SemaDecl.cpp revision 669d5d74b880a8497b92a3ec159145713f4d6519
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S,
32                               const CXXScopeSpec *SS) {
33  DeclContext *DC = 0;
34  if (SS) {
35    if (SS->isInvalid())
36      return 0;
37    DC = static_cast<DeclContext*>(SS->getScopeRep());
38  }
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48DeclContext *Sema::getContainingDC(DeclContext *DC) {
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    // A C++ out-of-line method will return to the file declaration context.
51    if (MD->isOutOfLineDefinition())
52      return MD->getLexicalDeclContext();
53
54    // A C++ inline method is parsed *after* the topmost class it was declared in
55    // is fully parsed (it's "complete").
56    // The parsing of a C++ inline method happens at the declaration context of
57    // the topmost (non-nested) class it is declared in.
58    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
59    DC = MD->getParent();
60    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
61      DC = RD;
62
63    // Return the declaration context of the topmost class the inline method is
64    // declared in.
65    return DC;
66  }
67
68  if (isa<ObjCMethodDecl>(DC))
69    return Context.getTranslationUnitDecl();
70
71  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
72    return SD->getLexicalDeclContext();
73
74  return DC->getParent();
75}
76
77void Sema::PushDeclContext(DeclContext *DC) {
78  assert(getContainingDC(DC) == CurContext &&
79       "The next DeclContext should be lexically contained in the current one.");
80  CurContext = DC;
81}
82
83void Sema::PopDeclContext() {
84  assert(CurContext && "DeclContext imbalance!");
85  CurContext = getContainingDC(CurContext);
86}
87
88/// Add this decl to the scope shadowed decl chains.
89void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
90  S->AddDecl(D);
91
92  // C++ [basic.scope]p4:
93  //   -- exactly one declaration shall declare a class name or
94  //   enumeration name that is not a typedef name and the other
95  //   declarations shall all refer to the same object or
96  //   enumerator, or all refer to functions and function templates;
97  //   in this case the class name or enumeration name is hidden.
98  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
99    // We are pushing the name of a tag (enum or class).
100    IdentifierResolver::iterator
101        I = IdResolver.begin(TD->getIdentifier(),
102                             TD->getDeclContext(), false/*LookInParentCtx*/);
103    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
104      // There is already a declaration with the same name in the same
105      // scope. It must be found before we find the new declaration,
106      // so swap the order on the shadowed declaration chain.
107
108      IdResolver.AddShadowedDecl(TD, *I);
109      return;
110    }
111  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
112    FunctionDecl *FD = cast<FunctionDecl>(D);
113    // We are pushing the name of a function, which might be an
114    // overloaded name.
115    IdentifierResolver::iterator
116        I = IdResolver.begin(FD->getIdentifier(),
117                             FD->getDeclContext(), false/*LookInParentCtx*/);
118    if (I != IdResolver.end() &&
119        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
120        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
121      // There is already a declaration with the same name in the same
122      // scope. It must be a function or an overloaded function.
123      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
124      if (!Ovl) {
125        // We haven't yet overloaded this function. Take the existing
126        // FunctionDecl and put it into an OverloadedFunctionDecl.
127        Ovl = OverloadedFunctionDecl::Create(Context,
128                                             FD->getDeclContext(),
129                                             FD->getIdentifier());
130        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
131
132        // Remove the name binding to the existing FunctionDecl...
133        IdResolver.RemoveDecl(*I);
134
135        // ... and put the OverloadedFunctionDecl in its place.
136        IdResolver.AddDecl(Ovl);
137      }
138
139      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
140      // to its list of overloads.
141      Ovl->addOverload(FD);
142
143      return;
144    }
145  }
146
147  IdResolver.AddDecl(D);
148}
149
150void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
151  if (S->decl_empty()) return;
152  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
153
154  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
155       I != E; ++I) {
156    Decl *TmpD = static_cast<Decl*>(*I);
157    assert(TmpD && "This decl didn't get pushed??");
158
159    if (isa<CXXFieldDecl>(TmpD)) continue;
160
161    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
162    ScopedDecl *D = cast<ScopedDecl>(TmpD);
163
164    IdentifierInfo *II = D->getIdentifier();
165    if (!II) continue;
166
167    // We only want to remove the decls from the identifier decl chains for
168    // local scopes, when inside a function/method.
169    if (S->getFnParent() != 0)
170      IdResolver.RemoveDecl(D);
171
172    // Chain this decl to the containing DeclContext.
173    D->setNext(CurContext->getDeclChain());
174    CurContext->setDeclChain(D);
175  }
176}
177
178/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
179/// return 0 if one not found.
180ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
181  // The third "scope" argument is 0 since we aren't enabling lazy built-in
182  // creation from this context.
183  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
184
185  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
186}
187
188/// LookupDecl - Look up the inner-most declaration in the specified
189/// namespace.
190Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI, Scope *S,
191                       const DeclContext *LookupCtx,
192                       bool enableLazyBuiltinCreation) {
193  if (II == 0) return 0;
194  unsigned NS = NSI;
195  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
196    NS |= Decl::IDNS_Tag;
197
198  IdentifierResolver::iterator
199    I = LookupCtx ? IdResolver.begin(II, LookupCtx, false/*LookInParentCtx*/) :
200                    IdResolver.begin(II, CurContext, true/*LookInParentCtx*/);
201  // Scan up the scope chain looking for a decl that matches this identifier
202  // that is in the appropriate namespace.  This search should not take long, as
203  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
204  for (; I != IdResolver.end(); ++I)
205    if ((*I)->getIdentifierNamespace() & NS)
206      return *I;
207
208  // If we didn't find a use of this identifier, and if the identifier
209  // corresponds to a compiler builtin, create the decl object for the builtin
210  // now, injecting it into translation unit scope, and return it.
211  if (NS & Decl::IDNS_Ordinary) {
212    if (enableLazyBuiltinCreation &&
213        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
214      // If this is a builtin on this (or all) targets, create the decl.
215      if (unsigned BuiltinID = II->getBuiltinID())
216        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
217    }
218    if (getLangOptions().ObjC1) {
219      // @interface and @compatibility_alias introduce typedef-like names.
220      // Unlike typedef's, they can only be introduced at file-scope (and are
221      // therefore not scoped decls). They can, however, be shadowed by
222      // other names in IDNS_Ordinary.
223      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
224      if (IDI != ObjCInterfaceDecls.end())
225        return IDI->second;
226      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
227      if (I != ObjCAliasDecls.end())
228        return I->second->getClassInterface();
229    }
230  }
231  return 0;
232}
233
234void Sema::InitBuiltinVaListType() {
235  if (!Context.getBuiltinVaListType().isNull())
236    return;
237
238  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
239  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
240  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
241  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
242}
243
244/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
245/// lazily create a decl for it.
246ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
247                                      Scope *S) {
248  Builtin::ID BID = (Builtin::ID)bid;
249
250  if (Context.BuiltinInfo.hasVAListUse(BID))
251    InitBuiltinVaListType();
252
253  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
254  FunctionDecl *New = FunctionDecl::Create(Context,
255                                           Context.getTranslationUnitDecl(),
256                                           SourceLocation(), II, R,
257                                           FunctionDecl::Extern, false, 0);
258
259  // Create Decl objects for each parameter, adding them to the
260  // FunctionDecl.
261  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
262    llvm::SmallVector<ParmVarDecl*, 16> Params;
263    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
264      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
265                                           FT->getArgType(i), VarDecl::None, 0,
266                                           0));
267    New->setParams(&Params[0], Params.size());
268  }
269
270
271
272  // TUScope is the translation-unit scope to insert this function into.
273  PushOnScopeChains(New, TUScope);
274  return New;
275}
276
277/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
278/// everything from the standard library is defined.
279NamespaceDecl *Sema::GetStdNamespace() {
280  if (!StdNamespace) {
281    DeclContext *Global = Context.getTranslationUnitDecl();
282    Decl *Std = LookupDecl(Ident_StdNs, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
283                           0, Global, /*enableLazyBuiltinCreation=*/false);
284    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
285  }
286  return StdNamespace;
287}
288
289/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
290/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
291/// situation, merging decls or emitting diagnostics as appropriate.
292///
293TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
294  // Allow multiple definitions for ObjC built-in typedefs.
295  // FIXME: Verify the underlying types are equivalent!
296  if (getLangOptions().ObjC1) {
297    const IdentifierInfo *typeIdent = New->getIdentifier();
298    if (typeIdent == Ident_id) {
299      Context.setObjCIdType(New);
300      return New;
301    } else if (typeIdent == Ident_Class) {
302      Context.setObjCClassType(New);
303      return New;
304    } else if (typeIdent == Ident_SEL) {
305      Context.setObjCSelType(New);
306      return New;
307    } else if (typeIdent == Ident_Protocol) {
308      Context.setObjCProtoType(New->getUnderlyingType());
309      return New;
310    }
311    // Fall through - the typedef name was not a builtin type.
312  }
313  // Verify the old decl was also a typedef.
314  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
315  if (!Old) {
316    Diag(New->getLocation(), diag::err_redefinition_different_kind,
317         New->getName());
318    Diag(OldD->getLocation(), diag::err_previous_definition);
319    return New;
320  }
321
322  // If the typedef types are not identical, reject them in all languages and
323  // with any extensions enabled.
324  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
325      Context.getCanonicalType(Old->getUnderlyingType()) !=
326      Context.getCanonicalType(New->getUnderlyingType())) {
327    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
328         New->getUnderlyingType().getAsString(),
329         Old->getUnderlyingType().getAsString());
330    Diag(Old->getLocation(), diag::err_previous_definition);
331    return Old;
332  }
333
334  if (getLangOptions().Microsoft) return New;
335
336  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
337  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
338  // *either* declaration is in a system header. The code below implements
339  // this adhoc compatibility rule. FIXME: The following code will not
340  // work properly when compiling ".i" files (containing preprocessed output).
341  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
342    SourceManager &SrcMgr = Context.getSourceManager();
343    if (SrcMgr.isInSystemHeader(Old->getLocation()))
344      return New;
345    if (SrcMgr.isInSystemHeader(New->getLocation()))
346      return New;
347  }
348
349  Diag(New->getLocation(), diag::err_redefinition, New->getName());
350  Diag(Old->getLocation(), diag::err_previous_definition);
351  return New;
352}
353
354/// DeclhasAttr - returns true if decl Declaration already has the target
355/// attribute.
356static bool DeclHasAttr(const Decl *decl, const Attr *target) {
357  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
358    if (attr->getKind() == target->getKind())
359      return true;
360
361  return false;
362}
363
364/// MergeAttributes - append attributes from the Old decl to the New one.
365static void MergeAttributes(Decl *New, Decl *Old) {
366  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
367
368  while (attr) {
369     tmp = attr;
370     attr = attr->getNext();
371
372    if (!DeclHasAttr(New, tmp)) {
373       New->addAttr(tmp);
374    } else {
375       tmp->setNext(0);
376       delete(tmp);
377    }
378  }
379
380  Old->invalidateAttrs();
381}
382
383/// MergeFunctionDecl - We just parsed a function 'New' from
384/// declarator D which has the same name and scope as a previous
385/// declaration 'Old'.  Figure out how to resolve this situation,
386/// merging decls or emitting diagnostics as appropriate.
387/// Redeclaration will be set true if this New is a redeclaration OldD.
388///
389/// In C++, New and Old must be declarations that are not
390/// overloaded. Use IsOverload to determine whether New and Old are
391/// overloaded, and to select the Old declaration that New should be
392/// merged with.
393FunctionDecl *
394Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
395  assert(!isa<OverloadedFunctionDecl>(OldD) &&
396         "Cannot merge with an overloaded function declaration");
397
398  Redeclaration = false;
399  // Verify the old decl was also a function.
400  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
401  if (!Old) {
402    Diag(New->getLocation(), diag::err_redefinition_different_kind,
403         New->getName());
404    Diag(OldD->getLocation(), diag::err_previous_definition);
405    return New;
406  }
407
408  // Determine whether the previous declaration was a definition,
409  // implicit declaration, or a declaration.
410  diag::kind PrevDiag;
411  if (Old->isThisDeclarationADefinition())
412    PrevDiag = diag::err_previous_definition;
413  else if (Old->isImplicit())
414    PrevDiag = diag::err_previous_implicit_declaration;
415  else
416    PrevDiag = diag::err_previous_declaration;
417
418  QualType OldQType = Context.getCanonicalType(Old->getType());
419  QualType NewQType = Context.getCanonicalType(New->getType());
420
421  if (getLangOptions().CPlusPlus) {
422    // (C++98 13.1p2):
423    //   Certain function declarations cannot be overloaded:
424    //     -- Function declarations that differ only in the return type
425    //        cannot be overloaded.
