SemaDecl.cpp revision 6393519272ce727f4d26e71bbefb5de712274d0e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false,
338                                           /*hasPrototype=*/true);
339  New->setImplicit();
340
341  // Create Decl objects for each parameter, adding them to the
342  // FunctionDecl.
343  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
344    llvm::SmallVector<ParmVarDecl*, 16> Params;
345    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
346      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
347                                           FT->getArgType(i), VarDecl::None, 0));
348    New->setParams(Context, &Params[0], Params.size());
349  }
350
351  AddKnownFunctionAttributes(New);
352
353  // TUScope is the translation-unit scope to insert this function into.
354  // FIXME: This is hideous. We need to teach PushOnScopeChains to
355  // relate Scopes to DeclContexts, and probably eliminate CurContext
356  // entirely, but we're not there yet.
357  DeclContext *SavedContext = CurContext;
358  CurContext = Context.getTranslationUnitDecl();
359  PushOnScopeChains(New, TUScope);
360  CurContext = SavedContext;
361  return New;
362}
363
364/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
365/// everything from the standard library is defined.
366NamespaceDecl *Sema::GetStdNamespace() {
367  if (!StdNamespace) {
368    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
369    DeclContext *Global = Context.getTranslationUnitDecl();
370    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
377/// same name and scope as a previous declaration 'Old'.  Figure out
378/// how to resolve this situation, merging decls or emitting
379/// diagnostics as appropriate. Returns true if there was an error,
380/// false otherwise.
381///
382bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
383  bool objc_types = false;
384  // Allow multiple definitions for ObjC built-in typedefs.
385  // FIXME: Verify the underlying types are equivalent!
386  if (getLangOptions().ObjC1) {
387    const IdentifierInfo *TypeID = New->getIdentifier();
388    switch (TypeID->getLength()) {
389    default: break;
390    case 2:
391      if (!TypeID->isStr("id"))
392        break;
393      Context.setObjCIdType(New);
394      objc_types = true;
395      break;
396    case 5:
397      if (!TypeID->isStr("Class"))
398        break;
399      Context.setObjCClassType(New);
400      objc_types = true;
401      return false;
402    case 3:
403      if (!TypeID->isStr("SEL"))
404        break;
405      Context.setObjCSelType(New);
406      objc_types = true;
407      return false;
408    case 8:
409      if (!TypeID->isStr("Protocol"))
410        break;
411      Context.setObjCProtoType(New->getUnderlyingType());
412      objc_types = true;
413      return false;
414    }
415    // Fall through - the typedef name was not a builtin type.
416  }
417  // Verify the old decl was also a type.
418  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
419  if (!Old) {
420    Diag(New->getLocation(), diag::err_redefinition_different_kind)
421      << New->getDeclName();
422    if (!objc_types)
423      Diag(OldD->getLocation(), diag::note_previous_definition);
424    return true;
425  }
426
427  // Determine the "old" type we'll use for checking and diagnostics.
428  QualType OldType;
429  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
430    OldType = OldTypedef->getUnderlyingType();
431  else
432    OldType = Context.getTypeDeclType(Old);
433
434  // If the typedef types are not identical, reject them in all languages and
435  // with any extensions enabled.
436
437  if (OldType != New->getUnderlyingType() &&
438      Context.getCanonicalType(OldType) !=
439      Context.getCanonicalType(New->getUnderlyingType())) {
440    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
441      << New->getUnderlyingType() << OldType;
442    if (!objc_types)
443      Diag(Old->getLocation(), diag::note_previous_definition);
444    return true;
445  }
446  if (objc_types) return false;
447  if (getLangOptions().Microsoft) return false;
448
449  // C++ [dcl.typedef]p2:
450  //   In a given non-class scope, a typedef specifier can be used to
451  //   redefine the name of any type declared in that scope to refer
452  //   to the type to which it already refers.
453  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
454    return false;
455
456  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
457  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
458  // *either* declaration is in a system header. The code below implements
459  // this adhoc compatibility rule. FIXME: The following code will not
460  // work properly when compiling ".i" files (containing preprocessed output).
461  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
462    SourceManager &SrcMgr = Context.getSourceManager();
463    if (SrcMgr.isInSystemHeader(Old->getLocation()))
464      return false;
465    if (SrcMgr.isInSystemHeader(New->getLocation()))
466      return false;
467  }
468
469  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
470  Diag(Old->getLocation(), diag::note_previous_definition);
471  return true;
472}
473
474/// DeclhasAttr - returns true if decl Declaration already has the target
475/// attribute.
476static bool DeclHasAttr(const Decl *decl, const Attr *target) {
477  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
478    if (attr->getKind() == target->getKind())
479      return true;
480
481  return false;
482}
483
484/// MergeAttributes - append attributes from the Old decl to the New one.
485static void MergeAttributes(Decl *New, Decl *Old) {
486  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
487
488  while (attr) {
489    tmp = attr;
490    attr = attr->getNext();
491
492    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
493      tmp->setInherited(true);
494      New->addAttr(tmp);
495    } else {
496      tmp->setNext(0);
497      delete(tmp);
498    }
499  }
500
501  Old->invalidateAttrs();
502}
503
504/// MergeFunctionDecl - We just parsed a function 'New' from
505/// declarator D which has the same name and scope as a previous
506/// declaration 'Old'.  Figure out how to resolve this situation,
507/// merging decls or emitting diagnostics as appropriate.
508///
509/// In C++, New and Old must be declarations that are not
510/// overloaded. Use IsOverload to determine whether New and Old are
511/// overloaded, and to select the Old declaration that New should be
512/// merged with.
513///
514/// Returns true if there was an error, false otherwise.
515bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
516  assert(!isa<OverloadedFunctionDecl>(OldD) &&
517         "Cannot merge with an overloaded function declaration");
518
519  // Verify the old decl was also a function.
520  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
521  if (!Old) {
522    Diag(New->getLocation(), diag::err_redefinition_different_kind)
523      << New->getDeclName();
524    Diag(OldD->getLocation(), diag::note_previous_definition);
525    return true;
526  }
527
528  // Determine whether the previous declaration was a definition,
529  // implicit declaration, or a declaration.
530  diag::kind PrevDiag;
531  if (Old->isThisDeclarationADefinition())
532    PrevDiag = diag::note_previous_definition;
533  else if (Old->isImplicit())
534    PrevDiag = diag::note_previous_implicit_declaration;
535  else
536    PrevDiag = diag::note_previous_declaration;
537
538  QualType OldQType = Context.getCanonicalType(Old->getType());
539  QualType NewQType = Context.getCanonicalType(New->getType());
540
541  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
542      New->getStorageClass() == FunctionDecl::Static &&
543      Old->getStorageClass() != FunctionDecl::Static) {
544    Diag(New->getLocation(), diag::err_static_non_static)
545      << New;
546    Diag(Old->getLocation(), PrevDiag);
547    return true;
548  }
549
550  if (getLangOptions().CPlusPlus) {
551    // (C++98 13.1p2):
552    //   Certain function declarations cannot be overloaded:
553    //     -- Function declarations that differ only in the return type
554    //        cannot be overloaded.
555    QualType OldReturnType
556      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
557    QualType NewReturnType
558      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
559    if (OldReturnType != NewReturnType) {
560      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
561      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
562      return true;
563    }
564
565    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
566    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
567    if (OldMethod && NewMethod) {
568      //    -- Member function declarations with the same name and the
569      //       same parameter types cannot be overloaded if any of them
570      //       is a static member function declaration.
571      if (OldMethod->isStatic() || NewMethod->isStatic()) {
572        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
573        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
574        return true;
575      }
576
577      // C++ [class.mem]p1:
578      //   [...] A member shall not be declared twice in the
579      //   member-specification, except that a nested class or member
580      //   class template can be declared and then later defined.
581      if (OldMethod->getLexicalDeclContext() ==
582            NewMethod->getLexicalDeclContext()) {
583        unsigned NewDiag;
584        if (isa<CXXConstructorDecl>(OldMethod))
585          NewDiag = diag::err_constructor_redeclared;
586        else if (isa<CXXDestructorDecl>(NewMethod))
587          NewDiag = diag::err_destructor_redeclared;
588        else if (isa<CXXConversionDecl>(NewMethod))
589          NewDiag = diag::err_conv_function_redeclared;
590        else
591          NewDiag = diag::err_member_redeclared;
592
593        Diag(New->getLocation(), NewDiag);
594        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
595      }
596    }
597
598    // (C++98 8.3.5p3):
599    //   All declarations for a function shall agree exactly in both the
600    //   return type and the parameter-type-list.
601    if (OldQType == NewQType)
602      return MergeCompatibleFunctionDecls(New, Old);
603
604    // Fall through for conflicting redeclarations and redefinitions.
605  }
606
607  // C: Function types need to be compatible, not identical. This handles
608  // duplicate function decls like "void f(int); void f(enum X);" properly.
609  if (!getLangOptions().CPlusPlus &&
610      Context.typesAreCompatible(OldQType, NewQType)) {
611    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
612    const FunctionProtoType *OldProto = 0;
613    if (isa<FunctionNoProtoType>(NewFuncType) &&
614        (OldProto = OldQType->getAsFunctionProtoType())) {
615      // The old declaration provided a function prototype, but the
616      // new declaration does not. Merge in the prototype.
617      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
618                                                 OldProto->arg_type_end());
619      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
620                                         &ParamTypes[0], ParamTypes.size(),
621                                         OldProto->isVariadic(),
622                                         OldProto->getTypeQuals());
623      New->setType(NewQType);
624      New->setInheritedPrototype();
625
626      // Synthesize a parameter for each argument type.
627      llvm::SmallVector<ParmVarDecl*, 16> Params;
628      for (FunctionProtoType::arg_type_iterator
629             ParamType = OldProto->arg_type_begin(),
630             ParamEnd = OldProto->arg_type_end();
631           ParamType != ParamEnd; ++ParamType) {
632        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
633                                                 SourceLocation(), 0,
634                                                 *ParamType, VarDecl::None,
635                                                 0);
636        Param->setImplicit();
637        Params.push_back(Param);
638      }
639
640      New->setParams(Context, &Params[0], Params.size());
641
642    }
643
644    return MergeCompatibleFunctionDecls(New, Old);
645  }
646
647  // A function that has already been declared has been redeclared or defined
648  // with a different type- show appropriate diagnostic
649  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
650    // The user has declared a builtin function with an incompatible
651    // signature.
652    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
653      // The function the user is redeclaring is a library-defined
654      // function like 'malloc' or 'printf'. Warn about the
655      // redeclaration, then ignore it.
656      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
657      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
658        << Old << Old->getType();
659      return true;
660    }
661
662    PrevDiag = diag::note_previous_builtin_declaration;
663  }
664
665  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
666  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667  return true;
668}
669
670/// \brief Completes the merge of two function declarations that are
671/// known to be compatible.
672///
673/// This routine handles the merging of attributes and other
674/// properties of function declarations form the old declaration to
675/// the new declaration, once we know that New is in fact a
676/// redeclaration of Old.
677///
678/// \returns false
679bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
680  // Merge the attributes
681  MergeAttributes(New, Old);
682
683  // Merge the storage class.
684  New->setStorageClass(Old->getStorageClass());
685
686  // FIXME: need to implement inline semantics
687
688  // Merge "pure" flag.
689  if (Old->isPure())
690    New->setPure();
691
692  // Merge the "deleted" flag.
693  if (Old->isDeleted())
694    New->setDeleted();
695
696  if (getLangOptions().CPlusPlus)
697    return MergeCXXFunctionDecl(New, Old);
698
699  return false;
700}
701
702/// Predicate for C "tentative" external object definitions (C99 6.9.2).
703static bool isTentativeDefinition(VarDecl *VD) {
704  if (VD->isFileVarDecl())
705    return (!VD->getInit() &&
706            (VD->getStorageClass() == VarDecl::None ||
707             VD->getStorageClass() == VarDecl::Static));
708  return false;
709}
710
711/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
712/// when dealing with C "tentative" external object definitions (C99 6.9.2).
713void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
714  bool VDIsTentative = isTentativeDefinition(VD);
715  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
716
717  // FIXME: I don't think this will actually see all of the
718  // redefinitions. Can't we check this property on-the-fly?
719  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
720                                    E = IdResolver.end();
721       I != E; ++I) {
722    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
723      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
724
725      // Handle the following case:
726      //   int a[10];
727      //   int a[];   - the code below makes sure we set the correct type.
728      //   int a[11]; - this is an error, size isn't 10.
729      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
730          OldDecl->getType()->isConstantArrayType())
731        VD->setType(OldDecl->getType());
732
733      // Check for "tentative" definitions. We can't accomplish this in
734      // MergeVarDecl since the initializer hasn't been attached.
735      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
736        continue;
737
738      // Handle __private_extern__ just like extern.
739      if (OldDecl->getStorageClass() != VarDecl::Extern &&
740          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
741          VD->getStorageClass() != VarDecl::Extern &&
742          VD->getStorageClass() != VarDecl::PrivateExtern) {
743        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
744        Diag(OldDecl->getLocation(), diag::note_previous_definition);
745        // One redefinition error is enough.
746        break;
747      }
748    }
749  }
750}
751
752/// MergeVarDecl - We just parsed a variable 'New' which has the same name
753/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
754/// situation, merging decls or emitting diagnostics as appropriate.
755///
756/// Tentative definition rules (C99 6.9.2p2) are checked by
757/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
758/// definitions here, since the initializer hasn't been attached.
759///
760bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
761  // Verify the old decl was also a variable.
