SemaDecl.cpp revision 6675586c70945fdd71911d96f83324788b93edd4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42#include <queue>
43using namespace clang;
44
45/// getDeclName - Return a pretty name for the specified decl if possible, or
46/// an empty string if not.  This is used for pretty crash reporting.
47std::string Sema::getDeclName(DeclPtrTy d) {
48  Decl *D = d.getAs<Decl>();
49  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
50    return DN->getQualifiedNameAsString();
51  return "";
52}
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                                Scope *S, const CXXScopeSpec *SS,
71                                bool isClassName,
72                                TypeTy *ObjectTypePtr) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isSet()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return 0;
95
96        // We know from the grammar that this name refers to a type, so build a
97        // TypenameType node to describe the type.
98        // FIXME: Record somewhere that this TypenameType node has no "typename"
99        // keyword associated with it.
100        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
101                                 II, SS->getRange()).getAsOpaquePtr();
102      }
103
104      return 0;
105    }
106
107    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
108      return 0;
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::FoundOverloaded:
141  case LookupResult::FoundUnresolvedValue:
142    return 0;
143
144  case LookupResult::Ambiguous:
145    // Recover from type-hiding ambiguities by hiding the type.  We'll
146    // do the lookup again when looking for an object, and we can
147    // diagnose the error then.  If we don't do this, then the error
148    // about hiding the type will be immediately followed by an error
149    // that only makes sense if the identifier was treated like a type.
150    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
151      Result.suppressDiagnostics();
152      return 0;
153    }
154
155    // Look to see if we have a type anywhere in the list of results.
156    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
157         Res != ResEnd; ++Res) {
158      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
159        if (!IIDecl ||
160            (*Res)->getLocation().getRawEncoding() <
161              IIDecl->getLocation().getRawEncoding())
162          IIDecl = *Res;
163      }
164    }
165
166    if (!IIDecl) {
167      // None of the entities we found is a type, so there is no way
168      // to even assume that the result is a type. In this case, don't
169      // complain about the ambiguity. The parser will either try to
170      // perform this lookup again (e.g., as an object name), which
171      // will produce the ambiguity, or will complain that it expected
172      // a type name.
173      Result.suppressDiagnostics();
174      return 0;
175    }
176
177    // We found a type within the ambiguous lookup; diagnose the
178    // ambiguity and then return that type. This might be the right
179    // answer, or it might not be, but it suppresses any attempt to
180    // perform the name lookup again.
181    break;
182
183  case LookupResult::Found:
184    IIDecl = Result.getFoundDecl();
185    break;
186  }
187
188  assert(IIDecl && "Didn't find decl");
189
190  QualType T;
191  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
192    DiagnoseUseOfDecl(IIDecl, NameLoc);
193
194    // C++ [temp.local]p2:
195    //   Within the scope of a class template specialization or
196    //   partial specialization, when the injected-class-name is
197    //   not followed by a <, it is equivalent to the
198    //   injected-class-name followed by the template-argument s
199    //   of the class template specialization or partial
200    //   specialization enclosed in <>.
201    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
202      if (RD->isInjectedClassName())
203        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
204          T = Template->getInjectedClassNameType(Context);
205
206    if (T.isNull())
207      T = Context.getTypeDeclType(TD);
208
209    if (SS)
210      T = getQualifiedNameType(*SS, T);
211
212  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
213    T = Context.getObjCInterfaceType(IDecl);
214  } else if (UnresolvedUsingTypenameDecl *UUDecl =
215               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
216    // FIXME: preserve source structure information.
217    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
218  } else {
219    // If it's not plausibly a type, suppress diagnostics.
220    Result.suppressDiagnostics();
221    return 0;
222  }
223
224  return T.getAsOpaquePtr();
225}
226
227/// isTagName() - This method is called *for error recovery purposes only*
228/// to determine if the specified name is a valid tag name ("struct foo").  If
229/// so, this returns the TST for the tag corresponding to it (TST_enum,
230/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
231/// where the user forgot to specify the tag.
232DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
233  // Do a tag name lookup in this scope.
234  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
235  LookupName(R, S, false);
236  R.suppressDiagnostics();
237  if (R.getResultKind() == LookupResult::Found)
238    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
239      switch (TD->getTagKind()) {
240      case TagDecl::TK_struct: return DeclSpec::TST_struct;
241      case TagDecl::TK_union:  return DeclSpec::TST_union;
242      case TagDecl::TK_class:  return DeclSpec::TST_class;
243      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
244      }
245    }
246
247  return DeclSpec::TST_unspecified;
248}
249
250bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
251                                   SourceLocation IILoc,
252                                   Scope *S,
253                                   const CXXScopeSpec *SS,
254                                   TypeTy *&SuggestedType) {
255  // We don't have anything to suggest (yet).
256  SuggestedType = 0;
257
258  // FIXME: Should we move the logic that tries to recover from a missing tag
259  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
260
261  if (!SS)
262    Diag(IILoc, diag::err_unknown_typename) << &II;
263  else if (DeclContext *DC = computeDeclContext(*SS, false))
264    Diag(IILoc, diag::err_typename_nested_not_found)
265      << &II << DC << SS->getRange();
266  else if (isDependentScopeSpecifier(*SS)) {
267    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
268      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
269      << SourceRange(SS->getRange().getBegin(), IILoc)
270      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
271                                               "typename ");
272    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
273  } else {
274    assert(SS && SS->isInvalid() &&
275           "Invalid scope specifier has already been diagnosed");
276  }
277
278  return true;
279}
280
281// Determines the context to return to after temporarily entering a
282// context.  This depends in an unnecessarily complicated way on the
283// exact ordering of callbacks from the parser.
284DeclContext *Sema::getContainingDC(DeclContext *DC) {
285
286  // Functions defined inline within classes aren't parsed until we've
287  // finished parsing the top-level class, so the top-level class is
288  // the context we'll need to return to.
289  if (isa<FunctionDecl>(DC)) {
290    DC = DC->getLexicalParent();
291
292    // A function not defined within a class will always return to its
293    // lexical context.
294    if (!isa<CXXRecordDecl>(DC))
295      return DC;
296
297    // A C++ inline method/friend is parsed *after* the topmost class
298    // it was declared in is fully parsed ("complete");  the topmost
299    // class is the context we need to return to.
300    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
301      DC = RD;
302
303    // Return the declaration context of the topmost class the inline method is
304    // declared in.
305    return DC;
306  }
307
308  if (isa<ObjCMethodDecl>(DC))
309    return Context.getTranslationUnitDecl();
310
311  return DC->getLexicalParent();
312}
313
314void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
315  assert(getContainingDC(DC) == CurContext &&
316      "The next DeclContext should be lexically contained in the current one.");
317  CurContext = DC;
318  S->setEntity(DC);
319}
320
321void Sema::PopDeclContext() {
322  assert(CurContext && "DeclContext imbalance!");
323
324  CurContext = getContainingDC(CurContext);
325}
326
327/// EnterDeclaratorContext - Used when we must lookup names in the context
328/// of a declarator's nested name specifier.
329///
330void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
331  // C++0x [basic.lookup.unqual]p13:
332  //   A name used in the definition of a static data member of class
333  //   X (after the qualified-id of the static member) is looked up as
334  //   if the name was used in a member function of X.
335  // C++0x [basic.lookup.unqual]p14:
336  //   If a variable member of a namespace is defined outside of the
337  //   scope of its namespace then any name used in the definition of
338  //   the variable member (after the declarator-id) is looked up as
339  //   if the definition of the variable member occurred in its
340  //   namespace.
341  // Both of these imply that we should push a scope whose context
342  // is the semantic context of the declaration.  We can't use
343  // PushDeclContext here because that context is not necessarily
344  // lexically contained in the current context.  Fortunately,
345  // the containing scope should have the appropriate information.
346
347  assert(!S->getEntity() && "scope already has entity");
348
349#ifndef NDEBUG
350  Scope *Ancestor = S->getParent();
351  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
352  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
353#endif
354
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::ExitDeclaratorContext(Scope *S) {
360  assert(S->getEntity() == CurContext && "Context imbalance!");
361
362  // Switch back to the lexical context.  The safety of this is
363  // enforced by an assert in EnterDeclaratorContext.
364  Scope *Ancestor = S->getParent();
365  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
366  CurContext = (DeclContext*) Ancestor->getEntity();
367
368  // We don't need to do anything with the scope, which is going to
369  // disappear.
370}
371
372/// \brief Determine whether we allow overloading of the function
373/// PrevDecl with another declaration.
374///
375/// This routine determines whether overloading is possible, not
376/// whether some new function is actually an overload. It will return
377/// true in C++ (where we can always provide overloads) or, as an
378/// extension, in C when the previous function is already an
379/// overloaded function declaration or has the "overloadable"
380/// attribute.
381static bool AllowOverloadingOfFunction(LookupResult &Previous,
382                                       ASTContext &Context) {
383  if (Context.getLangOptions().CPlusPlus)
384    return true;
385
386  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
387    return true;
388
389  return (Previous.getResultKind() == LookupResult::Found
390          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
391}
392
393/// Add this decl to the scope shadowed decl chains.
394void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
395  // Move up the scope chain until we find the nearest enclosing
396  // non-transparent context. The declaration will be introduced into this
397  // scope.
398  while (S->getEntity() &&
399         ((DeclContext *)S->getEntity())->isTransparentContext())
400    S = S->getParent();
401
402  // Add scoped declarations into their context, so that they can be
403  // found later. Declarations without a context won't be inserted
404  // into any context.
405  if (AddToContext)
406    CurContext->addDecl(D);
407
408  // Out-of-line function and variable definitions should not be pushed into
409  // scope.
410  if ((isa<FunctionTemplateDecl>(D) &&
411       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
412      (isa<FunctionDecl>(D) &&
413       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
414        cast<FunctionDecl>(D)->isOutOfLine())) ||
415      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
416    return;
417
418  // If this replaces anything in the current scope,
419  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
420                               IEnd = IdResolver.end();
421  for (; I != IEnd; ++I) {
422    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
423      S->RemoveDecl(DeclPtrTy::make(*I));
424      IdResolver.RemoveDecl(*I);
425
426      // Should only need to replace one decl.
427      break;
428    }
429  }
430
431  S->AddDecl(DeclPtrTy::make(D));
432  IdResolver.AddDecl(D);
433}
434
435bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
436  return IdResolver.isDeclInScope(D, Ctx, Context, S);
437}
438
439static bool isOutOfScopePreviousDeclaration(NamedDecl *,
440                                            DeclContext*,
441                                            ASTContext&);
442
443/// Filters out lookup results that don't fall within the given scope
444/// as determined by isDeclInScope.
445static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
446                                 DeclContext *Ctx, Scope *S,
447                                 bool ConsiderLinkage) {
448  LookupResult::Filter F = R.makeFilter();
449  while (F.hasNext()) {
450    NamedDecl *D = F.next();
451
452    if (SemaRef.isDeclInScope(D, Ctx, S))
453      continue;
454
455    if (ConsiderLinkage &&
456        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
457      continue;
458
459    F.erase();
460  }
461
462  F.done();
463}
464
465static bool isUsingDecl(NamedDecl *D) {
466  return isa<UsingShadowDecl>(D) ||
467         isa<UnresolvedUsingTypenameDecl>(D) ||
468         isa<UnresolvedUsingValueDecl>(D);
469}
470
471/// Removes using shadow declarations from the lookup results.
472static void RemoveUsingDecls(LookupResult &R) {
473  LookupResult::Filter F = R.makeFilter();
474  while (F.hasNext())
475    if (isUsingDecl(F.next()))
476      F.erase();
477
478  F.done();
479}
480
481static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
482  if (D->isUsed() || D->hasAttr<UnusedAttr>())
483    return false;
484
485  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
486    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
487      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
488        if (!RD->hasTrivialConstructor())
489          return false;
490        if (!RD->hasTrivialDestructor())
491          return false;
492      }
493    }
494  }
495
496  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
497          !isa<ImplicitParamDecl>(D) &&
498          D->getDeclContext()->isFunctionOrMethod());
499}
500
501void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
502  if (S->decl_empty()) return;
503  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
504         "Scope shouldn't contain decls!");
505
506  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
507       I != E; ++I) {
508    Decl *TmpD = (*I).getAs<Decl>();
509    assert(TmpD && "This decl didn't get pushed??");
510
511    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
512    NamedDecl *D = cast<NamedDecl>(TmpD);
513
514    if (!D->getDeclName()) continue;
515
516    // Diagnose unused variables in this scope.
517    if (ShouldDiagnoseUnusedDecl(D))
518      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
519
520    // Remove this name from our lexical scope.
521    IdResolver.RemoveDecl(D);
522  }
523}
524
525/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
526/// return 0 if one not found.
527ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
528  // The third "scope" argument is 0 since we aren't enabling lazy built-in
529  // creation from this context.
530  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
531
532  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
533}
534
535/// getNonFieldDeclScope - Retrieves the innermost scope, starting
536/// from S, where a non-field would be declared. This routine copes
537/// with the difference between C and C++ scoping rules in structs and
538/// unions. For example, the following code is well-formed in C but
539/// ill-formed in C++:
540/// @code
541/// struct S6 {
542///   enum { BAR } e;
543/// };
544///
545/// void test_S6() {
546///   struct S6 a;
547///   a.e = BAR;
548/// }
549/// @endcode
550/// For the declaration of BAR, this routine will return a different
551/// scope. The scope S will be the scope of the unnamed enumeration
552/// within S6. In C++, this routine will return the scope associated
553/// with S6, because the enumeration's scope is a transparent
554/// context but structures can contain non-field names. In C, this
555/// routine will return the translation unit scope, since the
556/// enumeration's scope is a transparent context and structures cannot
557/// contain non-field names.
558Scope *Sema::getNonFieldDeclScope(Scope *S) {
559  while (((S->getFlags() & Scope::DeclScope) == 0) ||
560         (S->getEntity() &&
561          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
562         (S->isClassScope() && !getLangOptions().CPlusPlus))
563    S = S->getParent();
564  return S;
565}
566
567void Sema::InitBuiltinVaListType() {
568  if (!Context.getBuiltinVaListType().isNull())
569    return;
570
571  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
572  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
573  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
574  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
575}
576
577/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
578/// file scope.  lazily create a decl for it. ForRedeclaration is true
579/// if we're creating this built-in in anticipation of redeclaring the
580/// built-in.
581NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
582                                     Scope *S, bool ForRedeclaration,
583                                     SourceLocation Loc) {
584  Builtin::ID BID = (Builtin::ID)bid;
585
586  if (Context.BuiltinInfo.hasVAListUse(BID))
587    InitBuiltinVaListType();
588
589  ASTContext::GetBuiltinTypeError Error;
590  QualType R = Context.GetBuiltinType(BID, Error);
591  switch (Error) {
592  case ASTContext::GE_None:
593    // Okay
594    break;
595
596  case ASTContext::GE_Missing_stdio:
597    if (ForRedeclaration)
598      Diag(Loc, diag::err_implicit_decl_requires_stdio)
599        << Context.BuiltinInfo.GetName(BID);
600    return 0;
601
602  case ASTContext::GE_Missing_setjmp:
603    if (ForRedeclaration)
604      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
605        << Context.BuiltinInfo.GetName(BID);
606    return 0;
607  }
608
609  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
610    Diag(Loc, diag::ext_implicit_lib_function_decl)
611      << Context.BuiltinInfo.GetName(BID)
612      << R;
613    if (Context.BuiltinInfo.getHeaderName(BID) &&
614        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
615          != Diagnostic::Ignored)
616      Diag(Loc, diag::note_please_include_header)
617        << Context.BuiltinInfo.getHeaderName(BID)
618        << Context.BuiltinInfo.GetName(BID);
619  }
620
621  FunctionDecl *New = FunctionDecl::Create(Context,
622                                           Context.getTranslationUnitDecl(),
623                                           Loc, II, R, /*TInfo=*/0,
624                                           FunctionDecl::Extern, false,
625                                           /*hasPrototype=*/true);
626  New->setImplicit();
627
628  // Create Decl objects for each parameter, adding them to the
629  // FunctionDecl.
630  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
631    llvm::SmallVector<ParmVarDecl*, 16> Params;
632    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
633      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
634                                           FT->getArgType(i), /*TInfo=*/0,
635                                           VarDecl::None, 0));
636    New->setParams(Context, Params.data(), Params.size());
637  }
638
639  AddKnownFunctionAttributes(New);
640
641  // TUScope is the translation-unit scope to insert this function into.
642  // FIXME: This is hideous. We need to teach PushOnScopeChains to
643  // relate Scopes to DeclContexts, and probably eliminate CurContext
644  // entirely, but we're not there yet.
645  DeclContext *SavedContext = CurContext;
646  CurContext = Context.getTranslationUnitDecl();
647  PushOnScopeChains(New, TUScope);
648  CurContext = SavedContext;
649  return New;
650}
651
652/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
653/// same name and scope as a previous declaration 'Old'.  Figure out
654/// how to resolve this situation, merging decls or emitting
655/// diagnostics as appropriate. If there was an error, set New to be invalid.
656///
657void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
658  // If the new decl is known invalid already, don't bother doing any
659  // merging checks.
660  if (New->isInvalidDecl()) return;
661
662  // Allow multiple definitions for ObjC built-in typedefs.
663  // FIXME: Verify the underlying types are equivalent!
664  if (getLangOptions().ObjC1) {
665    const IdentifierInfo *TypeID = New->getIdentifier();
666    switch (TypeID->getLength()) {
667    default: break;
668    case 2:
669      if (!TypeID->isStr("id"))
670        break;
671      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
672      // Install the built-in type for 'id', ignoring the current definition.
673      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
674      return;
675    case 5:
676      if (!TypeID->isStr("Class"))
677        break;
678      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
679      // Install the built-in type for 'Class', ignoring the current definition.
680      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
681      return;
682    case 3:
683      if (!TypeID->isStr("SEL"))
684        break;
685      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
686      // Install the built-in type for 'SEL', ignoring the current definition.
687      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
688      return;
689    case 8:
690      if (!TypeID->isStr("Protocol"))
691        break;
692      Context.setObjCProtoType(New->getUnderlyingType());
693      return;
694    }
695    // Fall through - the typedef name was not a builtin type.
696  }
697
698  // Verify the old decl was also a type.
699  TypeDecl *Old = 0;
700  if (!OldDecls.isSingleResult() ||
701      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
702    Diag(New->getLocation(), diag::err_redefinition_different_kind)
703      << New->getDeclName();
704
705    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
706    if (OldD->getLocation().isValid())
707      Diag(OldD->getLocation(), diag::note_previous_definition);
708
709    return New->setInvalidDecl();
710  }
711
712  // If the old declaration is invalid, just give up here.
713  if (Old->isInvalidDecl())
714    return New->setInvalidDecl();
715
716  // Determine the "old" type we'll use for checking and diagnostics.
717  QualType OldType;
718  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
719    OldType = OldTypedef->getUnderlyingType();
720  else
721    OldType = Context.getTypeDeclType(Old);
722
723  // If the typedef types are not identical, reject them in all languages and
724  // with any extensions enabled.
725
726  if (OldType != New->getUnderlyingType() &&
727      Context.getCanonicalType(OldType) !=
728      Context.getCanonicalType(New->getUnderlyingType())) {
729    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
730      << New->getUnderlyingType() << OldType;
731    if (Old->getLocation().isValid())
732      Diag(Old->getLocation(), diag::note_previous_definition);
733    return New->setInvalidDecl();
734  }
735
736  if (getLangOptions().Microsoft)
737    return;
738
739  // C++ [dcl.typedef]p2:
740  //   In a given non-class scope, a typedef specifier can be used to
741  //   redefine the name of any type declared in that scope to refer
742  //   to the type to which it already refers.
743  if (getLangOptions().CPlusPlus) {
744    if (!isa<CXXRecordDecl>(CurContext))
745      return;
746    Diag(New->getLocation(), diag::err_redefinition)
747      << New->getDeclName();
748    Diag(Old->getLocation(), diag::note_previous_definition);
749    return New->setInvalidDecl();
750  }
751
752  // If we have a redefinition of a typedef in C, emit a warning.  This warning
753  // is normally mapped to an error, but can be controlled with
754  // -Wtypedef-redefinition.  If either the original or the redefinition is
755  // in a system header, don't emit this for compatibility with GCC.
756  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
757      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
758       Context.getSourceManager().isInSystemHeader(New->getLocation())))
759    return;
760
761  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
762    << New->getDeclName();
763  Diag(Old->getLocation(), diag::note_previous_definition);
764  return;
765}
766
767/// DeclhasAttr - returns true if decl Declaration already has the target
768/// attribute.
769static bool
770DeclHasAttr(const Decl *decl, const Attr *target) {
771  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
772    if (attr->getKind() == target->getKind())
773      return true;
774
775  return false;
776}
777
778/// MergeAttributes - append attributes from the Old decl to the New one.
779static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
780  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
781    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
782      Attr *NewAttr = attr->clone(C);
783      NewAttr->setInherited(true);
784      New->addAttr(NewAttr);
785    }
786  }
787}
788
789/// Used in MergeFunctionDecl to keep track of function parameters in
790/// C.
791struct GNUCompatibleParamWarning {
792  ParmVarDecl *OldParm;
793  ParmVarDecl *NewParm;
794  QualType PromotedType;
795};
796
797
798/// getSpecialMember - get the special member enum for a method.
799static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
800                                               const CXXMethodDecl *MD) {
801  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
802    if (Ctor->isDefaultConstructor())
803      return Sema::CXXDefaultConstructor;
804    if (Ctor->isCopyConstructor())
805      return Sema::CXXCopyConstructor;
806  }
807
808  if (isa<CXXDestructorDecl>(MD))
809    return Sema::CXXDestructor;
810
811  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
812  return Sema::CXXCopyAssignment;
813}
814
815/// MergeFunctionDecl - We just parsed a function 'New' from
816/// declarator D which has the same name and scope as a previous
817/// declaration 'Old'.  Figure out how to resolve this situation,
818/// merging decls or emitting diagnostics as appropriate.
819///
820/// In C++, New and Old must be declarations that are not
821/// overloaded. Use IsOverload to determine whether New and Old are
822/// overloaded, and to select the Old declaration that New should be
823/// merged with.
824///
825/// Returns true if there was an error, false otherwise.
826bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
827  // Verify the old decl was also a function.
828  FunctionDecl *Old = 0;
829  if (FunctionTemplateDecl *OldFunctionTemplate
830        = dyn_cast<FunctionTemplateDecl>(OldD))
831    Old = OldFunctionTemplate->getTemplatedDecl();
832  else
833    Old = dyn_cast<FunctionDecl>(OldD);
834  if (!Old) {
835    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
836      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
837      Diag(Shadow->getTargetDecl()->getLocation(),
838           diag::note_using_decl_target);
839      Diag(Shadow->getUsingDecl()->getLocation(),
840           diag::note_using_decl) << 0;
841      return true;
842    }
843
844    Diag(New->getLocation(), diag::err_redefinition_different_kind)
845      << New->getDeclName();
846    Diag(OldD->getLocation(), diag::note_previous_definition);
847    return true;
848  }
849
850  // Determine whether the previous declaration was a definition,
851  // implicit declaration, or a declaration.
852  diag::kind PrevDiag;
853  if (Old->isThisDeclarationADefinition())
854    PrevDiag = diag::note_previous_definition;
855  else if (Old->isImplicit())
856    PrevDiag = diag::note_previous_implicit_declaration;
857  else
858    PrevDiag = diag::note_previous_declaration;
859
860  QualType OldQType = Context.getCanonicalType(Old->getType());
861  QualType NewQType = Context.getCanonicalType(New->getType());
862
863  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
864      New->getStorageClass() == FunctionDecl::Static &&
865      Old->getStorageClass() != FunctionDecl::Static) {
866    Diag(New->getLocation(), diag::err_static_non_static)
867      << New;
868    Diag(Old->getLocation(), PrevDiag);
869    return true;
870  }
871
872  if (getLangOptions().CPlusPlus) {
873    // (C++98 13.1p2):
874    //   Certain function declarations cannot be overloaded:
875    //     -- Function declarations that differ only in the return type
876    //        cannot be overloaded.
877    QualType OldReturnType
878      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
879    QualType NewReturnType
880      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
881    if (OldReturnType != NewReturnType) {
882      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
883      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
884      return true;
885    }
886
887    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
888    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
889    if (OldMethod && NewMethod) {
890      if (!NewMethod->getFriendObjectKind() &&
891          NewMethod->getLexicalDeclContext()->isRecord()) {
892        //    -- Member function declarations with the same name and the
893        //       same parameter types cannot be overloaded if any of them
894        //       is a static member function declaration.
