedeclarationKind Redecl = ForRedeclaration;
4939  if (TUK == TUK_Friend || TUK == TUK_Reference)
4940    Redecl = NotForRedeclaration;
4941
4942  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4943
4944  if (Name && SS.isNotEmpty()) {
4945    // We have a nested-name tag ('struct foo::bar').
4946
4947    // Check for invalid 'foo::'.
4948    if (SS.isInvalid()) {
4949      Name = 0;
4950      goto CreateNewDecl;
4951    }
4952
4953    // If this is a friend or a reference to a class in a dependent
4954    // context, don't try to make a decl for it.
4955    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4956      DC = computeDeclContext(SS, false);
4957      if (!DC) {
4958        IsDependent = true;
4959        return DeclPtrTy();
4960      }
4961    } else {
4962      DC = computeDeclContext(SS, true);
4963      if (!DC) {
4964        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
4965          << SS.getRange();
4966        return DeclPtrTy();
4967      }
4968    }
4969
4970    if (RequireCompleteDeclContext(SS, DC))
4971      return DeclPtrTy::make((Decl *)0);
4972
4973    SearchDC = DC;
4974    // Look-up name inside 'foo::'.
4975    LookupQualifiedName(Previous, DC);
4976
4977    if (Previous.isAmbiguous())
4978      return DeclPtrTy();
4979
4980    if (Previous.empty()) {
4981      // Name lookup did not find anything. However, if the
4982      // nested-name-specifier refers to the current instantiation,
4983      // and that current instantiation has any dependent base
4984      // classes, we might find something at instantiation time: treat
4985      // this as a dependent elaborated-type-specifier.
4986      if (Previous.wasNotFoundInCurrentInstantiation()) {
4987        IsDependent = true;
4988        return DeclPtrTy();
4989      }
4990
4991      // A tag 'foo::bar' must already exist.
4992      Diag(NameLoc, diag::err_not_tag_in_scope)
4993        << Kind << Name << DC << SS.getRange();
4994      Name = 0;
4995      Invalid = true;
4996      goto CreateNewDecl;
4997    }
4998  } else if (Name) {
4999    // If this is a named struct, check to see if there was a previous forward
5000    // declaration or definition.
5001    // FIXME: We're looking into outer scopes here, even when we
5002    // shouldn't be. Doing so can result in ambiguities that we
5003    // shouldn't be diagnosing.
5004    LookupName(Previous, S);
5005
5006    // Note:  there used to be some attempt at recovery here.
5007    if (Previous.isAmbiguous())
5008      return DeclPtrTy();
5009
5010    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5011      // FIXME: This makes sure that we ignore the contexts associated
5012      // with C structs, unions, and enums when looking for a matching
5013      // tag declaration or definition. See the similar lookup tweak
5014      // in Sema::LookupName; is there a better way to deal with this?
5015      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5016        SearchDC = SearchDC->getParent();
5017    }
5018  }
5019
5020  if (Previous.isSingleResult() &&
5021      Previous.getFoundDecl()->isTemplateParameter()) {
5022    // Maybe we will complain about the shadowed template parameter.
5023    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5024    // Just pretend that we didn't see the previous declaration.
5025    Previous.clear();
5026  }
5027
5028  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5029      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5030    // This is a declaration of or a reference to "std::bad_alloc".
5031    isStdBadAlloc = true;
5032
5033    if (Previous.empty() && StdBadAlloc) {
5034      // std::bad_alloc has been implicitly declared (but made invisible to
5035      // name lookup). Fill in this implicit declaration as the previous
5036      // declaration, so that the declarations get chained appropriately.
5037      Previous.addDecl(StdBadAlloc);
5038    }
5039  }
5040
5041  // If we didn't find a previous declaration, and this is a reference
5042  // (or friend reference), move to the correct scope.  In C++, we
5043  // also need to do a redeclaration lookup there, just in case
5044  // there's a shadow friend decl.
5045  if (Name && Previous.empty() &&
5046      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5047    if (Invalid) goto CreateNewDecl;
5048    assert(SS.isEmpty());
5049
5050    if (TUK == TUK_Reference) {
5051      // C++ [basic.scope.pdecl]p5:
5052      //   -- for an elaborated-type-specifier of the form
5053      //
5054      //          class-key identifier
5055      //
5056      //      if the elaborated-type-specifier is used in the
5057      //      decl-specifier-seq or parameter-declaration-clause of a
5058      //      function defined in namespace scope, the identifier is
5059      //      declared as a class-name in the namespace that contains
5060      //      the declaration; otherwise, except as a friend
5061      //      declaration, the identifier is declared in the smallest
5062      //      non-class, non-function-prototype scope that contains the
5063      //      declaration.
5064      //
5065      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5066      // C structs and unions.
5067      //
5068      // It is an error in C++ to declare (rather than define) an enum
5069      // type, including via an elaborated type specifier.  We'll
5070      // diagnose that later; for now, declare the enum in the same
5071      // scope as we would have picked for any other tag type.
5072      //
5073      // GNU C also supports this behavior as part of its incomplete
5074      // enum types extension, while GNU C++ does not.
5075      //
5076      // Find the context where we'll be declaring the tag.
5077      // FIXME: We would like to maintain the current DeclContext as the
5078      // lexical context,
5079      while (SearchDC->isRecord())
5080        SearchDC = SearchDC->getParent();
5081
5082      // Find the scope where we'll be declaring the tag.
5083      while (S->isClassScope() ||
5084             (getLangOptions().CPlusPlus &&
5085              S->isFunctionPrototypeScope()) ||
5086             ((S->getFlags() & Scope::DeclScope) == 0) ||
5087             (S->getEntity() &&
5088              ((DeclContext *)S->getEntity())->isTransparentContext()))
5089        S = S->getParent();
5090    } else {
5091      assert(TUK == TUK_Friend);
5092      // C++ [namespace.memdef]p3:
5093      //   If a friend declaration in a non-local class first declares a
5094      //   class or function, the friend class or function is a member of
5095      //   the innermost enclosing namespace.
5096      SearchDC = SearchDC->getEnclosingNamespaceContext();
5097    }
5098
5099    // In C++, we need to do a redeclaration lookup to properly
5100    // diagnose some problems.
5101    if (getLangOptions().CPlusPlus) {
5102      Previous.setRedeclarationKind(ForRedeclaration);
5103      LookupQualifiedName(Previous, SearchDC);
5104    }
5105  }
5106
5107  if (!Previous.empty()) {
5108    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5109
5110    // It's okay to have a tag decl in the same scope as a typedef
5111    // which hides a tag decl in the same scope.  Finding this
5112    // insanity with a redeclaration lookup can only actually happen
5113    // in C++.
5114    //
5115    // This is also okay for elaborated-type-specifiers, which is
5116    // technically forbidden by the current standard but which is
5117    // okay according to the likely resolution of an open issue;
5118    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5119    if (getLangOptions().CPlusPlus) {
5120      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5121        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5122          TagDecl *Tag = TT->getDecl();
5123          if (Tag->getDeclName() == Name &&
5124              Tag->getDeclContext()->getLookupContext()
5125                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5126            PrevDecl = Tag;
5127            Previous.clear();
5128            Previous.addDecl(Tag);
5129          }
5130        }
5131      }
5132    }
5133
5134    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5135      // If this is a use of a previous tag, or if the tag is already declared
5136      // in the same scope (so that the definition/declaration completes or
5137      // rementions the tag), reuse the decl.