762  VarDecl *Old = dyn_cast<VarDecl>(OldD);
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766    Diag(OldD->getLocation(), diag::note_previous_definition);
767    return true;
768  }
769
770  MergeAttributes(New, Old);
771
772  // Merge the types
773  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
774  if (MergedT.isNull()) {
775    Diag(New->getLocation(), diag::err_redefinition_different_type)
776      << New->getDeclName();
777    Diag(Old->getLocation(), diag::note_previous_definition);
778    return true;
779  }
780  New->setType(MergedT);
781  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
782  if (New->getStorageClass() == VarDecl::Static &&
783      (Old->getStorageClass() == VarDecl::None ||
784       Old->getStorageClass() == VarDecl::Extern)) {
785    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
790  if (New->getStorageClass() != VarDecl::Static &&
791      Old->getStorageClass() == VarDecl::Static) {
792    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
793    Diag(Old->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
797  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
798    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
799    Diag(Old->getLocation(), diag::note_previous_definition);
800    return true;
801  }
802  return false;
803}
804
805/// CheckParmsForFunctionDef - Check that the parameters of the given
806/// function are appropriate for the definition of a function. This
807/// takes care of any checks that cannot be performed on the
808/// declaration itself, e.g., that the types of each of the function
809/// parameters are complete.
810bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
811  bool HasInvalidParm = false;
812  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
813    ParmVarDecl *Param = FD->getParamDecl(p);
814
815    // C99 6.7.5.3p4: the parameters in a parameter type list in a
816    // function declarator that is part of a function definition of
817    // that function shall not have incomplete type.
818    if (!Param->isInvalidDecl() &&
819        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
820                               diag::err_typecheck_decl_incomplete_type)) {
821      Param->setInvalidDecl();
822      HasInvalidParm = true;
823    }
824
825    // C99 6.9.1p5: If the declarator includes a parameter type list, the
826    // declaration of each parameter shall include an identifier.
827    if (Param->getIdentifier() == 0 &&
828        !Param->isImplicit() &&
829        !getLangOptions().CPlusPlus)
830      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
831  }
832
833  return HasInvalidParm;
834}
835
836/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
837/// no declarator (e.g. "struct foo;") is parsed.
838Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
839  TagDecl *Tag = 0;
840  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
841      DS.getTypeSpecType() == DeclSpec::TST_struct ||
842      DS.getTypeSpecType() == DeclSpec::TST_union ||
843      DS.getTypeSpecType() == DeclSpec::TST_enum)
844    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
845
846  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
847    if (!Record->getDeclName() && Record->isDefinition() &&
848        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
849      return BuildAnonymousStructOrUnion(S, DS, Record);
850
851    // Microsoft allows unnamed struct/union fields. Don't complain
852    // about them.
853    // FIXME: Should we support Microsoft's extensions in this area?
854    if (Record->getDeclName() && getLangOptions().Microsoft)
855      return Tag;
856  }
857
858  if (!DS.isMissingDeclaratorOk() &&
859      DS.getTypeSpecType() != DeclSpec::TST_error) {
860    // Warn about typedefs of enums without names, since this is an
861    // extension in both Microsoft an GNU.
862    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
863        Tag && isa<EnumDecl>(Tag)) {
864      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
865        << DS.getSourceRange();
866      return Tag;
867    }
868
869    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
870      << DS.getSourceRange();
871    return 0;
872  }
873
874  return Tag;
875}
876
877/// InjectAnonymousStructOrUnionMembers - Inject the members of the
878/// anonymous struct or union AnonRecord into the owning context Owner
879/// and scope S. This routine will be invoked just after we realize
880/// that an unnamed union or struct is actually an anonymous union or
881/// struct, e.g.,
882///
883/// @code
884/// union {
885///   int i;
886///   float f;
887/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
888///    // f into the surrounding scope.x
889/// @endcode
890///
891/// This routine is recursive, injecting the names of nested anonymous
892/// structs/unions into the owning context and scope as well.
893bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
894                                               RecordDecl *AnonRecord) {
895  bool Invalid = false;
896  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
897                               FEnd = AnonRecord->field_end();
898       F != FEnd; ++F) {
899    if ((*F)->getDeclName()) {
900      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
901                                                LookupOrdinaryName, true);
902      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
903        // C++ [class.union]p2:
904        //   The names of the members of an anonymous union shall be
905        //   distinct from the names of any other entity in the
906        //   scope in which the anonymous union is declared.
907        unsigned diagKind
908          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
909                                 : diag::err_anonymous_struct_member_redecl;
910        Diag((*F)->getLocation(), diagKind)
911          << (*F)->getDeclName();
912        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
913        Invalid = true;
914      } else {
915        // C++ [class.union]p2:
916        //   For the purpose of name lookup, after the anonymous union
917        //   definition, the members of the anonymous union are
918        //   considered to have been defined in the scope in which the
919        //   anonymous union is declared.
920        Owner->makeDeclVisibleInContext(*F);
921        S->AddDecl(*F);
922        IdResolver.AddDecl(*F);
923      }
924    } else if (const RecordType *InnerRecordType
925                 = (*F)->getType()->getAsRecordType()) {
926      RecordDecl *InnerRecord = InnerRecordType->getDecl();
927      if (InnerRecord->isAnonymousStructOrUnion())
928        Invalid = Invalid ||
929          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
930    }
931  }
932
933  return Invalid;
934}
935
936/// ActOnAnonymousStructOrUnion - Handle the declaration of an
937/// anonymous structure or union. Anonymous unions are a C++ feature
938/// (C++ [class.union]) and a GNU C extension; anonymous structures
939/// are a GNU C and GNU C++ extension.
940Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
941                                                RecordDecl *Record) {
942  DeclContext *Owner = Record->getDeclContext();
943
944  // Diagnose whether this anonymous struct/union is an extension.
945  if (Record->isUnion() && !getLangOptions().CPlusPlus)
946    Diag(Record->getLocation(), diag::ext_anonymous_union);
947  else if (!Record->isUnion())
948    Diag(Record->getLocation(), diag::ext_anonymous_struct);
949
950  // C and C++ require different kinds of checks for anonymous
951  // structs/unions.
952  bool Invalid = false;
953  if (getLangOptions().CPlusPlus) {
954    const char* PrevSpec = 0;
955    // C++ [class.union]p3:
956    //   Anonymous unions declared in a named namespace or in the
957    //   global namespace shall be declared static.
958    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
959        (isa<TranslationUnitDecl>(Owner) ||
960         (isa<NamespaceDecl>(Owner) &&
961          cast<NamespaceDecl>(Owner)->getDeclName()))) {
962      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
963      Invalid = true;
964
965      // Recover by adding 'static'.
966      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
967    }
968    // C++ [class.union]p3:
969    //   A storage class is not allowed in a declaration of an
970    //   anonymous union in a class scope.
971    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
972             isa<RecordDecl>(Owner)) {
973      Diag(DS.getStorageClassSpecLoc(),
974           diag::err_anonymous_union_with_storage_spec);
975      Invalid = true;
976
977      // Recover by removing the storage specifier.
978      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
979                             PrevSpec);
980    }
981
982    // C++ [class.union]p2:
983    //   The member-specification of an anonymous union shall only
984    //   define non-static data members. [Note: nested types and
985    //   functions cannot be declared within an anonymous union. ]
986    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
987                                 MemEnd = Record->decls_end();
988         Mem != MemEnd; ++Mem) {
989      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
990        // C++ [class.union]p3:
991        //   An anonymous union shall not have private or protected
992        //   members (clause 11).
993        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
994          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
995            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
996          Invalid = true;
997        }
998      } else if ((*Mem)->isImplicit()) {
999        // Any implicit members are fine.
1000      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1001        // This is a type that showed up in an
1002        // elaborated-type-specifier inside the anonymous struct or
1003        // union, but which actually declares a type outside of the
1004        // anonymous struct or union. It's okay.
1005      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1006        if (!MemRecord->isAnonymousStructOrUnion() &&
1007            MemRecord->getDeclName()) {
1008          // This is a nested type declaration.
1009          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1010            << (int)Record->isUnion();
1011          Invalid = true;
1012        }
1013      } else {
1014        // We have something that isn't a non-static data
1015        // member. Complain about it.
1016        unsigned DK = diag::err_anonymous_record_bad_member;
1017        if (isa<TypeDecl>(*Mem))
1018          DK = diag::err_anonymous_record_with_type;
1019        else if (isa<FunctionDecl>(*Mem))
1020          DK = diag::err_anonymous_record_with_function;
1021        else if (isa<VarDecl>(*Mem))
1022          DK = diag::err_anonymous_record_with_static;
1023        Diag((*Mem)->getLocation(), DK)
1024            << (int)Record->isUnion();
1025          Invalid = true;
1026      }
1027    }
1028  } else {
1029    // FIXME: Check GNU C semantics
1030    if (Record->isUnion() && !Owner->isRecord()) {
1031      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1032        << (int)getLangOptions().CPlusPlus;
1033      Invalid = true;
1034    }
1035  }
1036
1037  if (!Record->isUnion() && !Owner->isRecord()) {
1038    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1039      << (int)getLangOptions().CPlusPlus;
1040    Invalid = true;
1041  }
1042
1043  // Create a declaration for this anonymous struct/union.
1044  NamedDecl *Anon = 0;
1045  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1046    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1047                             /*IdentifierInfo=*/0,
1048                             Context.getTypeDeclType(Record),
1049                             /*BitWidth=*/0, /*Mutable=*/false);
1050    Anon->setAccess(AS_public);
1051    if (getLangOptions().CPlusPlus)
1052      FieldCollector->Add(cast<FieldDecl>(Anon));
1053  } else {
1054    VarDecl::StorageClass SC;
1055    switch (DS.getStorageClassSpec()) {
1056    default: assert(0 && "Unknown storage class!");
1057    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1058    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1059    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1060    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1061    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1062    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1063    case DeclSpec::SCS_mutable:
1064      // mutable can only appear on non-static class members, so it's always
1065      // an error here
1066      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1067      Invalid = true;
1068      SC = VarDecl::None;
1069      break;
1070    }
1071
1072    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1073                           /*IdentifierInfo=*/0,
1074                           Context.getTypeDeclType(Record),
1075                           SC, DS.getSourceRange().getBegin());
1076  }
1077  Anon->setImplicit();
1078
1079  // Add the anonymous struct/union object to the current
1080  // context. We'll be referencing this object when we refer to one of
1081  // its members.
1082  Owner->addDecl(Anon);
1083
1084  // Inject the members of the anonymous struct/union into the owning
1085  // context and into the identifier resolver chain for name lookup
1086  // purposes.
1087  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1088    Invalid = true;
1089
1090  // Mark this as an anonymous struct/union type. Note that we do not
1091  // do this until after we have already checked and injected the
1092  // members of this anonymous struct/union type, because otherwise
1093  // the members could be injected twice: once by DeclContext when it
1094  // builds its lookup table, and once by
1095  // InjectAnonymousStructOrUnionMembers.
1096  Record->setAnonymousStructOrUnion(true);
1097
1098  if (Invalid)
1099    Anon->setInvalidDecl();
1100
1101  return Anon;
1102}
1103
1104
1105/// GetNameForDeclarator - Determine the full declaration name for the
1106/// given Declarator.
1107DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1108  switch (D.getKind()) {
1109  case Declarator::DK_Abstract:
1110    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1111    return DeclarationName();
1112
1113  case Declarator::DK_Normal:
1114    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1115    return DeclarationName(D.getIdentifier());
1116
1117  case Declarator::DK_Constructor: {
1118    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXConstructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Destructor: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXDestructorName(Ty);
1127  }
1128
1129  case Declarator::DK_Conversion: {
1130    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1131    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1132    Ty = Context.getCanonicalType(Ty);
1133    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1134  }
1135
1136  case Declarator::DK_Operator:
1137    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1138    return Context.DeclarationNames.getCXXOperatorName(
1139                                                D.getOverloadedOperator());
1140  }
1141
1142  assert(false && "Unknown name kind");
1143  return DeclarationName();
1144}
1145
1146/// isNearlyMatchingFunction - Determine whether the C++ functions
1147/// Declaration and Definition are "nearly" matching. This heuristic
1148/// is used to improve diagnostics in the case where an out-of-line
1149/// function definition doesn't match any declaration within
1150/// the class or namespace.
1151static bool isNearlyMatchingFunction(ASTContext &Context,
1152                                     FunctionDecl *Declaration,
1153                                     FunctionDecl *Definition) {
1154  if (Declaration->param_size() != Definition->param_size())
1155    return false;
1156  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1157    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1158    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1159
1160    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1161    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1162    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1163      return false;
1164  }
1165
1166  return true;
1167}
1168
1169Sema::DeclTy *
1170Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1171                      bool IsFunctionDefinition) {
1172  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1173  DeclarationName Name = GetNameForDeclarator(D);
1174
1175  // All of these full declarators require an identifier.  If it doesn't have
1176  // one, the ParsedFreeStandingDeclSpec action should be used.
1177  if (!Name) {
1178    if (!D.getInvalidType())  // Reject this if we think it is valid.
1179      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1180           diag::err_declarator_need_ident)
1181        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1182    return 0;
1183  }
1184
1185  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1186  // we find one that is.
1187  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1188         (S->getFlags() & Scope::TemplateParamScope) != 0)
1189    S = S->getParent();
1190
1191  DeclContext *DC;
1192  NamedDecl *PrevDecl;
1193  NamedDecl *New;
1194  bool InvalidDecl = false;
1195
1196  QualType R = GetTypeForDeclarator(D, S);
1197  if (R.isNull()) {
1198    InvalidDecl = true;
1199    R = Context.IntTy;
1200  }
1201
1202  // See if this is a redefinition of a variable in the same scope.
