SemaDecl.cpp revision 680404e0d91ac67c91097af6c62bc92f1fba5965
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    return Sema::CXXConstructor;
1512  }
1513
1514  if (isa<CXXDestructorDecl>(MD))
1515    return Sema::CXXDestructor;
1516
1517  assert(MD->isCopyAssignmentOperator() &&
1518         "Must have copy assignment operator");
1519  return Sema::CXXCopyAssignment;
1520}
1521
1522/// canRedefineFunction - checks if a function can be redefined. Currently,
1523/// only extern inline functions can be redefined, and even then only in
1524/// GNU89 mode.
1525static bool canRedefineFunction(const FunctionDecl *FD,
1526                                const LangOptions& LangOpts) {
1527  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1528          FD->isInlineSpecified() &&
1529          FD->getStorageClass() == SC_Extern);
1530}
1531
1532/// MergeFunctionDecl - We just parsed a function 'New' from
1533/// declarator D which has the same name and scope as a previous
1534/// declaration 'Old'.  Figure out how to resolve this situation,
1535/// merging decls or emitting diagnostics as appropriate.
1536///
1537/// In C++, New and Old must be declarations that are not
1538/// overloaded. Use IsOverload to determine whether New and Old are
1539/// overloaded, and to select the Old declaration that New should be
1540/// merged with.
1541///
1542/// Returns true if there was an error, false otherwise.
1543bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1544  // Verify the old decl was also a function.
1545  FunctionDecl *Old = 0;
1546  if (FunctionTemplateDecl *OldFunctionTemplate
1547        = dyn_cast<FunctionTemplateDecl>(OldD))
1548    Old = OldFunctionTemplate->getTemplatedDecl();
1549  else
1550    Old = dyn_cast<FunctionDecl>(OldD);
1551  if (!Old) {
1552    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1553      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1554      Diag(Shadow->getTargetDecl()->getLocation(),
1555           diag::note_using_decl_target);
1556      Diag(Shadow->getUsingDecl()->getLocation(),
1557           diag::note_using_decl) << 0;
1558      return true;
1559    }
1560
1561    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1562      << New->getDeclName();
1563    Diag(OldD->getLocation(), diag::note_previous_definition);
1564    return true;
1565  }
1566
1567  // Determine whether the previous declaration was a definition,
1568  // implicit declaration, or a declaration.
1569  diag::kind PrevDiag;
1570  if (Old->isThisDeclarationADefinition())
1571    PrevDiag = diag::note_previous_definition;
1572  else if (Old->isImplicit())
1573    PrevDiag = diag::note_previous_implicit_declaration;
1574  else
1575    PrevDiag = diag::note_previous_declaration;
1576
1577  QualType OldQType = Context.getCanonicalType(Old->getType());
1578  QualType NewQType = Context.getCanonicalType(New->getType());
1579
1580  // Don't complain about this if we're in GNU89 mode and the old function
1581  // is an extern inline function.
1582  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1583      New->getStorageClass() == SC_Static &&
1584      Old->getStorageClass() != SC_Static &&
1585      !canRedefineFunction(Old, getLangOptions())) {
1586    if (getLangOptions().Microsoft) {
1587      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1588      Diag(Old->getLocation(), PrevDiag);
1589    } else {
1590      Diag(New->getLocation(), diag::err_static_non_static) << New;
1591      Diag(Old->getLocation(), PrevDiag);
1592      return true;
1593    }
1594  }
1595
1596  // If a function is first declared with a calling convention, but is
1597  // later declared or defined without one, the second decl assumes the
1598  // calling convention of the first.
1599  //
1600  // For the new decl, we have to look at the NON-canonical type to tell the
1601  // difference between a function that really doesn't have a calling
1602  // convention and one that is declared cdecl. That's because in
1603  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1604  // because it is the default calling convention.
1605  //
1606  // Note also that we DO NOT return at this point, because we still have
1607  // other tests to run.
1608  const FunctionType *OldType = cast<FunctionType>(OldQType);
1609  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1610  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1611  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1612  bool RequiresAdjustment = false;
1613  if (OldTypeInfo.getCC() != CC_Default &&
1614      NewTypeInfo.getCC() == CC_Default) {
1615    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1616    RequiresAdjustment = true;
1617  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1618                                     NewTypeInfo.getCC())) {
1619    // Calling conventions really aren't compatible, so complain.
1620    Diag(New->getLocation(), diag::err_cconv_change)
1621      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1622      << (OldTypeInfo.getCC() == CC_Default)
1623      << (OldTypeInfo.getCC() == CC_Default ? "" :
1624          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1625    Diag(Old->getLocation(), diag::note_previous_declaration);
1626    return true;
1627  }
1628
1629  // FIXME: diagnose the other way around?
1630  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1631    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1632    RequiresAdjustment = true;
1633  }
1634
1635  // Merge regparm attribute.
1636  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1637      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1638    if (NewTypeInfo.getHasRegParm()) {
1639      Diag(New->getLocation(), diag::err_regparm_mismatch)
1640        << NewType->getRegParmType()
1641        << OldType->getRegParmType();
1642      Diag(Old->getLocation(), diag::note_previous_declaration);
1643      return true;
1644    }
1645
1646    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1647    RequiresAdjustment = true;
1648  }
1649
1650  if (RequiresAdjustment) {
1651    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1652    New->setType(QualType(NewType, 0));
1653    NewQType = Context.getCanonicalType(New->getType());
1654  }
1655
1656  if (getLangOptions().CPlusPlus) {
1657    // (C++98 13.1p2):
1658    //   Certain function declarations cannot be overloaded:
1659    //     -- Function declarations that differ only in the return type
1660    //        cannot be overloaded.
1661    QualType OldReturnType = OldType->getResultType();
1662    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1663    QualType ResQT;
1664    if (OldReturnType != NewReturnType) {
1665      if (NewReturnType->isObjCObjectPointerType()
1666          && OldReturnType->isObjCObjectPointerType())
1667        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1668      if (ResQT.isNull()) {
1669        if (New->isCXXClassMember() && New->isOutOfLine())
1670          Diag(New->getLocation(),
1671               diag::err_member_def_does_not_match_ret_type) << New;
1672        else
1673          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1674        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1675        return true;
1676      }
1677      else
1678        NewQType = ResQT;
1679    }
1680
1681    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1682    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1683    if (OldMethod && NewMethod) {
1684      // Preserve triviality.
1685      NewMethod->setTrivial(OldMethod->isTrivial());
1686
1687      bool isFriend = NewMethod->getFriendObjectKind();
1688
1689      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1690        //    -- Member function declarations with the same name and the
1691        //       same parameter types cannot be overloaded if any of them
1692        //       is a static member function declaration.
1693        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1694          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1695          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1696          return true;
1697        }
1698
1699        // C++ [class.mem]p1:
1700        //   [...] A member shall not be declared twice in the
1701        //   member-specification, except that a nested class or member
1702        //   class template can be declared and then later defined.
1703        unsigned NewDiag;
1704        if (isa<CXXConstructorDecl>(OldMethod))
1705          NewDiag = diag::err_constructor_redeclared;
1706        else if (isa<CXXDestructorDecl>(NewMethod))
1707          NewDiag = diag::err_destructor_redeclared;
1708        else if (isa<CXXConversionDecl>(NewMethod))
1709          NewDiag = diag::err_conv_function_redeclared;
1710        else
1711          NewDiag = diag::err_member_redeclared;
1712
1713        Diag(New->getLocation(), NewDiag);
1714        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1715
1716      // Complain if this is an explicit declaration of a special
1717      // member that was initially declared implicitly.
1718      //
1719      // As an exception, it's okay to befriend such methods in order
1720      // to permit the implicit constructor/destructor/operator calls.
1721      } else if (OldMethod->isImplicit()) {
1722        if (isFriend) {
1723          NewMethod->setImplicit();
1724        } else {
1725          Diag(NewMethod->getLocation(),
1726               diag::err_definition_of_implicitly_declared_member)
1727            << New << getSpecialMember(OldMethod);
1728          return true;
1729        }
1730      } else if (OldMethod->isExplicitlyDefaulted()) {
1731        Diag(NewMethod->getLocation(),
1732             diag::err_definition_of_explicitly_defaulted_member)
1733          << getSpecialMember(OldMethod);
1734        return true;
1735      }
1736    }
1737
1738    // (C++98 8.3.5p3):
1739    //   All declarations for a function shall agree exactly in both the
1740    //   return type and the parameter-type-list.
1741    // We also want to respect all the extended bits except noreturn.
1742
1743    // noreturn should now match unless the old type info didn't have it.
1744    QualType OldQTypeForComparison = OldQType;
1745    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1746      assert(OldQType == QualType(OldType, 0));
1747      const FunctionType *OldTypeForComparison
1748        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1749      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1750      assert(OldQTypeForComparison.isCanonical());
1751    }
1752
1753    if (OldQTypeForComparison == NewQType)
1754      return MergeCompatibleFunctionDecls(New, Old);
1755
1756    // Fall through for conflicting redeclarations and redefinitions.
1757  }
1758
1759  // C: Function types need to be compatible, not identical. This handles
1760  // duplicate function decls like "void f(int); void f(enum X);" properly.
1761  if (!getLangOptions().CPlusPlus &&
1762      Context.typesAreCompatible(OldQType, NewQType)) {
1763    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1764    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1765    const FunctionProtoType *OldProto = 0;
1766    if (isa<FunctionNoProtoType>(NewFuncType) &&
1767        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1768      // The old declaration provided a function prototype, but the
1769      // new declaration does not. Merge in the prototype.
1770      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1771      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1772                                                 OldProto->arg_type_end());
1773      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1774                                         ParamTypes.data(), ParamTypes.size(),
1775                                         OldProto->getExtProtoInfo());
1776      New->setType(NewQType);
1777      New->setHasInheritedPrototype();
1778
1779      // Synthesize a parameter for each argument type.
1780      llvm::SmallVector<ParmVarDecl*, 16> Params;
1781      for (FunctionProtoType::arg_type_iterator
1782             ParamType = OldProto->arg_type_begin(),
1783             ParamEnd = OldProto->arg_type_end();
1784           ParamType != ParamEnd; ++ParamType) {
1785        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1786                                                 SourceLocation(),
1787                                                 SourceLocation(), 0,
1788                                                 *ParamType, /*TInfo=*/0,
1789                                                 SC_None, SC_None,
1790                                                 0);
1791        Param->setScopeInfo(0, Params.size());
1792        Param->setImplicit();
1793        Params.push_back(Param);
1794      }
1795
1796      New->setParams(Params.data(), Params.size());
1797    }
1798
1799    return MergeCompatibleFunctionDecls(New, Old);
1800  }
1801
1802  // GNU C permits a K&R definition to follow a prototype declaration
1803  // if the declared types of the parameters in the K&R definition
1804  // match the types in the prototype declaration, even when the
1805  // promoted types of the parameters from the K&R definition differ
1806  // from the types in the prototype. GCC then keeps the types from
1807  // the prototype.
1808  //
1809  // If a variadic prototype is followed by a non-variadic K&R definition,
1810  // the K&R definition becomes variadic.  This is sort of an edge case, but
1811  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1812  // C99 6.9.1p8.
1813  if (!getLangOptions().CPlusPlus &&
1814      Old->hasPrototype() && !New->hasPrototype() &&
1815      New->getType()->getAs<FunctionProtoType>() &&
1816      Old->getNumParams() == New->getNumParams()) {
1817    llvm::SmallVector<QualType, 16> ArgTypes;
1818    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1819    const FunctionProtoType *OldProto
1820      = Old->getType()->getAs<FunctionProtoType>();
1821    const FunctionProtoType *NewProto
1822      = New->getType()->getAs<FunctionProtoType>();
1823
1824    // Determine whether this is the GNU C extension.
1825    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1826                                               NewProto->getResultType());
1827    bool LooseCompatible = !MergedReturn.isNull();
1828    for (unsigned Idx = 0, End = Old->getNumParams();
1829         LooseCompatible && Idx != End; ++Idx) {
1830      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1831      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1832      if (Context.typesAreCompatible(OldParm->getType(),
1833                                     NewProto->getArgType(Idx))) {
1834        ArgTypes.push_back(NewParm->getType());
1835      } else if (Context.typesAreCompatible(OldParm->getType(),
1836                                            NewParm->getType(),
1837                                            /*CompareUnqualified=*/true)) {
1838        GNUCompatibleParamWarning Warn
1839          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1840        Warnings.push_back(Warn);
1841        ArgTypes.push_back(NewParm->getType());
1842      } else
1843        LooseCompatible = false;
1844    }
1845
1846    if (LooseCompatible) {
1847      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1848        Diag(Warnings[Warn].NewParm->getLocation(),
1849             diag::ext_param_promoted_not_compatible_with_prototype)
1850          << Warnings[Warn].PromotedType
1851          << Warnings[Warn].OldParm->getType();
1852        if (Warnings[Warn].OldParm->getLocation().isValid())
1853          Diag(Warnings[Warn].OldParm->getLocation(),
1854               diag::note_previous_declaration);
1855      }
1856
1857      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1858                                           ArgTypes.size(),
1859                                           OldProto->getExtProtoInfo()));
1860      return MergeCompatibleFunctionDecls(New, Old);
1861    }
1862
1863    // Fall through to diagnose conflicting types.
1864  }
1865
1866  // A function that has already been declared has been redeclared or defined
1867  // with a different type- show appropriate diagnostic
1868  if (unsigned BuiltinID = Old->getBuiltinID()) {
1869    // The user has declared a builtin function with an incompatible
1870    // signature.
1871    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1872      // The function the user is redeclaring is a library-defined
1873      // function like 'malloc' or 'printf'. Warn about the
1874      // redeclaration, then pretend that we don't know about this
1875      // library built-in.
1876      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1877      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1878        << Old << Old->getType();
1879      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1880      Old->setInvalidDecl();
1881      return false;
1882    }
1883
1884    PrevDiag = diag::note_previous_builtin_declaration;
1885  }
1886
1887  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1888  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1889  return true;
1890}
1891
1892/// \brief Completes the merge of two function declarations that are
1893/// known to be compatible.
1894///
1895/// This routine handles the merging of attributes and other
1896/// properties of function declarations form the old declaration to
1897/// the new declaration, once we know that New is in fact a
1898/// redeclaration of Old.
1899///
1900/// \returns false
1901bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1902  // Merge the attributes
1903  mergeDeclAttributes(New, Old, Context);
1904
1905  // Merge the storage class.
1906  if (Old->getStorageClass() != SC_Extern &&
1907      Old->getStorageClass() != SC_None)
1908    New->setStorageClass(Old->getStorageClass());
1909
1910  // Merge "pure" flag.
1911  if (Old->isPure())
1912    New->setPure();
1913
1914  // Merge attributes from the parameters.  These can mismatch with K&R
1915  // declarations.
1916  if (New->getNumParams() == Old->getNumParams())
1917    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1918      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1919                               Context);
1920
1921  if (getLangOptions().CPlusPlus)
1922    return MergeCXXFunctionDecl(New, Old);
1923
1924  return false;
1925}
1926
1927void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1928                                const ObjCMethodDecl *oldMethod) {
1929  // Merge the attributes.
1930  mergeDeclAttributes(newMethod, oldMethod, Context);
1931
1932  // Merge attributes from the parameters.
1933  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1934         ni = newMethod->param_begin(), ne = newMethod->param_end();
1935       ni != ne; ++ni, ++oi)
1936    mergeParamDeclAttributes(*ni, *oi, Context);
1937}
1938
1939/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1940/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1941/// emitting diagnostics as appropriate.
1942///
1943/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1944/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1945/// check them before the initializer is attached.
1946///
1947void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1948  if (New->isInvalidDecl() || Old->isInvalidDecl())
1949    return;
1950
1951  QualType MergedT;
1952  if (getLangOptions().CPlusPlus) {
1953    AutoType *AT = New->getType()->getContainedAutoType();
1954    if (AT && !AT->isDeduced()) {
1955      // We don't know what the new type is until the initializer is attached.
1956      return;
1957    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1958      // These could still be something that needs exception specs checked.
1959      return MergeVarDeclExceptionSpecs(New, Old);
1960    }
1961    // C++ [basic.link]p10:
1962    //   [...] the types specified by all declarations referring to a given
1963    //   object or function shall be identical, except that declarations for an
1964    //   array object can specify array types that differ by the presence or
1965    //   absence of a major array bound (8.3.4).
1966    else if (Old->getType()->isIncompleteArrayType() &&
1967             New->getType()->isArrayType()) {
1968      CanQual<ArrayType> OldArray
1969        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1970      CanQual<ArrayType> NewArray
1971        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1972      if (OldArray->getElementType() == NewArray->getElementType())
1973        MergedT = New->getType();
1974    } else if (Old->getType()->isArrayType() &&
1975             New->getType()->isIncompleteArrayType()) {
1976      CanQual<ArrayType> OldArray
1977        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1978      CanQual<ArrayType> NewArray
1979        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1980      if (OldArray->getElementType() == NewArray->getElementType())
1981        MergedT = Old->getType();
1982    } else if (New->getType()->isObjCObjectPointerType()
1983               && Old->getType()->isObjCObjectPointerType()) {
1984        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1985                                                        Old->getType());
1986    }
1987  } else {
1988    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1989  }
1990  if (MergedT.isNull()) {
1991    Diag(New->getLocation(), diag::err_redefinition_different_type)
1992      << New->getDeclName();
1993    Diag(Old->getLocation(), diag::note_previous_definition);
1994    return New->setInvalidDecl();
1995  }
1996  New->setType(MergedT);
1997}
1998
1999/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2000/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2001/// situation, merging decls or emitting diagnostics as appropriate.
2002///
2003/// Tentative definition rules (C99 6.9.2p2) are checked by
2004/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2005/// definitions here, since the initializer hasn't been attached.
2006///
2007void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2008  // If the new decl is already invalid, don't do any other checking.
2009  if (New->isInvalidDecl())
2010    return;
2011
2012  // Verify the old decl was also a variable.
2013  VarDecl *Old = 0;
2014  if (!Previous.isSingleResult() ||
2015      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2016    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2017      << New->getDeclName();
2018    Diag(Previous.getRepresentativeDecl()->getLocation(),
2019         diag::note_previous_definition);
2020    return New->setInvalidDecl();
2021  }
2022
2023  // C++ [class.mem]p1:
2024  //   A member shall not be declared twice in the member-specification [...]
2025  //
2026  // Here, we need only consider static data members.
2027  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2028    Diag(New->getLocation(), diag::err_duplicate_member)
2029      << New->getIdentifier();
2030    Diag(Old->getLocation(), diag::note_previous_declaration);
2031    New->setInvalidDecl();
2032  }
2033
2034  mergeDeclAttributes(New, Old, Context);
2035
2036  // Merge the types.
2037  MergeVarDeclTypes(New, Old);
2038  if (New->isInvalidDecl())
2039    return;
2040
2041  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2042  if (New->getStorageClass() == SC_Static &&
2043      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2044    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2045    Diag(Old->getLocation(), diag::note_previous_definition);
2046    return New->setInvalidDecl();
2047  }
2048  // C99 6.2.2p4:
2049  //   For an identifier declared with the storage-class specifier
2050  //   extern in a scope in which a prior declaration of that
2051  //   identifier is visible,23) if the prior declaration specifies
2052  //   internal or external linkage, the linkage of the identifier at
2053  //   the later declaration is the same as the linkage specified at
2054  //   the prior declaration. If no prior declaration is visible, or
2055  //   if the prior declaration specifies no linkage, then the
2056  //   identifier has external linkage.
2057  if (New->hasExternalStorage() && Old->hasLinkage())
2058    /* Okay */;
2059  else if (New->getStorageClass() != SC_Static &&
2060           Old->getStorageClass() == SC_Static) {
2061    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2062    Diag(Old->getLocation(), diag::note_previous_definition);
2063    return New->setInvalidDecl();
2064  }
2065
2066  // Check if extern is followed by non-extern and vice-versa.
2067  if (New->hasExternalStorage() &&
2068      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2069    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2070    Diag(Old->getLocation(), diag::note_previous_definition);
2071    return New->setInvalidDecl();
2072  }
2073  if (Old->hasExternalStorage() &&
2074      !New->hasLinkage() && New->isLocalVarDecl()) {
2075    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079
2080  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2081
2082  // FIXME: The test for external storage here seems wrong? We still
2083  // need to check for mismatches.
2084  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2085      // Don't complain about out-of-line definitions of static members.
2086      !(Old->getLexicalDeclContext()->isRecord() &&
2087        !New->getLexicalDeclContext()->isRecord())) {
2088    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2089    Diag(Old->getLocation(), diag::note_previous_definition);
2090    return New->setInvalidDecl();
2091  }
2092
2093  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2094    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2097    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2098    Diag(Old->getLocation(), diag::note_previous_definition);
2099  }
2100
2101  // C++ doesn't have tentative definitions, so go right ahead and check here.