426    QualType OldReturnType
427      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
428    QualType NewReturnType
429      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
430    if (OldReturnType != NewReturnType) {
431      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
432      Diag(Old->getLocation(), PrevDiag);
433      return New;
434    }
435
436    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
437    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
438    if (OldMethod && NewMethod) {
439      //    -- Member function declarations with the same name and the
440      //       same parameter types cannot be overloaded if any of them
441      //       is a static member function declaration.
442      if (OldMethod->isStatic() || NewMethod->isStatic()) {
443        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
444        Diag(Old->getLocation(), PrevDiag);
445        return New;
446      }
447    }
448
449    // (C++98 8.3.5p3):
450    //   All declarations for a function shall agree exactly in both the
451    //   return type and the parameter-type-list.
452    if (OldQType == NewQType) {
453      // We have a redeclaration.
454      MergeAttributes(New, Old);
455      Redeclaration = true;
456      return MergeCXXFunctionDecl(New, Old);
457    }
458
459    // Fall through for conflicting redeclarations and redefinitions.
460  }
461
462  // C: Function types need to be compatible, not identical. This handles
463  // duplicate function decls like "void f(int); void f(enum X);" properly.
464  if (!getLangOptions().CPlusPlus &&
465      Context.typesAreCompatible(OldQType, NewQType)) {
466    MergeAttributes(New, Old);
467    Redeclaration = true;
468    return New;
469  }
470
471  // A function that has already been declared has been redeclared or defined
472  // with a different type- show appropriate diagnostic
473
474  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
475  // TODO: This is totally simplistic.  It should handle merging functions
476  // together etc, merging extern int X; int X; ...
477  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
478  Diag(Old->getLocation(), PrevDiag);
479  return New;
480}
481
482/// Predicate for C "tentative" external object definitions (C99 6.9.2).
483static bool isTentativeDefinition(VarDecl *VD) {
484  if (VD->isFileVarDecl())
485    return (!VD->getInit() &&
486            (VD->getStorageClass() == VarDecl::None ||
487             VD->getStorageClass() == VarDecl::Static));
488  return false;
489}
490
491/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
492/// when dealing with C "tentative" external object definitions (C99 6.9.2).
493void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
494  bool VDIsTentative = isTentativeDefinition(VD);
495  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
496
497  for (IdentifierResolver::iterator
498       I = IdResolver.begin(VD->getIdentifier(),
499                            VD->getDeclContext(), false/*LookInParentCtx*/),
500       E = IdResolver.end(); I != E; ++I) {
501    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
502      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
503
504      // Handle the following case:
505      //   int a[10];
506      //   int a[];   - the code below makes sure we set the correct type.
507      //   int a[11]; - this is an error, size isn't 10.
508      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
509          OldDecl->getType()->isConstantArrayType())
510        VD->setType(OldDecl->getType());
511
512      // Check for "tentative" definitions. We can't accomplish this in
513      // MergeVarDecl since the initializer hasn't been attached.
514      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
515        continue;
516
517      // Handle __private_extern__ just like extern.
518      if (OldDecl->getStorageClass() != VarDecl::Extern &&
519          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
520          VD->getStorageClass() != VarDecl::Extern &&
521          VD->getStorageClass() != VarDecl::PrivateExtern) {
522        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
523        Diag(OldDecl->getLocation(), diag::err_previous_definition);
524      }
525    }
526  }
527}
528
529/// MergeVarDecl - We just parsed a variable 'New' which has the same name
530/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
531/// situation, merging decls or emitting diagnostics as appropriate.
532///
533/// Tentative definition rules (C99 6.9.2p2) are checked by
534/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
535/// definitions here, since the initializer hasn't been attached.
536///
537VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
538  // Verify the old decl was also a variable.
539  VarDecl *Old = dyn_cast<VarDecl>(OldD);
540  if (!Old) {
541    Diag(New->getLocation(), diag::err_redefinition_different_kind,
542         New->getName());
543    Diag(OldD->getLocation(), diag::err_previous_definition);
544    return New;
545  }
546
547  MergeAttributes(New, Old);
548
549  // Verify the types match.
550  QualType OldCType = Context.getCanonicalType(Old->getType());
551  QualType NewCType = Context.getCanonicalType(New->getType());
552  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
553    Diag(New->getLocation(), diag::err_redefinition, New->getName());
554    Diag(Old->getLocation(), diag::err_previous_definition);
555    return New;
556  }
557  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
558  if (New->getStorageClass() == VarDecl::Static &&
559      (Old->getStorageClass() == VarDecl::None ||
560       Old->getStorageClass() == VarDecl::Extern)) {
561    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
562    Diag(Old->getLocation(), diag::err_previous_definition);
563    return New;
564  }
565  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
566  if (New->getStorageClass() != VarDecl::Static &&
567      Old->getStorageClass() == VarDecl::Static) {
568    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
569    Diag(Old->getLocation(), diag::err_previous_definition);
570    return New;
571  }
572  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
573  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
574    Diag(New->getLocation(), diag::err_redefinition, New->getName());
575    Diag(Old->getLocation(), diag::err_previous_definition);
576  }
577  return New;
578}
579
580/// CheckParmsForFunctionDef - Check that the parameters of the given
581/// function are appropriate for the definition of a function. This
582/// takes care of any checks that cannot be performed on the
583/// declaration itself, e.g., that the types of each of the function
584/// parameters are complete.
585bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
586  bool HasInvalidParm = false;
587  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
588    ParmVarDecl *Param = FD->getParamDecl(p);
589
590    // C99 6.7.5.3p4: the parameters in a parameter type list in a
591    // function declarator that is part of a function definition of
592    // that function shall not have incomplete type.
593    if (Param->getType()->isIncompleteType() &&
594        !Param->isInvalidDecl()) {
595      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
596           Param->getType().getAsString());
597      Param->setInvalidDecl();
598      HasInvalidParm = true;
599    }
600  }
601
602  return HasInvalidParm;
603}
604
605/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
606/// no declarator (e.g. "struct foo;") is parsed.
607Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
608  // TODO: emit error on 'int;' or 'const enum foo;'.
609  // TODO: emit error on 'typedef int;'
610  // if (!DS.isMissingDeclaratorOk()) Diag(...);
611
612  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
613}
614
615bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
616  // Get the type before calling CheckSingleAssignmentConstraints(), since
617  // it can promote the expression.
618  QualType InitType = Init->getType();
619
620  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
621  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
622                                  InitType, Init, "initializing");
623}
624
625bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
626  const ArrayType *AT = Context.getAsArrayType(DeclT);
627
628  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
629    // C99 6.7.8p14. We have an array of character type with unknown size
630    // being initialized to a string literal.
631    llvm::APSInt ConstVal(32);
632    ConstVal = strLiteral->getByteLength() + 1;
633    // Return a new array type (C99 6.7.8p22).
634    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
635                                         ArrayType::Normal, 0);
636  } else {
637    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
638    // C99 6.7.8p14. We have an array of character type with known size.
639    // FIXME: Avoid truncation for 64-bit length strings.
640    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
641      Diag(strLiteral->getSourceRange().getBegin(),
642           diag::warn_initializer_string_for_char_array_too_long,
643           strLiteral->getSourceRange());
644  }
645  // Set type from "char *" to "constant array of char".
646  strLiteral->setType(DeclT);
647  // For now, we always return false (meaning success).
648  return false;
649}
650
651StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
652  const ArrayType *AT = Context.getAsArrayType(DeclType);
653  if (AT && AT->getElementType()->isCharType()) {
654    return dyn_cast<StringLiteral>(Init);
655  }
656  return 0;
657}
658
659bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
660                                 SourceLocation InitLoc,
661                                 std::string InitEntity) {
662  // C++ [dcl.init.ref]p1:
663  //   A variable declared to be a T&, that is “reference to type T”
664  //   (8.3.2), shall be initialized by an object, or function, of
665  //   type T or by an object that can be converted into a T.
666  if (DeclType->isReferenceType())
667    return CheckReferenceInit(Init, DeclType);
668
669  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
670  // of unknown size ("[]") or an object type that is not a variable array type.
671  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
672    return Diag(InitLoc,
673                diag::err_variable_object_no_init,
674                VAT->getSizeExpr()->getSourceRange());
675
676  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
677  if (!InitList) {
678    // FIXME: Handle wide strings
679    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
680      return CheckStringLiteralInit(strLiteral, DeclType);
681
682    // C++ [dcl.init]p14:
683    //   -- If the destination type is a (possibly cv-qualified) class
684    //      type:
685    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
686      QualType DeclTypeC = Context.getCanonicalType(DeclType);
687      QualType InitTypeC = Context.getCanonicalType(Init->getType());
688
689      //   -- If the initialization is direct-initialization, or if it is
690      //      copy-initialization where the cv-unqualified version of the
691      //      source type is the same class as, or a derived class of, the
692      //      class of the destination, constructors are considered.
693      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
694          IsDerivedFrom(InitTypeC, DeclTypeC)) {
695        CXXConstructorDecl *Constructor
696          = PerformInitializationByConstructor(DeclType, &Init, 1,
697                                               InitLoc, Init->getSourceRange(),
698                                               InitEntity, IK_Copy);
699        return Constructor == 0;
700      }
701
702      //   -- Otherwise (i.e., for the remaining copy-initialization
703      //      cases), user-defined conversion sequences that can
704      //      convert from the source type to the destination type or
705      //      (when a conversion function is used) to a derived class
706      //      thereof are enumerated as described in 13.3.1.4, and the
707      //      best one is chosen through overload resolution
708      //      (13.3). If the conversion cannot be done or is
709      //      ambiguous, the initialization is ill-formed. The
710      //      function selected is called with the initializer
711      //      expression as its argument; if the function is a
712      //      constructor, the call initializes a temporary of the
713      //      destination type.
714      // FIXME: We're pretending to do copy elision here; return to
715      // this when we have ASTs for such things.
716      if (PerformImplicitConversion(Init, DeclType))
717        return Diag(InitLoc,
718                    diag::err_typecheck_convert_incompatible,
719                    DeclType.getAsString(), InitEntity,
720                    "initializing",
721                    Init->getSourceRange());
722      else
723        return false;
724    }
725
726    // C99 6.7.8p16.
727    if (DeclType->isArrayType())
728      return Diag(Init->getLocStart(),
729                  diag::err_array_init_list_required,
730                  Init->getSourceRange());
731
732    return CheckSingleInitializer(Init, DeclType);
733  } else if (getLangOptions().CPlusPlus) {
734    // C++ [dcl.init]p14:
735    //   [...] If the class is an aggregate (8.5.1), and the initializer
736    //   is a brace-enclosed list, see 8.5.1.
737    //
738    // Note: 8.5.1 is handled below; here, we diagnose the case where
739    // we have an initializer list and a destination type that is not
740    // an aggregate.
741    // FIXME: In C++0x, this is yet another form of initialization.
742    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
743      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
744      if (!ClassDecl->isAggregate())
745        return Diag(InitLoc,
746                    diag::err_init_non_aggr_init_list,
747                    DeclType.getAsString(),
748                    Init->getSourceRange());
749    }
750  }
751
752  InitListChecker CheckInitList(this, InitList, DeclType);
753  return CheckInitList.HadError();
754}
755
756Sema::DeclTy *
757Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
758  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
759  IdentifierInfo *II = D.getIdentifier();
760
761  // All of these full declarators require an identifier.  If it doesn't have
762  // one, the ParsedFreeStandingDeclSpec action should be used.
763  if (II == 0) {
764    if (!D.getInvalidType())  // Reject this if we think it is valid.
765      Diag(D.getDeclSpec().getSourceRange().getBegin(),
766           diag::err_declarator_need_ident,
767           D.getDeclSpec().getSourceRange(), D.getSourceRange());
768    return 0;
769  }
770
771  // The scope passed in may not be a decl scope.  Zip up the scope tree until
772  // we find one that is.
773  while ((S->getFlags() & Scope::DeclScope) == 0)
774    S = S->getParent();
775
776  DeclContext *DC;
777  Decl *PrevDecl;
778  ScopedDecl *New;
779  bool InvalidDecl = false;
780
781  // See if this is a redefinition of a variable in the same scope.
782  if (!D.getCXXScopeSpec().isSet()) {
783    DC = CurContext;
784    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
785  } else { // Something like "int foo::x;"
786    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
787    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S, DC);
788
789    // C++ 7.3.1.2p2:
790    // Members (including explicit specializations of templates) of a named
791    // namespace can also be defined outside that namespace by explicit
792    // qualification of the name being defined, provided that the entity being
793    // defined was already declared in the namespace and the definition appears
794    // after the point of declaration in a namespace that encloses the
795    // declarations namespace.
796    //
797    if (PrevDecl == 0) {
798      // No previous declaration in the qualifying scope.
799      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
800           II->getName(), D.getCXXScopeSpec().getRange());
801    } else if (!CurContext->Encloses(DC)) {
802      // The qualifying scope doesn't enclose the original declaration.
803      // Emit diagnostic based on current scope.