1203  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1204    LookupNameKind NameKind = LookupOrdinaryName;
1205
1206    // If the declaration we're planning to build will be a function
1207    // or object with linkage, then look for another declaration with
1208    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1209    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1210      /* Do nothing*/;
1211    else if (R->isFunctionType()) {
1212      if (CurContext->isFunctionOrMethod())
1213        NameKind = LookupRedeclarationWithLinkage;
1214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1215      NameKind = LookupRedeclarationWithLinkage;
1216
1217    DC = CurContext;
1218    PrevDecl = LookupName(S, Name, NameKind, true,
1219                          D.getDeclSpec().getStorageClassSpec() !=
1220                            DeclSpec::SCS_static,
1221                          D.getIdentifierLoc());
1222  } else { // Something like "int foo::x;"
1223    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1224    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1225
1226    // C++ 7.3.1.2p2:
1227    // Members (including explicit specializations of templates) of a named
1228    // namespace can also be defined outside that namespace by explicit
1229    // qualification of the name being defined, provided that the entity being
1230    // defined was already declared in the namespace and the definition appears
1231    // after the point of declaration in a namespace that encloses the
1232    // declarations namespace.
1233    //
1234    // Note that we only check the context at this point. We don't yet
1235    // have enough information to make sure that PrevDecl is actually
1236    // the declaration we want to match. For example, given:
1237    //
1238    //   class X {
1239    //     void f();
1240    //     void f(float);
1241    //   };
1242    //
1243    //   void X::f(int) { } // ill-formed
1244    //
1245    // In this case, PrevDecl will point to the overload set
1246    // containing the two f's declared in X, but neither of them
1247    // matches.
1248
1249    // First check whether we named the global scope.
1250    if (isa<TranslationUnitDecl>(DC)) {
1251      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1252        << Name << D.getCXXScopeSpec().getRange();
1253    } else if (!CurContext->Encloses(DC)) {
1254      // The qualifying scope doesn't enclose the original declaration.
1255      // Emit diagnostic based on current scope.
1256      SourceLocation L = D.getIdentifierLoc();
1257      SourceRange R = D.getCXXScopeSpec().getRange();
1258      if (isa<FunctionDecl>(CurContext))
1259        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1260      else
1261        Diag(L, diag::err_invalid_declarator_scope)
1262          << Name << cast<NamedDecl>(DC) << R;
1263      InvalidDecl = true;
1264    }
1265  }
1266
1267  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1268    // Maybe we will complain about the shadowed template parameter.
1269    InvalidDecl = InvalidDecl
1270      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1271    // Just pretend that we didn't see the previous declaration.
1272    PrevDecl = 0;
1273  }
1274
1275  // In C++, the previous declaration we find might be a tag type
1276  // (class or enum). In this case, the new declaration will hide the
1277  // tag type. Note that this does does not apply if we're declaring a
1278  // typedef (C++ [dcl.typedef]p4).
1279  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1280      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1281    PrevDecl = 0;
1282
1283  bool Redeclaration = false;
1284  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1285    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1286                                 InvalidDecl, Redeclaration);
1287  } else if (R->isFunctionType()) {
1288    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1289                                  IsFunctionDefinition, InvalidDecl,
1290                                  Redeclaration);
1291  } else {
1292    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1293                                  InvalidDecl, Redeclaration);
1294  }
1295
1296  if (New == 0)
1297    return 0;
1298
1299  // Set the lexical context. If the declarator has a C++ scope specifier, the
1300  // lexical context will be different from the semantic context.
1301  New->setLexicalDeclContext(CurContext);
1302
1303  // If this has an identifier and is not an invalid redeclaration,
1304  // add it to the scope stack.
1305  if (Name && !(Redeclaration && InvalidDecl))
1306    PushOnScopeChains(New, S);
1307  // If any semantic error occurred, mark the decl as invalid.
1308  if (D.getInvalidType() || InvalidDecl)
1309    New->setInvalidDecl();
1310
1311  return New;
1312}
1313
1314/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1315/// types into constant array types in certain situations which would otherwise
1316/// be errors (for GCC compatibility).
1317static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1318                                                    ASTContext &Context,
1319                                                    bool &SizeIsNegative) {
1320  // This method tries to turn a variable array into a constant
1321  // array even when the size isn't an ICE.  This is necessary
1322  // for compatibility with code that depends on gcc's buggy
1323  // constant expression folding, like struct {char x[(int)(char*)2];}
1324  SizeIsNegative = false;
1325
1326  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1327    QualType Pointee = PTy->getPointeeType();
1328    QualType FixedType =
1329        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1330    if (FixedType.isNull()) return FixedType;
1331    FixedType = Context.getPointerType(FixedType);
1332    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1333    return FixedType;
1334  }
1335
1336  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1337  if (!VLATy)
1338    return QualType();
1339  // FIXME: We should probably handle this case
1340  if (VLATy->getElementType()->isVariablyModifiedType())
1341    return QualType();
1342
1343  Expr::EvalResult EvalResult;
1344  if (!VLATy->getSizeExpr() ||
1345      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1346      !EvalResult.Val.isInt())
1347    return QualType();
1348
1349  llvm::APSInt &Res = EvalResult.Val.getInt();
1350  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1351    return Context.getConstantArrayType(VLATy->getElementType(),
1352                                        Res, ArrayType::Normal, 0);
1353
1354  SizeIsNegative = true;
1355  return QualType();
1356}
1357
1358/// \brief Register the given locally-scoped external C declaration so
1359/// that it can be found later for redeclarations
1360void
1361Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1362                                       Scope *S) {
1363  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1364         "Decl is not a locally-scoped decl!");
1365  // Note that we have a locally-scoped external with this name.
1366  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1367
1368  if (!PrevDecl)
1369    return;
1370
1371  // If there was a previous declaration of this variable, it may be
1372  // in our identifier chain. Update the identifier chain with the new
1373  // declaration.
1374  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1375    // The previous declaration was found on the identifer resolver
1376    // chain, so remove it from its scope.
1377    while (S && !S->isDeclScope(PrevDecl))
1378      S = S->getParent();
1379
1380    if (S)
1381      S->RemoveDecl(PrevDecl);
1382  }
1383}
1384
1385NamedDecl*
1386Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1387                             QualType R, Decl* LastDeclarator,
1388                             Decl* PrevDecl, bool& InvalidDecl,
1389                             bool &Redeclaration) {
1390  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1391  if (D.getCXXScopeSpec().isSet()) {
1392    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1393      << D.getCXXScopeSpec().getRange();
1394    InvalidDecl = true;
1395    // Pretend we didn't see the scope specifier.
1396    DC = 0;
1397  }
1398
1399  // Check that there are no default arguments (C++ only).
1400  if (getLangOptions().CPlusPlus)
1401    CheckExtraCXXDefaultArguments(D);
1402
1403  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1404  if (!NewTD) return 0;
1405
1406  // Handle attributes prior to checking for duplicates in MergeVarDecl
1407  ProcessDeclAttributes(NewTD, D);
1408  // Merge the decl with the existing one if appropriate. If the decl is
1409  // in an outer scope, it isn't the same thing.
1410  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1411    Redeclaration = true;
1412    if (MergeTypeDefDecl(NewTD, PrevDecl))
1413      InvalidDecl = true;
1414  }
1415
1416  if (S->getFnParent() == 0) {
1417    QualType T = NewTD->getUnderlyingType();
1418    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1419    // then it shall have block scope.
1420    if (T->isVariablyModifiedType()) {
1421      bool SizeIsNegative;
1422      QualType FixedTy =
1423          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1424      if (!FixedTy.isNull()) {
1425        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1426        NewTD->setUnderlyingType(FixedTy);
1427      } else {
1428        if (SizeIsNegative)
1429          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1430        else if (T->isVariableArrayType())
1431          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1432        else
1433          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1434        InvalidDecl = true;
1435      }
1436    }
1437  }
1438  return NewTD;
1439}
1440
1441/// \brief Determines whether the given declaration is an out-of-scope
1442/// previous declaration.
1443///
1444/// This routine should be invoked when name lookup has found a
1445/// previous declaration (PrevDecl) that is not in the scope where a
1446/// new declaration by the same name is being introduced. If the new
1447/// declaration occurs in a local scope, previous declarations with
1448/// linkage may still be considered previous declarations (C99
1449/// 6.2.2p4-5, C++ [basic.link]p6).
1450///
1451/// \param PrevDecl the previous declaration found by name
1452/// lookup
1453///
1454/// \param DC the context in which the new declaration is being
1455/// declared.
1456///
1457/// \returns true if PrevDecl is an out-of-scope previous declaration
1458/// for a new delcaration with the same name.
1459static bool
1460isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1461                                ASTContext &Context) {
1462  if (!PrevDecl)
1463    return 0;
1464
1465  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1466  // case we need to check each of the overloaded functions.
1467  if (!PrevDecl->hasLinkage())
1468    return false;
1469
1470  if (Context.getLangOptions().CPlusPlus) {
1471    // C++ [basic.link]p6:
1472    //   If there is a visible declaration of an entity with linkage
1473    //   having the same name and type, ignoring entities declared
1474    //   outside the innermost enclosing namespace scope, the block
1475    //   scope declaration declares that same entity and receives the
1476    //   linkage of the previous declaration.
1477    DeclContext *OuterContext = DC->getLookupContext();
1478    if (!OuterContext->isFunctionOrMethod())
1479      // This rule only applies to block-scope declarations.
1480      return false;
1481    else {
1482      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1483      if (PrevOuterContext->isRecord())
1484        // We found a member function: ignore it.
1485        return false;
1486      else {
1487        // Find the innermost enclosing namespace for the new and
1488        // previous declarations.
1489        while (!OuterContext->isFileContext())
1490          OuterContext = OuterContext->getParent();
1491        while (!PrevOuterContext->isFileContext())
1492          PrevOuterContext = PrevOuterContext->getParent();
1493
1494        // The previous declaration is in a different namespace, so it
1495        // isn't the same function.
1496        if (OuterContext->getPrimaryContext() !=
1497            PrevOuterContext->getPrimaryContext())
1498          return false;
1499      }
1500    }
1501  }
1502
1503  return true;
1504}
1505
1506NamedDecl*
1507Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1508                              QualType R, Decl* LastDeclarator,
1509                              NamedDecl* PrevDecl, bool& InvalidDecl,
1510                              bool &Redeclaration) {
1511  DeclarationName Name = GetNameForDeclarator(D);
1512
1513  // Check that there are no default arguments (C++ only).
1514  if (getLangOptions().CPlusPlus)
1515    CheckExtraCXXDefaultArguments(D);
1516
1517  if (R.getTypePtr()->isObjCInterfaceType()) {
1518    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1519    InvalidDecl = true;
1520  }
1521
1522  VarDecl *NewVD;
1523  VarDecl::StorageClass SC;
1524  switch (D.getDeclSpec().getStorageClassSpec()) {
1525  default: assert(0 && "Unknown storage class!");
1526  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1527  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1528  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1529  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1530  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1531  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1532  case DeclSpec::SCS_mutable:
1533    // mutable can only appear on non-static class members, so it's always
1534    // an error here
1535    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1536    InvalidDecl = true;
1537    SC = VarDecl::None;
1538    break;
1539  }
1540
1541  IdentifierInfo *II = Name.getAsIdentifierInfo();
1542  if (!II) {
1543    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1544      << Name.getAsString();
1545    return 0;
1546  }
1547
1548  if (DC->isRecord()) {
1549    // This is a static data member for a C++ class.
1550    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1551                                    D.getIdentifierLoc(), II,
1552                                    R);
1553  } else {
1554    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1555    if (S->getFnParent() == 0) {
1556      // C99 6.9p2: The storage-class specifiers auto and register shall not
1557      // appear in the declaration specifiers in an external declaration.
1558      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1559        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1560        InvalidDecl = true;
1561      }
1562    }
1563    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1564                            II, R, SC,
1565                            // FIXME: Move to DeclGroup...
1566                            D.getDeclSpec().getSourceRange().getBegin());
1567    NewVD->setThreadSpecified(ThreadSpecified);
1568  }
1569  NewVD->setNextDeclarator(LastDeclarator);
1570
1571  // Handle attributes prior to checking for duplicates in MergeVarDecl
1572  ProcessDeclAttributes(NewVD, D);
1573
1574  // Handle GNU asm-label extension (encoded as an attribute).
1575  if (Expr *E = (Expr*) D.getAsmLabel()) {
1576    // The parser guarantees this is a string.
1577    StringLiteral *SE = cast<StringLiteral>(E);
1578    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1579                                                SE->getByteLength())));
1580  }
1581
1582  // Emit an error if an address space was applied to decl with local storage.
1583  // This includes arrays of objects with address space qualifiers, but not
1584  // automatic variables that point to other address spaces.
1585  // ISO/IEC TR 18037 S5.1.2
1586  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1587    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1588    InvalidDecl = true;
1589  }
1590
1591  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1592    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1593  }
1594
1595  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1596  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1597  if (isIllegalVLA || isIllegalVM) {
1598    bool SizeIsNegative;
1599    QualType FixedTy =
1600        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1601    if (!FixedTy.isNull()) {
1602      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1603      NewVD->setType(FixedTy);
1604    } else if (R->isVariableArrayType()) {
1605      NewVD->setInvalidDecl();
1606
1607      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1608      // FIXME: This won't give the correct result for
1609      // int a[10][n];
1610      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1611
1612      if (NewVD->isFileVarDecl())
1613        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1614          << SizeRange;
1615      else if (NewVD->getStorageClass() == VarDecl::Static)
1616        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1617          << SizeRange;
1618      else
1619        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1620            << SizeRange;
1621    } else {
1622      InvalidDecl = true;
1623
1624      if (NewVD->isFileVarDecl())
1625        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1626      else
1627        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1628    }
1629  }
1630
1631  // If name lookup finds a previous declaration that is not in the
1632  // same scope as the new declaration, this may still be an
1633  // acceptable redeclaration.