5138      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5139          isDeclInScope(PrevDecl, SearchDC, S)) {
5140        // Make sure that this wasn't declared as an enum and now used as a
5141        // struct or something similar.
5142        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5143          bool SafeToContinue
5144            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
5145               Kind != TagDecl::TK_enum);
5146          if (SafeToContinue)
5147            Diag(KWLoc, diag::err_use_with_wrong_tag)
5148              << Name
5149              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5150                                              PrevTagDecl->getKindName());
5151          else
5152            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5153          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5154
5155          if (SafeToContinue)
5156            Kind = PrevTagDecl->getTagKind();
5157          else {
5158            // Recover by making this an anonymous redefinition.
5159            Name = 0;
5160            Previous.clear();
5161            Invalid = true;
5162          }
5163        }
5164
5165        if (!Invalid) {
5166          // If this is a use, just return the declaration we found.
5167
5168          // FIXME: In the future, return a variant or some other clue
5169          // for the consumer of this Decl to know it doesn't own it.
5170          // For our current ASTs this shouldn't be a problem, but will
5171          // need to be changed with DeclGroups.
5172          if (TUK == TUK_Reference || TUK == TUK_Friend)
5173            return DeclPtrTy::make(PrevTagDecl);
5174
5175          // Diagnose attempts to redefine a tag.
5176          if (TUK == TUK_Definition) {
5177            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5178              // If we're defining a specialization and the previous definition
5179              // is from an implicit instantiation, don't emit an error
5180              // here; we'll catch this in the general case below.
5181              if (!isExplicitSpecialization ||
5182                  !isa<CXXRecordDecl>(Def) ||
5183                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5184                                               == TSK_ExplicitSpecialization) {
5185                Diag(NameLoc, diag::err_redefinition) << Name;
5186                Diag(Def->getLocation(), diag::note_previous_definition);
5187                // If this is a redefinition, recover by making this
5188                // struct be anonymous, which will make any later
5189                // references get the previous definition.
5190                Name = 0;
5191                Previous.clear();
5192                Invalid = true;
5193              }
5194            } else {
5195              // If the type is currently being defined, complain
5196              // about a nested redefinition.
5197              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5198              if (Tag->isBeingDefined()) {
5199                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5200                Diag(PrevTagDecl->getLocation(),
5201                     diag::note_previous_definition);
5202                Name = 0;
5203                Previous.clear();
5204                Invalid = true;
5205              }
5206            }
5207
5208            // Okay, this is definition of a previously declared or referenced
5209            // tag PrevDecl. We're going to create a new Decl for it.
5210          }
5211        }
5212        // If we get here we have (another) forward declaration or we
5213        // have a definition.  Just create a new decl.
5214
5215      } else {
5216        // If we get here, this is a definition of a new tag type in a nested
5217        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5218        // new decl/type.  We set PrevDecl to NULL so that the entities
5219        // have distinct types.
5220        Previous.clear();
5221      }
5222      // If we get here, we're going to create a new Decl. If PrevDecl
5223      // is non-NULL, it's a definition of the tag declared by
5224      // PrevDecl. If it's NULL, we have a new definition.
5225
5226
5227    // Otherwise, PrevDecl is not a tag, but was found with tag
5228    // lookup.  This is only actually possible in C++, where a few
5229    // things like templates still live in the tag namespace.
5230    } else {
5231      assert(getLangOptions().CPlusPlus);
5232
5233      // Use a better diagnostic if an elaborated-type-specifier
5234      // found the wrong kind of type on the first
5235      // (non-redeclaration) lookup.
5236      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5237          !Previous.isForRedeclaration()) {
5238        unsigned Kind = 0;
5239        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5240        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5241        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5242        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5243        Invalid = true;
5244
5245      // Otherwise, only diagnose if the declaration is in scope.
5246      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5247        // do nothing
5248
5249      // Diagnose implicit declarations introduced by elaborated types.
5250      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5251        unsigned Kind = 0;
5252        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5253        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5254        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5255        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5256        Invalid = true;
5257
5258      // Otherwise it's a declaration.  Call out a particularly common
5259      // case here.
5260      } else if (isa<TypedefDecl>(PrevDecl)) {
5261        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5262          << Name
5263          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5264        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5265        Invalid = true;
5266
5267      // Otherwise, diagnose.
5268      } else {
5269        // The tag name clashes with something else in the target scope,
5270        // issue an error and recover by making this tag be anonymous.
5271        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5272        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5273        Name = 0;
5274        Invalid = true;
5275      }
5276
5277      // The existing declaration isn't relevant to us; we're in a
5278      // new scope, so clear out the previous declaration.
5279      Previous.clear();
5280    }
5281  }
5282
5283CreateNewDecl:
5284
5285  TagDecl *PrevDecl = 0;
5286  if (Previous.isSingleResult())
5287    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5288
5289  // If there is an identifier, use the location of the identifier as the
5290  // location of the decl, otherwise use the location of the struct/union
5291  // keyword.
5292  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5293
5294  // Otherwise, create a new declaration. If there is a previous
5295  // declaration of the same entity, the two will be linked via
5296  // PrevDecl.
5297  TagDecl *New;
5298
5299  if (Kind == TagDecl::TK_enum) {
5300    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5301    // enum X { A, B, C } D;    D should chain to X.
5302    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5303                           cast_or_null<EnumDecl>(PrevDecl));
5304    // If this is an undefined enum, warn.
5305    if (TUK != TUK_Definition && !Invalid)  {
5306      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5307                                              : diag::ext_forward_ref_enum;
5308      Diag(Loc, DK);
5309    }
5310  } else {
5311    // struct/union/class
5312
5313    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5314    // struct X { int A; } D;    D should chain to X.
5315    if (getLangOptions().CPlusPlus) {
5316      // FIXME: Look for a way to use RecordDecl for simple structs.
5317      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5318                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5319
5320      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5321        StdBadAlloc = cast<CXXRecordDecl>(New);
5322    } else
5323      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5324                               cast_or_null<RecordDecl>(PrevDecl));
5325  }
5326
5327  // Maybe add qualifier info.
5328  if (SS.isNotEmpty()) {
5329    NestedNameSpecifier *NNS
5330      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5331    New->setQualifierInfo(NNS, SS.getRange());
5332  }
5333
5334  if (Kind != TagDecl::TK_enum) {
5335    // Handle #pragma pack: if the #pragma pack stack has non-default
5336    // alignment, make up a packed attribute for this decl. These
5337    // attributes are checked when the ASTContext lays out the
5338    // structure.
5339    //
5340    // It is important for implementing the correct semantics that this
5341    // happen here (in act on tag decl). The #pragma pack stack is
5342    // maintained as a result of parser callbacks which can occur at
5343    // many points during the parsing of a struct declaration (because
5344    // the #pragma tokens are effectively skipped over during the
5345    // parsing of the struct).
5346    if (unsigned Alignment = getPragmaPackAlignment())
5347      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5348  }
5349
5350  // If this is a specialization of a member class (of a class template),
5351  // check the specialization.
5352  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5353    Invalid = true;
5354
5355  if (Invalid)
5356    New->setInvalidDecl();
5357
5358  if (Attr)
5359    ProcessDeclAttributeList(S, New, Attr);
5360
5361  // If we're declaring or defining a tag in function prototype scope
5362  // in C, note that this type can only be used within the function.
