SemaDecl.cpp revision 5b9cc5df25c2198f270dd1d5c438fdce70d4051d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOptions().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOptions()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOptions().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOptions().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOptions().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOptions().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  PushDeclContext(S, FD);
876  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877    ParmVarDecl *Param = FD->getParamDecl(P);
878    // If the parameter has an identifier, then add it to the scope
879    if (Param->getIdentifier()) {
880      S->AddDecl(Param);
881      IdResolver.AddDecl(Param);
882    }
883  }
884}
885
886
887/// \brief Determine whether we allow overloading of the function
888/// PrevDecl with another declaration.
889///
890/// This routine determines whether overloading is possible, not
891/// whether some new function is actually an overload. It will return
892/// true in C++ (where we can always provide overloads) or, as an
893/// extension, in C when the previous function is already an
894/// overloaded function declaration or has the "overloadable"
895/// attribute.
896static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                       ASTContext &Context) {
898  if (Context.getLangOptions().CPlusPlus)
899    return true;
900
901  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902    return true;
903
904  return (Previous.getResultKind() == LookupResult::Found
905          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906}
907
908/// Add this decl to the scope shadowed decl chains.
909void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910  // Move up the scope chain until we find the nearest enclosing
911  // non-transparent context. The declaration will be introduced into this
912  // scope.
913  while (S->getEntity() &&
914         ((DeclContext *)S->getEntity())->isTransparentContext())
915    S = S->getParent();
916
917  // Add scoped declarations into their context, so that they can be
918  // found later. Declarations without a context won't be inserted
919  // into any context.
920  if (AddToContext)
921    CurContext->addDecl(D);
922
923  // Out-of-line definitions shouldn't be pushed into scope in C++.
924  // Out-of-line variable and function definitions shouldn't even in C.
925  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926      D->isOutOfLine() &&
927      !D->getDeclContext()->getRedeclContext()->Equals(
928        D->getLexicalDeclContext()->getRedeclContext()))
929    return;
930
931  // Template instantiations should also not be pushed into scope.
932  if (isa<FunctionDecl>(D) &&
933      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934    return;
935
936  // If this replaces anything in the current scope,
937  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                               IEnd = IdResolver.end();
939  for (; I != IEnd; ++I) {
940    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941      S->RemoveDecl(*I);
942      IdResolver.RemoveDecl(*I);
943
944      // Should only need to replace one decl.
945      break;
946    }
947  }
948
949  S->AddDecl(D);
950
951  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952    // Implicitly-generated labels may end up getting generated in an order that
953    // isn't strictly lexical, which breaks name lookup. Be careful to insert
954    // the label at the appropriate place in the identifier chain.
955    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957      if (IDC == CurContext) {
958        if (!S->isDeclScope(*I))
959          continue;
960      } else if (IDC->Encloses(CurContext))
961        break;
962    }
963
964    IdResolver.InsertDeclAfter(I, D);
965  } else {
966    IdResolver.AddDecl(D);
967  }
968}
969
970void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972    TUScope->AddDecl(D);
973}
974
975bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                         bool ExplicitInstantiationOrSpecialization) {
977  return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                  ExplicitInstantiationOrSpecialization);
979}
980
981Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982  DeclContext *TargetDC = DC->getPrimaryContext();
983  do {
984    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985      if (ScopeDC->getPrimaryContext() == TargetDC)
986        return S;
987  } while ((S = S->getParent()));
988
989  return 0;
990}
991
992static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                            DeclContext*,
994                                            ASTContext&);
995
996/// Filters out lookup results that don't fall within the given scope
997/// as determined by isDeclInScope.
998void Sema::FilterLookupForScope(LookupResult &R,
999                                DeclContext *Ctx, Scope *S,
1000                                bool ConsiderLinkage,
1001                                bool ExplicitInstantiationOrSpecialization) {
1002  LookupResult::Filter F = R.makeFilter();
1003  while (F.hasNext()) {
1004    NamedDecl *D = F.next();
1005
1006    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007      continue;
1008
1009    if (ConsiderLinkage &&
1010        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011      continue;
1012
1013    F.erase();
1014  }
1015
1016  F.done();
1017}
1018
1019static bool isUsingDecl(NamedDecl *D) {
1020  return isa<UsingShadowDecl>(D) ||
1021         isa<UnresolvedUsingTypenameDecl>(D) ||
1022         isa<UnresolvedUsingValueDecl>(D);
1023}
1024
1025/// Removes using shadow declarations from the lookup results.
1026static void RemoveUsingDecls(LookupResult &R) {
1027  LookupResult::Filter F = R.makeFilter();
1028  while (F.hasNext())
1029    if (isUsingDecl(F.next()))
1030      F.erase();
1031
1032  F.done();
1033}
1034
1035/// \brief Check for this common pattern:
1036/// @code
1037/// class S {
1038///   S(const S&); // DO NOT IMPLEMENT
1039///   void operator=(const S&); // DO NOT IMPLEMENT
1040/// };
1041/// @endcode
1042static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043  // FIXME: Should check for private access too but access is set after we get
1044  // the decl here.
1045  if (D->doesThisDeclarationHaveABody())
1046    return false;
1047
1048  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049    return CD->isCopyConstructor();
1050  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051    return Method->isCopyAssignmentOperator();
1052  return false;
1053}
1054
1055bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056  assert(D);
1057
1058  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059    return false;
1060
1061  // Ignore class templates.
1062  if (D->getDeclContext()->isDependentContext() ||
1063      D->getLexicalDeclContext()->isDependentContext())
1064    return false;
1065
1066  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068      return false;
1069
1070    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072        return false;
1073    } else {
1074      // 'static inline' functions are used in headers; don't warn.
1075      if (FD->getStorageClass() == SC_Static &&
1076          FD->isInlineSpecified())
1077        return false;
1078    }
1079
1080    if (FD->doesThisDeclarationHaveABody() &&
1081        Context.DeclMustBeEmitted(FD))
1082      return false;
1083  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    if (!VD->isFileVarDecl() ||
1085        VD->getType().isConstant(Context) ||
1086        Context.DeclMustBeEmitted(VD))
1087      return false;
1088
1089    if (VD->isStaticDataMember() &&
1090        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091      return false;
1092
1093  } else {
1094    return false;
1095  }
1096
1097  // Only warn for unused decls internal to the translation unit.
1098  if (D->getLinkage() == ExternalLinkage)
1099    return false;
1100
1101  return true;
1102}
1103
1104void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105  if (!D)
1106    return;
1107
1108  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109    const FunctionDecl *First = FD->getFirstDeclaration();
1110    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111      return; // First should already be in the vector.
1112  }
1113
1114  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115    const VarDecl *First = VD->getFirstDeclaration();
1116    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117      return; // First should already be in the vector.
1118  }
1119
1120   if (ShouldWarnIfUnusedFileScopedDecl(D))
1121     UnusedFileScopedDecls.push_back(D);
1122 }
1123
1124static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125  if (D->isInvalidDecl())
1126    return false;
1127
1128  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129    return false;
1130
1131  if (isa<LabelDecl>(D))
1132    return true;
1133
1134  // White-list anything that isn't a local variable.
1135  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136      !D->getDeclContext()->isFunctionOrMethod())
1137    return false;
1138
1139  // Types of valid local variables should be complete, so this should succeed.
1140  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141
1142    // White-list anything with an __attribute__((unused)) type.
1143    QualType Ty = VD->getType();
1144
1145    // Only look at the outermost level of typedef.
1146    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147      if (TT->getDecl()->hasAttr<UnusedAttr>())
1148        return false;
1149    }
1150
1151    // If we failed to complete the type for some reason, or if the type is
1152    // dependent, don't diagnose the variable.
1153    if (Ty->isIncompleteType() || Ty->isDependentType())
1154      return false;
1155
1156    if (const TagType *TT = Ty->getAs<TagType>()) {
1157      const TagDecl *Tag = TT->getDecl();
1158      if (Tag->hasAttr<UnusedAttr>())
1159        return false;
1160
1161      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162        if (!RD->hasTrivialDestructor())
1163          return false;
1164
1165        if (const Expr *Init = VD->getInit()) {
1166          const CXXConstructExpr *Construct =
1167            dyn_cast<CXXConstructExpr>(Init);
1168          if (Construct && !Construct->isElidable()) {
1169            CXXConstructorDecl *CD = Construct->getConstructor();
1170            if (!CD->isTrivial())
1171              return false;
1172          }
1173        }
1174      }
1175    }
1176
1177    // TODO: __attribute__((unused)) templates?
1178  }
1179
1180  return true;
1181}
1182
1183static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                     FixItHint &Hint) {
1185  if (isa<LabelDecl>(D)) {
1186    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1188    if (AfterColon.isInvalid())
1189      return;
1190    Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                    getCharRange(D->getLocStart(), AfterColon));
1192  }
1193  return;
1194}
1195
1196/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197/// unless they are marked attr(unused).
1198void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199  FixItHint Hint;
1200  if (!ShouldDiagnoseUnusedDecl(D))
1201    return;
1202
1203  GenerateFixForUnusedDecl(D, Context, Hint);
1204
1205  unsigned DiagID;
1206  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207    DiagID = diag::warn_unused_exception_param;
1208  else if (isa<LabelDecl>(D))
1209    DiagID = diag::warn_unused_label;
1210  else
1211    DiagID = diag::warn_unused_variable;
1212
1213  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214}
1215
1216static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217  // Verify that we have no forward references left.  If so, there was a goto
1218  // or address of a label taken, but no definition of it.  Label fwd
1219  // definitions are indicated with a null substmt.
1220  if (L->getStmt() == 0)
1221    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222}
1223
1224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225  if (S->decl_empty()) return;
1226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227         "Scope shouldn't contain decls!");
1228
1229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230       I != E; ++I) {
1231    Decl *TmpD = (*I);
1232    assert(TmpD && "This decl didn't get pushed??");
1233
1234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235    NamedDecl *D = cast<NamedDecl>(TmpD);
1236
1237    if (!D->getDeclName()) continue;
1238
1239    // Diagnose unused variables in this scope.
1240    if (!S->hasErrorOccurred())
1241      DiagnoseUnusedDecl(D);
1242
1243    // If this was a forward reference to a label, verify it was defined.
1244    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245      CheckPoppedLabel(LD, *this);
1246
1247    // Remove this name from our lexical scope.
1248    IdResolver.RemoveDecl(D);
1249  }
1250}
1251
1252/// \brief Look for an Objective-C class in the translation unit.
1253///
1254/// \param Id The name of the Objective-C class we're looking for. If
1255/// typo-correction fixes this name, the Id will be updated
1256/// to the fixed name.
1257///
1258/// \param IdLoc The location of the name in the translation unit.
1259///
1260/// \param TypoCorrection If true, this routine will attempt typo correction
1261/// if there is no class with the given name.
1262///
1263/// \returns The declaration of the named Objective-C class, or NULL if the
1264/// class could not be found.
1265ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1266                                              SourceLocation IdLoc,
1267                                              bool DoTypoCorrection) {
1268  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1269  // creation from this context.
1270  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1271
1272  if (!IDecl && DoTypoCorrection) {
1273    // Perform typo correction at the given location, but only if we
1274    // find an Objective-C class name.
1275    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1276    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1277                                       LookupOrdinaryName, TUScope, NULL,
1278                                       Validator)) {
1279      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1280      Diag(IdLoc, diag::err_undef_interface_suggest)
1281        << Id << IDecl->getDeclName()
1282        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1283      Diag(IDecl->getLocation(), diag::note_previous_decl)
1284        << IDecl->getDeclName();
1285
1286      Id = IDecl->getIdentifier();
1287    }
1288  }
1289  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1290  // This routine must always return a class definition, if any.
1291  if (Def && Def->getDefinition())
1292      Def = Def->getDefinition();
1293  return Def;
1294}
1295
1296/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1297/// from S, where a non-field would be declared. This routine copes
1298/// with the difference between C and C++ scoping rules in structs and
1299/// unions. For example, the following code is well-formed in C but
1300/// ill-formed in C++:
1301/// @code
1302/// struct S6 {
1303///   enum { BAR } e;
1304/// };
1305///
1306/// void test_S6() {
1307///   struct S6 a;
1308///   a.e = BAR;
1309/// }
1310/// @endcode
1311/// For the declaration of BAR, this routine will return a different
1312/// scope. The scope S will be the scope of the unnamed enumeration
1313/// within S6. In C++, this routine will return the scope associated
1314/// with S6, because the enumeration's scope is a transparent
1315/// context but structures can contain non-field names. In C, this
1316/// routine will return the translation unit scope, since the
1317/// enumeration's scope is a transparent context and structures cannot
1318/// contain non-field names.
1319Scope *Sema::getNonFieldDeclScope(Scope *S) {
1320  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1321         (S->getEntity() &&
1322          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1323         (S->isClassScope() && !getLangOptions().CPlusPlus))
1324    S = S->getParent();
1325  return S;
1326}
1327
1328/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1329/// file scope.  lazily create a decl for it. ForRedeclaration is true
1330/// if we're creating this built-in in anticipation of redeclaring the
1331/// built-in.
1332NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1333                                     Scope *S, bool ForRedeclaration,
1334                                     SourceLocation Loc) {
1335  Builtin::ID BID = (Builtin::ID)bid;
1336
1337  ASTContext::GetBuiltinTypeError Error;
1338  QualType R = Context.GetBuiltinType(BID, Error);
1339  switch (Error) {
1340  case ASTContext::GE_None:
1341    // Okay
1342    break;
1343
1344  case ASTContext::GE_Missing_stdio:
1345    if (ForRedeclaration)
1346      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1347        << Context.BuiltinInfo.GetName(BID);
1348    return 0;
1349
1350  case ASTContext::GE_Missing_setjmp:
1351    if (ForRedeclaration)
1352      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1353        << Context.BuiltinInfo.GetName(BID);
1354    return 0;
1355
1356  case ASTContext::GE_Missing_ucontext:
1357    if (ForRedeclaration)
1358      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1359        << Context.BuiltinInfo.GetName(BID);
1360    return 0;
1361  }
1362
1363  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1364    Diag(Loc, diag::ext_implicit_lib_function_decl)
1365      << Context.BuiltinInfo.GetName(BID)
1366      << R;
1367    if (Context.BuiltinInfo.getHeaderName(BID) &&
1368        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1369          != DiagnosticsEngine::Ignored)
1370      Diag(Loc, diag::note_please_include_header)
1371        << Context.BuiltinInfo.getHeaderName(BID)
1372        << Context.BuiltinInfo.GetName(BID);
1373  }
1374
1375  FunctionDecl *New = FunctionDecl::Create(Context,
1376                                           Context.getTranslationUnitDecl(),
1377                                           Loc, Loc, II, R, /*TInfo=*/0,
1378                                           SC_Extern,
1379                                           SC_None, false,
1380                                           /*hasPrototype=*/true);
1381  New->setImplicit();
1382
1383  // Create Decl objects for each parameter, adding them to the
1384  // FunctionDecl.
1385  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1386    SmallVector<ParmVarDecl*, 16> Params;
1387    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1388      ParmVarDecl *parm =
1389        ParmVarDecl::Create(Context, New, SourceLocation(),
1390                            SourceLocation(), 0,
1391                            FT->getArgType(i), /*TInfo=*/0,
1392                            SC_None, SC_None, 0);
1393      parm->setScopeInfo(0, i);
1394      Params.push_back(parm);
1395    }
1396    New->setParams(Params);
1397  }
1398
1399  AddKnownFunctionAttributes(New);
1400
1401  // TUScope is the translation-unit scope to insert this function into.
1402  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1403  // relate Scopes to DeclContexts, and probably eliminate CurContext
1404  // entirely, but we're not there yet.
1405  DeclContext *SavedContext = CurContext;
1406  CurContext = Context.getTranslationUnitDecl();
1407  PushOnScopeChains(New, TUScope);
1408  CurContext = SavedContext;
1409  return New;
1410}
1411
1412bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1413  QualType OldType;
1414  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1415    OldType = OldTypedef->getUnderlyingType();
1416  else
1417    OldType = Context.getTypeDeclType(Old);
1418  QualType NewType = New->getUnderlyingType();
1419
1420  if (NewType->isVariablyModifiedType()) {
1421    // Must not redefine a typedef with a variably-modified type.
1422    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1423    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1424      << Kind << NewType;
1425    if (Old->getLocation().isValid())
1426      Diag(Old->getLocation(), diag::note_previous_definition);
1427    New->setInvalidDecl();
1428    return true;
1429  }
1430
1431  if (OldType != NewType &&
1432      !OldType->isDependentType() &&
1433      !NewType->isDependentType() &&
1434      !Context.hasSameType(OldType, NewType)) {
1435    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1436    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1437      << Kind << NewType << OldType;
1438    if (Old->getLocation().isValid())
1439      Diag(Old->getLocation(), diag::note_previous_definition);
1440    New->setInvalidDecl();
1441    return true;
1442  }
1443  return false;
1444}
1445
1446/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1447/// same name and scope as a previous declaration 'Old'.  Figure out
1448/// how to resolve this situation, merging decls or emitting
1449/// diagnostics as appropriate. If there was an error, set New to be invalid.
1450///
1451void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1452  // If the new decl is known invalid already, don't bother doing any
1453  // merging checks.
1454  if (New->isInvalidDecl()) return;
1455
1456  // Allow multiple definitions for ObjC built-in typedefs.
1457  // FIXME: Verify the underlying types are equivalent!
1458  if (getLangOptions().ObjC1) {
1459    const IdentifierInfo *TypeID = New->getIdentifier();
1460    switch (TypeID->getLength()) {
1461    default: break;
1462    case 2:
1463      if (!TypeID->isStr("id"))
1464        break;
1465      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1466      // Install the built-in type for 'id', ignoring the current definition.
1467      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1468      return;
1469    case 5:
1470      if (!TypeID->isStr("Class"))
1471        break;
1472      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1473      // Install the built-in type for 'Class', ignoring the current definition.
1474      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1475      return;
1476    case 3:
1477      if (!TypeID->isStr("SEL"))
1478        break;
1479      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1480      // Install the built-in type for 'SEL', ignoring the current definition.
1481      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1482      return;
1483    }
1484    // Fall through - the typedef name was not a builtin type.
1485  }
1486
1487  // Verify the old decl was also a type.
1488  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1489  if (!Old) {
1490    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1491      << New->getDeclName();
1492
1493    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1494    if (OldD->getLocation().isValid())
1495      Diag(OldD->getLocation(), diag::note_previous_definition);
1496
1497    return New->setInvalidDecl();
1498  }
1499
1500  // If the old declaration is invalid, just give up here.
1501  if (Old->isInvalidDecl())
1502    return New->setInvalidDecl();
1503
1504  // If the typedef types are not identical, reject them in all languages and
1505  // with any extensions enabled.
1506  if (isIncompatibleTypedef(Old, New))
1507    return;
1508
1509  // The types match.  Link up the redeclaration chain if the old
1510  // declaration was a typedef.
1511  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1512    New->setPreviousDeclaration(Typedef);
1513
1514  if (getLangOptions().MicrosoftExt)
1515    return;
1516
1517  if (getLangOptions().CPlusPlus) {
1518    // C++ [dcl.typedef]p2:
1519    //   In a given non-class scope, a typedef specifier can be used to
1520    //   redefine the name of any type declared in that scope to refer
1521    //   to the type to which it already refers.
1522    if (!isa<CXXRecordDecl>(CurContext))
1523      return;
1524
1525    // C++0x [dcl.typedef]p4:
1526    //   In a given class scope, a typedef specifier can be used to redefine
1527    //   any class-name declared in that scope that is not also a typedef-name
1528    //   to refer to the type to which it already refers.
1529    //
1530    // This wording came in via DR424, which was a correction to the
1531    // wording in DR56, which accidentally banned code like:
1532    //
1533    //   struct S {
1534    //     typedef struct A { } A;
1535    //   };
1536    //
1537    // in the C++03 standard. We implement the C++0x semantics, which
1538    // allow the above but disallow
1539    //
1540    //   struct S {
1541    //     typedef int I;
1542    //     typedef int I;
1543    //   };
1544    //
1545    // since that was the intent of DR56.
1546    if (!isa<TypedefNameDecl>(Old))
1547      return;
1548
1549    Diag(New->getLocation(), diag::err_redefinition)
1550      << New->getDeclName();
1551    Diag(Old->getLocation(), diag::note_previous_definition);
1552    return New->setInvalidDecl();
1553  }
1554
1555  // Modules always permit redefinition of typedefs, as does C11.
1556  if (getLangOptions().Modules || getLangOptions().C11)
1557    return;
1558
1559  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1560  // is normally mapped to an error, but can be controlled with
1561  // -Wtypedef-redefinition.  If either the original or the redefinition is
1562  // in a system header, don't emit this for compatibility with GCC.
1563  if (getDiagnostics().getSuppressSystemWarnings() &&
1564      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1565       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1566    return;
1567
1568  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1569    << New->getDeclName();
1570  Diag(Old->getLocation(), diag::note_previous_definition);
1571  return;
1572}
1573
1574/// DeclhasAttr - returns true if decl Declaration already has the target
1575/// attribute.
1576static bool
1577DeclHasAttr(const Decl *D, const Attr *A) {
1578  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1579  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1580  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1581    if ((*i)->getKind() == A->getKind()) {
1582      if (Ann) {
1583        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1584          return true;
1585        continue;
1586      }
1587      // FIXME: Don't hardcode this check
1588      if (OA && isa<OwnershipAttr>(*i))
1589        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1590      return true;
1591    }
1592
1593  return false;
1594}
1595
1596/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1597void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1598                               bool MergeDeprecation) {
1599  if (!Old->hasAttrs())
1600    return;
1601
1602  bool foundAny = New->hasAttrs();
1603
1604  // Ensure that any moving of objects within the allocated map is done before
1605  // we process them.
1606  if (!foundAny) New->setAttrs(AttrVec());
1607
1608  for (specific_attr_iterator<InheritableAttr>
1609         i = Old->specific_attr_begin<InheritableAttr>(),
1610         e = Old->specific_attr_end<InheritableAttr>();
1611       i != e; ++i) {
1612    // Ignore deprecated/unavailable/availability attributes if requested.
1613    if (!MergeDeprecation &&
1614        (isa<DeprecatedAttr>(*i) ||
1615         isa<UnavailableAttr>(*i) ||
1616         isa<AvailabilityAttr>(*i)))
1617      continue;
1618
1619    if (!DeclHasAttr(New, *i)) {
1620      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1621      newAttr->setInherited(true);
1622      New->addAttr(newAttr);
1623      foundAny = true;
1624    }
1625  }
1626
1627  if (!foundAny) New->dropAttrs();
1628}
1629
1630/// mergeParamDeclAttributes - Copy attributes from the old parameter
1631/// to the new one.
1632static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1633                                     const ParmVarDecl *oldDecl,
1634                                     ASTContext &C) {
1635  if (!oldDecl->hasAttrs())
1636    return;
1637
1638  bool foundAny = newDecl->hasAttrs();
1639
1640  // Ensure that any moving of objects within the allocated map is
1641  // done before we process them.
1642  if (!foundAny) newDecl->setAttrs(AttrVec());
1643
1644  for (specific_attr_iterator<InheritableParamAttr>
1645       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1646       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1647    if (!DeclHasAttr(newDecl, *i)) {
1648      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1649      newAttr->setInherited(true);
1650      newDecl->addAttr(newAttr);
1651      foundAny = true;
1652    }
1653  }
1654
1655  if (!foundAny) newDecl->dropAttrs();
1656}
1657
1658namespace {
1659
1660/// Used in MergeFunctionDecl to keep track of function parameters in
1661/// C.
1662struct GNUCompatibleParamWarning {
1663  ParmVarDecl *OldParm;
1664  ParmVarDecl *NewParm;
1665  QualType PromotedType;
1666};
1667
1668}
1669
1670/// getSpecialMember - get the special member enum for a method.
1671Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1672  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1673    if (Ctor->isDefaultConstructor())
1674      return Sema::CXXDefaultConstructor;
1675
1676    if (Ctor->isCopyConstructor())
1677      return Sema::CXXCopyConstructor;
1678
1679    if (Ctor->isMoveConstructor())
1680      return Sema::CXXMoveConstructor;
1681  } else if (isa<CXXDestructorDecl>(MD)) {
1682    return Sema::CXXDestructor;
1683  } else if (MD->isCopyAssignmentOperator()) {
1684    return Sema::CXXCopyAssignment;
1685  } else if (MD->isMoveAssignmentOperator()) {
1686    return Sema::CXXMoveAssignment;
1687  }
1688
1689  return Sema::CXXInvalid;
1690}
1691
1692/// canRedefineFunction - checks if a function can be redefined. Currently,
1693/// only extern inline functions can be redefined, and even then only in
1694/// GNU89 mode.
1695static bool canRedefineFunction(const FunctionDecl *FD,
1696                                const LangOptions& LangOpts) {
1697  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1698          !LangOpts.CPlusPlus &&
1699          FD->isInlineSpecified() &&
1700          FD->getStorageClass() == SC_Extern);
1701}
1702
1703/// MergeFunctionDecl - We just parsed a function 'New' from
1704/// declarator D which has the same name and scope as a previous
1705/// declaration 'Old'.  Figure out how to resolve this situation,
1706/// merging decls or emitting diagnostics as appropriate.
1707///
1708/// In C++, New and Old must be declarations that are not
1709/// overloaded. Use IsOverload to determine whether New and Old are
1710/// overloaded, and to select the Old declaration that New should be
1711/// merged with.
1712///
1713/// Returns true if there was an error, false otherwise.
1714bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1715  // Verify the old decl was also a function.
1716  FunctionDecl *Old = 0;
1717  if (FunctionTemplateDecl *OldFunctionTemplate
1718        = dyn_cast<FunctionTemplateDecl>(OldD))
1719    Old = OldFunctionTemplate->getTemplatedDecl();
1720  else
1721    Old = dyn_cast<FunctionDecl>(OldD);
1722  if (!Old) {
1723    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1724      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1725      Diag(Shadow->getTargetDecl()->getLocation(),
1726           diag::note_using_decl_target);
1727      Diag(Shadow->getUsingDecl()->getLocation(),
1728           diag::note_using_decl) << 0;
1729      return true;
1730    }
1731
1732    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1733      << New->getDeclName();
1734    Diag(OldD->getLocation(), diag::note_previous_definition);
1735    return true;
1736  }
1737
1738  // Determine whether the previous declaration was a definition,
1739  // implicit declaration, or a declaration.
1740  diag::kind PrevDiag;
1741  if (Old->isThisDeclarationADefinition())
1742    PrevDiag = diag::note_previous_definition;
1743  else if (Old->isImplicit())
1744    PrevDiag = diag::note_previous_implicit_declaration;
1745  else
1746    PrevDiag = diag::note_previous_declaration;
1747
1748  QualType OldQType = Context.getCanonicalType(Old->getType());
1749  QualType NewQType = Context.getCanonicalType(New->getType());
1750
1751  // Don't complain about this if we're in GNU89 mode and the old function
1752  // is an extern inline function.
1753  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1754      New->getStorageClass() == SC_Static &&
1755      Old->getStorageClass() != SC_Static &&
1756      !canRedefineFunction(Old, getLangOptions())) {
1757    if (getLangOptions().MicrosoftExt) {
1758      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1759      Diag(Old->getLocation(), PrevDiag);
1760    } else {
1761      Diag(New->getLocation(), diag::err_static_non_static) << New;
1762      Diag(Old->getLocation(), PrevDiag);
1763      return true;
1764    }
1765  }
1766
1767  // If a function is first declared with a calling convention, but is
1768  // later declared or defined without one, the second decl assumes the
1769  // calling convention of the first.
1770  //
1771  // For the new decl, we have to look at the NON-canonical type to tell the
1772  // difference between a function that really doesn't have a calling
1773  // convention and one that is declared cdecl. That's because in
1774  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1775  // because it is the default calling convention.
1776  //
1777  // Note also that we DO NOT return at this point, because we still have
1778  // other tests to run.
1779  const FunctionType *OldType = cast<FunctionType>(OldQType);
1780  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1781  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1782  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1783  bool RequiresAdjustment = false;
1784  if (OldTypeInfo.getCC() != CC_Default &&
1785      NewTypeInfo.getCC() == CC_Default) {
1786    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1787    RequiresAdjustment = true;
1788  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1789                                     NewTypeInfo.getCC())) {
1790    // Calling conventions really aren't compatible, so complain.
1791    Diag(New->getLocation(), diag::err_cconv_change)
1792      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1793      << (OldTypeInfo.getCC() == CC_Default)
1794      << (OldTypeInfo.getCC() == CC_Default ? "" :
1795          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1796    Diag(Old->getLocation(), diag::note_previous_declaration);
1797    return true;
1798  }
1799
1800  // FIXME: diagnose the other way around?
1801  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1802    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1803    RequiresAdjustment = true;
1804  }
1805
1806  // Merge regparm attribute.
1807  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1808      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1809    if (NewTypeInfo.getHasRegParm()) {
1810      Diag(New->getLocation(), diag::err_regparm_mismatch)
1811        << NewType->getRegParmType()
1812        << OldType->getRegParmType();
1813      Diag(Old->getLocation(), diag::note_previous_declaration);
1814      return true;
1815    }
1816
1817    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1818    RequiresAdjustment = true;
1819  }
1820
1821  // Merge ns_returns_retained attribute.
1822  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1823    if (NewTypeInfo.getProducesResult()) {
1824      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1825      Diag(Old->getLocation(), diag::note_previous_declaration);
1826      return true;
1827    }
1828
1829    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1830    RequiresAdjustment = true;
1831  }
1832
1833  if (RequiresAdjustment) {
1834    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1835    New->setType(QualType(NewType, 0));
1836    NewQType = Context.getCanonicalType(New->getType());
1837  }
1838
1839  if (getLangOptions().CPlusPlus) {
1840    // (C++98 13.1p2):
1841    //   Certain function declarations cannot be overloaded:
1842    //     -- Function declarations that differ only in the return type
1843    //        cannot be overloaded.
1844    QualType OldReturnType = OldType->getResultType();
1845    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1846    QualType ResQT;
1847    if (OldReturnType != NewReturnType) {
1848      if (NewReturnType->isObjCObjectPointerType()
1849          && OldReturnType->isObjCObjectPointerType())
1850        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1851      if (ResQT.isNull()) {
1852        if (New->isCXXClassMember() && New->isOutOfLine())
1853          Diag(New->getLocation(),
1854               diag::err_member_def_does_not_match_ret_type) << New;
1855        else
1856          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1857        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1858        return true;
1859      }
1860      else
1861        NewQType = ResQT;
1862    }
1863
1864    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1865    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1866    if (OldMethod && NewMethod) {
1867      // Preserve triviality.
1868      NewMethod->setTrivial(OldMethod->isTrivial());
1869
1870      // MSVC allows explicit template specialization at class scope:
1871      // 2 CXMethodDecls referring to the same function will be injected.
1872      // We don't want a redeclartion error.
1873      bool IsClassScopeExplicitSpecialization =
1874                              OldMethod->isFunctionTemplateSpecialization() &&
1875                              NewMethod->isFunctionTemplateSpecialization();
1876      bool isFriend = NewMethod->getFriendObjectKind();
1877
1878      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1879          !IsClassScopeExplicitSpecialization) {
1880        //    -- Member function declarations with the same name and the
1881        //       same parameter types cannot be overloaded if any of them
1882        //       is a static member function declaration.
1883        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1884          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1885          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1886          return true;
1887        }
1888
1889        // C++ [class.mem]p1:
1890        //   [...] A member shall not be declared twice in the
1891        //   member-specification, except that a nested class or member
1892        //   class template can be declared and then later defined.
1893        unsigned NewDiag;
1894        if (isa<CXXConstructorDecl>(OldMethod))
1895          NewDiag = diag::err_constructor_redeclared;
1896        else if (isa<CXXDestructorDecl>(NewMethod))
1897          NewDiag = diag::err_destructor_redeclared;
1898        else if (isa<CXXConversionDecl>(NewMethod))
1899          NewDiag = diag::err_conv_function_redeclared;
1900        else
1901          NewDiag = diag::err_member_redeclared;
1902
1903        Diag(New->getLocation(), NewDiag);
1904        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1905
1906      // Complain if this is an explicit declaration of a special
1907      // member that was initially declared implicitly.
1908      //
1909      // As an exception, it's okay to befriend such methods in order
1910      // to permit the implicit constructor/destructor/operator calls.
1911      } else if (OldMethod->isImplicit()) {
1912        if (isFriend) {
1913          NewMethod->setImplicit();
1914        } else {
1915          Diag(NewMethod->getLocation(),
1916               diag::err_definition_of_implicitly_declared_member)
1917            << New << getSpecialMember(OldMethod);
1918          return true;
1919        }
1920      } else if (OldMethod->isExplicitlyDefaulted()) {
1921        Diag(NewMethod->getLocation(),
1922             diag::err_definition_of_explicitly_defaulted_member)
1923          << getSpecialMember(OldMethod);
1924        return true;
1925      }
1926    }
1927
1928    // (C++98 8.3.5p3):
1929    //   All declarations for a function shall agree exactly in both the
1930    //   return type and the parameter-type-list.
1931    // We also want to respect all the extended bits except noreturn.
1932
1933    // noreturn should now match unless the old type info didn't have it.
1934    QualType OldQTypeForComparison = OldQType;
1935    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1936      assert(OldQType == QualType(OldType, 0));
1937      const FunctionType *OldTypeForComparison
1938        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1939      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1940      assert(OldQTypeForComparison.isCanonical());
1941    }
1942
1943    if (OldQTypeForComparison == NewQType)
1944      return MergeCompatibleFunctionDecls(New, Old);
1945
1946    // Fall through for conflicting redeclarations and redefinitions.
1947  }
1948
1949  // C: Function types need to be compatible, not identical. This handles
1950  // duplicate function decls like "void f(int); void f(enum X);" properly.
1951  if (!getLangOptions().CPlusPlus &&
1952      Context.typesAreCompatible(OldQType, NewQType)) {
1953    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1954    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1955    const FunctionProtoType *OldProto = 0;
1956    if (isa<FunctionNoProtoType>(NewFuncType) &&
1957        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1958      // The old declaration provided a function prototype, but the
1959      // new declaration does not. Merge in the prototype.
1960      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1961      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1962                                                 OldProto->arg_type_end());
1963      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1964                                         ParamTypes.data(), ParamTypes.size(),
1965                                         OldProto->getExtProtoInfo());
1966      New->setType(NewQType);
1967      New->setHasInheritedPrototype();
1968
1969      // Synthesize a parameter for each argument type.
1970      SmallVector<ParmVarDecl*, 16> Params;
1971      for (FunctionProtoType::arg_type_iterator
1972             ParamType = OldProto->arg_type_begin(),
1973             ParamEnd = OldProto->arg_type_end();
1974           ParamType != ParamEnd; ++ParamType) {
1975        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1976                                                 SourceLocation(),
1977                                                 SourceLocation(), 0,
1978                                                 *ParamType, /*TInfo=*/0,
1979                                                 SC_None, SC_None,
1980                                                 0);
1981        Param->setScopeInfo(0, Params.size());
1982        Param->setImplicit();
1983        Params.push_back(Param);
1984      }
1985
1986      New->setParams(Params);
1987    }
1988
1989    return MergeCompatibleFunctionDecls(New, Old);
1990  }
1991
1992  // GNU C permits a K&R definition to follow a prototype declaration
1993  // if the declared types of the parameters in the K&R definition
1994  // match the types in the prototype declaration, even when the
1995  // promoted types of the parameters from the K&R definition differ
1996  // from the types in the prototype. GCC then keeps the types from
1997  // the prototype.
1998  //
1999  // If a variadic prototype is followed by a non-variadic K&R definition,
2000  // the K&R definition becomes variadic.  This is sort of an edge case, but
2001  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2002  // C99 6.9.1p8.
2003  if (!getLangOptions().CPlusPlus &&
2004      Old->hasPrototype() && !New->hasPrototype() &&
2005      New->getType()->getAs<FunctionProtoType>() &&
2006      Old->getNumParams() == New->getNumParams()) {
2007    SmallVector<QualType, 16> ArgTypes;
2008    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2009    const FunctionProtoType *OldProto
2010      = Old->getType()->getAs<FunctionProtoType>();
2011    const FunctionProtoType *NewProto
2012      = New->getType()->getAs<FunctionProtoType>();
2013
2014    // Determine whether this is the GNU C extension.
2015    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2016                                               NewProto->getResultType());
2017    bool LooseCompatible = !MergedReturn.isNull();
2018    for (unsigned Idx = 0, End = Old->getNumParams();
2019         LooseCompatible && Idx != End; ++Idx) {
2020      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2021      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2022      if (Context.typesAreCompatible(OldParm->getType(),
2023                                     NewProto->getArgType(Idx))) {
2024        ArgTypes.push_back(NewParm->getType());
2025      } else if (Context.typesAreCompatible(OldParm->getType(),
2026                                            NewParm->getType(),
2027                                            /*CompareUnqualified=*/true)) {
2028        GNUCompatibleParamWarning Warn
2029          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2030        Warnings.push_back(Warn);
2031        ArgTypes.push_back(NewParm->getType());
2032      } else
2033        LooseCompatible = false;
2034    }
2035
2036    if (LooseCompatible) {
2037      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2038        Diag(Warnings[Warn].NewParm->getLocation(),
2039             diag::ext_param_promoted_not_compatible_with_prototype)
2040          << Warnings[Warn].PromotedType
2041          << Warnings[Warn].OldParm->getType();
2042        if (Warnings[Warn].OldParm->getLocation().isValid())
2043          Diag(Warnings[Warn].OldParm->getLocation(),
2044               diag::note_previous_declaration);
2045      }
2046
2047      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2048                                           ArgTypes.size(),
2049                                           OldProto->getExtProtoInfo()));
2050      return MergeCompatibleFunctionDecls(New, Old);
2051    }
2052
2053    // Fall through to diagnose conflicting types.