895        if (OldMethod->isStatic() || NewMethod->isStatic()) {
896          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
897          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
898          return true;
899        }
900
901        // C++ [class.mem]p1:
902        //   [...] A member shall not be declared twice in the
903        //   member-specification, except that a nested class or member
904        //   class template can be declared and then later defined.
905        unsigned NewDiag;
906        if (isa<CXXConstructorDecl>(OldMethod))
907          NewDiag = diag::err_constructor_redeclared;
908        else if (isa<CXXDestructorDecl>(NewMethod))
909          NewDiag = diag::err_destructor_redeclared;
910        else if (isa<CXXConversionDecl>(NewMethod))
911          NewDiag = diag::err_conv_function_redeclared;
912        else
913          NewDiag = diag::err_member_redeclared;
914
915        Diag(New->getLocation(), NewDiag);
916        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
917      } else {
918        if (OldMethod->isImplicit()) {
919          Diag(NewMethod->getLocation(),
920               diag::err_definition_of_implicitly_declared_member)
921          << New << getSpecialMember(Context, OldMethod);
922
923          Diag(OldMethod->getLocation(),
924               diag::note_previous_implicit_declaration);
925          return true;
926        }
927      }
928    }
929
930    // (C++98 8.3.5p3):
931    //   All declarations for a function shall agree exactly in both the
932    //   return type and the parameter-type-list.
933    // attributes should be ignored when comparing.
934    if (Context.getNoReturnType(OldQType, false) ==
935        Context.getNoReturnType(NewQType, false))
936      return MergeCompatibleFunctionDecls(New, Old);
937
938    // Fall through for conflicting redeclarations and redefinitions.
939  }
940
941  // C: Function types need to be compatible, not identical. This handles
942  // duplicate function decls like "void f(int); void f(enum X);" properly.
943  if (!getLangOptions().CPlusPlus &&
944      Context.typesAreCompatible(OldQType, NewQType)) {
945    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
946    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
947    const FunctionProtoType *OldProto = 0;
948    if (isa<FunctionNoProtoType>(NewFuncType) &&
949        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
950      // The old declaration provided a function prototype, but the
951      // new declaration does not. Merge in the prototype.
952      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
953      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
954                                                 OldProto->arg_type_end());
955      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
956                                         ParamTypes.data(), ParamTypes.size(),
957                                         OldProto->isVariadic(),
958                                         OldProto->getTypeQuals());
959      New->setType(NewQType);
960      New->setHasInheritedPrototype();
961
962      // Synthesize a parameter for each argument type.
963      llvm::SmallVector<ParmVarDecl*, 16> Params;
964      for (FunctionProtoType::arg_type_iterator
965             ParamType = OldProto->arg_type_begin(),
966             ParamEnd = OldProto->arg_type_end();
967           ParamType != ParamEnd; ++ParamType) {
968        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
969                                                 SourceLocation(), 0,
970                                                 *ParamType, /*TInfo=*/0,
971                                                 VarDecl::None, 0);
972        Param->setImplicit();
973        Params.push_back(Param);
974      }
975
976      New->setParams(Context, Params.data(), Params.size());
977    }
978
979    return MergeCompatibleFunctionDecls(New, Old);
980  }
981
982  // GNU C permits a K&R definition to follow a prototype declaration
983  // if the declared types of the parameters in the K&R definition
984  // match the types in the prototype declaration, even when the
985  // promoted types of the parameters from the K&R definition differ
986  // from the types in the prototype. GCC then keeps the types from
987  // the prototype.
988  //
989  // If a variadic prototype is followed by a non-variadic K&R definition,
990  // the K&R definition becomes variadic.  This is sort of an edge case, but
991  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
992  // C99 6.9.1p8.
993  if (!getLangOptions().CPlusPlus &&
994      Old->hasPrototype() && !New->hasPrototype() &&
995      New->getType()->getAs<FunctionProtoType>() &&
996      Old->getNumParams() == New->getNumParams()) {
997    llvm::SmallVector<QualType, 16> ArgTypes;
998    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
999    const FunctionProtoType *OldProto
1000      = Old->getType()->getAs<FunctionProtoType>();
1001    const FunctionProtoType *NewProto
1002      = New->getType()->getAs<FunctionProtoType>();
1003
1004    // Determine whether this is the GNU C extension.
1005    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1006                                               NewProto->getResultType());
1007    bool LooseCompatible = !MergedReturn.isNull();
1008    for (unsigned Idx = 0, End = Old->getNumParams();
1009         LooseCompatible && Idx != End; ++Idx) {
1010      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1011      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1012      if (Context.typesAreCompatible(OldParm->getType(),
1013                                     NewProto->getArgType(Idx))) {
1014        ArgTypes.push_back(NewParm->getType());
1015      } else if (Context.typesAreCompatible(OldParm->getType(),
1016                                            NewParm->getType())) {
1017        GNUCompatibleParamWarning Warn
1018          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1019        Warnings.push_back(Warn);
1020        ArgTypes.push_back(NewParm->getType());
1021      } else
1022        LooseCompatible = false;
1023    }
1024
1025    if (LooseCompatible) {
1026      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1027        Diag(Warnings[Warn].NewParm->getLocation(),
1028             diag::ext_param_promoted_not_compatible_with_prototype)
1029          << Warnings[Warn].PromotedType
1030          << Warnings[Warn].OldParm->getType();
1031        Diag(Warnings[Warn].OldParm->getLocation(),
1032             diag::note_previous_declaration);
1033      }
1034
1035      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1036                                           ArgTypes.size(),
1037                                           OldProto->isVariadic(), 0));
1038      return MergeCompatibleFunctionDecls(New, Old);
1039    }
1040
1041    // Fall through to diagnose conflicting types.
1042  }
1043
1044  // A function that has already been declared has been redeclared or defined
1045  // with a different type- show appropriate diagnostic
1046  if (unsigned BuiltinID = Old->getBuiltinID()) {
1047    // The user has declared a builtin function with an incompatible
1048    // signature.
1049    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1050      // The function the user is redeclaring is a library-defined
1051      // function like 'malloc' or 'printf'. Warn about the
1052      // redeclaration, then pretend that we don't know about this
1053      // library built-in.
1054      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1055      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1056        << Old << Old->getType();
1057      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1058      Old->setInvalidDecl();
1059      return false;
1060    }
1061
1062    PrevDiag = diag::note_previous_builtin_declaration;
1063  }
1064
1065  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1066  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1067  return true;
1068}
1069
1070/// \brief Completes the merge of two function declarations that are
1071/// known to be compatible.
1072///
1073/// This routine handles the merging of attributes and other
1074/// properties of function declarations form the old declaration to
1075/// the new declaration, once we know that New is in fact a
1076/// redeclaration of Old.
1077///
1078/// \returns false
1079bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1080  // Merge the attributes
1081  MergeAttributes(New, Old, Context);
1082
1083  // Merge the storage class.
1084  if (Old->getStorageClass() != FunctionDecl::Extern &&
1085      Old->getStorageClass() != FunctionDecl::None)
1086    New->setStorageClass(Old->getStorageClass());
1087
1088  // Merge "pure" flag.
1089  if (Old->isPure())
1090    New->setPure();
1091
1092  // Merge the "deleted" flag.
1093  if (Old->isDeleted())
1094    New->setDeleted();
1095
1096  if (getLangOptions().CPlusPlus)
1097    return MergeCXXFunctionDecl(New, Old);
1098
1099  return false;
1100}
1101
1102/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1103/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1104/// situation, merging decls or emitting diagnostics as appropriate.
1105///
1106/// Tentative definition rules (C99 6.9.2p2) are checked by
1107/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1108/// definitions here, since the initializer hasn't been attached.
1109///
1110void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1111  // If the new decl is already invalid, don't do any other checking.
1112  if (New->isInvalidDecl())
1113    return;
1114
1115  // Verify the old decl was also a variable.
1116  VarDecl *Old = 0;
1117  if (!Previous.isSingleResult() ||
1118      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1119    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1120      << New->getDeclName();
1121    Diag(Previous.getRepresentativeDecl()->getLocation(),
1122         diag::note_previous_definition);
1123    return New->setInvalidDecl();
1124  }
1125
1126  MergeAttributes(New, Old, Context);
1127
1128  // Merge the types
1129  QualType MergedT;
1130  if (getLangOptions().CPlusPlus) {
1131    if (Context.hasSameType(New->getType(), Old->getType()))
1132      MergedT = New->getType();
1133    // C++ [basic.link]p10:
1134    //   [...] the types specified by all declarations referring to a given
1135    //   object or function shall be identical, except that declarations for an
1136    //   array object can specify array types that differ by the presence or
1137    //   absence of a major array bound (8.3.4).
1138    else if (Old->getType()->isIncompleteArrayType() &&
1139             New->getType()->isArrayType()) {
1140      CanQual<ArrayType> OldArray
1141        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1142      CanQual<ArrayType> NewArray
1143        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1144      if (OldArray->getElementType() == NewArray->getElementType())
1145        MergedT = New->getType();
1146    } else if (Old->getType()->isArrayType() &&
1147             New->getType()->isIncompleteArrayType()) {
1148      CanQual<ArrayType> OldArray
1149        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1150      CanQual<ArrayType> NewArray
1151        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1152      if (OldArray->getElementType() == NewArray->getElementType())
1153        MergedT = Old->getType();
1154    }
1155  } else {
1156    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1157  }
1158  if (MergedT.isNull()) {
1159    Diag(New->getLocation(), diag::err_redefinition_different_type)
1160      << New->getDeclName();
1161    Diag(Old->getLocation(), diag::note_previous_definition);
1162    return New->setInvalidDecl();
1163  }
1164  New->setType(MergedT);
1165
1166  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1167  if (New->getStorageClass() == VarDecl::Static &&
1168      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1169    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1170    Diag(Old->getLocation(), diag::note_previous_definition);
1171    return New->setInvalidDecl();
1172  }
1173  // C99 6.2.2p4:
1174  //   For an identifier declared with the storage-class specifier
1175  //   extern in a scope in which a prior declaration of that
1176  //   identifier is visible,23) if the prior declaration specifies
1177  //   internal or external linkage, the linkage of the identifier at
1178  //   the later declaration is the same as the linkage specified at
1179  //   the prior declaration. If no prior declaration is visible, or
1180  //   if the prior declaration specifies no linkage, then the
1181  //   identifier has external linkage.
1182  if (New->hasExternalStorage() && Old->hasLinkage())
1183    /* Okay */;
1184  else if (New->getStorageClass() != VarDecl::Static &&
1185           Old->getStorageClass() == VarDecl::Static) {
1186    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1187    Diag(Old->getLocation(), diag::note_previous_definition);
1188    return New->setInvalidDecl();
1189  }
1190
1191  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1192
1193  // FIXME: The test for external storage here seems wrong? We still
1194  // need to check for mismatches.
1195  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1196      // Don't complain about out-of-line definitions of static members.
1197      !(Old->getLexicalDeclContext()->isRecord() &&
1198        !New->getLexicalDeclContext()->isRecord())) {
1199    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1200    Diag(Old->getLocation(), diag::note_previous_definition);
1201    return New->setInvalidDecl();
1202  }
1203
1204  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1205    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1206    Diag(Old->getLocation(), diag::note_previous_definition);
1207  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1208    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1209    Diag(Old->getLocation(), diag::note_previous_definition);
1210  }
1211
1212  // Keep a chain of previous declarations.
1213  New->setPreviousDeclaration(Old);
1214}
1215
1216/// CheckFallThrough - Check that we don't fall off the end of a
1217/// Statement that should return a value.
1218///
1219/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1220/// MaybeFallThrough iff we might or might not fall off the end,
1221/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1222/// return.  We assume NeverFallThrough iff we never fall off the end of the
1223/// statement but we may return.  We assume that functions not marked noreturn
1224/// will return.
1225Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1226  // FIXME: Eventually share this CFG object when we have other warnings based
1227  // of the CFG.  This can be done using AnalysisContext.
1228  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1229
1230  // FIXME: They should never return 0, fix that, delete this code.
1231  if (cfg == 0)
1232    // FIXME: This should be NeverFallThrough
1233    return NeverFallThroughOrReturn;
1234  // The CFG leaves in dead things, and we don't want to dead code paths to
1235  // confuse us, so we mark all live things first.
1236  std::queue<CFGBlock*> workq;
1237  llvm::BitVector live(cfg->getNumBlockIDs());
1238  // Prep work queue
1239  workq.push(&cfg->getEntry());
1240  // Solve
1241  while (!workq.empty()) {
1242    CFGBlock *item = workq.front();
1243    workq.pop();
1244    live.set(item->getBlockID());
1245    for (CFGBlock::succ_iterator I=item->succ_begin(),
1246           E=item->succ_end();
1247         I != E;
1248         ++I) {
1249      if ((*I) && !live[(*I)->getBlockID()]) {
1250        live.set((*I)->getBlockID());
1251        workq.push(*I);
1252      }
1253    }
1254  }
1255
1256  // Now we know what is live, we check the live precessors of the exit block
1257  // and look for fall through paths, being careful to ignore normal returns,
1258  // and exceptional paths.
1259  bool HasLiveReturn = false;
1260  bool HasFakeEdge = false;
1261  bool HasPlainEdge = false;
1262  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1263         E = cfg->getExit().pred_end();
1264       I != E;
1265       ++I) {
1266    CFGBlock& B = **I;
1267    if (!live[B.getBlockID()])
1268      continue;
1269    if (B.size() == 0) {
1270      // A labeled empty statement, or the entry block...
1271      HasPlainEdge = true;
1272      continue;
1273    }
1274    Stmt *S = B[B.size()-1];
1275    if (isa<ReturnStmt>(S)) {
1276      HasLiveReturn = true;
1277      continue;
1278    }
1279    if (isa<ObjCAtThrowStmt>(S)) {
1280      HasFakeEdge = true;
1281      continue;
1282    }
1283    if (isa<CXXThrowExpr>(S)) {
1284      HasFakeEdge = true;
1285      continue;
1286    }
1287    bool NoReturnEdge = false;
1288    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1289      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1290      if (CEE->getType().getNoReturnAttr()) {
1291        NoReturnEdge = true;
1292        HasFakeEdge = true;
1293      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1294        ValueDecl *VD = DRE->getDecl();
1295        if (VD->hasAttr<NoReturnAttr>()) {
1296          NoReturnEdge = true;
1297          HasFakeEdge = true;
1298        }
1299      }
1300    }
1301    // FIXME: Add noreturn message sends.
1302    if (NoReturnEdge == false)
1303      HasPlainEdge = true;
1304  }
1305  if (!HasPlainEdge) {
1306    if (HasLiveReturn)
1307      return NeverFallThrough;
1308    return NeverFallThroughOrReturn;
1309  }
1310  if (HasFakeEdge || HasLiveReturn)
1311    return MaybeFallThrough;
1312  // This says AlwaysFallThrough for calls to functions that are not marked
1313  // noreturn, that don't return.  If people would like this warning to be more
1314  // accurate, such functions should be marked as noreturn.
1315  return AlwaysFallThrough;
1316}
1317
1318/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1319/// function that should return a value.  Check that we don't fall off the end
1320/// of a noreturn function.  We assume that functions and blocks not marked
1321/// noreturn will return.
1322void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1323  // FIXME: Would be nice if we had a better way to control cascading errors,
1324  // but for now, avoid them.  The problem is that when Parse sees:
1325  //   int foo() { return a; }
1326  // The return is eaten and the Sema code sees just:
1327  //   int foo() { }
1328  // which this code would then warn about.
1329  if (getDiagnostics().hasErrorOccurred())
1330    return;
1331
1332  bool ReturnsVoid = false;
1333  bool HasNoReturn = false;
1334  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1335    // If the result type of the function is a dependent type, we don't know
1336    // whether it will be void or not, so don't
1337    if (FD->getResultType()->isDependentType())
1338      return;
1339    if (FD->getResultType()->isVoidType())
1340      ReturnsVoid = true;
1341    if (FD->hasAttr<NoReturnAttr>())
1342      HasNoReturn = true;
1343  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1344    if (MD->getResultType()->isVoidType())
1345      ReturnsVoid = true;
1346    if (MD->hasAttr<NoReturnAttr>())
1347      HasNoReturn = true;
1348  }
1349
1350  // Short circuit for compilation speed.
1351  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1352       == Diagnostic::Ignored || ReturnsVoid)
1353      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1354          == Diagnostic::Ignored || !HasNoReturn)
1355      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1356          == Diagnostic::Ignored || !ReturnsVoid))
1357    return;
1358  // FIXME: Function try block
1359  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1360    switch (CheckFallThrough(Body)) {
1361    case MaybeFallThrough:
1362      if (HasNoReturn)
1363        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1364      else if (!ReturnsVoid)
1365        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1366      break;
1367    case AlwaysFallThrough:
1368      if (HasNoReturn)
1369        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1370      else if (!ReturnsVoid)
1371        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1372      break;
1373    case NeverFallThroughOrReturn:
1374      if (ReturnsVoid && !HasNoReturn)
1375        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1376      break;
1377    case NeverFallThrough:
1378      break;
1379    }
1380  }
1381}
1382
1383/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1384/// that should return a value.  Check that we don't fall off the end of a
1385/// noreturn block.  We assume that functions and blocks not marked noreturn
1386/// will return.
1387void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1388  // FIXME: Would be nice if we had a better way to control cascading errors,
1389  // but for now, avoid them.  The problem is that when Parse sees:
1390  //   int foo() { return a; }
1391  // The return is eaten and the Sema code sees just:
1392  //   int foo() { }
1393  // which this code would then warn about.
1394  if (getDiagnostics().hasErrorOccurred())
1395    return;
1396  bool ReturnsVoid = false;
1397  bool HasNoReturn = false;
1398  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1399    if (FT->getResultType()->isVoidType())
1400      ReturnsVoid = true;
1401    if (FT->getNoReturnAttr())
1402      HasNoReturn = true;
1403  }
1404
1405  // Short circuit for compilation speed.
1406  if (ReturnsVoid
1407      && !HasNoReturn
1408      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1409          == Diagnostic::Ignored || !ReturnsVoid))
1410    return;
1411  // FIXME: Funtion try block
1412  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1413    switch (CheckFallThrough(Body)) {
1414    case MaybeFallThrough:
1415      if (HasNoReturn)
1416        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1417      else if (!ReturnsVoid)
1418        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1419      break;
1420    case AlwaysFallThrough:
1421      if (HasNoReturn)
1422        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1423      else if (!ReturnsVoid)
1424        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1425      break;
1426    case NeverFallThroughOrReturn:
1427      if (ReturnsVoid)
1428        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1429      break;
1430    case NeverFallThrough:
1431      break;
1432    }
1433  }
1434}
1435
1436/// CheckParmsForFunctionDef - Check that the parameters of the given
1437/// function are appropriate for the definition of a function. This
1438/// takes care of any checks that cannot be performed on the
1439/// declaration itself, e.g., that the types of each of the function
1440/// parameters are complete.
1441bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1442  bool HasInvalidParm = false;
1443  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1444    ParmVarDecl *Param = FD->getParamDecl(p);
1445
1446    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1447    // function declarator that is part of a function definition of
1448    // that function shall not have incomplete type.
1449    //
1450    // This is also C++ [dcl.fct]p6.
1451    if (!Param->isInvalidDecl() &&
1452        RequireCompleteType(Param->getLocation(), Param->getType(),
1453                               diag::err_typecheck_decl_incomplete_type)) {
1454      Param->setInvalidDecl();
1455      HasInvalidParm = true;
1456    }
1457
1458    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1459    // declaration of each parameter shall include an identifier.
1460    if (Param->getIdentifier() == 0 &&
1461        !Param->isImplicit() &&
1462        !getLangOptions().CPlusPlus)
1463      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1464  }
1465
1466  return HasInvalidParm;
1467}
1468
1469/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1470/// no declarator (e.g. "struct foo;") is parsed.
1471Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1472  // FIXME: Error on auto/register at file scope
1473  // FIXME: Error on inline/virtual/explicit
1474  // FIXME: Warn on useless __thread
1475  // FIXME: Warn on useless const/volatile
1476  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1477  // FIXME: Warn on useless attributes
1478  Decl *TagD = 0;
1479  TagDecl *Tag = 0;
1480  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1481      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1482      DS.getTypeSpecType() == DeclSpec::TST_union ||
1483      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1484    TagD = static_cast<Decl *>(DS.getTypeRep());
1485
1486    if (!TagD) // We probably had an error
1487      return DeclPtrTy();
1488
1489    // Note that the above type specs guarantee that the
1490    // type rep is a Decl, whereas in many of the others
1491    // it's a Type.
1492    Tag = dyn_cast<TagDecl>(TagD);
1493  }
1494
1495  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1496    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1497    // or incomplete types shall not be restrict-qualified."
1498    if (TypeQuals & DeclSpec::TQ_restrict)
1499      Diag(DS.getRestrictSpecLoc(),
1500           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1501           << DS.getSourceRange();
1502  }
1503
1504  if (DS.isFriendSpecified()) {
1505    // If we're dealing with a class template decl, assume that the
1506    // template routines are handling it.
1507    if (TagD && isa<ClassTemplateDecl>(TagD))
1508      return DeclPtrTy();
1509    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1510  }
1511
1512  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1513    // If there are attributes in the DeclSpec, apply them to the record.
1514    if (const AttributeList *AL = DS.getAttributes())
1515      ProcessDeclAttributeList(S, Record, AL);
1516
1517    if (!Record->getDeclName() && Record->isDefinition() &&
1518        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1519      if (getLangOptions().CPlusPlus ||
1520          Record->getDeclContext()->isRecord())
1521        return BuildAnonymousStructOrUnion(S, DS, Record);
1522
1523      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1524        << DS.getSourceRange();
1525    }
1526
1527    // Microsoft allows unnamed struct/union fields. Don't complain
1528    // about them.
1529    // FIXME: Should we support Microsoft's extensions in this area?
1530    if (Record->getDeclName() && getLangOptions().Microsoft)
1531      return DeclPtrTy::make(Tag);
1532  }
1533
1534  if (!DS.isMissingDeclaratorOk() &&
1535      DS.getTypeSpecType() != DeclSpec::TST_error) {
1536    // Warn about typedefs of enums without names, since this is an
1537    // extension in both Microsoft an GNU.
1538    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1539        Tag && isa<EnumDecl>(Tag)) {
1540      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1541        << DS.getSourceRange();
1542      return DeclPtrTy::make(Tag);
1543    }
1544
1545    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1546      << DS.getSourceRange();
1547    return DeclPtrTy();
1548  }
1549
1550  return DeclPtrTy::make(Tag);
1551}
1552
1553/// We are trying to inject an anonymous member into the given scope;
1554/// check if there's an existing declaration that can't be overloaded.
1555///
1556/// \return true if this is a forbidden redeclaration
1557static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1558                                         Scope *S,
1559                                         DeclarationName Name,
1560                                         SourceLocation NameLoc,
1561                                         unsigned diagnostic) {
1562  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1563                 Sema::ForRedeclaration);
1564  if (!SemaRef.LookupName(R, S)) return false;
1565
1566  if (R.getAsSingle<TagDecl>())
1567    return false;
1568
1569  // Pick a representative declaration.
1570  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1571
1572  SemaRef.Diag(NameLoc, diagnostic) << Name;
1573  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1574
1575  return true;
1576}
1577
1578/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1579/// anonymous struct or union AnonRecord into the owning context Owner
1580/// and scope S. This routine will be invoked just after we realize
1581/// that an unnamed union or struct is actually an anonymous union or
1582/// struct, e.g.,
1583///
1584/// @code
1585/// union {
1586///   int i;
1587///   float f;
1588/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1589///    // f into the surrounding scope.x
1590/// @endcode
1591///
1592/// This routine is recursive, injecting the names of nested anonymous
1593/// structs/unions into the owning context and scope as well.
1594bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1595                                               RecordDecl *AnonRecord) {
1596  unsigned diagKind
1597    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1598                            : diag::err_anonymous_struct_member_redecl;
1599
1600  bool Invalid = false;
1601  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1602                               FEnd = AnonRecord->field_end();
1603       F != FEnd; ++F) {
1604    if ((*F)->getDeclName()) {
1605      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1606                                       (*F)->getLocation(), diagKind)) {
1607        // C++ [class.union]p2:
1608        //   The names of the members of an anonymous union shall be
1609        //   distinct from the names of any other entity in the
1610        //   scope in which the anonymous union is declared.