2102  const VarDecl *Def;
2103  if (getLangOptions().CPlusPlus &&
2104      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2105      (Def = Old->getDefinition())) {
2106    Diag(New->getLocation(), diag::err_redefinition)
2107      << New->getDeclName();
2108    Diag(Def->getLocation(), diag::note_previous_definition);
2109    New->setInvalidDecl();
2110    return;
2111  }
2112  // c99 6.2.2 P4.
2113  // For an identifier declared with the storage-class specifier extern in a
2114  // scope in which a prior declaration of that identifier is visible, if
2115  // the prior declaration specifies internal or external linkage, the linkage
2116  // of the identifier at the later declaration is the same as the linkage
2117  // specified at the prior declaration.
2118  // FIXME. revisit this code.
2119  if (New->hasExternalStorage() &&
2120      Old->getLinkage() == InternalLinkage &&
2121      New->getDeclContext() == Old->getDeclContext())
2122    New->setStorageClass(Old->getStorageClass());
2123
2124  // Keep a chain of previous declarations.
2125  New->setPreviousDeclaration(Old);
2126
2127  // Inherit access appropriately.
2128  New->setAccess(Old->getAccess());
2129}
2130
2131/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2132/// no declarator (e.g. "struct foo;") is parsed.
2133Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2134                                       DeclSpec &DS) {
2135  return ParsedFreeStandingDeclSpec(S, AS, DS,
2136                                    MultiTemplateParamsArg(*this, 0, 0));
2137}
2138
2139/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2140/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2141/// parameters to cope with template friend declarations.
2142Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2143                                       DeclSpec &DS,
2144                                       MultiTemplateParamsArg TemplateParams) {
2145  Decl *TagD = 0;
2146  TagDecl *Tag = 0;
2147  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2148      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2149      DS.getTypeSpecType() == DeclSpec::TST_union ||
2150      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2151    TagD = DS.getRepAsDecl();
2152
2153    if (!TagD) // We probably had an error
2154      return 0;
2155
2156    // Note that the above type specs guarantee that the
2157    // type rep is a Decl, whereas in many of the others
2158    // it's a Type.
2159    Tag = dyn_cast<TagDecl>(TagD);
2160  }
2161
2162  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2163    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2164    // or incomplete types shall not be restrict-qualified."
2165    if (TypeQuals & DeclSpec::TQ_restrict)
2166      Diag(DS.getRestrictSpecLoc(),
2167           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2168           << DS.getSourceRange();
2169  }
2170
2171  if (DS.isFriendSpecified()) {
2172    // If we're dealing with a decl but not a TagDecl, assume that
2173    // whatever routines created it handled the friendship aspect.
2174    if (TagD && !Tag)
2175      return 0;
2176    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2177  }
2178
2179  // Track whether we warned about the fact that there aren't any
2180  // declarators.
2181  bool emittedWarning = false;
2182
2183  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2184    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2185
2186    if (!Record->getDeclName() && Record->isDefinition() &&
2187        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2188      if (getLangOptions().CPlusPlus ||
2189          Record->getDeclContext()->isRecord())
2190        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2191
2192      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2193        << DS.getSourceRange();
2194      emittedWarning = true;
2195    }
2196  }
2197
2198  // Check for Microsoft C extension: anonymous struct.
2199  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2200      CurContext->isRecord() &&
2201      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2202    // Handle 2 kinds of anonymous struct:
2203    //   struct STRUCT;
2204    // and
2205    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2206    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2207    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2208        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2209         DS.getRepAsType().get()->isStructureType())) {
2210      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2211        << DS.getSourceRange();
2212      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2213    }
2214  }
2215
2216  if (getLangOptions().CPlusPlus &&
2217      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2218    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2219      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2220          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2221        Diag(Enum->getLocation(), diag::ext_no_declarators)
2222          << DS.getSourceRange();
2223        emittedWarning = true;
2224      }
2225
2226  // Skip all the checks below if we have a type error.
2227  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2228
2229  if (!DS.isMissingDeclaratorOk()) {
2230    // Warn about typedefs of enums without names, since this is an
2231    // extension in both Microsoft and GNU.
2232    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2233        Tag && isa<EnumDecl>(Tag)) {
2234      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2235        << DS.getSourceRange();
2236      return Tag;
2237    }
2238
2239    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2240      << DS.getSourceRange();
2241    emittedWarning = true;
2242  }
2243
2244  // We're going to complain about a bunch of spurious specifiers;
2245  // only do this if we're declaring a tag, because otherwise we
2246  // should be getting diag::ext_no_declarators.
2247  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2248    return TagD;
2249
2250  // Note that a linkage-specification sets a storage class, but
2251  // 'extern "C" struct foo;' is actually valid and not theoretically
2252  // useless.
2253  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2254    if (!DS.isExternInLinkageSpec())
2255      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2256        << DeclSpec::getSpecifierName(scs);
2257
2258  if (DS.isThreadSpecified())
2259    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2260  if (DS.getTypeQualifiers()) {
2261    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2262      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2265    // Restrict is covered above.
2266  }
2267  if (DS.isInlineSpecified())
2268    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2269  if (DS.isVirtualSpecified())
2270    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2271  if (DS.isExplicitSpecified())
2272    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2273
2274  // FIXME: Warn on useless attributes
2275
2276  return TagD;
2277}
2278
2279/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2280/// builds a statement for it and returns it so it is evaluated.
2281StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2282  StmtResult R;
2283  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2284    Expr *Exp = DS.getRepAsExpr();
2285    QualType Ty = Exp->getType();
2286    if (Ty->isPointerType()) {
2287      do
2288        Ty = Ty->getAs<PointerType>()->getPointeeType();
2289      while (Ty->isPointerType());
2290    }
2291    if (Ty->isVariableArrayType()) {
2292      R = ActOnExprStmt(MakeFullExpr(Exp));
2293    }
2294  }
2295  return R;
2296}
2297
2298/// We are trying to inject an anonymous member into the given scope;
2299/// check if there's an existing declaration that can't be overloaded.
2300///
2301/// \return true if this is a forbidden redeclaration
2302static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2303                                         Scope *S,
2304                                         DeclContext *Owner,
2305                                         DeclarationName Name,
2306                                         SourceLocation NameLoc,
2307                                         unsigned diagnostic) {
2308  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2309                 Sema::ForRedeclaration);
2310  if (!SemaRef.LookupName(R, S)) return false;
2311
2312  if (R.getAsSingle<TagDecl>())
2313    return false;
2314
2315  // Pick a representative declaration.
2316  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2317  assert(PrevDecl && "Expected a non-null Decl");
2318
2319  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2320    return false;
2321
2322  SemaRef.Diag(NameLoc, diagnostic) << Name;
2323  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2324
2325  return true;
2326}
2327
2328/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2329/// anonymous struct or union AnonRecord into the owning context Owner
2330/// and scope S. This routine will be invoked just after we realize
2331/// that an unnamed union or struct is actually an anonymous union or
2332/// struct, e.g.,
2333///
2334/// @code
2335/// union {
2336///   int i;
2337///   float f;
2338/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2339///    // f into the surrounding scope.x
2340/// @endcode
2341///
2342/// This routine is recursive, injecting the names of nested anonymous
2343/// structs/unions into the owning context and scope as well.
2344static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2345                                                DeclContext *Owner,
2346                                                RecordDecl *AnonRecord,
2347                                                AccessSpecifier AS,
2348                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2349                                                      bool MSAnonStruct) {
2350  unsigned diagKind
2351    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2352                            : diag::err_anonymous_struct_member_redecl;
2353
2354  bool Invalid = false;
2355
2356  // Look every FieldDecl and IndirectFieldDecl with a name.
2357  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2358                               DEnd = AnonRecord->decls_end();
2359       D != DEnd; ++D) {
2360    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2361        cast<NamedDecl>(*D)->getDeclName()) {
2362      ValueDecl *VD = cast<ValueDecl>(*D);
2363      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2364                                       VD->getLocation(), diagKind)) {
2365        // C++ [class.union]p2:
2366        //   The names of the members of an anonymous union shall be
2367        //   distinct from the names of any other entity in the
2368        //   scope in which the anonymous union is declared.
2369        Invalid = true;
2370      } else {
2371        // C++ [class.union]p2:
2372        //   For the purpose of name lookup, after the anonymous union
2373        //   definition, the members of the anonymous union are
2374        //   considered to have been defined in the scope in which the
2375        //   anonymous union is declared.
2376        unsigned OldChainingSize = Chaining.size();
2377        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2378          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2379               PE = IF->chain_end(); PI != PE; ++PI)
2380            Chaining.push_back(*PI);
2381        else
2382          Chaining.push_back(VD);
2383
2384        assert(Chaining.size() >= 2);
2385        NamedDecl **NamedChain =
2386          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2387        for (unsigned i = 0; i < Chaining.size(); i++)
2388          NamedChain[i] = Chaining[i];
2389
2390        IndirectFieldDecl* IndirectField =
2391          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2392                                    VD->getIdentifier(), VD->getType(),
2393                                    NamedChain, Chaining.size());
2394
2395        IndirectField->setAccess(AS);
2396        IndirectField->setImplicit();
2397        SemaRef.PushOnScopeChains(IndirectField, S);
2398
2399        // That includes picking up the appropriate access specifier.
2400        if (AS != AS_none) IndirectField->setAccess(AS);
2401
2402        Chaining.resize(OldChainingSize);
2403      }
2404    }
2405  }
2406
2407  return Invalid;
2408}
2409
2410/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2411/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2412/// illegal input values are mapped to SC_None.
2413static StorageClass
2414StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2415  switch (StorageClassSpec) {
2416  case DeclSpec::SCS_unspecified:    return SC_None;
2417  case DeclSpec::SCS_extern:         return SC_Extern;
2418  case DeclSpec::SCS_static:         return SC_Static;
2419  case DeclSpec::SCS_auto:           return SC_Auto;
2420  case DeclSpec::SCS_register:       return SC_Register;
2421  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2422    // Illegal SCSs map to None: error reporting is up to the caller.
2423  case DeclSpec::SCS_mutable:        // Fall through.
2424  case DeclSpec::SCS_typedef:        return SC_None;
2425  }
2426  llvm_unreachable("unknown storage class specifier");
2427}
2428
2429/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2430/// a StorageClass. Any error reporting is up to the caller:
2431/// illegal input values are mapped to SC_None.
2432static StorageClass
2433StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2434  switch (StorageClassSpec) {
2435  case DeclSpec::SCS_unspecified:    return SC_None;
2436  case DeclSpec::SCS_extern:         return SC_Extern;
2437  case DeclSpec::SCS_static:         return SC_Static;
2438  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2439    // Illegal SCSs map to None: error reporting is up to the caller.
2440  case DeclSpec::SCS_auto:           // Fall through.
2441  case DeclSpec::SCS_mutable:        // Fall through.
2442  case DeclSpec::SCS_register:       // Fall through.
2443  case DeclSpec::SCS_typedef:        return SC_None;
2444  }
2445  llvm_unreachable("unknown storage class specifier");
2446}
2447
2448/// BuildAnonymousStructOrUnion - Handle the declaration of an
2449/// anonymous structure or union. Anonymous unions are a C++ feature
2450/// (C++ [class.union]) and a GNU C extension; anonymous structures
2451/// are a GNU C and GNU C++ extension.
2452Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2453                                             AccessSpecifier AS,
2454                                             RecordDecl *Record) {
2455  DeclContext *Owner = Record->getDeclContext();
2456
2457  // Diagnose whether this anonymous struct/union is an extension.
2458  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2459    Diag(Record->getLocation(), diag::ext_anonymous_union);
2460  else if (!Record->isUnion())
2461    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2462
2463  // C and C++ require different kinds of checks for anonymous
2464  // structs/unions.
2465  bool Invalid = false;
2466  if (getLangOptions().CPlusPlus) {
2467    const char* PrevSpec = 0;
2468    unsigned DiagID;
2469    // C++ [class.union]p3:
2470    //   Anonymous unions declared in a named namespace or in the
2471    //   global namespace shall be declared static.
2472    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2473        (isa<TranslationUnitDecl>(Owner) ||
2474         (isa<NamespaceDecl>(Owner) &&
2475          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2476      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2477      Invalid = true;
2478
2479      // Recover by adding 'static'.
2480      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2481                             PrevSpec, DiagID, getLangOptions());
2482    }
2483    // C++ [class.union]p3:
2484    //   A storage class is not allowed in a declaration of an
2485    //   anonymous union in a class scope.
2486    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2487             isa<RecordDecl>(Owner)) {
2488      Diag(DS.getStorageClassSpecLoc(),
2489           diag::err_anonymous_union_with_storage_spec);
2490      Invalid = true;
2491
2492      // Recover by removing the storage specifier.
2493      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2494                             PrevSpec, DiagID, getLangOptions());
2495    }
2496
2497    // Ignore const/volatile/restrict qualifiers.
2498    if (DS.getTypeQualifiers()) {
2499      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2500        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2501          << Record->isUnion() << 0
2502          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2503      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2504        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2505          << Record->isUnion() << 1
2506          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2507      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2508        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2509          << Record->isUnion() << 2
2510          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2511
2512      DS.ClearTypeQualifiers();
2513    }
2514
2515    // C++ [class.union]p2:
2516    //   The member-specification of an anonymous union shall only
2517    //   define non-static data members. [Note: nested types and
2518    //   functions cannot be declared within an anonymous union. ]
2519    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2520                                 MemEnd = Record->decls_end();
2521         Mem != MemEnd; ++Mem) {
2522      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2523        // C++ [class.union]p3:
2524        //   An anonymous union shall not have private or protected
2525        //   members (clause 11).
2526        assert(FD->getAccess() != AS_none);
2527        if (FD->getAccess() != AS_public) {
2528          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2529            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2530          Invalid = true;
2531        }
2532
2533        if (CheckNontrivialField(FD))
2534          Invalid = true;
2535      } else if ((*Mem)->isImplicit()) {
2536        // Any implicit members are fine.
2537      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2538        // This is a type that showed up in an
2539        // elaborated-type-specifier inside the anonymous struct or
2540        // union, but which actually declares a type outside of the
2541        // anonymous struct or union. It's okay.
2542      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2543        if (!MemRecord->isAnonymousStructOrUnion() &&
2544            MemRecord->getDeclName()) {
2545          // Visual C++ allows type definition in anonymous struct or union.
2546          if (getLangOptions().Microsoft)
2547            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2548              << (int)Record->isUnion();
2549          else {
2550            // This is a nested type declaration.
2551            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2552              << (int)Record->isUnion();
2553            Invalid = true;
2554          }
2555        }
2556      } else if (isa<AccessSpecDecl>(*Mem)) {
2557        // Any access specifier is fine.
2558      } else {
2559        // We have something that isn't a non-static data
2560        // member. Complain about it.
2561        unsigned DK = diag::err_anonymous_record_bad_member;
2562        if (isa<TypeDecl>(*Mem))
2563          DK = diag::err_anonymous_record_with_type;
2564        else if (isa<FunctionDecl>(*Mem))
2565          DK = diag::err_anonymous_record_with_function;
2566        else if (isa<VarDecl>(*Mem))
2567          DK = diag::err_anonymous_record_with_static;
2568
2569        // Visual C++ allows type definition in anonymous struct or union.
2570        if (getLangOptions().Microsoft &&
2571            DK == diag::err_anonymous_record_with_type)
2572          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2573            << (int)Record->isUnion();
2574        else {
2575          Diag((*Mem)->getLocation(), DK)
2576              << (int)Record->isUnion();
2577          Invalid = true;
2578        }
2579      }
2580    }
2581  }
2582
2583  if (!Record->isUnion() && !Owner->isRecord()) {
2584    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2585      << (int)getLangOptions().CPlusPlus;
2586    Invalid = true;
2587  }
2588
2589  // Mock up a declarator.
2590  Declarator Dc(DS, Declarator::TypeNameContext);
2591  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2592  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2593
2594  // Create a declaration for this anonymous struct/union.
2595  NamedDecl *Anon = 0;
2596  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2597    Anon = FieldDecl::Create(Context, OwningClass,
2598                             DS.getSourceRange().getBegin(),
2599                             Record->getLocation(),
2600                             /*IdentifierInfo=*/0,
2601                             Context.getTypeDeclType(Record),
2602                             TInfo,
2603                             /*BitWidth=*/0, /*Mutable=*/false);
2604    Anon->setAccess(AS);
2605    if (getLangOptions().CPlusPlus)
2606      FieldCollector->Add(cast<FieldDecl>(Anon));
2607  } else {
2608    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2609    assert(SCSpec != DeclSpec::SCS_typedef &&
2610           "Parser allowed 'typedef' as storage class VarDecl.");
2611    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2612    if (SCSpec == DeclSpec::SCS_mutable) {
2613      // mutable can only appear on non-static class members, so it's always
2614      // an error here
2615      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2616      Invalid = true;
2617      SC = SC_None;
2618    }
2619    SCSpec = DS.getStorageClassSpecAsWritten();
2620    VarDecl::StorageClass SCAsWritten
2621      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2622
2623    Anon = VarDecl::Create(Context, Owner,
2624                           DS.getSourceRange().getBegin(),
2625                           Record->getLocation(), /*IdentifierInfo=*/0,
2626                           Context.getTypeDeclType(Record),
2627                           TInfo, SC, SCAsWritten);
2628  }
2629  Anon->setImplicit();
2630
2631  // Add the anonymous struct/union object to the current
2632  // context. We'll be referencing this object when we refer to one of
2633  // its members.
2634  Owner->addDecl(Anon);
2635
2636  // Inject the members of the anonymous struct/union into the owning
2637  // context and into the identifier resolver chain for name lookup
2638  // purposes.
2639  llvm::SmallVector<NamedDecl*, 2> Chain;
2640  Chain.push_back(Anon);
2641
2642  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2643                                          Chain, false))
2644    Invalid = true;
2645
2646  // Mark this as an anonymous struct/union type. Note that we do not
2647  // do this until after we have already checked and injected the
2648  // members of this anonymous struct/union type, because otherwise
2649  // the members could be injected twice: once by DeclContext when it
2650  // builds its lookup table, and once by
2651  // InjectAnonymousStructOrUnionMembers.
2652  Record->setAnonymousStructOrUnion(true);
2653
2654  if (Invalid)
2655    Anon->setInvalidDecl();
2656
2657  return Anon;
2658}
2659
2660/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2661/// Microsoft C anonymous structure.
2662/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2663/// Example:
2664///
2665/// struct A { int a; };
2666/// struct B { struct A; int b; };
2667///
2668/// void foo() {
2669///   B var;
2670///   var.a = 3;
2671/// }
2672///
2673Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2674                                           RecordDecl *Record) {
2675
2676  // If there is no Record, get the record via the typedef.
2677  if (!Record)
2678    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2679
2680  // Mock up a declarator.
2681  Declarator Dc(DS, Declarator::TypeNameContext);
2682  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2683  assert(TInfo && "couldn't build declarator info for anonymous struct");
2684
2685  // Create a declaration for this anonymous struct.
2686  NamedDecl* Anon = FieldDecl::Create(Context,
2687                             cast<RecordDecl>(CurContext),
2688                             DS.getSourceRange().getBegin(),
2689                             DS.getSourceRange().getBegin(),
2690                             /*IdentifierInfo=*/0,
2691                             Context.getTypeDeclType(Record),
2692                             TInfo,
2693                             /*BitWidth=*/0, /*Mutable=*/false);
2694  Anon->setImplicit();
2695
2696  // Add the anonymous struct object to the current context.
2697  CurContext->addDecl(Anon);
2698
2699  // Inject the members of the anonymous struct into the current
2700  // context and into the identifier resolver chain for name lookup
2701  // purposes.
2702  llvm::SmallVector<NamedDecl*, 2> Chain;
2703  Chain.push_back(Anon);
2704
2705  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2706                                          Record->getDefinition(),
2707                                          AS_none, Chain, true))
2708    Anon->setInvalidDecl();
2709
2710  return Anon;
2711}
2712
2713/// GetNameForDeclarator - Determine the full declaration name for the
2714/// given Declarator.
2715DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2716  return GetNameFromUnqualifiedId(D.getName());
2717}
2718
2719/// \brief Retrieves the declaration name from a parsed unqualified-id.