2054  }
2055
2056  // A function that has already been declared has been redeclared or defined
2057  // with a different type- show appropriate diagnostic
2058  if (unsigned BuiltinID = Old->getBuiltinID()) {
2059    // The user has declared a builtin function with an incompatible
2060    // signature.
2061    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2062      // The function the user is redeclaring is a library-defined
2063      // function like 'malloc' or 'printf'. Warn about the
2064      // redeclaration, then pretend that we don't know about this
2065      // library built-in.
2066      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2067      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2068        << Old << Old->getType();
2069      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2070      Old->setInvalidDecl();
2071      return false;
2072    }
2073
2074    PrevDiag = diag::note_previous_builtin_declaration;
2075  }
2076
2077  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2078  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2079  return true;
2080}
2081
2082/// \brief Completes the merge of two function declarations that are
2083/// known to be compatible.
2084///
2085/// This routine handles the merging of attributes and other
2086/// properties of function declarations form the old declaration to
2087/// the new declaration, once we know that New is in fact a
2088/// redeclaration of Old.
2089///
2090/// \returns false
2091bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2092  // Merge the attributes
2093  mergeDeclAttributes(New, Old);
2094
2095  // Merge the storage class.
2096  if (Old->getStorageClass() != SC_Extern &&
2097      Old->getStorageClass() != SC_None)
2098    New->setStorageClass(Old->getStorageClass());
2099
2100  // Merge "pure" flag.
2101  if (Old->isPure())
2102    New->setPure();
2103
2104  // Merge attributes from the parameters.  These can mismatch with K&R
2105  // declarations.
2106  if (New->getNumParams() == Old->getNumParams())
2107    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2108      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2109                               Context);
2110
2111  if (getLangOptions().CPlusPlus)
2112    return MergeCXXFunctionDecl(New, Old);
2113
2114  return false;
2115}
2116
2117
2118void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2119                                ObjCMethodDecl *oldMethod) {
2120  // We don't want to merge unavailable and deprecated attributes
2121  // except from interface to implementation.
2122  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2123
2124  // Merge the attributes.
2125  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2126
2127  // Merge attributes from the parameters.
2128  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2129  for (ObjCMethodDecl::param_iterator
2130         ni = newMethod->param_begin(), ne = newMethod->param_end();
2131       ni != ne; ++ni, ++oi)
2132    mergeParamDeclAttributes(*ni, *oi, Context);
2133
2134  CheckObjCMethodOverride(newMethod, oldMethod, true);
2135}
2136
2137/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2138/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2139/// emitting diagnostics as appropriate.
2140///
2141/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2142/// to here in AddInitializerToDecl. We can't check them before the initializer
2143/// is attached.
2144void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2145  if (New->isInvalidDecl() || Old->isInvalidDecl())
2146    return;
2147
2148  QualType MergedT;
2149  if (getLangOptions().CPlusPlus) {
2150    AutoType *AT = New->getType()->getContainedAutoType();
2151    if (AT && !AT->isDeduced()) {
2152      // We don't know what the new type is until the initializer is attached.
2153      return;
2154    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2155      // These could still be something that needs exception specs checked.
2156      return MergeVarDeclExceptionSpecs(New, Old);
2157    }
2158    // C++ [basic.link]p10:
2159    //   [...] the types specified by all declarations referring to a given
2160    //   object or function shall be identical, except that declarations for an
2161    //   array object can specify array types that differ by the presence or
2162    //   absence of a major array bound (8.3.4).
2163    else if (Old->getType()->isIncompleteArrayType() &&
2164             New->getType()->isArrayType()) {
2165      CanQual<ArrayType> OldArray
2166        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2167      CanQual<ArrayType> NewArray
2168        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2169      if (OldArray->getElementType() == NewArray->getElementType())
2170        MergedT = New->getType();
2171    } else if (Old->getType()->isArrayType() &&
2172             New->getType()->isIncompleteArrayType()) {
2173      CanQual<ArrayType> OldArray
2174        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2175      CanQual<ArrayType> NewArray
2176        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2177      if (OldArray->getElementType() == NewArray->getElementType())
2178        MergedT = Old->getType();
2179    } else if (New->getType()->isObjCObjectPointerType()
2180               && Old->getType()->isObjCObjectPointerType()) {
2181        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2182                                                        Old->getType());
2183    }
2184  } else {
2185    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2186  }
2187  if (MergedT.isNull()) {
2188    Diag(New->getLocation(), diag::err_redefinition_different_type)
2189      << New->getDeclName();
2190    Diag(Old->getLocation(), diag::note_previous_definition);
2191    return New->setInvalidDecl();
2192  }
2193  New->setType(MergedT);
2194}
2195
2196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2198/// situation, merging decls or emitting diagnostics as appropriate.
2199///
2200/// Tentative definition rules (C99 6.9.2p2) are checked by
2201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2202/// definitions here, since the initializer hasn't been attached.
2203///
2204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2205  // If the new decl is already invalid, don't do any other checking.
2206  if (New->isInvalidDecl())
2207    return;
2208
2209  // Verify the old decl was also a variable.
2210  VarDecl *Old = 0;
2211  if (!Previous.isSingleResult() ||
2212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2214      << New->getDeclName();
2215    Diag(Previous.getRepresentativeDecl()->getLocation(),
2216         diag::note_previous_definition);
2217    return New->setInvalidDecl();
2218  }
2219
2220  // C++ [class.mem]p1:
2221  //   A member shall not be declared twice in the member-specification [...]
2222  //
2223  // Here, we need only consider static data members.
2224  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2225    Diag(New->getLocation(), diag::err_duplicate_member)
2226      << New->getIdentifier();
2227    Diag(Old->getLocation(), diag::note_previous_declaration);
2228    New->setInvalidDecl();
2229  }
2230
2231  mergeDeclAttributes(New, Old);
2232  // Warn if an already-declared variable is made a weak_import in a subsequent
2233  // declaration
2234  if (New->getAttr<WeakImportAttr>() &&
2235      Old->getStorageClass() == SC_None &&
2236      !Old->getAttr<WeakImportAttr>()) {
2237    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2238    Diag(Old->getLocation(), diag::note_previous_definition);
2239    // Remove weak_import attribute on new declaration.
2240    New->dropAttr<WeakImportAttr>();
2241  }
2242
2243  // Merge the types.
2244  MergeVarDeclTypes(New, Old);
2245  if (New->isInvalidDecl())
2246    return;
2247
2248  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2249  if (New->getStorageClass() == SC_Static &&
2250      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2251    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253    return New->setInvalidDecl();
2254  }
2255  // C99 6.2.2p4:
2256  //   For an identifier declared with the storage-class specifier
2257  //   extern in a scope in which a prior declaration of that
2258  //   identifier is visible,23) if the prior declaration specifies
2259  //   internal or external linkage, the linkage of the identifier at
2260  //   the later declaration is the same as the linkage specified at
2261  //   the prior declaration. If no prior declaration is visible, or
2262  //   if the prior declaration specifies no linkage, then the
2263  //   identifier has external linkage.
2264  if (New->hasExternalStorage() && Old->hasLinkage())
2265    /* Okay */;
2266  else if (New->getStorageClass() != SC_Static &&
2267           Old->getStorageClass() == SC_Static) {
2268    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2269    Diag(Old->getLocation(), diag::note_previous_definition);
2270    return New->setInvalidDecl();
2271  }
2272
2273  // Check if extern is followed by non-extern and vice-versa.
2274  if (New->hasExternalStorage() &&
2275      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2276    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2277    Diag(Old->getLocation(), diag::note_previous_definition);
2278    return New->setInvalidDecl();
2279  }
2280  if (Old->hasExternalStorage() &&
2281      !New->hasLinkage() && New->isLocalVarDecl()) {
2282    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2283    Diag(Old->getLocation(), diag::note_previous_definition);
2284    return New->setInvalidDecl();
2285  }
2286
2287  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2288
2289  // FIXME: The test for external storage here seems wrong? We still
2290  // need to check for mismatches.
2291  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2292      // Don't complain about out-of-line definitions of static members.
2293      !(Old->getLexicalDeclContext()->isRecord() &&
2294        !New->getLexicalDeclContext()->isRecord())) {
2295    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2296    Diag(Old->getLocation(), diag::note_previous_definition);
2297    return New->setInvalidDecl();
2298  }
2299
2300  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2301    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2302    Diag(Old->getLocation(), diag::note_previous_definition);
2303  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2304    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2305    Diag(Old->getLocation(), diag::note_previous_definition);
2306  }
2307
2308  // C++ doesn't have tentative definitions, so go right ahead and check here.
2309  const VarDecl *Def;
2310  if (getLangOptions().CPlusPlus &&
2311      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2312      (Def = Old->getDefinition())) {
2313    Diag(New->getLocation(), diag::err_redefinition)
2314      << New->getDeclName();
2315    Diag(Def->getLocation(), diag::note_previous_definition);
2316    New->setInvalidDecl();
2317    return;
2318  }
2319  // c99 6.2.2 P4.
2320  // For an identifier declared with the storage-class specifier extern in a
2321  // scope in which a prior declaration of that identifier is visible, if
2322  // the prior declaration specifies internal or external linkage, the linkage
2323  // of the identifier at the later declaration is the same as the linkage
2324  // specified at the prior declaration.
2325  // FIXME. revisit this code.
2326  if (New->hasExternalStorage() &&
2327      Old->getLinkage() == InternalLinkage &&
2328      New->getDeclContext() == Old->getDeclContext())
2329    New->setStorageClass(Old->getStorageClass());
2330
2331  // Keep a chain of previous declarations.
2332  New->setPreviousDeclaration(Old);
2333
2334  // Inherit access appropriately.
2335  New->setAccess(Old->getAccess());
2336}
2337
2338/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2339/// no declarator (e.g. "struct foo;") is parsed.
2340Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2341                                       DeclSpec &DS) {
2342  return ParsedFreeStandingDeclSpec(S, AS, DS,
2343                                    MultiTemplateParamsArg(*this, 0, 0));
2344}
2345
2346/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2347/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2348/// parameters to cope with template friend declarations.
2349Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                       DeclSpec &DS,
2351                                       MultiTemplateParamsArg TemplateParams) {
2352  Decl *TagD = 0;
2353  TagDecl *Tag = 0;
2354  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2355      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2356      DS.getTypeSpecType() == DeclSpec::TST_union ||
2357      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2358    TagD = DS.getRepAsDecl();
2359
2360    if (!TagD) // We probably had an error
2361      return 0;
2362
2363    // Note that the above type specs guarantee that the
2364    // type rep is a Decl, whereas in many of the others
2365    // it's a Type.
2366    if (isa<TagDecl>(TagD))
2367      Tag = cast<TagDecl>(TagD);
2368    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2369      Tag = CTD->getTemplatedDecl();
2370  }
2371
2372  if (Tag)
2373    Tag->setFreeStanding();
2374
2375  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2376    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2377    // or incomplete types shall not be restrict-qualified."
2378    if (TypeQuals & DeclSpec::TQ_restrict)
2379      Diag(DS.getRestrictSpecLoc(),
2380           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2381           << DS.getSourceRange();
2382  }
2383
2384  if (DS.isConstexprSpecified()) {
2385    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2386    // and definitions of functions and variables.
2387    if (Tag)
2388      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2389        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2390            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2391            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2392    else
2393      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2394    // Don't emit warnings after this error.
2395    return TagD;
2396  }
2397
2398  if (DS.isFriendSpecified()) {
2399    // If we're dealing with a decl but not a TagDecl, assume that
2400    // whatever routines created it handled the friendship aspect.
2401    if (TagD && !Tag)
2402      return 0;
2403    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2404  }
2405
2406  // Track whether we warned about the fact that there aren't any
2407  // declarators.
2408  bool emittedWarning = false;
2409
2410  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2411    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2412        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2413      if (getLangOptions().CPlusPlus ||
2414          Record->getDeclContext()->isRecord())
2415        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2416
2417      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2418        << DS.getSourceRange();
2419      emittedWarning = true;
2420    }
2421  }
2422
2423  // Check for Microsoft C extension: anonymous struct.
2424  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2425      CurContext->isRecord() &&
2426      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2427    // Handle 2 kinds of anonymous struct:
2428    //   struct STRUCT;
2429    // and
2430    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2431    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2432    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2433        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2434         DS.getRepAsType().get()->isStructureType())) {
2435      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2436        << DS.getSourceRange();
2437      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2438    }
2439  }
2440
2441  if (getLangOptions().CPlusPlus &&
2442      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2443    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2444      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2445          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2446        Diag(Enum->getLocation(), diag::ext_no_declarators)
2447          << DS.getSourceRange();
2448        emittedWarning = true;
2449      }
2450
2451  // Skip all the checks below if we have a type error.
2452  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2453
2454  if (!DS.isMissingDeclaratorOk()) {
2455    // Warn about typedefs of enums without names, since this is an
2456    // extension in both Microsoft and GNU.
2457    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2458        Tag && isa<EnumDecl>(Tag)) {
2459      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2460        << DS.getSourceRange();
2461      return Tag;
2462    }
2463
2464    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2465      << DS.getSourceRange();
2466    emittedWarning = true;
2467  }
2468
2469  // We're going to complain about a bunch of spurious specifiers;
2470  // only do this if we're declaring a tag, because otherwise we
2471  // should be getting diag::ext_no_declarators.
2472  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2473    return TagD;
2474
2475  // Note that a linkage-specification sets a storage class, but
2476  // 'extern "C" struct foo;' is actually valid and not theoretically
2477  // useless.
2478  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2479    if (!DS.isExternInLinkageSpec())
2480      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2481        << DeclSpec::getSpecifierName(scs);
2482
2483  if (DS.isThreadSpecified())
2484    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2485  if (DS.getTypeQualifiers()) {
2486    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2487      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2488    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2489      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2490    // Restrict is covered above.
2491  }
2492  if (DS.isInlineSpecified())
2493    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2494  if (DS.isVirtualSpecified())
2495    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2496  if (DS.isExplicitSpecified())
2497    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2498
2499  if (DS.isModulePrivateSpecified() &&
2500      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2501    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2502      << Tag->getTagKind()
2503      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2504
2505  // Warn about ignored type attributes, for example:
2506  // __attribute__((aligned)) struct A;
2507  // Attributes should be placed after tag to apply to type declaration.
2508  if (!DS.getAttributes().empty()) {
2509    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2510    if (TypeSpecType == DeclSpec::TST_class ||
2511        TypeSpecType == DeclSpec::TST_struct ||
2512        TypeSpecType == DeclSpec::TST_union ||
2513        TypeSpecType == DeclSpec::TST_enum) {
2514      AttributeList* attrs = DS.getAttributes().getList();
2515      while (attrs) {
2516        Diag(attrs->getScopeLoc(),
2517             diag::warn_declspec_attribute_ignored)
2518        << attrs->getName()
2519        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2520            TypeSpecType == DeclSpec::TST_struct ? 1 :
2521            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2522        attrs = attrs->getNext();
2523      }
2524    }
2525  }
2526
2527  return TagD;
2528}
2529
2530/// We are trying to inject an anonymous member into the given scope;
2531/// check if there's an existing declaration that can't be overloaded.
2532///
2533/// \return true if this is a forbidden redeclaration
2534static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2535                                         Scope *S,
2536                                         DeclContext *Owner,
2537                                         DeclarationName Name,
2538                                         SourceLocation NameLoc,
2539                                         unsigned diagnostic) {
2540  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2541                 Sema::ForRedeclaration);
2542  if (!SemaRef.LookupName(R, S)) return false;
2543
2544  if (R.getAsSingle<TagDecl>())
2545    return false;
2546
2547  // Pick a representative declaration.
2548  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2549  assert(PrevDecl && "Expected a non-null Decl");
2550
2551  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2552    return false;
2553
2554  SemaRef.Diag(NameLoc, diagnostic) << Name;
2555  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2556
2557  return true;
2558}
2559
2560/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2561/// anonymous struct or union AnonRecord into the owning context Owner
2562/// and scope S. This routine will be invoked just after we realize
2563/// that an unnamed union or struct is actually an anonymous union or
2564/// struct, e.g.,
2565///
2566/// @code
2567/// union {
2568///   int i;
2569///   float f;
2570/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2571///    // f into the surrounding scope.x
2572/// @endcode
2573///
2574/// This routine is recursive, injecting the names of nested anonymous
2575/// structs/unions into the owning context and scope as well.
2576static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2577                                                DeclContext *Owner,
2578                                                RecordDecl *AnonRecord,
2579                                                AccessSpecifier AS,
2580                              SmallVector<NamedDecl*, 2> &Chaining,
2581                                                      bool MSAnonStruct) {
2582  unsigned diagKind
2583    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2584                            : diag::err_anonymous_struct_member_redecl;
2585
2586  bool Invalid = false;
2587
2588  // Look every FieldDecl and IndirectFieldDecl with a name.
2589  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2590                               DEnd = AnonRecord->decls_end();
2591       D != DEnd; ++D) {
2592    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2593        cast<NamedDecl>(*D)->getDeclName()) {
2594      ValueDecl *VD = cast<ValueDecl>(*D);
2595      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2596                                       VD->getLocation(), diagKind)) {
2597        // C++ [class.union]p2:
2598        //   The names of the members of an anonymous union shall be
2599        //   distinct from the names of any other entity in the
2600        //   scope in which the anonymous union is declared.
2601        Invalid = true;
2602      } else {
2603        // C++ [class.union]p2:
2604        //   For the purpose of name lookup, after the anonymous union
2605        //   definition, the members of the anonymous union are
2606        //   considered to have been defined in the scope in which the
2607        //   anonymous union is declared.
2608        unsigned OldChainingSize = Chaining.size();
2609        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2610          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2611               PE = IF->chain_end(); PI != PE; ++PI)
2612            Chaining.push_back(*PI);
2613        else
2614          Chaining.push_back(VD);
2615
2616        assert(Chaining.size() >= 2);
2617        NamedDecl **NamedChain =
2618          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2619        for (unsigned i = 0; i < Chaining.size(); i++)
2620          NamedChain[i] = Chaining[i];
2621
2622        IndirectFieldDecl* IndirectField =
2623          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2624                                    VD->getIdentifier(), VD->getType(),
2625                                    NamedChain, Chaining.size());
2626
2627        IndirectField->setAccess(AS);
2628        IndirectField->setImplicit();
2629        SemaRef.PushOnScopeChains(IndirectField, S);
2630
2631        // That includes picking up the appropriate access specifier.
2632        if (AS != AS_none) IndirectField->setAccess(AS);
2633
2634        Chaining.resize(OldChainingSize);
2635      }
2636    }
2637  }
2638
2639  return Invalid;
2640}
2641
2642/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2643/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2644/// illegal input values are mapped to SC_None.
2645static StorageClass
2646StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2647  switch (StorageClassSpec) {
2648  case DeclSpec::SCS_unspecified:    return SC_None;
2649  case DeclSpec::SCS_extern:         return SC_Extern;
2650  case DeclSpec::SCS_static:         return SC_Static;
2651  case DeclSpec::SCS_auto:           return SC_Auto;
2652  case DeclSpec::SCS_register:       return SC_Register;
2653  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2654    // Illegal SCSs map to None: error reporting is up to the caller.
2655  case DeclSpec::SCS_mutable:        // Fall through.
2656  case DeclSpec::SCS_typedef:        return SC_None;
2657  }
2658  llvm_unreachable("unknown storage class specifier");
2659}
2660
2661/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2662/// a StorageClass. Any error reporting is up to the caller:
2663/// illegal input values are mapped to SC_None.
2664static StorageClass
2665StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2666  switch (StorageClassSpec) {
2667  case DeclSpec::SCS_unspecified:    return SC_None;
2668  case DeclSpec::SCS_extern:         return SC_Extern;
2669  case DeclSpec::SCS_static:         return SC_Static;
2670  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2671    // Illegal SCSs map to None: error reporting is up to the caller.
2672  case DeclSpec::SCS_auto:           // Fall through.
2673  case DeclSpec::SCS_mutable:        // Fall through.
2674  case DeclSpec::SCS_register:       // Fall through.
2675  case DeclSpec::SCS_typedef:        return SC_None;
2676  }
2677  llvm_unreachable("unknown storage class specifier");
2678}
2679
2680/// BuildAnonymousStructOrUnion - Handle the declaration of an
2681/// anonymous structure or union. Anonymous unions are a C++ feature
2682/// (C++ [class.union]) and a C11 feature; anonymous structures
2683/// are a C11 feature and GNU C++ extension.
2684Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2685                                             AccessSpecifier AS,
2686                                             RecordDecl *Record) {
2687  DeclContext *Owner = Record->getDeclContext();
2688
2689  // Diagnose whether this anonymous struct/union is an extension.
2690  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2691    Diag(Record->getLocation(), diag::ext_anonymous_union);
2692  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2693    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2694  else if (!Record->isUnion() && !getLangOptions().C11)
2695    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2696
2697  // C and C++ require different kinds of checks for anonymous
2698  // structs/unions.
2699  bool Invalid = false;
2700  if (getLangOptions().CPlusPlus) {
2701    const char* PrevSpec = 0;
2702    unsigned DiagID;
2703    if (Record->isUnion()) {
2704      // C++ [class.union]p6:
2705      //   Anonymous unions declared in a named namespace or in the
2706      //   global namespace shall be declared static.
2707      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2708          (isa<TranslationUnitDecl>(Owner) ||
2709           (isa<NamespaceDecl>(Owner) &&
2710            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2711        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2712          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2713
2714        // Recover by adding 'static'.
2715        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2716                               PrevSpec, DiagID);
2717      }
2718      // C++ [class.union]p6:
2719      //   A storage class is not allowed in a declaration of an
2720      //   anonymous union in a class scope.
2721      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2722               isa<RecordDecl>(Owner)) {
2723        Diag(DS.getStorageClassSpecLoc(),
2724             diag::err_anonymous_union_with_storage_spec)
2725          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2726
2727        // Recover by removing the storage specifier.
2728        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2729                               SourceLocation(),
2730                               PrevSpec, DiagID);
2731      }
2732    }
2733
2734    // Ignore const/volatile/restrict qualifiers.
2735    if (DS.getTypeQualifiers()) {
2736      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2737        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2738          << Record->isUnion() << 0
2739          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2740      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2741        Diag(DS.getVolatileSpecLoc(),
2742             diag::ext_anonymous_struct_union_qualified)
2743          << Record->isUnion() << 1
2744          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2745      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2746        Diag(DS.getRestrictSpecLoc(),
2747             diag::ext_anonymous_struct_union_qualified)
2748          << Record->isUnion() << 2
2749          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2750
2751      DS.ClearTypeQualifiers();
2752    }
2753
2754    // C++ [class.union]p2:
2755    //   The member-specification of an anonymous union shall only
2756    //   define non-static data members. [Note: nested types and
2757    //   functions cannot be declared within an anonymous union. ]
2758    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2759                                 MemEnd = Record->decls_end();
2760         Mem != MemEnd; ++Mem) {
2761      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2762        // C++ [class.union]p3:
2763        //   An anonymous union shall not have private or protected
2764        //   members (clause 11).
2765        assert(FD->getAccess() != AS_none);
2766        if (FD->getAccess() != AS_public) {
2767          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2768            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2769          Invalid = true;
2770        }
2771
2772        // C++ [class.union]p1
2773        //   An object of a class with a non-trivial constructor, a non-trivial
2774        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2775        //   assignment operator cannot be a member of a union, nor can an
2776        //   array of such objects.
2777        if (CheckNontrivialField(FD))
2778          Invalid = true;
2779      } else if ((*Mem)->isImplicit()) {
2780        // Any implicit members are fine.
2781      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2782        // This is a type that showed up in an
2783        // elaborated-type-specifier inside the anonymous struct or
2784        // union, but which actually declares a type outside of the
2785        // anonymous struct or union. It's okay.
2786      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2787        if (!MemRecord->isAnonymousStructOrUnion() &&
2788            MemRecord->getDeclName()) {
2789          // Visual C++ allows type definition in anonymous struct or union.
2790          if (getLangOptions().MicrosoftExt)
2791            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2792              << (int)Record->isUnion();
2793          else {
2794            // This is a nested type declaration.
2795            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2796              << (int)Record->isUnion();
2797            Invalid = true;
2798          }
2799        }
2800      } else if (isa<AccessSpecDecl>(*Mem)) {
2801        // Any access specifier is fine.
2802      } else {
2803        // We have something that isn't a non-static data
2804        // member. Complain about it.
2805        unsigned DK = diag::err_anonymous_record_bad_member;
2806        if (isa<TypeDecl>(*Mem))
2807          DK = diag::err_anonymous_record_with_type;
2808        else if (isa<FunctionDecl>(*Mem))
2809          DK = diag::err_anonymous_record_with_function;
2810        else if (isa<VarDecl>(*Mem))
2811          DK = diag::err_anonymous_record_with_static;
2812
2813        // Visual C++ allows type definition in anonymous struct or union.
2814        if (getLangOptions().MicrosoftExt &&
2815            DK == diag::err_anonymous_record_with_type)
2816          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2817            << (int)Record->isUnion();
2818        else {
2819          Diag((*Mem)->getLocation(), DK)
2820              << (int)Record->isUnion();
2821          Invalid = true;
2822        }
2823      }
2824    }
2825  }
2826
2827  if (!Record->isUnion() && !Owner->isRecord()) {
2828    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2829      << (int)getLangOptions().CPlusPlus;
2830    Invalid = true;
2831  }
2832
2833  // Mock up a declarator.
2834  Declarator Dc(DS, Declarator::MemberContext);
2835  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2836  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2837
2838  // Create a declaration for this anonymous struct/union.
2839  NamedDecl *Anon = 0;
2840  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2841    Anon = FieldDecl::Create(Context, OwningClass,
2842                             DS.getSourceRange().getBegin(),
2843                             Record->getLocation(),
2844                             /*IdentifierInfo=*/0,
2845                             Context.getTypeDeclType(Record),
2846                             TInfo,
2847                             /*BitWidth=*/0, /*Mutable=*/false,
2848                             /*HasInit=*/false);
2849    Anon->setAccess(AS);
2850    if (getLangOptions().CPlusPlus)
2851      FieldCollector->Add(cast<FieldDecl>(Anon));
2852  } else {
2853    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2854    assert(SCSpec != DeclSpec::SCS_typedef &&
2855           "Parser allowed 'typedef' as storage class VarDecl.");
2856    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2857    if (SCSpec == DeclSpec::SCS_mutable) {
2858      // mutable can only appear on non-static class members, so it's always
2859      // an error here
2860      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2861      Invalid = true;
2862      SC = SC_None;
2863    }
2864    SCSpec = DS.getStorageClassSpecAsWritten();
2865    VarDecl::StorageClass SCAsWritten
2866      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2867
2868    Anon = VarDecl::Create(Context, Owner,
2869                           DS.getSourceRange().getBegin(),
2870                           Record->getLocation(), /*IdentifierInfo=*/0,
2871                           Context.getTypeDeclType(Record),
2872                           TInfo, SC, SCAsWritten);
2873
2874    // Default-initialize the implicit variable. This initialization will be
2875    // trivial in almost all cases, except if a union member has an in-class
2876    // initializer:
2877    //   union { int n = 0; };
2878    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2879  }
2880  Anon->setImplicit();
2881
2882  // Add the anonymous struct/union object to the current
2883  // context. We'll be referencing this object when we refer to one of
2884  // its members.
2885  Owner->addDecl(Anon);
2886
2887  // Inject the members of the anonymous struct/union into the owning
2888  // context and into the identifier resolver chain for name lookup
2889  // purposes.
2890  SmallVector<NamedDecl*, 2> Chain;
2891  Chain.push_back(Anon);
2892
2893  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2894                                          Chain, false))
2895    Invalid = true;
2896
2897  // Mark this as an anonymous struct/union type. Note that we do not
2898  // do this until after we have already checked and injected the
2899  // members of this anonymous struct/union type, because otherwise
2900  // the members could be injected twice: once by DeclContext when it
2901  // builds its lookup table, and once by
2902  // InjectAnonymousStructOrUnionMembers.
2903  Record->setAnonymousStructOrUnion(true);
2904
2905  if (Invalid)
2906    Anon->setInvalidDecl();
2907
2908  return Anon;
2909}
2910
2911/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2912/// Microsoft C anonymous structure.
2913/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2914/// Example:
2915///
2916/// struct A { int a; };
2917/// struct B { struct A; int b; };
2918///
2919/// void foo() {
2920///   B var;
2921///   var.a = 3;
2922/// }
2923///
2924Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2925                                           RecordDecl *Record) {
2926
2927  // If there is no Record, get the record via the typedef.
2928  if (!Record)
2929    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2930
2931  // Mock up a declarator.
2932  Declarator Dc(DS, Declarator::TypeNameContext);
2933  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2934  assert(TInfo && "couldn't build declarator info for anonymous struct");
2935
2936  // Create a declaration for this anonymous struct.
2937  NamedDecl* Anon = FieldDecl::Create(Context,
2938                             cast<RecordDecl>(CurContext),
2939                             DS.getSourceRange().getBegin(),
2940                             DS.getSourceRange().getBegin(),
2941                             /*IdentifierInfo=*/0,
2942                             Context.getTypeDeclType(Record),
2943                             TInfo,
2944                             /*BitWidth=*/0, /*Mutable=*/false,
2945                             /*HasInit=*/false);
2946  Anon->setImplicit();
2947
2948  // Add the anonymous struct object to the current context.
2949  CurContext->addDecl(Anon);
2950
2951  // Inject the members of the anonymous struct into the current
2952  // context and into the identifier resolver chain for name lookup
2953  // purposes.
2954  SmallVector<NamedDecl*, 2> Chain;
2955  Chain.push_back(Anon);
2956
2957  RecordDecl *RecordDef = Record->getDefinition();
2958  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2959                                                        RecordDef, AS_none,
2960                                                        Chain, true))
2961    Anon->setInvalidDecl();
2962
2963  return Anon;
2964}
2965
2966/// GetNameForDeclarator - Determine the full declaration name for the
2967/// given Declarator.
2968DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2969  return GetNameFromUnqualifiedId(D.getName());
2970}
2971
2972/// \brief Retrieves the declaration name from a parsed unqualified-id.
2973DeclarationNameInfo
2974Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2975  DeclarationNameInfo NameInfo;
2976  NameInfo.setLoc(Name.StartLocation);
2977
2978  switch (Name.getKind()) {
2979
2980  case UnqualifiedId::IK_ImplicitSelfParam:
2981  case UnqualifiedId::IK_Identifier:
2982    NameInfo.setName(Name.Identifier);
2983    NameInfo.setLoc(Name.StartLocation);
2984    return NameInfo;
2985
2986  case UnqualifiedId::IK_OperatorFunctionId:
2987    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2988                                           Name.OperatorFunctionId.Operator));
2989    NameInfo.setLoc(Name.StartLocation);
2990    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2991      = Name.OperatorFunctionId.SymbolLocations[0];
2992    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2993      = Name.EndLocation.getRawEncoding();
2994    return NameInfo;
2995
2996  case UnqualifiedId::IK_LiteralOperatorId:
2997    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2998                                                           Name.Identifier));
2999    NameInfo.setLoc(Name.StartLocation);
3000    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3001    return NameInfo;
3002
3003  case UnqualifiedId::IK_ConversionFunctionId: {
3004    TypeSourceInfo *TInfo;
3005    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3006    if (Ty.isNull())
3007      return DeclarationNameInfo();
3008    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3009                                               Context.getCanonicalType(Ty)));
3010    NameInfo.setLoc(Name.StartLocation);
3011    NameInfo.setNamedTypeInfo(TInfo);
3012    return NameInfo;
3013  }
3014
3015  case UnqualifiedId::IK_ConstructorName: {
3016    TypeSourceInfo *TInfo;
3017    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3018    if (Ty.isNull())
3019      return DeclarationNameInfo();
3020    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3021                                              Context.getCanonicalType(Ty)));
3022    NameInfo.setLoc(Name.StartLocation);
3023    NameInfo.setNamedTypeInfo(TInfo);
3024    return NameInfo;
3025  }
3026
3027  case UnqualifiedId::IK_ConstructorTemplateId: {
3028    // In well-formed code, we can only have a constructor
3029    // template-id that refers to the current context, so go there
3030    // to find the actual type being constructed.
3031    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3032    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3033      return DeclarationNameInfo();
3034
3035    // Determine the type of the class being constructed.
3036    QualType CurClassType = Context.getTypeDeclType(CurClass);
3037
3038    // FIXME: Check two things: that the template-id names the same type as
3039    // CurClassType, and that the template-id does not occur when the name
3040    // was qualified.
3041
3042    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3043                                    Context.getCanonicalType(CurClassType)));
3044    NameInfo.setLoc(Name.StartLocation);
3045    // FIXME: should we retrieve TypeSourceInfo?
3046    NameInfo.setNamedTypeInfo(0);
3047    return NameInfo;
3048  }
3049
3050  case UnqualifiedId::IK_DestructorName: {
3051    TypeSourceInfo *TInfo;
3052    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3053    if (Ty.isNull())
3054      return DeclarationNameInfo();
3055    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3056                                              Context.getCanonicalType(Ty)));
3057    NameInfo.setLoc(Name.StartLocation);
3058    NameInfo.setNamedTypeInfo(TInfo);
3059    return NameInfo;
3060  }
3061
3062  case UnqualifiedId::IK_TemplateId: {
3063    TemplateName TName = Name.TemplateId->Template.get();
3064    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3065    return Context.getNameForTemplate(TName, TNameLoc);
3066  }
3067
3068  } // switch (Name.getKind())
3069
3070  llvm_unreachable("Unknown name kind");
3071}
3072
3073static QualType getCoreType(QualType Ty) {
3074  do {
3075    if (Ty->isPointerType() || Ty->isReferenceType())
3076      Ty = Ty->getPointeeType();
3077    else if (Ty->isArrayType())
3078      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3079    else
3080      return Ty.withoutLocalFastQualifiers();
3081  } while (true);
3082}
3083
3084/// hasSimilarParameters - Determine whether the C++ functions Declaration
3085/// and Definition have "nearly" matching parameters. This heuristic is
3086/// used to improve diagnostics in the case where an out-of-line function
3087/// definition doesn't match any declaration within the class or namespace.
3088/// Also sets Params to the list of indices to the parameters that differ
3089/// between the declaration and the definition. If hasSimilarParameters
3090/// returns true and Params is empty, then all of the parameters match.
3091static bool hasSimilarParameters(ASTContext &Context,
3092                                     FunctionDecl *Declaration,
3093                                     FunctionDecl *Definition,
3094                                     llvm::SmallVectorImpl<unsigned> &Params) {
3095  Params.clear();
3096  if (Declaration->param_size() != Definition->param_size())
3097    return false;
3098  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3099    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3100    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3101
3102    // The parameter types are identical
3103    if (Context.hasSameType(DefParamTy, DeclParamTy))
3104      continue;
3105
3106    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3107    QualType DefParamBaseTy = getCoreType(DefParamTy);
3108    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3109    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3110
3111    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3112        (DeclTyName && DeclTyName == DefTyName))
3113      Params.push_back(Idx);
3114    else  // The two parameters aren't even close
3115      return false;
3116  }
3117
3118  return true;
3119}
3120
3121/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3122/// declarator needs to be rebuilt in the current instantiation.
3123/// Any bits of declarator which appear before the name are valid for
3124/// consideration here.  That's specifically the type in the decl spec
3125/// and the base type in any member-pointer chunks.
3126static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3127                                                    DeclarationName Name) {
3128  // The types we specifically need to rebuild are:
3129  //   - typenames, typeofs, and decltypes
3130  //   - types which will become injected class names
3131  // Of course, we also need to rebuild any type referencing such a
3132  // type.  It's safest to just say "dependent", but we call out a
3133  // few cases here.
3134
3135  DeclSpec &DS = D.getMutableDeclSpec();
3136  switch (DS.getTypeSpecType()) {
3137  case DeclSpec::TST_typename:
3138  case DeclSpec::TST_typeofType:
3139  case DeclSpec::TST_decltype:
3140  case DeclSpec::TST_underlyingType:
3141  case DeclSpec::TST_atomic: {
3142    // Grab the type from the parser.
3143    TypeSourceInfo *TSI = 0;
3144    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3145    if (T.isNull() || !T->isDependentType()) break;
3146
3147    // Make sure there's a type source info.  This isn't really much
3148    // of a waste; most dependent types should have type source info
3149    // attached already.
3150    if (!TSI)
3151      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3152
3153    // Rebuild the type in the current instantiation.
3154    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3155    if (!TSI) return true;
3156
3157    // Store the new type back in the decl spec.
3158    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3159    DS.UpdateTypeRep(LocType);
3160    break;
3161  }
3162
3163  case DeclSpec::TST_typeofExpr: {
3164    Expr *E = DS.getRepAsExpr();
3165    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3166    if (Result.isInvalid()) return true;
3167    DS.UpdateExprRep(Result.get());
3168    break;
3169  }
3170
3171  default:
3172    // Nothing to do for these decl specs.
3173    break;
3174  }
3175
3176  // It doesn't matter what order we do this in.
3177  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3178    DeclaratorChunk &Chunk = D.getTypeObject(I);
3179
3180    // The only type information in the declarator which can come
3181    // before the declaration name is the base type of a member
3182    // pointer.
3183    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3184      continue;
3185
3186    // Rebuild the scope specifier in-place.
3187    CXXScopeSpec &SS = Chunk.Mem.Scope();
3188    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3189      return true;
3190  }
3191
3192  return false;
3193}
3194
3195Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3196  D.setFunctionDefinitionKind(FDK_Declaration);
3197  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3198
3199  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3200      Dcl->getDeclContext()->isFileContext())
3201    Dcl->setTopLevelDeclInObjCContainer();
3202
3203  return Dcl;
3204}
3205
3206/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3207///   If T is the name of a class, then each of the following shall have a
3208///   name different from T:
3209///     - every static data member of class T;
3210///     - every member function of class T
3211///     - every member of class T that is itself a type;
3212/// \returns true if the declaration name violates these rules.