1611        Invalid = true;
1612      } else {
1613        // C++ [class.union]p2:
1614        //   For the purpose of name lookup, after the anonymous union
1615        //   definition, the members of the anonymous union are
1616        //   considered to have been defined in the scope in which the
1617        //   anonymous union is declared.
1618        Owner->makeDeclVisibleInContext(*F);
1619        S->AddDecl(DeclPtrTy::make(*F));
1620        IdResolver.AddDecl(*F);
1621      }
1622    } else if (const RecordType *InnerRecordType
1623                 = (*F)->getType()->getAs<RecordType>()) {
1624      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1625      if (InnerRecord->isAnonymousStructOrUnion())
1626        Invalid = Invalid ||
1627          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1628    }
1629  }
1630
1631  return Invalid;
1632}
1633
1634/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1635/// anonymous structure or union. Anonymous unions are a C++ feature
1636/// (C++ [class.union]) and a GNU C extension; anonymous structures
1637/// are a GNU C and GNU C++ extension.
1638Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1639                                                  RecordDecl *Record) {
1640  DeclContext *Owner = Record->getDeclContext();
1641
1642  // Diagnose whether this anonymous struct/union is an extension.
1643  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1644    Diag(Record->getLocation(), diag::ext_anonymous_union);
1645  else if (!Record->isUnion())
1646    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1647
1648  // C and C++ require different kinds of checks for anonymous
1649  // structs/unions.
1650  bool Invalid = false;
1651  if (getLangOptions().CPlusPlus) {
1652    const char* PrevSpec = 0;
1653    unsigned DiagID;
1654    // C++ [class.union]p3:
1655    //   Anonymous unions declared in a named namespace or in the
1656    //   global namespace shall be declared static.
1657    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1658        (isa<TranslationUnitDecl>(Owner) ||
1659         (isa<NamespaceDecl>(Owner) &&
1660          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1661      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1662      Invalid = true;
1663
1664      // Recover by adding 'static'.
1665      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1666                             PrevSpec, DiagID);
1667    }
1668    // C++ [class.union]p3:
1669    //   A storage class is not allowed in a declaration of an
1670    //   anonymous union in a class scope.
1671    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1672             isa<RecordDecl>(Owner)) {
1673      Diag(DS.getStorageClassSpecLoc(),
1674           diag::err_anonymous_union_with_storage_spec);
1675      Invalid = true;
1676
1677      // Recover by removing the storage specifier.
1678      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1679                             PrevSpec, DiagID);
1680    }
1681
1682    // C++ [class.union]p2:
1683    //   The member-specification of an anonymous union shall only
1684    //   define non-static data members. [Note: nested types and
1685    //   functions cannot be declared within an anonymous union. ]
1686    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1687                                 MemEnd = Record->decls_end();
1688         Mem != MemEnd; ++Mem) {
1689      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1690        // C++ [class.union]p3:
1691        //   An anonymous union shall not have private or protected
1692        //   members (clause 11).
1693        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1694          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1695            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1696          Invalid = true;
1697        }
1698      } else if ((*Mem)->isImplicit()) {
1699        // Any implicit members are fine.
1700      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1701        // This is a type that showed up in an
1702        // elaborated-type-specifier inside the anonymous struct or
1703        // union, but which actually declares a type outside of the
1704        // anonymous struct or union. It's okay.
1705      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1706        if (!MemRecord->isAnonymousStructOrUnion() &&
1707            MemRecord->getDeclName()) {
1708          // This is a nested type declaration.
1709          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1710            << (int)Record->isUnion();
1711          Invalid = true;
1712        }
1713      } else {
1714        // We have something that isn't a non-static data
1715        // member. Complain about it.
1716        unsigned DK = diag::err_anonymous_record_bad_member;
1717        if (isa<TypeDecl>(*Mem))
1718          DK = diag::err_anonymous_record_with_type;
1719        else if (isa<FunctionDecl>(*Mem))
1720          DK = diag::err_anonymous_record_with_function;
1721        else if (isa<VarDecl>(*Mem))
1722          DK = diag::err_anonymous_record_with_static;
1723        Diag((*Mem)->getLocation(), DK)
1724            << (int)Record->isUnion();
1725          Invalid = true;
1726      }
1727    }
1728  }
1729
1730  if (!Record->isUnion() && !Owner->isRecord()) {
1731    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1732      << (int)getLangOptions().CPlusPlus;
1733    Invalid = true;
1734  }
1735
1736  // Mock up a declarator.
1737  Declarator Dc(DS, Declarator::TypeNameContext);
1738  TypeSourceInfo *TInfo = 0;
1739  GetTypeForDeclarator(Dc, S, &TInfo);
1740  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1741
1742  // Create a declaration for this anonymous struct/union.
1743  NamedDecl *Anon = 0;
1744  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1745    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1746                             /*IdentifierInfo=*/0,
1747                             Context.getTypeDeclType(Record),
1748                             TInfo,
1749                             /*BitWidth=*/0, /*Mutable=*/false);
1750    Anon->setAccess(AS_public);
1751    if (getLangOptions().CPlusPlus)
1752      FieldCollector->Add(cast<FieldDecl>(Anon));
1753  } else {
1754    VarDecl::StorageClass SC;
1755    switch (DS.getStorageClassSpec()) {
1756    default: assert(0 && "Unknown storage class!");
1757    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1758    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1759    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1760    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1761    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1762    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1763    case DeclSpec::SCS_mutable:
1764      // mutable can only appear on non-static class members, so it's always
1765      // an error here
1766      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1767      Invalid = true;
1768      SC = VarDecl::None;
1769      break;
1770    }
1771
1772    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1773                           /*IdentifierInfo=*/0,
1774                           Context.getTypeDeclType(Record),
1775                           TInfo,
1776                           SC);
1777  }
1778  Anon->setImplicit();
1779
1780  // Add the anonymous struct/union object to the current
1781  // context. We'll be referencing this object when we refer to one of
1782  // its members.
1783  Owner->addDecl(Anon);
1784
1785  // Inject the members of the anonymous struct/union into the owning
1786  // context and into the identifier resolver chain for name lookup
1787  // purposes.
1788  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1789    Invalid = true;
1790
1791  // Mark this as an anonymous struct/union type. Note that we do not
1792  // do this until after we have already checked and injected the
1793  // members of this anonymous struct/union type, because otherwise
1794  // the members could be injected twice: once by DeclContext when it
1795  // builds its lookup table, and once by
1796  // InjectAnonymousStructOrUnionMembers.
1797  Record->setAnonymousStructOrUnion(true);
1798
1799  if (Invalid)
1800    Anon->setInvalidDecl();
1801
1802  return DeclPtrTy::make(Anon);
1803}
1804
1805
1806/// GetNameForDeclarator - Determine the full declaration name for the
1807/// given Declarator.
1808DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1809  return GetNameFromUnqualifiedId(D.getName());
1810}
1811
1812/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1813DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1814  switch (Name.getKind()) {
1815    case UnqualifiedId::IK_Identifier:
1816      return DeclarationName(Name.Identifier);
1817
1818    case UnqualifiedId::IK_OperatorFunctionId:
1819      return Context.DeclarationNames.getCXXOperatorName(
1820                                              Name.OperatorFunctionId.Operator);
1821
1822    case UnqualifiedId::IK_LiteralOperatorId:
1823      return Context.DeclarationNames.getCXXLiteralOperatorName(
1824                                                               Name.Identifier);
1825
1826    case UnqualifiedId::IK_ConversionFunctionId: {
1827      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1828      if (Ty.isNull())
1829        return DeclarationName();
1830
1831      return Context.DeclarationNames.getCXXConversionFunctionName(
1832                                                  Context.getCanonicalType(Ty));
1833    }
1834
1835    case UnqualifiedId::IK_ConstructorName: {
1836      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1837      if (Ty.isNull())
1838        return DeclarationName();
1839
1840      return Context.DeclarationNames.getCXXConstructorName(
1841                                                  Context.getCanonicalType(Ty));
1842    }
1843
1844    case UnqualifiedId::IK_DestructorName: {
1845      QualType Ty = GetTypeFromParser(Name.DestructorName);
1846      if (Ty.isNull())
1847        return DeclarationName();
1848
1849      return Context.DeclarationNames.getCXXDestructorName(
1850                                                           Context.getCanonicalType(Ty));
1851    }
1852
1853    case UnqualifiedId::IK_TemplateId: {
1854      TemplateName TName
1855        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1856      return Context.getNameForTemplate(TName);
1857    }
1858  }
1859
1860  assert(false && "Unknown name kind");
1861  return DeclarationName();
1862}
1863
1864/// isNearlyMatchingFunction - Determine whether the C++ functions
1865/// Declaration and Definition are "nearly" matching. This heuristic
1866/// is used to improve diagnostics in the case where an out-of-line
1867/// function definition doesn't match any declaration within
1868/// the class or namespace.
1869static bool isNearlyMatchingFunction(ASTContext &Context,
1870                                     FunctionDecl *Declaration,
1871                                     FunctionDecl *Definition) {
1872  if (Declaration->param_size() != Definition->param_size())
1873    return false;
1874  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1875    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1876    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1877
1878    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1879                                        DefParamTy.getNonReferenceType()))
1880      return false;
1881  }
1882
1883  return true;
1884}
1885
1886Sema::DeclPtrTy
1887Sema::HandleDeclarator(Scope *S, Declarator &D,
1888                       MultiTemplateParamsArg TemplateParamLists,
1889                       bool IsFunctionDefinition) {
1890  DeclarationName Name = GetNameForDeclarator(D);
1891
1892  // All of these full declarators require an identifier.  If it doesn't have
1893  // one, the ParsedFreeStandingDeclSpec action should be used.
1894  if (!Name) {
1895    if (!D.isInvalidType())  // Reject this if we think it is valid.
1896      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1897           diag::err_declarator_need_ident)
1898        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1899    return DeclPtrTy();
1900  }
1901
1902  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1903  // we find one that is.
1904  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1905         (S->getFlags() & Scope::TemplateParamScope) != 0)
1906    S = S->getParent();
1907
1908  // If this is an out-of-line definition of a member of a class template
1909  // or class template partial specialization, we may need to rebuild the
1910  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1911  // for more information.
1912  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1913  // handle expressions properly.
1914  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1915  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1916      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1917      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1918       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1919       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1920       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1921    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1922      // FIXME: Preserve type source info.
1923      QualType T = GetTypeFromParser(DS.getTypeRep());
1924
1925      DeclContext *SavedContext = CurContext;
1926      CurContext = DC;
1927      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1928      CurContext = SavedContext;
1929
1930      if (T.isNull())
1931        return DeclPtrTy();
1932      DS.UpdateTypeRep(T.getAsOpaquePtr());
1933    }
1934  }
1935
1936  DeclContext *DC;
1937  NamedDecl *New;
1938
1939  TypeSourceInfo *TInfo = 0;
1940  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1941
1942  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1943                        ForRedeclaration);
1944
1945  // See if this is a redefinition of a variable in the same scope.
1946  if (D.getCXXScopeSpec().isInvalid()) {
1947    DC = CurContext;
1948    D.setInvalidType();
1949  } else if (!D.getCXXScopeSpec().isSet()) {
1950    bool IsLinkageLookup = false;
1951
1952    // If the declaration we're planning to build will be a function
1953    // or object with linkage, then look for another declaration with
1954    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1955    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1956      /* Do nothing*/;
1957    else if (R->isFunctionType()) {
1958      if (CurContext->isFunctionOrMethod() ||
1959          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1960        IsLinkageLookup = true;
1961    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1962      IsLinkageLookup = true;
1963    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1964             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1965      IsLinkageLookup = true;
1966
1967    if (IsLinkageLookup)
1968      Previous.clear(LookupRedeclarationWithLinkage);
1969
1970    DC = CurContext;
1971    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1972  } else { // Something like "int foo::x;"
1973    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1974
1975    if (!DC) {
1976      // If we could not compute the declaration context, it's because the
1977      // declaration context is dependent but does not refer to a class,
1978      // class template, or class template partial specialization. Complain
1979      // and return early, to avoid the coming semantic disaster.
1980      Diag(D.getIdentifierLoc(),
1981           diag::err_template_qualified_declarator_no_match)
1982        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1983        << D.getCXXScopeSpec().getRange();
1984      return DeclPtrTy();
1985    }
1986
1987    if (!DC->isDependentContext() &&
1988        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1989      return DeclPtrTy();
1990
1991    LookupQualifiedName(Previous, DC);
1992
1993    // Don't consider using declarations as previous declarations for
1994    // out-of-line members.
1995    RemoveUsingDecls(Previous);
1996
1997    // C++ 7.3.1.2p2:
1998    // Members (including explicit specializations of templates) of a named
1999    // namespace can also be defined outside that namespace by explicit
2000    // qualification of the name being defined, provided that the entity being
2001    // defined was already declared in the namespace and the definition appears
2002    // after the point of declaration in a namespace that encloses the
2003    // declarations namespace.
2004    //
2005    // Note that we only check the context at this point. We don't yet
2006    // have enough information to make sure that PrevDecl is actually
2007    // the declaration we want to match. For example, given:
2008    //
2009    //   class X {
2010    //     void f();
2011    //     void f(float);
2012    //   };
2013    //
2014    //   void X::f(int) { } // ill-formed
2015    //
2016    // In this case, PrevDecl will point to the overload set
2017    // containing the two f's declared in X, but neither of them
2018    // matches.
2019
2020    // First check whether we named the global scope.
2021    if (isa<TranslationUnitDecl>(DC)) {
2022      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2023        << Name << D.getCXXScopeSpec().getRange();
2024    } else {
2025      DeclContext *Cur = CurContext;
2026      while (isa<LinkageSpecDecl>(Cur))
2027        Cur = Cur->getParent();
2028      if (!Cur->Encloses(DC)) {
2029        // The qualifying scope doesn't enclose the original declaration.
2030        // Emit diagnostic based on current scope.
2031        SourceLocation L = D.getIdentifierLoc();
2032        SourceRange R = D.getCXXScopeSpec().getRange();
2033        if (isa<FunctionDecl>(Cur))
2034          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2035        else
2036          Diag(L, diag::err_invalid_declarator_scope)
2037            << Name << cast<NamedDecl>(DC) << R;
2038        D.setInvalidType();
2039      }
2040    }
2041  }
2042
2043  if (Previous.isSingleResult() &&
2044      Previous.getFoundDecl()->isTemplateParameter()) {
2045    // Maybe we will complain about the shadowed template parameter.
2046    if (!D.isInvalidType())
2047      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2048                                          Previous.getFoundDecl()))
2049        D.setInvalidType();
2050
2051    // Just pretend that we didn't see the previous declaration.
2052    Previous.clear();
2053  }
2054
2055  // In C++, the previous declaration we find might be a tag type
2056  // (class or enum). In this case, the new declaration will hide the
2057  // tag type. Note that this does does not apply if we're declaring a
2058  // typedef (C++ [dcl.typedef]p4).
2059  if (Previous.isSingleTagDecl() &&
2060      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2061    Previous.clear();
2062
2063  bool Redeclaration = false;
2064  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2065    if (TemplateParamLists.size()) {
2066      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2067      return DeclPtrTy();
2068    }
2069
2070    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2071  } else if (R->isFunctionType()) {
2072    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2073                                  move(TemplateParamLists),
2074                                  IsFunctionDefinition, Redeclaration);
2075  } else {
2076    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2077                                  move(TemplateParamLists),
2078                                  Redeclaration);
2079  }
2080
2081  if (New == 0)
2082    return DeclPtrTy();
2083
2084  // If this has an identifier and is not an invalid redeclaration or
2085  // function template specialization, add it to the scope stack.
2086  if (Name && !(Redeclaration && New->isInvalidDecl()))
2087    PushOnScopeChains(New, S);
2088
2089  return DeclPtrTy::make(New);
2090}
2091
2092/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2093/// types into constant array types in certain situations which would otherwise
2094/// be errors (for GCC compatibility).
2095static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2096                                                    ASTContext &Context,
2097                                                    bool &SizeIsNegative) {
2098  // This method tries to turn a variable array into a constant
2099  // array even when the size isn't an ICE.  This is necessary
2100  // for compatibility with code that depends on gcc's buggy
2101  // constant expression folding, like struct {char x[(int)(char*)2];}
2102  SizeIsNegative = false;
2103
2104  QualifierCollector Qs;
2105  const Type *Ty = Qs.strip(T);
2106
2107  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2108    QualType Pointee = PTy->getPointeeType();
2109    QualType FixedType =
2110        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2111    if (FixedType.isNull()) return FixedType;
2112    FixedType = Context.getPointerType(FixedType);
2113    return Qs.apply(FixedType);
2114  }
2115
2116  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2117  if (!VLATy)
2118    return QualType();
2119  // FIXME: We should probably handle this case
2120  if (VLATy->getElementType()->isVariablyModifiedType())
2121    return QualType();
2122
2123  Expr::EvalResult EvalResult;
2124  if (!VLATy->getSizeExpr() ||
2125      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2126      !EvalResult.Val.isInt())
2127    return QualType();
2128
2129  llvm::APSInt &Res = EvalResult.Val.getInt();
2130  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2131    // TODO: preserve the size expression in declarator info
2132    return Context.getConstantArrayType(VLATy->getElementType(),
2133                                        Res, ArrayType::Normal, 0);
2134  }
2135
2136  SizeIsNegative = true;
2137  return QualType();
2138}
2139
2140/// \brief Register the given locally-scoped external C declaration so
2141/// that it can be found later for redeclarations
2142void
2143Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2144                                       const LookupResult &Previous,
2145                                       Scope *S) {
2146  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2147         "Decl is not a locally-scoped decl!");
2148  // Note that we have a locally-scoped external with this name.
2149  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2150
2151  if (!Previous.isSingleResult())
2152    return;
2153
2154  NamedDecl *PrevDecl = Previous.getFoundDecl();
2155
2156  // If there was a previous declaration of this variable, it may be
2157  // in our identifier chain. Update the identifier chain with the new
2158  // declaration.
2159  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2160    // The previous declaration was found on the identifer resolver
2161    // chain, so remove it from its scope.
2162    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2163      S = S->getParent();
2164
2165    if (S)
2166      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2167  }
2168}
2169
2170/// \brief Diagnose function specifiers on a declaration of an identifier that
2171/// does not identify a function.
2172void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2173  // FIXME: We should probably indicate the identifier in question to avoid
2174  // confusion for constructs like "inline int a(), b;"
2175  if (D.getDeclSpec().isInlineSpecified())
2176    Diag(D.getDeclSpec().getInlineSpecLoc(),
2177         diag::err_inline_non_function);
2178
2179  if (D.getDeclSpec().isVirtualSpecified())
2180    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2181         diag::err_virtual_non_function);
2182
2183  if (D.getDeclSpec().isExplicitSpecified())
2184    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2185         diag::err_explicit_non_function);
2186}
2187
2188NamedDecl*
2189Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2190                             QualType R,  TypeSourceInfo *TInfo,
2191                             LookupResult &Previous, bool &Redeclaration) {
2192  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2193  if (D.getCXXScopeSpec().isSet()) {
2194    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2195      << D.getCXXScopeSpec().getRange();
2196    D.setInvalidType();
2197    // Pretend we didn't see the scope specifier.
2198    DC = 0;
2199  }
2200
2201  if (getLangOptions().CPlusPlus) {
2202    // Check that there are no default arguments (C++ only).
2203    CheckExtraCXXDefaultArguments(D);
2204  }
2205
2206  DiagnoseFunctionSpecifiers(D);
2207
2208  if (D.getDeclSpec().isThreadSpecified())
2209    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2210
2211  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2212  if (!NewTD) return 0;
2213
2214  // Handle attributes prior to checking for duplicates in MergeVarDecl
2215  ProcessDeclAttributes(S, NewTD, D);
2216
2217  // Merge the decl with the existing one if appropriate. If the decl is
2218  // in an outer scope, it isn't the same thing.
2219  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2220  if (!Previous.empty()) {
2221    Redeclaration = true;
2222    MergeTypeDefDecl(NewTD, Previous);
2223  }
2224
2225  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2226  // then it shall have block scope.
2227  QualType T = NewTD->getUnderlyingType();
2228  if (T->isVariablyModifiedType()) {
2229    CurFunctionNeedsScopeChecking = true;
2230
2231    if (S->getFnParent() == 0) {
2232      bool SizeIsNegative;
2233      QualType FixedTy =
2234          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2235      if (!FixedTy.isNull()) {
2236        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2237        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2238      } else {
2239        if (SizeIsNegative)
2240          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2241        else if (T->isVariableArrayType())
2242          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2243        else
2244          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2245        NewTD->setInvalidDecl();
2246      }
2247    }
2248  }
2249
2250  // If this is the C FILE type, notify the AST context.
2251  if (IdentifierInfo *II = NewTD->getIdentifier())
2252    if (!NewTD->isInvalidDecl() &&
2253        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2254      if (II->isStr("FILE"))
2255        Context.setFILEDecl(NewTD);
2256      else if (II->isStr("jmp_buf"))
2257        Context.setjmp_bufDecl(NewTD);
2258      else if (II->isStr("sigjmp_buf"))
2259        Context.setsigjmp_bufDecl(NewTD);
2260    }
2261
2262  return NewTD;
2263}
2264
2265/// \brief Determines whether the given declaration is an out-of-scope
2266/// previous declaration.
2267///
2268/// This routine should be invoked when name lookup has found a
2269/// previous declaration (PrevDecl) that is not in the scope where a
2270/// new declaration by the same name is being introduced. If the new
2271/// declaration occurs in a local scope, previous declarations with
2272/// linkage may still be considered previous declarations (C99
2273/// 6.2.2p4-5, C++ [basic.link]p6).
2274///
2275/// \param PrevDecl the previous declaration found by name
2276/// lookup
2277///
2278/// \param DC the context in which the new declaration is being
2279/// declared.
2280///
2281/// \returns true if PrevDecl is an out-of-scope previous declaration
2282/// for a new delcaration with the same name.
2283static bool
2284isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2285                                ASTContext &Context) {
2286  if (!PrevDecl)
2287    return 0;
2288
2289  if (!PrevDecl->hasLinkage())
2290    return false;
2291
2292  if (Context.getLangOptions().CPlusPlus) {
2293    // C++ [basic.link]p6:
2294    //   If there is a visible declaration of an entity with linkage
2295    //   having the same name and type, ignoring entities declared
2296    //   outside the innermost enclosing namespace scope, the block
2297    //   scope declaration declares that same entity and receives the
2298    //   linkage of the previous declaration.
2299    DeclContext *OuterContext = DC->getLookupContext();
2300    if (!OuterContext->isFunctionOrMethod())
2301      // This rule only applies to block-scope declarations.
2302      return false;
2303    else {
2304      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2305      if (PrevOuterContext->isRecord())
2306        // We found a member function: ignore it.
2307        return false;
2308      else {
2309        // Find the innermost enclosing namespace for the new and
2310        // previous declarations.
2311        while (!OuterContext->isFileContext())
2312          OuterContext = OuterContext->getParent();
2313        while (!PrevOuterContext->isFileContext())
2314          PrevOuterContext = PrevOuterContext->getParent();
2315
2316        // The previous declaration is in a different namespace, so it
2317        // isn't the same function.
2318        if (OuterContext->getPrimaryContext() !=
2319            PrevOuterContext->getPrimaryContext())
2320          return false;
2321      }
2322    }
2323  }
2324
2325  return true;
2326}
2327
2328NamedDecl*
2329Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2330                              QualType R, TypeSourceInfo *TInfo,
2331                              LookupResult &Previous,
2332                              MultiTemplateParamsArg TemplateParamLists,
2333                              bool &Redeclaration) {
2334  DeclarationName Name = GetNameForDeclarator(D);
2335
2336  // Check that there are no default arguments (C++ only).
2337  if (getLangOptions().CPlusPlus)
2338    CheckExtraCXXDefaultArguments(D);
2339
2340  VarDecl *NewVD;
2341  VarDecl::StorageClass SC;
2342  switch (D.getDeclSpec().getStorageClassSpec()) {
2343  default: assert(0 && "Unknown storage class!");
2344  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2345  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2346  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2347  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2348  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2349  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2350  case DeclSpec::SCS_mutable:
2351    // mutable can only appear on non-static class members, so it's always
2352    // an error here
2353    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2354    D.setInvalidType();
2355    SC = VarDecl::None;
2356    break;
2357  }
2358
2359  IdentifierInfo *II = Name.getAsIdentifierInfo();
2360  if (!II) {
2361    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2362      << Name.getAsString();
2363    return 0;
2364  }
2365
2366  DiagnoseFunctionSpecifiers(D);
2367
2368  if (!DC->isRecord() && S->getFnParent() == 0) {
2369    // C99 6.9p2: The storage-class specifiers auto and register shall not
2370    // appear in the declaration specifiers in an external declaration.