804      SourceLocation L = D.getIdentifierLoc();
805      SourceRange R = D.getCXXScopeSpec().getRange();
806      if (isa<FunctionDecl>(CurContext)) {
807        Diag(L, diag::err_invalid_declarator_in_function, II->getName(), R);
808      } else {
809      Diag(L, diag::err_invalid_declarator_scope, II->getName(),
810           cast<NamedDecl>(DC)->getName(), R);
811      }
812    }
813  }
814
815  // In C++, the previous declaration we find might be a tag type
816  // (class or enum). In this case, the new declaration will hide the
817  // tag type.
818  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
819    PrevDecl = 0;
820
821  QualType R = GetTypeForDeclarator(D, S);
822  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
823
824  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
825    // Check that there are no default arguments (C++ only).
826    if (getLangOptions().CPlusPlus)
827      CheckExtraCXXDefaultArguments(D);
828
829    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
830    if (!NewTD) return 0;
831
832    // Handle attributes prior to checking for duplicates in MergeVarDecl
833    ProcessDeclAttributes(NewTD, D);
834    // Merge the decl with the existing one if appropriate. If the decl is
835    // in an outer scope, it isn't the same thing.
836    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
837      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
838      if (NewTD == 0) return 0;
839    }
840    New = NewTD;
841    if (S->getFnParent() == 0) {
842      // C99 6.7.7p2: If a typedef name specifies a variably modified type
843      // then it shall have block scope.
844      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
845        // FIXME: Diagnostic needs to be fixed.
846        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
847        InvalidDecl = true;
848      }
849    }
850  } else if (R.getTypePtr()->isFunctionType()) {
851    FunctionDecl::StorageClass SC = FunctionDecl::None;
852    switch (D.getDeclSpec().getStorageClassSpec()) {
853      default: assert(0 && "Unknown storage class!");
854      case DeclSpec::SCS_auto:
855      case DeclSpec::SCS_register:
856      case DeclSpec::SCS_mutable:
857        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
858             R.getAsString());
859        InvalidDecl = true;
860        break;
861      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
862      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
863      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
864      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
865    }
866
867    bool isInline = D.getDeclSpec().isInlineSpecified();
868    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
869    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
870
871    FunctionDecl *NewFD;
872    if (D.getKind() == Declarator::DK_Constructor) {
873      // This is a C++ constructor declaration.
874      assert(DC->isCXXRecord() &&
875             "Constructors can only be declared in a member context");
876
877      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
878
879      // Create the new declaration
880      NewFD = CXXConstructorDecl::Create(Context,
881                                         cast<CXXRecordDecl>(DC),
882                                         D.getIdentifierLoc(), II, R,
883                                         isExplicit, isInline,
884                                         /*isImplicitlyDeclared=*/false);
885
886      if (isInvalidDecl)
887        NewFD->setInvalidDecl();
888    } else if (D.getKind() == Declarator::DK_Destructor) {
889      // This is a C++ destructor declaration.
890      if (DC->isCXXRecord()) {
891        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
892
893        NewFD = CXXDestructorDecl::Create(Context,
894                                          cast<CXXRecordDecl>(DC),
895                                          D.getIdentifierLoc(), II, R,
896                                          isInline,
897                                          /*isImplicitlyDeclared=*/false);
898
899        if (isInvalidDecl)
900          NewFD->setInvalidDecl();
901      } else {
902        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
903        // Create a FunctionDecl to satisfy the function definition parsing
904        // code path.
905        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
906                                     II, R, SC, isInline, LastDeclarator,
907                                     // FIXME: Move to DeclGroup...
908                                   D.getDeclSpec().getSourceRange().getBegin());
909        NewFD->setInvalidDecl();
910      }
911    } else if (D.getKind() == Declarator::DK_Conversion) {
912      if (!DC->isCXXRecord()) {
913        Diag(D.getIdentifierLoc(),
914             diag::err_conv_function_not_member);
915        return 0;
916      } else {
917        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
918
919        NewFD = CXXConversionDecl::Create(Context,
920                                          cast<CXXRecordDecl>(DC),
921                                          D.getIdentifierLoc(), II, R,
922                                          isInline, isExplicit);
923
924        if (isInvalidDecl)
925          NewFD->setInvalidDecl();
926      }
927    } else if (DC->isCXXRecord()) {
928      // This is a C++ method declaration.
929      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
930                                    D.getIdentifierLoc(), II, R,
931                                    (SC == FunctionDecl::Static), isInline,
932                                    LastDeclarator);
933    } else {
934      NewFD = FunctionDecl::Create(Context, DC,
935                                   D.getIdentifierLoc(),
936                                   II, R, SC, isInline, LastDeclarator,
937                                   // FIXME: Move to DeclGroup...
938                                   D.getDeclSpec().getSourceRange().getBegin());
939    }
940    // Handle attributes.
941    ProcessDeclAttributes(NewFD, D);
942
943    // Handle GNU asm-label extension (encoded as an attribute).
944    if (Expr *E = (Expr*) D.getAsmLabel()) {
945      // The parser guarantees this is a string.
946      StringLiteral *SE = cast<StringLiteral>(E);
947      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
948                                                  SE->getByteLength())));
949    }
950
951    // Copy the parameter declarations from the declarator D to
952    // the function declaration NewFD, if they are available.
953    if (D.getNumTypeObjects() > 0) {
954      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
955
956      // Create Decl objects for each parameter, adding them to the
957      // FunctionDecl.
958      llvm::SmallVector<ParmVarDecl*, 16> Params;
959
960      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
961      // function that takes no arguments, not a function that takes a
962      // single void argument.
963      // We let through "const void" here because Sema::GetTypeForDeclarator
964      // already checks for that case.
965      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
966          FTI.ArgInfo[0].Param &&
967          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
968        // empty arg list, don't push any params.
969        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
970
971        // In C++, the empty parameter-type-list must be spelled "void"; a
972        // typedef of void is not permitted.
973        if (getLangOptions().CPlusPlus &&
974            Param->getType().getUnqualifiedType() != Context.VoidTy) {
975          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
976        }
977      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
978        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
979          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
980      }
981
982      NewFD->setParams(&Params[0], Params.size());
983    } else if (R->getAsTypedefType()) {
984      // When we're declaring a function with a typedef, as in the
985      // following example, we'll need to synthesize (unnamed)
986      // parameters for use in the declaration.
987      //
988      // @code
989      // typedef void fn(int);
990      // fn f;
991      // @endcode
992      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
993      if (!FT) {
994        // This is a typedef of a function with no prototype, so we
995        // don't need to do anything.
996      } else if ((FT->getNumArgs() == 0) ||
997          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
998           FT->getArgType(0)->isVoidType())) {
999        // This is a zero-argument function. We don't need to do anything.
1000      } else {
1001        // Synthesize a parameter for each argument type.
1002        llvm::SmallVector<ParmVarDecl*, 16> Params;
1003        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1004             ArgType != FT->arg_type_end(); ++ArgType) {
1005          Params.push_back(ParmVarDecl::Create(Context, DC,
1006                                               SourceLocation(), 0,
1007                                               *ArgType, VarDecl::None,
1008                                               0, 0));
1009        }
1010
1011        NewFD->setParams(&Params[0], Params.size());
1012      }
1013    }
1014
1015    // C++ constructors and destructors are handled by separate
1016    // routines, since they don't require any declaration merging (C++
1017    // [class.mfct]p2) and they aren't ever pushed into scope, because
1018    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1019    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1020      return ActOnConstructorDeclarator(Constructor);
1021    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1022      return ActOnDestructorDeclarator(Destructor);
1023    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1024      return ActOnConversionDeclarator(Conversion);
1025
1026    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1027    if (NewFD->isOverloadedOperator() &&
1028        CheckOverloadedOperatorDeclaration(NewFD))
1029      NewFD->setInvalidDecl();
1030
1031    // Merge the decl with the existing one if appropriate. Since C functions
1032    // are in a flat namespace, make sure we consider decls in outer scopes.
1033    if (PrevDecl &&
1034        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1035      bool Redeclaration = false;
1036
1037      // If C++, determine whether NewFD is an overload of PrevDecl or
1038      // a declaration that requires merging. If it's an overload,
1039      // there's no more work to do here; we'll just add the new
1040      // function to the scope.
1041      OverloadedFunctionDecl::function_iterator MatchedDecl;
1042      if (!getLangOptions().CPlusPlus ||
1043          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1044        Decl *OldDecl = PrevDecl;
1045
1046        // If PrevDecl was an overloaded function, extract the
1047        // FunctionDecl that matched.
1048        if (isa<OverloadedFunctionDecl>(PrevDecl))
1049          OldDecl = *MatchedDecl;
1050
1051        // NewFD and PrevDecl represent declarations that need to be
1052        // merged.
1053        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1054
1055        if (NewFD == 0) return 0;
1056        if (Redeclaration) {
1057          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1058
1059          if (OldDecl == PrevDecl) {
1060            // Remove the name binding for the previous
1061            // declaration. We'll add the binding back later, but then
1062            // it will refer to the new declaration (which will
1063            // contain more information).
1064            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1065          } else {
1066            // We need to update the OverloadedFunctionDecl with the
1067            // latest declaration of this function, so that name
1068            // lookup will always refer to the latest declaration of
1069            // this function.
1070            *MatchedDecl = NewFD;
1071
1072            // Add the redeclaration to the current scope, since we'll
1073            // be skipping PushOnScopeChains.
1074            S->AddDecl(NewFD);
1075
1076            return NewFD;
1077          }
1078        }
1079      }
1080    }
1081    New = NewFD;
1082
1083    // In C++, check default arguments now that we have merged decls.
1084    if (getLangOptions().CPlusPlus)
1085      CheckCXXDefaultArguments(NewFD);
1086  } else {
1087    // Check that there are no default arguments (C++ only).
1088    if (getLangOptions().CPlusPlus)
1089      CheckExtraCXXDefaultArguments(D);
1090
1091    if (R.getTypePtr()->isObjCInterfaceType()) {
1092      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1093           D.getIdentifier()->getName());
1094      InvalidDecl = true;
1095    }
1096
1097    VarDecl *NewVD;
1098    VarDecl::StorageClass SC;
1099    switch (D.getDeclSpec().getStorageClassSpec()) {
1100    default: assert(0 && "Unknown storage class!");
1101    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1102    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1103    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1104    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1105    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1106    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1107    case DeclSpec::SCS_mutable:
1108      // mutable can only appear on non-static class members, so it's always
1109      // an error here
1110      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1111      InvalidDecl = true;
1112    }
1113    if (DC->isCXXRecord()) {
1114      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1115      // This is a static data member for a C++ class.
1116      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1117                                      D.getIdentifierLoc(), II,
1118                                      R, LastDeclarator);
1119    } else {
1120      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1121      if (S->getFnParent() == 0) {
1122        // C99 6.9p2: The storage-class specifiers auto and register shall not
1123        // appear in the declaration specifiers in an external declaration.
1124        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1125          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1126               R.getAsString());
1127          InvalidDecl = true;
1128        }
1129      }
1130      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1131                              II, R, SC, LastDeclarator,
1132                              // FIXME: Move to DeclGroup...
1133                              D.getDeclSpec().getSourceRange().getBegin());
1134      NewVD->setThreadSpecified(ThreadSpecified);
1135    }
1136    // Handle attributes prior to checking for duplicates in MergeVarDecl
1137    ProcessDeclAttributes(NewVD, D);
1138
1139    // Handle GNU asm-label extension (encoded as an attribute).
1140    if (Expr *E = (Expr*) D.getAsmLabel()) {
1141      // The parser guarantees this is a string.
1142      StringLiteral *SE = cast<StringLiteral>(E);
1143      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1144                                                  SE->getByteLength())));
1145    }
1146
1147    // Emit an error if an address space was applied to decl with local storage.
1148    // This includes arrays of objects with address space qualifiers, but not
1149    // automatic variables that point to other address spaces.
1150    // ISO/IEC TR 18037 S5.1.2
1151    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1152      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1153      InvalidDecl = true;
1154    }
1155    // Merge the decl with the existing one if appropriate. If the decl is
1156    // in an outer scope, it isn't the same thing.
1157    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1158      NewVD = MergeVarDecl(NewVD, PrevDecl);
1159      if (NewVD == 0) return 0;
1160    }
1161    New = NewVD;
1162  }
1163
1164  // Set the lexical context. If the declarator has a C++ scope specifier, the
1165  // lexical context will be different from the semantic context.
1166  New->setLexicalDeclContext(CurContext);
1167
1168  // If this has an identifier, add it to the scope stack.
1169  if (II)
1170    PushOnScopeChains(New, S);
1171  // If any semantic error occurred, mark the decl as invalid.