3213bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3214                                   DeclarationNameInfo NameInfo) {
3215  DeclarationName Name = NameInfo.getName();
3216
3217  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3218    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3219      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3220      return true;
3221    }
3222
3223  return false;
3224}
3225
3226Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3227                             MultiTemplateParamsArg TemplateParamLists) {
3228  // TODO: consider using NameInfo for diagnostic.
3229  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3230  DeclarationName Name = NameInfo.getName();
3231
3232  // All of these full declarators require an identifier.  If it doesn't have
3233  // one, the ParsedFreeStandingDeclSpec action should be used.
3234  if (!Name) {
3235    if (!D.isInvalidType())  // Reject this if we think it is valid.
3236      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3237           diag::err_declarator_need_ident)
3238        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3239    return 0;
3240  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3241    return 0;
3242
3243  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3244  // we find one that is.
3245  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3246         (S->getFlags() & Scope::TemplateParamScope) != 0)
3247    S = S->getParent();
3248
3249  DeclContext *DC = CurContext;
3250  if (D.getCXXScopeSpec().isInvalid())
3251    D.setInvalidType();
3252  else if (D.getCXXScopeSpec().isSet()) {
3253    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3254                                        UPPC_DeclarationQualifier))
3255      return 0;
3256
3257    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3258    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3259    if (!DC) {
3260      // If we could not compute the declaration context, it's because the
3261      // declaration context is dependent but does not refer to a class,
3262      // class template, or class template partial specialization. Complain
3263      // and return early, to avoid the coming semantic disaster.
3264      Diag(D.getIdentifierLoc(),
3265           diag::err_template_qualified_declarator_no_match)
3266        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3267        << D.getCXXScopeSpec().getRange();
3268      return 0;
3269    }
3270    bool IsDependentContext = DC->isDependentContext();
3271
3272    if (!IsDependentContext &&
3273        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3274      return 0;
3275
3276    if (isa<CXXRecordDecl>(DC)) {
3277      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3278        Diag(D.getIdentifierLoc(),
3279             diag::err_member_def_undefined_record)
3280          << Name << DC << D.getCXXScopeSpec().getRange();
3281        D.setInvalidType();
3282      } else if (isa<CXXRecordDecl>(CurContext) &&
3283                 !D.getDeclSpec().isFriendSpecified()) {
3284        // The user provided a superfluous scope specifier inside a class
3285        // definition:
3286        //
3287        // class X {
3288        //   void X::f();
3289        // };
3290        if (CurContext->Equals(DC)) {
3291          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3292            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3293        } else {
3294          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3295            << Name << D.getCXXScopeSpec().getRange();
3296
3297          // C++ constructors and destructors with incorrect scopes can break
3298          // our AST invariants by having the wrong underlying types. If
3299          // that's the case, then drop this declaration entirely.
3300          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3301               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3302              !Context.hasSameType(Name.getCXXNameType(),
3303                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3304            return 0;
3305        }
3306
3307        // Pretend that this qualifier was not here.
3308        D.getCXXScopeSpec().clear();
3309      }
3310    }
3311
3312    // Check whether we need to rebuild the type of the given
3313    // declaration in the current instantiation.
3314    if (EnteringContext && IsDependentContext &&
3315        TemplateParamLists.size() != 0) {
3316      ContextRAII SavedContext(*this, DC);
3317      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3318        D.setInvalidType();
3319    }
3320  }
3321
3322  if (DiagnoseClassNameShadow(DC, NameInfo))
3323    // If this is a typedef, we'll end up spewing multiple diagnostics.
3324    // Just return early; it's safer.
3325    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3326      return 0;
3327
3328  NamedDecl *New;
3329
3330  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3331  QualType R = TInfo->getType();
3332
3333  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3334                                      UPPC_DeclarationType))
3335    D.setInvalidType();
3336
3337  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3338                        ForRedeclaration);
3339
3340  // See if this is a redefinition of a variable in the same scope.
3341  if (!D.getCXXScopeSpec().isSet()) {
3342    bool IsLinkageLookup = false;
3343
3344    // If the declaration we're planning to build will be a function
3345    // or object with linkage, then look for another declaration with
3346    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3347    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3348      /* Do nothing*/;
3349    else if (R->isFunctionType()) {
3350      if (CurContext->isFunctionOrMethod() ||
3351          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3352        IsLinkageLookup = true;
3353    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3354      IsLinkageLookup = true;
3355    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3356             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3357      IsLinkageLookup = true;
3358
3359    if (IsLinkageLookup)
3360      Previous.clear(LookupRedeclarationWithLinkage);
3361
3362    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3363  } else { // Something like "int foo::x;"
3364    LookupQualifiedName(Previous, DC);
3365
3366    // Don't consider using declarations as previous declarations for
3367    // out-of-line members.
3368    RemoveUsingDecls(Previous);
3369
3370    // C++ 7.3.1.2p2:
3371    // Members (including explicit specializations of templates) of a named
3372    // namespace can also be defined outside that namespace by explicit
3373    // qualification of the name being defined, provided that the entity being
3374    // defined was already declared in the namespace and the definition appears
3375    // after the point of declaration in a namespace that encloses the
3376    // declarations namespace.
3377    //
3378    // Note that we only check the context at this point. We don't yet
3379    // have enough information to make sure that PrevDecl is actually
3380    // the declaration we want to match. For example, given:
3381    //
3382    //   class X {
3383    //     void f();
3384    //     void f(float);
3385    //   };
3386    //
3387    //   void X::f(int) { } // ill-formed
3388    //
3389    // In this case, PrevDecl will point to the overload set
3390    // containing the two f's declared in X, but neither of them
3391    // matches.
3392
3393    // First check whether we named the global scope.
3394    if (isa<TranslationUnitDecl>(DC)) {
3395      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3396        << Name << D.getCXXScopeSpec().getRange();
3397    } else {
3398      DeclContext *Cur = CurContext;
3399      while (isa<LinkageSpecDecl>(Cur))
3400        Cur = Cur->getParent();
3401      if (!Cur->Encloses(DC)) {
3402        // The qualifying scope doesn't enclose the original declaration.
3403        // Emit diagnostic based on current scope.
3404        SourceLocation L = D.getIdentifierLoc();
3405        SourceRange R = D.getCXXScopeSpec().getRange();
3406        if (isa<FunctionDecl>(Cur))
3407          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3408        else
3409          Diag(L, diag::err_invalid_declarator_scope)
3410            << Name << cast<NamedDecl>(DC) << R;
3411        D.setInvalidType();
3412      }
3413
3414      // C++11 8.3p1:
3415      // ... "The nested-name-specifier of the qualified declarator-id shall
3416      // not begin with a decltype-specifer"
3417      NestedNameSpecifierLoc SpecLoc =
3418            D.getCXXScopeSpec().getWithLocInContext(Context);
3419      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3420                        "NestedNameSpecifierLoc");
3421      while (SpecLoc.getPrefix())
3422        SpecLoc = SpecLoc.getPrefix();
3423      if (dyn_cast_or_null<DecltypeType>(
3424            SpecLoc.getNestedNameSpecifier()->getAsType()))
3425        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3426          << SpecLoc.getTypeLoc().getSourceRange();
3427    }
3428  }
3429
3430  if (Previous.isSingleResult() &&
3431      Previous.getFoundDecl()->isTemplateParameter()) {
3432    // Maybe we will complain about the shadowed template parameter.
3433    if (!D.isInvalidType())
3434      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3435                                      Previous.getFoundDecl());
3436
3437    // Just pretend that we didn't see the previous declaration.
3438    Previous.clear();
3439  }
3440
3441  // In C++, the previous declaration we find might be a tag type
3442  // (class or enum). In this case, the new declaration will hide the
3443  // tag type. Note that this does does not apply if we're declaring a
3444  // typedef (C++ [dcl.typedef]p4).
3445  if (Previous.isSingleTagDecl() &&
3446      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3447    Previous.clear();
3448
3449  bool AddToScope = true;
3450  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3451    if (TemplateParamLists.size()) {
3452      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3453      return 0;
3454    }
3455
3456    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3457  } else if (R->isFunctionType()) {
3458    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3459                                  move(TemplateParamLists),
3460                                  AddToScope);
3461  } else {
3462    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3463                                  move(TemplateParamLists));
3464  }
3465
3466  if (New == 0)
3467    return 0;
3468
3469  // If this has an identifier and is not an invalid redeclaration or
3470  // function template specialization, add it to the scope stack.
3471  if (New->getDeclName() && AddToScope &&
3472       !(D.isRedeclaration() && New->isInvalidDecl()))
3473    PushOnScopeChains(New, S);
3474
3475  return New;
3476}
3477
3478/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3479/// types into constant array types in certain situations which would otherwise
3480/// be errors (for GCC compatibility).
3481static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3482                                                    ASTContext &Context,
3483                                                    bool &SizeIsNegative,
3484                                                    llvm::APSInt &Oversized) {
3485  // This method tries to turn a variable array into a constant
3486  // array even when the size isn't an ICE.  This is necessary
3487  // for compatibility with code that depends on gcc's buggy
3488  // constant expression folding, like struct {char x[(int)(char*)2];}
3489  SizeIsNegative = false;
3490  Oversized = 0;
3491
3492  if (T->isDependentType())
3493    return QualType();
3494
3495  QualifierCollector Qs;
3496  const Type *Ty = Qs.strip(T);
3497
3498  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3499    QualType Pointee = PTy->getPointeeType();
3500    QualType FixedType =
3501        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3502                                            Oversized);
3503    if (FixedType.isNull()) return FixedType;
3504    FixedType = Context.getPointerType(FixedType);
3505    return Qs.apply(Context, FixedType);
3506  }
3507  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3508    QualType Inner = PTy->getInnerType();
3509    QualType FixedType =
3510        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3511                                            Oversized);
3512    if (FixedType.isNull()) return FixedType;
3513    FixedType = Context.getParenType(FixedType);
3514    return Qs.apply(Context, FixedType);
3515  }
3516
3517  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3518  if (!VLATy)
3519    return QualType();
3520  // FIXME: We should probably handle this case
3521  if (VLATy->getElementType()->isVariablyModifiedType())
3522    return QualType();
3523
3524  llvm::APSInt Res;
3525  if (!VLATy->getSizeExpr() ||
3526      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3527    return QualType();
3528
3529  // Check whether the array size is negative.
3530  if (Res.isSigned() && Res.isNegative()) {
3531    SizeIsNegative = true;
3532    return QualType();
3533  }
3534
3535  // Check whether the array is too large to be addressed.
3536  unsigned ActiveSizeBits
3537    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3538                                              Res);
3539  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3540    Oversized = Res;
3541    return QualType();
3542  }
3543
3544  return Context.getConstantArrayType(VLATy->getElementType(),
3545                                      Res, ArrayType::Normal, 0);
3546}
3547
3548/// \brief Register the given locally-scoped external C declaration so
3549/// that it can be found later for redeclarations
3550void
3551Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3552                                       const LookupResult &Previous,
3553                                       Scope *S) {
3554  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3555         "Decl is not a locally-scoped decl!");
3556  // Note that we have a locally-scoped external with this name.
3557  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3558
3559  if (!Previous.isSingleResult())
3560    return;
3561
3562  NamedDecl *PrevDecl = Previous.getFoundDecl();
3563
3564  // If there was a previous declaration of this variable, it may be
3565  // in our identifier chain. Update the identifier chain with the new
3566  // declaration.
3567  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3568    // The previous declaration was found on the identifer resolver
3569    // chain, so remove it from its scope.
3570
3571    if (S->isDeclScope(PrevDecl)) {
3572      // Special case for redeclarations in the SAME scope.
3573      // Because this declaration is going to be added to the identifier chain
3574      // later, we should temporarily take it OFF the chain.
3575      IdResolver.RemoveDecl(ND);
3576
3577    } else {
3578      // Find the scope for the original declaration.
3579      while (S && !S->isDeclScope(PrevDecl))
3580        S = S->getParent();
3581    }
3582
3583    if (S)
3584      S->RemoveDecl(PrevDecl);
3585  }
3586}
3587
3588llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3589Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3590  if (ExternalSource) {
3591    // Load locally-scoped external decls from the external source.
3592    SmallVector<NamedDecl *, 4> Decls;
3593    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3594    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3595      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3596        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3597      if (Pos == LocallyScopedExternalDecls.end())
3598        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3599    }
3600  }
3601
3602  return LocallyScopedExternalDecls.find(Name);
3603}
3604
3605/// \brief Diagnose function specifiers on a declaration of an identifier that
3606/// does not identify a function.
3607void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3608  // FIXME: We should probably indicate the identifier in question to avoid
3609  // confusion for constructs like "inline int a(), b;"
3610  if (D.getDeclSpec().isInlineSpecified())
3611    Diag(D.getDeclSpec().getInlineSpecLoc(),
3612         diag::err_inline_non_function);
3613
3614  if (D.getDeclSpec().isVirtualSpecified())
3615    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3616         diag::err_virtual_non_function);
3617
3618  if (D.getDeclSpec().isExplicitSpecified())
3619    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3620         diag::err_explicit_non_function);
3621}
3622
3623NamedDecl*
3624Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3625                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3626  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3627  if (D.getCXXScopeSpec().isSet()) {
3628    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3629      << D.getCXXScopeSpec().getRange();
3630    D.setInvalidType();
3631    // Pretend we didn't see the scope specifier.
3632    DC = CurContext;
3633    Previous.clear();
3634  }
3635
3636  if (getLangOptions().CPlusPlus) {
3637    // Check that there are no default arguments (C++ only).
3638    CheckExtraCXXDefaultArguments(D);
3639  }
3640
3641  DiagnoseFunctionSpecifiers(D);
3642
3643  if (D.getDeclSpec().isThreadSpecified())
3644    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3645  if (D.getDeclSpec().isConstexprSpecified())
3646    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3647      << 1;
3648
3649  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3650    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3651      << D.getName().getSourceRange();
3652    return 0;
3653  }
3654
3655  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3656  if (!NewTD) return 0;
3657
3658  // Handle attributes prior to checking for duplicates in MergeVarDecl
3659  ProcessDeclAttributes(S, NewTD, D);
3660
3661  CheckTypedefForVariablyModifiedType(S, NewTD);
3662
3663  bool Redeclaration = D.isRedeclaration();
3664  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3665  D.setRedeclaration(Redeclaration);
3666  return ND;
3667}
3668
3669void
3670Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3671  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3672  // then it shall have block scope.
3673  // Note that variably modified types must be fixed before merging the decl so
3674  // that redeclarations will match.
3675  QualType T = NewTD->getUnderlyingType();
3676  if (T->isVariablyModifiedType()) {
3677    getCurFunction()->setHasBranchProtectedScope();
3678
3679    if (S->getFnParent() == 0) {
3680      bool SizeIsNegative;
3681      llvm::APSInt Oversized;
3682      QualType FixedTy =
3683          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3684                                              Oversized);
3685      if (!FixedTy.isNull()) {
3686        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3687        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3688      } else {
3689        if (SizeIsNegative)
3690          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3691        else if (T->isVariableArrayType())
3692          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3693        else if (Oversized.getBoolValue())
3694          Diag(NewTD->getLocation(), diag::err_array_too_large)
3695            << Oversized.toString(10);
3696        else
3697          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3698        NewTD->setInvalidDecl();
3699      }
3700    }
3701  }
3702}
3703
3704
3705/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3706/// declares a typedef-name, either using the 'typedef' type specifier or via
3707/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3708NamedDecl*
3709Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3710                           LookupResult &Previous, bool &Redeclaration) {
3711  // Merge the decl with the existing one if appropriate. If the decl is
3712  // in an outer scope, it isn't the same thing.
3713  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3714                       /*ExplicitInstantiationOrSpecialization=*/false);
3715  if (!Previous.empty()) {
3716    Redeclaration = true;
3717    MergeTypedefNameDecl(NewTD, Previous);
3718  }
3719
3720  // If this is the C FILE type, notify the AST context.
3721  if (IdentifierInfo *II = NewTD->getIdentifier())
3722    if (!NewTD->isInvalidDecl() &&
3723        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3724      if (II->isStr("FILE"))
3725        Context.setFILEDecl(NewTD);
3726      else if (II->isStr("jmp_buf"))
3727        Context.setjmp_bufDecl(NewTD);
3728      else if (II->isStr("sigjmp_buf"))
3729        Context.setsigjmp_bufDecl(NewTD);
3730      else if (II->isStr("ucontext_t"))
3731        Context.setucontext_tDecl(NewTD);
3732      else if (II->isStr("__builtin_va_list"))
3733        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3734    }
3735
3736  return NewTD;
3737}
3738
3739/// \brief Determines whether the given declaration is an out-of-scope
3740/// previous declaration.
3741///
3742/// This routine should be invoked when name lookup has found a
3743/// previous declaration (PrevDecl) that is not in the scope where a
3744/// new declaration by the same name is being introduced. If the new
3745/// declaration occurs in a local scope, previous declarations with
3746/// linkage may still be considered previous declarations (C99
3747/// 6.2.2p4-5, C++ [basic.link]p6).
3748///
3749/// \param PrevDecl the previous declaration found by name
3750/// lookup
3751///
3752/// \param DC the context in which the new declaration is being
3753/// declared.
3754///
3755/// \returns true if PrevDecl is an out-of-scope previous declaration
3756/// for a new delcaration with the same name.
3757static bool
3758isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3759                                ASTContext &Context) {
3760  if (!PrevDecl)
3761    return false;
3762
3763  if (!PrevDecl->hasLinkage())
3764    return false;
3765
3766  if (Context.getLangOptions().CPlusPlus) {
3767    // C++ [basic.link]p6:
3768    //   If there is a visible declaration of an entity with linkage
3769    //   having the same name and type, ignoring entities declared
3770    //   outside the innermost enclosing namespace scope, the block
3771    //   scope declaration declares that same entity and receives the
3772    //   linkage of the previous declaration.
3773    DeclContext *OuterContext = DC->getRedeclContext();
3774    if (!OuterContext->isFunctionOrMethod())
3775      // This rule only applies to block-scope declarations.
3776      return false;
3777
3778    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3779    if (PrevOuterContext->isRecord())
3780      // We found a member function: ignore it.
3781      return false;
3782
3783    // Find the innermost enclosing namespace for the new and
3784    // previous declarations.
3785    OuterContext = OuterContext->getEnclosingNamespaceContext();
3786    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3787
3788    // The previous declaration is in a different namespace, so it
3789    // isn't the same function.
3790    if (!OuterContext->Equals(PrevOuterContext))
3791      return false;
3792  }
3793
3794  return true;
3795}
3796
3797static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3798  CXXScopeSpec &SS = D.getCXXScopeSpec();
3799  if (!SS.isSet()) return;
3800  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3801}
3802
3803bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3804  QualType type = decl->getType();
3805  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3806  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3807    // Various kinds of declaration aren't allowed to be __autoreleasing.
3808    unsigned kind = -1U;
3809    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3810      if (var->hasAttr<BlocksAttr>())
3811        kind = 0; // __block
3812      else if (!var->hasLocalStorage())
3813        kind = 1; // global
3814    } else if (isa<ObjCIvarDecl>(decl)) {
3815      kind = 3; // ivar
3816    } else if (isa<FieldDecl>(decl)) {
3817      kind = 2; // field
3818    }
3819
3820    if (kind != -1U) {
3821      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3822        << kind;
3823    }
3824  } else if (lifetime == Qualifiers::OCL_None) {
3825    // Try to infer lifetime.
3826    if (!type->isObjCLifetimeType())
3827      return false;
3828
3829    lifetime = type->getObjCARCImplicitLifetime();
3830    type = Context.getLifetimeQualifiedType(type, lifetime);
3831    decl->setType(type);
3832  }
3833
3834  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3835    // Thread-local variables cannot have lifetime.
3836    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3837        var->isThreadSpecified()) {
3838      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3839        << var->getType();
3840      return true;
3841    }
3842  }
3843
3844  return false;
3845}
3846
3847NamedDecl*
3848Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3849                              TypeSourceInfo *TInfo, LookupResult &Previous,
3850                              MultiTemplateParamsArg TemplateParamLists) {
3851  QualType R = TInfo->getType();
3852  DeclarationName Name = GetNameForDeclarator(D).getName();
3853
3854  // Check that there are no default arguments (C++ only).
3855  if (getLangOptions().CPlusPlus)
3856    CheckExtraCXXDefaultArguments(D);
3857
3858  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3859  assert(SCSpec != DeclSpec::SCS_typedef &&
3860         "Parser allowed 'typedef' as storage class VarDecl.");
3861  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3862  if (SCSpec == DeclSpec::SCS_mutable) {
3863    // mutable can only appear on non-static class members, so it's always
3864    // an error here
3865    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3866    D.setInvalidType();
3867    SC = SC_None;
3868  }
3869  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3870  VarDecl::StorageClass SCAsWritten
3871    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3872
3873  IdentifierInfo *II = Name.getAsIdentifierInfo();
3874  if (!II) {
3875    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3876      << Name;
3877    return 0;
3878  }
3879
3880  DiagnoseFunctionSpecifiers(D);
3881
3882  if (!DC->isRecord() && S->getFnParent() == 0) {
3883    // C99 6.9p2: The storage-class specifiers auto and register shall not
3884    // appear in the declaration specifiers in an external declaration.
3885    if (SC == SC_Auto || SC == SC_Register) {
3886
3887      // If this is a register variable with an asm label specified, then this
3888      // is a GNU extension.
3889      if (SC == SC_Register && D.getAsmLabel())
3890        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3891      else
3892        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3893      D.setInvalidType();
3894    }
3895  }
3896
3897  if (getLangOptions().OpenCL) {
3898    // Set up the special work-group-local storage class for variables in the
3899    // OpenCL __local address space.
3900    if (R.getAddressSpace() == LangAS::opencl_local)
3901      SC = SC_OpenCLWorkGroupLocal;
3902  }
3903
3904  bool isExplicitSpecialization = false;
3905  VarDecl *NewVD;
3906  if (!getLangOptions().CPlusPlus) {
3907    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3908                            D.getIdentifierLoc(), II,
3909                            R, TInfo, SC, SCAsWritten);
3910
3911    if (D.isInvalidType())
3912      NewVD->setInvalidDecl();
3913  } else {
3914    if (DC->isRecord() && !CurContext->isRecord()) {
3915      // This is an out-of-line definition of a static data member.
3916      if (SC == SC_Static) {
3917        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3918             diag::err_static_out_of_line)
3919          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3920      } else if (SC == SC_None)
3921        SC = SC_Static;
3922    }
3923    if (SC == SC_Static) {
3924      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3925        if (RD->isLocalClass())
3926          Diag(D.getIdentifierLoc(),
3927               diag::err_static_data_member_not_allowed_in_local_class)
3928            << Name << RD->getDeclName();
3929
3930        // C++ [class.union]p1: If a union contains a static data member,
3931        // the program is ill-formed.
3932        //
3933        // We also disallow static data members in anonymous structs.
3934        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3935          Diag(D.getIdentifierLoc(),
3936               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3937            << Name << RD->isUnion();
3938      }
3939    }
3940
3941    // Match up the template parameter lists with the scope specifier, then
3942    // determine whether we have a template or a template specialization.
3943    isExplicitSpecialization = false;
3944    bool Invalid = false;
3945    if (TemplateParameterList *TemplateParams
3946        = MatchTemplateParametersToScopeSpecifier(
3947                                  D.getDeclSpec().getSourceRange().getBegin(),
3948                                                  D.getIdentifierLoc(),
3949                                                  D.getCXXScopeSpec(),
3950                                                  TemplateParamLists.get(),
3951                                                  TemplateParamLists.size(),
3952                                                  /*never a friend*/ false,
3953                                                  isExplicitSpecialization,
3954                                                  Invalid)) {
3955      if (TemplateParams->size() > 0) {
3956        // There is no such thing as a variable template.
3957        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3958          << II
3959          << SourceRange(TemplateParams->getTemplateLoc(),
3960                         TemplateParams->getRAngleLoc());
3961        return 0;
3962      } else {
3963        // There is an extraneous 'template<>' for this variable. Complain
3964        // about it, but allow the declaration of the variable.
3965        Diag(TemplateParams->getTemplateLoc(),
3966             diag::err_template_variable_noparams)
3967          << II
3968          << SourceRange(TemplateParams->getTemplateLoc(),
3969                         TemplateParams->getRAngleLoc());
3970      }
3971    }
3972
3973    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3974                            D.getIdentifierLoc(), II,
3975                            R, TInfo, SC, SCAsWritten);
3976
3977    // If this decl has an auto type in need of deduction, make a note of the
3978    // Decl so we can diagnose uses of it in its own initializer.
3979    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3980        R->getContainedAutoType())
3981      ParsingInitForAutoVars.insert(NewVD);
3982
3983    if (D.isInvalidType() || Invalid)
3984      NewVD->setInvalidDecl();
3985
3986    SetNestedNameSpecifier(NewVD, D);
3987
3988    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3989      NewVD->setTemplateParameterListsInfo(Context,
3990                                           TemplateParamLists.size(),
3991                                           TemplateParamLists.release());
3992    }
3993
3994    if (D.getDeclSpec().isConstexprSpecified())
3995      NewVD->setConstexpr(true);
3996  }
3997
3998  // Set the lexical context. If the declarator has a C++ scope specifier, the
3999  // lexical context will be different from the semantic context.
4000  NewVD->setLexicalDeclContext(CurContext);
4001
4002  if (D.getDeclSpec().isThreadSpecified()) {
4003    if (NewVD->hasLocalStorage())
4004      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4005    else if (!Context.getTargetInfo().isTLSSupported())
4006      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4007    else
4008      NewVD->setThreadSpecified(true);
4009  }
4010
4011  if (D.getDeclSpec().isModulePrivateSpecified()) {
4012    if (isExplicitSpecialization)
4013      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4014        << 2
4015        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4016    else if (NewVD->hasLocalStorage())
4017      Diag(NewVD->getLocation(), diag::err_module_private_local)
4018        << 0 << NewVD->getDeclName()
4019        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4020        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4021    else
4022      NewVD->setModulePrivate();
4023  }
4024
4025  // Handle attributes prior to checking for duplicates in MergeVarDecl
4026  ProcessDeclAttributes(S, NewVD, D);
4027
4028  // In auto-retain/release, infer strong retension for variables of
4029  // retainable type.
4030  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4031    NewVD->setInvalidDecl();
4032
4033  // Handle GNU asm-label extension (encoded as an attribute).
4034  if (Expr *E = (Expr*)D.getAsmLabel()) {
4035    // The parser guarantees this is a string.
4036    StringLiteral *SE = cast<StringLiteral>(E);
4037    StringRef Label = SE->getString();
4038    if (S->getFnParent() != 0) {
4039      switch (SC) {
4040      case SC_None:
4041      case SC_Auto:
4042        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4043        break;
4044      case SC_Register:
4045        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4046          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4047        break;
4048      case SC_Static:
4049      case SC_Extern:
4050      case SC_PrivateExtern:
4051      case SC_OpenCLWorkGroupLocal:
4052        break;
4053      }
4054    }
4055
4056    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4057                                                Context, Label));
4058  }
4059
4060  // Diagnose shadowed variables before filtering for scope.
4061  if (!D.getCXXScopeSpec().isSet())
4062    CheckShadow(S, NewVD, Previous);
4063
4064  // Don't consider existing declarations that are in a different
4065  // scope and are out-of-semantic-context declarations (if the new
4066  // declaration has linkage).
4067  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4068                       isExplicitSpecialization);
4069
4070  if (!getLangOptions().CPlusPlus) {
4071    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4072  } else {
4073    // Merge the decl with the existing one if appropriate.
4074    if (!Previous.empty()) {
4075      if (Previous.isSingleResult() &&
4076          isa<FieldDecl>(Previous.getFoundDecl()) &&
4077          D.getCXXScopeSpec().isSet()) {
4078        // The user tried to define a non-static data member
4079        // out-of-line (C++ [dcl.meaning]p1).
4080        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4081          << D.getCXXScopeSpec().getRange();
4082        Previous.clear();
4083        NewVD->setInvalidDecl();
4084      }
4085    } else if (D.getCXXScopeSpec().isSet()) {
4086      // No previous declaration in the qualifying scope.
4087      Diag(D.getIdentifierLoc(), diag::err_no_member)
4088        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4089        << D.getCXXScopeSpec().getRange();
4090      NewVD->setInvalidDecl();
4091    }
4092
4093    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4094
4095    // This is an explicit specialization of a static data member. Check it.
4096    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4097        CheckMemberSpecialization(NewVD, Previous))
4098      NewVD->setInvalidDecl();
4099  }
4100
4101  // attributes declared post-definition are currently ignored
4102  // FIXME: This should be handled in attribute merging, not
4103  // here.
4104  if (Previous.isSingleResult()) {
4105    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4106    if (Def && (Def = Def->getDefinition()) &&
4107        Def != NewVD && D.hasAttributes()) {
4108      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4109      Diag(Def->getLocation(), diag::note_previous_definition);
4110    }
4111  }
4112
4113  // If this is a locally-scoped extern C variable, update the map of
4114  // such variables.
4115  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4116      !NewVD->isInvalidDecl())
4117    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4118
4119  // If there's a #pragma GCC visibility in scope, and this isn't a class
4120  // member, set the visibility of this variable.
4121  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4122    AddPushedVisibilityAttribute(NewVD);
4123
4124  MarkUnusedFileScopedDecl(NewVD);
4125
4126  return NewVD;
4127}
4128
4129/// \brief Diagnose variable or built-in function shadowing.  Implements
4130/// -Wshadow.
4131///
4132/// This method is called whenever a VarDecl is added to a "useful"
4133/// scope.
4134///
4135/// \param S the scope in which the shadowing name is being declared
4136/// \param R the lookup of the name
4137///
4138void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4139  // Return if warning is ignored.
4140  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4141        DiagnosticsEngine::Ignored)
4142    return;
4143
4144  // Don't diagnose declarations at file scope.
4145  if (D->hasGlobalStorage())
4146    return;
4147
4148  DeclContext *NewDC = D->getDeclContext();
4149
4150  // Only diagnose if we're shadowing an unambiguous field or variable.
4151  if (R.getResultKind() != LookupResult::Found)
4152    return;
4153
4154  NamedDecl* ShadowedDecl = R.getFoundDecl();
4155  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4156    return;
4157
4158  // Fields are not shadowed by variables in C++ static methods.
4159  if (isa<FieldDecl>(ShadowedDecl))
4160    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4161      if (MD->isStatic())
4162        return;
4163
4164  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4165    if (shadowedVar->isExternC()) {
4166      // For shadowing external vars, make sure that we point to the global
4167      // declaration, not a locally scoped extern declaration.
4168      for (VarDecl::redecl_iterator
4169             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4170           I != E; ++I)
4171        if (I->isFileVarDecl()) {
4172          ShadowedDecl = *I;
4173          break;
4174        }
4175    }
4176
4177  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4178
4179  // Only warn about certain kinds of shadowing for class members.
4180  if (NewDC && NewDC->isRecord()) {
4181    // In particular, don't warn about shadowing non-class members.
4182    if (!OldDC->isRecord())
4183      return;
4184
4185    // TODO: should we warn about static data members shadowing
4186    // static data members from base classes?
4187
4188    // TODO: don't diagnose for inaccessible shadowed members.
4189    // This is hard to do perfectly because we might friend the
4190    // shadowing context, but that's just a false negative.
4191  }
4192
4193  // Determine what kind of declaration we're shadowing.
4194  unsigned Kind;
4195  if (isa<RecordDecl>(OldDC)) {
4196    if (isa<FieldDecl>(ShadowedDecl))
4197      Kind = 3; // field
4198    else
4199      Kind = 2; // static data member
4200  } else if (OldDC->isFileContext())
4201    Kind = 1; // global
4202  else
4203    Kind = 0; // local
4204
4205  DeclarationName Name = R.getLookupName();
4206
4207  // Emit warning and note.
4208  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4209  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4210}
4211
4212/// \brief Check -Wshadow without the advantage of a previous lookup.
4213void Sema::CheckShadow(Scope *S, VarDecl *D) {
4214  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4215        DiagnosticsEngine::Ignored)
4216    return;
4217
4218  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4219                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4220  LookupName(R, S);
4221  CheckShadow(S, D, R);
4222}
4223
4224/// \brief Perform semantic checking on a newly-created variable
4225/// declaration.
4226///
4227/// This routine performs all of the type-checking required for a
4228/// variable declaration once it has been built. It is used both to
4229/// check variables after they have been parsed and their declarators
4230/// have been translated into a declaration, and to check variables
4231/// that have been instantiated from a template.
4232///
4233/// Sets NewVD->isInvalidDecl() if an error was encountered.
4234///
4235/// Returns true if the variable declaration is a redeclaration.
4236bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4237                                    LookupResult &Previous) {
4238  // If the decl is already known invalid, don't check it.
4239  if (NewVD->isInvalidDecl())
4240    return false;
4241
4242  QualType T = NewVD->getType();
4243
4244  if (T->isObjCObjectType()) {
4245    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4246      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4247    T = Context.getObjCObjectPointerType(T);
4248    NewVD->setType(T);
4249  }
4250
4251  // Emit an error if an address space was applied to decl with local storage.
4252  // This includes arrays of objects with address space qualifiers, but not
4253  // automatic variables that point to other address spaces.
4254  // ISO/IEC TR 18037 S5.1.2
4255  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4256    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4257    NewVD->setInvalidDecl();
4258    return false;
4259  }
4260
4261  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4262      && !NewVD->hasAttr<BlocksAttr>()) {
4263    if (getLangOptions().getGC() != LangOptions::NonGC)
4264      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4265    else
4266      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4267  }
4268
4269  bool isVM = T->isVariablyModifiedType();
4270  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4271      NewVD->hasAttr<BlocksAttr>())
4272    getCurFunction()->setHasBranchProtectedScope();
4273
4274  if ((isVM && NewVD->hasLinkage()) ||
4275      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4276    bool SizeIsNegative;
4277    llvm::APSInt Oversized;
4278    QualType FixedTy =
4279        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4280                                            Oversized);
4281
4282    if (FixedTy.isNull() && T->isVariableArrayType()) {
4283      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4284      // FIXME: This won't give the correct result for
4285      // int a[10][n];
4286      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4287
4288      if (NewVD->isFileVarDecl())
4289        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4290        << SizeRange;
4291      else if (NewVD->getStorageClass() == SC_Static)
4292        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4293        << SizeRange;
4294      else
4295        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4296        << SizeRange;
4297      NewVD->setInvalidDecl();
4298      return false;
4299    }
4300
4301    if (FixedTy.isNull()) {
4302      if (NewVD->isFileVarDecl())
4303        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4304      else
4305        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4306      NewVD->setInvalidDecl();
4307      return false;
4308    }
4309
4310    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4311    NewVD->setType(FixedTy);
4312  }
4313
4314  if (Previous.empty() && NewVD->isExternC()) {
4315    // Since we did not find anything by this name and we're declaring
4316    // an extern "C" variable, look for a non-visible extern "C"
4317    // declaration with the same name.
4318    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4319      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4320    if (Pos != LocallyScopedExternalDecls.end())
4321      Previous.addDecl(Pos->second);
4322  }
4323
4324  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4325    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4326      << T;
4327    NewVD->setInvalidDecl();
4328    return false;
4329  }
4330
4331  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4332    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4333    NewVD->setInvalidDecl();
4334    return false;
4335  }
4336
4337  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4338    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4339    NewVD->setInvalidDecl();
4340    return false;
4341  }
4342
4343  if (!Previous.empty()) {
4344    MergeVarDecl(NewVD, Previous);
4345    return true;
4346  }
4347  return false;
4348}
4349
4350/// \brief Data used with FindOverriddenMethod
4351struct FindOverriddenMethodData {
4352  Sema *S;
4353  CXXMethodDecl *Method;
4354};
4355
4356/// \brief Member lookup function that determines whether a given C++
4357/// method overrides a method in a base class, to be used with
4358/// CXXRecordDecl::lookupInBases().
4359static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4360                                 CXXBasePath &Path,
4361                                 void *UserData) {
4362  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4363
4364  FindOverriddenMethodData *Data
4365    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4366
4367  DeclarationName Name = Data->Method->getDeclName();
4368
4369  // FIXME: Do we care about other names here too?
4370  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4371    // We really want to find the base class destructor here.
4372    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4373    CanQualType CT = Data->S->Context.getCanonicalType(T);
4374
4375    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4376  }
4377
4378  for (Path.Decls = BaseRecord->lookup(Name);
4379       Path.Decls.first != Path.Decls.second;
4380       ++Path.Decls.first) {
4381    NamedDecl *D = *Path.Decls.first;
4382    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4383      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4384        return true;
4385    }
4386  }
4387
4388  return false;
4389}
4390
4391/// AddOverriddenMethods - See if a method overrides any in the base classes,
4392/// and if so, check that it's a valid override and remember it.
4393bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4394  // Look for virtual methods in base classes that this method might override.
4395  CXXBasePaths Paths;
4396  FindOverriddenMethodData Data;
4397  Data.Method = MD;
4398  Data.S = this;
4399  bool AddedAny = false;
4400  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4401    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4402         E = Paths.found_decls_end(); I != E; ++I) {
4403      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4404        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4405        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4406            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4407            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4408          AddedAny = true;
4409        }
4410      }
4411    }
4412  }
4413
4414  return AddedAny;
4415}
4416
4417namespace {
4418  // Struct for holding all of the extra arguments needed by
4419  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4420  struct ActOnFDArgs {
4421    Scope *S;
4422    Declarator &D;
4423    MultiTemplateParamsArg TemplateParamLists;
4424    bool AddToScope;
4425  };
4426}
4427
4428namespace {
4429
4430// Callback to only accept typo corrections that have a non-zero edit distance.