2371    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2372
2373      // If this is a register variable with an asm label specified, then this
2374      // is a GNU extension.
2375      if (SC == VarDecl::Register && D.getAsmLabel())
2376        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2377      else
2378        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2379      D.setInvalidType();
2380    }
2381  }
2382  if (DC->isRecord() && !CurContext->isRecord()) {
2383    // This is an out-of-line definition of a static data member.
2384    if (SC == VarDecl::Static) {
2385      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2386           diag::err_static_out_of_line)
2387        << CodeModificationHint::CreateRemoval(
2388                                      D.getDeclSpec().getStorageClassSpecLoc());
2389    } else if (SC == VarDecl::None)
2390      SC = VarDecl::Static;
2391  }
2392  if (SC == VarDecl::Static) {
2393    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2394      if (RD->isLocalClass())
2395        Diag(D.getIdentifierLoc(),
2396             diag::err_static_data_member_not_allowed_in_local_class)
2397          << Name << RD->getDeclName();
2398    }
2399  }
2400
2401  // Match up the template parameter lists with the scope specifier, then
2402  // determine whether we have a template or a template specialization.
2403  bool isExplicitSpecialization = false;
2404  if (TemplateParameterList *TemplateParams
2405        = MatchTemplateParametersToScopeSpecifier(
2406                                  D.getDeclSpec().getSourceRange().getBegin(),
2407                                                  D.getCXXScopeSpec(),
2408                        (TemplateParameterList**)TemplateParamLists.get(),
2409                                                   TemplateParamLists.size(),
2410                                                  isExplicitSpecialization)) {
2411    if (TemplateParams->size() > 0) {
2412      // There is no such thing as a variable template.
2413      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2414        << II
2415        << SourceRange(TemplateParams->getTemplateLoc(),
2416                       TemplateParams->getRAngleLoc());
2417      return 0;
2418    } else {
2419      // There is an extraneous 'template<>' for this variable. Complain
2420      // about it, but allow the declaration of the variable.
2421      Diag(TemplateParams->getTemplateLoc(),
2422           diag::err_template_variable_noparams)
2423        << II
2424        << SourceRange(TemplateParams->getTemplateLoc(),
2425                       TemplateParams->getRAngleLoc());
2426
2427      isExplicitSpecialization = true;
2428    }
2429  }
2430
2431  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2432                          II, R, TInfo, SC);
2433
2434  if (D.isInvalidType())
2435    NewVD->setInvalidDecl();
2436
2437  if (D.getDeclSpec().isThreadSpecified()) {
2438    if (NewVD->hasLocalStorage())
2439      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2440    else if (!Context.Target.isTLSSupported())
2441      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2442    else
2443      NewVD->setThreadSpecified(true);
2444  }
2445
2446  // Set the lexical context. If the declarator has a C++ scope specifier, the
2447  // lexical context will be different from the semantic context.
2448  NewVD->setLexicalDeclContext(CurContext);
2449
2450  // Handle attributes prior to checking for duplicates in MergeVarDecl
2451  ProcessDeclAttributes(S, NewVD, D);
2452
2453  // Handle GNU asm-label extension (encoded as an attribute).
2454  if (Expr *E = (Expr*) D.getAsmLabel()) {
2455    // The parser guarantees this is a string.
2456    StringLiteral *SE = cast<StringLiteral>(E);
2457    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2458  }
2459
2460  // Don't consider existing declarations that are in a different
2461  // scope and are out-of-semantic-context declarations (if the new
2462  // declaration has linkage).
2463  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2464
2465  // Merge the decl with the existing one if appropriate.
2466  if (!Previous.empty()) {
2467    if (Previous.isSingleResult() &&
2468        isa<FieldDecl>(Previous.getFoundDecl()) &&
2469        D.getCXXScopeSpec().isSet()) {
2470      // The user tried to define a non-static data member
2471      // out-of-line (C++ [dcl.meaning]p1).
2472      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2473        << D.getCXXScopeSpec().getRange();
2474      Previous.clear();
2475      NewVD->setInvalidDecl();
2476    }
2477  } else if (D.getCXXScopeSpec().isSet()) {
2478    // No previous declaration in the qualifying scope.
2479    Diag(D.getIdentifierLoc(), diag::err_no_member)
2480      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2481      << D.getCXXScopeSpec().getRange();
2482    NewVD->setInvalidDecl();
2483  }
2484
2485  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2486
2487  // This is an explicit specialization of a static data member. Check it.
2488  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2489      CheckMemberSpecialization(NewVD, Previous))
2490    NewVD->setInvalidDecl();
2491
2492  // attributes declared post-definition are currently ignored
2493  if (Previous.isSingleResult()) {
2494    const VarDecl *Def = 0;
2495    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2496    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2497      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2498      Diag(Def->getLocation(), diag::note_previous_definition);
2499    }
2500  }
2501
2502  // If this is a locally-scoped extern C variable, update the map of
2503  // such variables.
2504  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2505      !NewVD->isInvalidDecl())
2506    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2507
2508  return NewVD;
2509}
2510
2511/// \brief Perform semantic checking on a newly-created variable
2512/// declaration.
2513///
2514/// This routine performs all of the type-checking required for a
2515/// variable declaration once it has been built. It is used both to
2516/// check variables after they have been parsed and their declarators
2517/// have been translated into a declaration, and to check variables
2518/// that have been instantiated from a template.
2519///
2520/// Sets NewVD->isInvalidDecl() if an error was encountered.
2521void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2522                                    LookupResult &Previous,
2523                                    bool &Redeclaration) {
2524  // If the decl is already known invalid, don't check it.
2525  if (NewVD->isInvalidDecl())
2526    return;
2527
2528  QualType T = NewVD->getType();
2529
2530  if (T->isObjCInterfaceType()) {
2531    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2532    return NewVD->setInvalidDecl();
2533  }
2534
2535  // Emit an error if an address space was applied to decl with local storage.
2536  // This includes arrays of objects with address space qualifiers, but not
2537  // automatic variables that point to other address spaces.
2538  // ISO/IEC TR 18037 S5.1.2
2539  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2540    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2541    return NewVD->setInvalidDecl();
2542  }
2543
2544  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2545      && !NewVD->hasAttr<BlocksAttr>())
2546    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2547
2548  bool isVM = T->isVariablyModifiedType();
2549  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2550      NewVD->hasAttr<BlocksAttr>())
2551    CurFunctionNeedsScopeChecking = true;
2552
2553  if ((isVM && NewVD->hasLinkage()) ||
2554      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2555    bool SizeIsNegative;
2556    QualType FixedTy =
2557        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2558
2559    if (FixedTy.isNull() && T->isVariableArrayType()) {
2560      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2561      // FIXME: This won't give the correct result for
2562      // int a[10][n];
2563      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2564
2565      if (NewVD->isFileVarDecl())
2566        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2567        << SizeRange;
2568      else if (NewVD->getStorageClass() == VarDecl::Static)
2569        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2570        << SizeRange;
2571      else
2572        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2573        << SizeRange;
2574      return NewVD->setInvalidDecl();
2575    }
2576
2577    if (FixedTy.isNull()) {
2578      if (NewVD->isFileVarDecl())
2579        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2580      else
2581        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2582      return NewVD->setInvalidDecl();
2583    }
2584
2585    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2586    NewVD->setType(FixedTy);
2587  }
2588
2589  if (Previous.empty() && NewVD->isExternC()) {
2590    // Since we did not find anything by this name and we're declaring
2591    // an extern "C" variable, look for a non-visible extern "C"
2592    // declaration with the same name.
2593    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2594      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2595    if (Pos != LocallyScopedExternalDecls.end())
2596      Previous.addDecl(Pos->second);
2597  }
2598
2599  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2600    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2601      << T;
2602    return NewVD->setInvalidDecl();
2603  }
2604
2605  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2606    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2607    return NewVD->setInvalidDecl();
2608  }
2609
2610  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2611    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2612    return NewVD->setInvalidDecl();
2613  }
2614
2615  if (!Previous.empty()) {
2616    Redeclaration = true;
2617    MergeVarDecl(NewVD, Previous);
2618  }
2619}
2620
2621/// \brief Data used with FindOverriddenMethod
2622struct FindOverriddenMethodData {
2623  Sema *S;
2624  CXXMethodDecl *Method;
2625};
2626
2627/// \brief Member lookup function that determines whether a given C++
2628/// method overrides a method in a base class, to be used with
2629/// CXXRecordDecl::lookupInBases().
2630static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2631                                 CXXBasePath &Path,
2632                                 void *UserData) {
2633  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2634
2635  FindOverriddenMethodData *Data
2636    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2637
2638  DeclarationName Name = Data->Method->getDeclName();
2639
2640  // FIXME: Do we care about other names here too?
2641  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2642    // We really want to find the base class constructor here.
2643    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2644    CanQualType CT = Data->S->Context.getCanonicalType(T);
2645
2646    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2647  }
2648
2649  for (Path.Decls = BaseRecord->lookup(Name);
2650       Path.Decls.first != Path.Decls.second;
2651       ++Path.Decls.first) {
2652    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2653      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2654        return true;
2655    }
2656  }
2657
2658  return false;
2659}
2660
2661/// AddOverriddenMethods - See if a method overrides any in the base classes,
2662/// and if so, check that it's a valid override and remember it.
2663void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2664  // Look for virtual methods in base classes that this method might override.
2665  CXXBasePaths Paths;
2666  FindOverriddenMethodData Data;
2667  Data.Method = MD;
2668  Data.S = this;
2669  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2670    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2671         E = Paths.found_decls_end(); I != E; ++I) {
2672      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2673        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2674            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2675            !CheckOverridingFunctionAttributes(MD, OldMD))
2676          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2677      }
2678    }
2679  }
2680}
2681
2682NamedDecl*
2683Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2684                              QualType R, TypeSourceInfo *TInfo,
2685                              LookupResult &Previous,
2686                              MultiTemplateParamsArg TemplateParamLists,
2687                              bool IsFunctionDefinition, bool &Redeclaration) {
2688  assert(R.getTypePtr()->isFunctionType());
2689
2690  DeclarationName Name = GetNameForDeclarator(D);
2691  FunctionDecl::StorageClass SC = FunctionDecl::None;
2692  switch (D.getDeclSpec().getStorageClassSpec()) {
2693  default: assert(0 && "Unknown storage class!");
2694  case DeclSpec::SCS_auto:
2695  case DeclSpec::SCS_register:
2696  case DeclSpec::SCS_mutable:
2697    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2698         diag::err_typecheck_sclass_func);
2699    D.setInvalidType();
2700    break;
2701  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2702  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2703  case DeclSpec::SCS_static: {
2704    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2705      // C99 6.7.1p5:
2706      //   The declaration of an identifier for a function that has
2707      //   block scope shall have no explicit storage-class specifier
2708      //   other than extern
2709      // See also (C++ [dcl.stc]p4).
2710      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2711           diag::err_static_block_func);
2712      SC = FunctionDecl::None;
2713    } else
2714      SC = FunctionDecl::Static;
2715    break;
2716  }
2717  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2718  }
2719
2720  if (D.getDeclSpec().isThreadSpecified())
2721    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2722
2723  bool isFriend = D.getDeclSpec().isFriendSpecified();
2724  bool isInline = D.getDeclSpec().isInlineSpecified();
2725  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2726  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2727
2728  // Check that the return type is not an abstract class type.
2729  // For record types, this is done by the AbstractClassUsageDiagnoser once
2730  // the class has been completely parsed.
2731  if (!DC->isRecord() &&
2732      RequireNonAbstractType(D.getIdentifierLoc(),
2733                             R->getAs<FunctionType>()->getResultType(),
2734                             diag::err_abstract_type_in_decl,
2735                             AbstractReturnType))
2736    D.setInvalidType();
2737
2738  // Do not allow returning a objc interface by-value.
2739  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2740    Diag(D.getIdentifierLoc(),
2741         diag::err_object_cannot_be_passed_returned_by_value) << 0
2742      << R->getAs<FunctionType>()->getResultType();
2743    D.setInvalidType();
2744  }
2745
2746  bool isVirtualOkay = false;
2747  FunctionDecl *NewFD;
2748
2749  if (isFriend) {
2750    // C++ [class.friend]p5
2751    //   A function can be defined in a friend declaration of a
2752    //   class . . . . Such a function is implicitly inline.
2753    isInline |= IsFunctionDefinition;
2754  }
2755
2756  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2757    // This is a C++ constructor declaration.
2758    assert(DC->isRecord() &&
2759           "Constructors can only be declared in a member context");
2760
2761    R = CheckConstructorDeclarator(D, R, SC);
2762
2763    // Create the new declaration
2764    NewFD = CXXConstructorDecl::Create(Context,
2765                                       cast<CXXRecordDecl>(DC),
2766                                       D.getIdentifierLoc(), Name, R, TInfo,
2767                                       isExplicit, isInline,
2768                                       /*isImplicitlyDeclared=*/false);
2769  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2770    // This is a C++ destructor declaration.
2771    if (DC->isRecord()) {
2772      R = CheckDestructorDeclarator(D, SC);
2773
2774      NewFD = CXXDestructorDecl::Create(Context,
2775                                        cast<CXXRecordDecl>(DC),
2776                                        D.getIdentifierLoc(), Name, R,
2777                                        isInline,
2778                                        /*isImplicitlyDeclared=*/false);
2779
2780      isVirtualOkay = true;
2781    } else {
2782      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2783
2784      // Create a FunctionDecl to satisfy the function definition parsing
2785      // code path.
2786      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2787                                   Name, R, TInfo, SC, isInline,
2788                                   /*hasPrototype=*/true);
2789      D.setInvalidType();
2790    }
2791  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2792    if (!DC->isRecord()) {
2793      Diag(D.getIdentifierLoc(),
2794           diag::err_conv_function_not_member);
2795      return 0;
2796    }
2797
2798    CheckConversionDeclarator(D, R, SC);
2799    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2800                                      D.getIdentifierLoc(), Name, R, TInfo,
2801                                      isInline, isExplicit);
2802
2803    isVirtualOkay = true;
2804  } else if (DC->isRecord()) {
2805    // If the of the function is the same as the name of the record, then this
2806    // must be an invalid constructor that has a return type.
2807    // (The parser checks for a return type and makes the declarator a
2808    // constructor if it has no return type).
2809    // must have an invalid constructor that has a return type
2810    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2811      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2812        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2813        << SourceRange(D.getIdentifierLoc());
2814      return 0;
2815    }
2816
2817    bool isStatic = SC == FunctionDecl::Static;
2818
2819    // [class.free]p1:
2820    // Any allocation function for a class T is a static member
2821    // (even if not explicitly declared static).
2822    if (Name.getCXXOverloadedOperator() == OO_New ||
2823        Name.getCXXOverloadedOperator() == OO_Array_New)
2824      isStatic = true;
2825
2826    // [class.free]p6 Any deallocation function for a class X is a static member
2827    // (even if not explicitly declared static).
2828    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2829        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2830      isStatic = true;
2831
2832    // This is a C++ method declaration.
2833    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2834                                  D.getIdentifierLoc(), Name, R, TInfo,
2835                                  isStatic, isInline);
2836
2837    isVirtualOkay = !isStatic;
2838  } else {
2839    // Determine whether the function was written with a
2840    // prototype. This true when:
2841    //   - we're in C++ (where every function has a prototype),
2842    //   - there is a prototype in the declarator, or
2843    //   - the type R of the function is some kind of typedef or other reference
2844    //     to a type name (which eventually refers to a function type).
2845    bool HasPrototype =
2846       getLangOptions().CPlusPlus ||
2847       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2848       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2849
2850    NewFD = FunctionDecl::Create(Context, DC,
2851                                 D.getIdentifierLoc(),
2852                                 Name, R, TInfo, SC, isInline, HasPrototype);
2853  }
2854
2855  if (D.isInvalidType())
2856    NewFD->setInvalidDecl();
2857
2858  // Set the lexical context. If the declarator has a C++
2859  // scope specifier, or is the object of a friend declaration, the
2860  // lexical context will be different from the semantic context.
2861  NewFD->setLexicalDeclContext(CurContext);
2862
2863  // Match up the template parameter lists with the scope specifier, then
2864  // determine whether we have a template or a template specialization.
2865  FunctionTemplateDecl *FunctionTemplate = 0;
2866  bool isExplicitSpecialization = false;
2867  bool isFunctionTemplateSpecialization = false;
2868  if (TemplateParameterList *TemplateParams
2869        = MatchTemplateParametersToScopeSpecifier(
2870                                  D.getDeclSpec().getSourceRange().getBegin(),
2871                                  D.getCXXScopeSpec(),
2872                           (TemplateParameterList**)TemplateParamLists.get(),
2873                                                  TemplateParamLists.size(),
2874                                                  isExplicitSpecialization)) {
2875    if (TemplateParams->size() > 0) {
2876      // This is a function template
2877
2878      // Check that we can declare a template here.
2879      if (CheckTemplateDeclScope(S, TemplateParams))
2880        return 0;
2881
2882      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2883                                                      NewFD->getLocation(),
2884                                                      Name, TemplateParams,
2885                                                      NewFD);
2886      FunctionTemplate->setLexicalDeclContext(CurContext);
2887      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2888    } else {
2889      // This is a function template specialization.
2890      isFunctionTemplateSpecialization = true;
2891    }
2892
2893    // FIXME: Free this memory properly.
2894    TemplateParamLists.release();
2895  }
2896
2897  // C++ [dcl.fct.spec]p5:
2898  //   The virtual specifier shall only be used in declarations of
2899  //   nonstatic class member functions that appear within a
2900  //   member-specification of a class declaration; see 10.3.
2901  //
2902  if (isVirtual && !NewFD->isInvalidDecl()) {
2903    if (!isVirtualOkay) {
2904       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2905           diag::err_virtual_non_function);
2906    } else if (!CurContext->isRecord()) {
2907      // 'virtual' was specified outside of the class.
2908      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2909        << CodeModificationHint::CreateRemoval(
2910                                           D.getDeclSpec().getVirtualSpecLoc());
2911    } else {
2912      // Okay: Add virtual to the method.
2913      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2914      CurClass->setMethodAsVirtual(NewFD);
2915    }
2916  }
2917
2918  // Filter out previous declarations that don't match the scope.
2919  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2920
2921  if (isFriend) {
2922    // DC is the namespace in which the function is being declared.
2923    assert((DC->isFileContext() || !Previous.empty()) &&
2924           "previously-undeclared friend function being created "
2925           "in a non-namespace context");
2926
2927    if (FunctionTemplate) {
2928      FunctionTemplate->setObjectOfFriendDecl(
2929                                   /* PreviouslyDeclared= */ !Previous.empty());
2930      FunctionTemplate->setAccess(AS_public);
2931    }
2932    else
2933      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2934
2935    NewFD->setAccess(AS_public);
2936  }
2937
2938  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2939      !CurContext->isRecord()) {
2940    // C++ [class.static]p1:
2941    //   A data or function member of a class may be declared static
2942    //   in a class definition, in which case it is a static member of
2943    //   the class.
2944
2945    // Complain about the 'static' specifier if it's on an out-of-line
2946    // member function definition.
2947    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2948         diag::err_static_out_of_line)
2949      << CodeModificationHint::CreateRemoval(
2950                                      D.getDeclSpec().getStorageClassSpecLoc());
2951  }
2952
2953  // Handle GNU asm-label extension (encoded as an attribute).
2954  if (Expr *E = (Expr*) D.getAsmLabel()) {
2955    // The parser guarantees this is a string.
2956    StringLiteral *SE = cast<StringLiteral>(E);
2957    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2958  }
2959
2960  // Copy the parameter declarations from the declarator D to the function
2961  // declaration NewFD, if they are available.  First scavenge them into Params.
2962  llvm::SmallVector<ParmVarDecl*, 16> Params;
2963  if (D.getNumTypeObjects() > 0) {
2964    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2965
2966    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2967    // function that takes no arguments, not a function that takes a
2968    // single void argument.
2969    // We let through "const void" here because Sema::GetTypeForDeclarator
2970    // already checks for that case.
2971    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2972        FTI.ArgInfo[0].Param &&
2973        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2974      // Empty arg list, don't push any params.
2975      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2976
2977      // In C++, the empty parameter-type-list must be spelled "void"; a
2978      // typedef of void is not permitted.
2979      if (getLangOptions().CPlusPlus &&
2980          Param->getType().getUnqualifiedType() != Context.VoidTy)
2981        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2982      // FIXME: Leaks decl?
2983    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2984      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2985        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2986        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2987        Param->setDeclContext(NewFD);
2988        Params.push_back(Param);
2989      }
2990    }
2991
2992  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2993    // When we're declaring a function with a typedef, typeof, etc as in the
2994    // following example, we'll need to synthesize (unnamed)
2995    // parameters for use in the declaration.
2996    //
2997    // @code
2998    // typedef void fn(int);
2999    // fn f;
3000    // @endcode
3001
3002    // Synthesize a parameter for each argument type.
3003    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3004         AE = FT->arg_type_end(); AI != AE; ++AI) {
3005      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3006                                               SourceLocation(), 0,
3007                                               *AI, /*TInfo=*/0,
3008                                               VarDecl::None, 0);
3009      Param->setImplicit();
3010      Params.push_back(Param);
3011    }
3012  } else {
3013    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3014           "Should not need args for typedef of non-prototype fn");
3015  }
3016  // Finally, we know we have the right number of parameters, install them.
3017  NewFD->setParams(Context, Params.data(), Params.size());
3018
3019  // If the declarator is a template-id, translate the parser's template
3020  // argument list into our AST format.
3021  bool HasExplicitTemplateArgs = false;
3022  TemplateArgumentListInfo TemplateArgs;
3023  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3024    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3025    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3026    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3027    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3028                                       TemplateId->getTemplateArgs(),
3029                                       TemplateId->NumArgs);
3030    translateTemplateArguments(TemplateArgsPtr,
3031                               TemplateArgs);
3032    TemplateArgsPtr.release();
3033
3034    HasExplicitTemplateArgs = true;
3035
3036    if (FunctionTemplate) {
3037      // FIXME: Diagnose function template with explicit template
3038      // arguments.
3039      HasExplicitTemplateArgs = false;
3040    } else if (!isFunctionTemplateSpecialization &&
3041               !D.getDeclSpec().isFriendSpecified()) {
3042      // We have encountered something that the user meant to be a
3043      // specialization (because it has explicitly-specified template
3044      // arguments) but that was not introduced with a "template<>" (or had
3045      // too few of them).
3046      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3047        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3048        << CodeModificationHint::CreateInsertion(
3049                                   D.getDeclSpec().getSourceRange().getBegin(),
3050                                                 "template<> ");
3051      isFunctionTemplateSpecialization = true;
3052    }
3053  }
3054
3055  if (isFunctionTemplateSpecialization) {
3056      if (CheckFunctionTemplateSpecialization(NewFD,
3057                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3058                                              Previous))
3059        NewFD->setInvalidDecl();
3060  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3061             CheckMemberSpecialization(NewFD, Previous))
3062    NewFD->setInvalidDecl();
3063
3064  // Perform semantic checking on the function declaration.
3065  bool OverloadableAttrRequired = false; // FIXME: HACK!
3066  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3067                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3068
3069  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3070          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3071         "previous declaration set still overloaded");
3072
3073  // If we have a function template, check the template parameter
3074  // list. This will check and merge default template arguments.
3075  if (FunctionTemplate) {
3076    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3077    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3078                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3079             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3080                                                : TPC_FunctionTemplate);
3081  }
3082
3083  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3084    // An out-of-line member function declaration must also be a
3085    // definition (C++ [dcl.meaning]p1).
3086    // Note that this is not the case for explicit specializations of
3087    // function templates or member functions of class templates, per
3088    // C++ [temp.expl.spec]p2.
3089    if (!IsFunctionDefinition && !isFriend &&
3090        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3091      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3092        << D.getCXXScopeSpec().getRange();
3093      NewFD->setInvalidDecl();
3094    } else if (!Redeclaration) {
3095      // The user tried to provide an out-of-line definition for a
3096      // function that is a member of a class or namespace, but there
3097      // was no such member function declared (C++ [class.mfct]p2,
3098      // C++ [namespace.memdef]p2). For example:
3099      //
3100      // class X {
3101      //   void f() const;
3102      // };
3103      //
3104      // void X::f() { } // ill-formed
3105      //
3106      // Complain about this problem, and attempt to suggest close
3107      // matches (e.g., those that differ only in cv-qualifiers and
3108      // whether the parameter types are references).