1172  if (D.getInvalidType() || InvalidDecl)
1173    New->setInvalidDecl();
1174
1175  return New;
1176}
1177
1178void Sema::InitializerElementNotConstant(const Expr *Init) {
1179  Diag(Init->getExprLoc(),
1180       diag::err_init_element_not_constant, Init->getSourceRange());
1181}
1182
1183bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1184  switch (Init->getStmtClass()) {
1185  default:
1186    InitializerElementNotConstant(Init);
1187    return true;
1188  case Expr::ParenExprClass: {
1189    const ParenExpr* PE = cast<ParenExpr>(Init);
1190    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1191  }
1192  case Expr::CompoundLiteralExprClass:
1193    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1194  case Expr::DeclRefExprClass: {
1195    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1196    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1197      if (VD->hasGlobalStorage())
1198        return false;
1199      InitializerElementNotConstant(Init);
1200      return true;
1201    }
1202    if (isa<FunctionDecl>(D))
1203      return false;
1204    InitializerElementNotConstant(Init);
1205    return true;
1206  }
1207  case Expr::MemberExprClass: {
1208    const MemberExpr *M = cast<MemberExpr>(Init);
1209    if (M->isArrow())
1210      return CheckAddressConstantExpression(M->getBase());
1211    return CheckAddressConstantExpressionLValue(M->getBase());
1212  }
1213  case Expr::ArraySubscriptExprClass: {
1214    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1215    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1216    return CheckAddressConstantExpression(ASE->getBase()) ||
1217           CheckArithmeticConstantExpression(ASE->getIdx());
1218  }
1219  case Expr::StringLiteralClass:
1220  case Expr::PredefinedExprClass:
1221    return false;
1222  case Expr::UnaryOperatorClass: {
1223    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1224
1225    // C99 6.6p9
1226    if (Exp->getOpcode() == UnaryOperator::Deref)
1227      return CheckAddressConstantExpression(Exp->getSubExpr());
1228
1229    InitializerElementNotConstant(Init);
1230    return true;
1231  }
1232  }
1233}
1234
1235bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1236  switch (Init->getStmtClass()) {
1237  default:
1238    InitializerElementNotConstant(Init);
1239    return true;
1240  case Expr::ParenExprClass:
1241    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1242  case Expr::StringLiteralClass:
1243  case Expr::ObjCStringLiteralClass:
1244    return false;
1245  case Expr::CallExprClass:
1246  case Expr::CXXOperatorCallExprClass:
1247    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1248    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1249           Builtin::BI__builtin___CFStringMakeConstantString)
1250      return false;
1251
1252    InitializerElementNotConstant(Init);
1253    return true;
1254
1255  case Expr::UnaryOperatorClass: {
1256    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1257
1258    // C99 6.6p9
1259    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1260      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1261
1262    if (Exp->getOpcode() == UnaryOperator::Extension)
1263      return CheckAddressConstantExpression(Exp->getSubExpr());
1264
1265    InitializerElementNotConstant(Init);
1266    return true;
1267  }
1268  case Expr::BinaryOperatorClass: {
1269    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1270    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1271
1272    Expr *PExp = Exp->getLHS();
1273    Expr *IExp = Exp->getRHS();
1274    if (IExp->getType()->isPointerType())
1275      std::swap(PExp, IExp);
1276
1277    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1278    return CheckAddressConstantExpression(PExp) ||
1279           CheckArithmeticConstantExpression(IExp);
1280  }
1281  case Expr::ImplicitCastExprClass:
1282  case Expr::CStyleCastExprClass: {
1283    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1284    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1285      // Check for implicit promotion
1286      if (SubExpr->getType()->isFunctionType() ||
1287          SubExpr->getType()->isArrayType())
1288        return CheckAddressConstantExpressionLValue(SubExpr);
1289    }
1290
1291    // Check for pointer->pointer cast
1292    if (SubExpr->getType()->isPointerType())
1293      return CheckAddressConstantExpression(SubExpr);
1294
1295    if (SubExpr->getType()->isIntegralType()) {
1296      // Check for the special-case of a pointer->int->pointer cast;
1297      // this isn't standard, but some code requires it. See
1298      // PR2720 for an example.
1299      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1300        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1301          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1302          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1303          if (IntWidth >= PointerWidth) {
1304            return CheckAddressConstantExpression(SubCast->getSubExpr());
1305          }
1306        }
1307      }
1308    }
1309    if (SubExpr->getType()->isArithmeticType()) {
1310      return CheckArithmeticConstantExpression(SubExpr);
1311    }
1312
1313    InitializerElementNotConstant(Init);
1314    return true;
1315  }
1316  case Expr::ConditionalOperatorClass: {
1317    // FIXME: Should we pedwarn here?
1318    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1319    if (!Exp->getCond()->getType()->isArithmeticType()) {
1320      InitializerElementNotConstant(Init);
1321      return true;
1322    }
1323    if (CheckArithmeticConstantExpression(Exp->getCond()))
1324      return true;
1325    if (Exp->getLHS() &&
1326        CheckAddressConstantExpression(Exp->getLHS()))
1327      return true;
1328    return CheckAddressConstantExpression(Exp->getRHS());
1329  }
1330  case Expr::AddrLabelExprClass:
1331    return false;
1332  }
1333}
1334
1335static const Expr* FindExpressionBaseAddress(const Expr* E);
1336
1337static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1338  switch (E->getStmtClass()) {
1339  default:
1340    return E;
1341  case Expr::ParenExprClass: {
1342    const ParenExpr* PE = cast<ParenExpr>(E);
1343    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1344  }
1345  case Expr::MemberExprClass: {
1346    const MemberExpr *M = cast<MemberExpr>(E);
1347    if (M->isArrow())
1348      return FindExpressionBaseAddress(M->getBase());
1349    return FindExpressionBaseAddressLValue(M->getBase());
1350  }
1351  case Expr::ArraySubscriptExprClass: {
1352    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1353    return FindExpressionBaseAddress(ASE->getBase());
1354  }
1355  case Expr::UnaryOperatorClass: {
1356    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1357
1358    if (Exp->getOpcode() == UnaryOperator::Deref)
1359      return FindExpressionBaseAddress(Exp->getSubExpr());
1360
1361    return E;
1362  }
1363  }
1364}
1365
1366static const Expr* FindExpressionBaseAddress(const Expr* E) {
1367  switch (E->getStmtClass()) {
1368  default:
1369    return E;
1370  case Expr::ParenExprClass: {
1371    const ParenExpr* PE = cast<ParenExpr>(E);
1372    return FindExpressionBaseAddress(PE->getSubExpr());
1373  }
1374  case Expr::UnaryOperatorClass: {
1375    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1376
1377    // C99 6.6p9
1378    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1379      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1380
1381    if (Exp->getOpcode() == UnaryOperator::Extension)
1382      return FindExpressionBaseAddress(Exp->getSubExpr());
1383
1384    return E;
1385  }
1386  case Expr::BinaryOperatorClass: {
1387    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1388
1389    Expr *PExp = Exp->getLHS();
1390    Expr *IExp = Exp->getRHS();
1391    if (IExp->getType()->isPointerType())
1392      std::swap(PExp, IExp);
1393
1394    return FindExpressionBaseAddress(PExp);
1395  }
1396  case Expr::ImplicitCastExprClass: {
1397    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1398
1399    // Check for implicit promotion
1400    if (SubExpr->getType()->isFunctionType() ||
1401        SubExpr->getType()->isArrayType())
1402      return FindExpressionBaseAddressLValue(SubExpr);
1403
1404    // Check for pointer->pointer cast
1405    if (SubExpr->getType()->isPointerType())
1406      return FindExpressionBaseAddress(SubExpr);
1407
1408    // We assume that we have an arithmetic expression here;
1409    // if we don't, we'll figure it out later
1410    return 0;
1411  }
1412  case Expr::CStyleCastExprClass: {
1413    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1414
1415    // Check for pointer->pointer cast
1416    if (SubExpr->getType()->isPointerType())
1417      return FindExpressionBaseAddress(SubExpr);
1418
1419    // We assume that we have an arithmetic expression here;
1420    // if we don't, we'll figure it out later
1421    return 0;
1422  }
1423  }
1424}
1425
1426bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1427  switch (Init->getStmtClass()) {
1428  default:
1429    InitializerElementNotConstant(Init);
1430    return true;
1431  case Expr::ParenExprClass: {
1432    const ParenExpr* PE = cast<ParenExpr>(Init);
1433    return CheckArithmeticConstantExpression(PE->getSubExpr());
1434  }
1435  case Expr::FloatingLiteralClass:
1436  case Expr::IntegerLiteralClass:
1437  case Expr::CharacterLiteralClass:
1438  case Expr::ImaginaryLiteralClass:
1439  case Expr::TypesCompatibleExprClass:
1440  case Expr::CXXBoolLiteralExprClass:
1441    return false;
1442  case Expr::CallExprClass:
1443  case Expr::CXXOperatorCallExprClass: {
1444    const CallExpr *CE = cast<CallExpr>(Init);
1445
1446    // Allow any constant foldable calls to builtins.
1447    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1448      return false;
1449
1450    InitializerElementNotConstant(Init);
1451    return true;
1452  }
1453  case Expr::DeclRefExprClass: {
1454    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1455    if (isa<EnumConstantDecl>(D))
1456      return false;
1457    InitializerElementNotConstant(Init);
1458    return true;
1459  }
1460  case Expr::CompoundLiteralExprClass:
1461    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1462    // but vectors are allowed to be magic.
1463    if (Init->getType()->isVectorType())
1464      return false;
1465    InitializerElementNotConstant(Init);
1466    return true;
1467  case Expr::UnaryOperatorClass: {
1468    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1469
1470    switch (Exp->getOpcode()) {
1471    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1472    // See C99 6.6p3.
1473    default:
1474      InitializerElementNotConstant(Init);
1475      return true;
1476    case UnaryOperator::OffsetOf:
1477      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1478        return false;
1479      InitializerElementNotConstant(Init);
1480      return true;
1481    case UnaryOperator::Extension:
1482    case UnaryOperator::LNot:
1483    case UnaryOperator::Plus:
1484    case UnaryOperator::Minus:
1485    case UnaryOperator::Not:
1486      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1487    }
1488  }
1489  case Expr::SizeOfAlignOfExprClass: {
1490    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1491    // Special check for void types, which are allowed as an extension
1492    if (Exp->getTypeOfArgument()->isVoidType())
1493      return false;
1494    // alignof always evaluates to a constant.
1495    // FIXME: is sizeof(int[3.0]) a constant expression?
1496    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1497      InitializerElementNotConstant(Init);
1498      return true;
1499    }
1500    return false;
1501  }
1502  case Expr::BinaryOperatorClass: {
1503    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1504
1505    if (Exp->getLHS()->getType()->isArithmeticType() &&
1506        Exp->getRHS()->getType()->isArithmeticType()) {
1507      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1508             CheckArithmeticConstantExpression(Exp->getRHS());
1509    }
1510
1511    if (Exp->getLHS()->getType()->isPointerType() &&
1512        Exp->getRHS()->getType()->isPointerType()) {
1513      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1514      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1515
1516      // Only allow a null (constant integer) base; we could
1517      // allow some additional cases if necessary, but this
1518      // is sufficient to cover offsetof-like constructs.
1519      if (!LHSBase && !RHSBase) {
1520        return CheckAddressConstantExpression(Exp->getLHS()) ||
1521               CheckAddressConstantExpression(Exp->getRHS());
1522      }
1523    }
1524
1525    InitializerElementNotConstant(Init);
1526    return true;
1527  }
1528  case Expr::ImplicitCastExprClass:
1529  case Expr::CStyleCastExprClass: {
1530    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1531    if (SubExpr->getType()->isArithmeticType())
1532      return CheckArithmeticConstantExpression(SubExpr);
1533
1534    if (SubExpr->getType()->isPointerType()) {
1535      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1536      // If the pointer has a null base, this is an offsetof-like construct
1537      if (!Base)
1538        return CheckAddressConstantExpression(SubExpr);
1539    }
1540
1541    InitializerElementNotConstant(Init);
1542    return true;
1543  }
1544  case Expr::ConditionalOperatorClass: {
1545    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1546
1547    // If GNU extensions are disabled, we require all operands to be arithmetic
1548    // constant expressions.
1549    if (getLangOptions().NoExtensions) {
1550      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1551          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1552             CheckArithmeticConstantExpression(Exp->getRHS());
1553    }
1554
1555    // Otherwise, we have to emulate some of the behavior of fold here.
1556    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1557    // because it can constant fold things away.  To retain compatibility with
1558    // GCC code, we see if we can fold the condition to a constant (which we
1559    // should always be able to do in theory).  If so, we only require the
1560    // specified arm of the conditional to be a constant.  This is a horrible
1561    // hack, but is require by real world code that uses __builtin_constant_p.
1562    APValue Val;
1563    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1564      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1565      // won't be able to either.  Use it to emit the diagnostic though.
1566      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1567      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1568      return Res;
1569    }
1570
1571    // Verify that the side following the condition is also a constant.