4431class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4432 public:
4433  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4434    return candidate.getEditDistance() > 0;
4435  }
4436};
4437
4438}
4439
4440/// \brief Generate diagnostics for an invalid function redeclaration.
4441///
4442/// This routine handles generating the diagnostic messages for an invalid
4443/// function redeclaration, including finding possible similar declarations
4444/// or performing typo correction if there are no previous declarations with
4445/// the same name.
4446///
4447/// Returns a NamedDecl iff typo correction was performed and substituting in
4448/// the new declaration name does not cause new errors.
4449static NamedDecl* DiagnoseInvalidRedeclaration(
4450    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4451    ActOnFDArgs &ExtraArgs) {
4452  NamedDecl *Result = NULL;
4453  DeclarationName Name = NewFD->getDeclName();
4454  DeclContext *NewDC = NewFD->getDeclContext();
4455  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4456                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4457  llvm::SmallVector<unsigned, 1> MismatchedParams;
4458  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4459  TypoCorrection Correction;
4460  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4461                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4462  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4463                                  : diag::err_member_def_does_not_match;
4464
4465  NewFD->setInvalidDecl();
4466  SemaRef.LookupQualifiedName(Prev, NewDC);
4467  assert(!Prev.isAmbiguous() &&
4468         "Cannot have an ambiguity in previous-declaration lookup");
4469  DifferentNameValidatorCCC Validator;
4470  if (!Prev.empty()) {
4471    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4472         Func != FuncEnd; ++Func) {
4473      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4474      if (FD &&
4475          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4476        // Add 1 to the index so that 0 can mean the mismatch didn't
4477        // involve a parameter
4478        unsigned ParamNum =
4479            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4480        NearMatches.push_back(std::make_pair(FD, ParamNum));
4481      }
4482    }
4483  // If the qualified name lookup yielded nothing, try typo correction
4484  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4485                                         Prev.getLookupKind(), 0, 0,
4486                                         Validator, NewDC))) {
4487    // Trap errors.
4488    Sema::SFINAETrap Trap(SemaRef);
4489
4490    // Set up everything for the call to ActOnFunctionDeclarator
4491    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4492                              ExtraArgs.D.getIdentifierLoc());
4493    Previous.clear();
4494    Previous.setLookupName(Correction.getCorrection());
4495    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4496                                    CDeclEnd = Correction.end();
4497         CDecl != CDeclEnd; ++CDecl) {
4498      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4499      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4500                                     MismatchedParams)) {
4501        Previous.addDecl(FD);
4502      }
4503    }
4504    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4505    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4506    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4507    // eliminate the need for the parameter pack ExtraArgs.
4508    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4509                                             NewFD->getDeclContext(),
4510                                             NewFD->getTypeSourceInfo(),
4511                                             Previous,
4512                                             ExtraArgs.TemplateParamLists,
4513                                             ExtraArgs.AddToScope);
4514    if (Trap.hasErrorOccurred()) {
4515      // Pretend the typo correction never occurred
4516      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4517                                ExtraArgs.D.getIdentifierLoc());
4518      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4519      Previous.clear();
4520      Previous.setLookupName(Name);
4521      Result = NULL;
4522    } else {
4523      for (LookupResult::iterator Func = Previous.begin(),
4524                               FuncEnd = Previous.end();
4525           Func != FuncEnd; ++Func) {
4526        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4527          NearMatches.push_back(std::make_pair(FD, 0));
4528      }
4529    }
4530    if (NearMatches.empty()) {
4531      // Ignore the correction if it didn't yield any close FunctionDecl matches
4532      Correction = TypoCorrection();
4533    } else {
4534      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4535                             : diag::err_member_def_does_not_match_suggest;
4536    }
4537  }
4538
4539  if (Correction)
4540    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4541        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4542        << FixItHint::CreateReplacement(
4543            NewFD->getLocation(),
4544            Correction.getAsString(SemaRef.getLangOptions()));
4545  else
4546    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4547        << Name << NewDC << NewFD->getLocation();
4548
4549  bool NewFDisConst = false;
4550  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4551    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4552
4553  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4554       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4555       NearMatch != NearMatchEnd; ++NearMatch) {
4556    FunctionDecl *FD = NearMatch->first;
4557    bool FDisConst = false;
4558    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4559      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4560
4561    if (unsigned Idx = NearMatch->second) {
4562      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4563      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4564             diag::note_member_def_close_param_match)
4565          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4566    } else if (Correction) {
4567      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4568          << Correction.getQuoted(SemaRef.getLangOptions());
4569    } else if (FDisConst != NewFDisConst) {
4570      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4571          << NewFDisConst << FD->getSourceRange().getEnd();
4572    } else
4573      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4574  }
4575  return Result;
4576}
4577
4578static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4579                                                          Declarator &D) {
4580  switch (D.getDeclSpec().getStorageClassSpec()) {
4581  default: llvm_unreachable("Unknown storage class!");
4582  case DeclSpec::SCS_auto:
4583  case DeclSpec::SCS_register:
4584  case DeclSpec::SCS_mutable:
4585    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4586                 diag::err_typecheck_sclass_func);
4587    D.setInvalidType();
4588    break;
4589  case DeclSpec::SCS_unspecified: break;
4590  case DeclSpec::SCS_extern: return SC_Extern;
4591  case DeclSpec::SCS_static: {
4592    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4593      // C99 6.7.1p5:
4594      //   The declaration of an identifier for a function that has
4595      //   block scope shall have no explicit storage-class specifier
4596      //   other than extern
4597      // See also (C++ [dcl.stc]p4).
4598      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4599                   diag::err_static_block_func);
4600      break;
4601    } else
4602      return SC_Static;
4603  }
4604  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4605  }
4606
4607  // No explicit storage class has already been returned
4608  return SC_None;
4609}
4610
4611static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4612                                           DeclContext *DC, QualType &R,
4613                                           TypeSourceInfo *TInfo,
4614                                           FunctionDecl::StorageClass SC,
4615                                           bool &IsVirtualOkay) {
4616  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4617  DeclarationName Name = NameInfo.getName();
4618
4619  FunctionDecl *NewFD = 0;
4620  bool isInline = D.getDeclSpec().isInlineSpecified();
4621  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4622  FunctionDecl::StorageClass SCAsWritten
4623    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4624
4625  if (!SemaRef.getLangOptions().CPlusPlus) {
4626    // Determine whether the function was written with a
4627    // prototype. This true when:
4628    //   - there is a prototype in the declarator, or
4629    //   - the type R of the function is some kind of typedef or other reference
4630    //     to a type name (which eventually refers to a function type).
4631    bool HasPrototype =
4632      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4633      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4634
4635    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4636                                 D.getSourceRange().getBegin(), NameInfo, R,
4637                                 TInfo, SC, SCAsWritten, isInline,
4638                                 HasPrototype);
4639    if (D.isInvalidType())
4640      NewFD->setInvalidDecl();
4641
4642    // Set the lexical context.
4643    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4644
4645    return NewFD;
4646  }
4647
4648  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4649  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4650
4651  // Check that the return type is not an abstract class type.
4652  // For record types, this is done by the AbstractClassUsageDiagnoser once
4653  // the class has been completely parsed.
4654  if (!DC->isRecord() &&
4655      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4656                                     R->getAs<FunctionType>()->getResultType(),
4657                                     diag::err_abstract_type_in_decl,
4658                                     SemaRef.AbstractReturnType))
4659    D.setInvalidType();
4660
4661  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4662    // This is a C++ constructor declaration.
4663    assert(DC->isRecord() &&
4664           "Constructors can only be declared in a member context");
4665
4666    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4667    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4668                                      D.getSourceRange().getBegin(), NameInfo,
4669                                      R, TInfo, isExplicit, isInline,
4670                                      /*isImplicitlyDeclared=*/false,
4671                                      isConstexpr);
4672
4673  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4674    // This is a C++ destructor declaration.
4675    if (DC->isRecord()) {
4676      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4677      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4678      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4679                                        SemaRef.Context, Record,
4680                                        D.getSourceRange().getBegin(),
4681                                        NameInfo, R, TInfo, isInline,
4682                                        /*isImplicitlyDeclared=*/false);
4683
4684      // If the class is complete, then we now create the implicit exception
4685      // specification. If the class is incomplete or dependent, we can't do
4686      // it yet.
4687      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4688          Record->getDefinition() && !Record->isBeingDefined() &&
4689          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4690        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4691      }
4692
4693      IsVirtualOkay = true;
4694      return NewDD;
4695
4696    } else {
4697      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4698      D.setInvalidType();
4699
4700      // Create a FunctionDecl to satisfy the function definition parsing
4701      // code path.
4702      return FunctionDecl::Create(SemaRef.Context, DC,
4703                                  D.getSourceRange().getBegin(),
4704                                  D.getIdentifierLoc(), Name, R, TInfo,
4705                                  SC, SCAsWritten, isInline,
4706                                  /*hasPrototype=*/true, isConstexpr);
4707    }
4708
4709  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4710    if (!DC->isRecord()) {
4711      SemaRef.Diag(D.getIdentifierLoc(),
4712           diag::err_conv_function_not_member);
4713      return 0;
4714    }
4715
4716    SemaRef.CheckConversionDeclarator(D, R, SC);
4717    IsVirtualOkay = true;
4718    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4719                                     D.getSourceRange().getBegin(), NameInfo,
4720                                     R, TInfo, isInline, isExplicit,
4721                                     isConstexpr, SourceLocation());
4722
4723  } else if (DC->isRecord()) {
4724    // If the name of the function is the same as the name of the record,
4725    // then this must be an invalid constructor that has a return type.
4726    // (The parser checks for a return type and makes the declarator a
4727    // constructor if it has no return type).
4728    if (Name.getAsIdentifierInfo() &&
4729        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4730      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4731        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4732        << SourceRange(D.getIdentifierLoc());
4733      return 0;
4734    }
4735
4736    bool isStatic = SC == SC_Static;
4737
4738    // [class.free]p1:
4739    // Any allocation function for a class T is a static member
4740    // (even if not explicitly declared static).
4741    if (Name.getCXXOverloadedOperator() == OO_New ||
4742        Name.getCXXOverloadedOperator() == OO_Array_New)
4743      isStatic = true;
4744
4745    // [class.free]p6 Any deallocation function for a class X is a static member
4746    // (even if not explicitly declared static).
4747    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4748        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4749      isStatic = true;
4750
4751    IsVirtualOkay = !isStatic;
4752
4753    // This is a C++ method declaration.
4754    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4755                                 D.getSourceRange().getBegin(), NameInfo, R,
4756                                 TInfo, isStatic, SCAsWritten, isInline,
4757                                 isConstexpr, SourceLocation());
4758
4759  } else {
4760    // Determine whether the function was written with a
4761    // prototype. This true when:
4762    //   - we're in C++ (where every function has a prototype),
4763    return FunctionDecl::Create(SemaRef.Context, DC,
4764                                D.getSourceRange().getBegin(),
4765                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4766                                true/*HasPrototype*/, isConstexpr);
4767  }
4768}
4769
4770NamedDecl*
4771Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4772                              TypeSourceInfo *TInfo, LookupResult &Previous,
4773                              MultiTemplateParamsArg TemplateParamLists,
4774                              bool &AddToScope) {
4775  QualType R = TInfo->getType();
4776
4777  assert(R.getTypePtr()->isFunctionType());
4778
4779  // TODO: consider using NameInfo for diagnostic.
4780  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4781  DeclarationName Name = NameInfo.getName();
4782  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4783
4784  if (D.getDeclSpec().isThreadSpecified())
4785    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4786
4787  // Do not allow returning a objc interface by-value.
4788  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4789    Diag(D.getIdentifierLoc(),
4790         diag::err_object_cannot_be_passed_returned_by_value) << 0
4791    << R->getAs<FunctionType>()->getResultType()
4792    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4793
4794    QualType T = R->getAs<FunctionType>()->getResultType();
4795    T = Context.getObjCObjectPointerType(T);
4796    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4797      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4798      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4799                                  FPT->getNumArgs(), EPI);
4800    }
4801    else if (isa<FunctionNoProtoType>(R))
4802      R = Context.getFunctionNoProtoType(T);
4803  }
4804
4805  bool isFriend = false;
4806  FunctionTemplateDecl *FunctionTemplate = 0;
4807  bool isExplicitSpecialization = false;
4808  bool isFunctionTemplateSpecialization = false;
4809  bool isDependentClassScopeExplicitSpecialization = false;
4810  bool isVirtualOkay = false;
4811
4812  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4813                                              isVirtualOkay);
4814  if (!NewFD) return 0;
4815
4816  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4817    NewFD->setTopLevelDeclInObjCContainer();
4818
4819  if (getLangOptions().CPlusPlus) {
4820    bool isInline = D.getDeclSpec().isInlineSpecified();
4821    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4822    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4823    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4824    isFriend = D.getDeclSpec().isFriendSpecified();
4825    if (isFriend && !isInline && D.isFunctionDefinition()) {
4826      // C++ [class.friend]p5
4827      //   A function can be defined in a friend declaration of a
4828      //   class . . . . Such a function is implicitly inline.
4829      NewFD->setImplicitlyInline();
4830    }
4831
4832    SetNestedNameSpecifier(NewFD, D);
4833    isExplicitSpecialization = false;
4834    isFunctionTemplateSpecialization = false;
4835    if (D.isInvalidType())
4836      NewFD->setInvalidDecl();
4837
4838    // Set the lexical context. If the declarator has a C++
4839    // scope specifier, or is the object of a friend declaration, the
4840    // lexical context will be different from the semantic context.
4841    NewFD->setLexicalDeclContext(CurContext);
4842
4843    // Match up the template parameter lists with the scope specifier, then
4844    // determine whether we have a template or a template specialization.
4845    bool Invalid = false;
4846    if (TemplateParameterList *TemplateParams
4847          = MatchTemplateParametersToScopeSpecifier(
4848                                  D.getDeclSpec().getSourceRange().getBegin(),
4849                                  D.getIdentifierLoc(),
4850                                  D.getCXXScopeSpec(),
4851                                  TemplateParamLists.get(),
4852                                  TemplateParamLists.size(),
4853                                  isFriend,
4854                                  isExplicitSpecialization,
4855                                  Invalid)) {
4856      if (TemplateParams->size() > 0) {
4857        // This is a function template
4858
4859        // Check that we can declare a template here.
4860        if (CheckTemplateDeclScope(S, TemplateParams))
4861          return 0;
4862
4863        // A destructor cannot be a template.
4864        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4865          Diag(NewFD->getLocation(), diag::err_destructor_template);
4866          return 0;
4867        }
4868
4869        // If we're adding a template to a dependent context, we may need to
4870        // rebuilding some of the types used within the template parameter list,
4871        // now that we know what the current instantiation is.
4872        if (DC->isDependentContext()) {
4873          ContextRAII SavedContext(*this, DC);
4874          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4875            Invalid = true;
4876        }
4877
4878
4879        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4880                                                        NewFD->getLocation(),
4881                                                        Name, TemplateParams,
4882                                                        NewFD);
4883        FunctionTemplate->setLexicalDeclContext(CurContext);
4884        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4885
4886        // For source fidelity, store the other template param lists.
4887        if (TemplateParamLists.size() > 1) {
4888          NewFD->setTemplateParameterListsInfo(Context,
4889                                               TemplateParamLists.size() - 1,
4890                                               TemplateParamLists.release());
4891        }
4892      } else {
4893        // This is a function template specialization.
4894        isFunctionTemplateSpecialization = true;
4895        // For source fidelity, store all the template param lists.
4896        NewFD->setTemplateParameterListsInfo(Context,
4897                                             TemplateParamLists.size(),
4898                                             TemplateParamLists.release());
4899
4900        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4901        if (isFriend) {
4902          // We want to remove the "template<>", found here.
4903          SourceRange RemoveRange = TemplateParams->getSourceRange();
4904
4905          // If we remove the template<> and the name is not a
4906          // template-id, we're actually silently creating a problem:
4907          // the friend declaration will refer to an untemplated decl,
4908          // and clearly the user wants a template specialization.  So
4909          // we need to insert '<>' after the name.
4910          SourceLocation InsertLoc;
4911          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4912            InsertLoc = D.getName().getSourceRange().getEnd();
4913            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4914          }
4915
4916          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4917            << Name << RemoveRange
4918            << FixItHint::CreateRemoval(RemoveRange)
4919            << FixItHint::CreateInsertion(InsertLoc, "<>");
4920        }
4921      }
4922    }
4923    else {
4924      // All template param lists were matched against the scope specifier:
4925      // this is NOT (an explicit specialization of) a template.
4926      if (TemplateParamLists.size() > 0)
4927        // For source fidelity, store all the template param lists.
4928        NewFD->setTemplateParameterListsInfo(Context,
4929                                             TemplateParamLists.size(),
4930                                             TemplateParamLists.release());
4931    }
4932
4933    if (Invalid) {
4934      NewFD->setInvalidDecl();
4935      if (FunctionTemplate)
4936        FunctionTemplate->setInvalidDecl();
4937    }
4938
4939    // If we see "T var();" at block scope, where T is a class type, it is
4940    // probably an attempt to initialize a variable, not a function declaration.
4941    // We don't catch this case earlier, since there is no ambiguity here.
4942    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4943        CurContext->isFunctionOrMethod() &&
4944        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4945        D.getDeclSpec().getStorageClassSpecAsWritten()
4946          == DeclSpec::SCS_unspecified) {
4947      QualType T = R->getAs<FunctionType>()->getResultType();
4948      DeclaratorChunk &C = D.getTypeObject(0);
4949      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4950          !C.Fun.TrailingReturnType &&
4951          C.Fun.getExceptionSpecType() == EST_None) {
4952        SourceRange ParenRange(C.Loc, C.EndLoc);
4953        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4954
4955        // If the declaration looks like:
4956        //   T var1,
4957        //   f();
4958        // and name lookup finds a function named 'f', then the ',' was
4959        // probably intended to be a ';'.
4960        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4961          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4962          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4963          if (Comma.getFileID() != Name.getFileID() ||
4964              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4965            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4966                                LookupOrdinaryName);
4967            if (LookupName(Result, S))
4968              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4969                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4970          }
4971        }
4972        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4973        // Empty parens mean value-initialization, and no parens mean default
4974        // initialization. These are equivalent if the default constructor is
4975        // user-provided, or if zero-initialization is a no-op.
4976        if (RD && RD->hasDefinition() &&
4977            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4978          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4979            << FixItHint::CreateRemoval(ParenRange);
4980        else if (const char *Init = getFixItZeroInitializerForType(T))
4981          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4982            << FixItHint::CreateReplacement(ParenRange, Init);
4983        else if (LangOpts.CPlusPlus0x)
4984          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4985            << FixItHint::CreateReplacement(ParenRange, "{}");
4986      }
4987    }
4988
4989    // C++ [dcl.fct.spec]p5:
4990    //   The virtual specifier shall only be used in declarations of
4991    //   nonstatic class member functions that appear within a
4992    //   member-specification of a class declaration; see 10.3.
4993    //
4994    if (isVirtual && !NewFD->isInvalidDecl()) {
4995      if (!isVirtualOkay) {
4996        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4997             diag::err_virtual_non_function);
4998      } else if (!CurContext->isRecord()) {
4999        // 'virtual' was specified outside of the class.
5000        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5001             diag::err_virtual_out_of_class)
5002          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5003      } else if (NewFD->getDescribedFunctionTemplate()) {
5004        // C++ [temp.mem]p3:
5005        //  A member function template shall not be virtual.
5006        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5007             diag::err_virtual_member_function_template)
5008          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5009      } else {
5010        // Okay: Add virtual to the method.
5011        NewFD->setVirtualAsWritten(true);
5012      }
5013    }
5014
5015    // C++ [dcl.fct.spec]p3:
5016    //  The inline specifier shall not appear on a block scope function
5017    //  declaration.
5018    if (isInline && !NewFD->isInvalidDecl()) {
5019      if (CurContext->isFunctionOrMethod()) {
5020        // 'inline' is not allowed on block scope function declaration.
5021        Diag(D.getDeclSpec().getInlineSpecLoc(),
5022             diag::err_inline_declaration_block_scope) << Name
5023          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5024      }
5025    }
5026
5027    // C++ [dcl.fct.spec]p6:
5028    //  The explicit specifier shall be used only in the declaration of a
5029    //  constructor or conversion function within its class definition;
5030    //  see 12.3.1 and 12.3.2.
5031    if (isExplicit && !NewFD->isInvalidDecl()) {
5032      if (!CurContext->isRecord()) {
5033        // 'explicit' was specified outside of the class.
5034        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5035             diag::err_explicit_out_of_class)
5036          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5037      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5038                 !isa<CXXConversionDecl>(NewFD)) {
5039        // 'explicit' was specified on a function that wasn't a constructor
5040        // or conversion function.
5041        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5042             diag::err_explicit_non_ctor_or_conv_function)
5043          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5044      }
5045    }
5046
5047    if (isConstexpr) {
5048      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5049      // are implicitly inline.
5050      NewFD->setImplicitlyInline();
5051
5052      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5053      // be either constructors or to return a literal type. Therefore,
5054      // destructors cannot be declared constexpr.
5055      if (isa<CXXDestructorDecl>(NewFD))
5056        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5057    }
5058
5059    // If __module_private__ was specified, mark the function accordingly.
5060    if (D.getDeclSpec().isModulePrivateSpecified()) {
5061      if (isFunctionTemplateSpecialization) {
5062        SourceLocation ModulePrivateLoc
5063          = D.getDeclSpec().getModulePrivateSpecLoc();
5064        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5065          << 0
5066          << FixItHint::CreateRemoval(ModulePrivateLoc);
5067      } else {
5068        NewFD->setModulePrivate();
5069        if (FunctionTemplate)
5070          FunctionTemplate->setModulePrivate();
5071      }
5072    }
5073
5074    if (isFriend) {
5075      // For now, claim that the objects have no previous declaration.
5076      if (FunctionTemplate) {
5077        FunctionTemplate->setObjectOfFriendDecl(false);
5078        FunctionTemplate->setAccess(AS_public);
5079      }
5080      NewFD->setObjectOfFriendDecl(false);
5081      NewFD->setAccess(AS_public);
5082    }
5083
5084    // If a function is defined as defaulted or deleted, mark it as such now.
5085    switch (D.getFunctionDefinitionKind()) {
5086      case FDK_Declaration:
5087      case FDK_Definition:
5088        break;
5089
5090      case FDK_Defaulted:
5091        NewFD->setDefaulted();
5092        break;
5093
5094      case FDK_Deleted:
5095        NewFD->setDeletedAsWritten();
5096        break;
5097    }
5098
5099    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5100        D.isFunctionDefinition()) {
5101      // C++ [class.mfct]p2:
5102      //   A member function may be defined (8.4) in its class definition, in
5103      //   which case it is an inline member function (7.1.2)
5104      NewFD->setImplicitlyInline();
5105    }
5106
5107    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5108        !CurContext->isRecord()) {
5109      // C++ [class.static]p1:
5110      //   A data or function member of a class may be declared static
5111      //   in a class definition, in which case it is a static member of
5112      //   the class.
5113
5114      // Complain about the 'static' specifier if it's on an out-of-line
5115      // member function definition.
5116      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5117           diag::err_static_out_of_line)
5118        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5119    }
5120  }
5121
5122  // Filter out previous declarations that don't match the scope.
5123  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5124                       isExplicitSpecialization ||
5125                       isFunctionTemplateSpecialization);
5126
5127  // Handle GNU asm-label extension (encoded as an attribute).
5128  if (Expr *E = (Expr*) D.getAsmLabel()) {
5129    // The parser guarantees this is a string.
5130    StringLiteral *SE = cast<StringLiteral>(E);
5131    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5132                                                SE->getString()));
5133  }
5134
5135  // Copy the parameter declarations from the declarator D to the function
5136  // declaration NewFD, if they are available.  First scavenge them into Params.
5137  SmallVector<ParmVarDecl*, 16> Params;
5138  if (D.isFunctionDeclarator()) {
5139    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5140
5141    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5142    // function that takes no arguments, not a function that takes a
5143    // single void argument.
5144    // We let through "const void" here because Sema::GetTypeForDeclarator
5145    // already checks for that case.
5146    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5147        FTI.ArgInfo[0].Param &&
5148        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5149      // Empty arg list, don't push any params.
5150      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5151
5152      // In C++, the empty parameter-type-list must be spelled "void"; a
5153      // typedef of void is not permitted.
5154      if (getLangOptions().CPlusPlus &&
5155          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5156        bool IsTypeAlias = false;
5157        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5158          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5159        else if (const TemplateSpecializationType *TST =
5160                   Param->getType()->getAs<TemplateSpecializationType>())
5161          IsTypeAlias = TST->isTypeAlias();
5162        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5163          << IsTypeAlias;
5164      }
5165    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5166      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5167        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5168        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5169        Param->setDeclContext(NewFD);
5170        Params.push_back(Param);
5171
5172        if (Param->isInvalidDecl())
5173          NewFD->setInvalidDecl();
5174      }
5175    }
5176
5177  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5178    // When we're declaring a function with a typedef, typeof, etc as in the
5179    // following example, we'll need to synthesize (unnamed)
5180    // parameters for use in the declaration.
5181    //
5182    // @code
5183    // typedef void fn(int);
5184    // fn f;
5185    // @endcode
5186
5187    // Synthesize a parameter for each argument type.
5188    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5189         AE = FT->arg_type_end(); AI != AE; ++AI) {
5190      ParmVarDecl *Param =
5191        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5192      Param->setScopeInfo(0, Params.size());
5193      Params.push_back(Param);
5194    }
5195  } else {
5196    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5197           "Should not need args for typedef of non-prototype fn");
5198  }
5199
5200  // Finally, we know we have the right number of parameters, install them.
5201  NewFD->setParams(Params);
5202
5203  // Process the non-inheritable attributes on this declaration.
5204  ProcessDeclAttributes(S, NewFD, D,
5205                        /*NonInheritable=*/true, /*Inheritable=*/false);
5206
5207  if (!getLangOptions().CPlusPlus) {
5208    // Perform semantic checking on the function declaration.
5209    bool isExplicitSpecialization=false;
5210    if (!NewFD->isInvalidDecl()) {
5211      if (NewFD->getResultType()->isVariablyModifiedType()) {
5212        // Functions returning a variably modified type violate C99 6.7.5.2p2
5213        // because all functions have linkage.
5214        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5215        NewFD->setInvalidDecl();
5216      } else {
5217        if (NewFD->isMain())
5218          CheckMain(NewFD, D.getDeclSpec());
5219        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5220                                                    isExplicitSpecialization));
5221      }
5222    }
5223    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5224            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5225           "previous declaration set still overloaded");
5226  } else {
5227    // If the declarator is a template-id, translate the parser's template
5228    // argument list into our AST format.
5229    bool HasExplicitTemplateArgs = false;
5230    TemplateArgumentListInfo TemplateArgs;
5231    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5232      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5233      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5234      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5235      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5236                                         TemplateId->getTemplateArgs(),
5237                                         TemplateId->NumArgs);
5238      translateTemplateArguments(TemplateArgsPtr,
5239                                 TemplateArgs);
5240      TemplateArgsPtr.release();
5241
5242      HasExplicitTemplateArgs = true;
5243
5244      if (NewFD->isInvalidDecl()) {
5245        HasExplicitTemplateArgs = false;
5246      } else if (FunctionTemplate) {
5247        // Function template with explicit template arguments.
5248        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5249          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5250
5251        HasExplicitTemplateArgs = false;
5252      } else if (!isFunctionTemplateSpecialization &&
5253                 !D.getDeclSpec().isFriendSpecified()) {
5254        // We have encountered something that the user meant to be a
5255        // specialization (because it has explicitly-specified template
5256        // arguments) but that was not introduced with a "template<>" (or had
5257        // too few of them).
5258        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5259          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5260          << FixItHint::CreateInsertion(
5261                                    D.getDeclSpec().getSourceRange().getBegin(),
5262                                        "template<> ");
5263        isFunctionTemplateSpecialization = true;
5264      } else {
5265        // "friend void foo<>(int);" is an implicit specialization decl.
5266        isFunctionTemplateSpecialization = true;
5267      }
5268    } else if (isFriend && isFunctionTemplateSpecialization) {
5269      // This combination is only possible in a recovery case;  the user
5270      // wrote something like:
5271      //   template <> friend void foo(int);
5272      // which we're recovering from as if the user had written:
5273      //   friend void foo<>(int);
5274      // Go ahead and fake up a template id.
5275      HasExplicitTemplateArgs = true;
5276        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5277      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5278    }
5279
5280    // If it's a friend (and only if it's a friend), it's possible
5281    // that either the specialized function type or the specialized
5282    // template is dependent, and therefore matching will fail.  In
5283    // this case, don't check the specialization yet.
5284    bool InstantiationDependent = false;
5285    if (isFunctionTemplateSpecialization && isFriend &&
5286        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5287         TemplateSpecializationType::anyDependentTemplateArguments(
5288            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5289            InstantiationDependent))) {
5290      assert(HasExplicitTemplateArgs &&
5291             "friend function specialization without template args");
5292      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5293                                                       Previous))
5294        NewFD->setInvalidDecl();
5295    } else if (isFunctionTemplateSpecialization) {
5296      if (CurContext->isDependentContext() && CurContext->isRecord()
5297          && !isFriend) {
5298        isDependentClassScopeExplicitSpecialization = true;
5299        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5300          diag::ext_function_specialization_in_class :
5301          diag::err_function_specialization_in_class)
5302          << NewFD->getDeclName();
5303      } else if (CheckFunctionTemplateSpecialization(NewFD,
5304                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5305                                                     Previous))
5306        NewFD->setInvalidDecl();
5307
5308      // C++ [dcl.stc]p1:
5309      //   A storage-class-specifier shall not be specified in an explicit
5310      //   specialization (14.7.3)
5311      if (SC != SC_None) {
5312        if (SC != NewFD->getStorageClass())
5313          Diag(NewFD->getLocation(),
5314               diag::err_explicit_specialization_inconsistent_storage_class)
5315            << SC
5316            << FixItHint::CreateRemoval(
5317                                      D.getDeclSpec().getStorageClassSpecLoc());
5318
5319        else
5320          Diag(NewFD->getLocation(),
5321               diag::ext_explicit_specialization_storage_class)
5322            << FixItHint::CreateRemoval(
5323                                      D.getDeclSpec().getStorageClassSpecLoc());
5324      }
5325
5326    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5327      if (CheckMemberSpecialization(NewFD, Previous))
5328          NewFD->setInvalidDecl();
5329    }
5330
5331    // Perform semantic checking on the function declaration.
5332    if (!isDependentClassScopeExplicitSpecialization) {
5333      if (NewFD->isInvalidDecl()) {
5334        // If this is a class member, mark the class invalid immediately.
5335        // This avoids some consistency errors later.
5336        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5337          methodDecl->getParent()->setInvalidDecl();
5338      } else {
5339        if (NewFD->isMain())
5340          CheckMain(NewFD, D.getDeclSpec());
5341        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5342                                                    isExplicitSpecialization));
5343      }
5344    }
5345
5346    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5347            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5348           "previous declaration set still overloaded");
5349
5350    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5351        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5352      NewFD->setInvalidDecl();
5353
5354    NamedDecl *PrincipalDecl = (FunctionTemplate
5355                                ? cast<NamedDecl>(FunctionTemplate)
5356                                : NewFD);
5357
5358    if (isFriend && D.isRedeclaration()) {
5359      AccessSpecifier Access = AS_public;
5360      if (!NewFD->isInvalidDecl())
5361        Access = NewFD->getPreviousDecl()->getAccess();
5362
5363      NewFD->setAccess(Access);
5364      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5365
5366      PrincipalDecl->setObjectOfFriendDecl(true);
5367    }
5368
5369    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5370        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5371      PrincipalDecl->setNonMemberOperator();
5372
5373    // If we have a function template, check the template parameter
5374    // list. This will check and merge default template arguments.
5375    if (FunctionTemplate) {
5376      FunctionTemplateDecl *PrevTemplate =
5377                                     FunctionTemplate->getPreviousDecl();
5378      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5379                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5380                            D.getDeclSpec().isFriendSpecified()
5381                              ? (D.isFunctionDefinition()
5382                                   ? TPC_FriendFunctionTemplateDefinition
5383                                   : TPC_FriendFunctionTemplate)
5384                              : (D.getCXXScopeSpec().isSet() &&
5385                                 DC && DC->isRecord() &&
5386                                 DC->isDependentContext())
5387                                  ? TPC_ClassTemplateMember
5388                                  : TPC_FunctionTemplate);
5389    }
5390
5391    if (NewFD->isInvalidDecl()) {
5392      // Ignore all the rest of this.
5393    } else if (!D.isRedeclaration()) {
5394      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5395                                       AddToScope };
5396      // Fake up an access specifier if it's supposed to be a class member.
5397      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5398        NewFD->setAccess(AS_public);
5399
5400      // Qualified decls generally require a previous declaration.
5401      if (D.getCXXScopeSpec().isSet()) {
5402        // ...with the major exception of templated-scope or
5403        // dependent-scope friend declarations.
5404
5405        // TODO: we currently also suppress this check in dependent
5406        // contexts because (1) the parameter depth will be off when
5407        // matching friend templates and (2) we might actually be
5408        // selecting a friend based on a dependent factor.  But there
5409        // are situations where these conditions don't apply and we
5410        // can actually do this check immediately.
5411        if (isFriend &&
5412            (TemplateParamLists.size() ||
5413             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5414             CurContext->isDependentContext())) {
5415          // ignore these
5416        } else {
5417          // The user tried to provide an out-of-line definition for a
5418          // function that is a member of a class or namespace, but there
5419          // was no such member function declared (C++ [class.mfct]p2,
5420          // C++ [namespace.memdef]p2). For example:
5421          //
5422          // class X {
5423          //   void f() const;
5424          // };
5425          //
5426          // void X::f() { } // ill-formed
5427          //
5428          // Complain about this problem, and attempt to suggest close
5429          // matches (e.g., those that differ only in cv-qualifiers and
5430          // whether the parameter types are references).
5431
5432          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5433                                                               NewFD,
5434                                                               ExtraArgs)) {
5435            AddToScope = ExtraArgs.AddToScope;
5436            return Result;
5437          }
5438        }
5439
5440        // Unqualified local friend declarations are required to resolve
5441        // to something.
5442      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5443        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5444                                                             NewFD,
5445                                                             ExtraArgs)) {
5446          AddToScope = ExtraArgs.AddToScope;
5447          return Result;
5448        }
5449      }
5450
5451    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5452               !isFriend && !isFunctionTemplateSpecialization &&
5453               !isExplicitSpecialization) {
5454      // An out-of-line member function declaration must also be a
5455      // definition (C++ [dcl.meaning]p1).
5456      // Note that this is not the case for explicit specializations of
5457      // function templates or member functions of class templates, per
5458      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5459      // extension for compatibility with old SWIG code which likes to
5460      // generate them.
5461      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5462        << D.getCXXScopeSpec().getRange();
5463    }
5464  }
5465
5466
5467  // Handle attributes. We need to have merged decls when handling attributes
5468  // (for example to check for conflicts, etc).
5469  // FIXME: This needs to happen before we merge declarations. Then,
5470  // let attribute merging cope with attribute conflicts.
5471  ProcessDeclAttributes(S, NewFD, D,
5472                        /*NonInheritable=*/false, /*Inheritable=*/true);
5473
5474  // attributes declared post-definition are currently ignored
5475  // FIXME: This should happen during attribute merging
5476  if (D.isRedeclaration() && Previous.isSingleResult()) {
5477    const FunctionDecl *Def;
5478    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5479    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5480      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5481      Diag(Def->getLocation(), diag::note_previous_definition);
5482    }
5483  }
5484
5485  AddKnownFunctionAttributes(NewFD);
5486
5487  if (NewFD->hasAttr<OverloadableAttr>() &&
5488      !NewFD->getType()->getAs<FunctionProtoType>()) {
5489    Diag(NewFD->getLocation(),
5490         diag::err_attribute_overloadable_no_prototype)
5491      << NewFD;
5492
5493    // Turn this into a variadic function with no parameters.
5494    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5495    FunctionProtoType::ExtProtoInfo EPI;
5496    EPI.Variadic = true;
5497    EPI.ExtInfo = FT->getExtInfo();
5498
5499    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5500    NewFD->setType(R);
5501  }
5502
5503  // If there's a #pragma GCC visibility in scope, and this isn't a class
5504  // member, set the visibility of this function.
5505  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5506    AddPushedVisibilityAttribute(NewFD);
5507
5508  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5509  // marking the function.
5510  AddCFAuditedAttribute(NewFD);
5511
5512  // If this is a locally-scoped extern C function, update the
5513  // map of such names.
5514  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5515      && !NewFD->isInvalidDecl())
5516    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5517
5518  // Set this FunctionDecl's range up to the right paren.
5519  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5520
5521  if (getLangOptions().CPlusPlus) {
5522    if (FunctionTemplate) {
5523      if (NewFD->isInvalidDecl())
5524        FunctionTemplate->setInvalidDecl();
5525      return FunctionTemplate;
5526    }
5527  }
5528
5529  MarkUnusedFileScopedDecl(NewFD);
5530
5531  if (getLangOptions().CUDA)
5532    if (IdentifierInfo *II = NewFD->getIdentifier())
5533      if (!NewFD->isInvalidDecl() &&
5534          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5535        if (II->isStr("cudaConfigureCall")) {
5536          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5537            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5538
5539          Context.setcudaConfigureCallDecl(NewFD);
5540        }
5541      }
5542
5543  // Here we have an function template explicit specialization at class scope.
5544  // The actually specialization will be postponed to template instatiation
5545  // time via the ClassScopeFunctionSpecializationDecl node.