5363  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5364    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5365
5366  // Set the lexical context. If the tag has a C++ scope specifier, the
5367  // lexical context will be different from the semantic context.
5368  New->setLexicalDeclContext(CurContext);
5369
5370  // Mark this as a friend decl if applicable.
5371  if (TUK == TUK_Friend)
5372    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5373
5374  // Set the access specifier.
5375  if (!Invalid && SearchDC->isRecord())
5376    SetMemberAccessSpecifier(New, PrevDecl, AS);
5377
5378  if (TUK == TUK_Definition)
5379    New->startDefinition();
5380
5381  // If this has an identifier, add it to the scope stack.
5382  if (TUK == TUK_Friend) {
5383    // We might be replacing an existing declaration in the lookup tables;
5384    // if so, borrow its access specifier.
5385    if (PrevDecl)
5386      New->setAccess(PrevDecl->getAccess());
5387
5388    DeclContext *DC = New->getDeclContext()->getLookupContext();
5389    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5390    if (Name) // can be null along some error paths
5391      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5392        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5393  } else if (Name) {
5394    S = getNonFieldDeclScope(S);
5395    PushOnScopeChains(New, S);
5396  } else {
5397    CurContext->addDecl(New);
5398  }
5399
5400  // If this is the C FILE type, notify the AST context.
5401  if (IdentifierInfo *II = New->getIdentifier())
5402    if (!New->isInvalidDecl() &&
5403        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5404        II->isStr("FILE"))
5405      Context.setFILEDecl(New);
5406
5407  OwnedDecl = true;
5408  return DeclPtrTy::make(New);
5409}
5410
5411void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5412  AdjustDeclIfTemplate(TagD);
5413  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5414
5415  // Enter the tag context.
5416  PushDeclContext(S, Tag);
5417}
5418
5419void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5420                                           SourceLocation LBraceLoc) {
5421  AdjustDeclIfTemplate(TagD);
5422  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5423
5424  FieldCollector->StartClass();
5425
5426  if (!Record->getIdentifier())
5427    return;
5428
5429  // C++ [class]p2:
5430  //   [...] The class-name is also inserted into the scope of the
5431  //   class itself; this is known as the injected-class-name. For
5432  //   purposes of access checking, the injected-class-name is treated
5433  //   as if it were a public member name.
5434  CXXRecordDecl *InjectedClassName
5435    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5436                            CurContext, Record->getLocation(),
5437                            Record->getIdentifier(),
5438                            Record->getTagKeywordLoc(),
5439                            Record);
5440  InjectedClassName->setImplicit();
5441  InjectedClassName->setAccess(AS_public);
5442  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5443      InjectedClassName->setDescribedClassTemplate(Template);
5444  PushOnScopeChains(InjectedClassName, S);
5445  assert(InjectedClassName->isInjectedClassName() &&
5446         "Broken injected-class-name");
5447}
5448
5449// Traverses the class and any nested classes, making a note of any
5450// dynamic classes that have no key function so that we can mark all of
5451// their virtual member functions as "used" at the end of the translation
5452// unit. This ensures that all functions needed by the vtable will get
5453// instantiated/synthesized.
5454static void
5455RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5456                                      SourceLocation Loc) {
5457  // We don't look at dependent or undefined classes.
5458  if (Record->isDependentContext() || !Record->isDefinition())
5459    return;
5460
5461  if (Record->isDynamicClass()) {
5462    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5463
5464    if (!KeyFunction)
5465      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5466                                                                   Loc));
5467
5468    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5469        && Record->getLinkage() == ExternalLinkage)
5470      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5471  }
5472  for (DeclContext::decl_iterator D = Record->decls_begin(),
5473                               DEnd = Record->decls_end();
5474       D != DEnd; ++D) {
5475    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5476      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5477  }
5478}
5479
5480void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5481                                    SourceLocation RBraceLoc) {
5482  AdjustDeclIfTemplate(TagD);
5483  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5484  Tag->setRBraceLoc(RBraceLoc);
5485
5486  if (isa<CXXRecordDecl>(Tag))
5487    FieldCollector->FinishClass();
5488
5489  // Exit this scope of this tag's definition.
5490  PopDeclContext();
5491
5492  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5493    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5494                                          RBraceLoc);
5495
5496  // Notify the consumer that we've defined a tag.
5497  Consumer.HandleTagDeclDefinition(Tag);
5498}
5499
5500void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5501  AdjustDeclIfTemplate(TagD);
5502  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5503  Tag->setInvalidDecl();
5504
5505  // We're undoing ActOnTagStartDefinition here, not
5506  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5507  // the FieldCollector.
5508
5509  PopDeclContext();
5510}
5511
5512// Note that FieldName may be null for anonymous bitfields.
5513bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5514                          QualType FieldTy, const Expr *BitWidth,
5515                          bool *ZeroWidth) {
5516  // Default to true; that shouldn't confuse checks for emptiness
5517  if (ZeroWidth)
5518    *ZeroWidth = true;
5519
5520  // C99 6.7.2.1p4 - verify the field type.
5521  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5522  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5523    // Handle incomplete types with specific error.
5524    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5525      return true;
5526    if (FieldName)
5527      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5528        << FieldName << FieldTy << BitWidth->getSourceRange();
5529    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5530      << FieldTy << BitWidth->getSourceRange();
5531  }
5532
5533  // If the bit-width is type- or value-dependent, don't try to check
5534  // it now.
5535  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5536    return false;
5537
5538  llvm::APSInt Value;
5539  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5540    return true;
5541
5542  if (Value != 0 && ZeroWidth)
5543    *ZeroWidth = false;
5544
5545  // Zero-width bitfield is ok for anonymous field.
5546  if (Value == 0 && FieldName)
5547    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5548
5549  if (Value.isSigned() && Value.isNegative()) {
5550    if (FieldName)
5551      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5552               << FieldName << Value.toString(10);
5553    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5554      << Value.toString(10);
5555  }
5556
5557  if (!FieldTy->isDependentType()) {
5558    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5559    if (Value.getZExtValue() > TypeSize) {
5560      if (!getLangOptions().CPlusPlus) {
5561        if (FieldName)
5562          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5563            << FieldName << (unsigned)Value.getZExtValue()
5564            << (unsigned)TypeSize;
5565
5566        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5567          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5568      }
5569
5570      if (FieldName)
5571        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5572          << FieldName << (unsigned)Value.getZExtValue()
5573          << (unsigned)TypeSize;
5574      else
5575        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5576          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5577    }
5578  }
5579
5580  return false;
5581}
5582
5583/// ActOnField - Each field of a struct/union/class is passed into this in order
5584/// to create a FieldDecl object for it.
5585Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5586                                 SourceLocation DeclStart,
5587                                 Declarator &D, ExprTy *BitfieldWidth) {
5588  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5589                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5590                               AS_public);
5591  return DeclPtrTy::make(Res);
5592}
5593
5594/// HandleField - Analyze a field of a C struct or a C++ data member.