1572    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1573    if (Val.getInt() == 0)
1574      std::swap(TrueSide, FalseSide);
1575
1576    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1577      return true;
1578
1579    // Okay, the evaluated side evaluates to a constant, so we accept this.
1580    // Check to see if the other side is obviously not a constant.  If so,
1581    // emit a warning that this is a GNU extension.
1582    if (FalseSide && !FalseSide->isEvaluatable(Context))
1583      Diag(Init->getExprLoc(),
1584           diag::ext_typecheck_expression_not_constant_but_accepted,
1585           FalseSide->getSourceRange());
1586    return false;
1587  }
1588  }
1589}
1590
1591bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1592  Init = Init->IgnoreParens();
1593
1594  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1595  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1596    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1597
1598  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1599    return CheckForConstantInitializer(e->getInitializer(), DclT);
1600
1601  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1602    unsigned numInits = Exp->getNumInits();
1603    for (unsigned i = 0; i < numInits; i++) {
1604      // FIXME: Need to get the type of the declaration for C++,
1605      // because it could be a reference?
1606      if (CheckForConstantInitializer(Exp->getInit(i),
1607                                      Exp->getInit(i)->getType()))
1608        return true;
1609    }
1610    return false;
1611  }
1612
1613  if (Init->isNullPointerConstant(Context))
1614    return false;
1615  if (Init->getType()->isArithmeticType()) {
1616    QualType InitTy = Context.getCanonicalType(Init->getType())
1617                             .getUnqualifiedType();
1618    if (InitTy == Context.BoolTy) {
1619      // Special handling for pointers implicitly cast to bool;
1620      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1621      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1622        Expr* SubE = ICE->getSubExpr();
1623        if (SubE->getType()->isPointerType() ||
1624            SubE->getType()->isArrayType() ||
1625            SubE->getType()->isFunctionType()) {
1626          return CheckAddressConstantExpression(Init);
1627        }
1628      }
1629    } else if (InitTy->isIntegralType()) {
1630      Expr* SubE = 0;
1631      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1632        SubE = CE->getSubExpr();
1633      // Special check for pointer cast to int; we allow as an extension
1634      // an address constant cast to an integer if the integer
1635      // is of an appropriate width (this sort of code is apparently used
1636      // in some places).
1637      // FIXME: Add pedwarn?
1638      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1639      if (SubE && (SubE->getType()->isPointerType() ||
1640                   SubE->getType()->isArrayType() ||
1641                   SubE->getType()->isFunctionType())) {
1642        unsigned IntWidth = Context.getTypeSize(Init->getType());
1643        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1644        if (IntWidth >= PointerWidth)
1645          return CheckAddressConstantExpression(Init);
1646      }
1647    }
1648
1649    return CheckArithmeticConstantExpression(Init);
1650  }
1651
1652  if (Init->getType()->isPointerType())
1653    return CheckAddressConstantExpression(Init);
1654
1655  // An array type at the top level that isn't an init-list must
1656  // be a string literal
1657  if (Init->getType()->isArrayType())
1658    return false;
1659
1660  if (Init->getType()->isFunctionType())
1661    return false;
1662
1663  // Allow block exprs at top level.
1664  if (Init->getType()->isBlockPointerType())
1665    return false;
1666
1667  InitializerElementNotConstant(Init);
1668  return true;
1669}
1670
1671void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1672  Decl *RealDecl = static_cast<Decl *>(dcl);
1673  Expr *Init = static_cast<Expr *>(init);
1674  assert(Init && "missing initializer");
1675
1676  // If there is no declaration, there was an error parsing it.  Just ignore
1677  // the initializer.
1678  if (RealDecl == 0) {
1679    delete Init;
1680    return;
1681  }
1682
1683  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1684  if (!VDecl) {
1685    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1686         diag::err_illegal_initializer);
1687    RealDecl->setInvalidDecl();
1688    return;
1689  }
1690  // Get the decls type and save a reference for later, since
1691  // CheckInitializerTypes may change it.
1692  QualType DclT = VDecl->getType(), SavT = DclT;
1693  if (VDecl->isBlockVarDecl()) {
1694    VarDecl::StorageClass SC = VDecl->getStorageClass();
1695    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1696      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1697      VDecl->setInvalidDecl();
1698    } else if (!VDecl->isInvalidDecl()) {
1699      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1700                                VDecl->getName()))
1701        VDecl->setInvalidDecl();
1702
1703      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1704      if (!getLangOptions().CPlusPlus) {
1705        if (SC == VarDecl::Static) // C99 6.7.8p4.
1706          CheckForConstantInitializer(Init, DclT);
1707      }
1708    }
1709  } else if (VDecl->isFileVarDecl()) {
1710    if (VDecl->getStorageClass() == VarDecl::Extern)
1711      Diag(VDecl->getLocation(), diag::warn_extern_init);
1712    if (!VDecl->isInvalidDecl())
1713      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1714                                VDecl->getName()))
1715        VDecl->setInvalidDecl();
1716
1717    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1718    if (!getLangOptions().CPlusPlus) {
1719      // C99 6.7.8p4. All file scoped initializers need to be constant.
1720      CheckForConstantInitializer(Init, DclT);
1721    }
1722  }
1723  // If the type changed, it means we had an incomplete type that was
1724  // completed by the initializer. For example:
1725  //   int ary[] = { 1, 3, 5 };
1726  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1727  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1728    VDecl->setType(DclT);
1729    Init->setType(DclT);
1730  }
1731
1732  // Attach the initializer to the decl.
1733  VDecl->setInit(Init);
1734  return;
1735}
1736
1737void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1738  Decl *RealDecl = static_cast<Decl *>(dcl);
1739
1740  // If there is no declaration, there was an error parsing it. Just ignore it.
1741  if (RealDecl == 0)
1742    return;
1743
1744  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1745    QualType Type = Var->getType();
1746    // C++ [dcl.init.ref]p3:
1747    //   The initializer can be omitted for a reference only in a
1748    //   parameter declaration (8.3.5), in the declaration of a
1749    //   function return type, in the declaration of a class member
1750    //   within its class declaration (9.2), and where the extern
1751    //   specifier is explicitly used.
1752    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1753      Diag(Var->getLocation(),
1754           diag::err_reference_var_requires_init,
1755           Var->getName(),
1756           SourceRange(Var->getLocation(), Var->getLocation()));
1757      Var->setInvalidDecl();
1758      return;
1759    }
1760
1761    // C++ [dcl.init]p9:
1762    //
1763    //   If no initializer is specified for an object, and the object
1764    //   is of (possibly cv-qualified) non-POD class type (or array
1765    //   thereof), the object shall be default-initialized; if the
1766    //   object is of const-qualified type, the underlying class type
1767    //   shall have a user-declared default constructor.
1768    if (getLangOptions().CPlusPlus) {
1769      QualType InitType = Type;
1770      if (const ArrayType *Array = Context.getAsArrayType(Type))
1771        InitType = Array->getElementType();
1772      if (InitType->isRecordType()) {
1773        const CXXConstructorDecl *Constructor
1774          = PerformInitializationByConstructor(InitType, 0, 0,
1775                                               Var->getLocation(),
1776                                               SourceRange(Var->getLocation(),
1777                                                           Var->getLocation()),
1778                                               Var->getName(),
1779                                               IK_Default);
1780        if (!Constructor)
1781          Var->setInvalidDecl();
1782      }
1783    }
1784
1785#if 0
1786    // FIXME: Temporarily disabled because we are not properly parsing
1787    // linkage specifications on declarations, e.g.,
1788    //
1789    //   extern "C" const CGPoint CGPointerZero;
1790    //
1791    // C++ [dcl.init]p9:
1792    //
1793    //     If no initializer is specified for an object, and the
1794    //     object is of (possibly cv-qualified) non-POD class type (or
1795    //     array thereof), the object shall be default-initialized; if
1796    //     the object is of const-qualified type, the underlying class
1797    //     type shall have a user-declared default
1798    //     constructor. Otherwise, if no initializer is specified for
1799    //     an object, the object and its subobjects, if any, have an
1800    //     indeterminate initial value; if the object or any of its
1801    //     subobjects are of const-qualified type, the program is
1802    //     ill-formed.
1803    //
1804    // This isn't technically an error in C, so we don't diagnose it.
1805    //
1806    // FIXME: Actually perform the POD/user-defined default
1807    // constructor check.
1808    if (getLangOptions().CPlusPlus &&
1809        Context.getCanonicalType(Type).isConstQualified() &&
1810        Var->getStorageClass() != VarDecl::Extern)
1811      Diag(Var->getLocation(),
1812           diag::err_const_var_requires_init,
1813           Var->getName(),
1814           SourceRange(Var->getLocation(), Var->getLocation()));
1815#endif
1816  }
1817}
1818
1819/// The declarators are chained together backwards, reverse the list.
1820Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1821  // Often we have single declarators, handle them quickly.
1822  Decl *GroupDecl = static_cast<Decl*>(group);
1823  if (GroupDecl == 0)
1824    return 0;
1825
1826  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1827  ScopedDecl *NewGroup = 0;
1828  if (Group->getNextDeclarator() == 0)
1829    NewGroup = Group;
1830  else { // reverse the list.
1831    while (Group) {
1832      ScopedDecl *Next = Group->getNextDeclarator();
1833      Group->setNextDeclarator(NewGroup);
1834      NewGroup = Group;
1835      Group = Next;
1836    }
1837  }
1838  // Perform semantic analysis that depends on having fully processed both
1839  // the declarator and initializer.
1840  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1841    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1842    if (!IDecl)
1843      continue;
1844    QualType T = IDecl->getType();
1845
1846    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1847    // static storage duration, it shall not have a variable length array.
1848    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1849        IDecl->getStorageClass() == VarDecl::Static) {
1850      if (T->isVariableArrayType()) {
1851        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1852        IDecl->setInvalidDecl();
1853      }
1854    }
1855    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1856    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1857    if (IDecl->isBlockVarDecl() &&
1858        IDecl->getStorageClass() != VarDecl::Extern) {
1859      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1860        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1861             T.getAsString());
1862        IDecl->setInvalidDecl();
1863      }
1864    }
1865    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1866    // object that has file scope without an initializer, and without a
1867    // storage-class specifier or with the storage-class specifier "static",
1868    // constitutes a tentative definition. Note: A tentative definition with
1869    // external linkage is valid (C99 6.2.2p5).
1870    if (isTentativeDefinition(IDecl)) {
1871      if (T->isIncompleteArrayType()) {
1872        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1873        // array to be completed. Don't issue a diagnostic.
1874      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1875        // C99 6.9.2p3: If the declaration of an identifier for an object is
1876        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1877        // declared type shall not be an incomplete type.
1878        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1879             T.getAsString());
1880        IDecl->setInvalidDecl();
1881      }
1882    }
1883    if (IDecl->isFileVarDecl())
1884      CheckForFileScopedRedefinitions(S, IDecl);
1885  }
1886  return NewGroup;
1887}
1888
1889/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1890/// to introduce parameters into function prototype scope.
1891Sema::DeclTy *
1892Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1893  // FIXME: disallow CXXScopeSpec for param declarators.
1894  const DeclSpec &DS = D.getDeclSpec();
1895
1896  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1897  VarDecl::StorageClass StorageClass = VarDecl::None;
1898  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1899    StorageClass = VarDecl::Register;
1900  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1901    Diag(DS.getStorageClassSpecLoc(),
1902         diag::err_invalid_storage_class_in_func_decl);
1903    D.getMutableDeclSpec().ClearStorageClassSpecs();
1904  }
1905  if (DS.isThreadSpecified()) {
1906    Diag(DS.getThreadSpecLoc(),
1907         diag::err_invalid_storage_class_in_func_decl);
1908    D.getMutableDeclSpec().ClearStorageClassSpecs();
1909  }
1910
1911  // Check that there are no default arguments inside the type of this
1912  // parameter (C++ only).
1913  if (getLangOptions().CPlusPlus)
1914    CheckExtraCXXDefaultArguments(D);
1915
1916  // In this context, we *do not* check D.getInvalidType(). If the declarator
1917  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1918  // though it will not reflect the user specified type.
1919  QualType parmDeclType = GetTypeForDeclarator(D, S);
1920
1921  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1922
1923  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1924  // Can this happen for params?  We already checked that they don't conflict
1925  // among each other.  Here they can only shadow globals, which is ok.
1926  IdentifierInfo *II = D.getIdentifier();
1927  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1928    if (S->isDeclScope(PrevDecl)) {
1929      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1930           dyn_cast<NamedDecl>(PrevDecl)->getName());
1931
1932      // Recover by removing the name
1933      II = 0;
1934      D.SetIdentifier(0, D.getIdentifierLoc());
1935    }
1936  }
1937
1938  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1939  // Doing the promotion here has a win and a loss. The win is the type for
1940  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1941  // code generator). The loss is the orginal type isn't preserved. For example:
1942  //
1943  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1944  //    int blockvardecl[5];
1945  //    sizeof(parmvardecl);  // size == 4
1946  //    sizeof(blockvardecl); // size == 20
1947  // }
1948  //
1949  // For expressions, all implicit conversions are captured using the
1950  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1951  //
1952  // FIXME: If a source translation tool needs to see the original type, then
1953  // we need to consider storing both types (in ParmVarDecl)...