3109      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3110        << Name << DC << D.getCXXScopeSpec().getRange();
3111      NewFD->setInvalidDecl();
3112
3113      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3114                        ForRedeclaration);
3115      LookupQualifiedName(Prev, DC);
3116      assert(!Prev.isAmbiguous() &&
3117             "Cannot have an ambiguity in previous-declaration lookup");
3118      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3119           Func != FuncEnd; ++Func) {
3120        if (isa<FunctionDecl>(*Func) &&
3121            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3122          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3123      }
3124    }
3125  }
3126
3127  // Handle attributes. We need to have merged decls when handling attributes
3128  // (for example to check for conflicts, etc).
3129  // FIXME: This needs to happen before we merge declarations. Then,
3130  // let attribute merging cope with attribute conflicts.
3131  ProcessDeclAttributes(S, NewFD, D);
3132
3133  // attributes declared post-definition are currently ignored
3134  if (Redeclaration && Previous.isSingleResult()) {
3135    const FunctionDecl *Def;
3136    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3137    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3138      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3139      Diag(Def->getLocation(), diag::note_previous_definition);
3140    }
3141  }
3142
3143  AddKnownFunctionAttributes(NewFD);
3144
3145  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3146    // If a function name is overloadable in C, then every function
3147    // with that name must be marked "overloadable".
3148    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3149      << Redeclaration << NewFD;
3150    if (!Previous.empty())
3151      Diag(Previous.getRepresentativeDecl()->getLocation(),
3152           diag::note_attribute_overloadable_prev_overload);
3153    NewFD->addAttr(::new (Context) OverloadableAttr());
3154  }
3155
3156  // If this is a locally-scoped extern C function, update the
3157  // map of such names.
3158  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3159      && !NewFD->isInvalidDecl())
3160    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3161
3162  // Set this FunctionDecl's range up to the right paren.
3163  NewFD->setLocEnd(D.getSourceRange().getEnd());
3164
3165  if (FunctionTemplate && NewFD->isInvalidDecl())
3166    FunctionTemplate->setInvalidDecl();
3167
3168  if (FunctionTemplate)
3169    return FunctionTemplate;
3170
3171  return NewFD;
3172}
3173
3174/// \brief Perform semantic checking of a new function declaration.
3175///
3176/// Performs semantic analysis of the new function declaration
3177/// NewFD. This routine performs all semantic checking that does not
3178/// require the actual declarator involved in the declaration, and is
3179/// used both for the declaration of functions as they are parsed
3180/// (called via ActOnDeclarator) and for the declaration of functions
3181/// that have been instantiated via C++ template instantiation (called
3182/// via InstantiateDecl).
3183///
3184/// \param IsExplicitSpecialiation whether this new function declaration is
3185/// an explicit specialization of the previous declaration.
3186///
3187/// This sets NewFD->isInvalidDecl() to true if there was an error.
3188void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3189                                    LookupResult &Previous,
3190                                    bool IsExplicitSpecialization,
3191                                    bool &Redeclaration,
3192                                    bool &OverloadableAttrRequired) {
3193  // If NewFD is already known erroneous, don't do any of this checking.
3194  if (NewFD->isInvalidDecl())
3195    return;
3196
3197  if (NewFD->getResultType()->isVariablyModifiedType()) {
3198    // Functions returning a variably modified type violate C99 6.7.5.2p2
3199    // because all functions have linkage.
3200    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3201    return NewFD->setInvalidDecl();
3202  }
3203
3204  if (NewFD->isMain())
3205    CheckMain(NewFD);
3206
3207  // Check for a previous declaration of this name.
3208  if (Previous.empty() && NewFD->isExternC()) {
3209    // Since we did not find anything by this name and we're declaring
3210    // an extern "C" function, look for a non-visible extern "C"
3211    // declaration with the same name.
3212    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3213      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3214    if (Pos != LocallyScopedExternalDecls.end())
3215      Previous.addDecl(Pos->second);
3216  }
3217
3218  // Merge or overload the declaration with an existing declaration of
3219  // the same name, if appropriate.
3220  if (!Previous.empty()) {
3221    // Determine whether NewFD is an overload of PrevDecl or
3222    // a declaration that requires merging. If it's an overload,
3223    // there's no more work to do here; we'll just add the new
3224    // function to the scope.
3225
3226    NamedDecl *OldDecl = 0;
3227    if (!AllowOverloadingOfFunction(Previous, Context)) {
3228      Redeclaration = true;
3229      OldDecl = Previous.getFoundDecl();
3230    } else {
3231      if (!getLangOptions().CPlusPlus) {
3232        OverloadableAttrRequired = true;
3233
3234        // Functions marked "overloadable" must have a prototype (that
3235        // we can't get through declaration merging).
3236        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3237          Diag(NewFD->getLocation(),
3238               diag::err_attribute_overloadable_no_prototype)
3239            << NewFD;
3240          Redeclaration = true;
3241
3242          // Turn this into a variadic function with no parameters.
3243          QualType R = Context.getFunctionType(
3244                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3245                     0, 0, true, 0);
3246          NewFD->setType(R);
3247          return NewFD->setInvalidDecl();
3248        }
3249      }
3250
3251      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3252      case Ovl_Match:
3253        Redeclaration = true;
3254        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3255          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3256          Redeclaration = false;
3257        }
3258        break;
3259
3260      case Ovl_NonFunction:
3261        Redeclaration = true;
3262        break;
3263
3264      case Ovl_Overload:
3265        Redeclaration = false;
3266        break;
3267      }
3268    }
3269
3270    if (Redeclaration) {
3271      // NewFD and OldDecl represent declarations that need to be
3272      // merged.
3273      if (MergeFunctionDecl(NewFD, OldDecl))
3274        return NewFD->setInvalidDecl();
3275
3276      Previous.clear();
3277      Previous.addDecl(OldDecl);
3278
3279      if (FunctionTemplateDecl *OldTemplateDecl
3280                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3281        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3282        FunctionTemplateDecl *NewTemplateDecl
3283          = NewFD->getDescribedFunctionTemplate();
3284        assert(NewTemplateDecl && "Template/non-template mismatch");
3285        if (CXXMethodDecl *Method
3286              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3287          Method->setAccess(OldTemplateDecl->getAccess());
3288          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3289        }
3290
3291        // If this is an explicit specialization of a member that is a function
3292        // template, mark it as a member specialization.
3293        if (IsExplicitSpecialization &&
3294            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3295          NewTemplateDecl->setMemberSpecialization();
3296          assert(OldTemplateDecl->isMemberSpecialization());
3297        }
3298      } else {
3299        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3300          NewFD->setAccess(OldDecl->getAccess());
3301        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3302      }
3303    }
3304  }
3305
3306  // Semantic checking for this function declaration (in isolation).
3307  if (getLangOptions().CPlusPlus) {
3308    // C++-specific checks.
3309    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3310      CheckConstructor(Constructor);
3311    } else if (CXXDestructorDecl *Destructor =
3312                dyn_cast<CXXDestructorDecl>(NewFD)) {
3313      CXXRecordDecl *Record = Destructor->getParent();
3314      QualType ClassType = Context.getTypeDeclType(Record);
3315
3316      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3317      // type is dependent? Both gcc and edg can handle that.
3318      if (!ClassType->isDependentType()) {
3319        DeclarationName Name
3320          = Context.DeclarationNames.getCXXDestructorName(
3321                                        Context.getCanonicalType(ClassType));
3322        if (NewFD->getDeclName() != Name) {
3323          Diag(NewFD->getLocation(), diag::err_destructor_name);
3324          return NewFD->setInvalidDecl();
3325        }
3326      }
3327
3328      Record->setUserDeclaredDestructor(true);
3329      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3330      // user-defined destructor.
3331      Record->setPOD(false);
3332
3333      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3334      // declared destructor.
3335      // FIXME: C++0x: don't do this for "= default" destructors
3336      Record->setHasTrivialDestructor(false);
3337    } else if (CXXConversionDecl *Conversion
3338               = dyn_cast<CXXConversionDecl>(NewFD)) {
3339      ActOnConversionDeclarator(Conversion);
3340    }
3341
3342    // Find any virtual functions that this function overrides.
3343    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3344      if (!Method->isFunctionTemplateSpecialization() &&
3345          !Method->getDescribedFunctionTemplate())
3346        AddOverriddenMethods(Method->getParent(), Method);
3347    }
3348
3349    // Additional checks for the destructor; make sure we do this after we
3350    // figure out whether the destructor is virtual.
3351    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3352      if (!Destructor->getParent()->isDependentType())
3353        CheckDestructor(Destructor);
3354
3355    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3356    if (NewFD->isOverloadedOperator() &&
3357        CheckOverloadedOperatorDeclaration(NewFD))
3358      return NewFD->setInvalidDecl();
3359
3360    // In C++, check default arguments now that we have merged decls. Unless
3361    // the lexical context is the class, because in this case this is done
3362    // during delayed parsing anyway.
3363    if (!CurContext->isRecord())
3364      CheckCXXDefaultArguments(NewFD);
3365  }
3366}
3367
3368void Sema::CheckMain(FunctionDecl* FD) {
3369  // C++ [basic.start.main]p3:  A program that declares main to be inline
3370  //   or static is ill-formed.
3371  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3372  //   shall not appear in a declaration of main.
3373  // static main is not an error under C99, but we should warn about it.
3374  bool isInline = FD->isInlineSpecified();
3375  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3376  if (isInline || isStatic) {
3377    unsigned diagID = diag::warn_unusual_main_decl;
3378    if (isInline || getLangOptions().CPlusPlus)
3379      diagID = diag::err_unusual_main_decl;
3380
3381    int which = isStatic + (isInline << 1) - 1;
3382    Diag(FD->getLocation(), diagID) << which;
3383  }
3384
3385  QualType T = FD->getType();
3386  assert(T->isFunctionType() && "function decl is not of function type");
3387  const FunctionType* FT = T->getAs<FunctionType>();
3388
3389  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3390    // TODO: add a replacement fixit to turn the return type into 'int'.
3391    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3392    FD->setInvalidDecl(true);
3393  }
3394
3395  // Treat protoless main() as nullary.
3396  if (isa<FunctionNoProtoType>(FT)) return;
3397
3398  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3399  unsigned nparams = FTP->getNumArgs();
3400  assert(FD->getNumParams() == nparams);
3401
3402  bool HasExtraParameters = (nparams > 3);
3403
3404  // Darwin passes an undocumented fourth argument of type char**.  If
3405  // other platforms start sprouting these, the logic below will start
3406  // getting shifty.
3407  if (nparams == 4 &&
3408      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3409    HasExtraParameters = false;
3410
3411  if (HasExtraParameters) {
3412    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3413    FD->setInvalidDecl(true);
3414    nparams = 3;
3415  }
3416
3417  // FIXME: a lot of the following diagnostics would be improved
3418  // if we had some location information about types.
3419
3420  QualType CharPP =
3421    Context.getPointerType(Context.getPointerType(Context.CharTy));
3422  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3423
3424  for (unsigned i = 0; i < nparams; ++i) {
3425    QualType AT = FTP->getArgType(i);
3426
3427    bool mismatch = true;
3428
3429    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3430      mismatch = false;
3431    else if (Expected[i] == CharPP) {
3432      // As an extension, the following forms are okay:
3433      //   char const **
3434      //   char const * const *
3435      //   char * const *
3436
3437      QualifierCollector qs;
3438      const PointerType* PT;
3439      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3440          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3441          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3442        qs.removeConst();
3443        mismatch = !qs.empty();
3444      }
3445    }
3446
3447    if (mismatch) {
3448      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3449      // TODO: suggest replacing given type with expected type
3450      FD->setInvalidDecl(true);
3451    }
3452  }
3453
3454  if (nparams == 1 && !FD->isInvalidDecl()) {
3455    Diag(FD->getLocation(), diag::warn_main_one_arg);
3456  }
3457}
3458
3459bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3460  // FIXME: Need strict checking.  In C89, we need to check for
3461  // any assignment, increment, decrement, function-calls, or
3462  // commas outside of a sizeof.  In C99, it's the same list,
3463  // except that the aforementioned are allowed in unevaluated
3464  // expressions.  Everything else falls under the
3465  // "may accept other forms of constant expressions" exception.
3466  // (We never end up here for C++, so the constant expression
3467  // rules there don't matter.)
3468  if (Init->isConstantInitializer(Context))
3469    return false;
3470  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3471    << Init->getSourceRange();
3472  return true;
3473}
3474
3475void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3476  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3477}
3478
3479/// AddInitializerToDecl - Adds the initializer Init to the
3480/// declaration dcl. If DirectInit is true, this is C++ direct
3481/// initialization rather than copy initialization.
3482void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3483  Decl *RealDecl = dcl.getAs<Decl>();
3484  // If there is no declaration, there was an error parsing it.  Just ignore
3485  // the initializer.
3486  if (RealDecl == 0)
3487    return;
3488
3489  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3490    // With declarators parsed the way they are, the parser cannot
3491    // distinguish between a normal initializer and a pure-specifier.
3492    // Thus this grotesque test.
3493    IntegerLiteral *IL;
3494    Expr *Init = static_cast<Expr *>(init.get());
3495    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3496        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3497      CheckPureMethod(Method, Init->getSourceRange());
3498    else {
3499      Diag(Method->getLocation(), diag::err_member_function_initialization)
3500        << Method->getDeclName() << Init->getSourceRange();
3501      Method->setInvalidDecl();
3502    }
3503    return;
3504  }
3505
3506  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3507  if (!VDecl) {
3508    if (getLangOptions().CPlusPlus &&
3509        RealDecl->getLexicalDeclContext()->isRecord() &&
3510        isa<NamedDecl>(RealDecl))
3511      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3512        << cast<NamedDecl>(RealDecl)->getDeclName();
3513    else
3514      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3515    RealDecl->setInvalidDecl();
3516    return;
3517  }
3518
3519  // A definition must end up with a complete type, which means it must be
3520  // complete with the restriction that an array type might be completed by the
3521  // initializer; note that later code assumes this restriction.
3522  QualType BaseDeclType = VDecl->getType();
3523  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3524    BaseDeclType = Array->getElementType();
3525  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3526                          diag::err_typecheck_decl_incomplete_type)) {
3527    RealDecl->setInvalidDecl();
3528    return;
3529  }
3530
3531  // The variable can not have an abstract class type.
3532  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3533                             diag::err_abstract_type_in_decl,
3534                             AbstractVariableType))
3535    VDecl->setInvalidDecl();
3536
3537  const VarDecl *Def = 0;
3538  if (VDecl->getDefinition(Def)) {
3539    Diag(VDecl->getLocation(), diag::err_redefinition)
3540      << VDecl->getDeclName();
3541    Diag(Def->getLocation(), diag::note_previous_definition);
3542    VDecl->setInvalidDecl();
3543    return;
3544  }
3545
3546  // Take ownership of the expression, now that we're sure we have somewhere
3547  // to put it.
3548  Expr *Init = init.takeAs<Expr>();
3549  assert(Init && "missing initializer");
3550
3551  // Capture the variable that is being initialized and the style of
3552  // initialization.
3553  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3554
3555  // FIXME: Poor source location information.
3556  InitializationKind Kind
3557    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3558                                                   Init->getLocStart(),
3559                                                   Init->getLocEnd())
3560                : InitializationKind::CreateCopy(VDecl->getLocation(),
3561                                                 Init->getLocStart());
3562
3563  // Get the decls type and save a reference for later, since
3564  // CheckInitializerTypes may change it.
3565  QualType DclT = VDecl->getType(), SavT = DclT;
3566  if (VDecl->isBlockVarDecl()) {
3567    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3568      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3569      VDecl->setInvalidDecl();
3570    } else if (!VDecl->isInvalidDecl()) {
3571      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3572      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3573                                          MultiExprArg(*this, (void**)&Init, 1),
3574                                                &DclT);
3575      if (Result.isInvalid()) {
3576        VDecl->setInvalidDecl();
3577        return;
3578      }
3579
3580      Init = Result.takeAs<Expr>();
3581
3582      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3583      // Don't check invalid declarations to avoid emitting useless diagnostics.
3584      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3585        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3586          CheckForConstantInitializer(Init, DclT);
3587      }
3588    }
3589  } else if (VDecl->isStaticDataMember() &&
3590             VDecl->getLexicalDeclContext()->isRecord()) {
3591    // This is an in-class initialization for a static data member, e.g.,
3592    //
3593    // struct S {
3594    //   static const int value = 17;
3595    // };
3596
3597    // Attach the initializer
3598    VDecl->setInit(Context, Init);
3599
3600    // C++ [class.mem]p4:
3601    //   A member-declarator can contain a constant-initializer only
3602    //   if it declares a static member (9.4) of const integral or
3603    //   const enumeration type, see 9.4.2.
3604    QualType T = VDecl->getType();
3605    if (!T->isDependentType() &&
3606        (!Context.getCanonicalType(T).isConstQualified() ||
3607         !T->isIntegralType())) {
3608      Diag(VDecl->getLocation(), diag::err_member_initialization)
3609        << VDecl->getDeclName() << Init->getSourceRange();
3610      VDecl->setInvalidDecl();
3611    } else {
3612      // C++ [class.static.data]p4:
3613      //   If a static data member is of const integral or const
3614      //   enumeration type, its declaration in the class definition
3615      //   can specify a constant-initializer which shall be an
3616      //   integral constant expression (5.19).
3617      if (!Init->isTypeDependent() &&
3618          !Init->getType()->isIntegralType()) {
3619        // We have a non-dependent, non-integral or enumeration type.
3620        Diag(Init->getSourceRange().getBegin(),
3621             diag::err_in_class_initializer_non_integral_type)
3622          << Init->getType() << Init->getSourceRange();
3623        VDecl->setInvalidDecl();
3624      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3625        // Check whether the expression is a constant expression.
3626        llvm::APSInt Value;
3627        SourceLocation Loc;
3628        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3629          Diag(Loc, diag::err_in_class_initializer_non_constant)
3630            << Init->getSourceRange();
3631          VDecl->setInvalidDecl();
3632        } else if (!VDecl->getType()->isDependentType())
3633          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3634      }
3635    }
3636  } else if (VDecl->isFileVarDecl()) {
3637    if (VDecl->getStorageClass() == VarDecl::Extern)
3638      Diag(VDecl->getLocation(), diag::warn_extern_init);
3639    if (!VDecl->isInvalidDecl()) {
3640      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3641      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3642                                          MultiExprArg(*this, (void**)&Init, 1),
3643                                                &DclT);
3644      if (Result.isInvalid()) {
3645        VDecl->setInvalidDecl();
3646        return;
3647      }
3648
3649      Init = Result.takeAs<Expr>();
3650    }
3651
3652    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3653    // Don't check invalid declarations to avoid emitting useless diagnostics.
3654    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3655      // C99 6.7.8p4. All file scoped initializers need to be constant.
3656      CheckForConstantInitializer(Init, DclT);
3657    }
3658  }
3659  // If the type changed, it means we had an incomplete type that was
3660  // completed by the initializer. For example:
3661  //   int ary[] = { 1, 3, 5 };
3662  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3663  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3664    VDecl->setType(DclT);
3665    Init->setType(DclT);
3666  }
3667
3668  Init = MaybeCreateCXXExprWithTemporaries(Init);
3669  // Attach the initializer to the decl.
3670  VDecl->setInit(Context, Init);
3671
3672  // If the previous declaration of VDecl was a tentative definition,
3673  // remove it from the set of tentative definitions.
3674  if (VDecl->getPreviousDeclaration() &&
3675      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3676    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3677    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3678  }
3679
3680  if (getLangOptions().CPlusPlus) {
3681    // Make sure we mark the destructor as used if necessary.
3682    QualType InitType = VDecl->getType();
3683    if (const ArrayType *Array = Context.getAsArrayType(InitType))
3684      InitType = Context.getBaseElementType(Array);
3685    if (InitType->isRecordType())
3686      FinalizeVarWithDestructor(VDecl, InitType);
3687  }
3688
3689  return;
3690}
3691
3692void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3693                                  bool TypeContainsUndeducedAuto) {
3694  Decl *RealDecl = dcl.getAs<Decl>();
3695
3696  // If there is no declaration, there was an error parsing it. Just ignore it.
3697  if (RealDecl == 0)
3698    return;
3699
3700  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3701    QualType Type = Var->getType();
3702
3703    // Record tentative definitions.
3704    if (Var->isTentativeDefinition(Context)) {
3705      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3706        InsertPair =
3707           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3708
3709      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3710      // want the second one in the map.
3711      InsertPair.first->second = Var;
3712
3713      // However, for the list, we don't care about the order, just make sure
3714      // that there are no dupes for a given declaration name.
3715      if (InsertPair.second)
3716        TentativeDefinitionList.push_back(Var->getDeclName());
3717    }
3718
3719    // C++ [dcl.init.ref]p3:
3720    //   The initializer can be omitted for a reference only in a
3721    //   parameter declaration (8.3.5), in the declaration of a
3722    //   function return type, in the declaration of a class member
3723    //   within its class declaration (9.2), and where the extern
3724    //   specifier is explicitly used.
3725    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3726      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3727        << Var->getDeclName()
3728        << SourceRange(Var->getLocation(), Var->getLocation());
3729      Var->setInvalidDecl();
3730      return;
3731    }
3732
3733    // C++0x [dcl.spec.auto]p3
3734    if (TypeContainsUndeducedAuto) {
3735      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3736        << Var->getDeclName() << Type;
3737      Var->setInvalidDecl();
3738      return;
3739    }
3740
3741    // An array without size is an incomplete type, and there are no special
3742    // rules in C++ to make such a definition acceptable.
3743    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3744        !Var->hasExternalStorage()) {
3745      Diag(Var->getLocation(),
3746           diag::err_typecheck_incomplete_array_needs_initializer);
3747      Var->setInvalidDecl();
3748      return;
3749    }
3750
3751    // C++ [temp.expl.spec]p15:
3752    //   An explicit specialization of a static data member of a template is a
3753    //   definition if the declaration includes an initializer; otherwise, it
3754    //   is a declaration.
3755    if (Var->isStaticDataMember() &&
3756        Var->getInstantiatedFromStaticDataMember() &&
3757        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3758      return;
3759
3760    // C++ [dcl.init]p9:
3761    //   If no initializer is specified for an object, and the object
3762    //   is of (possibly cv-qualified) non-POD class type (or array
3763    //   thereof), the object shall be default-initialized; if the
3764    //   object is of const-qualified type, the underlying class type
3765    //   shall have a user-declared default constructor.
3766    //
3767    // FIXME: Diagnose the "user-declared default constructor" bit.
3768    if (getLangOptions().CPlusPlus) {
3769      QualType InitType = Type;
3770      if (const ArrayType *Array = Context.getAsArrayType(Type))
3771        InitType = Context.getBaseElementType(Array);
3772      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3773          InitType->isRecordType() && !InitType->isDependentType()) {
3774        if (!RequireCompleteType(Var->getLocation(), InitType,
3775                                 diag::err_invalid_incomplete_type_use)) {
3776          InitializedEntity Entity
3777            = InitializedEntity::InitializeVariable(Var);
3778          InitializationKind Kind
3779            = InitializationKind::CreateDefault(Var->getLocation());
3780
3781          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3782          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3783                                                  MultiExprArg(*this, 0, 0));
3784          if (Init.isInvalid())
3785            Var->setInvalidDecl();
3786          else {
3787            Var->setInit(Context,
3788                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3789            FinalizeVarWithDestructor(Var, InitType);
3790          }
3791        } else {
3792          Var->setInvalidDecl();
3793        }
3794      }
3795
3796      // The variable can not have an abstract class type.
3797      if (RequireNonAbstractType(Var->getLocation(), Type,
3798                                 diag::err_abstract_type_in_decl,
3799                                 AbstractVariableType))
3800        Var->setInvalidDecl();
3801    }
3802
3803#if 0
3804    // FIXME: Temporarily disabled because we are not properly parsing
3805    // linkage specifications on declarations, e.g.,
3806    //
3807    //   extern "C" const CGPoint CGPointerZero;
3808    //
3809    // C++ [dcl.init]p9:
3810    //
3811    //     If no initializer is specified for an object, and the
3812    //     object is of (possibly cv-qualified) non-POD class type (or
3813    //     array thereof), the object shall be default-initialized; if
3814    //     the object is of const-qualified type, the underlying class
3815    //     type shall have a user-declared default
3816    //     constructor. Otherwise, if no initializer is specified for
3817    //     an object, the object and its subobjects, if any, have an
3818    //     indeterminate initial value; if the object or any of its
3819    //     subobjects are of const-qualified type, the program is
3820    //     ill-formed.