2720DeclarationNameInfo
2721Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2722  DeclarationNameInfo NameInfo;
2723  NameInfo.setLoc(Name.StartLocation);
2724
2725  switch (Name.getKind()) {
2726
2727  case UnqualifiedId::IK_Identifier:
2728    NameInfo.setName(Name.Identifier);
2729    NameInfo.setLoc(Name.StartLocation);
2730    return NameInfo;
2731
2732  case UnqualifiedId::IK_OperatorFunctionId:
2733    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2734                                           Name.OperatorFunctionId.Operator));
2735    NameInfo.setLoc(Name.StartLocation);
2736    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2737      = Name.OperatorFunctionId.SymbolLocations[0];
2738    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2739      = Name.EndLocation.getRawEncoding();
2740    return NameInfo;
2741
2742  case UnqualifiedId::IK_LiteralOperatorId:
2743    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2744                                                           Name.Identifier));
2745    NameInfo.setLoc(Name.StartLocation);
2746    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2747    return NameInfo;
2748
2749  case UnqualifiedId::IK_ConversionFunctionId: {
2750    TypeSourceInfo *TInfo;
2751    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2752    if (Ty.isNull())
2753      return DeclarationNameInfo();
2754    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2755                                               Context.getCanonicalType(Ty)));
2756    NameInfo.setLoc(Name.StartLocation);
2757    NameInfo.setNamedTypeInfo(TInfo);
2758    return NameInfo;
2759  }
2760
2761  case UnqualifiedId::IK_ConstructorName: {
2762    TypeSourceInfo *TInfo;
2763    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2764    if (Ty.isNull())
2765      return DeclarationNameInfo();
2766    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2767                                              Context.getCanonicalType(Ty)));
2768    NameInfo.setLoc(Name.StartLocation);
2769    NameInfo.setNamedTypeInfo(TInfo);
2770    return NameInfo;
2771  }
2772
2773  case UnqualifiedId::IK_ConstructorTemplateId: {
2774    // In well-formed code, we can only have a constructor
2775    // template-id that refers to the current context, so go there
2776    // to find the actual type being constructed.
2777    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2778    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2779      return DeclarationNameInfo();
2780
2781    // Determine the type of the class being constructed.
2782    QualType CurClassType = Context.getTypeDeclType(CurClass);
2783
2784    // FIXME: Check two things: that the template-id names the same type as
2785    // CurClassType, and that the template-id does not occur when the name
2786    // was qualified.
2787
2788    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2789                                    Context.getCanonicalType(CurClassType)));
2790    NameInfo.setLoc(Name.StartLocation);
2791    // FIXME: should we retrieve TypeSourceInfo?
2792    NameInfo.setNamedTypeInfo(0);
2793    return NameInfo;
2794  }
2795
2796  case UnqualifiedId::IK_DestructorName: {
2797    TypeSourceInfo *TInfo;
2798    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2799    if (Ty.isNull())
2800      return DeclarationNameInfo();
2801    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2802                                              Context.getCanonicalType(Ty)));
2803    NameInfo.setLoc(Name.StartLocation);
2804    NameInfo.setNamedTypeInfo(TInfo);
2805    return NameInfo;
2806  }
2807
2808  case UnqualifiedId::IK_TemplateId: {
2809    TemplateName TName = Name.TemplateId->Template.get();
2810    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2811    return Context.getNameForTemplate(TName, TNameLoc);
2812  }
2813
2814  } // switch (Name.getKind())
2815
2816  assert(false && "Unknown name kind");
2817  return DeclarationNameInfo();
2818}
2819
2820/// isNearlyMatchingFunction - Determine whether the C++ functions
2821/// Declaration and Definition are "nearly" matching. This heuristic
2822/// is used to improve diagnostics in the case where an out-of-line
2823/// function definition doesn't match any declaration within
2824/// the class or namespace.
2825static bool isNearlyMatchingFunction(ASTContext &Context,
2826                                     FunctionDecl *Declaration,
2827                                     FunctionDecl *Definition) {
2828  if (Declaration->param_size() != Definition->param_size())
2829    return false;
2830  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2831    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2832    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2833
2834    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2835                                        DefParamTy.getNonReferenceType()))
2836      return false;
2837  }
2838
2839  return true;
2840}
2841
2842/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2843/// declarator needs to be rebuilt in the current instantiation.
2844/// Any bits of declarator which appear before the name are valid for
2845/// consideration here.  That's specifically the type in the decl spec
2846/// and the base type in any member-pointer chunks.
2847static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2848                                                    DeclarationName Name) {
2849  // The types we specifically need to rebuild are:
2850  //   - typenames, typeofs, and decltypes
2851  //   - types which will become injected class names
2852  // Of course, we also need to rebuild any type referencing such a
2853  // type.  It's safest to just say "dependent", but we call out a
2854  // few cases here.
2855
2856  DeclSpec &DS = D.getMutableDeclSpec();
2857  switch (DS.getTypeSpecType()) {
2858  case DeclSpec::TST_typename:
2859  case DeclSpec::TST_typeofType:
2860  case DeclSpec::TST_decltype: {
2861    // Grab the type from the parser.
2862    TypeSourceInfo *TSI = 0;
2863    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2864    if (T.isNull() || !T->isDependentType()) break;
2865
2866    // Make sure there's a type source info.  This isn't really much
2867    // of a waste; most dependent types should have type source info
2868    // attached already.
2869    if (!TSI)
2870      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2871
2872    // Rebuild the type in the current instantiation.
2873    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2874    if (!TSI) return true;
2875
2876    // Store the new type back in the decl spec.
2877    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2878    DS.UpdateTypeRep(LocType);
2879    break;
2880  }
2881
2882  case DeclSpec::TST_typeofExpr: {
2883    Expr *E = DS.getRepAsExpr();
2884    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2885    if (Result.isInvalid()) return true;
2886    DS.UpdateExprRep(Result.get());
2887    break;
2888  }
2889
2890  default:
2891    // Nothing to do for these decl specs.
2892    break;
2893  }
2894
2895  // It doesn't matter what order we do this in.
2896  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2897    DeclaratorChunk &Chunk = D.getTypeObject(I);
2898
2899    // The only type information in the declarator which can come
2900    // before the declaration name is the base type of a member
2901    // pointer.
2902    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2903      continue;
2904
2905    // Rebuild the scope specifier in-place.
2906    CXXScopeSpec &SS = Chunk.Mem.Scope();
2907    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2908      return true;
2909  }
2910
2911  return false;
2912}
2913
2914Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2915  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2916}
2917
2918/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2919///   If T is the name of a class, then each of the following shall have a
2920///   name different from T:
2921///     - every static data member of class T;
2922///     - every member function of class T
2923///     - every member of class T that is itself a type;
2924/// \returns true if the declaration name violates these rules.
2925bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2926                                   DeclarationNameInfo NameInfo) {
2927  DeclarationName Name = NameInfo.getName();
2928
2929  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2930    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2931      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2932      return true;
2933    }
2934
2935  return false;
2936}
2937
2938Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2939                             MultiTemplateParamsArg TemplateParamLists,
2940                             bool IsFunctionDefinition,
2941                             SourceLocation DefaultLoc) {
2942  // TODO: consider using NameInfo for diagnostic.
2943  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2944  DeclarationName Name = NameInfo.getName();
2945
2946  // All of these full declarators require an identifier.  If it doesn't have
2947  // one, the ParsedFreeStandingDeclSpec action should be used.
2948  if (!Name) {
2949    if (!D.isInvalidType())  // Reject this if we think it is valid.
2950      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2951           diag::err_declarator_need_ident)
2952        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2953    return 0;
2954  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2955    return 0;
2956
2957  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2958  // we find one that is.
2959  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2960         (S->getFlags() & Scope::TemplateParamScope) != 0)
2961    S = S->getParent();
2962
2963  DeclContext *DC = CurContext;
2964  if (D.getCXXScopeSpec().isInvalid())
2965    D.setInvalidType();
2966  else if (D.getCXXScopeSpec().isSet()) {
2967    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2968                                        UPPC_DeclarationQualifier))
2969      return 0;
2970
2971    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2972    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2973    if (!DC) {
2974      // If we could not compute the declaration context, it's because the
2975      // declaration context is dependent but does not refer to a class,
2976      // class template, or class template partial specialization. Complain
2977      // and return early, to avoid the coming semantic disaster.
2978      Diag(D.getIdentifierLoc(),
2979           diag::err_template_qualified_declarator_no_match)
2980        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2981        << D.getCXXScopeSpec().getRange();
2982      return 0;
2983    }
2984    bool IsDependentContext = DC->isDependentContext();
2985
2986    if (!IsDependentContext &&
2987        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2988      return 0;
2989
2990    if (isa<CXXRecordDecl>(DC)) {
2991      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2992        Diag(D.getIdentifierLoc(),
2993             diag::err_member_def_undefined_record)
2994          << Name << DC << D.getCXXScopeSpec().getRange();
2995        D.setInvalidType();
2996      } else if (isa<CXXRecordDecl>(CurContext) &&
2997                 !D.getDeclSpec().isFriendSpecified()) {
2998        // The user provided a superfluous scope specifier inside a class
2999        // definition:
3000        //
3001        // class X {
3002        //   void X::f();
3003        // };
3004        if (CurContext->Equals(DC))
3005          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3006            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3007        else
3008          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3009            << Name << D.getCXXScopeSpec().getRange();
3010
3011        // Pretend that this qualifier was not here.
3012        D.getCXXScopeSpec().clear();
3013      }
3014    }
3015
3016    // Check whether we need to rebuild the type of the given
3017    // declaration in the current instantiation.
3018    if (EnteringContext && IsDependentContext &&
3019        TemplateParamLists.size() != 0) {
3020      ContextRAII SavedContext(*this, DC);
3021      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3022        D.setInvalidType();
3023    }
3024  }
3025
3026  if (DiagnoseClassNameShadow(DC, NameInfo))
3027    // If this is a typedef, we'll end up spewing multiple diagnostics.
3028    // Just return early; it's safer.
3029    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3030      return 0;
3031
3032  NamedDecl *New;
3033
3034  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3035  QualType R = TInfo->getType();
3036
3037  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3038                                      UPPC_DeclarationType))
3039    D.setInvalidType();
3040
3041  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3042                        ForRedeclaration);
3043
3044  // See if this is a redefinition of a variable in the same scope.
3045  if (!D.getCXXScopeSpec().isSet()) {
3046    bool IsLinkageLookup = false;
3047
3048    // If the declaration we're planning to build will be a function
3049    // or object with linkage, then look for another declaration with
3050    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3051    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3052      /* Do nothing*/;
3053    else if (R->isFunctionType()) {
3054      if (CurContext->isFunctionOrMethod() ||
3055          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3056        IsLinkageLookup = true;
3057    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3058      IsLinkageLookup = true;
3059    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3060             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3061      IsLinkageLookup = true;
3062
3063    if (IsLinkageLookup)
3064      Previous.clear(LookupRedeclarationWithLinkage);
3065
3066    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3067  } else { // Something like "int foo::x;"
3068    LookupQualifiedName(Previous, DC);
3069
3070    // Don't consider using declarations as previous declarations for
3071    // out-of-line members.
3072    RemoveUsingDecls(Previous);
3073
3074    // C++ 7.3.1.2p2:
3075    // Members (including explicit specializations of templates) of a named
3076    // namespace can also be defined outside that namespace by explicit
3077    // qualification of the name being defined, provided that the entity being
3078    // defined was already declared in the namespace and the definition appears
3079    // after the point of declaration in a namespace that encloses the
3080    // declarations namespace.
3081    //
3082    // Note that we only check the context at this point. We don't yet
3083    // have enough information to make sure that PrevDecl is actually
3084    // the declaration we want to match. For example, given:
3085    //
3086    //   class X {
3087    //     void f();
3088    //     void f(float);
3089    //   };
3090    //
3091    //   void X::f(int) { } // ill-formed
3092    //
3093    // In this case, PrevDecl will point to the overload set
3094    // containing the two f's declared in X, but neither of them
3095    // matches.
3096
3097    // First check whether we named the global scope.
3098    if (isa<TranslationUnitDecl>(DC)) {
3099      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3100        << Name << D.getCXXScopeSpec().getRange();
3101    } else {
3102      DeclContext *Cur = CurContext;
3103      while (isa<LinkageSpecDecl>(Cur))
3104        Cur = Cur->getParent();
3105      if (!Cur->Encloses(DC)) {
3106        // The qualifying scope doesn't enclose the original declaration.
3107        // Emit diagnostic based on current scope.
3108        SourceLocation L = D.getIdentifierLoc();
3109        SourceRange R = D.getCXXScopeSpec().getRange();
3110        if (isa<FunctionDecl>(Cur))
3111          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3112        else
3113          Diag(L, diag::err_invalid_declarator_scope)
3114            << Name << cast<NamedDecl>(DC) << R;
3115        D.setInvalidType();
3116      }
3117    }
3118  }
3119
3120  if (Previous.isSingleResult() &&
3121      Previous.getFoundDecl()->isTemplateParameter()) {
3122    // Maybe we will complain about the shadowed template parameter.
3123    if (!D.isInvalidType())
3124      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3125                                          Previous.getFoundDecl()))
3126        D.setInvalidType();
3127
3128    // Just pretend that we didn't see the previous declaration.
3129    Previous.clear();
3130  }
3131
3132  // In C++, the previous declaration we find might be a tag type
3133  // (class or enum). In this case, the new declaration will hide the
3134  // tag type. Note that this does does not apply if we're declaring a
3135  // typedef (C++ [dcl.typedef]p4).
3136  if (Previous.isSingleTagDecl() &&
3137      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3138    Previous.clear();
3139
3140  bool Redeclaration = false;
3141  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3142    if (DefaultLoc.isValid())
3143      Diag(DefaultLoc, diag::err_default_special_members);
3144
3145    if (TemplateParamLists.size()) {
3146      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3147      return 0;
3148    }
3149
3150    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3151  } else if (R->isFunctionType()) {
3152    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3153                                  move(TemplateParamLists),
3154                                  IsFunctionDefinition, Redeclaration,
3155                                  DefaultLoc);
3156  } else {
3157    assert(!DefaultLoc.isValid() && "We should have caught this in a caller");
3158    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3159                                  move(TemplateParamLists),
3160                                  Redeclaration);
3161  }
3162
3163  if (New == 0)
3164    return 0;
3165
3166  // If this has an identifier and is not an invalid redeclaration or
3167  // function template specialization, add it to the scope stack.
3168  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3169    PushOnScopeChains(New, S);
3170
3171  return New;
3172}
3173
3174/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3175/// types into constant array types in certain situations which would otherwise
3176/// be errors (for GCC compatibility).
3177static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3178                                                    ASTContext &Context,
3179                                                    bool &SizeIsNegative,
3180                                                    llvm::APSInt &Oversized) {
3181  // This method tries to turn a variable array into a constant
3182  // array even when the size isn't an ICE.  This is necessary
3183  // for compatibility with code that depends on gcc's buggy
3184  // constant expression folding, like struct {char x[(int)(char*)2];}
3185  SizeIsNegative = false;
3186  Oversized = 0;
3187
3188  if (T->isDependentType())
3189    return QualType();
3190
3191  QualifierCollector Qs;
3192  const Type *Ty = Qs.strip(T);
3193
3194  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3195    QualType Pointee = PTy->getPointeeType();
3196    QualType FixedType =
3197        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3198                                            Oversized);
3199    if (FixedType.isNull()) return FixedType;
3200    FixedType = Context.getPointerType(FixedType);
3201    return Qs.apply(Context, FixedType);
3202  }
3203  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3204    QualType Inner = PTy->getInnerType();
3205    QualType FixedType =
3206        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3207                                            Oversized);
3208    if (FixedType.isNull()) return FixedType;
3209    FixedType = Context.getParenType(FixedType);
3210    return Qs.apply(Context, FixedType);
3211  }
3212
3213  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3214  if (!VLATy)
3215    return QualType();
3216  // FIXME: We should probably handle this case
3217  if (VLATy->getElementType()->isVariablyModifiedType())
3218    return QualType();
3219
3220  Expr::EvalResult EvalResult;
3221  if (!VLATy->getSizeExpr() ||
3222      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3223      !EvalResult.Val.isInt())
3224    return QualType();
3225
3226  // Check whether the array size is negative.
3227  llvm::APSInt &Res = EvalResult.Val.getInt();
3228  if (Res.isSigned() && Res.isNegative()) {
3229    SizeIsNegative = true;
3230    return QualType();
3231  }
3232
3233  // Check whether the array is too large to be addressed.
3234  unsigned ActiveSizeBits
3235    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3236                                              Res);
3237  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3238    Oversized = Res;
3239    return QualType();
3240  }
3241
3242  return Context.getConstantArrayType(VLATy->getElementType(),
3243                                      Res, ArrayType::Normal, 0);
3244}
3245
3246/// \brief Register the given locally-scoped external C declaration so
3247/// that it can be found later for redeclarations
3248void
3249Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3250                                       const LookupResult &Previous,
3251                                       Scope *S) {
3252  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3253         "Decl is not a locally-scoped decl!");
3254  // Note that we have a locally-scoped external with this name.
3255  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3256
3257  if (!Previous.isSingleResult())
3258    return;
3259
3260  NamedDecl *PrevDecl = Previous.getFoundDecl();
3261
3262  // If there was a previous declaration of this variable, it may be
3263  // in our identifier chain. Update the identifier chain with the new
3264  // declaration.
3265  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3266    // The previous declaration was found on the identifer resolver
3267    // chain, so remove it from its scope.
3268    while (S && !S->isDeclScope(PrevDecl))
3269      S = S->getParent();
3270
3271    if (S)
3272      S->RemoveDecl(PrevDecl);
3273  }
3274}
3275
3276/// \brief Diagnose function specifiers on a declaration of an identifier that
3277/// does not identify a function.
3278void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3279  // FIXME: We should probably indicate the identifier in question to avoid
3280  // confusion for constructs like "inline int a(), b;"
3281  if (D.getDeclSpec().isInlineSpecified())
3282    Diag(D.getDeclSpec().getInlineSpecLoc(),
3283         diag::err_inline_non_function);
3284
3285  if (D.getDeclSpec().isVirtualSpecified())
3286    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3287         diag::err_virtual_non_function);
3288
3289  if (D.getDeclSpec().isExplicitSpecified())
3290    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3291         diag::err_explicit_non_function);
3292}
3293
3294NamedDecl*
3295Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3296                             QualType R,  TypeSourceInfo *TInfo,
3297                             LookupResult &Previous, bool &Redeclaration) {
3298  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3299  if (D.getCXXScopeSpec().isSet()) {
3300    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3301      << D.getCXXScopeSpec().getRange();
3302    D.setInvalidType();
3303    // Pretend we didn't see the scope specifier.
3304    DC = CurContext;
3305    Previous.clear();
3306  }
3307
3308  if (getLangOptions().CPlusPlus) {
3309    // Check that there are no default arguments (C++ only).
3310    CheckExtraCXXDefaultArguments(D);
3311  }
3312
3313  DiagnoseFunctionSpecifiers(D);
3314
3315  if (D.getDeclSpec().isThreadSpecified())
3316    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3317
3318  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3319    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3320      << D.getName().getSourceRange();
3321    return 0;
3322  }
3323
3324  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3325  if (!NewTD) return 0;
3326
3327  // Handle attributes prior to checking for duplicates in MergeVarDecl
3328  ProcessDeclAttributes(S, NewTD, D);
3329
3330  CheckTypedefForVariablyModifiedType(S, NewTD);
3331
3332  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3333}
3334
3335void
3336Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3337  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3338  // then it shall have block scope.
3339  // Note that variably modified types must be fixed before merging the decl so
3340  // that redeclarations will match.
3341  QualType T = NewTD->getUnderlyingType();
3342  if (T->isVariablyModifiedType()) {
3343    getCurFunction()->setHasBranchProtectedScope();
3344
3345    if (S->getFnParent() == 0) {
3346      bool SizeIsNegative;
3347      llvm::APSInt Oversized;
3348      QualType FixedTy =
3349          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3350                                              Oversized);
3351      if (!FixedTy.isNull()) {
3352        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3353        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3354      } else {
3355        if (SizeIsNegative)
3356          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3357        else if (T->isVariableArrayType())
3358          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3359        else if (Oversized.getBoolValue())
3360          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3361        else
3362          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3363        NewTD->setInvalidDecl();
3364      }
3365    }
3366  }
3367}
3368
3369
3370/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3371/// declares a typedef-name, either using the 'typedef' type specifier or via
3372/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3373NamedDecl*
3374Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3375                           LookupResult &Previous, bool &Redeclaration) {
3376  // Merge the decl with the existing one if appropriate. If the decl is
3377  // in an outer scope, it isn't the same thing.
3378  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3379                       /*ExplicitInstantiationOrSpecialization=*/false);
3380  if (!Previous.empty()) {
3381    Redeclaration = true;
3382    MergeTypedefNameDecl(NewTD, Previous);
3383  }
3384
3385  // If this is the C FILE type, notify the AST context.
3386  if (IdentifierInfo *II = NewTD->getIdentifier())
3387    if (!NewTD->isInvalidDecl() &&
3388        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3389      if (II->isStr("FILE"))
3390        Context.setFILEDecl(NewTD);
3391      else if (II->isStr("jmp_buf"))
3392        Context.setjmp_bufDecl(NewTD);
3393      else if (II->isStr("sigjmp_buf"))
3394        Context.setsigjmp_bufDecl(NewTD);
3395      else if (II->isStr("__builtin_va_list"))
3396        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3397    }
3398
3399  return NewTD;
3400}
3401
3402/// \brief Determines whether the given declaration is an out-of-scope
3403/// previous declaration.