5546  if (isDependentClassScopeExplicitSpecialization) {
5547    ClassScopeFunctionSpecializationDecl *NewSpec =
5548                         ClassScopeFunctionSpecializationDecl::Create(
5549                                Context, CurContext,  SourceLocation(),
5550                                cast<CXXMethodDecl>(NewFD));
5551    CurContext->addDecl(NewSpec);
5552    AddToScope = false;
5553  }
5554
5555  return NewFD;
5556}
5557
5558/// \brief Perform semantic checking of a new function declaration.
5559///
5560/// Performs semantic analysis of the new function declaration
5561/// NewFD. This routine performs all semantic checking that does not
5562/// require the actual declarator involved in the declaration, and is
5563/// used both for the declaration of functions as they are parsed
5564/// (called via ActOnDeclarator) and for the declaration of functions
5565/// that have been instantiated via C++ template instantiation (called
5566/// via InstantiateDecl).
5567///
5568/// \param IsExplicitSpecialiation whether this new function declaration is
5569/// an explicit specialization of the previous declaration.
5570///
5571/// This sets NewFD->isInvalidDecl() to true if there was an error.
5572///
5573/// Returns true if the function declaration is a redeclaration.
5574bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5575                                    LookupResult &Previous,
5576                                    bool IsExplicitSpecialization) {
5577  assert(!NewFD->getResultType()->isVariablyModifiedType()
5578         && "Variably modified return types are not handled here");
5579
5580  // Check for a previous declaration of this name.
5581  if (Previous.empty() && NewFD->isExternC()) {
5582    // Since we did not find anything by this name and we're declaring
5583    // an extern "C" function, look for a non-visible extern "C"
5584    // declaration with the same name.
5585    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5586      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5587    if (Pos != LocallyScopedExternalDecls.end())
5588      Previous.addDecl(Pos->second);
5589  }
5590
5591  bool Redeclaration = false;
5592
5593  // Merge or overload the declaration with an existing declaration of
5594  // the same name, if appropriate.
5595  if (!Previous.empty()) {
5596    // Determine whether NewFD is an overload of PrevDecl or
5597    // a declaration that requires merging. If it's an overload,
5598    // there's no more work to do here; we'll just add the new
5599    // function to the scope.
5600
5601    NamedDecl *OldDecl = 0;
5602    if (!AllowOverloadingOfFunction(Previous, Context)) {
5603      Redeclaration = true;
5604      OldDecl = Previous.getFoundDecl();
5605    } else {
5606      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5607                            /*NewIsUsingDecl*/ false)) {
5608      case Ovl_Match:
5609        Redeclaration = true;
5610        break;
5611
5612      case Ovl_NonFunction:
5613        Redeclaration = true;
5614        break;
5615
5616      case Ovl_Overload:
5617        Redeclaration = false;
5618        break;
5619      }
5620
5621      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5622        // If a function name is overloadable in C, then every function
5623        // with that name must be marked "overloadable".
5624        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5625          << Redeclaration << NewFD;
5626        NamedDecl *OverloadedDecl = 0;
5627        if (Redeclaration)
5628          OverloadedDecl = OldDecl;
5629        else if (!Previous.empty())
5630          OverloadedDecl = Previous.getRepresentativeDecl();
5631        if (OverloadedDecl)
5632          Diag(OverloadedDecl->getLocation(),
5633               diag::note_attribute_overloadable_prev_overload);
5634        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5635                                                        Context));
5636      }
5637    }
5638
5639    if (Redeclaration) {
5640      // NewFD and OldDecl represent declarations that need to be
5641      // merged.
5642      if (MergeFunctionDecl(NewFD, OldDecl)) {
5643        NewFD->setInvalidDecl();
5644        return Redeclaration;
5645      }
5646
5647      Previous.clear();
5648      Previous.addDecl(OldDecl);
5649
5650      if (FunctionTemplateDecl *OldTemplateDecl
5651                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5652        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5653        FunctionTemplateDecl *NewTemplateDecl
5654          = NewFD->getDescribedFunctionTemplate();
5655        assert(NewTemplateDecl && "Template/non-template mismatch");
5656        if (CXXMethodDecl *Method
5657              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5658          Method->setAccess(OldTemplateDecl->getAccess());
5659          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5660        }
5661
5662        // If this is an explicit specialization of a member that is a function
5663        // template, mark it as a member specialization.
5664        if (IsExplicitSpecialization &&
5665            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5666          NewTemplateDecl->setMemberSpecialization();
5667          assert(OldTemplateDecl->isMemberSpecialization());
5668        }
5669
5670      } else {
5671        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5672          NewFD->setAccess(OldDecl->getAccess());
5673        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5674      }
5675    }
5676  }
5677
5678  // Semantic checking for this function declaration (in isolation).
5679  if (getLangOptions().CPlusPlus) {
5680    // C++-specific checks.
5681    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5682      CheckConstructor(Constructor);
5683    } else if (CXXDestructorDecl *Destructor =
5684                dyn_cast<CXXDestructorDecl>(NewFD)) {
5685      CXXRecordDecl *Record = Destructor->getParent();
5686      QualType ClassType = Context.getTypeDeclType(Record);
5687
5688      // FIXME: Shouldn't we be able to perform this check even when the class
5689      // type is dependent? Both gcc and edg can handle that.
5690      if (!ClassType->isDependentType()) {
5691        DeclarationName Name
5692          = Context.DeclarationNames.getCXXDestructorName(
5693                                        Context.getCanonicalType(ClassType));
5694        if (NewFD->getDeclName() != Name) {
5695          Diag(NewFD->getLocation(), diag::err_destructor_name);
5696          NewFD->setInvalidDecl();
5697          return Redeclaration;
5698        }
5699      }
5700    } else if (CXXConversionDecl *Conversion
5701               = dyn_cast<CXXConversionDecl>(NewFD)) {
5702      ActOnConversionDeclarator(Conversion);
5703    }
5704
5705    // Find any virtual functions that this function overrides.
5706    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5707      if (!Method->isFunctionTemplateSpecialization() &&
5708          !Method->getDescribedFunctionTemplate()) {
5709        if (AddOverriddenMethods(Method->getParent(), Method)) {
5710          // If the function was marked as "static", we have a problem.
5711          if (NewFD->getStorageClass() == SC_Static) {
5712            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5713              << NewFD->getDeclName();
5714            for (CXXMethodDecl::method_iterator
5715                      Overridden = Method->begin_overridden_methods(),
5716                   OverriddenEnd = Method->end_overridden_methods();
5717                 Overridden != OverriddenEnd;
5718                 ++Overridden) {
5719              Diag((*Overridden)->getLocation(),
5720                   diag::note_overridden_virtual_function);
5721            }
5722          }
5723        }
5724      }
5725    }
5726
5727    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5728    if (NewFD->isOverloadedOperator() &&
5729        CheckOverloadedOperatorDeclaration(NewFD)) {
5730      NewFD->setInvalidDecl();
5731      return Redeclaration;
5732    }
5733
5734    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5735    if (NewFD->getLiteralIdentifier() &&
5736        CheckLiteralOperatorDeclaration(NewFD)) {
5737      NewFD->setInvalidDecl();
5738      return Redeclaration;
5739    }
5740
5741    // In C++, check default arguments now that we have merged decls. Unless
5742    // the lexical context is the class, because in this case this is done
5743    // during delayed parsing anyway.
5744    if (!CurContext->isRecord())
5745      CheckCXXDefaultArguments(NewFD);
5746
5747    // If this function declares a builtin function, check the type of this
5748    // declaration against the expected type for the builtin.
5749    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5750      ASTContext::GetBuiltinTypeError Error;
5751      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5752      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5753        // The type of this function differs from the type of the builtin,
5754        // so forget about the builtin entirely.
5755        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5756      }
5757    }
5758
5759    // If this function is declared as being extern "C", then check to see if
5760    // the function returns a UDT (class, struct, or union type) that is not C
5761    // compatible, and if it does, warn the user.
5762    if (NewFD->isExternC()) {
5763      QualType R = NewFD->getResultType();
5764      if (!R.isPODType(Context) &&
5765          !R->isVoidType())
5766        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5767          << NewFD << R;
5768    }
5769  }
5770  return Redeclaration;
5771}
5772
5773void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5774  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5775  //   static or constexpr is ill-formed.
5776  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5777  //   shall not appear in a declaration of main.
5778  // static main is not an error under C99, but we should warn about it.
5779  if (FD->getStorageClass() == SC_Static)
5780    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5781         ? diag::err_static_main : diag::warn_static_main)
5782      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5783  if (FD->isInlineSpecified())
5784    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5785      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5786  if (FD->isConstexpr()) {
5787    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5788      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5789    FD->setConstexpr(false);
5790  }
5791
5792  QualType T = FD->getType();
5793  assert(T->isFunctionType() && "function decl is not of function type");
5794  const FunctionType* FT = T->getAs<FunctionType>();
5795
5796  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5797    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5798    FD->setInvalidDecl(true);
5799  }
5800
5801  // Treat protoless main() as nullary.
5802  if (isa<FunctionNoProtoType>(FT)) return;
5803
5804  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5805  unsigned nparams = FTP->getNumArgs();
5806  assert(FD->getNumParams() == nparams);
5807
5808  bool HasExtraParameters = (nparams > 3);
5809
5810  // Darwin passes an undocumented fourth argument of type char**.  If
5811  // other platforms start sprouting these, the logic below will start
5812  // getting shifty.
5813  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5814    HasExtraParameters = false;
5815
5816  if (HasExtraParameters) {
5817    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5818    FD->setInvalidDecl(true);
5819    nparams = 3;
5820  }
5821
5822  // FIXME: a lot of the following diagnostics would be improved
5823  // if we had some location information about types.
5824
5825  QualType CharPP =
5826    Context.getPointerType(Context.getPointerType(Context.CharTy));
5827  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5828
5829  for (unsigned i = 0; i < nparams; ++i) {
5830    QualType AT = FTP->getArgType(i);
5831
5832    bool mismatch = true;
5833
5834    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5835      mismatch = false;
5836    else if (Expected[i] == CharPP) {
5837      // As an extension, the following forms are okay:
5838      //   char const **
5839      //   char const * const *
5840      //   char * const *
5841
5842      QualifierCollector qs;
5843      const PointerType* PT;
5844      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5845          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5846          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5847        qs.removeConst();
5848        mismatch = !qs.empty();
5849      }
5850    }
5851
5852    if (mismatch) {
5853      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5854      // TODO: suggest replacing given type with expected type
5855      FD->setInvalidDecl(true);
5856    }
5857  }
5858
5859  if (nparams == 1 && !FD->isInvalidDecl()) {
5860    Diag(FD->getLocation(), diag::warn_main_one_arg);
5861  }
5862
5863  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5864    Diag(FD->getLocation(), diag::err_main_template_decl);
5865    FD->setInvalidDecl();
5866  }
5867}
5868
5869bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5870  // FIXME: Need strict checking.  In C89, we need to check for
5871  // any assignment, increment, decrement, function-calls, or
5872  // commas outside of a sizeof.  In C99, it's the same list,
5873  // except that the aforementioned are allowed in unevaluated
5874  // expressions.  Everything else falls under the
5875  // "may accept other forms of constant expressions" exception.
5876  // (We never end up here for C++, so the constant expression
5877  // rules there don't matter.)
5878  if (Init->isConstantInitializer(Context, false))
5879    return false;
5880  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5881    << Init->getSourceRange();
5882  return true;
5883}
5884
5885namespace {
5886  // Visits an initialization expression to see if OrigDecl is evaluated in
5887  // its own initialization and throws a warning if it does.
5888  class SelfReferenceChecker
5889      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5890    Sema &S;
5891    Decl *OrigDecl;
5892    bool isRecordType;
5893    bool isPODType;
5894
5895  public:
5896    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5897
5898    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5899                                                    S(S), OrigDecl(OrigDecl) {
5900      isPODType = false;
5901      isRecordType = false;
5902      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5903        isPODType = VD->getType().isPODType(S.Context);
5904        isRecordType = VD->getType()->isRecordType();
5905      }
5906    }
5907
5908    void VisitExpr(Expr *E) {
5909      if (isa<ObjCMessageExpr>(*E)) return;
5910      if (isRecordType) {
5911        Expr *expr = E;
5912        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5913          ValueDecl *VD = ME->getMemberDecl();
5914          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5915          expr = ME->getBase();
5916        }
5917        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5918          HandleDeclRefExpr(DRE);
5919          return;
5920        }
5921      }
5922      Inherited::VisitExpr(E);
5923    }
5924
5925    void VisitMemberExpr(MemberExpr *E) {
5926      if (E->getType()->canDecayToPointerType()) return;
5927      if (isa<FieldDecl>(E->getMemberDecl()))
5928        if (DeclRefExpr *DRE
5929              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5930          HandleDeclRefExpr(DRE);
5931          return;
5932        }
5933      Inherited::VisitMemberExpr(E);
5934    }
5935
5936    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5937      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5938          (isRecordType && E->getCastKind() == CK_NoOp)) {
5939        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5940        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5941          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5942        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5943          HandleDeclRefExpr(DRE);
5944          return;
5945        }
5946      }
5947      Inherited::VisitImplicitCastExpr(E);
5948    }
5949
5950    void VisitUnaryOperator(UnaryOperator *E) {
5951      // For POD record types, addresses of its own members are well-defined.
5952      if (isRecordType && isPODType) return;
5953      Inherited::VisitUnaryOperator(E);
5954    }
5955
5956    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5957      Decl* ReferenceDecl = DRE->getDecl();
5958      if (OrigDecl != ReferenceDecl) return;
5959      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5960                          Sema::NotForRedeclaration);
5961      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5962                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5963                              << Result.getLookupName()
5964                              << OrigDecl->getLocation()
5965                              << DRE->getSourceRange());
5966    }
5967  };
5968}
5969
5970/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5971void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5972  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5973}
5974
5975/// AddInitializerToDecl - Adds the initializer Init to the
5976/// declaration dcl. If DirectInit is true, this is C++ direct
5977/// initialization rather than copy initialization.
5978void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5979                                bool DirectInit, bool TypeMayContainAuto) {
5980  // If there is no declaration, there was an error parsing it.  Just ignore
5981  // the initializer.
5982  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5983    return;
5984
5985  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5986    // With declarators parsed the way they are, the parser cannot
5987    // distinguish between a normal initializer and a pure-specifier.
5988    // Thus this grotesque test.
5989    IntegerLiteral *IL;
5990    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5991        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5992      CheckPureMethod(Method, Init->getSourceRange());
5993    else {
5994      Diag(Method->getLocation(), diag::err_member_function_initialization)
5995        << Method->getDeclName() << Init->getSourceRange();
5996      Method->setInvalidDecl();
5997    }
5998    return;
5999  }
6000
6001  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6002  if (!VDecl) {
6003    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6004    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6005    RealDecl->setInvalidDecl();
6006    return;
6007  }
6008
6009  // Check for self-references within variable initializers.
6010  // Variables declared within a function/method body are handled
6011  // by a dataflow analysis.
6012  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6013    CheckSelfReference(RealDecl, Init);
6014
6015  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6016
6017  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6018  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6019    Expr *DeduceInit = Init;
6020    // Initializer could be a C++ direct-initializer. Deduction only works if it
6021    // contains exactly one expression.
6022    if (CXXDirectInit) {
6023      if (CXXDirectInit->getNumExprs() == 0) {
6024        // It isn't possible to write this directly, but it is possible to
6025        // end up in this situation with "auto x(some_pack...);"
6026        Diag(CXXDirectInit->getSourceRange().getBegin(),
6027             diag::err_auto_var_init_no_expression)
6028          << VDecl->getDeclName() << VDecl->getType()
6029          << VDecl->getSourceRange();
6030        RealDecl->setInvalidDecl();
6031        return;
6032      } else if (CXXDirectInit->getNumExprs() > 1) {
6033        Diag(CXXDirectInit->getExpr(1)->getSourceRange().getBegin(),
6034             diag::err_auto_var_init_multiple_expressions)
6035          << VDecl->getDeclName() << VDecl->getType()
6036          << VDecl->getSourceRange();
6037        RealDecl->setInvalidDecl();
6038        return;
6039      } else {
6040        DeduceInit = CXXDirectInit->getExpr(0);
6041      }
6042    }
6043    TypeSourceInfo *DeducedType = 0;
6044    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6045            DAR_Failed)
6046      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6047    if (!DeducedType) {
6048      RealDecl->setInvalidDecl();
6049      return;
6050    }
6051    VDecl->setTypeSourceInfo(DeducedType);
6052    VDecl->setType(DeducedType->getType());
6053
6054    // In ARC, infer lifetime.
6055    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6056      VDecl->setInvalidDecl();
6057
6058    // If this is a redeclaration, check that the type we just deduced matches
6059    // the previously declared type.
6060    if (VarDecl *Old = VDecl->getPreviousDecl())
6061      MergeVarDeclTypes(VDecl, Old);
6062  }
6063
6064  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6065    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6066    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6067    VDecl->setInvalidDecl();
6068    return;
6069  }
6070
6071  if (!VDecl->getType()->isDependentType()) {
6072    // A definition must end up with a complete type, which means it must be
6073    // complete with the restriction that an array type might be completed by
6074    // the initializer; note that later code assumes this restriction.
6075    QualType BaseDeclType = VDecl->getType();
6076    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6077      BaseDeclType = Array->getElementType();
6078    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6079                            diag::err_typecheck_decl_incomplete_type)) {
6080      RealDecl->setInvalidDecl();
6081      return;
6082    }
6083
6084    // The variable can not have an abstract class type.
6085    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6086                               diag::err_abstract_type_in_decl,
6087                               AbstractVariableType))
6088      VDecl->setInvalidDecl();
6089  }
6090
6091  const VarDecl *Def;
6092  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6093    Diag(VDecl->getLocation(), diag::err_redefinition)
6094      << VDecl->getDeclName();
6095    Diag(Def->getLocation(), diag::note_previous_definition);
6096    VDecl->setInvalidDecl();
6097    return;
6098  }
6099
6100  const VarDecl* PrevInit = 0;
6101  if (getLangOptions().CPlusPlus) {
6102    // C++ [class.static.data]p4
6103    //   If a static data member is of const integral or const
6104    //   enumeration type, its declaration in the class definition can
6105    //   specify a constant-initializer which shall be an integral
6106    //   constant expression (5.19). In that case, the member can appear
6107    //   in integral constant expressions. The member shall still be
6108    //   defined in a namespace scope if it is used in the program and the
6109    //   namespace scope definition shall not contain an initializer.
6110    //
6111    // We already performed a redefinition check above, but for static
6112    // data members we also need to check whether there was an in-class
6113    // declaration with an initializer.
6114    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6115      Diag(VDecl->getLocation(), diag::err_redefinition)
6116        << VDecl->getDeclName();
6117      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6118      return;
6119    }
6120
6121    if (VDecl->hasLocalStorage())
6122      getCurFunction()->setHasBranchProtectedScope();
6123
6124    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6125      VDecl->setInvalidDecl();
6126      return;
6127    }
6128  }
6129
6130  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6131  // a kernel function cannot be initialized."
6132  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6133    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6134    VDecl->setInvalidDecl();
6135    return;
6136  }
6137
6138  // Get the decls type and save a reference for later, since
6139  // CheckInitializerTypes may change it.
6140  QualType DclT = VDecl->getType(), SavT = DclT;
6141
6142  // Perform the initialization.
6143  if (!VDecl->isInvalidDecl()) {
6144    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6145    InitializationKind Kind
6146      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6147                                                      Init->getLocStart(),
6148                                                      Init->getLocEnd())
6149                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6150                                                    Init->getLocStart());
6151
6152    Expr **Args = &Init;
6153    unsigned NumArgs = 1;
6154    if (CXXDirectInit) {
6155      Args = CXXDirectInit->getExprs();
6156      NumArgs = CXXDirectInit->getNumExprs();
6157    }
6158    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6159    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6160                                              MultiExprArg(*this, Args,NumArgs),
6161                                              &DclT);
6162    if (Result.isInvalid()) {
6163      VDecl->setInvalidDecl();
6164      return;
6165    }
6166
6167    Init = Result.takeAs<Expr>();
6168  }
6169
6170  // If the type changed, it means we had an incomplete type that was
6171  // completed by the initializer. For example:
6172  //   int ary[] = { 1, 3, 5 };
6173  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6174  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6175    VDecl->setType(DclT);
6176    Init->setType(DclT.getNonReferenceType());
6177  }
6178
6179  // Check any implicit conversions within the expression.
6180  CheckImplicitConversions(Init, VDecl->getLocation());
6181
6182  if (!VDecl->isInvalidDecl())
6183    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6184
6185  Init = MaybeCreateExprWithCleanups(Init);
6186  // Attach the initializer to the decl.
6187  VDecl->setInit(Init);
6188
6189  if (VDecl->isLocalVarDecl()) {
6190    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6191    // static storage duration shall be constant expressions or string literals.
6192    // C++ does not have this restriction.
6193    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6194        VDecl->getStorageClass() == SC_Static)
6195      CheckForConstantInitializer(Init, DclT);
6196  } else if (VDecl->isStaticDataMember() &&
6197             VDecl->getLexicalDeclContext()->isRecord()) {
6198    // This is an in-class initialization for a static data member, e.g.,
6199    //
6200    // struct S {
6201    //   static const int value = 17;
6202    // };
6203
6204    // C++ [class.mem]p4:
6205    //   A member-declarator can contain a constant-initializer only
6206    //   if it declares a static member (9.4) of const integral or
6207    //   const enumeration type, see 9.4.2.
6208    //
6209    // C++11 [class.static.data]p3:
6210    //   If a non-volatile const static data member is of integral or
6211    //   enumeration type, its declaration in the class definition can
6212    //   specify a brace-or-equal-initializer in which every initalizer-clause
6213    //   that is an assignment-expression is a constant expression. A static
6214    //   data member of literal type can be declared in the class definition
6215    //   with the constexpr specifier; if so, its declaration shall specify a
6216    //   brace-or-equal-initializer in which every initializer-clause that is
6217    //   an assignment-expression is a constant expression.
6218
6219    // Do nothing on dependent types.
6220    if (DclT->isDependentType()) {
6221
6222    // Allow any 'static constexpr' members, whether or not they are of literal
6223    // type. We separately check that the initializer is a constant expression,
6224    // which implicitly requires the member to be of literal type.
6225    } else if (VDecl->isConstexpr()) {
6226
6227    // Require constness.
6228    } else if (!DclT.isConstQualified()) {
6229      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6230        << Init->getSourceRange();
6231      VDecl->setInvalidDecl();
6232
6233    // We allow integer constant expressions in all cases.
6234    } else if (DclT->isIntegralOrEnumerationType()) {
6235      // Check whether the expression is a constant expression.
6236      SourceLocation Loc;
6237      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6238        // In C++11, a non-constexpr const static data member with an
6239        // in-class initializer cannot be volatile.
6240        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6241      else if (Init->isValueDependent())
6242        ; // Nothing to check.
6243      else if (Init->isIntegerConstantExpr(Context, &Loc))
6244        ; // Ok, it's an ICE!
6245      else if (Init->isEvaluatable(Context)) {
6246        // If we can constant fold the initializer through heroics, accept it,
6247        // but report this as a use of an extension for -pedantic.
6248        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6249          << Init->getSourceRange();
6250      } else {
6251        // Otherwise, this is some crazy unknown case.  Report the issue at the
6252        // location provided by the isIntegerConstantExpr failed check.
6253        Diag(Loc, diag::err_in_class_initializer_non_constant)
6254          << Init->getSourceRange();
6255        VDecl->setInvalidDecl();
6256      }
6257
6258    // We allow foldable floating-point constants as an extension.
6259    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6260      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6261        << DclT << Init->getSourceRange();
6262      if (getLangOptions().CPlusPlus0x)
6263        Diag(VDecl->getLocation(),
6264             diag::note_in_class_initializer_float_type_constexpr)
6265          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6266
6267      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6268        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6269          << Init->getSourceRange();
6270        VDecl->setInvalidDecl();
6271      }
6272
6273    // Suggest adding 'constexpr' in C++11 for literal types.
6274    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6275      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6276        << DclT << Init->getSourceRange()
6277        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6278      VDecl->setConstexpr(true);
6279
6280    } else {
6281      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6282        << DclT << Init->getSourceRange();
6283      VDecl->setInvalidDecl();
6284    }
6285  } else if (VDecl->isFileVarDecl()) {
6286    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6287        (!getLangOptions().CPlusPlus ||
6288         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6289      Diag(VDecl->getLocation(), diag::warn_extern_init);
6290
6291    // C99 6.7.8p4. All file scoped initializers need to be constant.
6292    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6293      CheckForConstantInitializer(Init, DclT);
6294  }
6295
6296  // We will represent direct-initialization similarly to copy-initialization:
6297  //    int x(1);  -as-> int x = 1;
6298  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6299  //
6300  // Clients that want to distinguish between the two forms, can check for
6301  // direct initializer using VarDecl::getInitStyle().
6302  // A major benefit is that clients that don't particularly care about which
6303  // exactly form was it (like the CodeGen) can handle both cases without
6304  // special case code.
6305
6306  // C++ 8.5p11:
6307  // The form of initialization (using parentheses or '=') is generally
6308  // insignificant, but does matter when the entity being initialized has a
6309  // class type.
6310  if (CXXDirectInit) {
6311    assert(DirectInit && "Call-style initializer must be direct init.");
6312    VDecl->setInitStyle(VarDecl::CallInit);
6313  } else if (DirectInit) {
6314    // This must be list-initialization. No other way is direct-initialization.
6315    VDecl->setInitStyle(VarDecl::ListInit);
6316  }
6317
6318  CheckCompleteVariableDeclaration(VDecl);
6319}
6320
6321/// ActOnInitializerError - Given that there was an error parsing an
6322/// initializer for the given declaration, try to return to some form
6323/// of sanity.
6324void Sema::ActOnInitializerError(Decl *D) {
6325  // Our main concern here is re-establishing invariants like "a
6326  // variable's type is either dependent or complete".
6327  if (!D || D->isInvalidDecl()) return;
6328
6329  VarDecl *VD = dyn_cast<VarDecl>(D);
6330  if (!VD) return;
6331
6332  // Auto types are meaningless if we can't make sense of the initializer.
6333  if (ParsingInitForAutoVars.count(D)) {
6334    D->setInvalidDecl();
6335    return;
6336  }
6337
6338  QualType Ty = VD->getType();
6339  if (Ty->isDependentType()) return;
6340
6341  // Require a complete type.
6342  if (RequireCompleteType(VD->getLocation(),
6343                          Context.getBaseElementType(Ty),
6344                          diag::err_typecheck_decl_incomplete_type)) {
6345    VD->setInvalidDecl();
6346    return;
6347  }
6348
6349  // Require an abstract type.
6350  if (RequireNonAbstractType(VD->getLocation(), Ty,
6351                             diag::err_abstract_type_in_decl,
6352                             AbstractVariableType)) {
6353    VD->setInvalidDecl();
6354    return;
6355  }
6356
6357  // Don't bother complaining about constructors or destructors,
6358  // though.
6359}
6360
6361void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6362                                  bool TypeMayContainAuto) {
6363  // If there is no declaration, there was an error parsing it. Just ignore it.
6364  if (RealDecl == 0)
6365    return;
6366
6367  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6368    QualType Type = Var->getType();
6369
6370    // C++11 [dcl.spec.auto]p3
6371    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6372      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6373        << Var->getDeclName() << Type;
6374      Var->setInvalidDecl();
6375      return;
6376    }
6377
6378    // C++11 [class.static.data]p3: A static data member can be declared with
6379    // the constexpr specifier; if so, its declaration shall specify
6380    // a brace-or-equal-initializer.
6381    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6382    // the definition of a variable [...] or the declaration of a static data
6383    // member.
6384    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6385      if (Var->isStaticDataMember())
6386        Diag(Var->getLocation(),
6387             diag::err_constexpr_static_mem_var_requires_init)
6388          << Var->getDeclName();
6389      else
6390        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6391      Var->setInvalidDecl();
6392      return;
6393    }
6394
6395    switch (Var->isThisDeclarationADefinition()) {
6396    case VarDecl::Definition:
6397      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6398        break;
6399
6400      // We have an out-of-line definition of a static data member
6401      // that has an in-class initializer, so we type-check this like
6402      // a declaration.
6403      //
6404      // Fall through
6405
6406    case VarDecl::DeclarationOnly:
6407      // It's only a declaration.
6408
6409      // Block scope. C99 6.7p7: If an identifier for an object is
6410      // declared with no linkage (C99 6.2.2p6), the type for the
6411      // object shall be complete.
6412      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6413          !Var->getLinkage() && !Var->isInvalidDecl() &&
6414          RequireCompleteType(Var->getLocation(), Type,
6415                              diag::err_typecheck_decl_incomplete_type))
6416        Var->setInvalidDecl();
6417
6418      // Make sure that the type is not abstract.
6419      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6420          RequireNonAbstractType(Var->getLocation(), Type,
6421                                 diag::err_abstract_type_in_decl,
6422                                 AbstractVariableType))
6423        Var->setInvalidDecl();
6424      return;
6425
6426    case VarDecl::TentativeDefinition:
6427      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6428      // object that has file scope without an initializer, and without a
6429      // storage-class specifier or with the storage-class specifier "static",
6430      // constitutes a tentative definition. Note: A tentative definition with
6431      // external linkage is valid (C99 6.2.2p5).
6432      if (!Var->isInvalidDecl()) {
6433        if (const IncompleteArrayType *ArrayT
6434                                    = Context.getAsIncompleteArrayType(Type)) {
6435          if (RequireCompleteType(Var->getLocation(),
6436                                  ArrayT->getElementType(),
6437                                  diag::err_illegal_decl_array_incomplete_type))
6438            Var->setInvalidDecl();
6439        } else if (Var->getStorageClass() == SC_Static) {
6440          // C99 6.9.2p3: If the declaration of an identifier for an object is
6441          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6442          // declared type shall not be an incomplete type.
6443          // NOTE: code such as the following
6444          //     static struct s;
6445          //     struct s { int a; };
6446          // is accepted by gcc. Hence here we issue a warning instead of
6447          // an error and we do not invalidate the static declaration.
6448          // NOTE: to avoid multiple warnings, only check the first declaration.
6449          if (Var->getPreviousDecl() == 0)
6450            RequireCompleteType(Var->getLocation(), Type,
6451                                diag::ext_typecheck_decl_incomplete_type);
6452        }
6453      }
6454
6455      // Record the tentative definition; we're done.
6456      if (!Var->isInvalidDecl())
6457        TentativeDefinitions.push_back(Var);
6458      return;
6459    }
6460
6461    // Provide a specific diagnostic for uninitialized variable
6462    // definitions with incomplete array type.
6463    if (Type->isIncompleteArrayType()) {
6464      Diag(Var->getLocation(),
6465           diag::err_typecheck_incomplete_array_needs_initializer);
6466      Var->setInvalidDecl();
6467      return;
6468    }
6469
6470    // Provide a specific diagnostic for uninitialized variable
6471    // definitions with reference type.
6472    if (Type->isReferenceType()) {
6473      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6474        << Var->getDeclName()
6475        << SourceRange(Var->getLocation(), Var->getLocation());
6476      Var->setInvalidDecl();
6477      return;
6478    }
6479
6480    // Do not attempt to type-check the default initializer for a
6481    // variable with dependent type.
6482    if (Type->isDependentType())
6483      return;
6484
6485    if (Var->isInvalidDecl())
6486      return;
6487
6488    if (RequireCompleteType(Var->getLocation(),
6489                            Context.getBaseElementType(Type),
6490                            diag::err_typecheck_decl_incomplete_type)) {
6491      Var->setInvalidDecl();
6492      return;
6493    }
6494
6495    // The variable can not have an abstract class type.
6496    if (RequireNonAbstractType(Var->getLocation(), Type,
6497                               diag::err_abstract_type_in_decl,
6498                               AbstractVariableType)) {
6499      Var->setInvalidDecl();
6500      return;
6501    }
6502
6503    // Check for jumps past the implicit initializer.  C++0x
6504    // clarifies that this applies to a "variable with automatic
6505    // storage duration", not a "local variable".
6506    // C++11 [stmt.dcl]p3
6507    //   A program that jumps from a point where a variable with automatic
6508    //   storage duration is not in scope to a point where it is in scope is
6509    //   ill-formed unless the variable has scalar type, class type with a
6510    //   trivial default constructor and a trivial destructor, a cv-qualified
6511    //   version of one of these types, or an array of one of the preceding
6512    //   types and is declared without an initializer.
6513    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6514      if (const RecordType *Record
6515            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6516        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6517        // Mark the function for further checking even if the looser rules of
6518        // C++11 do not require such checks, so that we can diagnose
6519        // incompatibilities with C++98.
6520        if (!CXXRecord->isPOD())
6521          getCurFunction()->setHasBranchProtectedScope();
6522      }
6523    }
6524
6525    // C++03 [dcl.init]p9:
6526    //   If no initializer is specified for an object, and the
6527    //   object is of (possibly cv-qualified) non-POD class type (or
6528    //   array thereof), the object shall be default-initialized; if
6529    //   the object is of const-qualified type, the underlying class
6530    //   type shall have a user-declared default
6531    //   constructor. Otherwise, if no initializer is specified for
6532    //   a non- static object, the object and its subobjects, if
6533    //   any, have an indeterminate initial value); if the object
6534    //   or any of its subobjects are of const-qualified type, the
6535    //   program is ill-formed.
6536    // C++0x [dcl.init]p11:
6537    //   If no initializer is specified for an object, the object is
6538    //   default-initialized; [...].
6539    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6540    InitializationKind Kind
6541      = InitializationKind::CreateDefault(Var->getLocation());
6542
6543    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6544    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6545                                      MultiExprArg(*this, 0, 0));
6546    if (Init.isInvalid())
6547      Var->setInvalidDecl();
6548    else if (Init.get()) {
6549      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6550      // This is important for template substitution.
6551      Var->setInitStyle(VarDecl::CallInit);
6552    }
6553
6554    CheckCompleteVariableDeclaration(Var);
6555  }
6556}
6557
6558void Sema::ActOnCXXForRangeDecl(Decl *D) {
6559  VarDecl *VD = dyn_cast<VarDecl>(D);
6560  if (!VD) {
6561    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6562    D->setInvalidDecl();
6563    return;
6564  }
6565
6566  VD->setCXXForRangeDecl(true);
6567
6568  // for-range-declaration cannot be given a storage class specifier.
6569  int Error = -1;
6570  switch (VD->getStorageClassAsWritten()) {
6571  case SC_None:
6572    break;
6573  case SC_Extern:
6574    Error = 0;
6575    break;
6576  case SC_Static:
6577    Error = 1;
6578    break;
6579  case SC_PrivateExtern:
6580    Error = 2;
6581    break;
6582  case SC_Auto:
6583    Error = 3;
6584    break;
6585  case SC_Register:
6586    Error = 4;
6587    break;
6588  case SC_OpenCLWorkGroupLocal:
6589    llvm_unreachable("Unexpected storage class");
6590  }
6591  if (VD->isConstexpr())
6592    Error = 5;
6593  if (Error != -1) {
6594    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6595      << VD->getDeclName() << Error;
6596    D->setInvalidDecl();
6597  }
6598}
6599
6600void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6601  if (var->isInvalidDecl()) return;
6602
6603  // In ARC, don't allow jumps past the implicit initialization of a
6604  // local retaining variable.
6605  if (getLangOptions().ObjCAutoRefCount &&
6606      var->hasLocalStorage()) {
6607    switch (var->getType().getObjCLifetime()) {
6608    case Qualifiers::OCL_None:
6609    case Qualifiers::OCL_ExplicitNone:
6610    case Qualifiers::OCL_Autoreleasing:
6611      break;
6612
6613    case Qualifiers::OCL_Weak:
6614    case Qualifiers::OCL_Strong:
6615      getCurFunction()->setHasBranchProtectedScope();
6616      break;
6617    }
6618  }
6619
6620  // All the following checks are C++ only.
6621  if (!getLangOptions().CPlusPlus) return;
6622
6623  QualType baseType = Context.getBaseElementType(var->getType());
6624  if (baseType->isDependentType()) return;
6625
6626  // __block variables might require us to capture a copy-initializer.
6627  if (var->hasAttr<BlocksAttr>()) {
6628    // It's currently invalid to ever have a __block variable with an
6629    // array type; should we diagnose that here?
6630
6631    // Regardless, we don't want to ignore array nesting when
6632    // constructing this copy.
6633    QualType type = var->getType();
6634
6635    if (type->isStructureOrClassType()) {
6636      SourceLocation poi = var->getLocation();
6637      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6638      ExprResult result =
6639        PerformCopyInitialization(
6640                        InitializedEntity::InitializeBlock(poi, type, false),
6641                                  poi, Owned(varRef));
6642      if (!result.isInvalid()) {
6643        result = MaybeCreateExprWithCleanups(result);
6644        Expr *init = result.takeAs<Expr>();
6645        Context.setBlockVarCopyInits(var, init);
6646      }
6647    }
6648  }
6649
6650  Expr *Init = var->getInit();
6651  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6652
6653  if (!var->getDeclContext()->isDependentContext() && Init) {
6654    if (IsGlobal && !var->isConstexpr() &&
6655        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6656                                            var->getLocation())
6657          != DiagnosticsEngine::Ignored &&
6658        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6659      Diag(var->getLocation(), diag::warn_global_constructor)
6660        << Init->getSourceRange();
6661
6662    if (var->isConstexpr()) {
6663      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6664      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6665        SourceLocation DiagLoc = var->getLocation();
6666        // If the note doesn't add any useful information other than a source
6667        // location, fold it into the primary diagnostic.
6668        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6669              diag::note_invalid_subexpr_in_const_expr) {
6670          DiagLoc = Notes[0].first;
6671          Notes.clear();
6672        }
6673        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6674          << var << Init->getSourceRange();
6675        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6676          Diag(Notes[I].first, Notes[I].second);
6677      }
6678    } else if (var->isUsableInConstantExpressions()) {
6679      // Check whether the initializer of a const variable of integral or
6680      // enumeration type is an ICE now, since we can't tell whether it was
6681      // initialized by a constant expression if we check later.