5595///
5596FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5597                             SourceLocation DeclStart,
5598                             Declarator &D, Expr *BitWidth,
5599                             AccessSpecifier AS) {
5600  IdentifierInfo *II = D.getIdentifier();
5601  SourceLocation Loc = DeclStart;
5602  if (II) Loc = D.getIdentifierLoc();
5603
5604  TypeSourceInfo *TInfo = 0;
5605  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5606  if (getLangOptions().CPlusPlus)
5607    CheckExtraCXXDefaultArguments(D);
5608
5609  DiagnoseFunctionSpecifiers(D);
5610
5611  if (D.getDeclSpec().isThreadSpecified())
5612    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5613
5614  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5615                                         ForRedeclaration);
5616
5617  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5618    // Maybe we will complain about the shadowed template parameter.
5619    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5620    // Just pretend that we didn't see the previous declaration.
5621    PrevDecl = 0;
5622  }
5623
5624  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5625    PrevDecl = 0;
5626
5627  bool Mutable
5628    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5629  SourceLocation TSSL = D.getSourceRange().getBegin();
5630  FieldDecl *NewFD
5631    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5632                     AS, PrevDecl, &D);
5633
5634  if (NewFD->isInvalidDecl())
5635    Record->setInvalidDecl();
5636
5637  if (NewFD->isInvalidDecl() && PrevDecl) {
5638    // Don't introduce NewFD into scope; there's already something
5639    // with the same name in the same scope.
5640  } else if (II) {
5641    PushOnScopeChains(NewFD, S);
5642  } else
5643    Record->addDecl(NewFD);
5644
5645  return NewFD;
5646}
5647
5648/// \brief Build a new FieldDecl and check its well-formedness.
5649///
5650/// This routine builds a new FieldDecl given the fields name, type,
5651/// record, etc. \p PrevDecl should refer to any previous declaration
5652/// with the same name and in the same scope as the field to be
5653/// created.
5654///
5655/// \returns a new FieldDecl.
5656///
5657/// \todo The Declarator argument is a hack. It will be removed once
5658FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5659                                TypeSourceInfo *TInfo,
5660                                RecordDecl *Record, SourceLocation Loc,
5661                                bool Mutable, Expr *BitWidth,
5662                                SourceLocation TSSL,
5663                                AccessSpecifier AS, NamedDecl *PrevDecl,
5664                                Declarator *D) {
5665  IdentifierInfo *II = Name.getAsIdentifierInfo();
5666  bool InvalidDecl = false;
5667  if (D) InvalidDecl = D->isInvalidType();
5668
5669  // If we receive a broken type, recover by assuming 'int' and
5670  // marking this declaration as invalid.
5671  if (T.isNull()) {
5672    InvalidDecl = true;
5673    T = Context.IntTy;
5674  }
5675
5676  QualType EltTy = Context.getBaseElementType(T);
5677  if (!EltTy->isDependentType() &&
5678      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5679    InvalidDecl = true;
5680
5681  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5682  // than a variably modified type.
5683  if (!InvalidDecl && T->isVariablyModifiedType()) {
5684    bool SizeIsNegative;
5685    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5686                                                           SizeIsNegative);
5687    if (!FixedTy.isNull()) {
5688      Diag(Loc, diag::warn_illegal_constant_array_size);
5689      T = FixedTy;
5690    } else {
5691      if (SizeIsNegative)
5692        Diag(Loc, diag::err_typecheck_negative_array_size);
5693      else
5694        Diag(Loc, diag::err_typecheck_field_variable_size);
5695      InvalidDecl = true;
5696    }
5697  }
5698
5699  // Fields can not have abstract class types
5700  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5701                                             diag::err_abstract_type_in_decl,
5702                                             AbstractFieldType))
5703    InvalidDecl = true;
5704
5705  bool ZeroWidth = false;
5706  // If this is declared as a bit-field, check the bit-field.
5707  if (!InvalidDecl && BitWidth &&
5708      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5709    InvalidDecl = true;
5710    DeleteExpr(BitWidth);
5711    BitWidth = 0;
5712    ZeroWidth = false;
5713  }
5714
5715  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5716                                       BitWidth, Mutable);
5717  if (InvalidDecl)
5718    NewFD->setInvalidDecl();
5719
5720  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5721    Diag(Loc, diag::err_duplicate_member) << II;
5722    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5723    NewFD->setInvalidDecl();
5724  }
5725
5726  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5727    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5728
5729    if (!T->isPODType())
5730      CXXRecord->setPOD(false);
5731    if (!ZeroWidth)
5732      CXXRecord->setEmpty(false);
5733
5734    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5735      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5736
5737      if (!RDecl->hasTrivialConstructor())
5738        CXXRecord->setHasTrivialConstructor(false);
5739      if (!RDecl->hasTrivialCopyConstructor())
5740        CXXRecord->setHasTrivialCopyConstructor(false);
5741      if (!RDecl->hasTrivialCopyAssignment())
5742        CXXRecord->setHasTrivialCopyAssignment(false);
5743      if (!RDecl->hasTrivialDestructor())
5744        CXXRecord->setHasTrivialDestructor(false);
5745
5746      // C++ 9.5p1: An object of a class with a non-trivial
5747      // constructor, a non-trivial copy constructor, a non-trivial
5748      // destructor, or a non-trivial copy assignment operator
5749      // cannot be a member of a union, nor can an array of such
5750      // objects.
5751      // TODO: C++0x alters this restriction significantly.
5752      if (Record->isUnion()) {
5753        // We check for copy constructors before constructors
5754        // because otherwise we'll never get complaints about
5755        // copy constructors.
5756
5757        CXXSpecialMember member = CXXInvalid;
5758        if (!RDecl->hasTrivialCopyConstructor())
5759          member = CXXCopyConstructor;
5760        else if (!RDecl->hasTrivialConstructor())
5761          member = CXXConstructor;
5762        else if (!RDecl->hasTrivialCopyAssignment())
5763          member = CXXCopyAssignment;
5764        else if (!RDecl->hasTrivialDestructor())
5765          member = CXXDestructor;
5766
5767        if (member != CXXInvalid) {
5768          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5769          DiagnoseNontrivial(RT, member);
5770          NewFD->setInvalidDecl();
5771        }
5772      }
5773    }
5774  }
5775
5776  // FIXME: We need to pass in the attributes given an AST
5777  // representation, not a parser representation.
5778  if (D)
5779    // FIXME: What to pass instead of TUScope?
5780    ProcessDeclAttributes(TUScope, NewFD, *D);
5781
5782  if (T.isObjCGCWeak())
5783    Diag(Loc, diag::warn_attribute_weak_on_field);
5784
5785  NewFD->setAccess(AS);
5786
5787  // C++ [dcl.init.aggr]p1:
5788  //   An aggregate is an array or a class (clause 9) with [...] no
5789  //   private or protected non-static data members (clause 11).
5790  // A POD must be an aggregate.
5791  if (getLangOptions().CPlusPlus &&
5792      (AS == AS_private || AS == AS_protected)) {
5793    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5794    CXXRecord->setAggregate(false);
5795    CXXRecord->setPOD(false);
5796  }
5797
5798  return NewFD;
5799}
5800
5801/// DiagnoseNontrivial - Given that a class has a non-trivial
5802/// special member, figure out why.
5803void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5804  QualType QT(T, 0U);
5805  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5806
5807  // Check whether the member was user-declared.