1634  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1635      !(NewVD->hasLinkage() &&
1636        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1637    PrevDecl = 0;
1638
1639  if (!PrevDecl && NewVD->isExternC(Context)) {
1640    // Since we did not find anything by this name and we're declaring
1641    // an extern "C" variable, look for a non-visible extern "C"
1642    // declaration with the same name.
1643    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1644      = LocallyScopedExternalDecls.find(Name);
1645    if (Pos != LocallyScopedExternalDecls.end())
1646      PrevDecl = Pos->second;
1647  }
1648
1649  // Merge the decl with the existing one if appropriate.
1650  if (PrevDecl) {
1651    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1652      // The user tried to define a non-static data member
1653      // out-of-line (C++ [dcl.meaning]p1).
1654      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1655        << D.getCXXScopeSpec().getRange();
1656      NewVD->Destroy(Context);
1657      return 0;
1658    }
1659
1660    Redeclaration = true;
1661    if (MergeVarDecl(NewVD, PrevDecl))
1662      InvalidDecl = true;
1663
1664    if (D.getCXXScopeSpec().isSet()) {
1665      // No previous declaration in the qualifying scope.
1666      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1667        << Name << D.getCXXScopeSpec().getRange();
1668      InvalidDecl = true;
1669    }
1670  }
1671
1672  // If this is a locally-scoped extern C variable, update the map of
1673  // such variables.
1674  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1675      !InvalidDecl)
1676    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1677
1678  return NewVD;
1679}
1680
1681NamedDecl*
1682Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1683                              QualType R, Decl *LastDeclarator,
1684                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1685                              bool& InvalidDecl, bool &Redeclaration) {
1686  assert(R.getTypePtr()->isFunctionType());
1687
1688  DeclarationName Name = GetNameForDeclarator(D);
1689  FunctionDecl::StorageClass SC = FunctionDecl::None;
1690  switch (D.getDeclSpec().getStorageClassSpec()) {
1691  default: assert(0 && "Unknown storage class!");
1692  case DeclSpec::SCS_auto:
1693  case DeclSpec::SCS_register:
1694  case DeclSpec::SCS_mutable:
1695    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1696         diag::err_typecheck_sclass_func);
1697    InvalidDecl = true;
1698    break;
1699  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1700  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1701  case DeclSpec::SCS_static: {
1702    if (DC->getLookupContext()->isFunctionOrMethod()) {
1703      // C99 6.7.1p5:
1704      //   The declaration of an identifier for a function that has
1705      //   block scope shall have no explicit storage-class specifier
1706      //   other than extern
1707      // See also (C++ [dcl.stc]p4).
1708      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1709           diag::err_static_block_func);
1710      SC = FunctionDecl::None;
1711    } else
1712      SC = FunctionDecl::Static;
1713    break;
1714  }
1715  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1716  }
1717
1718  bool isInline = D.getDeclSpec().isInlineSpecified();
1719  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1720  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1721
1722  FunctionDecl *NewFD;
1723  if (D.getKind() == Declarator::DK_Constructor) {
1724    // This is a C++ constructor declaration.
1725    assert(DC->isRecord() &&
1726           "Constructors can only be declared in a member context");
1727
1728    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1729
1730    // Create the new declaration
1731    NewFD = CXXConstructorDecl::Create(Context,
1732                                       cast<CXXRecordDecl>(DC),
1733                                       D.getIdentifierLoc(), Name, R,
1734                                       isExplicit, isInline,
1735                                       /*isImplicitlyDeclared=*/false);
1736
1737    if (InvalidDecl)
1738      NewFD->setInvalidDecl();
1739  } else if (D.getKind() == Declarator::DK_Destructor) {
1740    // This is a C++ destructor declaration.
1741    if (DC->isRecord()) {
1742      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1743
1744      NewFD = CXXDestructorDecl::Create(Context,
1745                                        cast<CXXRecordDecl>(DC),
1746                                        D.getIdentifierLoc(), Name, R,
1747                                        isInline,
1748                                        /*isImplicitlyDeclared=*/false);
1749
1750      if (InvalidDecl)
1751        NewFD->setInvalidDecl();
1752    } else {
1753      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1754
1755      // Create a FunctionDecl to satisfy the function definition parsing
1756      // code path.
1757      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1758                                   Name, R, SC, isInline,
1759                                   /*hasPrototype=*/true,
1760                                   // FIXME: Move to DeclGroup...
1761                                   D.getDeclSpec().getSourceRange().getBegin());
1762      InvalidDecl = true;
1763      NewFD->setInvalidDecl();
1764    }
1765  } else if (D.getKind() == Declarator::DK_Conversion) {
1766    if (!DC->isRecord()) {
1767      Diag(D.getIdentifierLoc(),
1768           diag::err_conv_function_not_member);
1769      return 0;
1770    } else {
1771      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1772
1773      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1774                                        D.getIdentifierLoc(), Name, R,
1775                                        isInline, isExplicit);
1776
1777      if (InvalidDecl)
1778        NewFD->setInvalidDecl();
1779    }
1780  } else if (DC->isRecord()) {
1781    // This is a C++ method declaration.
1782    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1783                                  D.getIdentifierLoc(), Name, R,
1784                                  (SC == FunctionDecl::Static), isInline);
1785  } else {
1786    NewFD = FunctionDecl::Create(Context, DC,
1787                                 D.getIdentifierLoc(),
1788                                 Name, R, SC, isInline,
1789                                 /*hasPrototype=*/
1790                                   (getLangOptions().CPlusPlus ||
1791                                    (D.getNumTypeObjects() &&
1792                                     D.getTypeObject(0).Fun.hasPrototype)),
1793                                 // FIXME: Move to DeclGroup...
1794                                 D.getDeclSpec().getSourceRange().getBegin());
1795  }
1796  NewFD->setNextDeclarator(LastDeclarator);
1797
1798  // Set the lexical context. If the declarator has a C++
1799  // scope specifier, the lexical context will be different
1800  // from the semantic context.
1801  NewFD->setLexicalDeclContext(CurContext);
1802
1803  // Handle GNU asm-label extension (encoded as an attribute).
1804  if (Expr *E = (Expr*) D.getAsmLabel()) {
1805    // The parser guarantees this is a string.
1806    StringLiteral *SE = cast<StringLiteral>(E);
1807    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1808                                                SE->getByteLength())));
1809  }
1810
1811  // Copy the parameter declarations from the declarator D to
1812  // the function declaration NewFD, if they are available.
1813  if (D.getNumTypeObjects() > 0) {
1814    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1815
1816    // Create Decl objects for each parameter, adding them to the
1817    // FunctionDecl.
1818    llvm::SmallVector<ParmVarDecl*, 16> Params;
1819
1820    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1821    // function that takes no arguments, not a function that takes a
1822    // single void argument.
1823    // We let through "const void" here because Sema::GetTypeForDeclarator
1824    // already checks for that case.
1825    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1826        FTI.ArgInfo[0].Param &&
1827        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1828      // empty arg list, don't push any params.
1829      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1830
1831      // In C++, the empty parameter-type-list must be spelled "void"; a
1832      // typedef of void is not permitted.
1833      if (getLangOptions().CPlusPlus &&
1834          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1835        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1836      }
1837    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1838      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1839        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1840    }
1841
1842    NewFD->setParams(Context, &Params[0], Params.size());
1843  } else if (R->getAsTypedefType()) {
1844    // When we're declaring a function with a typedef, as in the
1845    // following example, we'll need to synthesize (unnamed)
1846    // parameters for use in the declaration.
1847    //
1848    // @code
1849    // typedef void fn(int);
1850    // fn f;
1851    // @endcode
1852    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1853    if (!FT) {
1854      // This is a typedef of a function with no prototype, so we
1855      // don't need to do anything.
1856    } else if ((FT->getNumArgs() == 0) ||
1857               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1858                FT->getArgType(0)->isVoidType())) {
1859      // This is a zero-argument function. We don't need to do anything.
1860    } else {
1861      // Synthesize a parameter for each argument type.
1862      llvm::SmallVector<ParmVarDecl*, 16> Params;
1863      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1864           ArgType != FT->arg_type_end(); ++ArgType) {
1865        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1866                                                 SourceLocation(), 0,
1867                                                 *ArgType, VarDecl::None,
1868                                                 0);
1869        Param->setImplicit();
1870        Params.push_back(Param);
1871      }
1872
1873      NewFD->setParams(Context, &Params[0], Params.size());
1874    }
1875  }
1876
1877  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1878    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1879  else if (isa<CXXDestructorDecl>(NewFD)) {
1880    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1881    Record->setUserDeclaredDestructor(true);
1882    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1883    // user-defined destructor.
1884    Record->setPOD(false);
1885  } else if (CXXConversionDecl *Conversion =
1886             dyn_cast<CXXConversionDecl>(NewFD))
1887    ActOnConversionDeclarator(Conversion);
1888
1889  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1890  if (NewFD->isOverloadedOperator() &&
1891      CheckOverloadedOperatorDeclaration(NewFD))
1892    NewFD->setInvalidDecl();
1893
1894  // If name lookup finds a previous declaration that is not in the
1895  // same scope as the new declaration, this may still be an
1896  // acceptable redeclaration.
1897  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1898      !(NewFD->hasLinkage() &&
1899        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1900    PrevDecl = 0;
1901
1902  if (!PrevDecl && NewFD->isExternC(Context)) {
1903    // Since we did not find anything by this name and we're declaring
1904    // an extern "C" function, look for a non-visible extern "C"
1905    // declaration with the same name.
1906    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1907      = LocallyScopedExternalDecls.find(Name);
1908    if (Pos != LocallyScopedExternalDecls.end())
1909      PrevDecl = Pos->second;
1910  }
1911
1912  // Merge or overload the declaration with an existing declaration of
1913  // the same name, if appropriate.
1914  bool OverloadableAttrRequired = false;
1915  if (PrevDecl) {
1916    // Determine whether NewFD is an overload of PrevDecl or
1917    // a declaration that requires merging. If it's an overload,
1918    // there's no more work to do here; we'll just add the new
1919    // function to the scope.
1920    OverloadedFunctionDecl::function_iterator MatchedDecl;
1921
1922    if (!getLangOptions().CPlusPlus &&
1923        AllowOverloadingOfFunction(PrevDecl, Context)) {
1924      OverloadableAttrRequired = true;
1925
1926      // Functions marked "overloadable" must have a prototype (that
1927      // we can't get through declaration merging).
1928      if (!R->getAsFunctionProtoType()) {
1929        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1930          << NewFD;
1931        InvalidDecl = true;
1932        Redeclaration = true;
1933
1934        // Turn this into a variadic function with no parameters.
1935        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1936                                    0, 0, true, 0);
1937        NewFD->setType(R);
1938      }
1939    }
1940
1941    if (PrevDecl &&
1942        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1943         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1944      Redeclaration = true;
1945      Decl *OldDecl = PrevDecl;
1946
1947      // If PrevDecl was an overloaded function, extract the
1948      // FunctionDecl that matched.
1949      if (isa<OverloadedFunctionDecl>(PrevDecl))
1950        OldDecl = *MatchedDecl;
1951
1952      // NewFD and PrevDecl represent declarations that need to be
1953      // merged.
1954      if (MergeFunctionDecl(NewFD, OldDecl))
1955        InvalidDecl = true;
1956
1957      if (!InvalidDecl) {
1958        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1959
1960        // An out-of-line member function declaration must also be a
1961        // definition (C++ [dcl.meaning]p1).
1962        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1963            !InvalidDecl) {
1964          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1965            << D.getCXXScopeSpec().getRange();
1966          NewFD->setInvalidDecl();
1967        }
1968      }
1969    }
1970  }
1971
1972  if (D.getCXXScopeSpec().isSet() &&
1973      (!PrevDecl || !Redeclaration)) {
1974    // The user tried to provide an out-of-line definition for a
1975    // function that is a member of a class or namespace, but there
1976    // was no such member function declared (C++ [class.mfct]p2,
1977    // C++ [namespace.memdef]p2). For example:
1978    //
1979    // class X {
1980    //   void f() const;
1981    // };
1982    //
1983    // void X::f() { } // ill-formed
1984    //
1985    // Complain about this problem, and attempt to suggest close
1986    // matches (e.g., those that differ only in cv-qualifiers and
1987    // whether the parameter types are references).
1988    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1989      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1990    InvalidDecl = true;
1991
1992    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1993                                            true);
1994    assert(!Prev.isAmbiguous() &&
1995           "Cannot have an ambiguity in previous-declaration lookup");
1996    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1997         Func != FuncEnd; ++Func) {
1998      if (isa<FunctionDecl>(*Func) &&
1999          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2000        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2001    }
2002
2003    PrevDecl = 0;
2004  }
2005
2006  // Handle attributes. We need to have merged decls when handling attributes
2007  // (for example to check for conflicts, etc).
2008  ProcessDeclAttributes(NewFD, D);
2009  AddKnownFunctionAttributes(NewFD);
2010
2011  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2012    // If a function name is overloadable in C, then every function
2013    // with that name must be marked "overloadable".
2014    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2015      << Redeclaration << NewFD;
2016    if (PrevDecl)
2017      Diag(PrevDecl->getLocation(),
2018           diag::note_attribute_overloadable_prev_overload);
2019    NewFD->addAttr(new OverloadableAttr);
2020  }
2021
2022  if (getLangOptions().CPlusPlus) {
2023    // In C++, check default arguments now that we have merged decls. Unless
2024    // the lexical context is the class, because in this case this is done
2025    // during delayed parsing anyway.
2026    if (!CurContext->isRecord())
2027      CheckCXXDefaultArguments(NewFD);
2028
2029    // An out-of-line member function declaration must also be a
2030    // definition (C++ [dcl.meaning]p1).
2031    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2032      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2033        << D.getCXXScopeSpec().getRange();
2034      InvalidDecl = true;
2035    }
2036  }
2037
2038  // If this is a locally-scoped extern C function, update the
2039  // map of such names.