3821    //
3822    // This isn't technically an error in C, so we don't diagnose it.
3823    //
3824    // FIXME: Actually perform the POD/user-defined default
3825    // constructor check.
3826    if (getLangOptions().CPlusPlus &&
3827        Context.getCanonicalType(Type).isConstQualified() &&
3828        !Var->hasExternalStorage())
3829      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3830        << Var->getName()
3831        << SourceRange(Var->getLocation(), Var->getLocation());
3832#endif
3833  }
3834}
3835
3836Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3837                                                   DeclPtrTy *Group,
3838                                                   unsigned NumDecls) {
3839  llvm::SmallVector<Decl*, 8> Decls;
3840
3841  if (DS.isTypeSpecOwned())
3842    Decls.push_back((Decl*)DS.getTypeRep());
3843
3844  for (unsigned i = 0; i != NumDecls; ++i)
3845    if (Decl *D = Group[i].getAs<Decl>())
3846      Decls.push_back(D);
3847
3848  // Perform semantic analysis that depends on having fully processed both
3849  // the declarator and initializer.
3850  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3851    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3852    if (!IDecl)
3853      continue;
3854    QualType T = IDecl->getType();
3855
3856    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3857    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3858    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3859      if (T->isDependentType()) {
3860        // If T is dependent, we should not require a complete type.
3861        // (RequireCompleteType shouldn't be called with dependent types.)
3862        // But we still can at least check if we've got an array of unspecified
3863        // size without an initializer.
3864        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3865            !IDecl->getInit()) {
3866          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3867            << T;
3868          IDecl->setInvalidDecl();
3869        }
3870      } else if (!IDecl->isInvalidDecl()) {
3871        // If T is an incomplete array type with an initializer list that is
3872        // dependent on something, its size has not been fixed. We could attempt
3873        // to fix the size for such arrays, but we would still have to check
3874        // here for initializers containing a C++0x vararg expansion, e.g.
3875        // template <typename... Args> void f(Args... args) {
3876        //   int vals[] = { args };
3877        // }
3878        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3879        Expr *Init = IDecl->getInit();
3880        if (IAT && Init &&
3881            (Init->isTypeDependent() || Init->isValueDependent())) {
3882          // Check that the member type of the array is complete, at least.
3883          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3884                                  diag::err_typecheck_decl_incomplete_type))
3885            IDecl->setInvalidDecl();
3886        } else if (RequireCompleteType(IDecl->getLocation(), T,
3887                                      diag::err_typecheck_decl_incomplete_type))
3888          IDecl->setInvalidDecl();
3889      }
3890    }
3891    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3892    // object that has file scope without an initializer, and without a
3893    // storage-class specifier or with the storage-class specifier "static",
3894    // constitutes a tentative definition. Note: A tentative definition with
3895    // external linkage is valid (C99 6.2.2p5).
3896    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3897      if (const IncompleteArrayType *ArrayT
3898          = Context.getAsIncompleteArrayType(T)) {
3899        if (RequireCompleteType(IDecl->getLocation(),
3900                                ArrayT->getElementType(),
3901                                diag::err_illegal_decl_array_incomplete_type))
3902          IDecl->setInvalidDecl();
3903      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3904        // C99 6.9.2p3: If the declaration of an identifier for an object is
3905        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3906        // declared type shall not be an incomplete type.
3907        // NOTE: code such as the following
3908        //     static struct s;
3909        //     struct s { int a; };
3910        // is accepted by gcc. Hence here we issue a warning instead of
3911        // an error and we do not invalidate the static declaration.
3912        // NOTE: to avoid multiple warnings, only check the first declaration.
3913        if (IDecl->getPreviousDeclaration() == 0)
3914          RequireCompleteType(IDecl->getLocation(), T,
3915                              diag::ext_typecheck_decl_incomplete_type);
3916      }
3917    }
3918  }
3919  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3920                                                   Decls.data(), Decls.size()));
3921}
3922
3923
3924/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3925/// to introduce parameters into function prototype scope.
3926Sema::DeclPtrTy
3927Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3928  const DeclSpec &DS = D.getDeclSpec();
3929
3930  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3931  VarDecl::StorageClass StorageClass = VarDecl::None;
3932  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3933    StorageClass = VarDecl::Register;
3934  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3935    Diag(DS.getStorageClassSpecLoc(),
3936         diag::err_invalid_storage_class_in_func_decl);
3937    D.getMutableDeclSpec().ClearStorageClassSpecs();
3938  }
3939
3940  if (D.getDeclSpec().isThreadSpecified())
3941    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3942
3943  DiagnoseFunctionSpecifiers(D);
3944
3945  // Check that there are no default arguments inside the type of this
3946  // parameter (C++ only).
3947  if (getLangOptions().CPlusPlus)
3948    CheckExtraCXXDefaultArguments(D);
3949
3950  TypeSourceInfo *TInfo = 0;
3951  TagDecl *OwnedDecl = 0;
3952  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3953
3954  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3955    // C++ [dcl.fct]p6:
3956    //   Types shall not be defined in return or parameter types.
3957    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3958      << Context.getTypeDeclType(OwnedDecl);
3959  }
3960
3961  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3962  // Can this happen for params?  We already checked that they don't conflict
3963  // among each other.  Here they can only shadow globals, which is ok.
3964  IdentifierInfo *II = D.getIdentifier();
3965  if (II) {
3966    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3967      if (PrevDecl->isTemplateParameter()) {
3968        // Maybe we will complain about the shadowed template parameter.
3969        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3970        // Just pretend that we didn't see the previous declaration.
3971        PrevDecl = 0;
3972      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3973        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3974
3975        // Recover by removing the name
3976        II = 0;
3977        D.SetIdentifier(0, D.getIdentifierLoc());
3978      }
3979    }
3980  }
3981
3982  // Parameters can not be abstract class types.
3983  // For record types, this is done by the AbstractClassUsageDiagnoser once
3984  // the class has been completely parsed.
3985  if (!CurContext->isRecord() &&
3986      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3987                             diag::err_abstract_type_in_decl,
3988                             AbstractParamType))
3989    D.setInvalidType(true);
3990
3991  QualType T = adjustParameterType(parmDeclType);
3992
3993  ParmVarDecl *New
3994    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3995                          T, TInfo, StorageClass, 0);
3996
3997  if (D.isInvalidType())
3998    New->setInvalidDecl();
3999
4000  // Parameter declarators cannot be interface types. All ObjC objects are
4001  // passed by reference.
4002  if (T->isObjCInterfaceType()) {
4003    Diag(D.getIdentifierLoc(),
4004         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4005    New->setInvalidDecl();
4006  }
4007
4008  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4009  if (D.getCXXScopeSpec().isSet()) {
4010    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4011      << D.getCXXScopeSpec().getRange();
4012    New->setInvalidDecl();
4013  }
4014
4015  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4016  // duration shall not be qualified by an address-space qualifier."
4017  // Since all parameters have automatic store duration, they can not have
4018  // an address space.
4019  if (T.getAddressSpace() != 0) {
4020    Diag(D.getIdentifierLoc(),
4021         diag::err_arg_with_address_space);
4022    New->setInvalidDecl();
4023  }
4024
4025
4026  // Add the parameter declaration into this scope.
4027  S->AddDecl(DeclPtrTy::make(New));
4028  if (II)
4029    IdResolver.AddDecl(New);
4030
4031  ProcessDeclAttributes(S, New, D);
4032
4033  if (New->hasAttr<BlocksAttr>()) {
4034    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4035  }
4036  return DeclPtrTy::make(New);
4037}
4038
4039void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4040                                           SourceLocation LocAfterDecls) {
4041  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4042         "Not a function declarator!");
4043  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4044
4045  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4046  // for a K&R function.
4047  if (!FTI.hasPrototype) {
4048    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4049      --i;
4050      if (FTI.ArgInfo[i].Param == 0) {
4051        llvm::SmallString<256> Code;
4052        llvm::raw_svector_ostream(Code) << "  int "
4053                                        << FTI.ArgInfo[i].Ident->getName()
4054                                        << ";\n";
4055        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4056          << FTI.ArgInfo[i].Ident
4057          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4058
4059        // Implicitly declare the argument as type 'int' for lack of a better
4060        // type.
4061        DeclSpec DS;
4062        const char* PrevSpec; // unused
4063        unsigned DiagID; // unused
4064        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4065                           PrevSpec, DiagID);
4066        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4067        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4068        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4069      }
4070    }
4071  }
4072}
4073
4074Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4075                                              Declarator &D) {
4076  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4077  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4078         "Not a function declarator!");
4079  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4080
4081  if (FTI.hasPrototype) {
4082    // FIXME: Diagnose arguments without names in C.
4083  }
4084
4085  Scope *ParentScope = FnBodyScope->getParent();
4086
4087  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4088                                  MultiTemplateParamsArg(*this),
4089                                  /*IsFunctionDefinition=*/true);
4090  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4091}
4092
4093static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4094  // Don't warn about invalid declarations.
4095  if (FD->isInvalidDecl())
4096    return false;
4097
4098  // Or declarations that aren't global.
4099  if (!FD->isGlobal())
4100    return false;
4101
4102  // Don't warn about C++ member functions.
4103  if (isa<CXXMethodDecl>(FD))
4104    return false;
4105
4106  // Don't warn about 'main'.
4107  if (FD->isMain())
4108    return false;
4109
4110  // Don't warn about inline functions.
4111  if (FD->isInlineSpecified())
4112    return false;
4113
4114  // Don't warn about function templates.
4115  if (FD->getDescribedFunctionTemplate())
4116    return false;
4117
4118  // Don't warn about function template specializations.
4119  if (FD->isFunctionTemplateSpecialization())
4120    return false;
4121
4122  bool MissingPrototype = true;
4123  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4124       Prev; Prev = Prev->getPreviousDeclaration()) {
4125    // Ignore any declarations that occur in function or method
4126    // scope, because they aren't visible from the header.
4127    if (Prev->getDeclContext()->isFunctionOrMethod())
4128      continue;
4129
4130    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4131    break;
4132  }
4133
4134  return MissingPrototype;
4135}
4136
4137Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4138  // Clear the last template instantiation error context.
4139  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4140
4141  if (!D)
4142    return D;
4143  FunctionDecl *FD = 0;
4144
4145  if (FunctionTemplateDecl *FunTmpl
4146        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4147    FD = FunTmpl->getTemplatedDecl();
4148  else
4149    FD = cast<FunctionDecl>(D.getAs<Decl>());
4150
4151  CurFunctionNeedsScopeChecking = false;
4152
4153  // See if this is a redefinition.
4154  const FunctionDecl *Definition;
4155  if (FD->getBody(Definition)) {
4156    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4157    Diag(Definition->getLocation(), diag::note_previous_definition);
4158  }
4159
4160  // Builtin functions cannot be defined.
4161  if (unsigned BuiltinID = FD->getBuiltinID()) {
4162    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4163      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4164      FD->setInvalidDecl();
4165    }
4166  }
4167
4168  // The return type of a function definition must be complete
4169  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4170  QualType ResultType = FD->getResultType();
4171  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4172      !FD->isInvalidDecl() &&
4173      RequireCompleteType(FD->getLocation(), ResultType,
4174                          diag::err_func_def_incomplete_result))
4175    FD->setInvalidDecl();
4176
4177  // GNU warning -Wmissing-prototypes:
4178  //   Warn if a global function is defined without a previous
4179  //   prototype declaration. This warning is issued even if the
4180  //   definition itself provides a prototype. The aim is to detect
4181  //   global functions that fail to be declared in header files.
4182  if (ShouldWarnAboutMissingPrototype(FD))
4183    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4184
4185  if (FnBodyScope)
4186    PushDeclContext(FnBodyScope, FD);
4187
4188  // Check the validity of our function parameters
4189  CheckParmsForFunctionDef(FD);
4190
4191  // Introduce our parameters into the function scope
4192  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4193    ParmVarDecl *Param = FD->getParamDecl(p);
4194    Param->setOwningFunction(FD);
4195
4196    // If this has an identifier, add it to the scope stack.
4197    if (Param->getIdentifier() && FnBodyScope)
4198      PushOnScopeChains(Param, FnBodyScope);
4199  }
4200
4201  // Checking attributes of current function definition
4202  // dllimport attribute.
4203  if (FD->getAttr<DLLImportAttr>() &&
4204      (!FD->getAttr<DLLExportAttr>())) {
4205    // dllimport attribute cannot be applied to definition.
4206    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4207      Diag(FD->getLocation(),
4208           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4209        << "dllimport";
4210      FD->setInvalidDecl();
4211      return DeclPtrTy::make(FD);
4212    } else {
4213      // If a symbol previously declared dllimport is later defined, the
4214      // attribute is ignored in subsequent references, and a warning is
4215      // emitted.
4216      Diag(FD->getLocation(),
4217           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4218        << FD->getNameAsCString() << "dllimport";
4219    }
4220  }
4221  return DeclPtrTy::make(FD);
4222}
4223
4224Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4225  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4226}
4227
4228Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4229                                              bool IsInstantiation) {
4230  Decl *dcl = D.getAs<Decl>();
4231  Stmt *Body = BodyArg.takeAs<Stmt>();
4232
4233  FunctionDecl *FD = 0;
4234  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4235  if (FunTmpl)
4236    FD = FunTmpl->getTemplatedDecl();
4237  else
4238    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4239
4240  if (FD) {
4241    FD->setBody(Body);
4242    if (FD->isMain())
4243      // C and C++ allow for main to automagically return 0.
4244      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4245      FD->setHasImplicitReturnZero(true);
4246    else
4247      CheckFallThroughForFunctionDef(FD, Body);
4248
4249    if (!FD->isInvalidDecl())
4250      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4251
4252    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4253      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4254
4255    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4256  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4257    assert(MD == getCurMethodDecl() && "Method parsing confused");
4258    MD->setBody(Body);
4259    CheckFallThroughForFunctionDef(MD, Body);
4260    MD->setEndLoc(Body->getLocEnd());
4261
4262    if (!MD->isInvalidDecl())
4263      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4264  } else {
4265    Body->Destroy(Context);
4266    return DeclPtrTy();
4267  }
4268  if (!IsInstantiation)
4269    PopDeclContext();
4270
4271  // Verify and clean out per-function state.
4272
4273  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4274
4275  // Check goto/label use.
4276  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4277       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4278    LabelStmt *L = I->second;
4279
4280    // Verify that we have no forward references left.  If so, there was a goto
4281    // or address of a label taken, but no definition of it.  Label fwd
4282    // definitions are indicated with a null substmt.
4283    if (L->getSubStmt() != 0)
4284      continue;
4285
4286    // Emit error.
4287    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4288
4289    // At this point, we have gotos that use the bogus label.  Stitch it into
4290    // the function body so that they aren't leaked and that the AST is well
4291    // formed.
4292    if (Body == 0) {
4293      // The whole function wasn't parsed correctly, just delete this.
4294      L->Destroy(Context);
4295      continue;
4296    }
4297
4298    // Otherwise, the body is valid: we want to stitch the label decl into the
4299    // function somewhere so that it is properly owned and so that the goto
4300    // has a valid target.  Do this by creating a new compound stmt with the
4301    // label in it.
4302
4303    // Give the label a sub-statement.
4304    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4305
4306    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4307                               cast<CXXTryStmt>(Body)->getTryBlock() :
4308                               cast<CompoundStmt>(Body);
4309    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4310    Elements.push_back(L);
4311    Compound->setStmts(Context, &Elements[0], Elements.size());
4312  }
4313  FunctionLabelMap.clear();
4314
4315  if (!Body) return D;
4316
4317  // Verify that that gotos and switch cases don't jump into scopes illegally.
4318  if (CurFunctionNeedsScopeChecking)
4319    DiagnoseInvalidJumps(Body);
4320
4321  // C++ constructors that have function-try-blocks can't have return
4322  // statements in the handlers of that block. (C++ [except.handle]p14)
4323  // Verify this.
4324  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4325    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4326
4327  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4328    MarkBaseAndMemberDestructorsReferenced(Destructor);
4329
4330  // If any errors have occurred, clear out any temporaries that may have
4331  // been leftover. This ensures that these temporaries won't be picked up for
4332  // deletion in some later function.
4333  if (PP.getDiagnostics().hasErrorOccurred())
4334    ExprTemporaries.clear();
4335
4336  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4337  return D;
4338}
4339
4340/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4341/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4342NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4343                                          IdentifierInfo &II, Scope *S) {
4344  // Before we produce a declaration for an implicitly defined
4345  // function, see whether there was a locally-scoped declaration of
4346  // this name as a function or variable. If so, use that
4347  // (non-visible) declaration, and complain about it.
4348  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4349    = LocallyScopedExternalDecls.find(&II);
4350  if (Pos != LocallyScopedExternalDecls.end()) {
4351    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4352    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4353    return Pos->second;
4354  }
4355
4356  // Extension in C99.  Legal in C90, but warn about it.
4357  if (II.getName().startswith("__builtin_"))
4358    Diag(Loc, diag::warn_builtin_unknown) << &II;
4359  else if (getLangOptions().C99)
4360    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4361  else
4362    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4363
4364  // Set a Declarator for the implicit definition: int foo();
4365  const char *Dummy;
4366  DeclSpec DS;
4367  unsigned DiagID;
4368  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4369  Error = Error; // Silence warning.
4370  assert(!Error && "Error setting up implicit decl!");
4371  Declarator D(DS, Declarator::BlockContext);
4372  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4373                                             0, 0, false, SourceLocation(),
4374                                             false, 0,0,0, Loc, Loc, D),
4375                SourceLocation());
4376  D.SetIdentifier(&II, Loc);
4377
4378  // Insert this function into translation-unit scope.
4379
4380  DeclContext *PrevDC = CurContext;
4381  CurContext = Context.getTranslationUnitDecl();
4382
4383  FunctionDecl *FD =
4384 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4385  FD->setImplicit();
4386
4387  CurContext = PrevDC;
4388
4389  AddKnownFunctionAttributes(FD);
4390
4391  return FD;
4392}
4393
4394/// \brief Adds any function attributes that we know a priori based on
4395/// the declaration of this function.
4396///
4397/// These attributes can apply both to implicitly-declared builtins
4398/// (like __builtin___printf_chk) or to library-declared functions
4399/// like NSLog or printf.
4400void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4401  if (FD->isInvalidDecl())
4402    return;
4403
4404  // If this is a built-in function, map its builtin attributes to
4405  // actual attributes.
4406  if (unsigned BuiltinID = FD->getBuiltinID()) {
4407    // Handle printf-formatting attributes.
4408    unsigned FormatIdx;
4409    bool HasVAListArg;
4410    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4411      if (!FD->getAttr<FormatAttr>())
4412        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4413                                             HasVAListArg ? 0 : FormatIdx + 2));
4414    }
4415
4416    // Mark const if we don't care about errno and that is the only
4417    // thing preventing the function from being const. This allows
4418    // IRgen to use LLVM intrinsics for such functions.
4419    if (!getLangOptions().MathErrno &&
4420        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4421      if (!FD->getAttr<ConstAttr>())
4422        FD->addAttr(::new (Context) ConstAttr());
4423    }
4424
4425    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4426      FD->addAttr(::new (Context) NoReturnAttr());
4427  }
4428
4429  IdentifierInfo *Name = FD->getIdentifier();
4430  if (!Name)
4431    return;
4432  if ((!getLangOptions().CPlusPlus &&
4433       FD->getDeclContext()->isTranslationUnit()) ||
4434      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4435       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4436       LinkageSpecDecl::lang_c)) {
4437    // Okay: this could be a libc/libm/Objective-C function we know
4438    // about.
4439  } else
4440    return;
4441
4442  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4443    // FIXME: NSLog and NSLogv should be target specific
4444    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4445      // FIXME: We known better than our headers.
4446      const_cast<FormatAttr *>(Format)->setType("printf");
4447    } else
4448      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4449                                             Name->isStr("NSLogv") ? 0 : 2));
4450  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4451    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4452    // target-specific builtins, perhaps?
4453    if (!FD->getAttr<FormatAttr>())
4454      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4455                                             Name->isStr("vasprintf") ? 0 : 3));
4456  }
4457}
4458
4459TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4460                                    TypeSourceInfo *TInfo) {
4461  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4462  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4463
4464  if (!TInfo) {
4465    assert(D.isInvalidType() && "no declarator info for valid type");
4466    TInfo = Context.getTrivialTypeSourceInfo(T);
4467  }
4468
4469  // Scope manipulation handled by caller.
4470  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4471                                           D.getIdentifierLoc(),
4472                                           D.getIdentifier(),
4473                                           TInfo);
4474
4475  if (const TagType *TT = T->getAs<TagType>()) {
4476    TagDecl *TD = TT->getDecl();
4477
4478    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4479    // keep track of the TypedefDecl.
4480    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4481      TD->setTypedefForAnonDecl(NewTD);
4482  }
4483
4484  if (D.isInvalidType())
4485    NewTD->setInvalidDecl();
4486  return NewTD;
4487}
4488
4489
4490/// \brief Determine whether a tag with a given kind is acceptable
4491/// as a redeclaration of the given tag declaration.
4492///
4493/// \returns true if the new tag kind is acceptable, false otherwise.
4494bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4495                                        TagDecl::TagKind NewTag,
4496                                        SourceLocation NewTagLoc,
4497                                        const IdentifierInfo &Name) {
4498  // C++ [dcl.type.elab]p3:
4499  //   The class-key or enum keyword present in the
4500  //   elaborated-type-specifier shall agree in kind with the
4501  //   declaration to which the name in theelaborated-type-specifier
4502  //   refers. This rule also applies to the form of
4503  //   elaborated-type-specifier that declares a class-name or
4504  //   friend class since it can be construed as referring to the
4505  //   definition of the class. Thus, in any
4506  //   elaborated-type-specifier, the enum keyword shall be used to
4507  //   refer to an enumeration (7.2), the union class-keyshall be
4508  //   used to refer to a union (clause 9), and either the class or
4509  //   struct class-key shall be used to refer to a class (clause 9)
4510  //   declared using the class or struct class-key.
4511  TagDecl::TagKind OldTag = Previous->getTagKind();
4512  if (OldTag == NewTag)
4513    return true;
4514
4515  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4516      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4517    // Warn about the struct/class tag mismatch.
4518    bool isTemplate = false;
4519    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4520      isTemplate = Record->getDescribedClassTemplate();
4521
4522    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4523      << (NewTag == TagDecl::TK_class)
4524      << isTemplate << &Name
4525      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4526                              OldTag == TagDecl::TK_class? "class" : "struct");
4527    Diag(Previous->getLocation(), diag::note_previous_use);
4528    return true;
4529  }
4530  return false;
4531}
4532
4533/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4534/// former case, Name will be non-null.  In the later case, Name will be null.
4535/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4536/// reference/declaration/definition of a tag.
4537Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4538                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4539                               IdentifierInfo *Name, SourceLocation NameLoc,
4540                               AttributeList *Attr, AccessSpecifier AS,
4541                               MultiTemplateParamsArg TemplateParameterLists,
4542                               bool &OwnedDecl, bool &IsDependent) {
4543  // If this is not a definition, it must have a name.
4544  assert((Name != 0 || TUK == TUK_Definition) &&
4545         "Nameless record must be a definition!");
4546
4547  OwnedDecl = false;
4548  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4549
4550  // FIXME: Check explicit specializations more carefully.
4551  bool isExplicitSpecialization = false;
4552  if (TUK != TUK_Reference) {
4553    if (TemplateParameterList *TemplateParams
4554          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4555                        (TemplateParameterList**)TemplateParameterLists.get(),
4556                                              TemplateParameterLists.size(),
4557                                                    isExplicitSpecialization)) {
4558      if (TemplateParams->size() > 0) {
4559        // This is a declaration or definition of a class template (which may
4560        // be a member of another template).
4561        OwnedDecl = false;
4562        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4563                                               SS, Name, NameLoc, Attr,
4564                                               TemplateParams,
4565                                               AS);
4566        TemplateParameterLists.release();
4567        return Result.get();
4568      } else {
4569        // The "template<>" header is extraneous.
4570        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4571          << ElaboratedType::getNameForTagKind(Kind) << Name;
4572        isExplicitSpecialization = true;
4573      }
4574    }
4575
4576    TemplateParameterLists.release();
4577  }
4578
4579  DeclContext *SearchDC = CurContext;
4580  DeclContext *DC = CurContext;
4581  bool isStdBadAlloc = false;
4582  bool Invalid = false;
4583
4584  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4585                                                   : NotForRedeclaration);
4586
4587  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4588
4589  if (Name && SS.isNotEmpty()) {
4590    // We have a nested-name tag ('struct foo::bar').