1954  //
1955  if (parmDeclType->isArrayType()) {
1956    // int x[restrict 4] ->  int *restrict
1957    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1958  } else if (parmDeclType->isFunctionType())
1959    parmDeclType = Context.getPointerType(parmDeclType);
1960
1961  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1962                                         D.getIdentifierLoc(), II,
1963                                         parmDeclType, StorageClass,
1964                                         0, 0);
1965
1966  if (D.getInvalidType())
1967    New->setInvalidDecl();
1968
1969  if (II)
1970    PushOnScopeChains(New, S);
1971
1972  ProcessDeclAttributes(New, D);
1973  return New;
1974
1975}
1976
1977Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1978  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1979  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1980         "Not a function declarator!");
1981  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1982
1983  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1984  // for a K&R function.
1985  if (!FTI.hasPrototype) {
1986    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1987      if (FTI.ArgInfo[i].Param == 0) {
1988        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1989             FTI.ArgInfo[i].Ident->getName());
1990        // Implicitly declare the argument as type 'int' for lack of a better
1991        // type.
1992        DeclSpec DS;
1993        const char* PrevSpec; // unused
1994        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1995                           PrevSpec);
1996        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1997        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1998        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1999      }
2000    }
2001  } else {
2002    // FIXME: Diagnose arguments without names in C.
2003  }
2004
2005  Scope *GlobalScope = FnBodyScope->getParent();
2006
2007  return ActOnStartOfFunctionDef(FnBodyScope,
2008                                 ActOnDeclarator(GlobalScope, D, 0));
2009}
2010
2011Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2012  Decl *decl = static_cast<Decl*>(D);
2013  FunctionDecl *FD = cast<FunctionDecl>(decl);
2014
2015  // See if this is a redefinition.
2016  const FunctionDecl *Definition;
2017  if (FD->getBody(Definition)) {
2018    Diag(FD->getLocation(), diag::err_redefinition,
2019         FD->getName());
2020    Diag(Definition->getLocation(), diag::err_previous_definition);
2021  }
2022
2023  PushDeclContext(FD);
2024
2025  // Check the validity of our function parameters
2026  CheckParmsForFunctionDef(FD);
2027
2028  // Introduce our parameters into the function scope
2029  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2030    ParmVarDecl *Param = FD->getParamDecl(p);
2031    // If this has an identifier, add it to the scope stack.
2032    if (Param->getIdentifier())
2033      PushOnScopeChains(Param, FnBodyScope);
2034  }
2035
2036  return FD;
2037}
2038
2039Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2040  Decl *dcl = static_cast<Decl *>(D);
2041  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2042    FD->setBody((Stmt*)Body);
2043    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2044  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2045    MD->setBody((Stmt*)Body);
2046  } else
2047    return 0;
2048  PopDeclContext();
2049  // Verify and clean out per-function state.
2050
2051  // Check goto/label use.
2052  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2053       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2054    // Verify that we have no forward references left.  If so, there was a goto
2055    // or address of a label taken, but no definition of it.  Label fwd
2056    // definitions are indicated with a null substmt.
2057    if (I->second->getSubStmt() == 0) {
2058      LabelStmt *L = I->second;
2059      // Emit error.
2060      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2061
2062      // At this point, we have gotos that use the bogus label.  Stitch it into
2063      // the function body so that they aren't leaked and that the AST is well
2064      // formed.
2065      if (Body) {
2066        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2067        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2068      } else {
2069        // The whole function wasn't parsed correctly, just delete this.
2070        delete L;
2071      }
2072    }
2073  }
2074  LabelMap.clear();
2075
2076  return D;
2077}
2078
2079/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2080/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2081ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2082                                           IdentifierInfo &II, Scope *S) {
2083  // Extension in C99.  Legal in C90, but warn about it.
2084  if (getLangOptions().C99)
2085    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
2086  else
2087    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
2088
2089  // FIXME: handle stuff like:
2090  // void foo() { extern float X(); }
2091  // void bar() { X(); }  <-- implicit decl for X in another scope.
2092
2093  // Set a Declarator for the implicit definition: int foo();
2094  const char *Dummy;
2095  DeclSpec DS;
2096  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2097  Error = Error; // Silence warning.
2098  assert(!Error && "Error setting up implicit decl!");
2099  Declarator D(DS, Declarator::BlockContext);
2100  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2101  D.SetIdentifier(&II, Loc);
2102
2103  // Insert this function into translation-unit scope.
2104
2105  DeclContext *PrevDC = CurContext;
2106  CurContext = Context.getTranslationUnitDecl();
2107
2108  FunctionDecl *FD =
2109    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2110  FD->setImplicit();
2111
2112  CurContext = PrevDC;
2113
2114  return FD;
2115}
2116
2117
2118TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2119                                    ScopedDecl *LastDeclarator) {
2120  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2121  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2122
2123  // Scope manipulation handled by caller.
2124  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2125                                           D.getIdentifierLoc(),
2126                                           D.getIdentifier(),
2127                                           T, LastDeclarator);
2128  if (D.getInvalidType())
2129    NewTD->setInvalidDecl();
2130  return NewTD;
2131}
2132
2133/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2134/// former case, Name will be non-null.  In the later case, Name will be null.
2135/// TagType indicates what kind of tag this is. TK indicates whether this is a
2136/// reference/declaration/definition of a tag.
2137Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2138                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2139                             IdentifierInfo *Name, SourceLocation NameLoc,
2140                             AttributeList *Attr) {
2141  // If this is a use of an existing tag, it must have a name.
2142  assert((Name != 0 || TK == TK_Definition) &&
2143         "Nameless record must be a definition!");
2144
2145  TagDecl::TagKind Kind;
2146  switch (TagType) {
2147  default: assert(0 && "Unknown tag type!");
2148  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2149  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2150  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2151  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2152  }
2153
2154  // Two code paths: a new one for structs/unions/classes where we create
2155  //   separate decls for forward declarations, and an old (eventually to
2156  //   be removed) code path for enums.
2157  if (Kind != TagDecl::TK_enum)
2158    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2159
2160  DeclContext *DC = CurContext;
2161  ScopedDecl *PrevDecl = 0;
2162
2163  if (Name && SS.isNotEmpty()) {
2164    // We have a nested-name tag ('struct foo::bar').
2165
2166    // Check for invalid 'foo::'.
2167    if (SS.isInvalid()) {
2168      Name = 0;
2169      goto CreateNewDecl;
2170    }
2171
2172    DC = static_cast<DeclContext*>(SS.getScopeRep());
2173    // Look-up name inside 'foo::'.
2174    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2175
2176    // A tag 'foo::bar' must already exist.
2177    if (PrevDecl == 0) {
2178      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2179           SS.getRange());
2180      Name = 0;
2181      goto CreateNewDecl;
2182    }
2183  } else {
2184    // If this is a named struct, check to see if there was a previous forward
2185    // declaration or definition.
2186    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2187    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2188  }
2189
2190  if (PrevDecl) {
2191    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2192            "unexpected Decl type");
2193    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2194      // If this is a use of a previous tag, or if the tag is already declared
2195      // in the same scope (so that the definition/declaration completes or
2196      // rementions the tag), reuse the decl.
2197      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2198        // Make sure that this wasn't declared as an enum and now used as a
2199        // struct or something similar.
2200        if (PrevTagDecl->getTagKind() != Kind) {
2201          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2202          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2203          // Recover by making this an anonymous redefinition.
2204          Name = 0;
2205          PrevDecl = 0;
2206        } else {
2207          // If this is a use or a forward declaration, we're good.
2208          if (TK != TK_Definition)
2209            return PrevDecl;
2210
2211          // Diagnose attempts to redefine a tag.
2212          if (PrevTagDecl->isDefinition()) {
2213            Diag(NameLoc, diag::err_redefinition, Name->getName());
2214            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2215            // If this is a redefinition, recover by making this struct be
2216            // anonymous, which will make any later references get the previous
2217            // definition.
2218            Name = 0;
2219          } else {
2220            // Okay, this is definition of a previously declared or referenced
2221            // tag. Move the location of the decl to be the definition site.
2222            PrevDecl->setLocation(NameLoc);
2223            return PrevDecl;
2224          }
2225        }
2226      }
2227      // If we get here, this is a definition of a new struct type in a nested
2228      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2229      // type.
2230    } else {
2231      // PrevDecl is a namespace.
2232      if (isDeclInScope(PrevDecl, DC, S)) {
2233        // The tag name clashes with a namespace name, issue an error and
2234        // recover by making this tag be anonymous.
2235        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2236        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2237        Name = 0;
2238      }
2239    }
2240  }
2241
2242  CreateNewDecl:
2243
2244  // If there is an identifier, use the location of the identifier as the
2245  // location of the decl, otherwise use the location of the struct/union
2246  // keyword.
2247  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2248
2249  // Otherwise, if this is the first time we've seen this tag, create the decl.
2250  TagDecl *New;
2251  if (Kind == TagDecl::TK_enum) {
2252    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2253    // enum X { A, B, C } D;    D should chain to X.
2254    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2255    // If this is an undefined enum, warn.
2256    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2257  } else {
2258    // struct/union/class
2259
2260    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2261    // struct X { int A; } D;    D should chain to X.
2262    if (getLangOptions().CPlusPlus)
2263      // FIXME: Look for a way to use RecordDecl for simple structs.
2264      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2265    else
2266      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2267  }
2268
2269  // If this has an identifier, add it to the scope stack.
2270  if (Name) {
2271    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2272    // we find one that is.
2273    while ((S->getFlags() & Scope::DeclScope) == 0)
2274      S = S->getParent();
2275
2276    // Add it to the decl chain.
2277    PushOnScopeChains(New, S);
2278  }
2279
2280  if (Attr)
2281    ProcessDeclAttributeList(New, Attr);
2282
2283  // Set the lexical context. If the tag has a C++ scope specifier, the
2284  // lexical context will be different from the semantic context.
2285  New->setLexicalDeclContext(CurContext);
2286
2287  return New;
2288}
2289
2290/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2291///  the logic for enums, we create separate decls for forward declarations.
2292///  This is called by ActOnTag, but eventually will replace its logic.
2293Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2294                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2295                             IdentifierInfo *Name, SourceLocation NameLoc,
2296                             AttributeList *Attr) {
2297  DeclContext *DC = CurContext;
2298  ScopedDecl *PrevDecl = 0;
2299
2300  if (Name && SS.isNotEmpty()) {
2301    // We have a nested-name tag ('struct foo::bar').
2302
2303    // Check for invalid 'foo::'.
2304    if (SS.isInvalid()) {
2305      Name = 0;
2306      goto CreateNewDecl;
2307    }
2308
2309    DC = static_cast<DeclContext*>(SS.getScopeRep());
2310    // Look-up name inside 'foo::'.
2311    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2312
2313    // A tag 'foo::bar' must already exist.
2314    if (PrevDecl == 0) {
2315      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2316           SS.getRange());
2317      Name = 0;
2318      goto CreateNewDecl;
2319    }
2320  } else {
2321    // If this is a named struct, check to see if there was a previous forward
2322    // declaration or definition.
2323    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2324    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2325  }
2326
2327  if (PrevDecl) {
2328    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2329           "unexpected Decl type");
2330
2331    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2332      // If this is a use of a previous tag, or if the tag is already declared
2333      // in the same scope (so that the definition/declaration completes or
2334      // rementions the tag), reuse the decl.
2335      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2336        // Make sure that this wasn't declared as an enum and now used as a
2337        // struct or something similar.
2338        if (PrevTagDecl->getTagKind() != Kind) {
2339          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2340          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2341          // Recover by making this an anonymous redefinition.
2342          Name = 0;
2343          PrevDecl = 0;
2344        } else {
2345          // If this is a use, return the original decl.
2346
2347          // FIXME: In the future, return a variant or some other clue
2348          //  for the consumer of this Decl to know it doesn't own it.
2349          //  For our current ASTs this shouldn't be a problem, but will
2350          //  need to be changed with DeclGroups.
2351          if (TK == TK_Reference)
2352            return PrevDecl;
2353
2354          // The new decl is a definition?
2355          if (TK == TK_Definition) {
2356            // Diagnose attempts to redefine a tag.
2357            if (RecordDecl* DefRecord =
2358                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2359              Diag(NameLoc, diag::err_redefinition, Name->getName());
2360              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2361              // If this is a redefinition, recover by making this struct be
2362              // anonymous, which will make any later references get the previous
2363              // definition.
2364              Name = 0;
2365              PrevDecl = 0;
2366            }
2367            // Okay, this is definition of a previously declared or referenced
2368            // tag.  We're going to create a new Decl.