2040  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2041      && !InvalidDecl)
2042    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2043
2044  return NewFD;
2045}
2046
2047bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2048  // FIXME: Need strict checking.  In C89, we need to check for
2049  // any assignment, increment, decrement, function-calls, or
2050  // commas outside of a sizeof.  In C99, it's the same list,
2051  // except that the aforementioned are allowed in unevaluated
2052  // expressions.  Everything else falls under the
2053  // "may accept other forms of constant expressions" exception.
2054  // (We never end up here for C++, so the constant expression
2055  // rules there don't matter.)
2056  if (Init->isConstantInitializer(Context))
2057    return false;
2058  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2059    << Init->getSourceRange();
2060  return true;
2061}
2062
2063void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2064  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2065}
2066
2067/// AddInitializerToDecl - Adds the initializer Init to the
2068/// declaration dcl. If DirectInit is true, this is C++ direct
2069/// initialization rather than copy initialization.
2070void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2071  Decl *RealDecl = static_cast<Decl *>(dcl);
2072  // If there is no declaration, there was an error parsing it.  Just ignore
2073  // the initializer.
2074  if (RealDecl == 0)
2075    return;
2076
2077  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2078  if (!VDecl) {
2079    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2080    RealDecl->setInvalidDecl();
2081    return;
2082  }
2083
2084  // Take ownership of the expression, now that we're sure we have somewhere
2085  // to put it.
2086  Expr *Init = static_cast<Expr *>(init.release());
2087  assert(Init && "missing initializer");
2088
2089  // Get the decls type and save a reference for later, since
2090  // CheckInitializerTypes may change it.
2091  QualType DclT = VDecl->getType(), SavT = DclT;
2092  if (VDecl->isBlockVarDecl()) {
2093    VarDecl::StorageClass SC = VDecl->getStorageClass();
2094    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2095      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2096      VDecl->setInvalidDecl();
2097    } else if (!VDecl->isInvalidDecl()) {
2098      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2099                                VDecl->getDeclName(), DirectInit))
2100        VDecl->setInvalidDecl();
2101
2102      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2103      // Don't check invalid declarations to avoid emitting useless diagnostics.
2104      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2105        if (SC == VarDecl::Static) // C99 6.7.8p4.
2106          CheckForConstantInitializer(Init, DclT);
2107      }
2108    }
2109  } else if (VDecl->isFileVarDecl()) {
2110    if (VDecl->getStorageClass() == VarDecl::Extern)
2111      Diag(VDecl->getLocation(), diag::warn_extern_init);
2112    if (!VDecl->isInvalidDecl())
2113      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2114                                VDecl->getDeclName(), DirectInit))
2115        VDecl->setInvalidDecl();
2116
2117    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2118    // Don't check invalid declarations to avoid emitting useless diagnostics.
2119    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2120      // C99 6.7.8p4. All file scoped initializers need to be constant.
2121      CheckForConstantInitializer(Init, DclT);
2122    }
2123  }
2124  // If the type changed, it means we had an incomplete type that was
2125  // completed by the initializer. For example:
2126  //   int ary[] = { 1, 3, 5 };
2127  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2128  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2129    VDecl->setType(DclT);
2130    Init->setType(DclT);
2131  }
2132
2133  // Attach the initializer to the decl.
2134  VDecl->setInit(Init);
2135  return;
2136}
2137
2138void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2139  Decl *RealDecl = static_cast<Decl *>(dcl);
2140
2141  // If there is no declaration, there was an error parsing it. Just ignore it.
2142  if (RealDecl == 0)
2143    return;
2144
2145  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2146    QualType Type = Var->getType();
2147    // C++ [dcl.init.ref]p3:
2148    //   The initializer can be omitted for a reference only in a
2149    //   parameter declaration (8.3.5), in the declaration of a
2150    //   function return type, in the declaration of a class member
2151    //   within its class declaration (9.2), and where the extern
2152    //   specifier is explicitly used.
2153    if (Type->isReferenceType() &&
2154        Var->getStorageClass() != VarDecl::Extern &&
2155        Var->getStorageClass() != VarDecl::PrivateExtern) {
2156      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2157        << Var->getDeclName()
2158        << SourceRange(Var->getLocation(), Var->getLocation());
2159      Var->setInvalidDecl();
2160      return;
2161    }
2162
2163    // C++ [dcl.init]p9:
2164    //
2165    //   If no initializer is specified for an object, and the object
2166    //   is of (possibly cv-qualified) non-POD class type (or array
2167    //   thereof), the object shall be default-initialized; if the
2168    //   object is of const-qualified type, the underlying class type
2169    //   shall have a user-declared default constructor.
2170    if (getLangOptions().CPlusPlus) {
2171      QualType InitType = Type;
2172      if (const ArrayType *Array = Context.getAsArrayType(Type))
2173        InitType = Array->getElementType();
2174      if (Var->getStorageClass() != VarDecl::Extern &&
2175          Var->getStorageClass() != VarDecl::PrivateExtern &&
2176          InitType->isRecordType()) {
2177        const CXXConstructorDecl *Constructor
2178          = PerformInitializationByConstructor(InitType, 0, 0,
2179                                               Var->getLocation(),
2180                                               SourceRange(Var->getLocation(),
2181                                                           Var->getLocation()),
2182                                               Var->getDeclName(),
2183                                               IK_Default);
2184        if (!Constructor)
2185          Var->setInvalidDecl();
2186      }
2187    }
2188
2189#if 0
2190    // FIXME: Temporarily disabled because we are not properly parsing
2191    // linkage specifications on declarations, e.g.,
2192    //
2193    //   extern "C" const CGPoint CGPointerZero;
2194    //
2195    // C++ [dcl.init]p9:
2196    //
2197    //     If no initializer is specified for an object, and the
2198    //     object is of (possibly cv-qualified) non-POD class type (or
2199    //     array thereof), the object shall be default-initialized; if
2200    //     the object is of const-qualified type, the underlying class
2201    //     type shall have a user-declared default
2202    //     constructor. Otherwise, if no initializer is specified for
2203    //     an object, the object and its subobjects, if any, have an
2204    //     indeterminate initial value; if the object or any of its
2205    //     subobjects are of const-qualified type, the program is
2206    //     ill-formed.
2207    //
2208    // This isn't technically an error in C, so we don't diagnose it.
2209    //
2210    // FIXME: Actually perform the POD/user-defined default
2211    // constructor check.
2212    if (getLangOptions().CPlusPlus &&
2213        Context.getCanonicalType(Type).isConstQualified() &&
2214        Var->getStorageClass() != VarDecl::Extern)
2215      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2216        << Var->getName()
2217        << SourceRange(Var->getLocation(), Var->getLocation());
2218#endif
2219  }
2220}
2221
2222/// The declarators are chained together backwards, reverse the list.
2223Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2224  // Often we have single declarators, handle them quickly.
2225  Decl *Group = static_cast<Decl*>(group);
2226  if (Group == 0)
2227    return 0;
2228
2229  Decl *NewGroup = 0;
2230  if (Group->getNextDeclarator() == 0)
2231    NewGroup = Group;
2232  else { // reverse the list.
2233    while (Group) {
2234      Decl *Next = Group->getNextDeclarator();
2235      Group->setNextDeclarator(NewGroup);
2236      NewGroup = Group;
2237      Group = Next;
2238    }
2239  }
2240  // Perform semantic analysis that depends on having fully processed both
2241  // the declarator and initializer.
2242  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2243    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2244    if (!IDecl)
2245      continue;
2246    QualType T = IDecl->getType();
2247
2248    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2249    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2250    if (IDecl->isBlockVarDecl() &&
2251        IDecl->getStorageClass() != VarDecl::Extern) {
2252      if (!IDecl->isInvalidDecl() &&
2253          DiagnoseIncompleteType(IDecl->getLocation(), T,
2254                                 diag::err_typecheck_decl_incomplete_type))
2255        IDecl->setInvalidDecl();
2256    }
2257    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2258    // object that has file scope without an initializer, and without a
2259    // storage-class specifier or with the storage-class specifier "static",
2260    // constitutes a tentative definition. Note: A tentative definition with
2261    // external linkage is valid (C99 6.2.2p5).
2262    if (isTentativeDefinition(IDecl)) {
2263      if (T->isIncompleteArrayType()) {
2264        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2265        // array to be completed. Don't issue a diagnostic.
2266      } else if (!IDecl->isInvalidDecl() &&
2267                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2268                                        diag::err_typecheck_decl_incomplete_type))
2269        // C99 6.9.2p3: If the declaration of an identifier for an object is
2270        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2271        // declared type shall not be an incomplete type.
2272        IDecl->setInvalidDecl();
2273    }
2274    if (IDecl->isFileVarDecl())
2275      CheckForFileScopedRedefinitions(S, IDecl);
2276  }
2277  return NewGroup;
2278}
2279
2280/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2281/// to introduce parameters into function prototype scope.
2282Sema::DeclTy *
2283Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2284  const DeclSpec &DS = D.getDeclSpec();
2285
2286  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2287  VarDecl::StorageClass StorageClass = VarDecl::None;
2288  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2289    StorageClass = VarDecl::Register;
2290  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2291    Diag(DS.getStorageClassSpecLoc(),
2292         diag::err_invalid_storage_class_in_func_decl);
2293    D.getMutableDeclSpec().ClearStorageClassSpecs();
2294  }
2295  if (DS.isThreadSpecified()) {
2296    Diag(DS.getThreadSpecLoc(),
2297         diag::err_invalid_storage_class_in_func_decl);
2298    D.getMutableDeclSpec().ClearStorageClassSpecs();
2299  }
2300
2301  // Check that there are no default arguments inside the type of this
2302  // parameter (C++ only).
2303  if (getLangOptions().CPlusPlus)
2304    CheckExtraCXXDefaultArguments(D);
2305
2306  // In this context, we *do not* check D.getInvalidType(). If the declarator
2307  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2308  // though it will not reflect the user specified type.
2309  QualType parmDeclType = GetTypeForDeclarator(D, S);
2310
2311  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2312
2313  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2314  // Can this happen for params?  We already checked that they don't conflict
2315  // among each other.  Here they can only shadow globals, which is ok.
2316  IdentifierInfo *II = D.getIdentifier();
2317  if (II) {
2318    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2319      if (PrevDecl->isTemplateParameter()) {
2320        // Maybe we will complain about the shadowed template parameter.
2321        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2322        // Just pretend that we didn't see the previous declaration.
2323        PrevDecl = 0;
2324      } else if (S->isDeclScope(PrevDecl)) {
2325        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2326
2327        // Recover by removing the name
2328        II = 0;
2329        D.SetIdentifier(0, D.getIdentifierLoc());
2330      }
2331    }
2332  }
2333
2334  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2335  // Doing the promotion here has a win and a loss. The win is the type for
2336  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2337  // code generator). The loss is the orginal type isn't preserved. For example:
2338  //
2339  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2340  //    int blockvardecl[5];
2341  //    sizeof(parmvardecl);  // size == 4
2342  //    sizeof(blockvardecl); // size == 20
2343  // }
2344  //
2345  // For expressions, all implicit conversions are captured using the
2346  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2347  //
2348  // FIXME: If a source translation tool needs to see the original type, then
2349  // we need to consider storing both types (in ParmVarDecl)...
2350  //
2351  if (parmDeclType->isArrayType()) {
2352    // int x[restrict 4] ->  int *restrict
2353    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2354  } else if (parmDeclType->isFunctionType())
2355    parmDeclType = Context.getPointerType(parmDeclType);
2356
2357  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2358                                         D.getIdentifierLoc(), II,
2359                                         parmDeclType, StorageClass,
2360                                         0);
2361
2362  if (D.getInvalidType())
2363    New->setInvalidDecl();
2364
2365  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2366  if (D.getCXXScopeSpec().isSet()) {
2367    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2368      << D.getCXXScopeSpec().getRange();
2369    New->setInvalidDecl();
2370  }
2371  // Parameter declarators cannot be interface types. All ObjC objects are
2372  // passed by reference.
2373  if (parmDeclType->isObjCInterfaceType()) {
2374    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2375         << "passed";
2376    New->setInvalidDecl();
2377  }
2378
2379  // Add the parameter declaration into this scope.
2380  S->AddDecl(New);
2381  if (II)
2382    IdResolver.AddDecl(New);
2383
2384  ProcessDeclAttributes(New, D);
2385  return New;
2386
2387}
2388
2389void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2390  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2391         "Not a function declarator!");
2392  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2393
2394  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2395  // for a K&R function.
2396  if (!FTI.hasPrototype) {
2397    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2398      if (FTI.ArgInfo[i].Param == 0) {
2399        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2400          << FTI.ArgInfo[i].Ident;
2401        // Implicitly declare the argument as type 'int' for lack of a better
2402        // type.
2403        DeclSpec DS;
2404        const char* PrevSpec; // unused
2405        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2406                           PrevSpec);
2407        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2408        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2409        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2410      }
2411    }
2412  }
2413}
2414
2415Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2416  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2417  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2418         "Not a function declarator!");
2419  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2420
2421  if (FTI.hasPrototype) {
2422    // FIXME: Diagnose arguments without names in C.
2423  }
2424
2425  Scope *ParentScope = FnBodyScope->getParent();
2426
2427  return ActOnStartOfFunctionDef(FnBodyScope,
2428                                 ActOnDeclarator(ParentScope, D, 0,
2429                                                 /*IsFunctionDefinition=*/true));
2430}
2431
2432Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2433  Decl *decl = static_cast<Decl*>(D);
2434  FunctionDecl *FD = cast<FunctionDecl>(decl);
2435
2436  ActiveScope = FnBodyScope;
2437
2438  // See if this is a redefinition.