3404///
3405/// This routine should be invoked when name lookup has found a
3406/// previous declaration (PrevDecl) that is not in the scope where a
3407/// new declaration by the same name is being introduced. If the new
3408/// declaration occurs in a local scope, previous declarations with
3409/// linkage may still be considered previous declarations (C99
3410/// 6.2.2p4-5, C++ [basic.link]p6).
3411///
3412/// \param PrevDecl the previous declaration found by name
3413/// lookup
3414///
3415/// \param DC the context in which the new declaration is being
3416/// declared.
3417///
3418/// \returns true if PrevDecl is an out-of-scope previous declaration
3419/// for a new delcaration with the same name.
3420static bool
3421isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3422                                ASTContext &Context) {
3423  if (!PrevDecl)
3424    return false;
3425
3426  if (!PrevDecl->hasLinkage())
3427    return false;
3428
3429  if (Context.getLangOptions().CPlusPlus) {
3430    // C++ [basic.link]p6:
3431    //   If there is a visible declaration of an entity with linkage
3432    //   having the same name and type, ignoring entities declared
3433    //   outside the innermost enclosing namespace scope, the block
3434    //   scope declaration declares that same entity and receives the
3435    //   linkage of the previous declaration.
3436    DeclContext *OuterContext = DC->getRedeclContext();
3437    if (!OuterContext->isFunctionOrMethod())
3438      // This rule only applies to block-scope declarations.
3439      return false;
3440
3441    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3442    if (PrevOuterContext->isRecord())
3443      // We found a member function: ignore it.
3444      return false;
3445
3446    // Find the innermost enclosing namespace for the new and
3447    // previous declarations.
3448    OuterContext = OuterContext->getEnclosingNamespaceContext();
3449    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3450
3451    // The previous declaration is in a different namespace, so it
3452    // isn't the same function.
3453    if (!OuterContext->Equals(PrevOuterContext))
3454      return false;
3455  }
3456
3457  return true;
3458}
3459
3460static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3461  CXXScopeSpec &SS = D.getCXXScopeSpec();
3462  if (!SS.isSet()) return;
3463  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3464}
3465
3466NamedDecl*
3467Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3468                              QualType R, TypeSourceInfo *TInfo,
3469                              LookupResult &Previous,
3470                              MultiTemplateParamsArg TemplateParamLists,
3471                              bool &Redeclaration) {
3472  DeclarationName Name = GetNameForDeclarator(D).getName();
3473
3474  // Check that there are no default arguments (C++ only).
3475  if (getLangOptions().CPlusPlus)
3476    CheckExtraCXXDefaultArguments(D);
3477
3478  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3479  assert(SCSpec != DeclSpec::SCS_typedef &&
3480         "Parser allowed 'typedef' as storage class VarDecl.");
3481  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3482  if (SCSpec == DeclSpec::SCS_mutable) {
3483    // mutable can only appear on non-static class members, so it's always
3484    // an error here
3485    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3486    D.setInvalidType();
3487    SC = SC_None;
3488  }
3489  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3490  VarDecl::StorageClass SCAsWritten
3491    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3492
3493  IdentifierInfo *II = Name.getAsIdentifierInfo();
3494  if (!II) {
3495    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3496      << Name.getAsString();
3497    return 0;
3498  }
3499
3500  DiagnoseFunctionSpecifiers(D);
3501
3502  if (!DC->isRecord() && S->getFnParent() == 0) {
3503    // C99 6.9p2: The storage-class specifiers auto and register shall not
3504    // appear in the declaration specifiers in an external declaration.
3505    if (SC == SC_Auto || SC == SC_Register) {
3506
3507      // If this is a register variable with an asm label specified, then this
3508      // is a GNU extension.
3509      if (SC == SC_Register && D.getAsmLabel())
3510        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3511      else
3512        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3513      D.setInvalidType();
3514    }
3515  }
3516
3517  bool isExplicitSpecialization = false;
3518  VarDecl *NewVD;
3519  if (!getLangOptions().CPlusPlus) {
3520    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3521                            D.getIdentifierLoc(), II,
3522                            R, TInfo, SC, SCAsWritten);
3523
3524    if (D.isInvalidType())
3525      NewVD->setInvalidDecl();
3526  } else {
3527    if (DC->isRecord() && !CurContext->isRecord()) {
3528      // This is an out-of-line definition of a static data member.
3529      if (SC == SC_Static) {
3530        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3531             diag::err_static_out_of_line)
3532          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3533      } else if (SC == SC_None)
3534        SC = SC_Static;
3535    }
3536    if (SC == SC_Static) {
3537      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3538        if (RD->isLocalClass())
3539          Diag(D.getIdentifierLoc(),
3540               diag::err_static_data_member_not_allowed_in_local_class)
3541            << Name << RD->getDeclName();
3542
3543        // C++ [class.union]p1: If a union contains a static data member,
3544        // the program is ill-formed.
3545        //
3546        // We also disallow static data members in anonymous structs.
3547        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3548          Diag(D.getIdentifierLoc(),
3549               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3550            << Name << RD->isUnion();
3551      }
3552    }
3553
3554    // Match up the template parameter lists with the scope specifier, then
3555    // determine whether we have a template or a template specialization.
3556    isExplicitSpecialization = false;
3557    bool Invalid = false;
3558    if (TemplateParameterList *TemplateParams
3559        = MatchTemplateParametersToScopeSpecifier(
3560                                                  D.getDeclSpec().getSourceRange().getBegin(),
3561                                                  D.getCXXScopeSpec(),
3562                                                  TemplateParamLists.get(),
3563                                                  TemplateParamLists.size(),
3564                                                  /*never a friend*/ false,
3565                                                  isExplicitSpecialization,
3566                                                  Invalid)) {
3567      if (TemplateParams->size() > 0) {
3568        // There is no such thing as a variable template.
3569        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3570          << II
3571          << SourceRange(TemplateParams->getTemplateLoc(),
3572                         TemplateParams->getRAngleLoc());
3573        return 0;
3574      } else {
3575        // There is an extraneous 'template<>' for this variable. Complain
3576        // about it, but allow the declaration of the variable.
3577        Diag(TemplateParams->getTemplateLoc(),
3578             diag::err_template_variable_noparams)
3579          << II
3580          << SourceRange(TemplateParams->getTemplateLoc(),
3581                         TemplateParams->getRAngleLoc());
3582        isExplicitSpecialization = true;
3583      }
3584    }
3585
3586    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3587                            D.getIdentifierLoc(), II,
3588                            R, TInfo, SC, SCAsWritten);
3589
3590    // If this decl has an auto type in need of deduction, make a note of the
3591    // Decl so we can diagnose uses of it in its own initializer.
3592    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3593        R->getContainedAutoType())
3594      ParsingInitForAutoVars.insert(NewVD);
3595
3596    if (D.isInvalidType() || Invalid)
3597      NewVD->setInvalidDecl();
3598
3599    SetNestedNameSpecifier(NewVD, D);
3600
3601    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3602      NewVD->setTemplateParameterListsInfo(Context,
3603                                           TemplateParamLists.size(),
3604                                           TemplateParamLists.release());
3605    }
3606  }
3607
3608  if (D.getDeclSpec().isThreadSpecified()) {
3609    if (NewVD->hasLocalStorage())
3610      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3611    else if (!Context.Target.isTLSSupported())
3612      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3613    else
3614      NewVD->setThreadSpecified(true);
3615  }
3616
3617  // Set the lexical context. If the declarator has a C++ scope specifier, the
3618  // lexical context will be different from the semantic context.
3619  NewVD->setLexicalDeclContext(CurContext);
3620
3621  // Handle attributes prior to checking for duplicates in MergeVarDecl
3622  ProcessDeclAttributes(S, NewVD, D);
3623
3624  // Handle GNU asm-label extension (encoded as an attribute).
3625  if (Expr *E = (Expr*)D.getAsmLabel()) {
3626    // The parser guarantees this is a string.
3627    StringLiteral *SE = cast<StringLiteral>(E);
3628    llvm::StringRef Label = SE->getString();
3629    if (S->getFnParent() != 0) {
3630      switch (SC) {
3631      case SC_None:
3632      case SC_Auto:
3633        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3634        break;
3635      case SC_Register:
3636        if (!Context.Target.isValidGCCRegisterName(Label))
3637          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3638        break;
3639      case SC_Static:
3640      case SC_Extern:
3641      case SC_PrivateExtern:
3642        break;
3643      }
3644    }
3645
3646    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3647                                                Context, Label));
3648  }
3649
3650  // Diagnose shadowed variables before filtering for scope.
3651  if (!D.getCXXScopeSpec().isSet())
3652    CheckShadow(S, NewVD, Previous);
3653
3654  // Don't consider existing declarations that are in a different
3655  // scope and are out-of-semantic-context declarations (if the new
3656  // declaration has linkage).
3657  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3658                       isExplicitSpecialization);
3659
3660  if (!getLangOptions().CPlusPlus)
3661    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3662  else {
3663    // Merge the decl with the existing one if appropriate.
3664    if (!Previous.empty()) {
3665      if (Previous.isSingleResult() &&
3666          isa<FieldDecl>(Previous.getFoundDecl()) &&
3667          D.getCXXScopeSpec().isSet()) {
3668        // The user tried to define a non-static data member
3669        // out-of-line (C++ [dcl.meaning]p1).
3670        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3671          << D.getCXXScopeSpec().getRange();
3672        Previous.clear();
3673        NewVD->setInvalidDecl();
3674      }
3675    } else if (D.getCXXScopeSpec().isSet()) {
3676      // No previous declaration in the qualifying scope.
3677      Diag(D.getIdentifierLoc(), diag::err_no_member)
3678        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3679        << D.getCXXScopeSpec().getRange();
3680      NewVD->setInvalidDecl();
3681    }
3682
3683    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3684
3685    // This is an explicit specialization of a static data member. Check it.
3686    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3687        CheckMemberSpecialization(NewVD, Previous))
3688      NewVD->setInvalidDecl();
3689  }
3690
3691  // attributes declared post-definition are currently ignored
3692  // FIXME: This should be handled in attribute merging, not
3693  // here.
3694  if (Previous.isSingleResult()) {
3695    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3696    if (Def && (Def = Def->getDefinition()) &&
3697        Def != NewVD && D.hasAttributes()) {
3698      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3699      Diag(Def->getLocation(), diag::note_previous_definition);
3700    }
3701  }
3702
3703  // If this is a locally-scoped extern C variable, update the map of
3704  // such variables.
3705  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3706      !NewVD->isInvalidDecl())
3707    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3708
3709  // If there's a #pragma GCC visibility in scope, and this isn't a class
3710  // member, set the visibility of this variable.
3711  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3712    AddPushedVisibilityAttribute(NewVD);
3713
3714  MarkUnusedFileScopedDecl(NewVD);
3715
3716  return NewVD;
3717}
3718
3719/// \brief Diagnose variable or built-in function shadowing.  Implements
3720/// -Wshadow.
3721///
3722/// This method is called whenever a VarDecl is added to a "useful"
3723/// scope.
3724///
3725/// \param S the scope in which the shadowing name is being declared
3726/// \param R the lookup of the name
3727///
3728void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3729  // Return if warning is ignored.
3730  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3731        Diagnostic::Ignored)
3732    return;
3733
3734  // Don't diagnose declarations at file scope.
3735  if (D->hasGlobalStorage())
3736    return;
3737
3738  DeclContext *NewDC = D->getDeclContext();
3739
3740  // Only diagnose if we're shadowing an unambiguous field or variable.
3741  if (R.getResultKind() != LookupResult::Found)
3742    return;
3743
3744  NamedDecl* ShadowedDecl = R.getFoundDecl();
3745  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3746    return;
3747
3748  // Fields are not shadowed by variables in C++ static methods.
3749  if (isa<FieldDecl>(ShadowedDecl))
3750    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3751      if (MD->isStatic())
3752        return;
3753
3754  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3755    if (shadowedVar->isExternC()) {
3756      // For shadowing external vars, make sure that we point to the global
3757      // declaration, not a locally scoped extern declaration.
3758      for (VarDecl::redecl_iterator
3759             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3760           I != E; ++I)
3761        if (I->isFileVarDecl()) {
3762          ShadowedDecl = *I;
3763          break;
3764        }
3765    }
3766
3767  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3768
3769  // Only warn about certain kinds of shadowing for class members.
3770  if (NewDC && NewDC->isRecord()) {
3771    // In particular, don't warn about shadowing non-class members.
3772    if (!OldDC->isRecord())
3773      return;
3774
3775    // TODO: should we warn about static data members shadowing
3776    // static data members from base classes?
3777
3778    // TODO: don't diagnose for inaccessible shadowed members.
3779    // This is hard to do perfectly because we might friend the
3780    // shadowing context, but that's just a false negative.
3781  }
3782
3783  // Determine what kind of declaration we're shadowing.
3784  unsigned Kind;
3785  if (isa<RecordDecl>(OldDC)) {
3786    if (isa<FieldDecl>(ShadowedDecl))
3787      Kind = 3; // field
3788    else
3789      Kind = 2; // static data member
3790  } else if (OldDC->isFileContext())
3791    Kind = 1; // global
3792  else
3793    Kind = 0; // local
3794
3795  DeclarationName Name = R.getLookupName();
3796
3797  // Emit warning and note.
3798  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3799  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3800}
3801
3802/// \brief Check -Wshadow without the advantage of a previous lookup.
3803void Sema::CheckShadow(Scope *S, VarDecl *D) {
3804  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3805        Diagnostic::Ignored)
3806    return;
3807
3808  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3809                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3810  LookupName(R, S);
3811  CheckShadow(S, D, R);
3812}
3813
3814/// \brief Perform semantic checking on a newly-created variable
3815/// declaration.
3816///
3817/// This routine performs all of the type-checking required for a
3818/// variable declaration once it has been built. It is used both to
3819/// check variables after they have been parsed and their declarators
3820/// have been translated into a declaration, and to check variables
3821/// that have been instantiated from a template.
3822///
3823/// Sets NewVD->isInvalidDecl() if an error was encountered.
3824void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3825                                    LookupResult &Previous,
3826                                    bool &Redeclaration) {
3827  // If the decl is already known invalid, don't check it.
3828  if (NewVD->isInvalidDecl())
3829    return;
3830
3831  QualType T = NewVD->getType();
3832
3833  if (T->isObjCObjectType()) {
3834    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3835    return NewVD->setInvalidDecl();
3836  }
3837
3838  // Emit an error if an address space was applied to decl with local storage.
3839  // This includes arrays of objects with address space qualifiers, but not
3840  // automatic variables that point to other address spaces.
3841  // ISO/IEC TR 18037 S5.1.2
3842  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3843    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3844    return NewVD->setInvalidDecl();
3845  }
3846
3847  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3848      && !NewVD->hasAttr<BlocksAttr>())
3849    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3850
3851  bool isVM = T->isVariablyModifiedType();
3852  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3853      NewVD->hasAttr<BlocksAttr>())
3854    getCurFunction()->setHasBranchProtectedScope();
3855
3856  if ((isVM && NewVD->hasLinkage()) ||
3857      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3858    bool SizeIsNegative;
3859    llvm::APSInt Oversized;
3860    QualType FixedTy =
3861        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3862                                            Oversized);
3863
3864    if (FixedTy.isNull() && T->isVariableArrayType()) {
3865      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3866      // FIXME: This won't give the correct result for
3867      // int a[10][n];
3868      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3869
3870      if (NewVD->isFileVarDecl())
3871        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3872        << SizeRange;
3873      else if (NewVD->getStorageClass() == SC_Static)
3874        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3875        << SizeRange;
3876      else
3877        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3878        << SizeRange;
3879      return NewVD->setInvalidDecl();
3880    }
3881
3882    if (FixedTy.isNull()) {
3883      if (NewVD->isFileVarDecl())
3884        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3885      else
3886        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3887      return NewVD->setInvalidDecl();
3888    }
3889
3890    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3891    NewVD->setType(FixedTy);
3892  }
3893
3894  if (Previous.empty() && NewVD->isExternC()) {
3895    // Since we did not find anything by this name and we're declaring
3896    // an extern "C" variable, look for a non-visible extern "C"
3897    // declaration with the same name.
3898    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3899      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3900    if (Pos != LocallyScopedExternalDecls.end())
3901      Previous.addDecl(Pos->second);
3902  }
3903
3904  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3905    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3906      << T;
3907    return NewVD->setInvalidDecl();
3908  }
3909
3910  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3911    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3912    return NewVD->setInvalidDecl();
3913  }
3914
3915  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3916    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3917    return NewVD->setInvalidDecl();
3918  }
3919
3920  // Function pointers and references cannot have qualified function type, only
3921  // function pointer-to-members can do that.
3922  QualType Pointee;
3923  unsigned PtrOrRef = 0;
3924  if (const PointerType *Ptr = T->getAs<PointerType>())
3925    Pointee = Ptr->getPointeeType();
3926  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3927    Pointee = Ref->getPointeeType();
3928    PtrOrRef = 1;
3929  }
3930  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3931      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3932    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3933        << PtrOrRef;
3934    return NewVD->setInvalidDecl();
3935  }
3936
3937  if (!Previous.empty()) {
3938    Redeclaration = true;
3939    MergeVarDecl(NewVD, Previous);
3940  }
3941}
3942
3943/// \brief Data used with FindOverriddenMethod
3944struct FindOverriddenMethodData {
3945  Sema *S;
3946  CXXMethodDecl *Method;
3947};
3948
3949/// \brief Member lookup function that determines whether a given C++
3950/// method overrides a method in a base class, to be used with
3951/// CXXRecordDecl::lookupInBases().
3952static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3953                                 CXXBasePath &Path,
3954                                 void *UserData) {
3955  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3956
3957  FindOverriddenMethodData *Data
3958    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3959
3960  DeclarationName Name = Data->Method->getDeclName();
3961
3962  // FIXME: Do we care about other names here too?
3963  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3964    // We really want to find the base class destructor here.
3965    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3966    CanQualType CT = Data->S->Context.getCanonicalType(T);
3967
3968    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3969  }
3970
3971  for (Path.Decls = BaseRecord->lookup(Name);
3972       Path.Decls.first != Path.Decls.second;
3973       ++Path.Decls.first) {
3974    NamedDecl *D = *Path.Decls.first;
3975    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3976      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3977        return true;
3978    }
3979  }
3980
3981  return false;
3982}
3983
3984/// AddOverriddenMethods - See if a method overrides any in the base classes,
3985/// and if so, check that it's a valid override and remember it.
3986bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3987  // Look for virtual methods in base classes that this method might override.
3988  CXXBasePaths Paths;
3989  FindOverriddenMethodData Data;
3990  Data.Method = MD;
3991  Data.S = this;
3992  bool AddedAny = false;
3993  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3994    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3995         E = Paths.found_decls_end(); I != E; ++I) {
3996      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3997        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3998            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3999            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4000          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4001          AddedAny = true;
4002        }
4003      }
4004    }
4005  }
4006
4007  return AddedAny;
4008}
4009
4010static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4011  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4012                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4013  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4014  assert(!Prev.isAmbiguous() &&
4015         "Cannot have an ambiguity in previous-declaration lookup");
4016  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4017       Func != FuncEnd; ++Func) {
4018    if (isa<FunctionDecl>(*Func) &&
4019        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4020      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4021  }
4022}
4023
4024NamedDecl*
4025Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4026                              QualType R, TypeSourceInfo *TInfo,
4027                              LookupResult &Previous,
4028                              MultiTemplateParamsArg TemplateParamLists,
4029                              bool IsFunctionDefinition, bool &Redeclaration,
4030                              SourceLocation DefaultLoc) {
4031  assert(R.getTypePtr()->isFunctionType());
4032
4033  // TODO: consider using NameInfo for diagnostic.
4034  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4035  DeclarationName Name = NameInfo.getName();
4036  FunctionDecl::StorageClass SC = SC_None;
4037  switch (D.getDeclSpec().getStorageClassSpec()) {
4038  default: assert(0 && "Unknown storage class!");
4039  case DeclSpec::SCS_auto:
4040  case DeclSpec::SCS_register:
4041  case DeclSpec::SCS_mutable:
4042    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4043         diag::err_typecheck_sclass_func);
4044    D.setInvalidType();
4045    break;
4046  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4047  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4048  case DeclSpec::SCS_static: {
4049    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4050      // C99 6.7.1p5:
4051      //   The declaration of an identifier for a function that has
4052      //   block scope shall have no explicit storage-class specifier
4053      //   other than extern
4054      // See also (C++ [dcl.stc]p4).
4055      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4056           diag::err_static_block_func);
4057      SC = SC_None;
4058    } else
4059      SC = SC_Static;
4060    break;
4061  }
4062  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4063  }
4064
4065  if (D.getDeclSpec().isThreadSpecified())
4066    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4067
4068  // Do not allow returning a objc interface by-value.