2369          }
2370        }
2371        // If we get here we have (another) forward declaration.  Just create
2372        // a new decl.
2373      }
2374      else {
2375        // If we get here, this is a definition of a new struct type in a nested
2376        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2377        // new decl/type.  We set PrevDecl to NULL so that the Records
2378        // have distinct types.
2379        PrevDecl = 0;
2380      }
2381    } else {
2382      // PrevDecl is a namespace.
2383      if (isDeclInScope(PrevDecl, DC, S)) {
2384        // The tag name clashes with a namespace name, issue an error and
2385        // recover by making this tag be anonymous.
2386        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2387        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2388        Name = 0;
2389      }
2390    }
2391  }
2392
2393  CreateNewDecl:
2394
2395  // If there is an identifier, use the location of the identifier as the
2396  // location of the decl, otherwise use the location of the struct/union
2397  // keyword.
2398  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2399
2400  // Otherwise, if this is the first time we've seen this tag, create the decl.
2401  TagDecl *New;
2402
2403  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2404  // struct X { int A; } D;    D should chain to X.
2405  if (getLangOptions().CPlusPlus)
2406    // FIXME: Look for a way to use RecordDecl for simple structs.
2407    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2408                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2409  else
2410    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2411                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2412
2413  // If this has an identifier, add it to the scope stack.
2414  if ((TK == TK_Definition || !PrevDecl) && Name) {
2415    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2416    // we find one that is.
2417    while ((S->getFlags() & Scope::DeclScope) == 0)
2418      S = S->getParent();
2419
2420    // Add it to the decl chain.
2421    PushOnScopeChains(New, S);
2422  }
2423
2424  // Handle #pragma pack: if the #pragma pack stack has non-default
2425  // alignment, make up a packed attribute for this decl. These
2426  // attributes are checked when the ASTContext lays out the
2427  // structure.
2428  //
2429  // It is important for implementing the correct semantics that this
2430  // happen here (in act on tag decl). The #pragma pack stack is
2431  // maintained as a result of parser callbacks which can occur at
2432  // many points during the parsing of a struct declaration (because
2433  // the #pragma tokens are effectively skipped over during the
2434  // parsing of the struct).
2435  if (unsigned Alignment = PackContext.getAlignment())
2436    New->addAttr(new PackedAttr(Alignment * 8));
2437
2438  if (Attr)
2439    ProcessDeclAttributeList(New, Attr);
2440
2441  // Set the lexical context. If the tag has a C++ scope specifier, the
2442  // lexical context will be different from the semantic context.
2443  New->setLexicalDeclContext(CurContext);
2444
2445  return New;
2446}
2447
2448
2449/// Collect the instance variables declared in an Objective-C object.  Used in
2450/// the creation of structures from objects using the @defs directive.
2451static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2452                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2453  if (Class->getSuperClass())
2454    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2455
2456  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2457  for (ObjCInterfaceDecl::ivar_iterator
2458        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2459
2460    ObjCIvarDecl* ID = *I;
2461    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2462                                                ID->getIdentifier(),
2463                                                ID->getType(),
2464                                                ID->getBitWidth()));
2465  }
2466}
2467
2468/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2469/// instance variables of ClassName into Decls.
2470void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2471                     IdentifierInfo *ClassName,
2472                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2473  // Check that ClassName is a valid class
2474  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2475  if (!Class) {
2476    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2477    return;
2478  }
2479  // Collect the instance variables
2480  CollectIvars(Class, Context, Decls);
2481}
2482
2483/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2484/// types into constant array types in certain situations which would otherwise
2485/// be errors (for GCC compatibility).
2486static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2487                                                    ASTContext &Context) {
2488  // This method tries to turn a variable array into a constant
2489  // array even when the size isn't an ICE.  This is necessary
2490  // for compatibility with code that depends on gcc's buggy
2491  // constant expression folding, like struct {char x[(int)(char*)2];}
2492  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2493  if (!VLATy) return QualType();
2494
2495  APValue Result;
2496  if (!VLATy->getSizeExpr() ||
2497      !VLATy->getSizeExpr()->tryEvaluate(Result, Context))
2498    return QualType();
2499
2500  assert(Result.isInt() && "Size expressions must be integers!");
2501  llvm::APSInt &Res = Result.getInt();
2502  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2503    return Context.getConstantArrayType(VLATy->getElementType(),
2504                                        Res, ArrayType::Normal, 0);
2505  return QualType();
2506}
2507
2508/// ActOnField - Each field of a struct/union/class is passed into this in order
2509/// to create a FieldDecl object for it.
2510Sema::DeclTy *Sema::ActOnField(Scope *S,
2511                               SourceLocation DeclStart,
2512                               Declarator &D, ExprTy *BitfieldWidth) {
2513  IdentifierInfo *II = D.getIdentifier();
2514  Expr *BitWidth = (Expr*)BitfieldWidth;
2515  SourceLocation Loc = DeclStart;
2516  if (II) Loc = D.getIdentifierLoc();
2517
2518  // FIXME: Unnamed fields can be handled in various different ways, for
2519  // example, unnamed unions inject all members into the struct namespace!
2520
2521  if (BitWidth) {
2522    // TODO: Validate.
2523    //printf("WARNING: BITFIELDS IGNORED!\n");
2524
2525    // 6.7.2.1p3
2526    // 6.7.2.1p4
2527
2528  } else {
2529    // Not a bitfield.
2530
2531    // validate II.
2532
2533  }
2534
2535  QualType T = GetTypeForDeclarator(D, S);
2536  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2537  bool InvalidDecl = false;
2538
2539  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2540  // than a variably modified type.
2541  if (T->isVariablyModifiedType()) {
2542    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2543    if (!FixedTy.isNull()) {
2544      Diag(Loc, diag::warn_illegal_constant_array_size);
2545      T = FixedTy;
2546    } else {
2547      Diag(Loc, diag::err_typecheck_field_variable_size);
2548      T = Context.IntTy;
2549      InvalidDecl = true;
2550    }
2551  }
2552  // FIXME: Chain fielddecls together.
2553  FieldDecl *NewFD;
2554
2555  if (getLangOptions().CPlusPlus) {
2556    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2557    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2558                                 Loc, II, T, BitWidth);
2559    if (II)
2560      PushOnScopeChains(NewFD, S);
2561  }
2562  else
2563    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2564
2565  ProcessDeclAttributes(NewFD, D);
2566
2567  if (D.getInvalidType() || InvalidDecl)
2568    NewFD->setInvalidDecl();
2569  return NewFD;
2570}
2571
2572/// TranslateIvarVisibility - Translate visibility from a token ID to an
2573///  AST enum value.
2574static ObjCIvarDecl::AccessControl
2575TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2576  switch (ivarVisibility) {
2577  default: assert(0 && "Unknown visitibility kind");
2578  case tok::objc_private: return ObjCIvarDecl::Private;
2579  case tok::objc_public: return ObjCIvarDecl::Public;
2580  case tok::objc_protected: return ObjCIvarDecl::Protected;
2581  case tok::objc_package: return ObjCIvarDecl::Package;
2582  }
2583}
2584
2585/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2586/// in order to create an IvarDecl object for it.
2587Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2588                              SourceLocation DeclStart,
2589                              Declarator &D, ExprTy *BitfieldWidth,
2590                              tok::ObjCKeywordKind Visibility) {
2591  IdentifierInfo *II = D.getIdentifier();
2592  Expr *BitWidth = (Expr*)BitfieldWidth;
2593  SourceLocation Loc = DeclStart;
2594  if (II) Loc = D.getIdentifierLoc();
2595
2596  // FIXME: Unnamed fields can be handled in various different ways, for
2597  // example, unnamed unions inject all members into the struct namespace!
2598
2599
2600  if (BitWidth) {
2601    // TODO: Validate.
2602    //printf("WARNING: BITFIELDS IGNORED!\n");
2603
2604    // 6.7.2.1p3
2605    // 6.7.2.1p4
2606
2607  } else {
2608    // Not a bitfield.
2609
2610    // validate II.
2611
2612  }
2613
2614  QualType T = GetTypeForDeclarator(D, S);
2615  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2616  bool InvalidDecl = false;
2617
2618  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2619  // than a variably modified type.
2620  if (T->isVariablyModifiedType()) {
2621    // FIXME: This diagnostic needs work
2622    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2623    InvalidDecl = true;
2624  }
2625
2626  // Get the visibility (access control) for this ivar.
2627  ObjCIvarDecl::AccessControl ac =
2628    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2629                                        : ObjCIvarDecl::None;
2630
2631  // Construct the decl.
2632  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2633                                             (Expr *)BitfieldWidth);
2634
2635  // Process attributes attached to the ivar.
2636  ProcessDeclAttributes(NewID, D);
2637
2638  if (D.getInvalidType() || InvalidDecl)
2639    NewID->setInvalidDecl();
2640
2641  return NewID;
2642}
2643
2644void Sema::ActOnFields(Scope* S,
2645                       SourceLocation RecLoc, DeclTy *RecDecl,
2646                       DeclTy **Fields, unsigned NumFields,
2647                       SourceLocation LBrac, SourceLocation RBrac,
2648                       AttributeList *Attr) {
2649  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2650  assert(EnclosingDecl && "missing record or interface decl");
2651  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2652
2653  if (Record)
2654    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2655      // Diagnose code like:
2656      //     struct S { struct S {} X; };
2657      // We discover this when we complete the outer S.  Reject and ignore the
2658      // outer S.
2659      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2660           DefRecord->getKindName());
2661      Diag(RecLoc, diag::err_previous_definition);
2662      Record->setInvalidDecl();
2663      return;
2664    }
2665
2666  // Verify that all the fields are okay.
2667  unsigned NumNamedMembers = 0;
2668  llvm::SmallVector<FieldDecl*, 32> RecFields;
2669  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2670
2671  for (unsigned i = 0; i != NumFields; ++i) {
2672
2673    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2674    assert(FD && "missing field decl");
2675
2676    // Remember all fields.
2677    RecFields.push_back(FD);
2678
2679    // Get the type for the field.
2680    Type *FDTy = FD->getType().getTypePtr();
2681
2682    // C99 6.7.2.1p2 - A field may not be a function type.
2683    if (FDTy->isFunctionType()) {
2684      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2685           FD->getName());
2686      FD->setInvalidDecl();
2687      EnclosingDecl->setInvalidDecl();
2688      continue;
2689    }
2690    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2691    if (FDTy->isIncompleteType()) {
2692      if (!Record) {  // Incomplete ivar type is always an error.
2693        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2694        FD->setInvalidDecl();
2695        EnclosingDecl->setInvalidDecl();
2696        continue;
2697      }
2698      if (i != NumFields-1 ||                   // ... that the last member ...
2699          !Record->isStruct() ||  // ... of a structure ...
2700          !FDTy->isArrayType()) {         //... may have incomplete array type.
2701        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2702        FD->setInvalidDecl();
2703        EnclosingDecl->setInvalidDecl();
2704        continue;
2705      }
2706      if (NumNamedMembers < 1) {  //... must have more than named member ...
2707        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2708             FD->getName());
2709        FD->setInvalidDecl();
2710        EnclosingDecl->setInvalidDecl();
2711        continue;
2712      }
2713      // Okay, we have a legal flexible array member at the end of the struct.
2714      if (Record)
2715        Record->setHasFlexibleArrayMember(true);
2716    }
2717    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2718    /// field of another structure or the element of an array.
2719    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2720      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2721        // If this is a member of a union, then entire union becomes "flexible".
2722        if (Record && Record->isUnion()) {
2723          Record->setHasFlexibleArrayMember(true);
2724        } else {
2725          // If this is a struct/class and this is not the last element, reject
2726          // it.  Note that GCC supports variable sized arrays in the middle of
2727          // structures.
2728          if (i != NumFields-1) {
2729            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2730                 FD->getName());
2731            FD->setInvalidDecl();
2732            EnclosingDecl->setInvalidDecl();
2733            continue;
2734          }
2735          // We support flexible arrays at the end of structs in other structs
2736          // as an extension.
2737          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2738               FD->getName());
2739          if (Record)
2740            Record->setHasFlexibleArrayMember(true);
2741        }
2742      }
2743    }
2744    /// A field cannot be an Objective-c object
2745    if (FDTy->isObjCInterfaceType()) {
2746      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2747           FD->getName());
2748      FD->setInvalidDecl();
2749      EnclosingDecl->setInvalidDecl();
2750      continue;
2751    }
2752    // Keep track of the number of named members.
2753    if (IdentifierInfo *II = FD->getIdentifier()) {
2754      // Detect duplicate member names.
2755      if (!FieldIDs.insert(II)) {
2756        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2757        // Find the previous decl.