2439  const FunctionDecl *Definition;
2440  if (FD->getBody(Definition)) {
2441    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2442    Diag(Definition->getLocation(), diag::note_previous_definition);
2443  }
2444
2445  // Builtin functions cannot be defined.
2446  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2447    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2448      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2449      FD->setInvalidDecl();
2450    }
2451  }
2452
2453  PushDeclContext(FnBodyScope, FD);
2454
2455  // Check the validity of our function parameters
2456  CheckParmsForFunctionDef(FD);
2457
2458  // Introduce our parameters into the function scope
2459  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2460    ParmVarDecl *Param = FD->getParamDecl(p);
2461    Param->setOwningFunction(FD);
2462
2463    // If this has an identifier, add it to the scope stack.
2464    if (Param->getIdentifier())
2465      PushOnScopeChains(Param, FnBodyScope);
2466  }
2467
2468  // Checking attributes of current function definition
2469  // dllimport attribute.
2470  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2471    // dllimport attribute cannot be applied to definition.
2472    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2473      Diag(FD->getLocation(),
2474           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2475        << "dllimport";
2476      FD->setInvalidDecl();
2477      return FD;
2478    } else {
2479      // If a symbol previously declared dllimport is later defined, the
2480      // attribute is ignored in subsequent references, and a warning is
2481      // emitted.
2482      Diag(FD->getLocation(),
2483           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2484        << FD->getNameAsCString() << "dllimport";
2485    }
2486  }
2487  return FD;
2488}
2489
2490static bool StatementCreatesScope(Stmt* S) {
2491  bool result = false;
2492  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2493    for (DeclStmt::decl_iterator i = DS->decl_begin();
2494         i != DS->decl_end(); ++i) {
2495      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2496        result |= D->getType()->isVariablyModifiedType();
2497        result |= !!D->getAttr<CleanupAttr>();
2498      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2499        result |= D->getUnderlyingType()->isVariablyModifiedType();
2500      }
2501    }
2502  }
2503
2504  return result;
2505}
2506
2507void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2508                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2509                                    std::vector<void*>& ScopeStack,
2510                                    Stmt* CurStmt,
2511                                    Stmt* ParentCompoundStmt) {
2512  for (Stmt::child_iterator i = CurStmt->child_begin();
2513       i != CurStmt->child_end(); ++i) {
2514    if (!*i) continue;
2515    if (StatementCreatesScope(*i))  {
2516      ScopeStack.push_back(*i);
2517      PopScopeMap[*i] = ParentCompoundStmt;
2518    } else if (isa<LabelStmt>(CurStmt)) {
2519      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2520    }
2521    if (isa<DeclStmt>(*i)) continue;
2522    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2523    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2524                             *i, CurCompound);
2525  }
2526
2527  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2528    ScopeStack.pop_back();
2529  }
2530}
2531
2532void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2533                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2534                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2535                                   std::vector<void*>& ScopeStack,
2536                                   Stmt* CurStmt) {
2537  for (Stmt::child_iterator i = CurStmt->child_begin();
2538       i != CurStmt->child_end(); ++i) {
2539    if (!*i) continue;
2540    if (StatementCreatesScope(*i))  {
2541      ScopeStack.push_back(*i);
2542    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2543      void* LScope = LabelScopeMap[GS->getLabel()];
2544      if (LScope) {
2545        bool foundScopeInStack = false;
2546        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2547          if (LScope == ScopeStack[i-1]) {
2548            foundScopeInStack = true;
2549            break;
2550          }
2551        }
2552        if (!foundScopeInStack) {
2553          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2554        }
2555      }
2556    }
2557    if (isa<DeclStmt>(*i)) continue;
2558    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, *i);
2559  }
2560
2561  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2562    ScopeStack.pop_back();
2563  }
2564}
2565
2566Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2567  Decl *dcl = static_cast<Decl *>(D);
2568  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2569  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2570    FD->setBody(Body);
2571    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2572  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2573    assert(MD == getCurMethodDecl() && "Method parsing confused");
2574    MD->setBody((Stmt*)Body);
2575  } else {
2576    Body->Destroy(Context);
2577    return 0;
2578  }
2579  PopDeclContext();
2580
2581  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2582  // class C2 {
2583  //   void f() {
2584  //     class LC1 {
2585  //       int m() { return 1; }
2586  //     };
2587  //   }
2588  // };
2589  if (ActiveScope == 0)
2590    return D;
2591
2592  // Verify and clean out per-function state.
2593
2594  bool HaveLabels = !ActiveScope->LabelMap.empty();
2595  // Check goto/label use.
2596  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2597       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2598    // Verify that we have no forward references left.  If so, there was a goto
2599    // or address of a label taken, but no definition of it.  Label fwd
2600    // definitions are indicated with a null substmt.
2601    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2602    if (L->getSubStmt() == 0) {
2603      // Emit error.
2604      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2605
2606      // At this point, we have gotos that use the bogus label.  Stitch it into
2607      // the function body so that they aren't leaked and that the AST is well
2608      // formed.
2609      if (Body) {
2610#if 0
2611        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2612        // and the AST is malformed anyway.  We should just blow away 'L'.
2613        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2614        cast<CompoundStmt>(Body)->push_back(L);
2615#else
2616        L->Destroy(Context);
2617#endif
2618      } else {
2619        // The whole function wasn't parsed correctly, just delete this.
2620        L->Destroy(Context);
2621      }
2622    }
2623  }
2624  // This reset is for both functions and methods.
2625  ActiveScope = 0;
2626
2627  if (!Body) return D;
2628
2629  if (HaveLabels) {
2630    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2631    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2632    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2633    std::vector<void*> ScopeStack;
2634    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2635    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2636  }
2637
2638  return D;
2639}
2640
2641/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2642/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2643NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2644                                          IdentifierInfo &II, Scope *S) {
2645  // Before we produce a declaration for an implicitly defined
2646  // function, see whether there was a locally-scoped declaration of
2647  // this name as a function or variable. If so, use that
2648  // (non-visible) declaration, and complain about it.
2649  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2650    = LocallyScopedExternalDecls.find(&II);
2651  if (Pos != LocallyScopedExternalDecls.end()) {
2652    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2653    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2654    return Pos->second;
2655  }
2656
2657  // Extension in C99.  Legal in C90, but warn about it.
2658  if (getLangOptions().C99)
2659    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2660  else
2661    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2662
2663  // FIXME: handle stuff like:
2664  // void foo() { extern float X(); }
2665  // void bar() { X(); }  <-- implicit decl for X in another scope.
2666
2667  // Set a Declarator for the implicit definition: int foo();
2668  const char *Dummy;
2669  DeclSpec DS;
2670  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2671  Error = Error; // Silence warning.
2672  assert(!Error && "Error setting up implicit decl!");
2673  Declarator D(DS, Declarator::BlockContext);
2674  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2675                                             0, 0, 0, Loc, D),
2676                SourceLocation());
2677  D.SetIdentifier(&II, Loc);
2678
2679  // Insert this function into translation-unit scope.
2680
2681  DeclContext *PrevDC = CurContext;
2682  CurContext = Context.getTranslationUnitDecl();
2683
2684  FunctionDecl *FD =
2685    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2686  FD->setImplicit();
2687
2688  CurContext = PrevDC;
2689
2690  AddKnownFunctionAttributes(FD);
2691
2692  return FD;
2693}
2694
2695/// \brief Adds any function attributes that we know a priori based on
2696/// the declaration of this function.
2697///
2698/// These attributes can apply both to implicitly-declared builtins
2699/// (like __builtin___printf_chk) or to library-declared functions
2700/// like NSLog or printf.
2701void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2702  if (FD->isInvalidDecl())
2703    return;
2704
2705  // If this is a built-in function, map its builtin attributes to
2706  // actual attributes.
2707  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2708    // Handle printf-formatting attributes.
2709    unsigned FormatIdx;
2710    bool HasVAListArg;
2711    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2712      if (!FD->getAttr<FormatAttr>())
2713        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2714    }
2715
2716    // Mark const if we don't care about errno and that is the only
2717    // thing preventing the function from being const. This allows
2718    // IRgen to use LLVM intrinsics for such functions.
2719    if (!getLangOptions().MathErrno &&
2720        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2721      if (!FD->getAttr<ConstAttr>())
2722        FD->addAttr(new ConstAttr());
2723    }
2724  }
2725
2726  IdentifierInfo *Name = FD->getIdentifier();
2727  if (!Name)
2728    return;
2729  if ((!getLangOptions().CPlusPlus &&
2730       FD->getDeclContext()->isTranslationUnit()) ||
2731      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2732       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2733       LinkageSpecDecl::lang_c)) {
2734    // Okay: this could be a libc/libm/Objective-C function we know
2735    // about.
2736  } else
2737    return;
2738
2739  unsigned KnownID;
2740  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2741    if (KnownFunctionIDs[KnownID] == Name)
2742      break;
2743
2744  switch (KnownID) {
2745  case id_NSLog:
2746  case id_NSLogv:
2747    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2748      // FIXME: We known better than our headers.
2749      const_cast<FormatAttr *>(Format)->setType("printf");
2750    } else
2751      FD->addAttr(new FormatAttr("printf", 1, 2));
2752    break;
2753
2754  case id_asprintf:
2755  case id_vasprintf:
2756    if (!FD->getAttr<FormatAttr>())
2757      FD->addAttr(new FormatAttr("printf", 2, 3));
2758    break;
2759
2760  default:
2761    // Unknown function or known function without any attributes to
2762    // add. Do nothing.
2763    break;
2764  }
2765}
2766
2767TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2768                                    Decl *LastDeclarator) {
2769  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2770  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2771
2772  // Scope manipulation handled by caller.
2773  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2774                                           D.getIdentifierLoc(),
2775                                           D.getIdentifier(),
2776                                           T);
2777  NewTD->setNextDeclarator(LastDeclarator);
2778  if (D.getInvalidType())
2779    NewTD->setInvalidDecl();
2780  return NewTD;
2781}
2782
2783/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2784/// former case, Name will be non-null.  In the later case, Name will be null.
2785/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2786/// reference/declaration/definition of a tag.
2787Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2788                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2789                             IdentifierInfo *Name, SourceLocation NameLoc,
2790                             AttributeList *Attr) {
2791  // If this is not a definition, it must have a name.
2792  assert((Name != 0 || TK == TK_Definition) &&
2793         "Nameless record must be a definition!");
2794
2795  TagDecl::TagKind Kind;
2796  switch (TagSpec) {
2797  default: assert(0 && "Unknown tag type!");
2798  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2799  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2800  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2801  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2802  }
2803
2804  DeclContext *SearchDC = CurContext;
2805  DeclContext *DC = CurContext;
2806  NamedDecl *PrevDecl = 0;
2807
2808  bool Invalid = false;
2809
2810  if (Name && SS.isNotEmpty()) {
2811    // We have a nested-name tag ('struct foo::bar').
2812
2813    // Check for invalid 'foo::'.
2814    if (SS.isInvalid()) {
2815      Name = 0;
2816      goto CreateNewDecl;
2817    }
2818
2819    DC = static_cast<DeclContext*>(SS.getScopeRep());
2820    SearchDC = DC;
2821    // Look-up name inside 'foo::'.
2822    PrevDecl = dyn_cast_or_null<TagDecl>(
2823                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2824
2825    // A tag 'foo::bar' must already exist.
2826    if (PrevDecl == 0) {
2827      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2828      Name = 0;
2829      goto CreateNewDecl;
2830    }
2831  } else if (Name) {
2832    // If this is a named struct, check to see if there was a previous forward
2833    // declaration or definition.
2834    // FIXME: We're looking into outer scopes here, even when we
2835    // shouldn't be. Doing so can result in ambiguities that we
2836    // shouldn't be diagnosing.
2837    LookupResult R = LookupName(S, Name, LookupTagName,
2838                                /*RedeclarationOnly=*/(TK != TK_Reference));
2839    if (R.isAmbiguous()) {
2840      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2841      // FIXME: This is not best way to recover from case like:
2842      //
2843      // struct S s;
2844      //
2845      // causes needless err_ovl_no_viable_function_in_init latter.
2846      Name = 0;
2847      PrevDecl = 0;
2848      Invalid = true;
2849    }
2850    else
2851      PrevDecl = R;
2852
2853    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2854      // FIXME: This makes sure that we ignore the contexts associated
2855      // with C structs, unions, and enums when looking for a matching
2856      // tag declaration or definition. See the similar lookup tweak
2857      // in Sema::LookupName; is there a better way to deal with this?
2858      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2859        SearchDC = SearchDC->getParent();
2860    }
2861  }
2862
2863  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2864    // Maybe we will complain about the shadowed template parameter.
2865    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2866    // Just pretend that we didn't see the previous declaration.
2867    PrevDecl = 0;
2868  }
2869
2870  if (PrevDecl) {
2871    // Check whether the previous declaration is usable.
2872    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2873
2874    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2875      // If this is a use of a previous tag, or if the tag is already declared
2876      // in the same scope (so that the definition/declaration completes or
2877      // rementions the tag), reuse the decl.
2878      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2879        // Make sure that this wasn't declared as an enum and now used as a
2880        // struct or something similar.
2881        if (PrevTagDecl->getTagKind() != Kind) {
2882          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2883          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2884          // Recover by making this an anonymous redefinition.
2885          Name = 0;
2886          PrevDecl = 0;
2887          Invalid = true;
2888        } else {
2889          // If this is a use, just return the declaration we found.
2890
2891          // FIXME: In the future, return a variant or some other clue
2892          // for the consumer of this Decl to know it doesn't own it.
2893          // For our current ASTs this shouldn't be a problem, but will
2894          // need to be changed with DeclGroups.
2895          if (TK == TK_Reference)
2896            return PrevDecl;
2897
2898          // Diagnose attempts to redefine a tag.