4069  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4070    Diag(D.getIdentifierLoc(),
4071         diag::err_object_cannot_be_passed_returned_by_value) << 0
4072    << R->getAs<FunctionType>()->getResultType();
4073    D.setInvalidType();
4074  }
4075
4076  FunctionDecl *NewFD;
4077  bool isInline = D.getDeclSpec().isInlineSpecified();
4078  bool isFriend = false;
4079  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4080  FunctionDecl::StorageClass SCAsWritten
4081    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4082  FunctionTemplateDecl *FunctionTemplate = 0;
4083  bool isExplicitSpecialization = false;
4084  bool isFunctionTemplateSpecialization = false;
4085
4086  if (!getLangOptions().CPlusPlus) {
4087    assert(!DefaultLoc.isValid() && "Defaulted functions are a C++ feature");
4088
4089    // Determine whether the function was written with a
4090    // prototype. This true when:
4091    //   - there is a prototype in the declarator, or
4092    //   - the type R of the function is some kind of typedef or other reference
4093    //     to a type name (which eventually refers to a function type).
4094    bool HasPrototype =
4095    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4096    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4097
4098    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4099                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4100                                 HasPrototype);
4101    if (D.isInvalidType())
4102      NewFD->setInvalidDecl();
4103
4104    // Set the lexical context.
4105    NewFD->setLexicalDeclContext(CurContext);
4106    // Filter out previous declarations that don't match the scope.
4107    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4108                         /*ExplicitInstantiationOrSpecialization=*/false);
4109  } else {
4110    isFriend = D.getDeclSpec().isFriendSpecified();
4111    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4112    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4113    bool isVirtualOkay = false;
4114
4115    // Check that the return type is not an abstract class type.
4116    // For record types, this is done by the AbstractClassUsageDiagnoser once
4117    // the class has been completely parsed.
4118    if (!DC->isRecord() &&
4119      RequireNonAbstractType(D.getIdentifierLoc(),
4120                             R->getAs<FunctionType>()->getResultType(),
4121                             diag::err_abstract_type_in_decl,
4122                             AbstractReturnType))
4123      D.setInvalidType();
4124
4125    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4126      // This is a C++ constructor declaration.
4127      assert(DC->isRecord() &&
4128             "Constructors can only be declared in a member context");
4129
4130      R = CheckConstructorDeclarator(D, R, SC);
4131
4132      // Create the new declaration
4133      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4134                                         Context,
4135                                         cast<CXXRecordDecl>(DC),
4136                                         D.getSourceRange().getBegin(),
4137                                         NameInfo, R, TInfo,
4138                                         isExplicit, isInline,
4139                                         /*isImplicitlyDeclared=*/false);
4140
4141      NewFD = NewCD;
4142    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4143      // This is a C++ destructor declaration.
4144      if (DC->isRecord()) {
4145        R = CheckDestructorDeclarator(D, R, SC);
4146
4147        NewFD = CXXDestructorDecl::Create(Context,
4148                                          cast<CXXRecordDecl>(DC),
4149                                          D.getSourceRange().getBegin(),
4150                                          NameInfo, R, TInfo,
4151                                          isInline,
4152                                          /*isImplicitlyDeclared=*/false);
4153        isVirtualOkay = true;
4154      } else {
4155        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4156
4157        // Create a FunctionDecl to satisfy the function definition parsing
4158        // code path.
4159        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4160                                     D.getIdentifierLoc(), Name, R, TInfo,
4161                                     SC, SCAsWritten, isInline,
4162                                     /*hasPrototype=*/true);
4163        D.setInvalidType();
4164      }
4165    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4166      if (!DC->isRecord()) {
4167        Diag(D.getIdentifierLoc(),
4168             diag::err_conv_function_not_member);
4169        return 0;
4170      }
4171
4172      CheckConversionDeclarator(D, R, SC);
4173      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4174                                        D.getSourceRange().getBegin(),
4175                                        NameInfo, R, TInfo,
4176                                        isInline, isExplicit,
4177                                        SourceLocation());
4178
4179      isVirtualOkay = true;
4180    } else if (DC->isRecord()) {
4181      // If the of the function is the same as the name of the record, then this
4182      // must be an invalid constructor that has a return type.
4183      // (The parser checks for a return type and makes the declarator a
4184      // constructor if it has no return type).
4185      // must have an invalid constructor that has a return type
4186      if (Name.getAsIdentifierInfo() &&
4187          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4188        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4189          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4190          << SourceRange(D.getIdentifierLoc());
4191        return 0;
4192      }
4193
4194      bool isStatic = SC == SC_Static;
4195
4196      // [class.free]p1:
4197      // Any allocation function for a class T is a static member
4198      // (even if not explicitly declared static).
4199      if (Name.getCXXOverloadedOperator() == OO_New ||
4200          Name.getCXXOverloadedOperator() == OO_Array_New)
4201        isStatic = true;
4202
4203      // [class.free]p6 Any deallocation function for a class X is a static member
4204      // (even if not explicitly declared static).
4205      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4206          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4207        isStatic = true;
4208
4209      // This is a C++ method declaration.
4210      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4211                                               Context, cast<CXXRecordDecl>(DC),
4212                                               D.getSourceRange().getBegin(),
4213                                               NameInfo, R, TInfo,
4214                                               isStatic, SCAsWritten, isInline,
4215                                               SourceLocation());
4216      NewFD = NewMD;
4217
4218      isVirtualOkay = !isStatic;
4219    } else {
4220      if (DefaultLoc.isValid())
4221        Diag(DefaultLoc, diag::err_default_special_members);
4222
4223      // Determine whether the function was written with a
4224      // prototype. This true when:
4225      //   - we're in C++ (where every function has a prototype),
4226      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4227                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4228                                   true/*HasPrototype*/);
4229    }
4230
4231    if (isFriend && !isInline && IsFunctionDefinition) {
4232      // C++ [class.friend]p5
4233      //   A function can be defined in a friend declaration of a
4234      //   class . . . . Such a function is implicitly inline.
4235      NewFD->setImplicitlyInline();
4236    }
4237
4238    SetNestedNameSpecifier(NewFD, D);
4239    isExplicitSpecialization = false;
4240    isFunctionTemplateSpecialization = false;
4241    if (D.isInvalidType())
4242      NewFD->setInvalidDecl();
4243
4244    // Set the lexical context. If the declarator has a C++
4245    // scope specifier, or is the object of a friend declaration, the
4246    // lexical context will be different from the semantic context.
4247    NewFD->setLexicalDeclContext(CurContext);
4248
4249    // Match up the template parameter lists with the scope specifier, then
4250    // determine whether we have a template or a template specialization.
4251    bool Invalid = false;
4252    if (TemplateParameterList *TemplateParams
4253          = MatchTemplateParametersToScopeSpecifier(
4254                                  D.getDeclSpec().getSourceRange().getBegin(),
4255                                  D.getCXXScopeSpec(),
4256                                  TemplateParamLists.get(),
4257                                  TemplateParamLists.size(),
4258                                  isFriend,
4259                                  isExplicitSpecialization,
4260                                  Invalid)) {
4261      if (TemplateParams->size() > 0) {
4262        // This is a function template
4263
4264        // Check that we can declare a template here.
4265        if (CheckTemplateDeclScope(S, TemplateParams))
4266          return 0;
4267
4268        // A destructor cannot be a template.
4269        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4270          Diag(NewFD->getLocation(), diag::err_destructor_template);
4271          return 0;
4272        }
4273
4274        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4275                                                        NewFD->getLocation(),
4276                                                        Name, TemplateParams,
4277                                                        NewFD);
4278        FunctionTemplate->setLexicalDeclContext(CurContext);
4279        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4280
4281        // For source fidelity, store the other template param lists.
4282        if (TemplateParamLists.size() > 1) {
4283          NewFD->setTemplateParameterListsInfo(Context,
4284                                               TemplateParamLists.size() - 1,
4285                                               TemplateParamLists.release());
4286        }
4287      } else {
4288        // This is a function template specialization.
4289        isFunctionTemplateSpecialization = true;
4290        // For source fidelity, store all the template param lists.
4291        NewFD->setTemplateParameterListsInfo(Context,
4292                                             TemplateParamLists.size(),
4293                                             TemplateParamLists.release());
4294
4295        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4296        if (isFriend) {
4297          // We want to remove the "template<>", found here.
4298          SourceRange RemoveRange = TemplateParams->getSourceRange();
4299
4300          // If we remove the template<> and the name is not a
4301          // template-id, we're actually silently creating a problem:
4302          // the friend declaration will refer to an untemplated decl,
4303          // and clearly the user wants a template specialization.  So
4304          // we need to insert '<>' after the name.
4305          SourceLocation InsertLoc;
4306          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4307            InsertLoc = D.getName().getSourceRange().getEnd();
4308            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4309          }
4310
4311          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4312            << Name << RemoveRange
4313            << FixItHint::CreateRemoval(RemoveRange)
4314            << FixItHint::CreateInsertion(InsertLoc, "<>");
4315        }
4316      }
4317    }
4318    else {
4319      // All template param lists were matched against the scope specifier:
4320      // this is NOT (an explicit specialization of) a template.
4321      if (TemplateParamLists.size() > 0)
4322        // For source fidelity, store all the template param lists.
4323        NewFD->setTemplateParameterListsInfo(Context,
4324                                             TemplateParamLists.size(),
4325                                             TemplateParamLists.release());
4326    }
4327
4328    if (Invalid) {
4329      NewFD->setInvalidDecl();
4330      if (FunctionTemplate)
4331        FunctionTemplate->setInvalidDecl();
4332    }
4333
4334    // C++ [dcl.fct.spec]p5:
4335    //   The virtual specifier shall only be used in declarations of
4336    //   nonstatic class member functions that appear within a
4337    //   member-specification of a class declaration; see 10.3.
4338    //
4339    if (isVirtual && !NewFD->isInvalidDecl()) {
4340      if (!isVirtualOkay) {
4341        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4342             diag::err_virtual_non_function);
4343      } else if (!CurContext->isRecord()) {
4344        // 'virtual' was specified outside of the class.
4345        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4346             diag::err_virtual_out_of_class)
4347          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4348      } else if (NewFD->getDescribedFunctionTemplate()) {
4349        // C++ [temp.mem]p3:
4350        //  A member function template shall not be virtual.
4351        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4352             diag::err_virtual_member_function_template)
4353          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4354      } else {
4355        // Okay: Add virtual to the method.
4356        NewFD->setVirtualAsWritten(true);
4357      }
4358    }
4359
4360    // C++ [dcl.fct.spec]p3:
4361    //  The inline specifier shall not appear on a block scope function declaration.
4362    if (isInline && !NewFD->isInvalidDecl()) {
4363      if (CurContext->isFunctionOrMethod()) {
4364        // 'inline' is not allowed on block scope function declaration.
4365        Diag(D.getDeclSpec().getInlineSpecLoc(),
4366             diag::err_inline_declaration_block_scope) << Name
4367          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4368      }
4369    }
4370
4371    // C++ [dcl.fct.spec]p6:
4372    //  The explicit specifier shall be used only in the declaration of a
4373    //  constructor or conversion function within its class definition; see 12.3.1
4374    //  and 12.3.2.
4375    if (isExplicit && !NewFD->isInvalidDecl()) {
4376      if (!CurContext->isRecord()) {
4377        // 'explicit' was specified outside of the class.
4378        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4379             diag::err_explicit_out_of_class)
4380          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4381      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4382                 !isa<CXXConversionDecl>(NewFD)) {
4383        // 'explicit' was specified on a function that wasn't a constructor
4384        // or conversion function.
4385        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4386             diag::err_explicit_non_ctor_or_conv_function)
4387          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4388      }
4389    }
4390
4391    // Filter out previous declarations that don't match the scope.
4392    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4393                         isExplicitSpecialization ||
4394                         isFunctionTemplateSpecialization);
4395
4396    if (isFriend) {
4397      // For now, claim that the objects have no previous declaration.
4398      if (FunctionTemplate) {
4399        FunctionTemplate->setObjectOfFriendDecl(false);
4400        FunctionTemplate->setAccess(AS_public);
4401      }
4402      NewFD->setObjectOfFriendDecl(false);
4403      NewFD->setAccess(AS_public);
4404    }
4405
4406    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4407      // A method is implicitly inline if it's defined in its class
4408      // definition.
4409      NewFD->setImplicitlyInline();
4410    }
4411
4412    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4413        !CurContext->isRecord()) {
4414      // C++ [class.static]p1:
4415      //   A data or function member of a class may be declared static
4416      //   in a class definition, in which case it is a static member of
4417      //   the class.
4418
4419      // Complain about the 'static' specifier if it's on an out-of-line
4420      // member function definition.
4421      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4422           diag::err_static_out_of_line)
4423        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4424    }
4425  }
4426
4427  // Handle GNU asm-label extension (encoded as an attribute).
4428  if (Expr *E = (Expr*) D.getAsmLabel()) {
4429    // The parser guarantees this is a string.
4430    StringLiteral *SE = cast<StringLiteral>(E);
4431    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4432                                                SE->getString()));
4433  }
4434
4435  // Copy the parameter declarations from the declarator D to the function
4436  // declaration NewFD, if they are available.  First scavenge them into Params.
4437  llvm::SmallVector<ParmVarDecl*, 16> Params;
4438  if (D.isFunctionDeclarator()) {
4439    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4440
4441    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4442    // function that takes no arguments, not a function that takes a
4443    // single void argument.
4444    // We let through "const void" here because Sema::GetTypeForDeclarator
4445    // already checks for that case.
4446    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4447        FTI.ArgInfo[0].Param &&
4448        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4449      // Empty arg list, don't push any params.
4450      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4451
4452      // In C++, the empty parameter-type-list must be spelled "void"; a
4453      // typedef of void is not permitted.
4454      if (getLangOptions().CPlusPlus &&
4455          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4456        bool IsTypeAlias = false;
4457        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4458          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4459        else if (const TemplateSpecializationType *TST =
4460                   Param->getType()->getAs<TemplateSpecializationType>())
4461          IsTypeAlias = TST->isTypeAlias();
4462        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4463          << IsTypeAlias;
4464      }
4465    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4466      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4467        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4468        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4469        Param->setDeclContext(NewFD);
4470        Params.push_back(Param);
4471
4472        if (Param->isInvalidDecl())
4473          NewFD->setInvalidDecl();
4474      }
4475    }
4476
4477  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4478    // When we're declaring a function with a typedef, typeof, etc as in the
4479    // following example, we'll need to synthesize (unnamed)
4480    // parameters for use in the declaration.
4481    //
4482    // @code
4483    // typedef void fn(int);
4484    // fn f;
4485    // @endcode
4486
4487    // Synthesize a parameter for each argument type.
4488    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4489         AE = FT->arg_type_end(); AI != AE; ++AI) {
4490      ParmVarDecl *Param =
4491        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4492      Param->setScopeInfo(0, Params.size());
4493      Params.push_back(Param);
4494    }
4495  } else {
4496    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4497           "Should not need args for typedef of non-prototype fn");
4498  }
4499  // Finally, we know we have the right number of parameters, install them.
4500  NewFD->setParams(Params.data(), Params.size());
4501
4502  // Process the non-inheritable attributes on this declaration.
4503  ProcessDeclAttributes(S, NewFD, D,
4504                        /*NonInheritable=*/true, /*Inheritable=*/false);
4505
4506  if (!getLangOptions().CPlusPlus) {
4507    // Perform semantic checking on the function declaration.
4508    bool isExplctSpecialization=false;
4509    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4510                             Redeclaration);
4511    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4512            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4513           "previous declaration set still overloaded");
4514  } else {
4515    // If the declarator is a template-id, translate the parser's template
4516    // argument list into our AST format.
4517    bool HasExplicitTemplateArgs = false;
4518    TemplateArgumentListInfo TemplateArgs;
4519    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4520      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4521      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4522      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4523      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4524                                         TemplateId->getTemplateArgs(),
4525                                         TemplateId->NumArgs);
4526      translateTemplateArguments(TemplateArgsPtr,
4527                                 TemplateArgs);
4528      TemplateArgsPtr.release();
4529
4530      HasExplicitTemplateArgs = true;
4531
4532      if (FunctionTemplate) {
4533        // Function template with explicit template arguments.
4534        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4535          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4536
4537        HasExplicitTemplateArgs = false;
4538      } else if (!isFunctionTemplateSpecialization &&
4539                 !D.getDeclSpec().isFriendSpecified()) {
4540        // We have encountered something that the user meant to be a
4541        // specialization (because it has explicitly-specified template
4542        // arguments) but that was not introduced with a "template<>" (or had
4543        // too few of them).
4544        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4545          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4546          << FixItHint::CreateInsertion(
4547                                        D.getDeclSpec().getSourceRange().getBegin(),
4548                                                  "template<> ");
4549        isFunctionTemplateSpecialization = true;
4550      } else {
4551        // "friend void foo<>(int);" is an implicit specialization decl.
4552        isFunctionTemplateSpecialization = true;
4553      }
4554    } else if (isFriend && isFunctionTemplateSpecialization) {
4555      // This combination is only possible in a recovery case;  the user
4556      // wrote something like:
4557      //   template <> friend void foo(int);
4558      // which we're recovering from as if the user had written:
4559      //   friend void foo<>(int);
4560      // Go ahead and fake up a template id.
4561      HasExplicitTemplateArgs = true;
4562        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4563      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4564    }
4565
4566    // If it's a friend (and only if it's a friend), it's possible
4567    // that either the specialized function type or the specialized
4568    // template is dependent, and therefore matching will fail.  In
4569    // this case, don't check the specialization yet.
4570    if (isFunctionTemplateSpecialization && isFriend &&
4571        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4572      assert(HasExplicitTemplateArgs &&
4573             "friend function specialization without template args");
4574      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4575                                                       Previous))
4576        NewFD->setInvalidDecl();
4577    } else if (isFunctionTemplateSpecialization) {
4578      if (CurContext->isDependentContext() && CurContext->isRecord()
4579          && !isFriend) {
4580        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4581          << NewFD->getDeclName();
4582        NewFD->setInvalidDecl();
4583        return 0;
4584      } else if (CheckFunctionTemplateSpecialization(NewFD,
4585                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4586                                                     Previous))
4587        NewFD->setInvalidDecl();
4588    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4589      if (CheckMemberSpecialization(NewFD, Previous))
4590          NewFD->setInvalidDecl();
4591    }
4592
4593    // Perform semantic checking on the function declaration.
4594    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4595                             Redeclaration);
4596
4597    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4598            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4599           "previous declaration set still overloaded");
4600
4601    NamedDecl *PrincipalDecl = (FunctionTemplate
4602                                ? cast<NamedDecl>(FunctionTemplate)
4603                                : NewFD);
4604
4605    if (isFriend && Redeclaration) {
4606      AccessSpecifier Access = AS_public;
4607      if (!NewFD->isInvalidDecl())
4608        Access = NewFD->getPreviousDeclaration()->getAccess();
4609
4610      NewFD->setAccess(Access);
4611      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4612
4613      PrincipalDecl->setObjectOfFriendDecl(true);
4614    }
4615
4616    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4617        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4618      PrincipalDecl->setNonMemberOperator();
4619
4620    // If we have a function template, check the template parameter
4621    // list. This will check and merge default template arguments.
4622    if (FunctionTemplate) {
4623      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4624      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4625                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4626                            D.getDeclSpec().isFriendSpecified()
4627                              ? (IsFunctionDefinition
4628                                   ? TPC_FriendFunctionTemplateDefinition
4629                                   : TPC_FriendFunctionTemplate)
4630                              : (D.getCXXScopeSpec().isSet() &&
4631                                 DC && DC->isRecord() &&
4632                                 DC->isDependentContext())
4633                                  ? TPC_ClassTemplateMember
4634                                  : TPC_FunctionTemplate);
4635    }
4636
4637    if (NewFD->isInvalidDecl()) {
4638      // Ignore all the rest of this.
4639    } else if (!Redeclaration) {
4640      // Fake up an access specifier if it's supposed to be a class member.
4641      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4642        NewFD->setAccess(AS_public);
4643
4644      // Qualified decls generally require a previous declaration.
4645      if (D.getCXXScopeSpec().isSet()) {
4646        // ...with the major exception of templated-scope or
4647        // dependent-scope friend declarations.
4648
4649        // TODO: we currently also suppress this check in dependent
4650        // contexts because (1) the parameter depth will be off when
4651        // matching friend templates and (2) we might actually be
4652        // selecting a friend based on a dependent factor.  But there
4653        // are situations where these conditions don't apply and we
4654        // can actually do this check immediately.