4591
4592    // Check for invalid 'foo::'.
4593    if (SS.isInvalid()) {
4594      Name = 0;
4595      goto CreateNewDecl;
4596    }
4597
4598    // If this is a friend or a reference to a class in a dependent
4599    // context, don't try to make a decl for it.
4600    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4601      DC = computeDeclContext(SS, false);
4602      if (!DC) {
4603        IsDependent = true;
4604        return DeclPtrTy();
4605      }
4606    }
4607
4608    if (RequireCompleteDeclContext(SS))
4609      return DeclPtrTy::make((Decl *)0);
4610
4611    DC = computeDeclContext(SS, true);
4612    SearchDC = DC;
4613    // Look-up name inside 'foo::'.
4614    LookupQualifiedName(Previous, DC);
4615
4616    if (Previous.isAmbiguous())
4617      return DeclPtrTy();
4618
4619    // A tag 'foo::bar' must already exist.
4620    if (Previous.empty()) {
4621      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4622      Name = 0;
4623      Invalid = true;
4624      goto CreateNewDecl;
4625    }
4626  } else if (Name) {
4627    // If this is a named struct, check to see if there was a previous forward
4628    // declaration or definition.
4629    // FIXME: We're looking into outer scopes here, even when we
4630    // shouldn't be. Doing so can result in ambiguities that we
4631    // shouldn't be diagnosing.
4632    LookupName(Previous, S);
4633
4634    // Note:  there used to be some attempt at recovery here.
4635    if (Previous.isAmbiguous())
4636      return DeclPtrTy();
4637
4638    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4639      // FIXME: This makes sure that we ignore the contexts associated
4640      // with C structs, unions, and enums when looking for a matching
4641      // tag declaration or definition. See the similar lookup tweak
4642      // in Sema::LookupName; is there a better way to deal with this?
4643      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4644        SearchDC = SearchDC->getParent();
4645    }
4646  }
4647
4648  if (Previous.isSingleResult() &&
4649      Previous.getFoundDecl()->isTemplateParameter()) {
4650    // Maybe we will complain about the shadowed template parameter.
4651    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4652    // Just pretend that we didn't see the previous declaration.
4653    Previous.clear();
4654  }
4655
4656  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4657      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4658    // This is a declaration of or a reference to "std::bad_alloc".
4659    isStdBadAlloc = true;
4660
4661    if (Previous.empty() && StdBadAlloc) {
4662      // std::bad_alloc has been implicitly declared (but made invisible to
4663      // name lookup). Fill in this implicit declaration as the previous
4664      // declaration, so that the declarations get chained appropriately.
4665      Previous.addDecl(StdBadAlloc);
4666    }
4667  }
4668
4669  if (!Previous.empty()) {
4670    assert(Previous.isSingleResult());
4671    NamedDecl *PrevDecl = Previous.getFoundDecl();
4672    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4673      // If this is a use of a previous tag, or if the tag is already declared
4674      // in the same scope (so that the definition/declaration completes or
4675      // rementions the tag), reuse the decl.
4676      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4677          isDeclInScope(PrevDecl, SearchDC, S)) {
4678        // Make sure that this wasn't declared as an enum and now used as a
4679        // struct or something similar.
4680        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4681          bool SafeToContinue
4682            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4683               Kind != TagDecl::TK_enum);
4684          if (SafeToContinue)
4685            Diag(KWLoc, diag::err_use_with_wrong_tag)
4686              << Name
4687              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4688                                                  PrevTagDecl->getKindName());
4689          else
4690            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4691          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4692
4693          if (SafeToContinue)
4694            Kind = PrevTagDecl->getTagKind();
4695          else {
4696            // Recover by making this an anonymous redefinition.
4697            Name = 0;
4698            Previous.clear();
4699            Invalid = true;
4700          }
4701        }
4702
4703        if (!Invalid) {
4704          // If this is a use, just return the declaration we found.
4705
4706          // FIXME: In the future, return a variant or some other clue
4707          // for the consumer of this Decl to know it doesn't own it.
4708          // For our current ASTs this shouldn't be a problem, but will
4709          // need to be changed with DeclGroups.
4710          if (TUK == TUK_Reference || TUK == TUK_Friend)
4711            return DeclPtrTy::make(PrevTagDecl);
4712
4713          // Diagnose attempts to redefine a tag.
4714          if (TUK == TUK_Definition) {
4715            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4716              // If we're defining a specialization and the previous definition
4717              // is from an implicit instantiation, don't emit an error
4718              // here; we'll catch this in the general case below.
4719              if (!isExplicitSpecialization ||
4720                  !isa<CXXRecordDecl>(Def) ||
4721                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4722                                               == TSK_ExplicitSpecialization) {
4723                Diag(NameLoc, diag::err_redefinition) << Name;
4724                Diag(Def->getLocation(), diag::note_previous_definition);
4725                // If this is a redefinition, recover by making this
4726                // struct be anonymous, which will make any later
4727                // references get the previous definition.
4728                Name = 0;
4729                Previous.clear();
4730                Invalid = true;
4731              }
4732            } else {
4733              // If the type is currently being defined, complain
4734              // about a nested redefinition.
4735              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4736              if (Tag->isBeingDefined()) {
4737                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4738                Diag(PrevTagDecl->getLocation(),
4739                     diag::note_previous_definition);
4740                Name = 0;
4741                Previous.clear();
4742                Invalid = true;
4743              }
4744            }
4745
4746            // Okay, this is definition of a previously declared or referenced
4747            // tag PrevDecl. We're going to create a new Decl for it.
4748          }
4749        }
4750        // If we get here we have (another) forward declaration or we
4751        // have a definition.  Just create a new decl.
4752
4753      } else {
4754        // If we get here, this is a definition of a new tag type in a nested
4755        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4756        // new decl/type.  We set PrevDecl to NULL so that the entities
4757        // have distinct types.
4758        Previous.clear();
4759      }
4760      // If we get here, we're going to create a new Decl. If PrevDecl
4761      // is non-NULL, it's a definition of the tag declared by
4762      // PrevDecl. If it's NULL, we have a new definition.
4763    } else {
4764      // PrevDecl is a namespace, template, or anything else
4765      // that lives in the IDNS_Tag identifier namespace.
4766      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4767        // The tag name clashes with a namespace name, issue an error and
4768        // recover by making this tag be anonymous.
4769        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4770        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4771        Name = 0;
4772        Previous.clear();
4773        Invalid = true;
4774      } else {
4775        // The existing declaration isn't relevant to us; we're in a
4776        // new scope, so clear out the previous declaration.
4777        Previous.clear();
4778      }
4779    }
4780  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4781    // C++ [basic.scope.pdecl]p5:
4782    //   -- for an elaborated-type-specifier of the form
4783    //
4784    //          class-key identifier
4785    //
4786    //      if the elaborated-type-specifier is used in the
4787    //      decl-specifier-seq or parameter-declaration-clause of a
4788    //      function defined in namespace scope, the identifier is
4789    //      declared as a class-name in the namespace that contains
4790    //      the declaration; otherwise, except as a friend
4791    //      declaration, the identifier is declared in the smallest
4792    //      non-class, non-function-prototype scope that contains the
4793    //      declaration.
4794    //
4795    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4796    // C structs and unions.
4797    //
4798    // It is an error in C++ to declare (rather than define) an enum
4799    // type, including via an elaborated type specifier.  We'll
4800    // diagnose that later; for now, declare the enum in the same
4801    // scope as we would have picked for any other tag type.
4802    //
4803    // GNU C also supports this behavior as part of its incomplete
4804    // enum types extension, while GNU C++ does not.
4805    //
4806    // Find the context where we'll be declaring the tag.
4807    // FIXME: We would like to maintain the current DeclContext as the
4808    // lexical context,
4809    while (SearchDC->isRecord())
4810      SearchDC = SearchDC->getParent();
4811
4812    // Find the scope where we'll be declaring the tag.
4813    while (S->isClassScope() ||
4814           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4815           ((S->getFlags() & Scope::DeclScope) == 0) ||
4816           (S->getEntity() &&
4817            ((DeclContext *)S->getEntity())->isTransparentContext()))
4818      S = S->getParent();
4819
4820  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4821    // C++ [namespace.memdef]p3:
4822    //   If a friend declaration in a non-local class first declares a
4823    //   class or function, the friend class or function is a member of
4824    //   the innermost enclosing namespace.
4825    while (!SearchDC->isFileContext())
4826      SearchDC = SearchDC->getParent();
4827
4828    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4829    while (S->getEntity() != SearchDC)
4830      S = S->getParent();
4831  }
4832
4833CreateNewDecl:
4834
4835  TagDecl *PrevDecl = 0;
4836  if (Previous.isSingleResult())
4837    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4838
4839  // If there is an identifier, use the location of the identifier as the
4840  // location of the decl, otherwise use the location of the struct/union
4841  // keyword.
4842  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4843
4844  // Otherwise, create a new declaration. If there is a previous
4845  // declaration of the same entity, the two will be linked via
4846  // PrevDecl.
4847  TagDecl *New;
4848
4849  if (Kind == TagDecl::TK_enum) {
4850    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4851    // enum X { A, B, C } D;    D should chain to X.
4852    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4853                           cast_or_null<EnumDecl>(PrevDecl));
4854    // If this is an undefined enum, warn.
4855    if (TUK != TUK_Definition && !Invalid)  {
4856      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4857                                              : diag::ext_forward_ref_enum;
4858      Diag(Loc, DK);
4859    }
4860  } else {
4861    // struct/union/class
4862
4863    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4864    // struct X { int A; } D;    D should chain to X.
4865    if (getLangOptions().CPlusPlus) {
4866      // FIXME: Look for a way to use RecordDecl for simple structs.
4867      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4868                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4869
4870      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4871        StdBadAlloc = cast<CXXRecordDecl>(New);
4872    } else
4873      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4874                               cast_or_null<RecordDecl>(PrevDecl));
4875  }
4876
4877  if (Kind != TagDecl::TK_enum) {
4878    // Handle #pragma pack: if the #pragma pack stack has non-default
4879    // alignment, make up a packed attribute for this decl. These
4880    // attributes are checked when the ASTContext lays out the
4881    // structure.
4882    //
4883    // It is important for implementing the correct semantics that this
4884    // happen here (in act on tag decl). The #pragma pack stack is
4885    // maintained as a result of parser callbacks which can occur at
4886    // many points during the parsing of a struct declaration (because
4887    // the #pragma tokens are effectively skipped over during the
4888    // parsing of the struct).
4889    if (unsigned Alignment = getPragmaPackAlignment())
4890      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4891  }
4892
4893  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4894    // C++ [dcl.typedef]p3:
4895    //   [...] Similarly, in a given scope, a class or enumeration
4896    //   shall not be declared with the same name as a typedef-name
4897    //   that is declared in that scope and refers to a type other
4898    //   than the class or enumeration itself.
4899    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4900                        ForRedeclaration);
4901    LookupName(Lookup, S);
4902    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4903    NamedDecl *PrevTypedefNamed = PrevTypedef;
4904    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4905        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4906          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4907      Diag(Loc, diag::err_tag_definition_of_typedef)
4908        << Context.getTypeDeclType(New)
4909        << PrevTypedef->getUnderlyingType();
4910      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4911      Invalid = true;
4912    }
4913  }
4914
4915  // If this is a specialization of a member class (of a class template),
4916  // check the specialization.
4917  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4918    Invalid = true;
4919
4920  if (Invalid)
4921    New->setInvalidDecl();
4922
4923  if (Attr)
4924    ProcessDeclAttributeList(S, New, Attr);
4925
4926  // If we're declaring or defining a tag in function prototype scope
4927  // in C, note that this type can only be used within the function.
4928  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4929    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4930
4931  // Set the lexical context. If the tag has a C++ scope specifier, the
4932  // lexical context will be different from the semantic context.
4933  New->setLexicalDeclContext(CurContext);
4934
4935  // Mark this as a friend decl if applicable.
4936  if (TUK == TUK_Friend)
4937    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4938
4939  // Set the access specifier.
4940  if (!Invalid && TUK != TUK_Friend)
4941    SetMemberAccessSpecifier(New, PrevDecl, AS);
4942
4943  if (TUK == TUK_Definition)
4944    New->startDefinition();
4945
4946  // If this has an identifier, add it to the scope stack.
4947  if (TUK == TUK_Friend) {
4948    // We might be replacing an existing declaration in the lookup tables;
4949    // if so, borrow its access specifier.
4950    if (PrevDecl)
4951      New->setAccess(PrevDecl->getAccess());
4952
4953    // Friend tag decls are visible in fairly strange ways.
4954    if (!CurContext->isDependentContext()) {
4955      DeclContext *DC = New->getDeclContext()->getLookupContext();
4956      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4957      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4958        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4959    }
4960  } else if (Name) {
4961    S = getNonFieldDeclScope(S);
4962    PushOnScopeChains(New, S);
4963  } else {
4964    CurContext->addDecl(New);
4965  }
4966
4967  // If this is the C FILE type, notify the AST context.
4968  if (IdentifierInfo *II = New->getIdentifier())
4969    if (!New->isInvalidDecl() &&
4970        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4971        II->isStr("FILE"))
4972      Context.setFILEDecl(New);
4973
4974  OwnedDecl = true;
4975  return DeclPtrTy::make(New);
4976}
4977
4978void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4979  AdjustDeclIfTemplate(TagD);
4980  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4981
4982  // Enter the tag context.
4983  PushDeclContext(S, Tag);
4984}
4985
4986void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4987                                           SourceLocation LBraceLoc) {
4988  AdjustDeclIfTemplate(TagD);
4989  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4990
4991  FieldCollector->StartClass();
4992
4993  if (!Record->getIdentifier())
4994    return;
4995
4996  // C++ [class]p2:
4997  //   [...] The class-name is also inserted into the scope of the
4998  //   class itself; this is known as the injected-class-name. For
4999  //   purposes of access checking, the injected-class-name is treated
5000  //   as if it were a public member name.
5001  CXXRecordDecl *InjectedClassName
5002    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5003                            CurContext, Record->getLocation(),
5004                            Record->getIdentifier(),
5005                            Record->getTagKeywordLoc(),
5006                            Record);
5007  InjectedClassName->setImplicit();
5008  InjectedClassName->setAccess(AS_public);
5009  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5010      InjectedClassName->setDescribedClassTemplate(Template);
5011  PushOnScopeChains(InjectedClassName, S);
5012  assert(InjectedClassName->isInjectedClassName() &&
5013         "Broken injected-class-name");
5014}
5015
5016void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5017                                    SourceLocation RBraceLoc) {
5018  AdjustDeclIfTemplate(TagD);
5019  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5020  Tag->setRBraceLoc(RBraceLoc);
5021
5022  if (isa<CXXRecordDecl>(Tag))
5023    FieldCollector->FinishClass();
5024
5025  // Exit this scope of this tag's definition.
5026  PopDeclContext();
5027
5028  // Notify the consumer that we've defined a tag.
5029  Consumer.HandleTagDeclDefinition(Tag);
5030}
5031
5032// Note that FieldName may be null for anonymous bitfields.
5033bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5034                          QualType FieldTy, const Expr *BitWidth,
5035                          bool *ZeroWidth) {
5036  // Default to true; that shouldn't confuse checks for emptiness
5037  if (ZeroWidth)
5038    *ZeroWidth = true;
5039
5040  // C99 6.7.2.1p4 - verify the field type.
5041  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5042  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5043    // Handle incomplete types with specific error.
5044    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5045      return true;
5046    if (FieldName)
5047      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5048        << FieldName << FieldTy << BitWidth->getSourceRange();
5049    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5050      << FieldTy << BitWidth->getSourceRange();
5051  }
5052
5053  // If the bit-width is type- or value-dependent, don't try to check
5054  // it now.
5055  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5056    return false;
5057
5058  llvm::APSInt Value;
5059  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5060    return true;
5061
5062  if (Value != 0 && ZeroWidth)
5063    *ZeroWidth = false;
5064
5065  // Zero-width bitfield is ok for anonymous field.
5066  if (Value == 0 && FieldName)
5067    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5068
5069  if (Value.isSigned() && Value.isNegative()) {
5070    if (FieldName)
5071      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5072               << FieldName << Value.toString(10);
5073    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5074      << Value.toString(10);
5075  }
5076
5077  if (!FieldTy->isDependentType()) {
5078    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5079    if (Value.getZExtValue() > TypeSize) {
5080      if (FieldName)
5081        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5082          << FieldName << (unsigned)TypeSize;
5083      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5084        << (unsigned)TypeSize;
5085    }
5086  }
5087
5088  return false;
5089}
5090
5091/// ActOnField - Each field of a struct/union/class is passed into this in order
5092/// to create a FieldDecl object for it.
5093Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5094                                 SourceLocation DeclStart,
5095                                 Declarator &D, ExprTy *BitfieldWidth) {
5096  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5097                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5098                               AS_public);
5099  return DeclPtrTy::make(Res);
5100}
5101
5102/// HandleField - Analyze a field of a C struct or a C++ data member.
5103///
5104FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5105                             SourceLocation DeclStart,
5106                             Declarator &D, Expr *BitWidth,
5107                             AccessSpecifier AS) {
5108  IdentifierInfo *II = D.getIdentifier();
5109  SourceLocation Loc = DeclStart;
5110  if (II) Loc = D.getIdentifierLoc();
5111
5112  TypeSourceInfo *TInfo = 0;
5113  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5114  if (getLangOptions().CPlusPlus)
5115    CheckExtraCXXDefaultArguments(D);
5116
5117  DiagnoseFunctionSpecifiers(D);
5118
5119  if (D.getDeclSpec().isThreadSpecified())
5120    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5121
5122  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5123                                         ForRedeclaration);
5124
5125  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5126    // Maybe we will complain about the shadowed template parameter.
5127    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5128    // Just pretend that we didn't see the previous declaration.
5129    PrevDecl = 0;
5130  }
5131
5132  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5133    PrevDecl = 0;
5134
5135  bool Mutable
5136    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5137  SourceLocation TSSL = D.getSourceRange().getBegin();
5138  FieldDecl *NewFD
5139    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5140                     AS, PrevDecl, &D);
5141  if (NewFD->isInvalidDecl() && PrevDecl) {
5142    // Don't introduce NewFD into scope; there's already something
5143    // with the same name in the same scope.
5144  } else if (II) {
5145    PushOnScopeChains(NewFD, S);
5146  } else
5147    Record->addDecl(NewFD);
5148
5149  return NewFD;
5150}
5151
5152/// \brief Build a new FieldDecl and check its well-formedness.
5153///
5154/// This routine builds a new FieldDecl given the fields name, type,
5155/// record, etc. \p PrevDecl should refer to any previous declaration
5156/// with the same name and in the same scope as the field to be
5157/// created.
5158///
5159/// \returns a new FieldDecl.
5160///
5161/// \todo The Declarator argument is a hack. It will be removed once
5162FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5163                                TypeSourceInfo *TInfo,
5164                                RecordDecl *Record, SourceLocation Loc,
5165                                bool Mutable, Expr *BitWidth,
5166                                SourceLocation TSSL,
5167                                AccessSpecifier AS, NamedDecl *PrevDecl,
5168                                Declarator *D) {
5169  IdentifierInfo *II = Name.getAsIdentifierInfo();
5170  bool InvalidDecl = false;
5171  if (D) InvalidDecl = D->isInvalidType();
5172
5173  // If we receive a broken type, recover by assuming 'int' and
5174  // marking this declaration as invalid.
5175  if (T.isNull()) {
5176    InvalidDecl = true;
5177    T = Context.IntTy;
5178  }
5179
5180  QualType EltTy = Context.getBaseElementType(T);
5181  if (!EltTy->isDependentType() &&
5182      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5183    InvalidDecl = true;
5184
5185  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5186  // than a variably modified type.
5187  if (!InvalidDecl && T->isVariablyModifiedType()) {
5188    bool SizeIsNegative;
5189    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5190                                                           SizeIsNegative);
5191    if (!FixedTy.isNull()) {
5192      Diag(Loc, diag::warn_illegal_constant_array_size);
5193      T = FixedTy;
5194    } else {
5195      if (SizeIsNegative)
5196        Diag(Loc, diag::err_typecheck_negative_array_size);
5197      else
5198        Diag(Loc, diag::err_typecheck_field_variable_size);
5199      InvalidDecl = true;
5200    }
5201  }
5202
5203  // Fields can not have abstract class types
5204  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5205                                             diag::err_abstract_type_in_decl,
5206                                             AbstractFieldType))
5207    InvalidDecl = true;
5208
5209  bool ZeroWidth = false;
5210  // If this is declared as a bit-field, check the bit-field.
5211  if (!InvalidDecl && BitWidth &&
5212      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5213    InvalidDecl = true;
5214    DeleteExpr(BitWidth);
5215    BitWidth = 0;
5216    ZeroWidth = false;
5217  }
5218
5219  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5220                                       BitWidth, Mutable);
5221  if (InvalidDecl)
5222    NewFD->setInvalidDecl();
5223
5224  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5225    Diag(Loc, diag::err_duplicate_member) << II;
5226    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5227    NewFD->setInvalidDecl();
5228  }
5229
5230  if (getLangOptions().CPlusPlus) {
5231    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5232
5233    if (!T->isPODType())
5234      CXXRecord->setPOD(false);
5235    if (!ZeroWidth)
5236      CXXRecord->setEmpty(false);
5237
5238    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5239      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5240
5241      if (!RDecl->hasTrivialConstructor())
5242        CXXRecord->setHasTrivialConstructor(false);
5243      if (!RDecl->hasTrivialCopyConstructor())
5244        CXXRecord->setHasTrivialCopyConstructor(false);
5245      if (!RDecl->hasTrivialCopyAssignment())
5246        CXXRecord->setHasTrivialCopyAssignment(false);
5247      if (!RDecl->hasTrivialDestructor())
5248        CXXRecord->setHasTrivialDestructor(false);
5249
5250      // C++ 9.5p1: An object of a class with a non-trivial
5251      // constructor, a non-trivial copy constructor, a non-trivial
5252      // destructor, or a non-trivial copy assignment operator
5253      // cannot be a member of a union, nor can an array of such
5254      // objects.
5255      // TODO: C++0x alters this restriction significantly.
5256      if (Record->isUnion()) {
5257        // We check for copy constructors before constructors
5258        // because otherwise we'll never get complaints about
5259        // copy constructors.
5260
5261        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5262
5263        CXXSpecialMember member;
5264        if (!RDecl->hasTrivialCopyConstructor())
5265          member = CXXCopyConstructor;
5266        else if (!RDecl->hasTrivialConstructor())
5267          member = CXXDefaultConstructor;
5268        else if (!RDecl->hasTrivialCopyAssignment())
5269          member = CXXCopyAssignment;
5270        else if (!RDecl->hasTrivialDestructor())
5271          member = CXXDestructor;
5272        else
5273          member = invalid;
5274
5275        if (member != invalid) {
5276          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5277          DiagnoseNontrivial(RT, member);
5278          NewFD->setInvalidDecl();
5279        }
5280      }
5281    }
5282  }
5283
5284  // FIXME: We need to pass in the attributes given an AST
5285  // representation, not a parser representation.
5286  if (D)
5287    // FIXME: What to pass instead of TUScope?
5288    ProcessDeclAttributes(TUScope, NewFD, *D);
5289
5290  if (T.isObjCGCWeak())
5291    Diag(Loc, diag::warn_attribute_weak_on_field);
5292
5293  NewFD->setAccess(AS);
5294
5295  // C++ [dcl.init.aggr]p1:
5296  //   An aggregate is an array or a class (clause 9) with [...] no
5297  //   private or protected non-static data members (clause 11).
5298  // A POD must be an aggregate.
5299  if (getLangOptions().CPlusPlus &&
5300      (AS == AS_private || AS == AS_protected)) {
5301    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5302    CXXRecord->setAggregate(false);
5303    CXXRecord->setPOD(false);
5304  }
5305
5306  return NewFD;
5307}
5308
5309/// DiagnoseNontrivial - Given that a class has a non-trivial
5310/// special member, figure out why.
5311void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5312  QualType QT(T, 0U);
5313  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5314
5315  // Check whether the member was user-declared.