5808  switch (member) {
5809  case CXXInvalid:
5810    break;
5811
5812  case CXXConstructor:
5813    if (RD->hasUserDeclaredConstructor()) {
5814      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5815      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5816        const FunctionDecl *body = 0;
5817        ci->getBody(body);
5818        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5819          SourceLocation CtorLoc = ci->getLocation();
5820          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5821          return;
5822        }
5823      }
5824
5825      assert(0 && "found no user-declared constructors");
5826      return;
5827    }
5828    break;
5829
5830  case CXXCopyConstructor:
5831    if (RD->hasUserDeclaredCopyConstructor()) {
5832      SourceLocation CtorLoc =
5833        RD->getCopyConstructor(Context, 0)->getLocation();
5834      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5835      return;
5836    }
5837    break;
5838
5839  case CXXCopyAssignment:
5840    if (RD->hasUserDeclaredCopyAssignment()) {
5841      // FIXME: this should use the location of the copy
5842      // assignment, not the type.
5843      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5844      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5845      return;
5846    }
5847    break;
5848
5849  case CXXDestructor:
5850    if (RD->hasUserDeclaredDestructor()) {
5851      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5852      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5853      return;
5854    }
5855    break;
5856  }
5857
5858  typedef CXXRecordDecl::base_class_iterator base_iter;
5859
5860  // Virtual bases and members inhibit trivial copying/construction,
5861  // but not trivial destruction.
5862  if (member != CXXDestructor) {
5863    // Check for virtual bases.  vbases includes indirect virtual bases,
5864    // so we just iterate through the direct bases.
5865    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5866      if (bi->isVirtual()) {
5867        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5868        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5869        return;
5870      }
5871
5872    // Check for virtual methods.
5873    typedef CXXRecordDecl::method_iterator meth_iter;
5874    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5875         ++mi) {
5876      if (mi->isVirtual()) {
5877        SourceLocation MLoc = mi->getSourceRange().getBegin();
5878        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5879        return;
5880      }
5881    }
5882  }
5883
5884  bool (CXXRecordDecl::*hasTrivial)() const;
5885  switch (member) {
5886  case CXXConstructor:
5887    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5888  case CXXCopyConstructor:
5889    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5890  case CXXCopyAssignment:
5891    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5892  case CXXDestructor:
5893    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5894  default:
5895    assert(0 && "unexpected special member"); return;
5896  }
5897
5898  // Check for nontrivial bases (and recurse).
5899  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5900    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5901    assert(BaseRT && "Don't know how to handle dependent bases");
5902    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5903    if (!(BaseRecTy->*hasTrivial)()) {
5904      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5905      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5906      DiagnoseNontrivial(BaseRT, member);
5907      return;
5908    }
5909  }
5910
5911  // Check for nontrivial members (and recurse).
5912  typedef RecordDecl::field_iterator field_iter;
5913  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5914       ++fi) {
5915    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5916    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5917      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5918
5919      if (!(EltRD->*hasTrivial)()) {
5920        SourceLocation FLoc = (*fi)->getLocation();
5921        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5922        DiagnoseNontrivial(EltRT, member);
5923        return;
5924      }
5925    }
5926  }
5927
5928  assert(0 && "found no explanation for non-trivial member");
5929}
5930
5931/// TranslateIvarVisibility - Translate visibility from a token ID to an
5932///  AST enum value.
5933static ObjCIvarDecl::AccessControl
5934TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5935  switch (ivarVisibility) {
5936  default: assert(0 && "Unknown visitibility kind");
5937  case tok::objc_private: return ObjCIvarDecl::Private;
5938  case tok::objc_public: return ObjCIvarDecl::Public;
5939  case tok::objc_protected: return ObjCIvarDecl::Protected;
5940  case tok::objc_package: return ObjCIvarDecl::Package;
5941  }
5942}
5943
5944/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5945/// in order to create an IvarDecl object for it.
5946Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5947                                SourceLocation DeclStart,
5948                                DeclPtrTy IntfDecl,
5949                                Declarator &D, ExprTy *BitfieldWidth,
5950                                tok::ObjCKeywordKind Visibility) {
5951
5952  IdentifierInfo *II = D.getIdentifier();
5953  Expr *BitWidth = (Expr*)BitfieldWidth;
5954  SourceLocation Loc = DeclStart;
5955  if (II) Loc = D.getIdentifierLoc();
5956
5957  // FIXME: Unnamed fields can be handled in various different ways, for
5958  // example, unnamed unions inject all members into the struct namespace!
5959
5960  TypeSourceInfo *TInfo = 0;
5961  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5962
5963  if (BitWidth) {
5964    // 6.7.2.1p3, 6.7.2.1p4
5965    if (VerifyBitField(Loc, II, T, BitWidth)) {
5966      D.setInvalidType();
5967      DeleteExpr(BitWidth);
5968      BitWidth = 0;
5969    }
5970  } else {
5971    // Not a bitfield.
5972
5973    // validate II.
5974
5975  }
5976  if (T->isReferenceType()) {
5977    Diag(Loc, diag::err_ivar_reference_type);
5978    D.setInvalidType();
5979  }
5980  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5981  // than a variably modified type.
5982  else if (T->isVariablyModifiedType()) {
5983    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5984    D.setInvalidType();
5985  }
5986
5987  // Get the visibility (access control) for this ivar.
5988  ObjCIvarDecl::AccessControl ac =
5989    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5990                                        : ObjCIvarDecl::None;
5991  // Must set ivar's DeclContext to its enclosing interface.
5992  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5993  ObjCContainerDecl *EnclosingContext;
5994  if (ObjCImplementationDecl *IMPDecl =
5995      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5996    // Case of ivar declared in an implementation. Context is that of its class.
5997    EnclosingContext = IMPDecl->getClassInterface();
5998    assert(EnclosingContext && "Implementation has no class interface!");
5999  } else {
6000    if (ObjCCategoryDecl *CDecl =
6001        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6002      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6003        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6004        return DeclPtrTy();
6005      }
6006    }
6007    EnclosingContext = EnclosingDecl;
6008  }
6009
6010  // Construct the decl.
6011  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6012                                             EnclosingContext, Loc, II, T,
6013                                             TInfo, ac, (Expr *)BitfieldWidth);
6014
6015  if (II) {
6016    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6017                                           ForRedeclaration);
6018    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6019        && !isa<TagDecl>(PrevDecl)) {
6020      Diag(Loc, diag::err_duplicate_member) << II;
6021      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6022      NewID->setInvalidDecl();
6023    }
6024  }
6025
6026  // Process attributes attached to the ivar.
6027  ProcessDeclAttributes(S, NewID, D);
6028
6029  if (D.isInvalidType())
6030    NewID->setInvalidDecl();
6031
6032  if (II) {
6033    // FIXME: When interfaces are DeclContexts, we'll need to add
6034    // these to the interface.
6035    S->AddDecl(DeclPtrTy::make(NewID));
6036    IdResolver.AddDecl(NewID);
6037  }
6038
6039  return DeclPtrTy::make(NewID);
6040}
6041
6042void Sema::ActOnFields(Scope* S,
6043                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6044                       DeclPtrTy *Fields, unsigned NumFields,
6045                       SourceLocation LBrac, SourceLocation RBrac,
6046                       AttributeList *Attr) {
6047  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6048  assert(EnclosingDecl && "missing record or interface decl");
6049
6050  // If the decl this is being inserted into is invalid, then it may be a
6051  // redeclaration or some other bogus case.  Don't try to add fields to it.
6052  if (EnclosingDecl->isInvalidDecl()) {
6053    // FIXME: Deallocate fields?