6682      var->checkInitIsICE();
6683    }
6684  }
6685
6686  // Require the destructor.
6687  if (const RecordType *recordType = baseType->getAs<RecordType>())
6688    FinalizeVarWithDestructor(var, recordType);
6689}
6690
6691/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6692/// any semantic actions necessary after any initializer has been attached.
6693void
6694Sema::FinalizeDeclaration(Decl *ThisDecl) {
6695  // Note that we are no longer parsing the initializer for this declaration.
6696  ParsingInitForAutoVars.erase(ThisDecl);
6697}
6698
6699Sema::DeclGroupPtrTy
6700Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6701                              Decl **Group, unsigned NumDecls) {
6702  SmallVector<Decl*, 8> Decls;
6703
6704  if (DS.isTypeSpecOwned())
6705    Decls.push_back(DS.getRepAsDecl());
6706
6707  for (unsigned i = 0; i != NumDecls; ++i)
6708    if (Decl *D = Group[i])
6709      Decls.push_back(D);
6710
6711  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6712                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6713}
6714
6715/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6716/// group, performing any necessary semantic checking.
6717Sema::DeclGroupPtrTy
6718Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6719                           bool TypeMayContainAuto) {
6720  // C++0x [dcl.spec.auto]p7:
6721  //   If the type deduced for the template parameter U is not the same in each
6722  //   deduction, the program is ill-formed.
6723  // FIXME: When initializer-list support is added, a distinction is needed
6724  // between the deduced type U and the deduced type which 'auto' stands for.
6725  //   auto a = 0, b = { 1, 2, 3 };
6726  // is legal because the deduced type U is 'int' in both cases.
6727  if (TypeMayContainAuto && NumDecls > 1) {
6728    QualType Deduced;
6729    CanQualType DeducedCanon;
6730    VarDecl *DeducedDecl = 0;
6731    for (unsigned i = 0; i != NumDecls; ++i) {
6732      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6733        AutoType *AT = D->getType()->getContainedAutoType();
6734        // Don't reissue diagnostics when instantiating a template.
6735        if (AT && D->isInvalidDecl())
6736          break;
6737        if (AT && AT->isDeduced()) {
6738          QualType U = AT->getDeducedType();
6739          CanQualType UCanon = Context.getCanonicalType(U);
6740          if (Deduced.isNull()) {
6741            Deduced = U;
6742            DeducedCanon = UCanon;
6743            DeducedDecl = D;
6744          } else if (DeducedCanon != UCanon) {
6745            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6746                 diag::err_auto_different_deductions)
6747              << Deduced << DeducedDecl->getDeclName()
6748              << U << D->getDeclName()
6749              << DeducedDecl->getInit()->getSourceRange()
6750              << D->getInit()->getSourceRange();
6751            D->setInvalidDecl();
6752            break;
6753          }
6754        }
6755      }
6756    }
6757  }
6758
6759  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6760}
6761
6762
6763/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6764/// to introduce parameters into function prototype scope.
6765Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6766  const DeclSpec &DS = D.getDeclSpec();
6767
6768  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6769  // C++03 [dcl.stc]p2 also permits 'auto'.
6770  VarDecl::StorageClass StorageClass = SC_None;
6771  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6772  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6773    StorageClass = SC_Register;
6774    StorageClassAsWritten = SC_Register;
6775  } else if (getLangOptions().CPlusPlus &&
6776             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6777    StorageClass = SC_Auto;
6778    StorageClassAsWritten = SC_Auto;
6779  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6780    Diag(DS.getStorageClassSpecLoc(),
6781         diag::err_invalid_storage_class_in_func_decl);
6782    D.getMutableDeclSpec().ClearStorageClassSpecs();
6783  }
6784
6785  if (D.getDeclSpec().isThreadSpecified())
6786    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6787  if (D.getDeclSpec().isConstexprSpecified())
6788    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6789      << 0;
6790
6791  DiagnoseFunctionSpecifiers(D);
6792
6793  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6794  QualType parmDeclType = TInfo->getType();
6795
6796  if (getLangOptions().CPlusPlus) {
6797    // Check that there are no default arguments inside the type of this
6798    // parameter.
6799    CheckExtraCXXDefaultArguments(D);
6800
6801    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6802    if (D.getCXXScopeSpec().isSet()) {
6803      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6804        << D.getCXXScopeSpec().getRange();
6805      D.getCXXScopeSpec().clear();
6806    }
6807  }
6808
6809  // Ensure we have a valid name
6810  IdentifierInfo *II = 0;
6811  if (D.hasName()) {
6812    II = D.getIdentifier();
6813    if (!II) {
6814      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6815        << GetNameForDeclarator(D).getName().getAsString();
6816      D.setInvalidType(true);
6817    }
6818  }
6819
6820  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6821  if (II) {
6822    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6823                   ForRedeclaration);
6824    LookupName(R, S);
6825    if (R.isSingleResult()) {
6826      NamedDecl *PrevDecl = R.getFoundDecl();
6827      if (PrevDecl->isTemplateParameter()) {
6828        // Maybe we will complain about the shadowed template parameter.
6829        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6830        // Just pretend that we didn't see the previous declaration.
6831        PrevDecl = 0;
6832      } else if (S->isDeclScope(PrevDecl)) {
6833        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6834        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6835
6836        // Recover by removing the name
6837        II = 0;
6838        D.SetIdentifier(0, D.getIdentifierLoc());
6839        D.setInvalidType(true);
6840      }
6841    }
6842  }
6843
6844  // Temporarily put parameter variables in the translation unit, not
6845  // the enclosing context.  This prevents them from accidentally
6846  // looking like class members in C++.
6847  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6848                                    D.getSourceRange().getBegin(),
6849                                    D.getIdentifierLoc(), II,
6850                                    parmDeclType, TInfo,
6851                                    StorageClass, StorageClassAsWritten);
6852
6853  if (D.isInvalidType())
6854    New->setInvalidDecl();
6855
6856  assert(S->isFunctionPrototypeScope());
6857  assert(S->getFunctionPrototypeDepth() >= 1);
6858  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6859                    S->getNextFunctionPrototypeIndex());
6860
6861  // Add the parameter declaration into this scope.
6862  S->AddDecl(New);
6863  if (II)
6864    IdResolver.AddDecl(New);
6865
6866  ProcessDeclAttributes(S, New, D);
6867
6868  if (D.getDeclSpec().isModulePrivateSpecified())
6869    Diag(New->getLocation(), diag::err_module_private_local)
6870      << 1 << New->getDeclName()
6871      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6872      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6873
6874  if (New->hasAttr<BlocksAttr>()) {
6875    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6876  }
6877  return New;
6878}
6879
6880/// \brief Synthesizes a variable for a parameter arising from a
6881/// typedef.
6882ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6883                                              SourceLocation Loc,
6884                                              QualType T) {
6885  /* FIXME: setting StartLoc == Loc.
6886     Would it be worth to modify callers so as to provide proper source
6887     location for the unnamed parameters, embedding the parameter's type? */
6888  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6889                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6890                                           SC_None, SC_None, 0);
6891  Param->setImplicit();
6892  return Param;
6893}
6894
6895void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6896                                    ParmVarDecl * const *ParamEnd) {
6897  // Don't diagnose unused-parameter errors in template instantiations; we
6898  // will already have done so in the template itself.
6899  if (!ActiveTemplateInstantiations.empty())
6900    return;
6901
6902  for (; Param != ParamEnd; ++Param) {
6903    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6904        !(*Param)->hasAttr<UnusedAttr>()) {
6905      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6906        << (*Param)->getDeclName();
6907    }
6908  }
6909}
6910
6911void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6912                                                  ParmVarDecl * const *ParamEnd,
6913                                                  QualType ReturnTy,
6914                                                  NamedDecl *D) {
6915  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6916    return;
6917
6918  // Warn if the return value is pass-by-value and larger than the specified
6919  // threshold.
6920  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6921    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6922    if (Size > LangOpts.NumLargeByValueCopy)
6923      Diag(D->getLocation(), diag::warn_return_value_size)
6924          << D->getDeclName() << Size;
6925  }
6926
6927  // Warn if any parameter is pass-by-value and larger than the specified
6928  // threshold.
6929  for (; Param != ParamEnd; ++Param) {
6930    QualType T = (*Param)->getType();
6931    if (T->isDependentType() || !T.isPODType(Context))
6932      continue;
6933    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6934    if (Size > LangOpts.NumLargeByValueCopy)
6935      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6936          << (*Param)->getDeclName() << Size;
6937  }
6938}
6939
6940ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6941                                  SourceLocation NameLoc, IdentifierInfo *Name,
6942                                  QualType T, TypeSourceInfo *TSInfo,
6943                                  VarDecl::StorageClass StorageClass,
6944                                  VarDecl::StorageClass StorageClassAsWritten) {
6945  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6946  if (getLangOptions().ObjCAutoRefCount &&
6947      T.getObjCLifetime() == Qualifiers::OCL_None &&
6948      T->isObjCLifetimeType()) {
6949
6950    Qualifiers::ObjCLifetime lifetime;
6951
6952    // Special cases for arrays:
6953    //   - if it's const, use __unsafe_unretained
6954    //   - otherwise, it's an error
6955    if (T->isArrayType()) {
6956      if (!T.isConstQualified()) {
6957        DelayedDiagnostics.add(
6958            sema::DelayedDiagnostic::makeForbiddenType(
6959            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6960      }
6961      lifetime = Qualifiers::OCL_ExplicitNone;
6962    } else {
6963      lifetime = T->getObjCARCImplicitLifetime();
6964    }
6965    T = Context.getLifetimeQualifiedType(T, lifetime);
6966  }
6967
6968  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6969                                         Context.getAdjustedParameterType(T),
6970                                         TSInfo,
6971                                         StorageClass, StorageClassAsWritten,
6972                                         0);
6973
6974  // Parameters can not be abstract class types.
6975  // For record types, this is done by the AbstractClassUsageDiagnoser once
6976  // the class has been completely parsed.
6977  if (!CurContext->isRecord() &&
6978      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6979                             AbstractParamType))
6980    New->setInvalidDecl();
6981
6982  // Parameter declarators cannot be interface types. All ObjC objects are
6983  // passed by reference.
6984  if (T->isObjCObjectType()) {
6985    Diag(NameLoc,
6986         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6987      << FixItHint::CreateInsertion(NameLoc, "*");
6988    T = Context.getObjCObjectPointerType(T);
6989    New->setType(T);
6990  }
6991
6992  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6993  // duration shall not be qualified by an address-space qualifier."
6994  // Since all parameters have automatic store duration, they can not have
6995  // an address space.
6996  if (T.getAddressSpace() != 0) {
6997    Diag(NameLoc, diag::err_arg_with_address_space);
6998    New->setInvalidDecl();
6999  }
7000
7001  return New;
7002}
7003
7004void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7005                                           SourceLocation LocAfterDecls) {
7006  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7007
7008  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7009  // for a K&R function.
7010  if (!FTI.hasPrototype) {
7011    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7012      --i;
7013      if (FTI.ArgInfo[i].Param == 0) {
7014        SmallString<256> Code;
7015        llvm::raw_svector_ostream(Code) << "  int "
7016                                        << FTI.ArgInfo[i].Ident->getName()
7017                                        << ";\n";
7018        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7019          << FTI.ArgInfo[i].Ident
7020          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7021
7022        // Implicitly declare the argument as type 'int' for lack of a better
7023        // type.
7024        AttributeFactory attrs;
7025        DeclSpec DS(attrs);
7026        const char* PrevSpec; // unused
7027        unsigned DiagID; // unused
7028        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7029                           PrevSpec, DiagID);
7030        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7031        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7032        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7033      }
7034    }
7035  }
7036}
7037
7038Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
7039                                         Declarator &D) {
7040  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7041  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7042  Scope *ParentScope = FnBodyScope->getParent();
7043
7044  D.setFunctionDefinitionKind(FDK_Definition);
7045  Decl *DP = HandleDeclarator(ParentScope, D,
7046                              MultiTemplateParamsArg(*this));
7047  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7048}
7049
7050static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7051  // Don't warn about invalid declarations.
7052  if (FD->isInvalidDecl())
7053    return false;
7054
7055  // Or declarations that aren't global.
7056  if (!FD->isGlobal())
7057    return false;
7058
7059  // Don't warn about C++ member functions.
7060  if (isa<CXXMethodDecl>(FD))
7061    return false;
7062
7063  // Don't warn about 'main'.
7064  if (FD->isMain())
7065    return false;
7066
7067  // Don't warn about inline functions.
7068  if (FD->isInlined())
7069    return false;
7070
7071  // Don't warn about function templates.
7072  if (FD->getDescribedFunctionTemplate())
7073    return false;
7074
7075  // Don't warn about function template specializations.
7076  if (FD->isFunctionTemplateSpecialization())
7077    return false;
7078
7079  bool MissingPrototype = true;
7080  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7081       Prev; Prev = Prev->getPreviousDecl()) {
7082    // Ignore any declarations that occur in function or method
7083    // scope, because they aren't visible from the header.
7084    if (Prev->getDeclContext()->isFunctionOrMethod())
7085      continue;
7086
7087    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7088    break;
7089  }
7090
7091  return MissingPrototype;
7092}
7093
7094void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7095  // Don't complain if we're in GNU89 mode and the previous definition
7096  // was an extern inline function.
7097  const FunctionDecl *Definition;
7098  if (FD->isDefined(Definition) &&
7099      !canRedefineFunction(Definition, getLangOptions())) {
7100    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7101        Definition->getStorageClass() == SC_Extern)
7102      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7103        << FD->getDeclName() << getLangOptions().CPlusPlus;
7104    else
7105      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7106    Diag(Definition->getLocation(), diag::note_previous_definition);
7107  }
7108}
7109
7110Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7111  // Clear the last template instantiation error context.
7112  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7113
7114  if (!D)
7115    return D;
7116  FunctionDecl *FD = 0;
7117
7118  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7119    FD = FunTmpl->getTemplatedDecl();
7120  else
7121    FD = cast<FunctionDecl>(D);
7122
7123  // Enter a new function scope
7124  PushFunctionScope();
7125
7126  // See if this is a redefinition.
7127  if (!FD->isLateTemplateParsed())
7128    CheckForFunctionRedefinition(FD);
7129
7130  // Builtin functions cannot be defined.
7131  if (unsigned BuiltinID = FD->getBuiltinID()) {
7132    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7133      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7134      FD->setInvalidDecl();
7135    }
7136  }
7137
7138  // The return type of a function definition must be complete
7139  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7140  QualType ResultType = FD->getResultType();
7141  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7142      !FD->isInvalidDecl() &&
7143      RequireCompleteType(FD->getLocation(), ResultType,
7144                          diag::err_func_def_incomplete_result))
7145    FD->setInvalidDecl();
7146
7147  // GNU warning -Wmissing-prototypes:
7148  //   Warn if a global function is defined without a previous
7149  //   prototype declaration. This warning is issued even if the
7150  //   definition itself provides a prototype. The aim is to detect
7151  //   global functions that fail to be declared in header files.
7152  if (ShouldWarnAboutMissingPrototype(FD))
7153    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7154
7155  if (FnBodyScope)
7156    PushDeclContext(FnBodyScope, FD);
7157
7158  // Check the validity of our function parameters
7159  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7160                           /*CheckParameterNames=*/true);
7161
7162  // Introduce our parameters into the function scope
7163  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7164    ParmVarDecl *Param = FD->getParamDecl(p);
7165    Param->setOwningFunction(FD);
7166
7167    // If this has an identifier, add it to the scope stack.
7168    if (Param->getIdentifier() && FnBodyScope) {
7169      CheckShadow(FnBodyScope, Param);
7170
7171      PushOnScopeChains(Param, FnBodyScope);
7172    }
7173  }
7174
7175  // Checking attributes of current function definition
7176  // dllimport attribute.
7177  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7178  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7179    // dllimport attribute cannot be directly applied to definition.
7180    // Microsoft accepts dllimport for functions defined within class scope.
7181    if (!DA->isInherited() &&
7182        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7183      Diag(FD->getLocation(),
7184           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7185        << "dllimport";
7186      FD->setInvalidDecl();
7187      return FD;
7188    }
7189
7190    // Visual C++ appears to not think this is an issue, so only issue
7191    // a warning when Microsoft extensions are disabled.
7192    if (!LangOpts.MicrosoftExt) {
7193      // If a symbol previously declared dllimport is later defined, the
7194      // attribute is ignored in subsequent references, and a warning is
7195      // emitted.
7196      Diag(FD->getLocation(),
7197           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7198        << FD->getName() << "dllimport";
7199    }
7200  }
7201  return FD;
7202}
7203
7204/// \brief Given the set of return statements within a function body,
7205/// compute the variables that are subject to the named return value
7206/// optimization.
7207///
7208/// Each of the variables that is subject to the named return value
7209/// optimization will be marked as NRVO variables in the AST, and any
7210/// return statement that has a marked NRVO variable as its NRVO candidate can
7211/// use the named return value optimization.
7212///
7213/// This function applies a very simplistic algorithm for NRVO: if every return
7214/// statement in the function has the same NRVO candidate, that candidate is
7215/// the NRVO variable.
7216///
7217/// FIXME: Employ a smarter algorithm that accounts for multiple return
7218/// statements and the lifetimes of the NRVO candidates. We should be able to
7219/// find a maximal set of NRVO variables.
7220void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7221  ReturnStmt **Returns = Scope->Returns.data();
7222
7223  const VarDecl *NRVOCandidate = 0;
7224  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7225    if (!Returns[I]->getNRVOCandidate())
7226      return;
7227
7228    if (!NRVOCandidate)
7229      NRVOCandidate = Returns[I]->getNRVOCandidate();
7230    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7231      return;
7232  }
7233
7234  if (NRVOCandidate)
7235    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7236}
7237
7238Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7239  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7240}
7241
7242Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7243                                    bool IsInstantiation) {
7244  FunctionDecl *FD = 0;
7245  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7246  if (FunTmpl)
7247    FD = FunTmpl->getTemplatedDecl();
7248  else
7249    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7250
7251  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7252  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7253
7254  if (FD) {
7255    FD->setBody(Body);
7256    if (FD->isMain()) {
7257      // C and C++ allow for main to automagically return 0.
7258      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7259      FD->setHasImplicitReturnZero(true);
7260      WP.disableCheckFallThrough();
7261    } else if (FD->hasAttr<NakedAttr>()) {
7262      // If the function is marked 'naked', don't complain about missing return
7263      // statements.
7264      WP.disableCheckFallThrough();
7265    }
7266
7267    // MSVC permits the use of pure specifier (=0) on function definition,
7268    // defined at class scope, warn about this non standard construct.
7269    if (getLangOptions().MicrosoftExt && FD->isPure())
7270      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7271
7272    if (!FD->isInvalidDecl()) {
7273      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7274      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7275                                             FD->getResultType(), FD);
7276
7277      // If this is a constructor, we need a vtable.
7278      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7279        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7280
7281      computeNRVO(Body, getCurFunction());
7282    }
7283
7284    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7285           "Function parsing confused");
7286  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7287    assert(MD == getCurMethodDecl() && "Method parsing confused");
7288    MD->setBody(Body);
7289    if (Body)
7290      MD->setEndLoc(Body->getLocEnd());
7291    if (!MD->isInvalidDecl()) {
7292      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7293      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7294                                             MD->getResultType(), MD);
7295
7296      if (Body)
7297        computeNRVO(Body, getCurFunction());
7298    }
7299    if (ObjCShouldCallSuperDealloc) {
7300      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7301      ObjCShouldCallSuperDealloc = false;
7302    }
7303    if (ObjCShouldCallSuperFinalize) {
7304      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7305      ObjCShouldCallSuperFinalize = false;
7306    }
7307  } else {
7308    return 0;
7309  }
7310
7311  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7312         "ObjC methods, which should have been handled in the block above.");
7313  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7314         "ObjC methods, which should have been handled in the block above.");
7315
7316  // Verify and clean out per-function state.
7317  if (Body) {
7318    // C++ constructors that have function-try-blocks can't have return
7319    // statements in the handlers of that block. (C++ [except.handle]p14)
7320    // Verify this.
7321    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7322      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7323
7324    // Verify that gotos and switch cases don't jump into scopes illegally.
7325    if (getCurFunction()->NeedsScopeChecking() &&
7326        !dcl->isInvalidDecl() &&
7327        !hasAnyUnrecoverableErrorsInThisFunction())
7328      DiagnoseInvalidJumps(Body);
7329
7330    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7331      if (!Destructor->getParent()->isDependentType())
7332        CheckDestructor(Destructor);
7333
7334      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7335                                             Destructor->getParent());
7336    }
7337
7338    // If any errors have occurred, clear out any temporaries that may have
7339    // been leftover. This ensures that these temporaries won't be picked up for
7340    // deletion in some later function.
7341    if (PP.getDiagnostics().hasErrorOccurred() ||
7342        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7343      DiscardCleanupsInEvaluationContext();
7344    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7345      // Since the body is valid, issue any analysis-based warnings that are
7346      // enabled.
7347      ActivePolicy = &WP;
7348    }
7349
7350    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7351        !CheckConstexprFunctionBody(FD, Body, IsInstantiation))
7352      FD->setInvalidDecl();
7353
7354    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7355    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7356    assert(MaybeODRUseExprs.empty() &&
7357           "Leftover expressions for odr-use checking");
7358  }
7359
7360  if (!IsInstantiation)
7361    PopDeclContext();
7362
7363  PopFunctionScopeInfo(ActivePolicy, dcl);
7364
7365  // If any errors have occurred, clear out any temporaries that may have
7366  // been leftover. This ensures that these temporaries won't be picked up for
7367  // deletion in some later function.
7368  if (getDiagnostics().hasErrorOccurred()) {
7369    DiscardCleanupsInEvaluationContext();
7370  }
7371
7372  return dcl;
7373}
7374
7375
7376/// When we finish delayed parsing of an attribute, we must attach it to the
7377/// relevant Decl.
7378void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7379                                       ParsedAttributes &Attrs) {
7380  // Always attach attributes to the underlying decl.
7381  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7382    D = TD->getTemplatedDecl();
7383  ProcessDeclAttributeList(S, D, Attrs.getList());
7384}
7385
7386
7387/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7388/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7389NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7390                                          IdentifierInfo &II, Scope *S) {
7391  // Before we produce a declaration for an implicitly defined
7392  // function, see whether there was a locally-scoped declaration of
7393  // this name as a function or variable. If so, use that
7394  // (non-visible) declaration, and complain about it.
7395  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7396    = findLocallyScopedExternalDecl(&II);
7397  if (Pos != LocallyScopedExternalDecls.end()) {
7398    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7399    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7400    return Pos->second;
7401  }
7402
7403  // Extension in C99.  Legal in C90, but warn about it.
7404  unsigned diag_id;
7405  if (II.getName().startswith("__builtin_"))
7406    diag_id = diag::warn_builtin_unknown;
7407  else if (getLangOptions().C99)
7408    diag_id = diag::ext_implicit_function_decl;
7409  else
7410    diag_id = diag::warn_implicit_function_decl;
7411  Diag(Loc, diag_id) << &II;
7412
7413  // Because typo correction is expensive, only do it if the implicit
7414  // function declaration is going to be treated as an error.
7415  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7416    TypoCorrection Corrected;
7417    DeclFilterCCC<FunctionDecl> Validator;
7418    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7419                                      LookupOrdinaryName, S, 0, Validator))) {
7420      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7421      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7422      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7423
7424      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7425          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7426
7427      if (Func->getLocation().isValid()
7428          && !II.getName().startswith("__builtin_"))
7429        Diag(Func->getLocation(), diag::note_previous_decl)
7430            << CorrectedQuotedStr;
7431    }
7432  }
7433
7434  // Set a Declarator for the implicit definition: int foo();
7435  const char *Dummy;
7436  AttributeFactory attrFactory;
7437  DeclSpec DS(attrFactory);
7438  unsigned DiagID;
7439  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7440  (void)Error; // Silence warning.
7441  assert(!Error && "Error setting up implicit decl!");
7442  Declarator D(DS, Declarator::BlockContext);
7443  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7444                                             0, 0, true, SourceLocation(),
7445                                             SourceLocation(), SourceLocation(),
7446                                             SourceLocation(),
7447                                             EST_None, SourceLocation(),
7448                                             0, 0, 0, 0, Loc, Loc, D),
7449                DS.getAttributes(),
7450                SourceLocation());
7451  D.SetIdentifier(&II, Loc);
7452
7453  // Insert this function into translation-unit scope.
7454
7455  DeclContext *PrevDC = CurContext;
7456  CurContext = Context.getTranslationUnitDecl();
7457
7458  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7459  FD->setImplicit();
7460
7461  CurContext = PrevDC;
7462
7463  AddKnownFunctionAttributes(FD);
7464
7465  return FD;
7466}
7467
7468/// \brief Adds any function attributes that we know a priori based on
7469/// the declaration of this function.
7470///
7471/// These attributes can apply both to implicitly-declared builtins
7472/// (like __builtin___printf_chk) or to library-declared functions
7473/// like NSLog or printf.
7474///
7475/// We need to check for duplicate attributes both here and where user-written
7476/// attributes are applied to declarations.
7477void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7478  if (FD->isInvalidDecl())
7479    return;
7480
7481  // If this is a built-in function, map its builtin attributes to
7482  // actual attributes.
7483  if (unsigned BuiltinID = FD->getBuiltinID()) {
7484    // Handle printf-formatting attributes.
7485    unsigned FormatIdx;
7486    bool HasVAListArg;
7487    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7488      if (!FD->getAttr<FormatAttr>()) {
7489        const char *fmt = "printf";
7490        unsigned int NumParams = FD->getNumParams();
7491        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7492            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7493          fmt = "NSString";
7494        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7495                                               fmt, FormatIdx+1,
7496                                               HasVAListArg ? 0 : FormatIdx+2));
7497      }
7498    }
7499    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7500                                             HasVAListArg)) {
7501     if (!FD->getAttr<FormatAttr>())
7502       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7503                                              "scanf", FormatIdx+1,
7504                                              HasVAListArg ? 0 : FormatIdx+2));
7505    }
7506
7507    // Mark const if we don't care about errno and that is the only
7508    // thing preventing the function from being const. This allows
7509    // IRgen to use LLVM intrinsics for such functions.
7510    if (!getLangOptions().MathErrno &&
7511        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7512      if (!FD->getAttr<ConstAttr>())
7513        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7514    }
7515
7516    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7517        !FD->getAttr<ReturnsTwiceAttr>())
7518      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7519    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7520      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7521    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7522      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7523  }
7524
7525  IdentifierInfo *Name = FD->getIdentifier();
7526  if (!Name)
7527    return;
7528  if ((!getLangOptions().CPlusPlus &&
7529       FD->getDeclContext()->isTranslationUnit()) ||
7530      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7531       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7532       LinkageSpecDecl::lang_c)) {
7533    // Okay: this could be a libc/libm/Objective-C function we know
7534    // about.
7535  } else
7536    return;
7537
7538  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7539    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7540    // target-specific builtins, perhaps?
7541    if (!FD->getAttr<FormatAttr>())
7542      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7543                                             "printf", 2,
7544                                             Name->isStr("vasprintf") ? 0 : 3));
7545  }
7546}
7547
7548TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7549                                    TypeSourceInfo *TInfo) {
7550  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7551  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7552
7553  if (!TInfo) {
7554    assert(D.isInvalidType() && "no declarator info for valid type");
7555    TInfo = Context.getTrivialTypeSourceInfo(T);
7556  }
7557
7558  // Scope manipulation handled by caller.
7559  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7560                                           D.getSourceRange().getBegin(),
7561                                           D.getIdentifierLoc(),
7562                                           D.getIdentifier(),
7563                                           TInfo);
7564
7565  // Bail out immediately if we have an invalid declaration.
7566  if (D.isInvalidType()) {
7567    NewTD->setInvalidDecl();
7568    return NewTD;
7569  }
7570
7571  if (D.getDeclSpec().isModulePrivateSpecified()) {
7572    if (CurContext->isFunctionOrMethod())
7573      Diag(NewTD->getLocation(), diag::err_module_private_local)
7574        << 2 << NewTD->getDeclName()
7575        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7576        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7577    else
7578      NewTD->setModulePrivate();
7579  }
7580
7581  // C++ [dcl.typedef]p8:
7582  //   If the typedef declaration defines an unnamed class (or
7583  //   enum), the first typedef-name declared by the declaration
7584  //   to be that class type (or enum type) is used to denote the
7585  //   class type (or enum type) for linkage purposes only.
7586  // We need to check whether the type was declared in the declaration.
7587  switch (D.getDeclSpec().getTypeSpecType()) {
7588  case TST_enum:
7589  case TST_struct:
7590  case TST_union:
7591  case TST_class: {
7592    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7593
7594    // Do nothing if the tag is not anonymous or already has an
7595    // associated typedef (from an earlier typedef in this decl group).
7596    if (tagFromDeclSpec->getIdentifier()) break;
7597    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7598
7599    // A well-formed anonymous tag must always be a TUK_Definition.
7600    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7601
7602    // The type must match the tag exactly;  no qualifiers allowed.
7603    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7604      break;
7605
7606    // Otherwise, set this is the anon-decl typedef for the tag.
7607    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7608    break;
7609  }
7610
7611  default:
7612    break;
7613  }
7614
7615  return NewTD;
7616}
7617
7618
7619/// \brief Determine whether a tag with a given kind is acceptable
7620/// as a redeclaration of the given tag declaration.
7621///
7622/// \returns true if the new tag kind is acceptable, false otherwise.
7623bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7624                                        TagTypeKind NewTag, bool isDefinition,
7625                                        SourceLocation NewTagLoc,
7626                                        const IdentifierInfo &Name) {
7627  // C++ [dcl.type.elab]p3:
7628  //   The class-key or enum keyword present in the
7629  //   elaborated-type-specifier shall agree in kind with the
7630  //   declaration to which the name in the elaborated-type-specifier
7631  //   refers. This rule also applies to the form of
7632  //   elaborated-type-specifier that declares a class-name or
7633  //   friend class since it can be construed as referring to the
7634  //   definition of the class. Thus, in any
7635  //   elaborated-type-specifier, the enum keyword shall be used to
7636  //   refer to an enumeration (7.2), the union class-key shall be
7637  //   used to refer to a union (clause 9), and either the class or
7638  //   struct class-key shall be used to refer to a class (clause 9)
7639  //   declared using the class or struct class-key.
7640  TagTypeKind OldTag = Previous->getTagKind();
7641  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7642    if (OldTag == NewTag)
7643      return true;
7644
7645  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7646      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7647    // Warn about the struct/class tag mismatch.
7648    bool isTemplate = false;
7649    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7650      isTemplate = Record->getDescribedClassTemplate();
7651
7652    if (!ActiveTemplateInstantiations.empty()) {
7653      // In a template instantiation, do not offer fix-its for tag mismatches
7654      // since they usually mess up the template instead of fixing the problem.
7655      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7656        << (NewTag == TTK_Class) << isTemplate << &Name;
7657      return true;
7658    }
7659
7660    if (isDefinition) {
7661      // On definitions, check previous tags and issue a fix-it for each
7662      // one that doesn't match the current tag.
7663      if (Previous->getDefinition()) {
7664        // Don't suggest fix-its for redefinitions.
7665        return true;
7666      }
7667
7668      bool previousMismatch = false;
7669      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7670           E(Previous->redecls_end()); I != E; ++I) {
7671        if (I->getTagKind() != NewTag) {
7672          if (!previousMismatch) {
7673            previousMismatch = true;
7674            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7675              << (NewTag == TTK_Class) << isTemplate << &Name;
7676          }
7677          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7678            << (NewTag == TTK_Class)
7679            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7680                                            NewTag == TTK_Class?
7681                                            "class" : "struct");
7682        }
7683      }
7684      return true;
7685    }
7686
7687    // Check for a previous definition.  If current tag and definition
7688    // are same type, do nothing.  If no definition, but disagree with
7689    // with previous tag type, give a warning, but no fix-it.
7690    const TagDecl *Redecl = Previous->getDefinition() ?
7691                            Previous->getDefinition() : Previous;
7692    if (Redecl->getTagKind() == NewTag) {
7693      return true;
7694    }
7695
7696    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7697      << (NewTag == TTK_Class)
7698      << isTemplate << &Name;
7699    Diag(Redecl->getLocation(), diag::note_previous_use);
7700
7701    // If there is a previous defintion, suggest a fix-it.
7702    if (Previous->getDefinition()) {
7703        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7704          << (Redecl->getTagKind() == TTK_Class)
7705          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7706                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7707    }
7708
7709    return true;
7710  }
7711  return false;
7712}
7713
7714/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7715/// former case, Name will be non-null.  In the later case, Name will be null.
7716/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7717/// reference/declaration/definition of a tag.
7718Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7719                     SourceLocation KWLoc, CXXScopeSpec &SS,
7720                     IdentifierInfo *Name, SourceLocation NameLoc,
7721                     AttributeList *Attr, AccessSpecifier AS,
7722                     SourceLocation ModulePrivateLoc,
7723                     MultiTemplateParamsArg TemplateParameterLists,
7724                     bool &OwnedDecl, bool &IsDependent,
7725                     SourceLocation ScopedEnumKWLoc,
7726                     bool ScopedEnumUsesClassTag,
7727                     TypeResult UnderlyingType) {
7728  // If this is not a definition, it must have a name.
7729  assert((Name != 0 || TUK == TUK_Definition) &&
7730         "Nameless record must be a definition!");
7731  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7732
7733  OwnedDecl = false;
7734  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7735  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7736
7737  // FIXME: Check explicit specializations more carefully.
7738  bool isExplicitSpecialization = false;
7739  bool Invalid = false;
7740
7741  // We only need to do this matching if we have template parameters
7742  // or a scope specifier, which also conveniently avoids this work
7743  // for non-C++ cases.
7744  if (TemplateParameterLists.size() > 0 ||
7745      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7746    if (TemplateParameterList *TemplateParams
7747          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7748                                                TemplateParameterLists.get(),
7749                                                TemplateParameterLists.size(),
7750                                                    TUK == TUK_Friend,
7751                                                    isExplicitSpecialization,
7752                                                    Invalid)) {
7753      if (TemplateParams->size() > 0) {
7754        // This is a declaration or definition of a class template (which may
7755        // be a member of another template).
7756
7757        if (Invalid)
7758          return 0;
7759
7760        OwnedDecl = false;
7761        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7762                                               SS, Name, NameLoc, Attr,
7763                                               TemplateParams, AS,
7764                                               ModulePrivateLoc,
7765                                           TemplateParameterLists.size() - 1,
7766                 (TemplateParameterList**) TemplateParameterLists.release());
7767        return Result.get();
7768      } else {
7769        // The "template<>" header is extraneous.
7770        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7771          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7772        isExplicitSpecialization = true;
7773      }
7774    }
7775  }
7776
7777  // Figure out the underlying type if this a enum declaration. We need to do
7778  // this early, because it's needed to detect if this is an incompatible
7779  // redeclaration.
7780  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7781
7782  if (Kind == TTK_Enum) {
7783    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7784      // No underlying type explicitly specified, or we failed to parse the
7785      // type, default to int.
7786      EnumUnderlying = Context.IntTy.getTypePtr();
7787    else if (UnderlyingType.get()) {
7788      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7789      // integral type; any cv-qualification is ignored.
7790      TypeSourceInfo *TI = 0;
7791      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7792      EnumUnderlying = TI;
7793
7794      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7795
7796      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7797        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7798          << T;
7799        // Recover by falling back to int.
7800        EnumUnderlying = Context.IntTy.getTypePtr();
7801      }
7802
7803      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7804                                          UPPC_FixedUnderlyingType))
7805        EnumUnderlying = Context.IntTy.getTypePtr();
7806
7807    } else if (getLangOptions().MicrosoftExt)
7808      // Microsoft enums are always of int type.
7809      EnumUnderlying = Context.IntTy.getTypePtr();
7810  }
7811
7812  DeclContext *SearchDC = CurContext;
7813  DeclContext *DC = CurContext;
7814  bool isStdBadAlloc = false;
7815
7816  RedeclarationKind Redecl = ForRedeclaration;
7817  if (TUK == TUK_Friend || TUK == TUK_Reference)
7818    Redecl = NotForRedeclaration;
7819
7820  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7821
7822  if (Name && SS.isNotEmpty()) {
7823    // We have a nested-name tag ('struct foo::bar').
7824
7825    // Check for invalid 'foo::'.
7826    if (SS.isInvalid()) {
7827      Name = 0;
7828      goto CreateNewDecl;
7829    }
7830
7831    // If this is a friend or a reference to a class in a dependent
7832    // context, don't try to make a decl for it.
7833    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7834      DC = computeDeclContext(SS, false);
7835      if (!DC) {
7836        IsDependent = true;
7837        return 0;
7838      }
7839    } else {
7840      DC = computeDeclContext(SS, true);
7841      if (!DC) {
7842        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7843          << SS.getRange();
7844        return 0;
7845      }
7846    }
7847
7848    if (RequireCompleteDeclContext(SS, DC))
7849      return 0;
7850
7851    SearchDC = DC;
7852    // Look-up name inside 'foo::'.
7853    LookupQualifiedName(Previous, DC);
7854
7855    if (Previous.isAmbiguous())
7856      return 0;
7857
7858    if (Previous.empty()) {
7859      // Name lookup did not find anything. However, if the
7860      // nested-name-specifier refers to the current instantiation,
7861      // and that current instantiation has any dependent base
7862      // classes, we might find something at instantiation time: treat
7863      // this as a dependent elaborated-type-specifier.
7864      // But this only makes any sense for reference-like lookups.
7865      if (Previous.wasNotFoundInCurrentInstantiation() &&
7866          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7867        IsDependent = true;
7868        return 0;
7869      }
7870
7871      // A tag 'foo::bar' must already exist.