4655        if (isFriend &&
4656            (TemplateParamLists.size() ||
4657             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4658             CurContext->isDependentContext())) {
4659              // ignore these
4660            } else {
4661              // The user tried to provide an out-of-line definition for a
4662              // function that is a member of a class or namespace, but there
4663              // was no such member function declared (C++ [class.mfct]p2,
4664              // C++ [namespace.memdef]p2). For example:
4665              //
4666              // class X {
4667              //   void f() const;
4668              // };
4669              //
4670              // void X::f() { } // ill-formed
4671              //
4672              // Complain about this problem, and attempt to suggest close
4673              // matches (e.g., those that differ only in cv-qualifiers and
4674              // whether the parameter types are references).
4675              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4676              << Name << DC << D.getCXXScopeSpec().getRange();
4677              NewFD->setInvalidDecl();
4678
4679              DiagnoseInvalidRedeclaration(*this, NewFD);
4680            }
4681
4682        // Unqualified local friend declarations are required to resolve
4683        // to something.
4684        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4685          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4686          NewFD->setInvalidDecl();
4687          DiagnoseInvalidRedeclaration(*this, NewFD);
4688        }
4689
4690    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4691               !isFriend && !isFunctionTemplateSpecialization &&
4692               !isExplicitSpecialization && !DefaultLoc.isValid()) {
4693      // An out-of-line member function declaration must also be a
4694      // definition (C++ [dcl.meaning]p1).
4695      // Note that this is not the case for explicit specializations of
4696      // function templates or member functions of class templates, per
4697      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4698      // for compatibility with old SWIG code which likes to generate them.
4699      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4700        << D.getCXXScopeSpec().getRange();
4701    }
4702  }
4703
4704
4705  // Handle attributes. We need to have merged decls when handling attributes
4706  // (for example to check for conflicts, etc).
4707  // FIXME: This needs to happen before we merge declarations. Then,
4708  // let attribute merging cope with attribute conflicts.
4709  ProcessDeclAttributes(S, NewFD, D,
4710                        /*NonInheritable=*/false, /*Inheritable=*/true);
4711
4712  // attributes declared post-definition are currently ignored
4713  // FIXME: This should happen during attribute merging
4714  if (Redeclaration && Previous.isSingleResult()) {
4715    const FunctionDecl *Def;
4716    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4717    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4718      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4719      Diag(Def->getLocation(), diag::note_previous_definition);
4720    }
4721  }
4722
4723  AddKnownFunctionAttributes(NewFD);
4724
4725  if (NewFD->hasAttr<OverloadableAttr>() &&
4726      !NewFD->getType()->getAs<FunctionProtoType>()) {
4727    Diag(NewFD->getLocation(),
4728         diag::err_attribute_overloadable_no_prototype)
4729      << NewFD;
4730
4731    // Turn this into a variadic function with no parameters.
4732    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4733    FunctionProtoType::ExtProtoInfo EPI;
4734    EPI.Variadic = true;
4735    EPI.ExtInfo = FT->getExtInfo();
4736
4737    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4738    NewFD->setType(R);
4739  }
4740
4741  // If there's a #pragma GCC visibility in scope, and this isn't a class
4742  // member, set the visibility of this function.
4743  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4744    AddPushedVisibilityAttribute(NewFD);
4745
4746  // If this is a locally-scoped extern C function, update the
4747  // map of such names.
4748  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4749      && !NewFD->isInvalidDecl())
4750    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4751
4752  // Set this FunctionDecl's range up to the right paren.
4753  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4754
4755  if (getLangOptions().CPlusPlus) {
4756    if (FunctionTemplate) {
4757      if (NewFD->isInvalidDecl())
4758        FunctionTemplate->setInvalidDecl();
4759      return FunctionTemplate;
4760    }
4761  }
4762
4763  MarkUnusedFileScopedDecl(NewFD);
4764
4765  if (getLangOptions().CUDA)
4766    if (IdentifierInfo *II = NewFD->getIdentifier())
4767      if (!NewFD->isInvalidDecl() &&
4768          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4769        if (II->isStr("cudaConfigureCall")) {
4770          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4771            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4772
4773          Context.setcudaConfigureCallDecl(NewFD);
4774        }
4775      }
4776
4777  // Check explicitly defaulted methods
4778  // FIXME: This could be made better through CXXSpecialMember if it did
4779  // default constructors (which it should rather than any constructor).
4780  if (NewFD && DefaultLoc.isValid() && getLangOptions().CPlusPlus) {
4781    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD)) {
4782      if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(MD)) {
4783        if (CD->isDefaultConstructor() || CD->isCopyOrMoveConstructor()) {
4784          CD->setDefaulted();
4785          CD->setExplicitlyDefaulted();
4786          if (CD != CD->getCanonicalDecl() && CD->isDefaultConstructor())
4787            CheckExplicitlyDefaultedDefaultConstructor(CD);
4788          // FIXME: Do copy/move ctors here.
4789        } else {
4790          Diag(DefaultLoc, diag::err_default_special_members);
4791        }
4792      } else if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
4793        DD->setDefaulted();
4794        DD->setExplicitlyDefaulted();
4795        // FIXME: Add a checking method
4796      } else if (MD->isCopyAssignmentOperator() /* ||
4797                 MD->isMoveAssignmentOperator() */) {
4798        MD->setDefaulted();
4799        MD->setExplicitlyDefaulted();
4800        // FIXME: Add a checking method
4801      } else {
4802        Diag(DefaultLoc, diag::err_default_special_members);
4803      }
4804    }
4805  }
4806
4807  return NewFD;
4808}
4809
4810/// \brief Perform semantic checking of a new function declaration.
4811///
4812/// Performs semantic analysis of the new function declaration
4813/// NewFD. This routine performs all semantic checking that does not
4814/// require the actual declarator involved in the declaration, and is
4815/// used both for the declaration of functions as they are parsed
4816/// (called via ActOnDeclarator) and for the declaration of functions
4817/// that have been instantiated via C++ template instantiation (called
4818/// via InstantiateDecl).
4819///
4820/// \param IsExplicitSpecialiation whether this new function declaration is
4821/// an explicit specialization of the previous declaration.
4822///
4823/// This sets NewFD->isInvalidDecl() to true if there was an error.
4824void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4825                                    LookupResult &Previous,
4826                                    bool IsExplicitSpecialization,
4827                                    bool &Redeclaration) {
4828  // If NewFD is already known erroneous, don't do any of this checking.
4829  if (NewFD->isInvalidDecl()) {
4830    // If this is a class member, mark the class invalid immediately.
4831    // This avoids some consistency errors later.
4832    if (isa<CXXMethodDecl>(NewFD))
4833      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4834
4835    return;
4836  }
4837
4838  if (NewFD->getResultType()->isVariablyModifiedType()) {
4839    // Functions returning a variably modified type violate C99 6.7.5.2p2
4840    // because all functions have linkage.
4841    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4842    return NewFD->setInvalidDecl();
4843  }
4844
4845  if (NewFD->isMain())
4846    CheckMain(NewFD);
4847
4848  // Check for a previous declaration of this name.
4849  if (Previous.empty() && NewFD->isExternC()) {
4850    // Since we did not find anything by this name and we're declaring
4851    // an extern "C" function, look for a non-visible extern "C"
4852    // declaration with the same name.
4853    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4854      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4855    if (Pos != LocallyScopedExternalDecls.end())
4856      Previous.addDecl(Pos->second);
4857  }
4858
4859  // Merge or overload the declaration with an existing declaration of
4860  // the same name, if appropriate.
4861  if (!Previous.empty()) {
4862    // Determine whether NewFD is an overload of PrevDecl or
4863    // a declaration that requires merging. If it's an overload,
4864    // there's no more work to do here; we'll just add the new
4865    // function to the scope.
4866
4867    NamedDecl *OldDecl = 0;
4868    if (!AllowOverloadingOfFunction(Previous, Context)) {
4869      Redeclaration = true;
4870      OldDecl = Previous.getFoundDecl();
4871    } else {
4872      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4873                            /*NewIsUsingDecl*/ false)) {
4874      case Ovl_Match:
4875        Redeclaration = true;
4876        break;
4877
4878      case Ovl_NonFunction:
4879        Redeclaration = true;
4880        break;
4881
4882      case Ovl_Overload:
4883        Redeclaration = false;
4884        break;
4885      }
4886
4887      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4888        // If a function name is overloadable in C, then every function
4889        // with that name must be marked "overloadable".
4890        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4891          << Redeclaration << NewFD;
4892        NamedDecl *OverloadedDecl = 0;
4893        if (Redeclaration)
4894          OverloadedDecl = OldDecl;
4895        else if (!Previous.empty())
4896          OverloadedDecl = Previous.getRepresentativeDecl();
4897        if (OverloadedDecl)
4898          Diag(OverloadedDecl->getLocation(),
4899               diag::note_attribute_overloadable_prev_overload);
4900        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4901                                                        Context));
4902      }
4903    }
4904
4905    if (Redeclaration) {
4906      // NewFD and OldDecl represent declarations that need to be
4907      // merged.
4908      if (MergeFunctionDecl(NewFD, OldDecl))
4909        return NewFD->setInvalidDecl();
4910
4911      Previous.clear();
4912      Previous.addDecl(OldDecl);
4913
4914      if (FunctionTemplateDecl *OldTemplateDecl
4915                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4916        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4917        FunctionTemplateDecl *NewTemplateDecl
4918          = NewFD->getDescribedFunctionTemplate();
4919        assert(NewTemplateDecl && "Template/non-template mismatch");
4920        if (CXXMethodDecl *Method
4921              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4922          Method->setAccess(OldTemplateDecl->getAccess());
4923          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4924        }
4925
4926        // If this is an explicit specialization of a member that is a function
4927        // template, mark it as a member specialization.
4928        if (IsExplicitSpecialization &&
4929            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4930          NewTemplateDecl->setMemberSpecialization();
4931          assert(OldTemplateDecl->isMemberSpecialization());
4932        }
4933      } else {
4934        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4935          NewFD->setAccess(OldDecl->getAccess());
4936        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4937      }
4938    }
4939  }
4940
4941  // Semantic checking for this function declaration (in isolation).
4942  if (getLangOptions().CPlusPlus) {
4943    // C++-specific checks.
4944    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4945      CheckConstructor(Constructor);
4946    } else if (CXXDestructorDecl *Destructor =
4947                dyn_cast<CXXDestructorDecl>(NewFD)) {
4948      CXXRecordDecl *Record = Destructor->getParent();
4949      QualType ClassType = Context.getTypeDeclType(Record);
4950
4951      // FIXME: Shouldn't we be able to perform this check even when the class
4952      // type is dependent? Both gcc and edg can handle that.
4953      if (!ClassType->isDependentType()) {
4954        DeclarationName Name
4955          = Context.DeclarationNames.getCXXDestructorName(
4956                                        Context.getCanonicalType(ClassType));
4957        if (NewFD->getDeclName() != Name) {
4958          Diag(NewFD->getLocation(), diag::err_destructor_name);
4959          return NewFD->setInvalidDecl();
4960        }
4961      }
4962    } else if (CXXConversionDecl *Conversion
4963               = dyn_cast<CXXConversionDecl>(NewFD)) {
4964      ActOnConversionDeclarator(Conversion);
4965    }
4966
4967    // Find any virtual functions that this function overrides.
4968    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4969      if (!Method->isFunctionTemplateSpecialization() &&
4970          !Method->getDescribedFunctionTemplate()) {
4971        if (AddOverriddenMethods(Method->getParent(), Method)) {
4972          // If the function was marked as "static", we have a problem.
4973          if (NewFD->getStorageClass() == SC_Static) {
4974            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4975              << NewFD->getDeclName();
4976            for (CXXMethodDecl::method_iterator
4977                      Overridden = Method->begin_overridden_methods(),
4978                   OverriddenEnd = Method->end_overridden_methods();
4979                 Overridden != OverriddenEnd;
4980                 ++Overridden) {
4981              Diag((*Overridden)->getLocation(),
4982                   diag::note_overridden_virtual_function);
4983            }
4984          }
4985        }
4986      }
4987    }
4988
4989    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4990    if (NewFD->isOverloadedOperator() &&
4991        CheckOverloadedOperatorDeclaration(NewFD))
4992      return NewFD->setInvalidDecl();
4993
4994    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4995    if (NewFD->getLiteralIdentifier() &&
4996        CheckLiteralOperatorDeclaration(NewFD))
4997      return NewFD->setInvalidDecl();
4998
4999    // In C++, check default arguments now that we have merged decls. Unless
5000    // the lexical context is the class, because in this case this is done
5001    // during delayed parsing anyway.
5002    if (!CurContext->isRecord())
5003      CheckCXXDefaultArguments(NewFD);
5004
5005    // If this function declares a builtin function, check the type of this
5006    // declaration against the expected type for the builtin.
5007    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5008      ASTContext::GetBuiltinTypeError Error;
5009      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5010      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5011        // The type of this function differs from the type of the builtin,
5012        // so forget about the builtin entirely.
5013        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5014      }
5015    }
5016  }
5017}
5018
5019void Sema::CheckMain(FunctionDecl* FD) {
5020  // C++ [basic.start.main]p3:  A program that declares main to be inline
5021  //   or static is ill-formed.
5022  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5023  //   shall not appear in a declaration of main.
5024  // static main is not an error under C99, but we should warn about it.
5025  bool isInline = FD->isInlineSpecified();
5026  bool isStatic = FD->getStorageClass() == SC_Static;
5027  if (isInline || isStatic) {
5028    unsigned diagID = diag::warn_unusual_main_decl;
5029    if (isInline || getLangOptions().CPlusPlus)
5030      diagID = diag::err_unusual_main_decl;
5031
5032    int which = isStatic + (isInline << 1) - 1;
5033    Diag(FD->getLocation(), diagID) << which;
5034  }
5035
5036  QualType T = FD->getType();
5037  assert(T->isFunctionType() && "function decl is not of function type");
5038  const FunctionType* FT = T->getAs<FunctionType>();
5039
5040  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5041    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5042    FD->setInvalidDecl(true);
5043  }
5044
5045  // Treat protoless main() as nullary.
5046  if (isa<FunctionNoProtoType>(FT)) return;
5047
5048  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5049  unsigned nparams = FTP->getNumArgs();
5050  assert(FD->getNumParams() == nparams);
5051
5052  bool HasExtraParameters = (nparams > 3);
5053
5054  // Darwin passes an undocumented fourth argument of type char**.  If
5055  // other platforms start sprouting these, the logic below will start
5056  // getting shifty.
5057  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5058    HasExtraParameters = false;
5059
5060  if (HasExtraParameters) {
5061    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5062    FD->setInvalidDecl(true);
5063    nparams = 3;
5064  }
5065
5066  // FIXME: a lot of the following diagnostics would be improved
5067  // if we had some location information about types.
5068
5069  QualType CharPP =
5070    Context.getPointerType(Context.getPointerType(Context.CharTy));
5071  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5072
5073  for (unsigned i = 0; i < nparams; ++i) {
5074    QualType AT = FTP->getArgType(i);
5075
5076    bool mismatch = true;
5077
5078    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5079      mismatch = false;
5080    else if (Expected[i] == CharPP) {
5081      // As an extension, the following forms are okay:
5082      //   char const **
5083      //   char const * const *
5084      //   char * const *
5085
5086      QualifierCollector qs;
5087      const PointerType* PT;
5088      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5089          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5090          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5091        qs.removeConst();
5092        mismatch = !qs.empty();
5093      }
5094    }
5095
5096    if (mismatch) {
5097      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5098      // TODO: suggest replacing given type with expected type
5099      FD->setInvalidDecl(true);
5100    }
5101  }
5102
5103  if (nparams == 1 && !FD->isInvalidDecl()) {
5104    Diag(FD->getLocation(), diag::warn_main_one_arg);
5105  }
5106
5107  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5108    Diag(FD->getLocation(), diag::err_main_template_decl);
5109    FD->setInvalidDecl();
5110  }
5111}
5112
5113bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5114  // FIXME: Need strict checking.  In C89, we need to check for
5115  // any assignment, increment, decrement, function-calls, or
5116  // commas outside of a sizeof.  In C99, it's the same list,
5117  // except that the aforementioned are allowed in unevaluated
5118  // expressions.  Everything else falls under the
5119  // "may accept other forms of constant expressions" exception.
5120  // (We never end up here for C++, so the constant expression
5121  // rules there don't matter.)
5122  if (Init->isConstantInitializer(Context, false))
5123    return false;
5124  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5125    << Init->getSourceRange();
5126  return true;
5127}
5128
5129namespace {
5130  // Visits an initialization expression to see if OrigDecl is evaluated in
5131  // its own initialization and throws a warning if it does.
5132  class SelfReferenceChecker
5133      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5134    Sema &S;
5135    Decl *OrigDecl;
5136
5137  public:
5138    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5139
5140    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5141                                                    S(S), OrigDecl(OrigDecl) { }
5142
5143    void VisitExpr(Expr *E) {
5144      if (isa<ObjCMessageExpr>(*E)) return;
5145      Inherited::VisitExpr(E);
5146    }
5147
5148    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5149      CheckForSelfReference(E);
5150      Inherited::VisitImplicitCastExpr(E);
5151    }
5152
5153    void CheckForSelfReference(ImplicitCastExpr *E) {
5154      if (E->getCastKind() != CK_LValueToRValue) return;
5155      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5156      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5157      if (!DRE) return;
5158      Decl* ReferenceDecl = DRE->getDecl();
5159      if (OrigDecl != ReferenceDecl) return;
5160      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5161                          Sema::NotForRedeclaration);
5162      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5163        << Result.getLookupName() << OrigDecl->getLocation()
5164        << SubExpr->getSourceRange();
5165    }
5166  };
5167}
5168
5169/// AddInitializerToDecl - Adds the initializer Init to the
5170/// declaration dcl. If DirectInit is true, this is C++ direct
5171/// initialization rather than copy initialization.
5172void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5173                                bool DirectInit, bool TypeMayContainAuto) {
5174  // If there is no declaration, there was an error parsing it.  Just ignore
5175  // the initializer.
5176  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5177    return;
5178
5179  // Check for self-references within variable initializers.
5180  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5181    // Variables declared within a function/method body are handled
5182    // by a dataflow analysis.
5183    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5184      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5185  }
5186  else {
5187    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5188  }
5189
5190  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5191    // With declarators parsed the way they are, the parser cannot
5192    // distinguish between a normal initializer and a pure-specifier.
5193    // Thus this grotesque test.
5194    IntegerLiteral *IL;
5195    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5196        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5197      CheckPureMethod(Method, Init->getSourceRange());
5198    else {
5199      Diag(Method->getLocation(), diag::err_member_function_initialization)
5200        << Method->getDeclName() << Init->getSourceRange();
5201      Method->setInvalidDecl();
5202    }
5203    return;
5204  }
5205
5206  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5207  if (!VDecl) {
5208    if (getLangOptions().CPlusPlus &&
5209        RealDecl->getLexicalDeclContext()->isRecord() &&
5210        isa<NamedDecl>(RealDecl))
5211      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5212    else
5213      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5214    RealDecl->setInvalidDecl();
5215    return;
5216  }
5217
5218  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5219  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5220    TypeSourceInfo *DeducedType = 0;
5221    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5222      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5223        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5224        << Init->getSourceRange();
5225    if (!DeducedType) {
5226      RealDecl->setInvalidDecl();
5227      return;
5228    }
5229    VDecl->setTypeSourceInfo(DeducedType);
5230    VDecl->setType(DeducedType->getType());
5231
5232    // If this is a redeclaration, check that the type we just deduced matches
5233    // the previously declared type.
5234    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5235      MergeVarDeclTypes(VDecl, Old);
5236  }
5237
5238
5239  // A definition must end up with a complete type, which means it must be
5240  // complete with the restriction that an array type might be completed by the
5241  // initializer; note that later code assumes this restriction.
5242  QualType BaseDeclType = VDecl->getType();
5243  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5244    BaseDeclType = Array->getElementType();
5245  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5246                          diag::err_typecheck_decl_incomplete_type)) {
5247    RealDecl->setInvalidDecl();
5248    return;
5249  }
5250
5251  // The variable can not have an abstract class type.
5252  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5253                             diag::err_abstract_type_in_decl,
5254                             AbstractVariableType))
5255    VDecl->setInvalidDecl();
5256
5257  const VarDecl *Def;
5258  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5259    Diag(VDecl->getLocation(), diag::err_redefinition)
5260      << VDecl->getDeclName();
5261    Diag(Def->getLocation(), diag::note_previous_definition);
5262    VDecl->setInvalidDecl();
5263    return;
5264  }
5265
5266  const VarDecl* PrevInit = 0;
5267  if (getLangOptions().CPlusPlus) {
5268    // C++ [class.static.data]p4
5269    //   If a static data member is of const integral or const
5270    //   enumeration type, its declaration in the class definition can
5271    //   specify a constant-initializer which shall be an integral
5272    //   constant expression (5.19). In that case, the member can appear
5273    //   in integral constant expressions. The member shall still be
5274    //   defined in a namespace scope if it is used in the program and the
5275    //   namespace scope definition shall not contain an initializer.