2899          if (TK == TK_Definition) {
2900            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2901              Diag(NameLoc, diag::err_redefinition) << Name;
2902              Diag(Def->getLocation(), diag::note_previous_definition);
2903              // If this is a redefinition, recover by making this
2904              // struct be anonymous, which will make any later
2905              // references get the previous definition.
2906              Name = 0;
2907              PrevDecl = 0;
2908              Invalid = true;
2909            } else {
2910              // If the type is currently being defined, complain
2911              // about a nested redefinition.
2912              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2913              if (Tag->isBeingDefined()) {
2914                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2915                Diag(PrevTagDecl->getLocation(),
2916                     diag::note_previous_definition);
2917                Name = 0;
2918                PrevDecl = 0;
2919                Invalid = true;
2920              }
2921            }
2922
2923            // Okay, this is definition of a previously declared or referenced
2924            // tag PrevDecl. We're going to create a new Decl for it.
2925          }
2926        }
2927        // If we get here we have (another) forward declaration or we
2928        // have a definition.  Just create a new decl.
2929      } else {
2930        // If we get here, this is a definition of a new tag type in a nested
2931        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2932        // new decl/type.  We set PrevDecl to NULL so that the entities
2933        // have distinct types.
2934        PrevDecl = 0;
2935      }
2936      // If we get here, we're going to create a new Decl. If PrevDecl
2937      // is non-NULL, it's a definition of the tag declared by
2938      // PrevDecl. If it's NULL, we have a new definition.
2939    } else {
2940      // PrevDecl is a namespace, template, or anything else
2941      // that lives in the IDNS_Tag identifier namespace.
2942      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2943        // The tag name clashes with a namespace name, issue an error and
2944        // recover by making this tag be anonymous.
2945        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2946        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2947        Name = 0;
2948        PrevDecl = 0;
2949        Invalid = true;
2950      } else {
2951        // The existing declaration isn't relevant to us; we're in a
2952        // new scope, so clear out the previous declaration.
2953        PrevDecl = 0;
2954      }
2955    }
2956  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2957             (Kind != TagDecl::TK_enum))  {
2958    // C++ [basic.scope.pdecl]p5:
2959    //   -- for an elaborated-type-specifier of the form
2960    //
2961    //          class-key identifier
2962    //
2963    //      if the elaborated-type-specifier is used in the
2964    //      decl-specifier-seq or parameter-declaration-clause of a
2965    //      function defined in namespace scope, the identifier is
2966    //      declared as a class-name in the namespace that contains
2967    //      the declaration; otherwise, except as a friend
2968    //      declaration, the identifier is declared in the smallest
2969    //      non-class, non-function-prototype scope that contains the
2970    //      declaration.
2971    //
2972    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2973    // C structs and unions.
2974
2975    // Find the context where we'll be declaring the tag.
2976    // FIXME: We would like to maintain the current DeclContext as the
2977    // lexical context,
2978    while (SearchDC->isRecord())
2979      SearchDC = SearchDC->getParent();
2980
2981    // Find the scope where we'll be declaring the tag.
2982    while (S->isClassScope() ||
2983           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2984           ((S->getFlags() & Scope::DeclScope) == 0) ||
2985           (S->getEntity() &&
2986            ((DeclContext *)S->getEntity())->isTransparentContext()))
2987      S = S->getParent();
2988  }
2989
2990CreateNewDecl:
2991
2992  // If there is an identifier, use the location of the identifier as the
2993  // location of the decl, otherwise use the location of the struct/union
2994  // keyword.
2995  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2996
2997  // Otherwise, create a new declaration. If there is a previous
2998  // declaration of the same entity, the two will be linked via
2999  // PrevDecl.
3000  TagDecl *New;
3001
3002  if (Kind == TagDecl::TK_enum) {
3003    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3004    // enum X { A, B, C } D;    D should chain to X.
3005    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3006                           cast_or_null<EnumDecl>(PrevDecl));
3007    // If this is an undefined enum, warn.
3008    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3009  } else {
3010    // struct/union/class
3011
3012    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3013    // struct X { int A; } D;    D should chain to X.
3014    if (getLangOptions().CPlusPlus)
3015      // FIXME: Look for a way to use RecordDecl for simple structs.
3016      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3017                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3018    else
3019      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3020                               cast_or_null<RecordDecl>(PrevDecl));
3021  }
3022
3023  if (Kind != TagDecl::TK_enum) {
3024    // Handle #pragma pack: if the #pragma pack stack has non-default
3025    // alignment, make up a packed attribute for this decl. These
3026    // attributes are checked when the ASTContext lays out the
3027    // structure.
3028    //
3029    // It is important for implementing the correct semantics that this
3030    // happen here (in act on tag decl). The #pragma pack stack is
3031    // maintained as a result of parser callbacks which can occur at
3032    // many points during the parsing of a struct declaration (because
3033    // the #pragma tokens are effectively skipped over during the
3034    // parsing of the struct).
3035    if (unsigned Alignment = getPragmaPackAlignment())
3036      New->addAttr(new PackedAttr(Alignment * 8));
3037  }
3038
3039  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3040    // C++ [dcl.typedef]p3:
3041    //   [...] Similarly, in a given scope, a class or enumeration
3042    //   shall not be declared with the same name as a typedef-name
3043    //   that is declared in that scope and refers to a type other
3044    //   than the class or enumeration itself.
3045    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3046    TypedefDecl *PrevTypedef = 0;
3047    if (Lookup.getKind() == LookupResult::Found)
3048      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3049
3050    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3051        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3052          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3053      Diag(Loc, diag::err_tag_definition_of_typedef)
3054        << Context.getTypeDeclType(New)
3055        << PrevTypedef->getUnderlyingType();
3056      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3057      Invalid = true;
3058    }
3059  }
3060
3061  if (Invalid)
3062    New->setInvalidDecl();
3063
3064  if (Attr)
3065    ProcessDeclAttributeList(New, Attr);
3066
3067  // If we're declaring or defining a tag in function prototype scope
3068  // in C, note that this type can only be used within the function.
3069  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3070    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3071
3072  // Set the lexical context. If the tag has a C++ scope specifier, the
3073  // lexical context will be different from the semantic context.
3074  New->setLexicalDeclContext(CurContext);
3075
3076  if (TK == TK_Definition)
3077    New->startDefinition();
3078
3079  // If this has an identifier, add it to the scope stack.
3080  if (Name) {
3081    S = getNonFieldDeclScope(S);
3082    PushOnScopeChains(New, S);
3083  } else {
3084    CurContext->addDecl(New);
3085  }
3086
3087  return New;
3088}
3089
3090void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3091  AdjustDeclIfTemplate(TagD);
3092  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3093
3094  // Enter the tag context.
3095  PushDeclContext(S, Tag);
3096
3097  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3098    FieldCollector->StartClass();
3099
3100    if (Record->getIdentifier()) {
3101      // C++ [class]p2:
3102      //   [...] The class-name is also inserted into the scope of the
3103      //   class itself; this is known as the injected-class-name. For
3104      //   purposes of access checking, the injected-class-name is treated
3105      //   as if it were a public member name.
3106      RecordDecl *InjectedClassName
3107        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3108                                CurContext, Record->getLocation(),
3109                                Record->getIdentifier(), Record);
3110      InjectedClassName->setImplicit();
3111      PushOnScopeChains(InjectedClassName, S);
3112    }
3113  }
3114}
3115
3116void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3117  AdjustDeclIfTemplate(TagD);
3118  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3119
3120  if (isa<CXXRecordDecl>(Tag))
3121    FieldCollector->FinishClass();
3122
3123  // Exit this scope of this tag's definition.
3124  PopDeclContext();
3125
3126  // Notify the consumer that we've defined a tag.
3127  Consumer.HandleTagDeclDefinition(Tag);
3128}
3129
3130bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3131                          QualType FieldTy, const Expr *BitWidth) {
3132  // FIXME: 6.7.2.1p4 - verify the field type.
3133
3134  llvm::APSInt Value;
3135  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3136    return true;
3137
3138  // Zero-width bitfield is ok for anonymous field.
3139  if (Value == 0 && FieldName)
3140    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3141
3142  if (Value.isNegative())
3143    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3144
3145  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3146  // FIXME: We won't need the 0 size once we check that the field type is valid.
3147  if (TypeSize && Value.getZExtValue() > TypeSize)
3148    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3149       << FieldName << (unsigned)TypeSize;
3150
3151  return false;
3152}
3153
3154/// ActOnField - Each field of a struct/union/class is passed into this in order
3155/// to create a FieldDecl object for it.
3156Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3157                               SourceLocation DeclStart,
3158                               Declarator &D, ExprTy *BitfieldWidth) {
3159  IdentifierInfo *II = D.getIdentifier();
3160  Expr *BitWidth = (Expr*)BitfieldWidth;
3161  SourceLocation Loc = DeclStart;
3162  RecordDecl *Record = (RecordDecl *)TagD;
3163  if (II) Loc = D.getIdentifierLoc();
3164
3165  // FIXME: Unnamed fields can be handled in various different ways, for
3166  // example, unnamed unions inject all members into the struct namespace!
3167
3168  QualType T = GetTypeForDeclarator(D, S);
3169  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3170  bool InvalidDecl = false;
3171
3172  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3173  // than a variably modified type.
3174  if (T->isVariablyModifiedType()) {
3175    bool SizeIsNegative;
3176    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3177                                                           SizeIsNegative);
3178    if (!FixedTy.isNull()) {
3179      Diag(Loc, diag::warn_illegal_constant_array_size);
3180      T = FixedTy;
3181    } else {
3182      if (SizeIsNegative)
3183        Diag(Loc, diag::err_typecheck_negative_array_size);
3184      else
3185        Diag(Loc, diag::err_typecheck_field_variable_size);
3186      T = Context.IntTy;
3187      InvalidDecl = true;
3188    }
3189  }
3190
3191  if (BitWidth) {
3192    if (VerifyBitField(Loc, II, T, BitWidth))
3193      InvalidDecl = true;
3194  } else {
3195    // Not a bitfield.
3196
3197    // validate II.
3198
3199  }
3200
3201  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3202                                       Loc, II, T, BitWidth,
3203                                       D.getDeclSpec().getStorageClassSpec() ==
3204                                       DeclSpec::SCS_mutable);
3205
3206  if (II) {
3207    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3208    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3209        && !isa<TagDecl>(PrevDecl)) {
3210      Diag(Loc, diag::err_duplicate_member) << II;
3211      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3212      NewFD->setInvalidDecl();
3213      Record->setInvalidDecl();
3214    }
3215  }
3216
3217  if (getLangOptions().CPlusPlus) {
3218    CheckExtraCXXDefaultArguments(D);
3219    if (!T->isPODType())
3220      cast<CXXRecordDecl>(Record)->setPOD(false);
3221  }
3222
3223  ProcessDeclAttributes(NewFD, D);
3224  if (T.isObjCGCWeak())
3225    Diag(Loc, diag::warn_attribute_weak_on_field);
3226
3227  if (D.getInvalidType() || InvalidDecl)
3228    NewFD->setInvalidDecl();
3229
3230  if (II) {
3231    PushOnScopeChains(NewFD, S);
3232  } else
3233    Record->addDecl(NewFD);
3234
3235  return NewFD;
3236}
3237
3238/// TranslateIvarVisibility - Translate visibility from a token ID to an
3239///  AST enum value.
3240static ObjCIvarDecl::AccessControl
3241TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3242  switch (ivarVisibility) {
3243  default: assert(0 && "Unknown visitibility kind");
3244  case tok::objc_private: return ObjCIvarDecl::Private;
3245  case tok::objc_public: return ObjCIvarDecl::Public;
3246  case tok::objc_protected: return ObjCIvarDecl::Protected;
3247  case tok::objc_package: return ObjCIvarDecl::Package;
3248  }
3249}
3250
3251/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3252/// in order to create an IvarDecl object for it.
3253Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3254                              SourceLocation DeclStart,
3255                              Declarator &D, ExprTy *BitfieldWidth,
3256                              tok::ObjCKeywordKind Visibility) {
3257
3258  IdentifierInfo *II = D.getIdentifier();
3259  Expr *BitWidth = (Expr*)BitfieldWidth;
3260  SourceLocation Loc = DeclStart;
3261  if (II) Loc = D.getIdentifierLoc();
3262
3263  // FIXME: Unnamed fields can be handled in various different ways, for
3264  // example, unnamed unions inject all members into the struct namespace!
3265
3266  QualType T = GetTypeForDeclarator(D, S);
3267  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3268  bool InvalidDecl = false;
3269
3270  if (BitWidth) {
3271    // 6.7.2.1p3, 6.7.2.1p4
3272    if (VerifyBitField(Loc, II, T, BitWidth))
3273      InvalidDecl = true;
3274  } else {
3275    // Not a bitfield.
3276
3277    // validate II.
3278
3279  }
3280
3281  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3282  // than a variably modified type.
3283  if (T->isVariablyModifiedType()) {
3284    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3285    InvalidDecl = true;
3286  }
3287
3288  // Get the visibility (access control) for this ivar.
3289  ObjCIvarDecl::AccessControl ac =
3290    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3291                                        : ObjCIvarDecl::None;
3292
3293  // Construct the decl.
3294  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3295                                             (Expr *)BitfieldWidth);
3296
3297  if (II) {
3298    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3299    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3300        && !isa<TagDecl>(PrevDecl)) {
3301      Diag(Loc, diag::err_duplicate_member) << II;
3302      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3303      NewID->setInvalidDecl();
3304    }
3305  }
3306
3307  // Process attributes attached to the ivar.
3308  ProcessDeclAttributes(NewID, D);
3309
3310  if (D.getInvalidType() || InvalidDecl)
3311    NewID->setInvalidDecl();
3312
3313  if (II) {
3314    // FIXME: When interfaces are DeclContexts, we'll need to add
3315    // these to the interface.