2758        SourceLocation PrevLoc;
2759        for (unsigned i = 0; ; ++i) {
2760          assert(i != RecFields.size() && "Didn't find previous def!");
2761          if (RecFields[i]->getIdentifier() == II) {
2762            PrevLoc = RecFields[i]->getLocation();
2763            break;
2764          }
2765        }
2766        Diag(PrevLoc, diag::err_previous_definition);
2767        FD->setInvalidDecl();
2768        EnclosingDecl->setInvalidDecl();
2769        continue;
2770      }
2771      ++NumNamedMembers;
2772    }
2773  }
2774
2775  // Okay, we successfully defined 'Record'.
2776  if (Record) {
2777    Record->defineBody(Context, &RecFields[0], RecFields.size());
2778    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2779    // Sema::ActOnFinishCXXClassDef.
2780    if (!isa<CXXRecordDecl>(Record))
2781      Consumer.HandleTagDeclDefinition(Record);
2782  } else {
2783    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2784    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2785      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2786    else if (ObjCImplementationDecl *IMPDecl =
2787               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2788      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2789      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2790      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2791    }
2792  }
2793
2794  if (Attr)
2795    ProcessDeclAttributeList(Record, Attr);
2796}
2797
2798Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2799                                      DeclTy *lastEnumConst,
2800                                      SourceLocation IdLoc, IdentifierInfo *Id,
2801                                      SourceLocation EqualLoc, ExprTy *val) {
2802  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2803  EnumConstantDecl *LastEnumConst =
2804    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2805  Expr *Val = static_cast<Expr*>(val);
2806
2807  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2808  // we find one that is.
2809  while ((S->getFlags() & Scope::DeclScope) == 0)
2810    S = S->getParent();
2811
2812  // Verify that there isn't already something declared with this name in this
2813  // scope.
2814  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2815    // When in C++, we may get a TagDecl with the same name; in this case the
2816    // enum constant will 'hide' the tag.
2817    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2818           "Received TagDecl when not in C++!");
2819    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2820      if (isa<EnumConstantDecl>(PrevDecl))
2821        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2822      else
2823        Diag(IdLoc, diag::err_redefinition, Id->getName());
2824      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2825      delete Val;
2826      return 0;
2827    }
2828  }
2829
2830  llvm::APSInt EnumVal(32);
2831  QualType EltTy;
2832  if (Val) {
2833    // Make sure to promote the operand type to int.
2834    UsualUnaryConversions(Val);
2835
2836    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2837    SourceLocation ExpLoc;
2838    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2839      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2840           Id->getName());
2841      delete Val;
2842      Val = 0;  // Just forget about it.
2843    } else {
2844      EltTy = Val->getType();
2845    }
2846  }
2847
2848  if (!Val) {
2849    if (LastEnumConst) {
2850      // Assign the last value + 1.
2851      EnumVal = LastEnumConst->getInitVal();
2852      ++EnumVal;
2853
2854      // Check for overflow on increment.
2855      if (EnumVal < LastEnumConst->getInitVal())
2856        Diag(IdLoc, diag::warn_enum_value_overflow);
2857
2858      EltTy = LastEnumConst->getType();
2859    } else {
2860      // First value, set to zero.
2861      EltTy = Context.IntTy;
2862      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2863    }
2864  }
2865
2866  EnumConstantDecl *New =
2867    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2868                             Val, EnumVal,
2869                             LastEnumConst);
2870
2871  // Register this decl in the current scope stack.
2872  PushOnScopeChains(New, S);
2873  return New;
2874}
2875
2876// FIXME: For consistency with ActOnFields(), we should have the parser
2877// pass in the source location for the left/right braces.
2878void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2879                         DeclTy **Elements, unsigned NumElements) {
2880  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2881
2882  if (Enum && Enum->isDefinition()) {
2883    // Diagnose code like:
2884    //   enum e0 {
2885    //     E0 = sizeof(enum e0 { E1 })
2886    //   };
2887    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2888         Enum->getName());
2889    Diag(EnumLoc, diag::err_previous_definition);
2890    Enum->setInvalidDecl();
2891    return;
2892  }
2893  // TODO: If the result value doesn't fit in an int, it must be a long or long
2894  // long value.  ISO C does not support this, but GCC does as an extension,
2895  // emit a warning.
2896  unsigned IntWidth = Context.Target.getIntWidth();
2897
2898  // Verify that all the values are okay, compute the size of the values, and
2899  // reverse the list.
2900  unsigned NumNegativeBits = 0;
2901  unsigned NumPositiveBits = 0;
2902
2903  // Keep track of whether all elements have type int.
2904  bool AllElementsInt = true;
2905
2906  EnumConstantDecl *EltList = 0;
2907  for (unsigned i = 0; i != NumElements; ++i) {
2908    EnumConstantDecl *ECD =
2909      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2910    if (!ECD) continue;  // Already issued a diagnostic.
2911
2912    // If the enum value doesn't fit in an int, emit an extension warning.
2913    const llvm::APSInt &InitVal = ECD->getInitVal();
2914    assert(InitVal.getBitWidth() >= IntWidth &&
2915           "Should have promoted value to int");
2916    if (InitVal.getBitWidth() > IntWidth) {
2917      llvm::APSInt V(InitVal);
2918      V.trunc(IntWidth);
2919      V.extend(InitVal.getBitWidth());
2920      if (V != InitVal)
2921        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2922             InitVal.toString(10));
2923    }
2924
2925    // Keep track of the size of positive and negative values.
2926    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2927      NumPositiveBits = std::max(NumPositiveBits,
2928                                 (unsigned)InitVal.getActiveBits());
2929    else
2930      NumNegativeBits = std::max(NumNegativeBits,
2931                                 (unsigned)InitVal.getMinSignedBits());
2932
2933    // Keep track of whether every enum element has type int (very commmon).
2934    if (AllElementsInt)
2935      AllElementsInt = ECD->getType() == Context.IntTy;
2936
2937    ECD->setNextDeclarator(EltList);
2938    EltList = ECD;
2939  }
2940
2941  // Figure out the type that should be used for this enum.
2942  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2943  QualType BestType;
2944  unsigned BestWidth;
2945
2946  if (NumNegativeBits) {
2947    // If there is a negative value, figure out the smallest integer type (of
2948    // int/long/longlong) that fits.
2949    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2950      BestType = Context.IntTy;
2951      BestWidth = IntWidth;
2952    } else {
2953      BestWidth = Context.Target.getLongWidth();
2954
2955      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2956        BestType = Context.LongTy;
2957      else {
2958        BestWidth = Context.Target.getLongLongWidth();
2959
2960        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2961          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2962        BestType = Context.LongLongTy;
2963      }
2964    }
2965  } else {
2966    // If there is no negative value, figure out which of uint, ulong, ulonglong
2967    // fits.
2968    if (NumPositiveBits <= IntWidth) {
2969      BestType = Context.UnsignedIntTy;
2970      BestWidth = IntWidth;
2971    } else if (NumPositiveBits <=
2972               (BestWidth = Context.Target.getLongWidth())) {
2973      BestType = Context.UnsignedLongTy;
2974    } else {
2975      BestWidth = Context.Target.getLongLongWidth();
2976      assert(NumPositiveBits <= BestWidth &&
2977             "How could an initializer get larger than ULL?");
2978      BestType = Context.UnsignedLongLongTy;
2979    }
2980  }
2981
2982  // Loop over all of the enumerator constants, changing their types to match
2983  // the type of the enum if needed.
2984  for (unsigned i = 0; i != NumElements; ++i) {
2985    EnumConstantDecl *ECD =
2986      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2987    if (!ECD) continue;  // Already issued a diagnostic.
2988
2989    // Standard C says the enumerators have int type, but we allow, as an
2990    // extension, the enumerators to be larger than int size.  If each
2991    // enumerator value fits in an int, type it as an int, otherwise type it the
2992    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2993    // that X has type 'int', not 'unsigned'.
2994    if (ECD->getType() == Context.IntTy) {
2995      // Make sure the init value is signed.
2996      llvm::APSInt IV = ECD->getInitVal();
2997      IV.setIsSigned(true);
2998      ECD->setInitVal(IV);
2999      continue;  // Already int type.
3000    }
3001
3002    // Determine whether the value fits into an int.
3003    llvm::APSInt InitVal = ECD->getInitVal();
3004    bool FitsInInt;
3005    if (InitVal.isUnsigned() || !InitVal.isNegative())
3006      FitsInInt = InitVal.getActiveBits() < IntWidth;
3007    else
3008      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3009
3010    // If it fits into an integer type, force it.  Otherwise force it to match
3011    // the enum decl type.
3012    QualType NewTy;
3013    unsigned NewWidth;
3014    bool NewSign;
3015    if (FitsInInt) {
3016      NewTy = Context.IntTy;
3017      NewWidth = IntWidth;
3018      NewSign = true;
3019    } else if (ECD->getType() == BestType) {
3020      // Already the right type!
3021      continue;
3022    } else {
3023      NewTy = BestType;
3024      NewWidth = BestWidth;
3025      NewSign = BestType->isSignedIntegerType();
3026    }
3027
3028    // Adjust the APSInt value.
3029    InitVal.extOrTrunc(NewWidth);
3030    InitVal.setIsSigned(NewSign);
3031    ECD->setInitVal(InitVal);
3032
3033    // Adjust the Expr initializer and type.
3034    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3035                                          /*isLvalue=*/false));
3036    ECD->setType(NewTy);
3037  }
3038
3039  Enum->defineElements(EltList, BestType);
3040  Consumer.HandleTagDeclDefinition(Enum);
3041}
3042
3043Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3044                                          ExprTy *expr) {
3045  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3046
3047  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3048}
3049
3050Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3051                                     SourceLocation LBrace,
3052                                     SourceLocation RBrace,
3053                                     const char *Lang,
3054                                     unsigned StrSize,
3055                                     DeclTy *D) {
3056  LinkageSpecDecl::LanguageIDs Language;
3057  Decl *dcl = static_cast<Decl *>(D);
3058  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3059    Language = LinkageSpecDecl::lang_c;
3060  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3061    Language = LinkageSpecDecl::lang_cxx;
3062  else {
3063    Diag(Loc, diag::err_bad_language);
3064    return 0;
3065  }
3066
3067  // FIXME: Add all the various semantics of linkage specifications
3068  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3069}
3070
3071void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3072                           ExprTy *alignment, SourceLocation PragmaLoc,
3073                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3074  Expr *Alignment = static_cast<Expr *>(alignment);
3075
3076  // If specified then alignment must be a "small" power of two.
3077  unsigned AlignmentVal = 0;
3078  if (Alignment) {
3079    llvm::APSInt Val;
3080    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3081        !Val.isPowerOf2() ||
3082        Val.getZExtValue() > 16) {
3083      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3084      delete Alignment;
3085      return; // Ignore
3086    }
3087
3088    AlignmentVal = (unsigned) Val.getZExtValue();
3089  }
3090
3091  switch (Kind) {
3092  case Action::PPK_Default: // pack([n])
3093    PackContext.setAlignment(AlignmentVal);
3094    break;
3095
3096  case Action::PPK_Show: // pack(show)
3097    // Show the current alignment, making sure to show the right value
3098    // for the default.
3099    AlignmentVal = PackContext.getAlignment();
3100    // FIXME: This should come from the target.
3101    if (AlignmentVal == 0)
3102      AlignmentVal = 8;
3103    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
3104    break;
3105
3106  case Action::PPK_Push: // pack(push [, id] [, [n])
3107    PackContext.push(Name);
3108    // Set the new alignment if specified.
3109    if (Alignment)
3110      PackContext.setAlignment(AlignmentVal);
3111    break;
3112
3113  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3114    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3115    // "#pragma pack(pop, identifier, n) is undefined"
3116    if (Alignment && Name)
3117      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3118
3119    // Do the pop.
3120    if (!PackContext.pop(Name)) {
3121      // If a name was specified then failure indicates the name
3122      // wasn't found. Otherwise failure indicates the stack was
3123      // empty.
3124      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3125           Name ? "no record matching name" : "stack empty");
3126
3127      // FIXME: Warn about popping named records as MSVC does.
3128    } else {
3129      // Pop succeeded, set the new alignment if specified.
3130      if (Alignment)
3131        PackContext.setAlignment(AlignmentVal);
3132    }
3133    break;
3134
3135  default:
3136    assert(0 && "Invalid #pragma pack kind.");
3137  }
3138}
3139
3140bool PragmaPackStack::pop(IdentifierInfo *Name) {
3141  if (Stack.empty())
3142    return false;
3143
3144  // If name is empty just pop top.
3145  if (!Name) {
3146    Alignment = Stack.back().first;
3147    Stack.pop_back();
3148    return true;
3149  }
3150
3151  // Otherwise, find the named record.
3152  for (unsigned i = Stack.size(); i != 0; ) {
3153    --i;
3154    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
3155      // Found it, pop up to and including this record.
3156      Alignment = Stack[i].first;
3157      Stack.erase(Stack.begin() + i, Stack.end());
3158      return true;
3159    }
3160  }
3161
3162  return false;
3163}
3164