5276    //
5277    // We already performed a redefinition check above, but for static
5278    // data members we also need to check whether there was an in-class
5279    // declaration with an initializer.
5280    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5281      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5282      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5283      return;
5284    }
5285
5286    if (VDecl->hasLocalStorage())
5287      getCurFunction()->setHasBranchProtectedScope();
5288
5289    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5290      VDecl->setInvalidDecl();
5291      return;
5292    }
5293  }
5294
5295  // Capture the variable that is being initialized and the style of
5296  // initialization.
5297  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5298
5299  // FIXME: Poor source location information.
5300  InitializationKind Kind
5301    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5302                                                   Init->getLocStart(),
5303                                                   Init->getLocEnd())
5304                : InitializationKind::CreateCopy(VDecl->getLocation(),
5305                                                 Init->getLocStart());
5306
5307  // Get the decls type and save a reference for later, since
5308  // CheckInitializerTypes may change it.
5309  QualType DclT = VDecl->getType(), SavT = DclT;
5310  if (VDecl->isLocalVarDecl()) {
5311    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5312      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5313      VDecl->setInvalidDecl();
5314    } else if (!VDecl->isInvalidDecl()) {
5315      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5316      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5317                                                MultiExprArg(*this, &Init, 1),
5318                                                &DclT);
5319      if (Result.isInvalid()) {
5320        VDecl->setInvalidDecl();
5321        return;
5322      }
5323
5324      Init = Result.takeAs<Expr>();
5325
5326      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5327      // Don't check invalid declarations to avoid emitting useless diagnostics.
5328      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5329        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5330          CheckForConstantInitializer(Init, DclT);
5331      }
5332    }
5333  } else if (VDecl->isStaticDataMember() &&
5334             VDecl->getLexicalDeclContext()->isRecord()) {
5335    // This is an in-class initialization for a static data member, e.g.,
5336    //
5337    // struct S {
5338    //   static const int value = 17;
5339    // };
5340
5341    // Try to perform the initialization regardless.
5342    if (!VDecl->isInvalidDecl()) {
5343      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5344      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5345                                          MultiExprArg(*this, &Init, 1),
5346                                          &DclT);
5347      if (Result.isInvalid()) {
5348        VDecl->setInvalidDecl();
5349        return;
5350      }
5351
5352      Init = Result.takeAs<Expr>();
5353    }
5354
5355    // C++ [class.mem]p4:
5356    //   A member-declarator can contain a constant-initializer only
5357    //   if it declares a static member (9.4) of const integral or
5358    //   const enumeration type, see 9.4.2.
5359    QualType T = VDecl->getType();
5360
5361    // Do nothing on dependent types.
5362    if (T->isDependentType()) {
5363
5364    // Require constness.
5365    } else if (!T.isConstQualified()) {
5366      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5367        << Init->getSourceRange();
5368      VDecl->setInvalidDecl();
5369
5370    // We allow integer constant expressions in all cases.
5371    } else if (T->isIntegralOrEnumerationType()) {
5372      if (!Init->isValueDependent()) {
5373        // Check whether the expression is a constant expression.
5374        llvm::APSInt Value;
5375        SourceLocation Loc;
5376        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5377          Diag(Loc, diag::err_in_class_initializer_non_constant)
5378            << Init->getSourceRange();
5379          VDecl->setInvalidDecl();
5380        }
5381      }
5382
5383    // We allow floating-point constants as an extension in C++03, and
5384    // C++0x has far more complicated rules that we don't really
5385    // implement fully.
5386    } else {
5387      bool Allowed = false;
5388      if (getLangOptions().CPlusPlus0x) {
5389        Allowed = T->isLiteralType();
5390      } else if (T->isFloatingType()) { // also permits complex, which is ok
5391        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5392          << T << Init->getSourceRange();
5393        Allowed = true;
5394      }
5395
5396      if (!Allowed) {
5397        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5398          << T << Init->getSourceRange();
5399        VDecl->setInvalidDecl();
5400
5401      // TODO: there are probably expressions that pass here that shouldn't.
5402      } else if (!Init->isValueDependent() &&
5403                 !Init->isConstantInitializer(Context, false)) {
5404        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5405          << Init->getSourceRange();
5406        VDecl->setInvalidDecl();
5407      }
5408    }
5409  } else if (VDecl->isFileVarDecl()) {
5410    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5411        (!getLangOptions().CPlusPlus ||
5412         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5413      Diag(VDecl->getLocation(), diag::warn_extern_init);
5414    if (!VDecl->isInvalidDecl()) {
5415      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5416      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5417                                                MultiExprArg(*this, &Init, 1),
5418                                                &DclT);
5419      if (Result.isInvalid()) {
5420        VDecl->setInvalidDecl();
5421        return;
5422      }
5423
5424      Init = Result.takeAs<Expr>();
5425    }
5426
5427    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5428    // Don't check invalid declarations to avoid emitting useless diagnostics.
5429    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5430      // C99 6.7.8p4. All file scoped initializers need to be constant.
5431      CheckForConstantInitializer(Init, DclT);
5432    }
5433  }
5434  // If the type changed, it means we had an incomplete type that was
5435  // completed by the initializer. For example:
5436  //   int ary[] = { 1, 3, 5 };
5437  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5438  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5439    VDecl->setType(DclT);
5440    Init->setType(DclT);
5441  }
5442
5443
5444  // If this variable is a local declaration with record type, make sure it
5445  // doesn't have a flexible member initialization.  We only support this as a
5446  // global/static definition.
5447  if (VDecl->hasLocalStorage())
5448    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5449      if (RT->getDecl()->hasFlexibleArrayMember()) {
5450        // Check whether the initializer tries to initialize the flexible
5451        // array member itself to anything other than an empty initializer list.
5452        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5453          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5454                                         RT->getDecl()->field_end()) - 1;
5455          if (Index < ILE->getNumInits() &&
5456              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5457                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5458            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5459            VDecl->setInvalidDecl();
5460          }
5461        }
5462      }
5463
5464  // Check any implicit conversions within the expression.
5465  CheckImplicitConversions(Init, VDecl->getLocation());
5466
5467  Init = MaybeCreateExprWithCleanups(Init);
5468  // Attach the initializer to the decl.
5469  VDecl->setInit(Init);
5470
5471  CheckCompleteVariableDeclaration(VDecl);
5472}
5473
5474/// ActOnInitializerError - Given that there was an error parsing an
5475/// initializer for the given declaration, try to return to some form
5476/// of sanity.
5477void Sema::ActOnInitializerError(Decl *D) {
5478  // Our main concern here is re-establishing invariants like "a
5479  // variable's type is either dependent or complete".
5480  if (!D || D->isInvalidDecl()) return;
5481
5482  VarDecl *VD = dyn_cast<VarDecl>(D);
5483  if (!VD) return;
5484
5485  // Auto types are meaningless if we can't make sense of the initializer.
5486  if (ParsingInitForAutoVars.count(D)) {
5487    D->setInvalidDecl();
5488    return;
5489  }
5490
5491  QualType Ty = VD->getType();
5492  if (Ty->isDependentType()) return;
5493
5494  // Require a complete type.
5495  if (RequireCompleteType(VD->getLocation(),
5496                          Context.getBaseElementType(Ty),
5497                          diag::err_typecheck_decl_incomplete_type)) {
5498    VD->setInvalidDecl();
5499    return;
5500  }
5501
5502  // Require an abstract type.
5503  if (RequireNonAbstractType(VD->getLocation(), Ty,
5504                             diag::err_abstract_type_in_decl,
5505                             AbstractVariableType)) {
5506    VD->setInvalidDecl();
5507    return;
5508  }
5509
5510  // Don't bother complaining about constructors or destructors,
5511  // though.
5512}
5513
5514void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5515                                  bool TypeMayContainAuto) {
5516  // If there is no declaration, there was an error parsing it. Just ignore it.
5517  if (RealDecl == 0)
5518    return;
5519
5520  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5521    QualType Type = Var->getType();
5522
5523    // C++0x [dcl.spec.auto]p3
5524    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5525      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5526        << Var->getDeclName() << Type;
5527      Var->setInvalidDecl();
5528      return;
5529    }
5530
5531    switch (Var->isThisDeclarationADefinition()) {
5532    case VarDecl::Definition:
5533      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5534        break;
5535
5536      // We have an out-of-line definition of a static data member
5537      // that has an in-class initializer, so we type-check this like
5538      // a declaration.
5539      //
5540      // Fall through
5541
5542    case VarDecl::DeclarationOnly:
5543      // It's only a declaration.
5544
5545      // Block scope. C99 6.7p7: If an identifier for an object is
5546      // declared with no linkage (C99 6.2.2p6), the type for the
5547      // object shall be complete.
5548      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5549          !Var->getLinkage() && !Var->isInvalidDecl() &&
5550          RequireCompleteType(Var->getLocation(), Type,
5551                              diag::err_typecheck_decl_incomplete_type))
5552        Var->setInvalidDecl();
5553
5554      // Make sure that the type is not abstract.
5555      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5556          RequireNonAbstractType(Var->getLocation(), Type,
5557                                 diag::err_abstract_type_in_decl,
5558                                 AbstractVariableType))
5559        Var->setInvalidDecl();
5560      return;
5561
5562    case VarDecl::TentativeDefinition:
5563      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5564      // object that has file scope without an initializer, and without a
5565      // storage-class specifier or with the storage-class specifier "static",
5566      // constitutes a tentative definition. Note: A tentative definition with
5567      // external linkage is valid (C99 6.2.2p5).
5568      if (!Var->isInvalidDecl()) {
5569        if (const IncompleteArrayType *ArrayT
5570                                    = Context.getAsIncompleteArrayType(Type)) {
5571          if (RequireCompleteType(Var->getLocation(),
5572                                  ArrayT->getElementType(),
5573                                  diag::err_illegal_decl_array_incomplete_type))
5574            Var->setInvalidDecl();
5575        } else if (Var->getStorageClass() == SC_Static) {
5576          // C99 6.9.2p3: If the declaration of an identifier for an object is
5577          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5578          // declared type shall not be an incomplete type.
5579          // NOTE: code such as the following
5580          //     static struct s;
5581          //     struct s { int a; };
5582          // is accepted by gcc. Hence here we issue a warning instead of
5583          // an error and we do not invalidate the static declaration.
5584          // NOTE: to avoid multiple warnings, only check the first declaration.
5585          if (Var->getPreviousDeclaration() == 0)
5586            RequireCompleteType(Var->getLocation(), Type,
5587                                diag::ext_typecheck_decl_incomplete_type);
5588        }
5589      }
5590
5591      // Record the tentative definition; we're done.
5592      if (!Var->isInvalidDecl())
5593        TentativeDefinitions.push_back(Var);
5594      return;
5595    }
5596
5597    // Provide a specific diagnostic for uninitialized variable
5598    // definitions with incomplete array type.
5599    if (Type->isIncompleteArrayType()) {
5600      Diag(Var->getLocation(),
5601           diag::err_typecheck_incomplete_array_needs_initializer);
5602      Var->setInvalidDecl();
5603      return;
5604    }
5605
5606    // Provide a specific diagnostic for uninitialized variable
5607    // definitions with reference type.
5608    if (Type->isReferenceType()) {
5609      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5610        << Var->getDeclName()
5611        << SourceRange(Var->getLocation(), Var->getLocation());
5612      Var->setInvalidDecl();
5613      return;
5614    }
5615
5616    // Do not attempt to type-check the default initializer for a
5617    // variable with dependent type.
5618    if (Type->isDependentType())
5619      return;
5620
5621    if (Var->isInvalidDecl())
5622      return;
5623
5624    if (RequireCompleteType(Var->getLocation(),
5625                            Context.getBaseElementType(Type),
5626                            diag::err_typecheck_decl_incomplete_type)) {
5627      Var->setInvalidDecl();
5628      return;
5629    }
5630
5631    // The variable can not have an abstract class type.
5632    if (RequireNonAbstractType(Var->getLocation(), Type,
5633                               diag::err_abstract_type_in_decl,
5634                               AbstractVariableType)) {
5635      Var->setInvalidDecl();
5636      return;
5637    }
5638
5639    const RecordType *Record
5640      = Context.getBaseElementType(Type)->getAs<RecordType>();
5641    if (Record && getLangOptions().CPlusPlus &&
5642        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5643      // C++03 [dcl.init]p9:
5644      //   If no initializer is specified for an object, and the
5645      //   object is of (possibly cv-qualified) non-POD class type (or
5646      //   array thereof), the object shall be default-initialized; if
5647      //   the object is of const-qualified type, the underlying class
5648      //   type shall have a user-declared default
5649      //   constructor. Otherwise, if no initializer is specified for
5650      //   a non- static object, the object and its subobjects, if
5651      //   any, have an indeterminate initial value); if the object
5652      //   or any of its subobjects are of const-qualified type, the
5653      //   program is ill-formed.
5654    } else {
5655      // Check for jumps past the implicit initializer.  C++0x
5656      // clarifies that this applies to a "variable with automatic
5657      // storage duration", not a "local variable".
5658      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5659        getCurFunction()->setHasBranchProtectedScope();
5660
5661      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5662      InitializationKind Kind
5663        = InitializationKind::CreateDefault(Var->getLocation());
5664
5665      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5666      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5667                                        MultiExprArg(*this, 0, 0));
5668      if (Init.isInvalid())
5669        Var->setInvalidDecl();
5670      else if (Init.get())
5671        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5672    }
5673
5674    CheckCompleteVariableDeclaration(Var);
5675  }
5676}
5677
5678void Sema::ActOnCXXForRangeDecl(Decl *D) {
5679  VarDecl *VD = dyn_cast<VarDecl>(D);
5680  if (!VD) {
5681    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5682    D->setInvalidDecl();
5683    return;
5684  }
5685
5686  VD->setCXXForRangeDecl(true);
5687
5688  // for-range-declaration cannot be given a storage class specifier.
5689  int Error = -1;
5690  switch (VD->getStorageClassAsWritten()) {
5691  case SC_None:
5692    break;
5693  case SC_Extern:
5694    Error = 0;
5695    break;
5696  case SC_Static:
5697    Error = 1;
5698    break;
5699  case SC_PrivateExtern:
5700    Error = 2;
5701    break;
5702  case SC_Auto:
5703    Error = 3;
5704    break;
5705  case SC_Register:
5706    Error = 4;
5707    break;
5708  }
5709  // FIXME: constexpr isn't allowed here.
5710  //if (DS.isConstexprSpecified())
5711  //  Error = 5;
5712  if (Error != -1) {
5713    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5714      << VD->getDeclName() << Error;
5715    D->setInvalidDecl();
5716  }
5717}
5718
5719void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5720  if (var->isInvalidDecl()) return;
5721
5722  // All the following checks are C++ only.
5723  if (!getLangOptions().CPlusPlus) return;
5724
5725  QualType baseType = Context.getBaseElementType(var->getType());
5726  if (baseType->isDependentType()) return;
5727
5728  // __block variables might require us to capture a copy-initializer.
5729  if (var->hasAttr<BlocksAttr>()) {
5730    // It's currently invalid to ever have a __block variable with an
5731    // array type; should we diagnose that here?
5732
5733    // Regardless, we don't want to ignore array nesting when
5734    // constructing this copy.
5735    QualType type = var->getType();
5736
5737    if (type->isStructureOrClassType()) {
5738      SourceLocation poi = var->getLocation();
5739      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5740      ExprResult result =
5741        PerformCopyInitialization(
5742                        InitializedEntity::InitializeBlock(poi, type, false),
5743                                  poi, Owned(varRef));
5744      if (!result.isInvalid()) {
5745        result = MaybeCreateExprWithCleanups(result);
5746        Expr *init = result.takeAs<Expr>();
5747        Context.setBlockVarCopyInits(var, init);
5748      }
5749    }
5750  }
5751
5752  // Check for global constructors.
5753  if (!var->getDeclContext()->isDependentContext() &&
5754      var->hasGlobalStorage() &&
5755      !var->isStaticLocal() &&
5756      var->getInit() &&
5757      !var->getInit()->isConstantInitializer(Context,
5758                                             baseType->isReferenceType()))
5759    Diag(var->getLocation(), diag::warn_global_constructor)
5760      << var->getInit()->getSourceRange();
5761
5762  // Require the destructor.
5763  if (const RecordType *recordType = baseType->getAs<RecordType>())
5764    FinalizeVarWithDestructor(var, recordType);
5765}
5766
5767/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5768/// any semantic actions necessary after any initializer has been attached.
5769void
5770Sema::FinalizeDeclaration(Decl *ThisDecl) {
5771  // Note that we are no longer parsing the initializer for this declaration.
5772  ParsingInitForAutoVars.erase(ThisDecl);
5773}
5774
5775Sema::DeclGroupPtrTy
5776Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5777                              Decl **Group, unsigned NumDecls) {
5778  llvm::SmallVector<Decl*, 8> Decls;
5779
5780  if (DS.isTypeSpecOwned())
5781    Decls.push_back(DS.getRepAsDecl());
5782
5783  for (unsigned i = 0; i != NumDecls; ++i)
5784    if (Decl *D = Group[i])
5785      Decls.push_back(D);
5786
5787  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5788                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5789}
5790
5791/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5792/// group, performing any necessary semantic checking.
5793Sema::DeclGroupPtrTy
5794Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5795                           bool TypeMayContainAuto) {
5796  // C++0x [dcl.spec.auto]p7:
5797  //   If the type deduced for the template parameter U is not the same in each
5798  //   deduction, the program is ill-formed.
5799  // FIXME: When initializer-list support is added, a distinction is needed
5800  // between the deduced type U and the deduced type which 'auto' stands for.
5801  //   auto a = 0, b = { 1, 2, 3 };
5802  // is legal because the deduced type U is 'int' in both cases.
5803  if (TypeMayContainAuto && NumDecls > 1) {
5804    QualType Deduced;
5805    CanQualType DeducedCanon;
5806    VarDecl *DeducedDecl = 0;
5807    for (unsigned i = 0; i != NumDecls; ++i) {
5808      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5809        AutoType *AT = D->getType()->getContainedAutoType();
5810        // Don't reissue diagnostics when instantiating a template.
5811        if (AT && D->isInvalidDecl())
5812          break;
5813        if (AT && AT->isDeduced()) {
5814          QualType U = AT->getDeducedType();
5815          CanQualType UCanon = Context.getCanonicalType(U);
5816          if (Deduced.isNull()) {
5817            Deduced = U;
5818            DeducedCanon = UCanon;
5819            DeducedDecl = D;
5820          } else if (DeducedCanon != UCanon) {
5821            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5822                 diag::err_auto_different_deductions)
5823              << Deduced << DeducedDecl->getDeclName()
5824              << U << D->getDeclName()
5825              << DeducedDecl->getInit()->getSourceRange()
5826              << D->getInit()->getSourceRange();
5827            D->setInvalidDecl();
5828            break;
5829          }
5830        }
5831      }
5832    }
5833  }
5834
5835  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5836}
5837
5838
5839/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5840/// to introduce parameters into function prototype scope.
5841Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5842  const DeclSpec &DS = D.getDeclSpec();
5843
5844  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5845  VarDecl::StorageClass StorageClass = SC_None;
5846  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5847  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5848    StorageClass = SC_Register;
5849    StorageClassAsWritten = SC_Register;
5850  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5851    Diag(DS.getStorageClassSpecLoc(),
5852         diag::err_invalid_storage_class_in_func_decl);
5853    D.getMutableDeclSpec().ClearStorageClassSpecs();
5854  }
5855
5856  if (D.getDeclSpec().isThreadSpecified())
5857    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5858
5859  DiagnoseFunctionSpecifiers(D);
5860
5861  TagDecl *OwnedDecl = 0;
5862  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5863  QualType parmDeclType = TInfo->getType();
5864
5865  if (getLangOptions().CPlusPlus) {
5866    // Check that there are no default arguments inside the type of this
5867    // parameter.
5868    CheckExtraCXXDefaultArguments(D);
5869
5870    if (OwnedDecl && OwnedDecl->isDefinition()) {
5871      // C++ [dcl.fct]p6:
5872      //   Types shall not be defined in return or parameter types.
5873      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5874        << Context.getTypeDeclType(OwnedDecl);
5875    }
5876
5877    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5878    if (D.getCXXScopeSpec().isSet()) {
5879      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5880        << D.getCXXScopeSpec().getRange();
5881      D.getCXXScopeSpec().clear();
5882    }
5883  }
5884
5885  // Ensure we have a valid name
5886  IdentifierInfo *II = 0;
5887  if (D.hasName()) {
5888    II = D.getIdentifier();
5889    if (!II) {
5890      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5891        << GetNameForDeclarator(D).getName().getAsString();
5892      D.setInvalidType(true);
5893    }
5894  }
5895
5896  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5897  if (II) {
5898    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5899                   ForRedeclaration);
5900    LookupName(R, S);
5901    if (R.isSingleResult()) {
5902      NamedDecl *PrevDecl = R.getFoundDecl();
5903      if (PrevDecl->isTemplateParameter()) {
5904        // Maybe we will complain about the shadowed template parameter.