3316    S->AddDecl(NewID);
3317    IdResolver.AddDecl(NewID);
3318  }
3319
3320  return NewID;
3321}
3322
3323void Sema::ActOnFields(Scope* S,
3324                       SourceLocation RecLoc, DeclTy *RecDecl,
3325                       DeclTy **Fields, unsigned NumFields,
3326                       SourceLocation LBrac, SourceLocation RBrac,
3327                       AttributeList *Attr) {
3328  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3329  assert(EnclosingDecl && "missing record or interface decl");
3330
3331  // If the decl this is being inserted into is invalid, then it may be a
3332  // redeclaration or some other bogus case.  Don't try to add fields to it.
3333  if (EnclosingDecl->isInvalidDecl()) {
3334    // FIXME: Deallocate fields?
3335    return;
3336  }
3337
3338
3339  // Verify that all the fields are okay.
3340  unsigned NumNamedMembers = 0;
3341  llvm::SmallVector<FieldDecl*, 32> RecFields;
3342
3343  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3344  for (unsigned i = 0; i != NumFields; ++i) {
3345    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3346    assert(FD && "missing field decl");
3347
3348    // Get the type for the field.
3349    Type *FDTy = FD->getType().getTypePtr();
3350
3351    if (!FD->isAnonymousStructOrUnion()) {
3352      // Remember all fields written by the user.
3353      RecFields.push_back(FD);
3354    }
3355
3356    // C99 6.7.2.1p2 - A field may not be a function type.
3357    if (FDTy->isFunctionType()) {
3358      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3359        << FD->getDeclName();
3360      FD->setInvalidDecl();
3361      EnclosingDecl->setInvalidDecl();
3362      continue;
3363    }
3364    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3365    if (FDTy->isIncompleteType()) {
3366      if (!Record) {  // Incomplete ivar type is always an error.
3367        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3368                               diag::err_field_incomplete);
3369        FD->setInvalidDecl();
3370        EnclosingDecl->setInvalidDecl();
3371        continue;
3372      }
3373      if (i != NumFields-1 ||                   // ... that the last member ...
3374          !Record->isStruct() ||  // ... of a structure ...
3375          !FDTy->isArrayType()) {         //... may have incomplete array type.
3376        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3377                               diag::err_field_incomplete);
3378        FD->setInvalidDecl();
3379        EnclosingDecl->setInvalidDecl();
3380        continue;
3381      }
3382      if (NumNamedMembers < 1) {  //... must have more than named member ...
3383        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3384          << FD->getDeclName();
3385        FD->setInvalidDecl();
3386        EnclosingDecl->setInvalidDecl();
3387        continue;
3388      }
3389      // Okay, we have a legal flexible array member at the end of the struct.
3390      if (Record)
3391        Record->setHasFlexibleArrayMember(true);
3392    }
3393    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3394    /// field of another structure or the element of an array.
3395    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3396      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3397        // If this is a member of a union, then entire union becomes "flexible".
3398        if (Record && Record->isUnion()) {
3399          Record->setHasFlexibleArrayMember(true);
3400        } else {
3401          // If this is a struct/class and this is not the last element, reject
3402          // it.  Note that GCC supports variable sized arrays in the middle of
3403          // structures.
3404          if (i != NumFields-1) {
3405            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3406              << FD->getDeclName();
3407            FD->setInvalidDecl();
3408            EnclosingDecl->setInvalidDecl();
3409            continue;
3410          }
3411          // We support flexible arrays at the end of structs in other structs
3412          // as an extension.
3413          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3414            << FD->getDeclName();
3415          if (Record)
3416            Record->setHasFlexibleArrayMember(true);
3417        }
3418      }
3419    }
3420    /// A field cannot be an Objective-c object
3421    if (FDTy->isObjCInterfaceType()) {
3422      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3423      FD->setInvalidDecl();
3424      EnclosingDecl->setInvalidDecl();
3425      continue;
3426    }
3427    // Keep track of the number of named members.
3428    if (FD->getIdentifier())
3429      ++NumNamedMembers;
3430  }
3431
3432  // Okay, we successfully defined 'Record'.
3433  if (Record) {
3434    Record->completeDefinition(Context);
3435  } else {
3436    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3437    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3438      ID->setIVarList(ClsFields, RecFields.size(), Context);
3439      ID->setLocEnd(RBrac);
3440
3441      // Must enforce the rule that ivars in the base classes may not be
3442      // duplicates.
3443      if (ID->getSuperClass()) {
3444        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3445             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3446          ObjCIvarDecl* Ivar = (*IVI);
3447          IdentifierInfo *II = Ivar->getIdentifier();
3448          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3449          if (prevIvar) {
3450            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3451            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3452          }
3453        }
3454      }
3455    } else if (ObjCImplementationDecl *IMPDecl =
3456                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3457      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3458      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3459      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3460    }
3461  }
3462
3463  if (Attr)
3464    ProcessDeclAttributeList(Record, Attr);
3465}
3466
3467Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3468                                      DeclTy *lastEnumConst,
3469                                      SourceLocation IdLoc, IdentifierInfo *Id,
3470                                      SourceLocation EqualLoc, ExprTy *val) {
3471  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3472  EnumConstantDecl *LastEnumConst =
3473    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3474  Expr *Val = static_cast<Expr*>(val);
3475
3476  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3477  // we find one that is.
3478  S = getNonFieldDeclScope(S);
3479
3480  // Verify that there isn't already something declared with this name in this
3481  // scope.
3482  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3483  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3484    // Maybe we will complain about the shadowed template parameter.
3485    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3486    // Just pretend that we didn't see the previous declaration.
3487    PrevDecl = 0;
3488  }
3489
3490  if (PrevDecl) {
3491    // When in C++, we may get a TagDecl with the same name; in this case the
3492    // enum constant will 'hide' the tag.
3493    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3494           "Received TagDecl when not in C++!");
3495    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3496      if (isa<EnumConstantDecl>(PrevDecl))
3497        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3498      else
3499        Diag(IdLoc, diag::err_redefinition) << Id;
3500      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3501      if (Val) Val->Destroy(Context);
3502      return 0;
3503    }
3504  }
3505
3506  llvm::APSInt EnumVal(32);
3507  QualType EltTy;
3508  if (Val) {
3509    // Make sure to promote the operand type to int.
3510    UsualUnaryConversions(Val);
3511
3512    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3513    SourceLocation ExpLoc;
3514    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3515      Val->Destroy(Context);
3516      Val = 0;  // Just forget about it.
3517    } else {
3518      EltTy = Val->getType();
3519    }
3520  }
3521
3522  if (!Val) {
3523    if (LastEnumConst) {
3524      // Assign the last value + 1.
3525      EnumVal = LastEnumConst->getInitVal();
3526      ++EnumVal;
3527
3528      // Check for overflow on increment.
3529      if (EnumVal < LastEnumConst->getInitVal())
3530        Diag(IdLoc, diag::warn_enum_value_overflow);
3531
3532      EltTy = LastEnumConst->getType();
3533    } else {
3534      // First value, set to zero.
3535      EltTy = Context.IntTy;
3536      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3537    }
3538  }
3539
3540  EnumConstantDecl *New =
3541    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3542                             Val, EnumVal);
3543
3544  // Register this decl in the current scope stack.
3545  PushOnScopeChains(New, S);
3546
3547  return New;
3548}
3549
3550// FIXME: For consistency with ActOnFields(), we should have the parser
3551// pass in the source location for the left/right braces.
3552void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3553                         DeclTy **Elements, unsigned NumElements) {
3554  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3555  QualType EnumType = Context.getTypeDeclType(Enum);
3556
3557  // TODO: If the result value doesn't fit in an int, it must be a long or long
3558  // long value.  ISO C does not support this, but GCC does as an extension,
3559  // emit a warning.
3560  unsigned IntWidth = Context.Target.getIntWidth();
3561
3562  // Verify that all the values are okay, compute the size of the values, and
3563  // reverse the list.
3564  unsigned NumNegativeBits = 0;
3565  unsigned NumPositiveBits = 0;
3566
3567  // Keep track of whether all elements have type int.
3568  bool AllElementsInt = true;
3569
3570  for (unsigned i = 0; i != NumElements; ++i) {
3571    EnumConstantDecl *ECD =
3572      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3573    if (!ECD) continue;  // Already issued a diagnostic.
3574
3575    // If the enum value doesn't fit in an int, emit an extension warning.
3576    const llvm::APSInt &InitVal = ECD->getInitVal();
3577    assert(InitVal.getBitWidth() >= IntWidth &&
3578           "Should have promoted value to int");
3579    if (InitVal.getBitWidth() > IntWidth) {
3580      llvm::APSInt V(InitVal);
3581      V.trunc(IntWidth);
3582      V.extend(InitVal.getBitWidth());
3583      if (V != InitVal)
3584        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3585          << InitVal.toString(10);
3586    }
3587
3588    // Keep track of the size of positive and negative values.
3589    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3590      NumPositiveBits = std::max(NumPositiveBits,
3591                                 (unsigned)InitVal.getActiveBits());
3592    else
3593      NumNegativeBits = std::max(NumNegativeBits,
3594                                 (unsigned)InitVal.getMinSignedBits());
3595
3596    // Keep track of whether every enum element has type int (very commmon).
3597    if (AllElementsInt)
3598      AllElementsInt = ECD->getType() == Context.IntTy;
3599  }
3600
3601  // Figure out the type that should be used for this enum.
3602  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3603  QualType BestType;
3604  unsigned BestWidth;
3605
3606  if (NumNegativeBits) {
3607    // If there is a negative value, figure out the smallest integer type (of
3608    // int/long/longlong) that fits.
3609    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3610      BestType = Context.IntTy;
3611      BestWidth = IntWidth;
3612    } else {
3613      BestWidth = Context.Target.getLongWidth();
3614
3615      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3616        BestType = Context.LongTy;
3617      else {
3618        BestWidth = Context.Target.getLongLongWidth();
3619
3620        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3621          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3622        BestType = Context.LongLongTy;
3623      }
3624    }
3625  } else {
3626    // If there is no negative value, figure out which of uint, ulong, ulonglong
3627    // fits.
3628    if (NumPositiveBits <= IntWidth) {
3629      BestType = Context.UnsignedIntTy;
3630      BestWidth = IntWidth;
3631    } else if (NumPositiveBits <=
3632               (BestWidth = Context.Target.getLongWidth())) {
3633      BestType = Context.UnsignedLongTy;
3634    } else {
3635      BestWidth = Context.Target.getLongLongWidth();
3636      assert(NumPositiveBits <= BestWidth &&
3637             "How could an initializer get larger than ULL?");
3638      BestType = Context.UnsignedLongLongTy;
3639    }
3640  }
3641
3642  // Loop over all of the enumerator constants, changing their types to match
3643  // the type of the enum if needed.
3644  for (unsigned i = 0; i != NumElements; ++i) {
3645    EnumConstantDecl *ECD =
3646      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3647    if (!ECD) continue;  // Already issued a diagnostic.
3648
3649    // Standard C says the enumerators have int type, but we allow, as an
3650    // extension, the enumerators to be larger than int size.  If each
3651    // enumerator value fits in an int, type it as an int, otherwise type it the
3652    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3653    // that X has type 'int', not 'unsigned'.
3654    if (ECD->getType() == Context.IntTy) {
3655      // Make sure the init value is signed.
3656      llvm::APSInt IV = ECD->getInitVal();
3657      IV.setIsSigned(true);
3658      ECD->setInitVal(IV);
3659
3660      if (getLangOptions().CPlusPlus)
3661        // C++ [dcl.enum]p4: Following the closing brace of an
3662        // enum-specifier, each enumerator has the type of its
3663        // enumeration.
3664        ECD->setType(EnumType);
3665      continue;  // Already int type.
3666    }
3667
3668    // Determine whether the value fits into an int.
3669    llvm::APSInt InitVal = ECD->getInitVal();
3670    bool FitsInInt;
3671    if (InitVal.isUnsigned() || !InitVal.isNegative())
3672      FitsInInt = InitVal.getActiveBits() < IntWidth;
3673    else
3674      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3675
3676    // If it fits into an integer type, force it.  Otherwise force it to match
3677    // the enum decl type.
3678    QualType NewTy;
3679    unsigned NewWidth;
3680    bool NewSign;
3681    if (FitsInInt) {
3682      NewTy = Context.IntTy;
3683      NewWidth = IntWidth;
3684      NewSign = true;
3685    } else if (ECD->getType() == BestType) {
3686      // Already the right type!
3687      if (getLangOptions().CPlusPlus)
3688        // C++ [dcl.enum]p4: Following the closing brace of an
3689        // enum-specifier, each enumerator has the type of its
3690        // enumeration.
3691        ECD->setType(EnumType);
3692      continue;
3693    } else {
3694      NewTy = BestType;
3695      NewWidth = BestWidth;
3696      NewSign = BestType->isSignedIntegerType();
3697    }
3698
3699    // Adjust the APSInt value.
3700    InitVal.extOrTrunc(NewWidth);
3701    InitVal.setIsSigned(NewSign);
3702    ECD->setInitVal(InitVal);
3703
3704    // Adjust the Expr initializer and type.
3705    if (ECD->getInitExpr())
3706      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3707                                                      /*isLvalue=*/false));
3708    if (getLangOptions().CPlusPlus)
3709      // C++ [dcl.enum]p4: Following the closing brace of an
3710      // enum-specifier, each enumerator has the type of its
3711      // enumeration.
3712      ECD->setType(EnumType);
3713    else
3714      ECD->setType(NewTy);
3715  }
3716
3717  Enum->completeDefinition(Context, BestType);
3718}
3719
3720Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3721                                          ExprArg expr) {
3722  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3723
3724  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3725}
3726
3727