6054    return;
6055  }
6056
6057
6058  // Verify that all the fields are okay.
6059  unsigned NumNamedMembers = 0;
6060  llvm::SmallVector<FieldDecl*, 32> RecFields;
6061
6062  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6063  for (unsigned i = 0; i != NumFields; ++i) {
6064    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6065
6066    // Get the type for the field.
6067    Type *FDTy = FD->getType().getTypePtr();
6068
6069    if (!FD->isAnonymousStructOrUnion()) {
6070      // Remember all fields written by the user.
6071      RecFields.push_back(FD);
6072    }
6073
6074    // If the field is already invalid for some reason, don't emit more
6075    // diagnostics about it.
6076    if (FD->isInvalidDecl()) {
6077      EnclosingDecl->setInvalidDecl();
6078      continue;
6079    }
6080
6081    // C99 6.7.2.1p2:
6082    //   A structure or union shall not contain a member with
6083    //   incomplete or function type (hence, a structure shall not
6084    //   contain an instance of itself, but may contain a pointer to
6085    //   an instance of itself), except that the last member of a
6086    //   structure with more than one named member may have incomplete
6087    //   array type; such a structure (and any union containing,
6088    //   possibly recursively, a member that is such a structure)
6089    //   shall not be a member of a structure or an element of an
6090    //   array.
6091    if (FDTy->isFunctionType()) {
6092      // Field declared as a function.
6093      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6094        << FD->getDeclName();
6095      FD->setInvalidDecl();
6096      EnclosingDecl->setInvalidDecl();
6097      continue;
6098    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6099               Record && Record->isStruct()) {
6100      // Flexible array member.
6101      if (NumNamedMembers < 1) {
6102        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6103          << FD->getDeclName();
6104        FD->setInvalidDecl();
6105        EnclosingDecl->setInvalidDecl();
6106        continue;
6107      }
6108      // Okay, we have a legal flexible array member at the end of the struct.
6109      if (Record)
6110        Record->setHasFlexibleArrayMember(true);
6111    } else if (!FDTy->isDependentType() &&
6112               RequireCompleteType(FD->getLocation(), FD->getType(),
6113                                   diag::err_field_incomplete)) {
6114      // Incomplete type
6115      FD->setInvalidDecl();
6116      EnclosingDecl->setInvalidDecl();
6117      continue;
6118    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6119      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6120        // If this is a member of a union, then entire union becomes "flexible".
6121        if (Record && Record->isUnion()) {
6122          Record->setHasFlexibleArrayMember(true);
6123        } else {
6124          // If this is a struct/class and this is not the last element, reject
6125          // it.  Note that GCC supports variable sized arrays in the middle of
6126          // structures.
6127          if (i != NumFields-1)
6128            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6129              << FD->getDeclName() << FD->getType();
6130          else {
6131            // We support flexible arrays at the end of structs in
6132            // other structs as an extension.
6133            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6134              << FD->getDeclName();
6135            if (Record)
6136              Record->setHasFlexibleArrayMember(true);
6137          }
6138        }
6139      }
6140      if (Record && FDTTy->getDecl()->hasObjectMember())
6141        Record->setHasObjectMember(true);
6142    } else if (FDTy->isObjCInterfaceType()) {
6143      /// A field cannot be an Objective-c object
6144      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6145      FD->setInvalidDecl();
6146      EnclosingDecl->setInvalidDecl();
6147      continue;
6148    } else if (getLangOptions().ObjC1 &&
6149               getLangOptions().getGCMode() != LangOptions::NonGC &&
6150               Record &&
6151               (FD->getType()->isObjCObjectPointerType() ||
6152                FD->getType().isObjCGCStrong()))
6153      Record->setHasObjectMember(true);
6154    // Keep track of the number of named members.
6155    if (FD->getIdentifier())
6156      ++NumNamedMembers;
6157  }
6158
6159  // Okay, we successfully defined 'Record'.
6160  if (Record) {
6161    Record->completeDefinition();
6162  } else {
6163    ObjCIvarDecl **ClsFields =
6164      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6165    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6166      ID->setLocEnd(RBrac);
6167      // Add ivar's to class's DeclContext.
6168      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6169        ClsFields[i]->setLexicalDeclContext(ID);
6170        ID->addDecl(ClsFields[i]);
6171      }
6172      // Must enforce the rule that ivars in the base classes may not be
6173      // duplicates.
6174      if (ID->getSuperClass())
6175        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6176    } else if (ObjCImplementationDecl *IMPDecl =
6177                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6178      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6179      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6180        // Ivar declared in @implementation never belongs to the implementation.
6181        // Only it is in implementation's lexical context.
6182        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6183      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6184    } else if (ObjCCategoryDecl *CDecl =
6185                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6186      // case of ivars in class extension; all other cases have been
6187      // reported as errors elsewhere.
6188      // FIXME. Class extension does not have a LocEnd field.
6189      // CDecl->setLocEnd(RBrac);
6190      // Add ivar's to class extension's DeclContext.
6191      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6192        ClsFields[i]->setLexicalDeclContext(CDecl);
6193        CDecl->addDecl(ClsFields[i]);
6194      }
6195    }
6196  }
6197
6198  if (Attr)
6199    ProcessDeclAttributeList(S, Record, Attr);
6200}
6201
6202/// \brief Determine whether the given integral value is representable within
6203/// the given type T.
6204static bool isRepresentableIntegerValue(ASTContext &Context,
6205                                        llvm::APSInt &Value,
6206                                        QualType T) {
6207  assert(T->isIntegralType() && "Integral type required!");
6208  unsigned BitWidth = Context.getIntWidth(T);
6209
6210  if (Value.isUnsigned() || Value.isNonNegative())
6211    return Value.getActiveBits() < BitWidth;
6212
6213  return Value.getMinSignedBits() <= BitWidth;
6214}
6215
6216// \brief Given an integral type, return the next larger integral type
6217// (or a NULL type of no such type exists).
6218static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6219  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6220  // enum checking below.
6221  assert(T->isIntegralType() && "Integral type required!");
6222  const unsigned NumTypes = 4;
6223  QualType SignedIntegralTypes[NumTypes] = {
6224    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6225  };
6226  QualType UnsignedIntegralTypes[NumTypes] = {
6227    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6228    Context.UnsignedLongLongTy
6229  };
6230
6231  unsigned BitWidth = Context.getTypeSize(T);
6232  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6233                                            : UnsignedIntegralTypes;
6234  for (unsigned I = 0; I != NumTypes; ++I)
6235    if (Context.getTypeSize(Types[I]) > BitWidth)
6236      return Types[I];
6237
6238  return QualType();
6239}
6240
6241EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6242                                          EnumConstantDecl *LastEnumConst,
6243                                          SourceLocation IdLoc,
6244                                          IdentifierInfo *Id,
6245                                          ExprArg val) {
6246  Expr *Val = (Expr *)val.get();
6247
6248  unsigned IntWidth = Context.Target.getIntWidth();
6249  llvm::APSInt EnumVal(IntWidth);
6250  QualType EltTy;
6251  if (Val) {
6252    if (Enum->isDependentType() || Val->isTypeDependent())
6253      EltTy = Context.DependentTy;
6254    else {
6255      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6256      SourceLocation ExpLoc;
6257      if (!Val->isValueDependent() &&
6258          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6259        Val = 0;
6260      } else {
6261        if (!getLangOptions().CPlusPlus) {
6262          // C99 6.7.2.2p2:
6263          //   The expression that defines the value of an enumeration constant
6264          //   shall be an integer constant expression that has a value
6265          //   representable as an int.