7872      Diag(NameLoc, diag::err_not_tag_in_scope)
7873        << Kind << Name << DC << SS.getRange();
7874      Name = 0;
7875      Invalid = true;
7876      goto CreateNewDecl;
7877    }
7878  } else if (Name) {
7879    // If this is a named struct, check to see if there was a previous forward
7880    // declaration or definition.
7881    // FIXME: We're looking into outer scopes here, even when we
7882    // shouldn't be. Doing so can result in ambiguities that we
7883    // shouldn't be diagnosing.
7884    LookupName(Previous, S);
7885
7886    if (Previous.isAmbiguous() &&
7887        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7888      LookupResult::Filter F = Previous.makeFilter();
7889      while (F.hasNext()) {
7890        NamedDecl *ND = F.next();
7891        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7892          F.erase();
7893      }
7894      F.done();
7895    }
7896
7897    // Note:  there used to be some attempt at recovery here.
7898    if (Previous.isAmbiguous())
7899      return 0;
7900
7901    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7902      // FIXME: This makes sure that we ignore the contexts associated
7903      // with C structs, unions, and enums when looking for a matching
7904      // tag declaration or definition. See the similar lookup tweak
7905      // in Sema::LookupName; is there a better way to deal with this?
7906      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7907        SearchDC = SearchDC->getParent();
7908    }
7909  } else if (S->isFunctionPrototypeScope()) {
7910    // If this is an enum declaration in function prototype scope, set its
7911    // initial context to the translation unit.
7912    SearchDC = Context.getTranslationUnitDecl();
7913  }
7914
7915  if (Previous.isSingleResult() &&
7916      Previous.getFoundDecl()->isTemplateParameter()) {
7917    // Maybe we will complain about the shadowed template parameter.
7918    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7919    // Just pretend that we didn't see the previous declaration.
7920    Previous.clear();
7921  }
7922
7923  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7924      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7925    // This is a declaration of or a reference to "std::bad_alloc".
7926    isStdBadAlloc = true;
7927
7928    if (Previous.empty() && StdBadAlloc) {
7929      // std::bad_alloc has been implicitly declared (but made invisible to
7930      // name lookup). Fill in this implicit declaration as the previous
7931      // declaration, so that the declarations get chained appropriately.
7932      Previous.addDecl(getStdBadAlloc());
7933    }
7934  }
7935
7936  // If we didn't find a previous declaration, and this is a reference
7937  // (or friend reference), move to the correct scope.  In C++, we
7938  // also need to do a redeclaration lookup there, just in case
7939  // there's a shadow friend decl.
7940  if (Name && Previous.empty() &&
7941      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7942    if (Invalid) goto CreateNewDecl;
7943    assert(SS.isEmpty());
7944
7945    if (TUK == TUK_Reference) {
7946      // C++ [basic.scope.pdecl]p5:
7947      //   -- for an elaborated-type-specifier of the form
7948      //
7949      //          class-key identifier
7950      //
7951      //      if the elaborated-type-specifier is used in the
7952      //      decl-specifier-seq or parameter-declaration-clause of a
7953      //      function defined in namespace scope, the identifier is
7954      //      declared as a class-name in the namespace that contains
7955      //      the declaration; otherwise, except as a friend
7956      //      declaration, the identifier is declared in the smallest
7957      //      non-class, non-function-prototype scope that contains the
7958      //      declaration.
7959      //
7960      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7961      // C structs and unions.
7962      //
7963      // It is an error in C++ to declare (rather than define) an enum
7964      // type, including via an elaborated type specifier.  We'll
7965      // diagnose that later; for now, declare the enum in the same
7966      // scope as we would have picked for any other tag type.
7967      //
7968      // GNU C also supports this behavior as part of its incomplete
7969      // enum types extension, while GNU C++ does not.
7970      //
7971      // Find the context where we'll be declaring the tag.
7972      // FIXME: We would like to maintain the current DeclContext as the
7973      // lexical context,
7974      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7975             SearchDC->isObjCContainer())
7976        SearchDC = SearchDC->getParent();
7977
7978      // Find the scope where we'll be declaring the tag.
7979      while (S->isClassScope() ||
7980             (getLangOptions().CPlusPlus &&
7981              S->isFunctionPrototypeScope()) ||
7982             ((S->getFlags() & Scope::DeclScope) == 0) ||
7983             (S->getEntity() &&
7984              ((DeclContext *)S->getEntity())->isTransparentContext()))
7985        S = S->getParent();
7986    } else {
7987      assert(TUK == TUK_Friend);
7988      // C++ [namespace.memdef]p3:
7989      //   If a friend declaration in a non-local class first declares a
7990      //   class or function, the friend class or function is a member of
7991      //   the innermost enclosing namespace.
7992      SearchDC = SearchDC->getEnclosingNamespaceContext();
7993    }
7994
7995    // In C++, we need to do a redeclaration lookup to properly
7996    // diagnose some problems.
7997    if (getLangOptions().CPlusPlus) {
7998      Previous.setRedeclarationKind(ForRedeclaration);
7999      LookupQualifiedName(Previous, SearchDC);
8000    }
8001  }
8002
8003  if (!Previous.empty()) {
8004    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8005
8006    // It's okay to have a tag decl in the same scope as a typedef
8007    // which hides a tag decl in the same scope.  Finding this
8008    // insanity with a redeclaration lookup can only actually happen
8009    // in C++.
8010    //
8011    // This is also okay for elaborated-type-specifiers, which is
8012    // technically forbidden by the current standard but which is
8013    // okay according to the likely resolution of an open issue;
8014    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8015    if (getLangOptions().CPlusPlus) {
8016      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8017        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8018          TagDecl *Tag = TT->getDecl();
8019          if (Tag->getDeclName() == Name &&
8020              Tag->getDeclContext()->getRedeclContext()
8021                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8022            PrevDecl = Tag;
8023            Previous.clear();
8024            Previous.addDecl(Tag);
8025            Previous.resolveKind();
8026          }
8027        }
8028      }
8029    }
8030
8031    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8032      // If this is a use of a previous tag, or if the tag is already declared
8033      // in the same scope (so that the definition/declaration completes or
8034      // rementions the tag), reuse the decl.
8035      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8036          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8037        // Make sure that this wasn't declared as an enum and now used as a
8038        // struct or something similar.
8039        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8040                                          TUK == TUK_Definition, KWLoc,
8041                                          *Name)) {
8042          bool SafeToContinue
8043            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8044               Kind != TTK_Enum);
8045          if (SafeToContinue)
8046            Diag(KWLoc, diag::err_use_with_wrong_tag)
8047              << Name
8048              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8049                                              PrevTagDecl->getKindName());
8050          else
8051            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8052          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8053
8054          if (SafeToContinue)
8055            Kind = PrevTagDecl->getTagKind();
8056          else {
8057            // Recover by making this an anonymous redefinition.
8058            Name = 0;
8059            Previous.clear();
8060            Invalid = true;
8061          }
8062        }
8063
8064        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8065          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8066
8067          // If this is an elaborated-type-specifier for a scoped enumeration,
8068          // the 'class' keyword is not necessary and not permitted.
8069          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8070            if (ScopedEnum)
8071              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8072                << PrevEnum->isScoped()
8073                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8074            return PrevTagDecl;
8075          }
8076
8077          // All conflicts with previous declarations are recovered by
8078          // returning the previous declaration.
8079          if (ScopedEnum != PrevEnum->isScoped()) {
8080            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8081              << PrevEnum->isScoped();
8082            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8083            return PrevTagDecl;
8084          }
8085          else if (EnumUnderlying && PrevEnum->isFixed()) {
8086            QualType T;
8087            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8088                T = TI->getType();
8089            else
8090                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8091
8092            if (!Context.hasSameUnqualifiedType(T,
8093                                                PrevEnum->getIntegerType())) {
8094              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8095                   diag::err_enum_redeclare_type_mismatch)
8096                << T
8097                << PrevEnum->getIntegerType();
8098              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8099              return PrevTagDecl;
8100            }
8101          }
8102          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8103            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8104              << PrevEnum->isFixed();
8105            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8106            return PrevTagDecl;
8107          }
8108        }
8109
8110        if (!Invalid) {
8111          // If this is a use, just return the declaration we found.
8112
8113          // FIXME: In the future, return a variant or some other clue
8114          // for the consumer of this Decl to know it doesn't own it.
8115          // For our current ASTs this shouldn't be a problem, but will
8116          // need to be changed with DeclGroups.
8117          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8118               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8119            return PrevTagDecl;
8120
8121          // Diagnose attempts to redefine a tag.
8122          if (TUK == TUK_Definition) {
8123            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8124              // If we're defining a specialization and the previous definition
8125              // is from an implicit instantiation, don't emit an error
8126              // here; we'll catch this in the general case below.
8127              if (!isExplicitSpecialization ||
8128                  !isa<CXXRecordDecl>(Def) ||
8129                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8130                                               == TSK_ExplicitSpecialization) {
8131                Diag(NameLoc, diag::err_redefinition) << Name;
8132                Diag(Def->getLocation(), diag::note_previous_definition);
8133                // If this is a redefinition, recover by making this
8134                // struct be anonymous, which will make any later
8135                // references get the previous definition.
8136                Name = 0;
8137                Previous.clear();
8138                Invalid = true;
8139              }
8140            } else {
8141              // If the type is currently being defined, complain
8142              // about a nested redefinition.
8143              const TagType *Tag
8144                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8145              if (Tag->isBeingDefined()) {
8146                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8147                Diag(PrevTagDecl->getLocation(),
8148                     diag::note_previous_definition);
8149                Name = 0;
8150                Previous.clear();
8151                Invalid = true;
8152              }
8153            }
8154
8155            // Okay, this is definition of a previously declared or referenced
8156            // tag PrevDecl. We're going to create a new Decl for it.
8157          }
8158        }
8159        // If we get here we have (another) forward declaration or we
8160        // have a definition.  Just create a new decl.
8161
8162      } else {
8163        // If we get here, this is a definition of a new tag type in a nested
8164        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8165        // new decl/type.  We set PrevDecl to NULL so that the entities
8166        // have distinct types.
8167        Previous.clear();
8168      }
8169      // If we get here, we're going to create a new Decl. If PrevDecl
8170      // is non-NULL, it's a definition of the tag declared by
8171      // PrevDecl. If it's NULL, we have a new definition.
8172
8173
8174    // Otherwise, PrevDecl is not a tag, but was found with tag
8175    // lookup.  This is only actually possible in C++, where a few
8176    // things like templates still live in the tag namespace.
8177    } else {
8178      // Use a better diagnostic if an elaborated-type-specifier
8179      // found the wrong kind of type on the first
8180      // (non-redeclaration) lookup.
8181      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8182          !Previous.isForRedeclaration()) {
8183        unsigned Kind = 0;
8184        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8185        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8186        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8187        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8188        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8189        Invalid = true;
8190
8191      // Otherwise, only diagnose if the declaration is in scope.
8192      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8193                                isExplicitSpecialization)) {
8194        // do nothing
8195
8196      // Diagnose implicit declarations introduced by elaborated types.
8197      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8198        unsigned Kind = 0;
8199        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8200        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8201        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8202        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8203        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8204        Invalid = true;
8205
8206      // Otherwise it's a declaration.  Call out a particularly common
8207      // case here.
8208      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8209        unsigned Kind = 0;
8210        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8211        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8212          << Name << Kind << TND->getUnderlyingType();
8213        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8214        Invalid = true;
8215
8216      // Otherwise, diagnose.
8217      } else {
8218        // The tag name clashes with something else in the target scope,
8219        // issue an error and recover by making this tag be anonymous.
8220        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8221        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8222        Name = 0;
8223        Invalid = true;
8224      }
8225
8226      // The existing declaration isn't relevant to us; we're in a
8227      // new scope, so clear out the previous declaration.
8228      Previous.clear();
8229    }
8230  }
8231
8232CreateNewDecl:
8233
8234  TagDecl *PrevDecl = 0;
8235  if (Previous.isSingleResult())
8236    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8237
8238  // If there is an identifier, use the location of the identifier as the
8239  // location of the decl, otherwise use the location of the struct/union
8240  // keyword.
8241  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8242
8243  // Otherwise, create a new declaration. If there is a previous
8244  // declaration of the same entity, the two will be linked via
8245  // PrevDecl.
8246  TagDecl *New;
8247
8248  bool IsForwardReference = false;
8249  if (Kind == TTK_Enum) {
8250    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8251    // enum X { A, B, C } D;    D should chain to X.
8252    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8253                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8254                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8255    // If this is an undefined enum, warn.
8256    if (TUK != TUK_Definition && !Invalid) {
8257      TagDecl *Def;
8258      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8259        // C++0x: 7.2p2: opaque-enum-declaration.
8260        // Conflicts are diagnosed above. Do nothing.
8261      }
8262      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8263        Diag(Loc, diag::ext_forward_ref_enum_def)
8264          << New;
8265        Diag(Def->getLocation(), diag::note_previous_definition);
8266      } else {
8267        unsigned DiagID = diag::ext_forward_ref_enum;
8268        if (getLangOptions().MicrosoftExt)
8269          DiagID = diag::ext_ms_forward_ref_enum;
8270        else if (getLangOptions().CPlusPlus)
8271          DiagID = diag::err_forward_ref_enum;
8272        Diag(Loc, DiagID);
8273
8274        // If this is a forward-declared reference to an enumeration, make a
8275        // note of it; we won't actually be introducing the declaration into
8276        // the declaration context.
8277        if (TUK == TUK_Reference)
8278          IsForwardReference = true;
8279      }
8280    }
8281
8282    if (EnumUnderlying) {
8283      EnumDecl *ED = cast<EnumDecl>(New);
8284      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8285        ED->setIntegerTypeSourceInfo(TI);
8286      else
8287        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8288      ED->setPromotionType(ED->getIntegerType());
8289    }
8290
8291  } else {
8292    // struct/union/class
8293
8294    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8295    // struct X { int A; } D;    D should chain to X.
8296    if (getLangOptions().CPlusPlus) {
8297      // FIXME: Look for a way to use RecordDecl for simple structs.
8298      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8299                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8300
8301      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8302        StdBadAlloc = cast<CXXRecordDecl>(New);
8303    } else
8304      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8305                               cast_or_null<RecordDecl>(PrevDecl));
8306  }
8307
8308  // Maybe add qualifier info.
8309  if (SS.isNotEmpty()) {
8310    if (SS.isSet()) {
8311      New->setQualifierInfo(SS.getWithLocInContext(Context));
8312      if (TemplateParameterLists.size() > 0) {
8313        New->setTemplateParameterListsInfo(Context,
8314                                           TemplateParameterLists.size(),
8315                    (TemplateParameterList**) TemplateParameterLists.release());
8316      }
8317    }
8318    else
8319      Invalid = true;
8320  }
8321
8322  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8323    // Add alignment attributes if necessary; these attributes are checked when
8324    // the ASTContext lays out the structure.
8325    //
8326    // It is important for implementing the correct semantics that this
8327    // happen here (in act on tag decl). The #pragma pack stack is
8328    // maintained as a result of parser callbacks which can occur at
8329    // many points during the parsing of a struct declaration (because
8330    // the #pragma tokens are effectively skipped over during the
8331    // parsing of the struct).
8332    AddAlignmentAttributesForRecord(RD);
8333
8334    AddMsStructLayoutForRecord(RD);
8335  }
8336
8337  if (ModulePrivateLoc.isValid()) {
8338    if (isExplicitSpecialization)
8339      Diag(New->getLocation(), diag::err_module_private_specialization)
8340        << 2
8341        << FixItHint::CreateRemoval(ModulePrivateLoc);
8342    // __module_private__ does not apply to local classes. However, we only
8343    // diagnose this as an error when the declaration specifiers are
8344    // freestanding. Here, we just ignore the __module_private__.
8345    else if (!SearchDC->isFunctionOrMethod())
8346      New->setModulePrivate();
8347  }
8348
8349  // If this is a specialization of a member class (of a class template),
8350  // check the specialization.
8351  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8352    Invalid = true;
8353
8354  if (Invalid)
8355    New->setInvalidDecl();
8356
8357  if (Attr)
8358    ProcessDeclAttributeList(S, New, Attr);
8359
8360  // If we're declaring or defining a tag in function prototype scope
8361  // in C, note that this type can only be used within the function.
8362  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8363    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8364
8365  // Set the lexical context. If the tag has a C++ scope specifier, the
8366  // lexical context will be different from the semantic context.
8367  New->setLexicalDeclContext(CurContext);
8368
8369  // Mark this as a friend decl if applicable.
8370  // In Microsoft mode, a friend declaration also acts as a forward
8371  // declaration so we always pass true to setObjectOfFriendDecl to make
8372  // the tag name visible.
8373  if (TUK == TUK_Friend)
8374    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8375                               getLangOptions().MicrosoftExt);
8376
8377  // Set the access specifier.
8378  if (!Invalid && SearchDC->isRecord())
8379    SetMemberAccessSpecifier(New, PrevDecl, AS);
8380
8381  if (TUK == TUK_Definition)
8382    New->startDefinition();
8383
8384  // If this has an identifier, add it to the scope stack.
8385  if (TUK == TUK_Friend) {
8386    // We might be replacing an existing declaration in the lookup tables;
8387    // if so, borrow its access specifier.
8388    if (PrevDecl)
8389      New->setAccess(PrevDecl->getAccess());
8390
8391    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8392    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8393    if (Name) // can be null along some error paths
8394      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8395        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8396  } else if (Name) {
8397    S = getNonFieldDeclScope(S);
8398    PushOnScopeChains(New, S, !IsForwardReference);
8399    if (IsForwardReference)
8400      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8401
8402  } else {
8403    CurContext->addDecl(New);
8404  }
8405
8406  // If this is the C FILE type, notify the AST context.
8407  if (IdentifierInfo *II = New->getIdentifier())
8408    if (!New->isInvalidDecl() &&
8409        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8410        II->isStr("FILE"))
8411      Context.setFILEDecl(New);
8412
8413  OwnedDecl = true;
8414  return New;
8415}
8416
8417void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8418  AdjustDeclIfTemplate(TagD);
8419  TagDecl *Tag = cast<TagDecl>(TagD);
8420
8421  // Enter the tag context.
8422  PushDeclContext(S, Tag);
8423}
8424
8425Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8426  assert(isa<ObjCContainerDecl>(IDecl) &&
8427         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8428  DeclContext *OCD = cast<DeclContext>(IDecl);
8429  assert(getContainingDC(OCD) == CurContext &&
8430      "The next DeclContext should be lexically contained in the current one.");
8431  CurContext = OCD;
8432  return IDecl;
8433}
8434
8435void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8436                                           SourceLocation FinalLoc,
8437                                           SourceLocation LBraceLoc) {
8438  AdjustDeclIfTemplate(TagD);
8439  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8440
8441  FieldCollector->StartClass();
8442
8443  if (!Record->getIdentifier())
8444    return;
8445
8446  if (FinalLoc.isValid())
8447    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8448
8449  // C++ [class]p2:
8450  //   [...] The class-name is also inserted into the scope of the
8451  //   class itself; this is known as the injected-class-name. For
8452  //   purposes of access checking, the injected-class-name is treated
8453  //   as if it were a public member name.
8454  CXXRecordDecl *InjectedClassName
8455    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8456                            Record->getLocStart(), Record->getLocation(),
8457                            Record->getIdentifier(),
8458                            /*PrevDecl=*/0,
8459                            /*DelayTypeCreation=*/true);
8460  Context.getTypeDeclType(InjectedClassName, Record);
8461  InjectedClassName->setImplicit();
8462  InjectedClassName->setAccess(AS_public);
8463  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8464      InjectedClassName->setDescribedClassTemplate(Template);
8465  PushOnScopeChains(InjectedClassName, S);
8466  assert(InjectedClassName->isInjectedClassName() &&
8467         "Broken injected-class-name");
8468}
8469
8470void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8471                                    SourceLocation RBraceLoc) {
8472  AdjustDeclIfTemplate(TagD);
8473  TagDecl *Tag = cast<TagDecl>(TagD);
8474  Tag->setRBraceLoc(RBraceLoc);
8475
8476  if (isa<CXXRecordDecl>(Tag))
8477    FieldCollector->FinishClass();
8478
8479  // Exit this scope of this tag's definition.
8480  PopDeclContext();
8481
8482  // Notify the consumer that we've defined a tag.
8483  Consumer.HandleTagDeclDefinition(Tag);
8484}
8485
8486void Sema::ActOnObjCContainerFinishDefinition() {
8487  // Exit this scope of this interface definition.
8488  PopDeclContext();
8489}
8490
8491void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8492  assert(DC == CurContext && "Mismatch of container contexts");
8493  OriginalLexicalContext = DC;
8494  ActOnObjCContainerFinishDefinition();
8495}
8496
8497void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8498  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8499  OriginalLexicalContext = 0;
8500}
8501
8502void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8503  AdjustDeclIfTemplate(TagD);
8504  TagDecl *Tag = cast<TagDecl>(TagD);
8505  Tag->setInvalidDecl();
8506
8507  // We're undoing ActOnTagStartDefinition here, not
8508  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8509  // the FieldCollector.
8510
8511  PopDeclContext();
8512}
8513
8514// Note that FieldName may be null for anonymous bitfields.
8515ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8516                                IdentifierInfo *FieldName,
8517                                QualType FieldTy, Expr *BitWidth,
8518                                bool *ZeroWidth) {
8519  // Default to true; that shouldn't confuse checks for emptiness
8520  if (ZeroWidth)
8521    *ZeroWidth = true;
8522
8523  // C99 6.7.2.1p4 - verify the field type.
8524  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8525  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8526    // Handle incomplete types with specific error.
8527    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8528      return ExprError();
8529    if (FieldName)
8530      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8531        << FieldName << FieldTy << BitWidth->getSourceRange();
8532    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8533      << FieldTy << BitWidth->getSourceRange();
8534  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8535                                             UPPC_BitFieldWidth))
8536    return ExprError();
8537
8538  // If the bit-width is type- or value-dependent, don't try to check
8539  // it now.
8540  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8541    return Owned(BitWidth);
8542
8543  llvm::APSInt Value;
8544  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8545  if (ICE.isInvalid())
8546    return ICE;
8547  BitWidth = ICE.take();
8548
8549  if (Value != 0 && ZeroWidth)
8550    *ZeroWidth = false;
8551
8552  // Zero-width bitfield is ok for anonymous field.
8553  if (Value == 0 && FieldName)
8554    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8555
8556  if (Value.isSigned() && Value.isNegative()) {
8557    if (FieldName)
8558      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8559               << FieldName << Value.toString(10);
8560    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8561      << Value.toString(10);
8562  }
8563
8564  if (!FieldTy->isDependentType()) {
8565    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8566    if (Value.getZExtValue() > TypeSize) {
8567      if (!getLangOptions().CPlusPlus) {
8568        if (FieldName)
8569          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8570            << FieldName << (unsigned)Value.getZExtValue()
8571            << (unsigned)TypeSize;
8572
8573        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8574          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8575      }
8576
8577      if (FieldName)
8578        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8579          << FieldName << (unsigned)Value.getZExtValue()
8580          << (unsigned)TypeSize;
8581      else
8582        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8583          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8584    }
8585  }
8586
8587  return Owned(BitWidth);
8588}
8589
8590/// ActOnField - Each field of a C struct/union is passed into this in order
8591/// to create a FieldDecl object for it.
8592Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8593                       Declarator &D, Expr *BitfieldWidth) {
8594  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8595                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8596                               /*HasInit=*/false, AS_public);
8597  return Res;
8598}
8599
8600/// HandleField - Analyze a field of a C struct or a C++ data member.
8601///
8602FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8603                             SourceLocation DeclStart,
8604                             Declarator &D, Expr *BitWidth, bool HasInit,
8605                             AccessSpecifier AS) {
8606  IdentifierInfo *II = D.getIdentifier();
8607  SourceLocation Loc = DeclStart;
8608  if (II) Loc = D.getIdentifierLoc();
8609
8610  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8611  QualType T = TInfo->getType();
8612  if (getLangOptions().CPlusPlus) {
8613    CheckExtraCXXDefaultArguments(D);
8614
8615    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8616                                        UPPC_DataMemberType)) {
8617      D.setInvalidType();
8618      T = Context.IntTy;
8619      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8620    }
8621  }
8622
8623  DiagnoseFunctionSpecifiers(D);
8624
8625  if (D.getDeclSpec().isThreadSpecified())
8626    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8627  if (D.getDeclSpec().isConstexprSpecified())
8628    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8629      << 2;
8630
8631  // Check to see if this name was declared as a member previously
8632  NamedDecl *PrevDecl = 0;
8633  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8634  LookupName(Previous, S);
8635  switch (Previous.getResultKind()) {
8636    case LookupResult::Found:
8637    case LookupResult::FoundUnresolvedValue:
8638      PrevDecl = Previous.getAsSingle<NamedDecl>();
8639      break;
8640
8641    case LookupResult::FoundOverloaded:
8642      PrevDecl = Previous.getRepresentativeDecl();
8643      break;
8644
8645    case LookupResult::NotFound:
8646    case LookupResult::NotFoundInCurrentInstantiation:
8647    case LookupResult::Ambiguous:
8648      break;
8649  }
8650  Previous.suppressDiagnostics();
8651
8652  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8653    // Maybe we will complain about the shadowed template parameter.
8654    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8655    // Just pretend that we didn't see the previous declaration.
8656    PrevDecl = 0;
8657  }
8658
8659  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8660    PrevDecl = 0;
8661
8662  bool Mutable
8663    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8664  SourceLocation TSSL = D.getSourceRange().getBegin();
8665  FieldDecl *NewFD
8666    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8667                     TSSL, AS, PrevDecl, &D);
8668
8669  if (NewFD->isInvalidDecl())
8670    Record->setInvalidDecl();
8671
8672  if (D.getDeclSpec().isModulePrivateSpecified())
8673    NewFD->setModulePrivate();
8674
8675  if (NewFD->isInvalidDecl() && PrevDecl) {
8676    // Don't introduce NewFD into scope; there's already something
8677    // with the same name in the same scope.
8678  } else if (II) {
8679    PushOnScopeChains(NewFD, S);
8680  } else
8681    Record->addDecl(NewFD);
8682
8683  return NewFD;
8684}
8685
8686/// \brief Build a new FieldDecl and check its well-formedness.
8687///
8688/// This routine builds a new FieldDecl given the fields name, type,
8689/// record, etc. \p PrevDecl should refer to any previous declaration
8690/// with the same name and in the same scope as the field to be
8691/// created.
8692///
8693/// \returns a new FieldDecl.
8694///
8695/// \todo The Declarator argument is a hack. It will be removed once
8696FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8697                                TypeSourceInfo *TInfo,
8698                                RecordDecl *Record, SourceLocation Loc,
8699                                bool Mutable, Expr *BitWidth, bool HasInit,
8700                                SourceLocation TSSL,
8701                                AccessSpecifier AS, NamedDecl *PrevDecl,
8702                                Declarator *D) {
8703  IdentifierInfo *II = Name.getAsIdentifierInfo();
8704  bool InvalidDecl = false;
8705  if (D) InvalidDecl = D->isInvalidType();
8706
8707  // If we receive a broken type, recover by assuming 'int' and
8708  // marking this declaration as invalid.
8709  if (T.isNull()) {
8710    InvalidDecl = true;
8711    T = Context.IntTy;
8712  }
8713
8714  QualType EltTy = Context.getBaseElementType(T);
8715  if (!EltTy->isDependentType() &&
8716      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8717    // Fields of incomplete type force their record to be invalid.
8718    Record->setInvalidDecl();
8719    InvalidDecl = true;
8720  }
8721
8722  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8723  // than a variably modified type.
8724  if (!InvalidDecl && T->isVariablyModifiedType()) {
8725    bool SizeIsNegative;
8726    llvm::APSInt Oversized;
8727    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8728                                                           SizeIsNegative,
8729                                                           Oversized);
8730    if (!FixedTy.isNull()) {
8731      Diag(Loc, diag::warn_illegal_constant_array_size);
8732      T = FixedTy;
8733    } else {
8734      if (SizeIsNegative)
8735        Diag(Loc, diag::err_typecheck_negative_array_size);
8736      else if (Oversized.getBoolValue())
8737        Diag(Loc, diag::err_array_too_large)
8738          << Oversized.toString(10);
8739      else
8740        Diag(Loc, diag::err_typecheck_field_variable_size);
8741      InvalidDecl = true;
8742    }
8743  }
8744
8745  // Fields can not have abstract class types
8746  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8747                                             diag::err_abstract_type_in_decl,
8748                                             AbstractFieldType))
8749    InvalidDecl = true;
8750
8751  bool ZeroWidth = false;
8752  // If this is declared as a bit-field, check the bit-field.
8753  if (!InvalidDecl && BitWidth) {
8754    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8755    if (!BitWidth) {
8756      InvalidDecl = true;
8757      BitWidth = 0;
8758      ZeroWidth = false;
8759    }
8760  }
8761
8762  // Check that 'mutable' is consistent with the type of the declaration.
8763  if (!InvalidDecl && Mutable) {
8764    unsigned DiagID = 0;
8765    if (T->isReferenceType())
8766      DiagID = diag::err_mutable_reference;
8767    else if (T.isConstQualified())
8768      DiagID = diag::err_mutable_const;
8769
8770    if (DiagID) {
8771      SourceLocation ErrLoc = Loc;
8772      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8773        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8774      Diag(ErrLoc, DiagID);
8775      Mutable = false;
8776      InvalidDecl = true;
8777    }
8778  }
8779
8780  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8781                                       BitWidth, Mutable, HasInit);
8782  if (InvalidDecl)
8783    NewFD->setInvalidDecl();
8784
8785  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8786    Diag(Loc, diag::err_duplicate_member) << II;
8787    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8788    NewFD->setInvalidDecl();
8789  }
8790
8791  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8792    if (Record->isUnion()) {
8793      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8794        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8795        if (RDecl->getDefinition()) {
8796          // C++ [class.union]p1: An object of a class with a non-trivial
8797          // constructor, a non-trivial copy constructor, a non-trivial
8798          // destructor, or a non-trivial copy assignment operator
8799          // cannot be a member of a union, nor can an array of such
8800          // objects.
8801          if (CheckNontrivialField(NewFD))
8802            NewFD->setInvalidDecl();
8803        }
8804      }
8805
8806      // C++ [class.union]p1: If a union contains a member of reference type,
8807      // the program is ill-formed.
8808      if (EltTy->isReferenceType()) {
8809        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8810          << NewFD->getDeclName() << EltTy;
8811        NewFD->setInvalidDecl();
8812      }
8813    }
8814  }
8815
8816  // FIXME: We need to pass in the attributes given an AST
8817  // representation, not a parser representation.
8818  if (D)
8819    // FIXME: What to pass instead of TUScope?
8820    ProcessDeclAttributes(TUScope, NewFD, *D);
8821
8822  // In auto-retain/release, infer strong retension for fields of
8823  // retainable type.
8824  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8825    NewFD->setInvalidDecl();
8826
8827  if (T.isObjCGCWeak())
8828    Diag(Loc, diag::warn_attribute_weak_on_field);
8829
8830  NewFD->setAccess(AS);
8831  return NewFD;
8832}
8833
8834bool Sema::CheckNontrivialField(FieldDecl *FD) {
8835  assert(FD);
8836  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8837
8838  if (FD->isInvalidDecl())
8839    return true;
8840
8841  QualType EltTy = Context.getBaseElementType(FD->getType());
8842  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8843    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8844    if (RDecl->getDefinition()) {
8845      // We check for copy constructors before constructors
8846      // because otherwise we'll never get complaints about
8847      // copy constructors.
8848
8849      CXXSpecialMember member = CXXInvalid;
8850      if (!RDecl->hasTrivialCopyConstructor())
8851        member = CXXCopyConstructor;
8852      else if (!RDecl->hasTrivialDefaultConstructor())
8853        member = CXXDefaultConstructor;
8854      else if (!RDecl->hasTrivialCopyAssignment())
8855        member = CXXCopyAssignment;
8856      else if (!RDecl->hasTrivialDestructor())
8857        member = CXXDestructor;
8858
8859      if (member != CXXInvalid) {
8860        if (!getLangOptions().CPlusPlus0x &&
8861            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8862          // Objective-C++ ARC: it is an error to have a non-trivial field of
8863          // a union. However, system headers in Objective-C programs
8864          // occasionally have Objective-C lifetime objects within unions,
8865          // and rather than cause the program to fail, we make those
8866          // members unavailable.
8867          SourceLocation Loc = FD->getLocation();
8868          if (getSourceManager().isInSystemHeader(Loc)) {
8869            if (!FD->hasAttr<UnavailableAttr>())
8870              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8871                                  "this system field has retaining ownership"));
8872            return false;
8873          }
8874        }
8875
8876        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8877               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8878               diag::err_illegal_union_or_anon_struct_member)
8879          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8880        DiagnoseNontrivial(RT, member);
8881        return !getLangOptions().CPlusPlus0x;
8882      }
8883    }
8884  }
8885
8886  return false;
8887}
8888
8889/// DiagnoseNontrivial - Given that a class has a non-trivial
8890/// special member, figure out why.
8891void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8892  QualType QT(T, 0U);
8893  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8894
8895  // Check whether the member was user-declared.
8896  switch (member) {
8897  case CXXInvalid:
8898    break;
8899
8900  case CXXDefaultConstructor:
8901    if (RD->hasUserDeclaredConstructor()) {
8902      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8903      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8904        const FunctionDecl *body = 0;
8905        ci->hasBody(body);
8906        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8907          SourceLocation CtorLoc = ci->getLocation();
8908          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8909          return;
8910        }
8911      }
8912
8913      llvm_unreachable("found no user-declared constructors");
8914    }
8915    break;
8916
8917  case CXXCopyConstructor:
8918    if (RD->hasUserDeclaredCopyConstructor()) {
8919      SourceLocation CtorLoc =
8920        RD->getCopyConstructor(0)->getLocation();
8921      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8922      return;
8923    }
8924    break;
8925
8926  case CXXMoveConstructor:
8927    if (RD->hasUserDeclaredMoveConstructor()) {
8928      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8929      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8930      return;
8931    }
8932    break;
8933
8934  case CXXCopyAssignment:
8935    if (RD->hasUserDeclaredCopyAssignment()) {
8936      // FIXME: this should use the location of the copy
8937      // assignment, not the type.
8938      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8939      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8940      return;
8941    }
8942    break;
8943
8944  case CXXMoveAssignment:
8945    if (RD->hasUserDeclaredMoveAssignment()) {
8946      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8947      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8948      return;
8949    }
8950    break;
8951
8952  case CXXDestructor:
8953    if (RD->hasUserDeclaredDestructor()) {
8954      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8955      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8956      return;
8957    }
8958    break;
8959  }
8960
8961  typedef CXXRecordDecl::base_class_iterator base_iter;
8962
8963  // Virtual bases and members inhibit trivial copying/construction,
8964  // but not trivial destruction.
8965  if (member != CXXDestructor) {
8966    // Check for virtual bases.  vbases includes indirect virtual bases,
8967    // so we just iterate through the direct bases.
8968    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8969      if (bi->isVirtual()) {
8970        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8971        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8972        return;
8973      }
8974
8975    // Check for virtual methods.
8976    typedef CXXRecordDecl::method_iterator meth_iter;
8977    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8978         ++mi) {
8979      if (mi->isVirtual()) {
8980        SourceLocation MLoc = mi->getSourceRange().getBegin();
8981        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8982        return;
8983      }
8984    }
8985  }
8986
8987  bool (CXXRecordDecl::*hasTrivial)() const;
8988  switch (member) {
8989  case CXXDefaultConstructor:
8990    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8991  case CXXCopyConstructor:
8992    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8993  case CXXCopyAssignment:
8994    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8995  case CXXDestructor:
8996    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8997  default:
8998    llvm_unreachable("unexpected special member");
8999  }
9000
9001  // Check for nontrivial bases (and recurse).
9002  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9003    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9004    assert(BaseRT && "Don't know how to handle dependent bases");
9005    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9006    if (!(BaseRecTy->*hasTrivial)()) {
9007      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9008      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9009      DiagnoseNontrivial(BaseRT, member);
9010      return;
9011    }
9012  }
9013
9014  // Check for nontrivial members (and recurse).
9015  typedef RecordDecl::field_iterator field_iter;
9016  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9017       ++fi) {
9018    QualType EltTy = Context.getBaseElementType((*fi)->getType());
9019    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9020      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9021
9022      if (!(EltRD->*hasTrivial)()) {
9023        SourceLocation FLoc = (*fi)->getLocation();
9024        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9025        DiagnoseNontrivial(EltRT, member);
9026        return;
9027      }
9028    }
9029
9030    if (EltTy->isObjCLifetimeType()) {
9031      switch (EltTy.getObjCLifetime()) {
9032      case Qualifiers::OCL_None:
9033      case Qualifiers::OCL_ExplicitNone:
9034        break;
9035
9036      case Qualifiers::OCL_Autoreleasing:
9037      case Qualifiers::OCL_Weak:
9038      case Qualifiers::OCL_Strong:
9039        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9040          << QT << EltTy.getObjCLifetime();
9041        return;
9042      }
9043    }
9044  }
9045
9046  llvm_unreachable("found no explanation for non-trivial member");
9047}
9048
9049/// TranslateIvarVisibility - Translate visibility from a token ID to an
9050///  AST enum value.
9051static ObjCIvarDecl::AccessControl
9052TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9053  switch (ivarVisibility) {
9054  default: llvm_unreachable("Unknown visitibility kind");
9055  case tok::objc_private: return ObjCIvarDecl::Private;
9056  case tok::objc_public: return ObjCIvarDecl::Public;
9057  case tok::objc_protected: return ObjCIvarDecl::Protected;
9058  case tok::objc_package: return ObjCIvarDecl::Package;
9059  }
9060}
9061
9062/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9063/// in order to create an IvarDecl object for it.