5316  switch (member) {
5317  case CXXDefaultConstructor:
5318    if (RD->hasUserDeclaredConstructor()) {
5319      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5320      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5321        const FunctionDecl *body = 0;
5322        ci->getBody(body);
5323        if (!body ||
5324            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5325          SourceLocation CtorLoc = ci->getLocation();
5326          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5327          return;
5328        }
5329      }
5330
5331      assert(0 && "found no user-declared constructors");
5332      return;
5333    }
5334    break;
5335
5336  case CXXCopyConstructor:
5337    if (RD->hasUserDeclaredCopyConstructor()) {
5338      SourceLocation CtorLoc =
5339        RD->getCopyConstructor(Context, 0)->getLocation();
5340      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5341      return;
5342    }
5343    break;
5344
5345  case CXXCopyAssignment:
5346    if (RD->hasUserDeclaredCopyAssignment()) {
5347      // FIXME: this should use the location of the copy
5348      // assignment, not the type.
5349      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5350      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5351      return;
5352    }
5353    break;
5354
5355  case CXXDestructor:
5356    if (RD->hasUserDeclaredDestructor()) {
5357      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5358      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5359      return;
5360    }
5361    break;
5362  }
5363
5364  typedef CXXRecordDecl::base_class_iterator base_iter;
5365
5366  // Virtual bases and members inhibit trivial copying/construction,
5367  // but not trivial destruction.
5368  if (member != CXXDestructor) {
5369    // Check for virtual bases.  vbases includes indirect virtual bases,
5370    // so we just iterate through the direct bases.
5371    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5372      if (bi->isVirtual()) {
5373        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5374        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5375        return;
5376      }
5377
5378    // Check for virtual methods.
5379    typedef CXXRecordDecl::method_iterator meth_iter;
5380    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5381         ++mi) {
5382      if (mi->isVirtual()) {
5383        SourceLocation MLoc = mi->getSourceRange().getBegin();
5384        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5385        return;
5386      }
5387    }
5388  }
5389
5390  bool (CXXRecordDecl::*hasTrivial)() const;
5391  switch (member) {
5392  case CXXDefaultConstructor:
5393    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5394  case CXXCopyConstructor:
5395    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5396  case CXXCopyAssignment:
5397    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5398  case CXXDestructor:
5399    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5400  default:
5401    assert(0 && "unexpected special member"); return;
5402  }
5403
5404  // Check for nontrivial bases (and recurse).
5405  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5406    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5407    assert(BaseRT && "Don't know how to handle dependent bases");
5408    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5409    if (!(BaseRecTy->*hasTrivial)()) {
5410      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5411      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5412      DiagnoseNontrivial(BaseRT, member);
5413      return;
5414    }
5415  }
5416
5417  // Check for nontrivial members (and recurse).
5418  typedef RecordDecl::field_iterator field_iter;
5419  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5420       ++fi) {
5421    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5422    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5423      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5424
5425      if (!(EltRD->*hasTrivial)()) {
5426        SourceLocation FLoc = (*fi)->getLocation();
5427        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5428        DiagnoseNontrivial(EltRT, member);
5429        return;
5430      }
5431    }
5432  }
5433
5434  assert(0 && "found no explanation for non-trivial member");
5435}
5436
5437/// TranslateIvarVisibility - Translate visibility from a token ID to an
5438///  AST enum value.
5439static ObjCIvarDecl::AccessControl
5440TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5441  switch (ivarVisibility) {
5442  default: assert(0 && "Unknown visitibility kind");
5443  case tok::objc_private: return ObjCIvarDecl::Private;
5444  case tok::objc_public: return ObjCIvarDecl::Public;
5445  case tok::objc_protected: return ObjCIvarDecl::Protected;
5446  case tok::objc_package: return ObjCIvarDecl::Package;
5447  }
5448}
5449
5450/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5451/// in order to create an IvarDecl object for it.
5452Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5453                                SourceLocation DeclStart,
5454                                DeclPtrTy IntfDecl,
5455                                Declarator &D, ExprTy *BitfieldWidth,
5456                                tok::ObjCKeywordKind Visibility) {
5457
5458  IdentifierInfo *II = D.getIdentifier();
5459  Expr *BitWidth = (Expr*)BitfieldWidth;
5460  SourceLocation Loc = DeclStart;
5461  if (II) Loc = D.getIdentifierLoc();
5462
5463  // FIXME: Unnamed fields can be handled in various different ways, for
5464  // example, unnamed unions inject all members into the struct namespace!
5465
5466  TypeSourceInfo *TInfo = 0;
5467  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5468
5469  if (BitWidth) {
5470    // 6.7.2.1p3, 6.7.2.1p4
5471    if (VerifyBitField(Loc, II, T, BitWidth)) {
5472      D.setInvalidType();
5473      DeleteExpr(BitWidth);
5474      BitWidth = 0;
5475    }
5476  } else {
5477    // Not a bitfield.
5478
5479    // validate II.
5480
5481  }
5482
5483  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5484  // than a variably modified type.
5485  if (T->isVariablyModifiedType()) {
5486    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5487    D.setInvalidType();
5488  }
5489
5490  // Get the visibility (access control) for this ivar.
5491  ObjCIvarDecl::AccessControl ac =
5492    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5493                                        : ObjCIvarDecl::None;
5494  // Must set ivar's DeclContext to its enclosing interface.
5495  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5496  DeclContext *EnclosingContext;
5497  if (ObjCImplementationDecl *IMPDecl =
5498      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5499    // Case of ivar declared in an implementation. Context is that of its class.
5500    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5501    assert(IDecl && "No class- ActOnIvar");
5502    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5503  } else
5504    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5505  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5506
5507  // Construct the decl.
5508  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5509                                             EnclosingContext, Loc, II, T,
5510                                             TInfo, ac, (Expr *)BitfieldWidth);
5511
5512  if (II) {
5513    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5514                                           ForRedeclaration);
5515    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5516        && !isa<TagDecl>(PrevDecl)) {
5517      Diag(Loc, diag::err_duplicate_member) << II;
5518      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5519      NewID->setInvalidDecl();
5520    }
5521  }
5522
5523  // Process attributes attached to the ivar.
5524  ProcessDeclAttributes(S, NewID, D);
5525
5526  if (D.isInvalidType())
5527    NewID->setInvalidDecl();
5528
5529  if (II) {
5530    // FIXME: When interfaces are DeclContexts, we'll need to add
5531    // these to the interface.
5532    S->AddDecl(DeclPtrTy::make(NewID));
5533    IdResolver.AddDecl(NewID);
5534  }
5535
5536  return DeclPtrTy::make(NewID);
5537}
5538
5539void Sema::ActOnFields(Scope* S,
5540                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5541                       DeclPtrTy *Fields, unsigned NumFields,
5542                       SourceLocation LBrac, SourceLocation RBrac,
5543                       AttributeList *Attr) {
5544  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5545  assert(EnclosingDecl && "missing record or interface decl");
5546
5547  // If the decl this is being inserted into is invalid, then it may be a
5548  // redeclaration or some other bogus case.  Don't try to add fields to it.
5549  if (EnclosingDecl->isInvalidDecl()) {
5550    // FIXME: Deallocate fields?
5551    return;
5552  }
5553
5554
5555  // Verify that all the fields are okay.
5556  unsigned NumNamedMembers = 0;
5557  llvm::SmallVector<FieldDecl*, 32> RecFields;
5558
5559  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5560  for (unsigned i = 0; i != NumFields; ++i) {
5561    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5562
5563    // Get the type for the field.
5564    Type *FDTy = FD->getType().getTypePtr();
5565
5566    if (!FD->isAnonymousStructOrUnion()) {
5567      // Remember all fields written by the user.
5568      RecFields.push_back(FD);
5569    }
5570
5571    // If the field is already invalid for some reason, don't emit more
5572    // diagnostics about it.
5573    if (FD->isInvalidDecl()) {
5574      EnclosingDecl->setInvalidDecl();
5575      continue;
5576    }
5577
5578    // C99 6.7.2.1p2:
5579    //   A structure or union shall not contain a member with
5580    //   incomplete or function type (hence, a structure shall not
5581    //   contain an instance of itself, but may contain a pointer to
5582    //   an instance of itself), except that the last member of a
5583    //   structure with more than one named member may have incomplete
5584    //   array type; such a structure (and any union containing,
5585    //   possibly recursively, a member that is such a structure)
5586    //   shall not be a member of a structure or an element of an
5587    //   array.
5588    if (FDTy->isFunctionType()) {
5589      // Field declared as a function.
5590      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5591        << FD->getDeclName();
5592      FD->setInvalidDecl();
5593      EnclosingDecl->setInvalidDecl();
5594      continue;
5595    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5596               Record && Record->isStruct()) {
5597      // Flexible array member.
5598      if (NumNamedMembers < 1) {
5599        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5600          << FD->getDeclName();
5601        FD->setInvalidDecl();
5602        EnclosingDecl->setInvalidDecl();
5603        continue;
5604      }
5605      // Okay, we have a legal flexible array member at the end of the struct.
5606      if (Record)
5607        Record->setHasFlexibleArrayMember(true);
5608    } else if (!FDTy->isDependentType() &&
5609               RequireCompleteType(FD->getLocation(), FD->getType(),
5610                                   diag::err_field_incomplete)) {
5611      // Incomplete type
5612      FD->setInvalidDecl();
5613      EnclosingDecl->setInvalidDecl();
5614      continue;
5615    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5616      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5617        // If this is a member of a union, then entire union becomes "flexible".
5618        if (Record && Record->isUnion()) {
5619          Record->setHasFlexibleArrayMember(true);
5620        } else {
5621          // If this is a struct/class and this is not the last element, reject
5622          // it.  Note that GCC supports variable sized arrays in the middle of
5623          // structures.
5624          if (i != NumFields-1)
5625            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5626              << FD->getDeclName() << FD->getType();
5627          else {
5628            // We support flexible arrays at the end of structs in
5629            // other structs as an extension.
5630            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5631              << FD->getDeclName();
5632            if (Record)
5633              Record->setHasFlexibleArrayMember(true);
5634          }
5635        }
5636      }
5637      if (Record && FDTTy->getDecl()->hasObjectMember())
5638        Record->setHasObjectMember(true);
5639    } else if (FDTy->isObjCInterfaceType()) {
5640      /// A field cannot be an Objective-c object
5641      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5642      FD->setInvalidDecl();
5643      EnclosingDecl->setInvalidDecl();
5644      continue;
5645    } else if (getLangOptions().ObjC1 &&
5646               getLangOptions().getGCMode() != LangOptions::NonGC &&
5647               Record &&
5648               (FD->getType()->isObjCObjectPointerType() ||
5649                FD->getType().isObjCGCStrong()))
5650      Record->setHasObjectMember(true);
5651    // Keep track of the number of named members.
5652    if (FD->getIdentifier())
5653      ++NumNamedMembers;
5654  }
5655
5656  // Okay, we successfully defined 'Record'.
5657  if (Record) {
5658    Record->completeDefinition(Context);
5659  } else {
5660    ObjCIvarDecl **ClsFields =
5661      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5662    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5663      ID->setIVarList(ClsFields, RecFields.size(), Context);
5664      ID->setLocEnd(RBrac);
5665      // Add ivar's to class's DeclContext.
5666      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5667        ClsFields[i]->setLexicalDeclContext(ID);
5668        ID->addDecl(ClsFields[i]);
5669      }
5670      // Must enforce the rule that ivars in the base classes may not be
5671      // duplicates.
5672      if (ID->getSuperClass()) {
5673        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5674             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5675          ObjCIvarDecl* Ivar = (*IVI);
5676
5677          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5678            ObjCIvarDecl* prevIvar =
5679              ID->getSuperClass()->lookupInstanceVariable(II);
5680            if (prevIvar) {
5681              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5682              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5683            }
5684          }
5685        }
5686      }
5687    } else if (ObjCImplementationDecl *IMPDecl =
5688                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5689      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5690      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5691        // Ivar declared in @implementation never belongs to the implementation.
5692        // Only it is in implementation's lexical context.
5693        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5694      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5695    }
5696  }
5697
5698  if (Attr)
5699    ProcessDeclAttributeList(S, Record, Attr);
5700}
5701
5702EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5703                                          EnumConstantDecl *LastEnumConst,
5704                                          SourceLocation IdLoc,
5705                                          IdentifierInfo *Id,
5706                                          ExprArg val) {
5707  Expr *Val = (Expr *)val.get();
5708
5709  llvm::APSInt EnumVal(32);
5710  QualType EltTy;
5711  if (Val) {
5712    if (Enum->isDependentType())
5713      EltTy = Context.DependentTy;
5714    else {
5715      // Make sure to promote the operand type to int.
5716      UsualUnaryConversions(Val);
5717      if (Val != val.get()) {
5718        val.release();
5719        val = Val;
5720      }
5721
5722      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5723      SourceLocation ExpLoc;
5724      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5725        Val = 0;
5726      } else {
5727        EltTy = Val->getType();
5728      }
5729    }
5730  }
5731
5732  if (!Val) {
5733    if (Enum->isDependentType())
5734      EltTy = Context.DependentTy;
5735    else if (LastEnumConst) {
5736      // Assign the last value + 1.
5737      EnumVal = LastEnumConst->getInitVal();
5738      ++EnumVal;
5739
5740      // Check for overflow on increment.
5741      if (EnumVal < LastEnumConst->getInitVal())
5742        Diag(IdLoc, diag::warn_enum_value_overflow);
5743
5744      EltTy = LastEnumConst->getType();
5745    } else {
5746      // First value, set to zero.
5747      EltTy = Context.IntTy;
5748      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5749      EnumVal.setIsSigned(true);
5750    }
5751  }
5752
5753  assert(!EltTy.isNull() && "Enum constant with NULL type");
5754
5755  val.release();
5756  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5757                                  Val, EnumVal);
5758}
5759
5760
5761Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5762                                        DeclPtrTy lastEnumConst,
5763                                        SourceLocation IdLoc,
5764                                        IdentifierInfo *Id,
5765                                        SourceLocation EqualLoc, ExprTy *val) {
5766  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5767  EnumConstantDecl *LastEnumConst =
5768    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5769  Expr *Val = static_cast<Expr*>(val);
5770
5771  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5772  // we find one that is.
5773  S = getNonFieldDeclScope(S);
5774
5775  // Verify that there isn't already something declared with this name in this
5776  // scope.
5777  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5778  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5779    // Maybe we will complain about the shadowed template parameter.
5780    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5781    // Just pretend that we didn't see the previous declaration.
5782    PrevDecl = 0;
5783  }
5784
5785  if (PrevDecl) {
5786    // When in C++, we may get a TagDecl with the same name; in this case the
5787    // enum constant will 'hide' the tag.
5788    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5789           "Received TagDecl when not in C++!");
5790    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5791      if (isa<EnumConstantDecl>(PrevDecl))
5792        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5793      else
5794        Diag(IdLoc, diag::err_redefinition) << Id;
5795      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5796      if (Val) Val->Destroy(Context);
5797      return DeclPtrTy();
5798    }
5799  }
5800
5801  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5802                                            IdLoc, Id, Owned(Val));
5803
5804  // Register this decl in the current scope stack.
5805  if (New)
5806    PushOnScopeChains(New, S);
5807
5808  return DeclPtrTy::make(New);
5809}
5810
5811void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5812                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5813                         DeclPtrTy *Elements, unsigned NumElements,
5814                         Scope *S, AttributeList *Attr) {
5815  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5816  QualType EnumType = Context.getTypeDeclType(Enum);
5817
5818  if (Attr)
5819    ProcessDeclAttributeList(S, Enum, Attr);
5820
5821  if (Enum->isDependentType()) {
5822    for (unsigned i = 0; i != NumElements; ++i) {
5823      EnumConstantDecl *ECD =
5824        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5825      if (!ECD) continue;
5826
5827      ECD->setType(EnumType);
5828    }
5829
5830    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5831    return;
5832  }
5833
5834  // TODO: If the result value doesn't fit in an int, it must be a long or long
5835  // long value.  ISO C does not support this, but GCC does as an extension,
5836  // emit a warning.
5837  unsigned IntWidth = Context.Target.getIntWidth();
5838  unsigned CharWidth = Context.Target.getCharWidth();
5839  unsigned ShortWidth = Context.Target.getShortWidth();
5840
5841  // Verify that all the values are okay, compute the size of the values, and
5842  // reverse the list.
5843  unsigned NumNegativeBits = 0;
5844  unsigned NumPositiveBits = 0;
5845
5846  // Keep track of whether all elements have type int.
5847  bool AllElementsInt = true;
5848
5849  for (unsigned i = 0; i != NumElements; ++i) {
5850    EnumConstantDecl *ECD =
5851      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5852    if (!ECD) continue;  // Already issued a diagnostic.
5853
5854    // If the enum value doesn't fit in an int, emit an extension warning.
5855    const llvm::APSInt &InitVal = ECD->getInitVal();
5856    assert(InitVal.getBitWidth() >= IntWidth &&
5857           "Should have promoted value to int");
5858    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5859      llvm::APSInt V(InitVal);
5860      V.trunc(IntWidth);
5861      V.extend(InitVal.getBitWidth());
5862      if (V != InitVal)
5863        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5864          << InitVal.toString(10);
5865    }
5866
5867    // Keep track of the size of positive and negative values.
5868    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5869      NumPositiveBits = std::max(NumPositiveBits,
5870                                 (unsigned)InitVal.getActiveBits());
5871    else
5872      NumNegativeBits = std::max(NumNegativeBits,
5873                                 (unsigned)InitVal.getMinSignedBits());
5874
5875    // Keep track of whether every enum element has type int (very commmon).
5876    if (AllElementsInt)
5877      AllElementsInt = ECD->getType() == Context.IntTy;
5878  }
5879
5880  // Figure out the type that should be used for this enum.
5881  // FIXME: Support -fshort-enums.
5882  QualType BestType;
5883  unsigned BestWidth;
5884
5885  // C++0x N3000 [conv.prom]p3:
5886  //   An rvalue of an unscoped enumeration type whose underlying
5887  //   type is not fixed can be converted to an rvalue of the first
5888  //   of the following types that can represent all the values of
5889  //   the enumeration: int, unsigned int, long int, unsigned long
5890  //   int, long long int, or unsigned long long int.
5891  // C99 6.4.4.3p2:
5892  //   An identifier declared as an enumeration constant has type int.
5893  // The C99 rule is modified by a gcc extension
5894  QualType BestPromotionType;
5895
5896  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5897
5898  if (NumNegativeBits) {
5899    // If there is a negative value, figure out the smallest integer type (of
5900    // int/long/longlong) that fits.
5901    // If it's packed, check also if it fits a char or a short.
5902    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5903      BestType = Context.SignedCharTy;
5904      BestWidth = CharWidth;
5905    } else if (Packed && NumNegativeBits <= ShortWidth &&
5906               NumPositiveBits < ShortWidth) {
5907      BestType = Context.ShortTy;
5908      BestWidth = ShortWidth;
5909    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5910      BestType = Context.IntTy;
5911      BestWidth = IntWidth;
5912    } else {
5913      BestWidth = Context.Target.getLongWidth();
5914
5915      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5916        BestType = Context.LongTy;
5917      } else {
5918        BestWidth = Context.Target.getLongLongWidth();
5919
5920        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5921          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5922        BestType = Context.LongLongTy;
5923      }
5924    }
5925    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5926  } else {
5927    // If there is no negative value, figure out which of uint, ulong, ulonglong
5928    // fits.
5929    // If it's packed, check also if it fits a char or a short.
5930    if (Packed && NumPositiveBits <= CharWidth) {
5931      BestType = Context.UnsignedCharTy;
5932      BestPromotionType = Context.IntTy;
5933      BestWidth = CharWidth;
5934    } else if (Packed && NumPositiveBits <= ShortWidth) {
5935      BestType = Context.UnsignedShortTy;
5936      BestPromotionType = Context.IntTy;
5937      BestWidth = ShortWidth;
5938    } else if (NumPositiveBits <= IntWidth) {
5939      BestType = Context.UnsignedIntTy;
5940      BestWidth = IntWidth;
5941      BestPromotionType = (NumPositiveBits == BestWidth
5942                           ? Context.UnsignedIntTy : Context.IntTy);
5943    } else if (NumPositiveBits <=
5944               (BestWidth = Context.Target.getLongWidth())) {
5945      BestType = Context.UnsignedLongTy;
5946      BestPromotionType = (NumPositiveBits == BestWidth
5947                           ? Context.UnsignedLongTy : Context.LongTy);
5948    } else {
5949      BestWidth = Context.Target.getLongLongWidth();
5950      assert(NumPositiveBits <= BestWidth &&
5951             "How could an initializer get larger than ULL?");
5952      BestType = Context.UnsignedLongLongTy;
5953      BestPromotionType = (NumPositiveBits == BestWidth
5954                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5955    }
5956  }
5957
5958  // If we're in C and the promotion type is larger than an int, just
5959  // use the underlying type, which is generally the unsigned integer
5960  // type of the same rank as the promotion type.  This is how the gcc
5961  // extension works.
5962  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5963    BestPromotionType = BestType;
5964
5965  // Loop over all of the enumerator constants, changing their types to match
5966  // the type of the enum if needed.
5967  for (unsigned i = 0; i != NumElements; ++i) {
5968    EnumConstantDecl *ECD =
5969      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5970    if (!ECD) continue;  // Already issued a diagnostic.
5971
5972    // Standard C says the enumerators have int type, but we allow, as an
5973    // extension, the enumerators to be larger than int size.  If each
5974    // enumerator value fits in an int, type it as an int, otherwise type it the
5975    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5976    // that X has type 'int', not 'unsigned'.
5977    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5978      continue;
5979
5980    // Determine whether the value fits into an int.
5981    llvm::APSInt InitVal = ECD->getInitVal();
5982    bool FitsInInt;
5983    if (InitVal.isUnsigned() || !InitVal.isNegative())
5984      FitsInInt = InitVal.getActiveBits() < IntWidth;
5985    else
5986      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5987
5988    // If it fits into an integer type, force it.  Otherwise force it to match
5989    // the enum decl type.
5990    QualType NewTy;
5991    unsigned NewWidth;
5992    bool NewSign;
5993    if (FitsInInt && !getLangOptions().CPlusPlus) {
5994      NewTy = Context.IntTy;
5995      NewWidth = IntWidth;
5996      NewSign = true;
5997    } else if (ECD->getType() == BestType) {
5998      // Already the right type!
5999      if (getLangOptions().CPlusPlus)
6000        // C++ [dcl.enum]p4: Following the closing brace of an
6001        // enum-specifier, each enumerator has the type of its
6002        // enumeration.
6003        ECD->setType(EnumType);
6004      continue;
6005    } else {
6006      NewTy = BestType;
6007      NewWidth = BestWidth;
6008      NewSign = BestType->isSignedIntegerType();
6009    }
6010
6011    // Adjust the APSInt value.
6012    InitVal.extOrTrunc(NewWidth);
6013    InitVal.setIsSigned(NewSign);
6014    ECD->setInitVal(InitVal);
6015
6016    // Adjust the Expr initializer and type.
6017    if (ECD->getInitExpr())
6018      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6019                                                      CastExpr::CK_IntegralCast,
6020                                                      ECD->getInitExpr(),
6021                                                      /*isLvalue=*/false));
6022    if (getLangOptions().CPlusPlus)
6023      // C++ [dcl.enum]p4: Following the closing brace of an
6024      // enum-specifier, each enumerator has the type of its
6025      // enumeration.
6026      ECD->setType(EnumType);
6027    else
6028      ECD->setType(NewTy);
6029  }
6030
6031  Enum->completeDefinition(Context, BestType, BestPromotionType);
6032}
6033
6034Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6035                                            ExprArg expr) {
6036  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6037
6038  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6039                                                   Loc, AsmString);
6040  CurContext->addDecl(New);
6041  return DeclPtrTy::make(New);
6042}
6043
6044void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6045                             SourceLocation PragmaLoc,
6046                             SourceLocation NameLoc) {
6047  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6048
6049  if (PrevDecl) {
6050    PrevDecl->addAttr(::new (Context) WeakAttr());
6051  } else {
6052    (void)WeakUndeclaredIdentifiers.insert(
6053      std::pair<IdentifierInfo*,WeakInfo>
6054        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6055  }
6056}
6057
6058void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6059                                IdentifierInfo* AliasName,
6060                                SourceLocation PragmaLoc,
6061                                SourceLocation NameLoc,
6062                                SourceLocation AliasNameLoc) {
6063  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6064  WeakInfo W = WeakInfo(Name, NameLoc);
6065
6066  if (PrevDecl) {
6067    if (!PrevDecl->hasAttr<AliasAttr>())
6068      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6069        DeclApplyPragmaWeak(TUScope, ND, W);
6070  } else {
6071    (void)WeakUndeclaredIdentifiers.insert(
6072      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6073  }
6074}
6075