6266
6267          // Complain if the value is not representable in an int.
6268          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6269            Diag(IdLoc, diag::ext_enum_value_not_int)
6270              << EnumVal.toString(10) << Val->getSourceRange()
6271              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6272          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6273            // Force the type of the expression to 'int'.
6274            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6275
6276            if (Val != val.get()) {
6277              val.release();
6278              val = Val;
6279            }
6280          }
6281        }
6282
6283        // C++0x [dcl.enum]p5:
6284        //   If the underlying type is not fixed, the type of each enumerator
6285        //   is the type of its initializing value:
6286        //     - If an initializer is specified for an enumerator, the
6287        //       initializing value has the same type as the expression.
6288        EltTy = Val->getType();
6289      }
6290    }
6291  }
6292
6293  if (!Val) {
6294    if (Enum->isDependentType())
6295      EltTy = Context.DependentTy;
6296    else if (!LastEnumConst) {
6297      // C++0x [dcl.enum]p5:
6298      //   If the underlying type is not fixed, the type of each enumerator
6299      //   is the type of its initializing value:
6300      //     - If no initializer is specified for the first enumerator, the
6301      //       initializing value has an unspecified integral type.
6302      //
6303      // GCC uses 'int' for its unspecified integral type, as does
6304      // C99 6.7.2.2p3.
6305      EltTy = Context.IntTy;
6306    } else {
6307      // Assign the last value + 1.
6308      EnumVal = LastEnumConst->getInitVal();
6309      ++EnumVal;
6310      EltTy = LastEnumConst->getType();
6311
6312      // Check for overflow on increment.
6313      if (EnumVal < LastEnumConst->getInitVal()) {
6314        // C++0x [dcl.enum]p5:
6315        //   If the underlying type is not fixed, the type of each enumerator
6316        //   is the type of its initializing value:
6317        //
6318        //     - Otherwise the type of the initializing value is the same as
6319        //       the type of the initializing value of the preceding enumerator
6320        //       unless the incremented value is not representable in that type,
6321        //       in which case the type is an unspecified integral type
6322        //       sufficient to contain the incremented value. If no such type
6323        //       exists, the program is ill-formed.
6324        QualType T = getNextLargerIntegralType(Context, EltTy);
6325        if (T.isNull()) {
6326          // There is no integral type larger enough to represent this
6327          // value. Complain, then allow the value to wrap around.
6328          EnumVal = LastEnumConst->getInitVal();
6329          EnumVal.zext(EnumVal.getBitWidth() * 2);
6330          Diag(IdLoc, diag::warn_enumerator_too_large)
6331            << EnumVal.toString(10);
6332        } else {
6333          EltTy = T;
6334        }
6335
6336        // Retrieve the last enumerator's value, extent that type to the
6337        // type that is supposed to be large enough to represent the incremented
6338        // value, then increment.
6339        EnumVal = LastEnumConst->getInitVal();
6340        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6341        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6342        ++EnumVal;
6343
6344        // If we're not in C++, diagnose the overflow of enumerator values,
6345        // which in C99 means that the enumerator value is not representable in
6346        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6347        // permits enumerator values that are representable in some larger
6348        // integral type.
6349        if (!getLangOptions().CPlusPlus && !T.isNull())
6350          Diag(IdLoc, diag::warn_enum_value_overflow);
6351      } else if (!getLangOptions().CPlusPlus &&
6352                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6353        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6354        Diag(IdLoc, diag::ext_enum_value_not_int)
6355          << EnumVal.toString(10) << 1;
6356      }
6357    }
6358  }
6359
6360  if (!EltTy->isDependentType()) {
6361    // Make the enumerator value match the signedness and size of the
6362    // enumerator's type.
6363    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6364    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6365  }
6366
6367  val.release();
6368  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6369                                  Val, EnumVal);
6370}
6371
6372
6373Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6374                                        DeclPtrTy lastEnumConst,
6375                                        SourceLocation IdLoc,
6376                                        IdentifierInfo *Id,
6377                                        SourceLocation EqualLoc, ExprTy *val) {
6378  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6379  EnumConstantDecl *LastEnumConst =
6380    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6381  Expr *Val = static_cast<Expr*>(val);
6382
6383  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6384  // we find one that is.
6385  S = getNonFieldDeclScope(S);
6386
6387  // Verify that there isn't already something declared with this name in this
6388  // scope.
6389  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6390                                         ForRedeclaration);
6391  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6392    // Maybe we will complain about the shadowed template parameter.
6393    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6394    // Just pretend that we didn't see the previous declaration.
6395    PrevDecl = 0;
6396  }
6397
6398  if (PrevDecl) {
6399    // When in C++, we may get a TagDecl with the same name; in this case the
6400    // enum constant will 'hide' the tag.
6401    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6402           "Received TagDecl when not in C++!");
6403    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6404      if (isa<EnumConstantDecl>(PrevDecl))
6405        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6406      else
6407        Diag(IdLoc, diag::err_redefinition) << Id;
6408      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6409      if (Val) Val->Destroy(Context);
6410      return DeclPtrTy();
6411    }
6412  }
6413
6414  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6415                                            IdLoc, Id, Owned(Val));
6416
6417  // Register this decl in the current scope stack.
6418  if (New) {
6419    New->setAccess(TheEnumDecl->getAccess());
6420    PushOnScopeChains(New, S);
6421  }
6422
6423  return DeclPtrTy::make(New);
6424}
6425
6426void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6427                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6428                         DeclPtrTy *Elements, unsigned NumElements,
6429                         Scope *S, AttributeList *Attr) {
6430  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6431  QualType EnumType = Context.getTypeDeclType(Enum);
6432
6433  if (Attr)
6434    ProcessDeclAttributeList(S, Enum, Attr);
6435
6436  if (Enum->isDependentType()) {
6437    for (unsigned i = 0; i != NumElements; ++i) {
6438      EnumConstantDecl *ECD =
6439        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6440      if (!ECD) continue;
6441
6442      ECD->setType(EnumType);
6443    }
6444
6445    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6446    return;
6447  }
6448
6449  // TODO: If the result value doesn't fit in an int, it must be a long or long
6450  // long value.  ISO C does not support this, but GCC does as an extension,
6451  // emit a warning.
6452  unsigned IntWidth = Context.Target.getIntWidth();
6453  unsigned CharWidth = Context.Target.getCharWidth();
6454  unsigned ShortWidth = Context.Target.getShortWidth();
6455
6456  // Verify that all the values are okay, compute the size of the values, and
6457  // reverse the list.
6458  unsigned NumNegativeBits = 0;
6459  unsigned NumPositiveBits = 0;
6460
6461  // Keep track of whether all elements have type int.
6462  bool AllElementsInt = true;
6463
6464  for (unsigned i = 0; i != NumElements; ++i) {
6465    EnumConstantDecl *ECD =
6466      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6467    if (!ECD) continue;  // Already issued a diagnostic.
6468
6469    const llvm::APSInt &InitVal = ECD->getInitVal();
6470
6471    // Keep track of the size of positive and negative values.