9064Decl *Sema::ActOnIvar(Scope *S,
9065                                SourceLocation DeclStart,
9066                                Declarator &D, Expr *BitfieldWidth,
9067                                tok::ObjCKeywordKind Visibility) {
9068
9069  IdentifierInfo *II = D.getIdentifier();
9070  Expr *BitWidth = (Expr*)BitfieldWidth;
9071  SourceLocation Loc = DeclStart;
9072  if (II) Loc = D.getIdentifierLoc();
9073
9074  // FIXME: Unnamed fields can be handled in various different ways, for
9075  // example, unnamed unions inject all members into the struct namespace!
9076
9077  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9078  QualType T = TInfo->getType();
9079
9080  if (BitWidth) {
9081    // 6.7.2.1p3, 6.7.2.1p4
9082    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9083    if (!BitWidth)
9084      D.setInvalidType();
9085  } else {
9086    // Not a bitfield.
9087
9088    // validate II.
9089
9090  }
9091  if (T->isReferenceType()) {
9092    Diag(Loc, diag::err_ivar_reference_type);
9093    D.setInvalidType();
9094  }
9095  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9096  // than a variably modified type.
9097  else if (T->isVariablyModifiedType()) {
9098    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9099    D.setInvalidType();
9100  }
9101
9102  // Get the visibility (access control) for this ivar.
9103  ObjCIvarDecl::AccessControl ac =
9104    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9105                                        : ObjCIvarDecl::None;
9106  // Must set ivar's DeclContext to its enclosing interface.
9107  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9108  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9109    return 0;
9110  ObjCContainerDecl *EnclosingContext;
9111  if (ObjCImplementationDecl *IMPDecl =
9112      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9113    if (!LangOpts.ObjCNonFragileABI2) {
9114    // Case of ivar declared in an implementation. Context is that of its class.
9115      EnclosingContext = IMPDecl->getClassInterface();
9116      assert(EnclosingContext && "Implementation has no class interface!");
9117    }
9118    else
9119      EnclosingContext = EnclosingDecl;
9120  } else {
9121    if (ObjCCategoryDecl *CDecl =
9122        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9123      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9124        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9125        return 0;
9126      }
9127    }
9128    EnclosingContext = EnclosingDecl;
9129  }
9130
9131  // Construct the decl.
9132  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9133                                             DeclStart, Loc, II, T,
9134                                             TInfo, ac, (Expr *)BitfieldWidth);
9135
9136  if (II) {
9137    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9138                                           ForRedeclaration);
9139    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9140        && !isa<TagDecl>(PrevDecl)) {
9141      Diag(Loc, diag::err_duplicate_member) << II;
9142      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9143      NewID->setInvalidDecl();
9144    }
9145  }
9146
9147  // Process attributes attached to the ivar.
9148  ProcessDeclAttributes(S, NewID, D);
9149
9150  if (D.isInvalidType())
9151    NewID->setInvalidDecl();
9152
9153  // In ARC, infer 'retaining' for ivars of retainable type.
9154  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9155    NewID->setInvalidDecl();
9156
9157  if (D.getDeclSpec().isModulePrivateSpecified())
9158    NewID->setModulePrivate();
9159
9160  if (II) {
9161    // FIXME: When interfaces are DeclContexts, we'll need to add
9162    // these to the interface.
9163    S->AddDecl(NewID);
9164    IdResolver.AddDecl(NewID);
9165  }
9166
9167  return NewID;
9168}
9169
9170/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9171/// class and class extensions. For every class @interface and class
9172/// extension @interface, if the last ivar is a bitfield of any type,
9173/// then add an implicit `char :0` ivar to the end of that interface.
9174void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9175                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9176  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9177    return;
9178
9179  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9180  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9181
9182  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9183    return;
9184  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9185  if (!ID) {
9186    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9187      if (!CD->IsClassExtension())
9188        return;
9189    }
9190    // No need to add this to end of @implementation.
9191    else
9192      return;
9193  }
9194  // All conditions are met. Add a new bitfield to the tail end of ivars.
9195  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9196  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9197
9198  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9199                              DeclLoc, DeclLoc, 0,
9200                              Context.CharTy,
9201                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9202                                                               DeclLoc),
9203                              ObjCIvarDecl::Private, BW,
9204                              true);
9205  AllIvarDecls.push_back(Ivar);
9206}
9207
9208void Sema::ActOnFields(Scope* S,
9209                       SourceLocation RecLoc, Decl *EnclosingDecl,
9210                       llvm::ArrayRef<Decl *> Fields,
9211                       SourceLocation LBrac, SourceLocation RBrac,
9212                       AttributeList *Attr) {
9213  assert(EnclosingDecl && "missing record or interface decl");
9214
9215  // If the decl this is being inserted into is invalid, then it may be a
9216  // redeclaration or some other bogus case.  Don't try to add fields to it.
9217  if (EnclosingDecl->isInvalidDecl())
9218    return;
9219
9220  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9221
9222  // Start counting up the number of named members; make sure to include
9223  // members of anonymous structs and unions in the total.
9224  unsigned NumNamedMembers = 0;
9225  if (Record) {
9226    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9227                                   e = Record->decls_end(); i != e; i++) {
9228      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9229        if (IFD->getDeclName())
9230          ++NumNamedMembers;
9231    }
9232  }
9233
9234  // Verify that all the fields are okay.
9235  SmallVector<FieldDecl*, 32> RecFields;
9236
9237  bool ARCErrReported = false;
9238  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9239       i != end; ++i) {
9240    FieldDecl *FD = cast<FieldDecl>(*i);
9241
9242    // Get the type for the field.
9243    const Type *FDTy = FD->getType().getTypePtr();
9244
9245    if (!FD->isAnonymousStructOrUnion()) {
9246      // Remember all fields written by the user.
9247      RecFields.push_back(FD);
9248    }
9249
9250    // If the field is already invalid for some reason, don't emit more
9251    // diagnostics about it.
9252    if (FD->isInvalidDecl()) {
9253      EnclosingDecl->setInvalidDecl();
9254      continue;
9255    }
9256
9257    // C99 6.7.2.1p2:
9258    //   A structure or union shall not contain a member with
9259    //   incomplete or function type (hence, a structure shall not
9260    //   contain an instance of itself, but may contain a pointer to
9261    //   an instance of itself), except that the last member of a
9262    //   structure with more than one named member may have incomplete
9263    //   array type; such a structure (and any union containing,
9264    //   possibly recursively, a member that is such a structure)
9265    //   shall not be a member of a structure or an element of an
9266    //   array.
9267    if (FDTy->isFunctionType()) {
9268      // Field declared as a function.
9269      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9270        << FD->getDeclName();
9271      FD->setInvalidDecl();
9272      EnclosingDecl->setInvalidDecl();
9273      continue;
9274    } else if (FDTy->isIncompleteArrayType() && Record &&
9275               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9276                ((getLangOptions().MicrosoftExt ||
9277                  getLangOptions().CPlusPlus) &&
9278                 (i + 1 == Fields.end() || Record->isUnion())))) {
9279      // Flexible array member.
9280      // Microsoft and g++ is more permissive regarding flexible array.
9281      // It will accept flexible array in union and also
9282      // as the sole element of a struct/class.
9283      if (getLangOptions().MicrosoftExt) {
9284        if (Record->isUnion())
9285          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9286            << FD->getDeclName();
9287        else if (Fields.size() == 1)
9288          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9289            << FD->getDeclName() << Record->getTagKind();
9290      } else if (getLangOptions().CPlusPlus) {
9291        if (Record->isUnion())
9292          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9293            << FD->getDeclName();
9294        else if (Fields.size() == 1)
9295          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9296            << FD->getDeclName() << Record->getTagKind();
9297      } else if (NumNamedMembers < 1) {
9298        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9299          << FD->getDeclName();
9300        FD->setInvalidDecl();
9301        EnclosingDecl->setInvalidDecl();
9302        continue;
9303      }
9304      if (!FD->getType()->isDependentType() &&
9305          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9306        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9307          << FD->getDeclName() << FD->getType();
9308        FD->setInvalidDecl();
9309        EnclosingDecl->setInvalidDecl();
9310        continue;
9311      }
9312      // Okay, we have a legal flexible array member at the end of the struct.
9313      if (Record)
9314        Record->setHasFlexibleArrayMember(true);
9315    } else if (!FDTy->isDependentType() &&
9316               RequireCompleteType(FD->getLocation(), FD->getType(),
9317                                   diag::err_field_incomplete)) {
9318      // Incomplete type
9319      FD->setInvalidDecl();
9320      EnclosingDecl->setInvalidDecl();
9321      continue;
9322    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9323      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9324        // If this is a member of a union, then entire union becomes "flexible".
9325        if (Record && Record->isUnion()) {
9326          Record->setHasFlexibleArrayMember(true);
9327        } else {
9328          // If this is a struct/class and this is not the last element, reject
9329          // it.  Note that GCC supports variable sized arrays in the middle of
9330          // structures.
9331          if (i + 1 != Fields.end())
9332            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9333              << FD->getDeclName() << FD->getType();
9334          else {
9335            // We support flexible arrays at the end of structs in
9336            // other structs as an extension.
9337            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9338              << FD->getDeclName();
9339            if (Record)
9340              Record->setHasFlexibleArrayMember(true);
9341          }
9342        }
9343      }
9344      if (Record && FDTTy->getDecl()->hasObjectMember())
9345        Record->setHasObjectMember(true);
9346    } else if (FDTy->isObjCObjectType()) {
9347      /// A field cannot be an Objective-c object
9348      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9349        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9350      QualType T = Context.getObjCObjectPointerType(FD->getType());
9351      FD->setType(T);
9352    }
9353    else if (!getLangOptions().CPlusPlus) {
9354      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9355        // It's an error in ARC if a field has lifetime.
9356        // We don't want to report this in a system header, though,
9357        // so we just make the field unavailable.
9358        // FIXME: that's really not sufficient; we need to make the type
9359        // itself invalid to, say, initialize or copy.
9360        QualType T = FD->getType();
9361        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9362        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9363          SourceLocation loc = FD->getLocation();
9364          if (getSourceManager().isInSystemHeader(loc)) {
9365            if (!FD->hasAttr<UnavailableAttr>()) {
9366              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9367                                "this system field has retaining ownership"));
9368            }
9369          } else {
9370            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9371              << T->isBlockPointerType();
9372          }
9373          ARCErrReported = true;
9374        }
9375      }
9376      else if (getLangOptions().ObjC1 &&
9377               getLangOptions().getGC() != LangOptions::NonGC &&
9378               Record && !Record->hasObjectMember()) {
9379        if (FD->getType()->isObjCObjectPointerType() ||
9380            FD->getType().isObjCGCStrong())
9381          Record->setHasObjectMember(true);
9382        else if (Context.getAsArrayType(FD->getType())) {
9383          QualType BaseType = Context.getBaseElementType(FD->getType());
9384          if (BaseType->isRecordType() &&
9385              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9386            Record->setHasObjectMember(true);
9387          else if (BaseType->isObjCObjectPointerType() ||
9388                   BaseType.isObjCGCStrong())
9389                 Record->setHasObjectMember(true);
9390        }
9391      }
9392    }
9393    // Keep track of the number of named members.
9394    if (FD->getIdentifier())
9395      ++NumNamedMembers;
9396  }
9397
9398  // Okay, we successfully defined 'Record'.
9399  if (Record) {
9400    bool Completed = false;
9401    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9402      if (!CXXRecord->isInvalidDecl()) {
9403        // Set access bits correctly on the directly-declared conversions.
9404        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9405        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9406             I != E; ++I)
9407          Convs->setAccess(I, (*I)->getAccess());
9408
9409        if (!CXXRecord->isDependentType()) {
9410          // Objective-C Automatic Reference Counting:
9411          //   If a class has a non-static data member of Objective-C pointer
9412          //   type (or array thereof), it is a non-POD type and its
9413          //   default constructor (if any), copy constructor, copy assignment
9414          //   operator, and destructor are non-trivial.
9415          //
9416          // This rule is also handled by CXXRecordDecl::completeDefinition().
9417          // However, here we check whether this particular class is only
9418          // non-POD because of the presence of an Objective-C pointer member.
9419          // If so, objects of this type cannot be shared between code compiled
9420          // with instant objects and code compiled with manual retain/release.
9421          if (getLangOptions().ObjCAutoRefCount &&
9422              CXXRecord->hasObjectMember() &&
9423              CXXRecord->getLinkage() == ExternalLinkage) {
9424            if (CXXRecord->isPOD()) {
9425              Diag(CXXRecord->getLocation(),
9426                   diag::warn_arc_non_pod_class_with_object_member)
9427               << CXXRecord;
9428            } else {
9429              // FIXME: Fix-Its would be nice here, but finding a good location
9430              // for them is going to be tricky.
9431              if (CXXRecord->hasTrivialCopyConstructor())
9432                Diag(CXXRecord->getLocation(),
9433                     diag::warn_arc_trivial_member_function_with_object_member)
9434                  << CXXRecord << 0;
9435              if (CXXRecord->hasTrivialCopyAssignment())
9436                Diag(CXXRecord->getLocation(),
9437                     diag::warn_arc_trivial_member_function_with_object_member)
9438                << CXXRecord << 1;
9439              if (CXXRecord->hasTrivialDestructor())
9440                Diag(CXXRecord->getLocation(),
9441                     diag::warn_arc_trivial_member_function_with_object_member)
9442                << CXXRecord << 2;
9443            }
9444          }
9445
9446          // Adjust user-defined destructor exception spec.
9447          if (getLangOptions().CPlusPlus0x &&
9448              CXXRecord->hasUserDeclaredDestructor())
9449            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9450
9451          // Add any implicitly-declared members to this class.
9452          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9453
9454          // If we have virtual base classes, we may end up finding multiple
9455          // final overriders for a given virtual function. Check for this
9456          // problem now.
9457          if (CXXRecord->getNumVBases()) {
9458            CXXFinalOverriderMap FinalOverriders;
9459            CXXRecord->getFinalOverriders(FinalOverriders);
9460
9461            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9462                                             MEnd = FinalOverriders.end();
9463                 M != MEnd; ++M) {
9464              for (OverridingMethods::iterator SO = M->second.begin(),
9465                                            SOEnd = M->second.end();
9466                   SO != SOEnd; ++SO) {
9467                assert(SO->second.size() > 0 &&
9468                       "Virtual function without overridding functions?");
9469                if (SO->second.size() == 1)
9470                  continue;
9471
9472                // C++ [class.virtual]p2:
9473                //   In a derived class, if a virtual member function of a base
9474                //   class subobject has more than one final overrider the
9475                //   program is ill-formed.
9476                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9477                  << (NamedDecl *)M->first << Record;
9478                Diag(M->first->getLocation(),
9479                     diag::note_overridden_virtual_function);
9480                for (OverridingMethods::overriding_iterator
9481                          OM = SO->second.begin(),
9482                       OMEnd = SO->second.end();
9483                     OM != OMEnd; ++OM)
9484                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9485                    << (NamedDecl *)M->first << OM->Method->getParent();
9486
9487                Record->setInvalidDecl();
9488              }
9489            }
9490            CXXRecord->completeDefinition(&FinalOverriders);
9491            Completed = true;
9492          }
9493        }
9494      }
9495    }
9496
9497    if (!Completed)
9498      Record->completeDefinition();
9499
9500    // Now that the record is complete, do any delayed exception spec checks
9501    // we were missing.
9502    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9503      const CXXDestructorDecl *Dtor =
9504              DelayedDestructorExceptionSpecChecks.back().first;
9505      if (Dtor->getParent() != Record)
9506        break;
9507
9508      assert(!Dtor->getParent()->isDependentType() &&
9509          "Should not ever add destructors of templates into the list.");
9510      CheckOverridingFunctionExceptionSpec(Dtor,
9511          DelayedDestructorExceptionSpecChecks.back().second);
9512      DelayedDestructorExceptionSpecChecks.pop_back();
9513    }
9514
9515  } else {
9516    ObjCIvarDecl **ClsFields =
9517      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9518    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9519      ID->setEndOfDefinitionLoc(RBrac);
9520      // Add ivar's to class's DeclContext.
9521      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9522        ClsFields[i]->setLexicalDeclContext(ID);
9523        ID->addDecl(ClsFields[i]);
9524      }
9525      // Must enforce the rule that ivars in the base classes may not be
9526      // duplicates.
9527      if (ID->getSuperClass())
9528        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9529    } else if (ObjCImplementationDecl *IMPDecl =
9530                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9531      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9532      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9533        // Ivar declared in @implementation never belongs to the implementation.
9534        // Only it is in implementation's lexical context.
9535        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9536      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9537    } else if (ObjCCategoryDecl *CDecl =
9538                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9539      // case of ivars in class extension; all other cases have been
9540      // reported as errors elsewhere.
9541      // FIXME. Class extension does not have a LocEnd field.
9542      // CDecl->setLocEnd(RBrac);
9543      // Add ivar's to class extension's DeclContext.
9544      // Diagnose redeclaration of private ivars.
9545      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9546      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9547        if (IDecl) {
9548          if (const ObjCIvarDecl *ClsIvar =
9549              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9550            Diag(ClsFields[i]->getLocation(),
9551                 diag::err_duplicate_ivar_declaration);
9552            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9553            continue;
9554          }
9555          for (const ObjCCategoryDecl *ClsExtDecl =
9556                IDecl->getFirstClassExtension();
9557               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9558            if (const ObjCIvarDecl *ClsExtIvar =
9559                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9560              Diag(ClsFields[i]->getLocation(),
9561                   diag::err_duplicate_ivar_declaration);
9562              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9563              continue;
9564            }
9565          }
9566        }
9567        ClsFields[i]->setLexicalDeclContext(CDecl);
9568        CDecl->addDecl(ClsFields[i]);
9569      }
9570    }
9571  }
9572
9573  if (Attr)
9574    ProcessDeclAttributeList(S, Record, Attr);
9575
9576  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9577  // set the visibility of this record.
9578  if (Record && !Record->getDeclContext()->isRecord())
9579    AddPushedVisibilityAttribute(Record);
9580}
9581
9582/// \brief Determine whether the given integral value is representable within
9583/// the given type T.
9584static bool isRepresentableIntegerValue(ASTContext &Context,
9585                                        llvm::APSInt &Value,
9586                                        QualType T) {
9587  assert(T->isIntegralType(Context) && "Integral type required!");
9588  unsigned BitWidth = Context.getIntWidth(T);
9589
9590  if (Value.isUnsigned() || Value.isNonNegative()) {
9591    if (T->isSignedIntegerOrEnumerationType())
9592      --BitWidth;
9593    return Value.getActiveBits() <= BitWidth;
9594  }
9595  return Value.getMinSignedBits() <= BitWidth;
9596}
9597
9598// \brief Given an integral type, return the next larger integral type
9599// (or a NULL type of no such type exists).
9600static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9601  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9602  // enum checking below.
9603  assert(T->isIntegralType(Context) && "Integral type required!");
9604  const unsigned NumTypes = 4;
9605  QualType SignedIntegralTypes[NumTypes] = {
9606    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9607  };
9608  QualType UnsignedIntegralTypes[NumTypes] = {
9609    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9610    Context.UnsignedLongLongTy
9611  };
9612
9613  unsigned BitWidth = Context.getTypeSize(T);
9614  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9615                                                        : UnsignedIntegralTypes;
9616  for (unsigned I = 0; I != NumTypes; ++I)
9617    if (Context.getTypeSize(Types[I]) > BitWidth)
9618      return Types[I];
9619
9620  return QualType();
9621}
9622
9623EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9624                                          EnumConstantDecl *LastEnumConst,
9625                                          SourceLocation IdLoc,
9626                                          IdentifierInfo *Id,
9627                                          Expr *Val) {
9628  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9629  llvm::APSInt EnumVal(IntWidth);
9630  QualType EltTy;
9631
9632  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9633    Val = 0;
9634
9635  if (Val)
9636    Val = DefaultLvalueConversion(Val).take();
9637
9638  if (Val) {
9639    if (Enum->isDependentType() || Val->isTypeDependent())
9640      EltTy = Context.DependentTy;
9641    else {
9642      SourceLocation ExpLoc;
9643      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9644          !getLangOptions().MicrosoftMode) {
9645        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9646        // constant-expression in the enumerator-definition shall be a converted
9647        // constant expression of the underlying type.
9648        EltTy = Enum->getIntegerType();
9649        ExprResult Converted =
9650          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9651                                           CCEK_Enumerator);
9652        if (Converted.isInvalid())
9653          Val = 0;
9654        else
9655          Val = Converted.take();
9656      } else if (!Val->isValueDependent() &&
9657                 !(Val = VerifyIntegerConstantExpression(Val,
9658                                                         &EnumVal).take())) {
9659        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9660      } else {
9661        if (Enum->isFixed()) {
9662          EltTy = Enum->getIntegerType();
9663
9664          // In Obj-C and Microsoft mode, require the enumeration value to be
9665          // representable in the underlying type of the enumeration. In C++11,
9666          // we perform a non-narrowing conversion as part of converted constant
9667          // expression checking.
9668          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9669            if (getLangOptions().MicrosoftExt) {
9670              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9671              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9672            } else
9673              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9674          } else
9675            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9676        } else if (getLangOptions().CPlusPlus) {
9677          // C++11 [dcl.enum]p5:
9678          //   If the underlying type is not fixed, the type of each enumerator
9679          //   is the type of its initializing value:
9680          //     - If an initializer is specified for an enumerator, the
9681          //       initializing value has the same type as the expression.
9682          EltTy = Val->getType();
9683        } else {
9684          // C99 6.7.2.2p2:
9685          //   The expression that defines the value of an enumeration constant
9686          //   shall be an integer constant expression that has a value
9687          //   representable as an int.
9688
9689          // Complain if the value is not representable in an int.
9690          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9691            Diag(IdLoc, diag::ext_enum_value_not_int)
9692              << EnumVal.toString(10) << Val->getSourceRange()
9693              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9694          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9695            // Force the type of the expression to 'int'.
9696            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9697          }
9698          EltTy = Val->getType();
9699        }
9700      }
9701    }
9702  }
9703
9704  if (!Val) {
9705    if (Enum->isDependentType())
9706      EltTy = Context.DependentTy;
9707    else if (!LastEnumConst) {
9708      // C++0x [dcl.enum]p5:
9709      //   If the underlying type is not fixed, the type of each enumerator
9710      //   is the type of its initializing value:
9711      //     - If no initializer is specified for the first enumerator, the
9712      //       initializing value has an unspecified integral type.
9713      //
9714      // GCC uses 'int' for its unspecified integral type, as does
9715      // C99 6.7.2.2p3.
9716      if (Enum->isFixed()) {
9717        EltTy = Enum->getIntegerType();
9718      }
9719      else {
9720        EltTy = Context.IntTy;
9721      }
9722    } else {
9723      // Assign the last value + 1.
9724      EnumVal = LastEnumConst->getInitVal();
9725      ++EnumVal;
9726      EltTy = LastEnumConst->getType();
9727
9728      // Check for overflow on increment.
9729      if (EnumVal < LastEnumConst->getInitVal()) {
9730        // C++0x [dcl.enum]p5:
9731        //   If the underlying type is not fixed, the type of each enumerator
9732        //   is the type of its initializing value:
9733        //
9734        //     - Otherwise the type of the initializing value is the same as
9735        //       the type of the initializing value of the preceding enumerator
9736        //       unless the incremented value is not representable in that type,
9737        //       in which case the type is an unspecified integral type
9738        //       sufficient to contain the incremented value. If no such type
9739        //       exists, the program is ill-formed.
9740        QualType T = getNextLargerIntegralType(Context, EltTy);
9741        if (T.isNull() || Enum->isFixed()) {
9742          // There is no integral type larger enough to represent this
9743          // value. Complain, then allow the value to wrap around.
9744          EnumVal = LastEnumConst->getInitVal();
9745          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9746          ++EnumVal;
9747          if (Enum->isFixed())
9748            // When the underlying type is fixed, this is ill-formed.
9749            Diag(IdLoc, diag::err_enumerator_wrapped)
9750              << EnumVal.toString(10)
9751              << EltTy;
9752          else
9753            Diag(IdLoc, diag::warn_enumerator_too_large)
9754              << EnumVal.toString(10);
9755        } else {
9756          EltTy = T;
9757        }
9758
9759        // Retrieve the last enumerator's value, extent that type to the
9760        // type that is supposed to be large enough to represent the incremented
9761        // value, then increment.
9762        EnumVal = LastEnumConst->getInitVal();
9763        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9764        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9765        ++EnumVal;
9766
9767        // If we're not in C++, diagnose the overflow of enumerator values,
9768        // which in C99 means that the enumerator value is not representable in
9769        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9770        // permits enumerator values that are representable in some larger
9771        // integral type.
9772        if (!getLangOptions().CPlusPlus && !T.isNull())
9773          Diag(IdLoc, diag::warn_enum_value_overflow);
9774      } else if (!getLangOptions().CPlusPlus &&
9775                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9776        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9777        Diag(IdLoc, diag::ext_enum_value_not_int)
9778          << EnumVal.toString(10) << 1;
9779      }
9780    }
9781  }
9782
9783  if (!EltTy->isDependentType()) {
9784    // Make the enumerator value match the signedness and size of the
9785    // enumerator's type.
9786    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
9787    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9788  }
9789
9790  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9791                                  Val, EnumVal);
9792}
9793
9794
9795Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9796                              SourceLocation IdLoc, IdentifierInfo *Id,
9797                              AttributeList *Attr,
9798                              SourceLocation EqualLoc, Expr *Val) {
9799  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9800  EnumConstantDecl *LastEnumConst =
9801    cast_or_null<EnumConstantDecl>(lastEnumConst);
9802
9803  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9804  // we find one that is.
9805  S = getNonFieldDeclScope(S);
9806
9807  // Verify that there isn't already something declared with this name in this
9808  // scope.
9809  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9810                                         ForRedeclaration);
9811  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9812    // Maybe we will complain about the shadowed template parameter.
9813    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9814    // Just pretend that we didn't see the previous declaration.
9815    PrevDecl = 0;
9816  }
9817
9818  if (PrevDecl) {
9819    // When in C++, we may get a TagDecl with the same name; in this case the
9820    // enum constant will 'hide' the tag.
9821    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9822           "Received TagDecl when not in C++!");
9823    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9824      if (isa<EnumConstantDecl>(PrevDecl))
9825        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9826      else
9827        Diag(IdLoc, diag::err_redefinition) << Id;
9828      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9829      return 0;
9830    }
9831  }
9832
9833  // C++ [class.mem]p13:
9834  //   If T is the name of a class, then each of the following shall have a
9835  //   name different from T:
9836  //     - every enumerator of every member of class T that is an enumerated
9837  //       type
9838  if (CXXRecordDecl *Record
9839                      = dyn_cast<CXXRecordDecl>(
9840                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9841    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9842      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9843
9844  EnumConstantDecl *New =
9845    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9846
9847  if (New) {
9848    // Process attributes.
9849    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9850
9851    // Register this decl in the current scope stack.
9852    New->setAccess(TheEnumDecl->getAccess());
9853    PushOnScopeChains(New, S);
9854  }
9855
9856  return New;
9857}
9858
9859void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9860                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9861                         Decl **Elements, unsigned NumElements,
9862                         Scope *S, AttributeList *Attr) {
9863  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9864  QualType EnumType = Context.getTypeDeclType(Enum);
9865
9866  if (Attr)
9867    ProcessDeclAttributeList(S, Enum, Attr);
9868
9869  if (Enum->isDependentType()) {
9870    for (unsigned i = 0; i != NumElements; ++i) {
9871      EnumConstantDecl *ECD =
9872        cast_or_null<EnumConstantDecl>(Elements[i]);
9873      if (!ECD) continue;
9874
9875      ECD->setType(EnumType);
9876    }
9877
9878    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9879    return;
9880  }
9881
9882  // TODO: If the result value doesn't fit in an int, it must be a long or long
9883  // long value.  ISO C does not support this, but GCC does as an extension,
9884  // emit a warning.
9885  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9886  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9887  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9888
9889  // Verify that all the values are okay, compute the size of the values, and
9890  // reverse the list.
9891  unsigned NumNegativeBits = 0;
9892  unsigned NumPositiveBits = 0;
9893
9894  // Keep track of whether all elements have type int.
9895  bool AllElementsInt = true;
9896
9897  for (unsigned i = 0; i != NumElements; ++i) {
9898    EnumConstantDecl *ECD =
9899      cast_or_null<EnumConstantDecl>(Elements[i]);
9900    if (!ECD) continue;  // Already issued a diagnostic.
9901
9902    const llvm::APSInt &InitVal = ECD->getInitVal();
9903
9904    // Keep track of the size of positive and negative values.
9905    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9906      NumPositiveBits = std::max(NumPositiveBits,
9907                                 (unsigned)InitVal.getActiveBits());
9908    else
9909      NumNegativeBits = std::max(NumNegativeBits,
9910                                 (unsigned)InitVal.getMinSignedBits());
9911
9912    // Keep track of whether every enum element has type int (very commmon).
9913    if (AllElementsInt)
9914      AllElementsInt = ECD->getType() == Context.IntTy;
9915  }
9916
9917  // Figure out the type that should be used for this enum.
9918  QualType BestType;
9919  unsigned BestWidth;
9920
9921  // C++0x N3000 [conv.prom]p3:
9922  //   An rvalue of an unscoped enumeration type whose underlying
9923  //   type is not fixed can be converted to an rvalue of the first
9924  //   of the following types that can represent all the values of
9925  //   the enumeration: int, unsigned int, long int, unsigned long
9926  //   int, long long int, or unsigned long long int.
9927  // C99 6.4.4.3p2:
9928  //   An identifier declared as an enumeration constant has type int.
9929  // The C99 rule is modified by a gcc extension
9930  QualType BestPromotionType;
9931
9932  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9933  // -fshort-enums is the equivalent to specifying the packed attribute on all
9934  // enum definitions.
9935  if (LangOpts.ShortEnums)
9936    Packed = true;
9937
9938  if (Enum->isFixed()) {
9939    BestType = Enum->getIntegerType();
9940    if (BestType->isPromotableIntegerType())
9941      BestPromotionType = Context.getPromotedIntegerType(BestType);
9942    else
9943      BestPromotionType = BestType;
9944    // We don't need to set BestWidth, because BestType is going to be the type
9945    // of the enumerators, but we do anyway because otherwise some compilers
9946    // warn that it might be used uninitialized.
9947    BestWidth = CharWidth;
9948  }
9949  else if (NumNegativeBits) {
9950    // If there is a negative value, figure out the smallest integer type (of
9951    // int/long/longlong) that fits.
9952    // If it's packed, check also if it fits a char or a short.
9953    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9954      BestType = Context.SignedCharTy;
9955      BestWidth = CharWidth;
9956    } else if (Packed && NumNegativeBits <= ShortWidth &&
9957               NumPositiveBits < ShortWidth) {
9958      BestType = Context.ShortTy;
9959      BestWidth = ShortWidth;
9960    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9961      BestType = Context.IntTy;
9962      BestWidth = IntWidth;
9963    } else {
9964      BestWidth = Context.getTargetInfo().getLongWidth();
9965
9966      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9967        BestType = Context.LongTy;
9968      } else {
9969        BestWidth = Context.getTargetInfo().getLongLongWidth();
9970
9971        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9972          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9973        BestType = Context.LongLongTy;
9974      }
9975    }
9976    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9977  } else {
9978    // If there is no negative value, figure out the smallest type that fits
9979    // all of the enumerator values.
9980    // If it's packed, check also if it fits a char or a short.
9981    if (Packed && NumPositiveBits <= CharWidth) {
9982      BestType = Context.UnsignedCharTy;
9983      BestPromotionType = Context.IntTy;
9984      BestWidth = CharWidth;
9985    } else if (Packed && NumPositiveBits <= ShortWidth) {
9986      BestType = Context.UnsignedShortTy;
9987      BestPromotionType = Context.IntTy;
9988      BestWidth = ShortWidth;
9989    } else if (NumPositiveBits <= IntWidth) {
9990      BestType = Context.UnsignedIntTy;
9991      BestWidth = IntWidth;
9992      BestPromotionType
9993        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9994                           ? Context.UnsignedIntTy : Context.IntTy;
9995    } else if (NumPositiveBits <=
9996               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9997      BestType = Context.UnsignedLongTy;
9998      BestPromotionType
9999        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10000                           ? Context.UnsignedLongTy : Context.LongTy;
10001    } else {
10002      BestWidth = Context.getTargetInfo().getLongLongWidth();
10003      assert(NumPositiveBits <= BestWidth &&
10004             "How could an initializer get larger than ULL?");
10005      BestType = Context.UnsignedLongLongTy;
10006      BestPromotionType
10007        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10008                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10009    }
10010  }
10011
10012  // Loop over all of the enumerator constants, changing their types to match
10013  // the type of the enum if needed.
10014  for (unsigned i = 0; i != NumElements; ++i) {
10015    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10016    if (!ECD) continue;  // Already issued a diagnostic.
10017
10018    // Standard C says the enumerators have int type, but we allow, as an
10019    // extension, the enumerators to be larger than int size.  If each
10020    // enumerator value fits in an int, type it as an int, otherwise type it the
10021    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10022    // that X has type 'int', not 'unsigned'.
10023
10024    // Determine whether the value fits into an int.
10025    llvm::APSInt InitVal = ECD->getInitVal();
10026
10027    // If it fits into an integer type, force it.  Otherwise force it to match
10028    // the enum decl type.
10029    QualType NewTy;
10030    unsigned NewWidth;
10031    bool NewSign;
10032    if (!getLangOptions().CPlusPlus &&
10033        !Enum->isFixed() &&
10034        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10035      NewTy = Context.IntTy;
10036      NewWidth = IntWidth;
10037      NewSign = true;
10038    } else if (ECD->getType() == BestType) {
10039      // Already the right type!
10040      if (getLangOptions().CPlusPlus)
10041        // C++ [dcl.enum]p4: Following the closing brace of an
10042        // enum-specifier, each enumerator has the type of its
10043        // enumeration.
10044        ECD->setType(EnumType);
10045      continue;
10046    } else {
10047      NewTy = BestType;
10048      NewWidth = BestWidth;
10049      NewSign = BestType->isSignedIntegerOrEnumerationType();
10050    }
10051
10052    // Adjust the APSInt value.
10053    InitVal = InitVal.extOrTrunc(NewWidth);
10054    InitVal.setIsSigned(NewSign);
10055    ECD->setInitVal(InitVal);
10056
10057    // Adjust the Expr initializer and type.
10058    if (ECD->getInitExpr() &&
10059        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10060      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10061                                                CK_IntegralCast,
10062                                                ECD->getInitExpr(),
10063                                                /*base paths*/ 0,
10064                                                VK_RValue));
10065    if (getLangOptions().CPlusPlus)
10066      // C++ [dcl.enum]p4: Following the closing brace of an
10067      // enum-specifier, each enumerator has the type of its
10068      // enumeration.
10069      ECD->setType(EnumType);
10070    else
10071      ECD->setType(NewTy);
10072  }
10073
10074  Enum->completeDefinition(BestType, BestPromotionType,
10075                           NumPositiveBits, NumNegativeBits);
10076}
10077
10078Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10079                                  SourceLocation StartLoc,
10080                                  SourceLocation EndLoc) {
10081  StringLiteral *AsmString = cast<StringLiteral>(expr);
10082
10083  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10084                                                   AsmString, StartLoc,
10085                                                   EndLoc);
10086  CurContext->addDecl(New);
10087  return New;
10088}
10089
10090DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10091                                   SourceLocation ImportLoc,
10092                                   ModuleIdPath Path) {
10093  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10094                                                Module::AllVisible,
10095                                                /*IsIncludeDirective=*/false);
10096  if (!Mod)
10097    return true;
10098
10099  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10100  Module *ModCheck = Mod;
10101  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10102    // If we've run out of module parents, just drop the remaining identifiers.
10103    // We need the length to be consistent.
10104    if (!ModCheck)
10105      break;
10106    ModCheck = ModCheck->Parent;
10107
10108    IdentifierLocs.push_back(Path[I].second);
10109  }
10110
10111  ImportDecl *Import = ImportDecl::Create(Context,
10112                                          Context.getTranslationUnitDecl(),
10113                                          AtLoc.isValid()? AtLoc : ImportLoc,
10114                                          Mod, IdentifierLocs);
10115  Context.getTranslationUnitDecl()->addDecl(Import);
10116  return Import;
10117}
10118
10119void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10120                             SourceLocation PragmaLoc,
10121                             SourceLocation NameLoc) {
10122  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10123
10124  if (PrevDecl) {
10125    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10126  } else {
10127    (void)WeakUndeclaredIdentifiers.insert(
10128      std::pair<IdentifierInfo*,WeakInfo>
10129        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10130  }
10131}
10132
10133void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10134                                IdentifierInfo* AliasName,
10135                                SourceLocation PragmaLoc,
10136                                SourceLocation NameLoc,
10137                                SourceLocation AliasNameLoc) {
10138  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10139                                    LookupOrdinaryName);
10140  WeakInfo W = WeakInfo(Name, NameLoc);
10141
10142  if (PrevDecl) {
10143    if (!PrevDecl->hasAttr<AliasAttr>())
10144      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10145        DeclApplyPragmaWeak(TUScope, ND, W);
10146  } else {
10147    (void)WeakUndeclaredIdentifiers.insert(
10148      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10149  }
10150}
10151
10152Decl *Sema::getObjCDeclContext() const {
10153  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10154}
10155
10156AvailabilityResult Sema::getCurContextAvailability() const {
10157  const Decl *D = cast<Decl>(getCurLexicalContext());
10158  // A category implicitly has the availability of the interface.
10159  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10160    D = CatD->getClassInterface();
10161
10162  return D->getAvailability();
10163}
10164