6472    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6473      NumPositiveBits = std::max(NumPositiveBits,
6474                                 (unsigned)InitVal.getActiveBits());
6475    else
6476      NumNegativeBits = std::max(NumNegativeBits,
6477                                 (unsigned)InitVal.getMinSignedBits());
6478
6479    // Keep track of whether every enum element has type int (very commmon).
6480    if (AllElementsInt)
6481      AllElementsInt = ECD->getType() == Context.IntTy;
6482  }
6483
6484  // Figure out the type that should be used for this enum.
6485  // FIXME: Support -fshort-enums.
6486  QualType BestType;
6487  unsigned BestWidth;
6488
6489  // C++0x N3000 [conv.prom]p3:
6490  //   An rvalue of an unscoped enumeration type whose underlying
6491  //   type is not fixed can be converted to an rvalue of the first
6492  //   of the following types that can represent all the values of
6493  //   the enumeration: int, unsigned int, long int, unsigned long
6494  //   int, long long int, or unsigned long long int.
6495  // C99 6.4.4.3p2:
6496  //   An identifier declared as an enumeration constant has type int.
6497  // The C99 rule is modified by a gcc extension
6498  QualType BestPromotionType;
6499
6500  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6501
6502  if (NumNegativeBits) {
6503    // If there is a negative value, figure out the smallest integer type (of
6504    // int/long/longlong) that fits.
6505    // If it's packed, check also if it fits a char or a short.
6506    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6507      BestType = Context.SignedCharTy;
6508      BestWidth = CharWidth;
6509    } else if (Packed && NumNegativeBits <= ShortWidth &&
6510               NumPositiveBits < ShortWidth) {
6511      BestType = Context.ShortTy;
6512      BestWidth = ShortWidth;
6513    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6514      BestType = Context.IntTy;
6515      BestWidth = IntWidth;
6516    } else {
6517      BestWidth = Context.Target.getLongWidth();
6518
6519      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6520        BestType = Context.LongTy;
6521      } else {
6522        BestWidth = Context.Target.getLongLongWidth();
6523
6524        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6525          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6526        BestType = Context.LongLongTy;
6527      }
6528    }
6529    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6530  } else {
6531    // If there is no negative value, figure out the smallest type that fits
6532    // all of the enumerator values.
6533    // If it's packed, check also if it fits a char or a short.
6534    if (Packed && NumPositiveBits <= CharWidth) {
6535      BestType = Context.UnsignedCharTy;
6536      BestPromotionType = Context.IntTy;
6537      BestWidth = CharWidth;
6538    } else if (Packed && NumPositiveBits <= ShortWidth) {
6539      BestType = Context.UnsignedShortTy;
6540      BestPromotionType = Context.IntTy;
6541      BestWidth = ShortWidth;
6542    } else if (NumPositiveBits <= IntWidth) {
6543      BestType = Context.UnsignedIntTy;
6544      BestWidth = IntWidth;
6545      BestPromotionType
6546        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6547                           ? Context.UnsignedIntTy : Context.IntTy;
6548    } else if (NumPositiveBits <=
6549               (BestWidth = Context.Target.getLongWidth())) {
6550      BestType = Context.UnsignedLongTy;
6551      BestPromotionType
6552        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6553                           ? Context.UnsignedLongTy : Context.LongTy;
6554    } else {
6555      BestWidth = Context.Target.getLongLongWidth();
6556      assert(NumPositiveBits <= BestWidth &&
6557             "How could an initializer get larger than ULL?");
6558      BestType = Context.UnsignedLongLongTy;
6559      BestPromotionType
6560        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6561                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6562    }
6563  }
6564
6565  // Loop over all of the enumerator constants, changing their types to match
6566  // the type of the enum if needed.
6567  for (unsigned i = 0; i != NumElements; ++i) {
6568    EnumConstantDecl *ECD =
6569      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6570    if (!ECD) continue;  // Already issued a diagnostic.
6571
6572    // Standard C says the enumerators have int type, but we allow, as an
6573    // extension, the enumerators to be larger than int size.  If each
6574    // enumerator value fits in an int, type it as an int, otherwise type it the
6575    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6576    // that X has type 'int', not 'unsigned'.
6577
6578    // Determine whether the value fits into an int.
6579    llvm::APSInt InitVal = ECD->getInitVal();
6580
6581    // If it fits into an integer type, force it.  Otherwise force it to match
6582    // the enum decl type.
6583    QualType NewTy;
6584    unsigned NewWidth;
6585    bool NewSign;
6586    if (!getLangOptions().CPlusPlus &&
6587        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6588      NewTy = Context.IntTy;
6589      NewWidth = IntWidth;
6590      NewSign = true;
6591    } else if (ECD->getType() == BestType) {
6592      // Already the right type!
6593      if (getLangOptions().CPlusPlus)
6594        // C++ [dcl.enum]p4: Following the closing brace of an
6595        // enum-specifier, each enumerator has the type of its
6596        // enumeration.
6597        ECD->setType(EnumType);
6598      continue;
6599    } else {
6600      NewTy = BestType;
6601      NewWidth = BestWidth;
6602      NewSign = BestType->isSignedIntegerType();
6603    }
6604
6605    // Adjust the APSInt value.
6606    InitVal.extOrTrunc(NewWidth);
6607    InitVal.setIsSigned(NewSign);
6608    ECD->setInitVal(InitVal);
6609
6610    // Adjust the Expr initializer and type.
6611    if (ECD->getInitExpr())
6612      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6613                                                      CastExpr::CK_IntegralCast,
6614                                                      ECD->getInitExpr(),
6615                                                      CXXBaseSpecifierArray(),
6616                                                      /*isLvalue=*/false));
6617    if (getLangOptions().CPlusPlus)
6618      // C++ [dcl.enum]p4: Following the closing brace of an
6619      // enum-specifier, each enumerator has the type of its
6620      // enumeration.
6621      ECD->setType(EnumType);
6622    else
6623      ECD->setType(NewTy);
6624  }
6625
6626  Enum->completeDefinition(BestType, BestPromotionType,
6627                           NumPositiveBits, NumNegativeBits);
6628}
6629
6630Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6631                                            ExprArg expr) {
6632  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6633
6634  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6635                                                   Loc, AsmString);
6636  CurContext->addDecl(New);
6637  return DeclPtrTy::make(New);
6638}
6639
6640void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6641                             SourceLocation PragmaLoc,
6642                             SourceLocation NameLoc) {
6643  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6644
6645  if (PrevDecl) {
6646    PrevDecl->addAttr(::new (Context) WeakAttr());
6647  } else {
6648    (void)WeakUndeclaredIdentifiers.insert(
6649      std::pair<IdentifierInfo*,WeakInfo>
6650        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6651  }
6652}
6653
6654void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6655                                IdentifierInfo* AliasName,
6656                                SourceLocation PragmaLoc,
6657                                SourceLocation NameLoc,
6658                                SourceLocation AliasNameLoc) {
6659  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6660                                    LookupOrdinaryName);
6661  WeakInfo W = WeakInfo(Name, NameLoc);
6662
6663  if (PrevDecl) {
6664    if (!PrevDecl->hasAttr<AliasAttr>())
6665      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6666        DeclApplyPragmaWeak(TUScope, ND, W);
6667  } else {
6668    (void)WeakUndeclaredIdentifiers.insert(
6669      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6670  }
6671}
6672