5905        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5906        // Just pretend that we didn't see the previous declaration.
5907        PrevDecl = 0;
5908      } else if (S->isDeclScope(PrevDecl)) {
5909        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5910        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5911
5912        // Recover by removing the name
5913        II = 0;
5914        D.SetIdentifier(0, D.getIdentifierLoc());
5915        D.setInvalidType(true);
5916      }
5917    }
5918  }
5919
5920  // Temporarily put parameter variables in the translation unit, not
5921  // the enclosing context.  This prevents them from accidentally
5922  // looking like class members in C++.
5923  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5924                                    D.getSourceRange().getBegin(),
5925                                    D.getIdentifierLoc(), II,
5926                                    parmDeclType, TInfo,
5927                                    StorageClass, StorageClassAsWritten);
5928
5929  if (D.isInvalidType())
5930    New->setInvalidDecl();
5931
5932  assert(S->isFunctionPrototypeScope());
5933  assert(S->getFunctionPrototypeDepth() >= 1);
5934  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5935                    S->getNextFunctionPrototypeIndex());
5936
5937  // Add the parameter declaration into this scope.
5938  S->AddDecl(New);
5939  if (II)
5940    IdResolver.AddDecl(New);
5941
5942  ProcessDeclAttributes(S, New, D);
5943
5944  if (New->hasAttr<BlocksAttr>()) {
5945    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5946  }
5947  return New;
5948}
5949
5950/// \brief Synthesizes a variable for a parameter arising from a
5951/// typedef.
5952ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5953                                              SourceLocation Loc,
5954                                              QualType T) {
5955  /* FIXME: setting StartLoc == Loc.
5956     Would it be worth to modify callers so as to provide proper source
5957     location for the unnamed parameters, embedding the parameter's type? */
5958  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5959                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5960                                           SC_None, SC_None, 0);
5961  Param->setImplicit();
5962  return Param;
5963}
5964
5965void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5966                                    ParmVarDecl * const *ParamEnd) {
5967  // Don't diagnose unused-parameter errors in template instantiations; we
5968  // will already have done so in the template itself.
5969  if (!ActiveTemplateInstantiations.empty())
5970    return;
5971
5972  for (; Param != ParamEnd; ++Param) {
5973    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5974        !(*Param)->hasAttr<UnusedAttr>()) {
5975      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5976        << (*Param)->getDeclName();
5977    }
5978  }
5979}
5980
5981void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5982                                                  ParmVarDecl * const *ParamEnd,
5983                                                  QualType ReturnTy,
5984                                                  NamedDecl *D) {
5985  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5986    return;
5987
5988  // Warn if the return value is pass-by-value and larger than the specified
5989  // threshold.
5990  if (ReturnTy->isPODType()) {
5991    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5992    if (Size > LangOpts.NumLargeByValueCopy)
5993      Diag(D->getLocation(), diag::warn_return_value_size)
5994          << D->getDeclName() << Size;
5995  }
5996
5997  // Warn if any parameter is pass-by-value and larger than the specified
5998  // threshold.
5999  for (; Param != ParamEnd; ++Param) {
6000    QualType T = (*Param)->getType();
6001    if (!T->isPODType())
6002      continue;
6003    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6004    if (Size > LangOpts.NumLargeByValueCopy)
6005      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6006          << (*Param)->getDeclName() << Size;
6007  }
6008}
6009
6010ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6011                                  SourceLocation NameLoc, IdentifierInfo *Name,
6012                                  QualType T, TypeSourceInfo *TSInfo,
6013                                  VarDecl::StorageClass StorageClass,
6014                                  VarDecl::StorageClass StorageClassAsWritten) {
6015  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6016                                         adjustParameterType(T), TSInfo,
6017                                         StorageClass, StorageClassAsWritten,
6018                                         0);
6019
6020  // Parameters can not be abstract class types.
6021  // For record types, this is done by the AbstractClassUsageDiagnoser once
6022  // the class has been completely parsed.
6023  if (!CurContext->isRecord() &&
6024      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6025                             AbstractParamType))
6026    New->setInvalidDecl();
6027
6028  // Parameter declarators cannot be interface types. All ObjC objects are
6029  // passed by reference.
6030  if (T->isObjCObjectType()) {
6031    Diag(NameLoc,
6032         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6033    New->setInvalidDecl();
6034  }
6035
6036  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6037  // duration shall not be qualified by an address-space qualifier."
6038  // Since all parameters have automatic store duration, they can not have
6039  // an address space.
6040  if (T.getAddressSpace() != 0) {
6041    Diag(NameLoc, diag::err_arg_with_address_space);
6042    New->setInvalidDecl();
6043  }
6044
6045  return New;
6046}
6047
6048void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6049                                           SourceLocation LocAfterDecls) {
6050  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6051
6052  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6053  // for a K&R function.
6054  if (!FTI.hasPrototype) {
6055    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6056      --i;
6057      if (FTI.ArgInfo[i].Param == 0) {
6058        llvm::SmallString<256> Code;
6059        llvm::raw_svector_ostream(Code) << "  int "
6060                                        << FTI.ArgInfo[i].Ident->getName()
6061                                        << ";\n";
6062        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6063          << FTI.ArgInfo[i].Ident
6064          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6065
6066        // Implicitly declare the argument as type 'int' for lack of a better
6067        // type.
6068        AttributeFactory attrs;
6069        DeclSpec DS(attrs);
6070        const char* PrevSpec; // unused
6071        unsigned DiagID; // unused
6072        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6073                           PrevSpec, DiagID);
6074        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6075        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6076        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6077      }
6078    }
6079  }
6080}
6081
6082Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6083                                         Declarator &D) {
6084  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6085  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6086  Scope *ParentScope = FnBodyScope->getParent();
6087
6088  Decl *DP = HandleDeclarator(ParentScope, D,
6089                              MultiTemplateParamsArg(*this),
6090                              /*IsFunctionDefinition=*/true);
6091  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6092}
6093
6094static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6095  // Don't warn about invalid declarations.
6096  if (FD->isInvalidDecl())
6097    return false;
6098
6099  // Or declarations that aren't global.
6100  if (!FD->isGlobal())
6101    return false;
6102
6103  // Don't warn about C++ member functions.
6104  if (isa<CXXMethodDecl>(FD))
6105    return false;
6106
6107  // Don't warn about 'main'.
6108  if (FD->isMain())
6109    return false;
6110
6111  // Don't warn about inline functions.
6112  if (FD->isInlined())
6113    return false;
6114
6115  // Don't warn about function templates.
6116  if (FD->getDescribedFunctionTemplate())
6117    return false;
6118
6119  // Don't warn about function template specializations.
6120  if (FD->isFunctionTemplateSpecialization())
6121    return false;
6122
6123  bool MissingPrototype = true;
6124  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6125       Prev; Prev = Prev->getPreviousDeclaration()) {
6126    // Ignore any declarations that occur in function or method
6127    // scope, because they aren't visible from the header.
6128    if (Prev->getDeclContext()->isFunctionOrMethod())
6129      continue;
6130
6131    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6132    break;
6133  }
6134
6135  return MissingPrototype;
6136}
6137
6138void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6139  // Don't complain if we're in GNU89 mode and the previous definition
6140  // was an extern inline function.
6141  const FunctionDecl *Definition;
6142  if (FD->isDefined(Definition) &&
6143      !canRedefineFunction(Definition, getLangOptions())) {
6144    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6145        Definition->getStorageClass() == SC_Extern)
6146      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6147        << FD->getDeclName() << getLangOptions().CPlusPlus;
6148    else
6149      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6150    Diag(Definition->getLocation(), diag::note_previous_definition);
6151  }
6152}
6153
6154Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6155  // Clear the last template instantiation error context.
6156  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6157
6158  if (!D)
6159    return D;
6160  FunctionDecl *FD = 0;
6161
6162  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6163    FD = FunTmpl->getTemplatedDecl();
6164  else
6165    FD = cast<FunctionDecl>(D);
6166
6167  // Enter a new function scope
6168  PushFunctionScope();
6169
6170  // See if this is a redefinition.
6171  if (!FD->isLateTemplateParsed())
6172    CheckForFunctionRedefinition(FD);
6173
6174  // Builtin functions cannot be defined.
6175  if (unsigned BuiltinID = FD->getBuiltinID()) {
6176    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6177      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6178      FD->setInvalidDecl();
6179    }
6180  }
6181
6182  // The return type of a function definition must be complete
6183  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6184  QualType ResultType = FD->getResultType();
6185  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6186      !FD->isInvalidDecl() &&
6187      RequireCompleteType(FD->getLocation(), ResultType,
6188                          diag::err_func_def_incomplete_result))
6189    FD->setInvalidDecl();
6190
6191  // GNU warning -Wmissing-prototypes:
6192  //   Warn if a global function is defined without a previous
6193  //   prototype declaration. This warning is issued even if the
6194  //   definition itself provides a prototype. The aim is to detect
6195  //   global functions that fail to be declared in header files.
6196  if (ShouldWarnAboutMissingPrototype(FD))
6197    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6198
6199  if (FnBodyScope)
6200    PushDeclContext(FnBodyScope, FD);
6201
6202  // Check the validity of our function parameters
6203  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6204                           /*CheckParameterNames=*/true);
6205
6206  // Introduce our parameters into the function scope
6207  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6208    ParmVarDecl *Param = FD->getParamDecl(p);
6209    Param->setOwningFunction(FD);
6210
6211    // If this has an identifier, add it to the scope stack.
6212    if (Param->getIdentifier() && FnBodyScope) {
6213      CheckShadow(FnBodyScope, Param);
6214
6215      PushOnScopeChains(Param, FnBodyScope);
6216    }
6217  }
6218
6219  // Checking attributes of current function definition
6220  // dllimport attribute.
6221  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6222  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6223    // dllimport attribute cannot be directly applied to definition.
6224    // Microsoft accepts dllimport for functions defined within class scope.
6225    if (!DA->isInherited() &&
6226        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6227      Diag(FD->getLocation(),
6228           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6229        << "dllimport";
6230      FD->setInvalidDecl();
6231      return FD;
6232    }
6233
6234    // Visual C++ appears to not think this is an issue, so only issue
6235    // a warning when Microsoft extensions are disabled.
6236    if (!LangOpts.Microsoft) {
6237      // If a symbol previously declared dllimport is later defined, the
6238      // attribute is ignored in subsequent references, and a warning is
6239      // emitted.
6240      Diag(FD->getLocation(),
6241           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6242        << FD->getName() << "dllimport";
6243    }
6244  }
6245  return FD;
6246}
6247
6248/// \brief Given the set of return statements within a function body,
6249/// compute the variables that are subject to the named return value
6250/// optimization.
6251///
6252/// Each of the variables that is subject to the named return value
6253/// optimization will be marked as NRVO variables in the AST, and any
6254/// return statement that has a marked NRVO variable as its NRVO candidate can
6255/// use the named return value optimization.
6256///
6257/// This function applies a very simplistic algorithm for NRVO: if every return
6258/// statement in the function has the same NRVO candidate, that candidate is
6259/// the NRVO variable.
6260///
6261/// FIXME: Employ a smarter algorithm that accounts for multiple return
6262/// statements and the lifetimes of the NRVO candidates. We should be able to
6263/// find a maximal set of NRVO variables.
6264static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6265  ReturnStmt **Returns = Scope->Returns.data();
6266
6267  const VarDecl *NRVOCandidate = 0;
6268  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6269    if (!Returns[I]->getNRVOCandidate())
6270      return;
6271
6272    if (!NRVOCandidate)
6273      NRVOCandidate = Returns[I]->getNRVOCandidate();
6274    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6275      return;
6276  }
6277
6278  if (NRVOCandidate)
6279    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6280}
6281
6282Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6283  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6284}
6285
6286Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6287                                    bool IsInstantiation) {
6288  FunctionDecl *FD = 0;
6289  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6290  if (FunTmpl)
6291    FD = FunTmpl->getTemplatedDecl();
6292  else
6293    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6294
6295  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6296  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6297
6298  if (FD) {
6299    FD->setBody(Body);
6300    if (FD->isMain()) {
6301      // C and C++ allow for main to automagically return 0.
6302      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6303      FD->setHasImplicitReturnZero(true);
6304      WP.disableCheckFallThrough();
6305    }
6306
6307    if (!FD->isInvalidDecl()) {
6308      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6309      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6310                                             FD->getResultType(), FD);
6311
6312      // If this is a constructor, we need a vtable.
6313      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6314        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6315
6316      ComputeNRVO(Body, getCurFunction());
6317    }
6318
6319    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6320  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6321    assert(MD == getCurMethodDecl() && "Method parsing confused");
6322    MD->setBody(Body);
6323    if (Body)
6324      MD->setEndLoc(Body->getLocEnd());
6325    if (!MD->isInvalidDecl()) {
6326      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6327      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6328                                             MD->getResultType(), MD);
6329    }
6330  } else {
6331    return 0;
6332  }
6333
6334  // Verify and clean out per-function state.
6335  if (Body) {
6336    // C++ constructors that have function-try-blocks can't have return
6337    // statements in the handlers of that block. (C++ [except.handle]p14)
6338    // Verify this.
6339    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6340      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6341
6342    // Verify that that gotos and switch cases don't jump into scopes illegally.
6343    // Verify that that gotos and switch cases don't jump into scopes illegally.
6344    if (getCurFunction()->NeedsScopeChecking() &&
6345        !dcl->isInvalidDecl() &&
6346        !hasAnyErrorsInThisFunction())
6347      DiagnoseInvalidJumps(Body);
6348
6349    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6350      if (!Destructor->getParent()->isDependentType())
6351        CheckDestructor(Destructor);
6352
6353      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6354                                             Destructor->getParent());
6355    }
6356
6357    // If any errors have occurred, clear out any temporaries that may have
6358    // been leftover. This ensures that these temporaries won't be picked up for
6359    // deletion in some later function.
6360    if (PP.getDiagnostics().hasErrorOccurred() ||
6361        PP.getDiagnostics().getSuppressAllDiagnostics())
6362      ExprTemporaries.clear();
6363    else if (!isa<FunctionTemplateDecl>(dcl)) {
6364      // Since the body is valid, issue any analysis-based warnings that are
6365      // enabled.
6366      ActivePolicy = &WP;
6367    }
6368
6369    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6370  }
6371
6372  if (!IsInstantiation)
6373    PopDeclContext();
6374
6375  PopFunctionOrBlockScope(ActivePolicy, dcl);
6376
6377  // If any errors have occurred, clear out any temporaries that may have
6378  // been leftover. This ensures that these temporaries won't be picked up for
6379  // deletion in some later function.
6380  if (getDiagnostics().hasErrorOccurred())
6381    ExprTemporaries.clear();
6382
6383  return dcl;
6384}
6385
6386/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6387/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6388NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6389                                          IdentifierInfo &II, Scope *S) {
6390  // Before we produce a declaration for an implicitly defined
6391  // function, see whether there was a locally-scoped declaration of
6392  // this name as a function or variable. If so, use that
6393  // (non-visible) declaration, and complain about it.
6394  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6395    = LocallyScopedExternalDecls.find(&II);
6396  if (Pos != LocallyScopedExternalDecls.end()) {
6397    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6398    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6399    return Pos->second;
6400  }
6401
6402  // Extension in C99.  Legal in C90, but warn about it.
6403  if (II.getName().startswith("__builtin_"))
6404    Diag(Loc, diag::warn_builtin_unknown) << &II;
6405  else if (getLangOptions().C99)
6406    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6407  else
6408    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6409
6410  // Set a Declarator for the implicit definition: int foo();
6411  const char *Dummy;
6412  AttributeFactory attrFactory;
6413  DeclSpec DS(attrFactory);
6414  unsigned DiagID;
6415  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6416  (void)Error; // Silence warning.
6417  assert(!Error && "Error setting up implicit decl!");
6418  Declarator D(DS, Declarator::BlockContext);
6419  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6420                                             0, 0, true, SourceLocation(),
6421                                             EST_None, SourceLocation(),
6422                                             0, 0, 0, 0, Loc, Loc, D),
6423                DS.getAttributes(),
6424                SourceLocation());
6425  D.SetIdentifier(&II, Loc);
6426
6427  // Insert this function into translation-unit scope.
6428
6429  DeclContext *PrevDC = CurContext;
6430  CurContext = Context.getTranslationUnitDecl();
6431
6432  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6433  FD->setImplicit();
6434
6435  CurContext = PrevDC;
6436
6437  AddKnownFunctionAttributes(FD);
6438
6439  return FD;
6440}
6441
6442/// \brief Adds any function attributes that we know a priori based on
6443/// the declaration of this function.
6444///
6445/// These attributes can apply both to implicitly-declared builtins
6446/// (like __builtin___printf_chk) or to library-declared functions
6447/// like NSLog or printf.
6448void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6449  if (FD->isInvalidDecl())
6450    return;
6451
6452  // If this is a built-in function, map its builtin attributes to
6453  // actual attributes.
6454  if (unsigned BuiltinID = FD->getBuiltinID()) {
6455    // Handle printf-formatting attributes.
6456    unsigned FormatIdx;
6457    bool HasVAListArg;
6458    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6459      if (!FD->getAttr<FormatAttr>())
6460        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6461                                                "printf", FormatIdx+1,
6462                                               HasVAListArg ? 0 : FormatIdx+2));
6463    }
6464    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6465                                             HasVAListArg)) {
6466     if (!FD->getAttr<FormatAttr>())
6467       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6468                                              "scanf", FormatIdx+1,
6469                                              HasVAListArg ? 0 : FormatIdx+2));
6470    }
6471
6472    // Mark const if we don't care about errno and that is the only
6473    // thing preventing the function from being const. This allows
6474    // IRgen to use LLVM intrinsics for such functions.
6475    if (!getLangOptions().MathErrno &&
6476        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6477      if (!FD->getAttr<ConstAttr>())
6478        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6479    }
6480
6481    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6482      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6483    if (Context.BuiltinInfo.isConst(BuiltinID))
6484      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6485  }
6486
6487  IdentifierInfo *Name = FD->getIdentifier();
6488  if (!Name)
6489    return;
6490  if ((!getLangOptions().CPlusPlus &&
6491       FD->getDeclContext()->isTranslationUnit()) ||
6492      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6493       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6494       LinkageSpecDecl::lang_c)) {
6495    // Okay: this could be a libc/libm/Objective-C function we know
6496    // about.
6497  } else
6498    return;
6499
6500  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6501    // FIXME: NSLog and NSLogv should be target specific
6502    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6503      // FIXME: We known better than our headers.
6504      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6505    } else
6506      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6507                                             "printf", 1,
6508                                             Name->isStr("NSLogv") ? 0 : 2));
6509  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6510    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6511    // target-specific builtins, perhaps?
6512    if (!FD->getAttr<FormatAttr>())
6513      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6514                                             "printf", 2,
6515                                             Name->isStr("vasprintf") ? 0 : 3));
6516  }
6517}
6518
6519TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6520                                    TypeSourceInfo *TInfo) {
6521  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6522  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6523
6524  if (!TInfo) {
6525    assert(D.isInvalidType() && "no declarator info for valid type");
6526    TInfo = Context.getTrivialTypeSourceInfo(T);
6527  }
6528
6529  // Scope manipulation handled by caller.
6530  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6531                                           D.getSourceRange().getBegin(),
6532                                           D.getIdentifierLoc(),
6533                                           D.getIdentifier(),
6534                                           TInfo);
6535
6536  // Bail out immediately if we have an invalid declaration.
6537  if (D.isInvalidType()) {
6538    NewTD->setInvalidDecl();
6539    return NewTD;
6540  }
6541
6542  // C++ [dcl.typedef]p8:
6543  //   If the typedef declaration defines an unnamed class (or
6544  //   enum), the first typedef-name declared by the declaration
6545  //   to be that class type (or enum type) is used to denote the
6546  //   class type (or enum type) for linkage purposes only.
6547  // We need to check whether the type was declared in the declaration.
6548  switch (D.getDeclSpec().getTypeSpecType()) {
6549  case TST_enum:
6550  case TST_struct:
6551  case TST_union:
6552  case TST_class: {
6553    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6554
6555    // Do nothing if the tag is not anonymous or already has an
6556    // associated typedef (from an earlier typedef in this decl group).
6557    if (tagFromDeclSpec->getIdentifier()) break;
6558    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6559
6560    // A well-formed anonymous tag must always be a TUK_Definition.
6561    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6562
6563    // The type must match the tag exactly;  no qualifiers allowed.
6564    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6565      break;
6566
6567    // Otherwise, set this is the anon-decl typedef for the tag.
6568    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6569    break;
6570  }
6571
6572  default:
6573    break;
6574  }
6575
6576  return NewTD;
6577}
6578
6579
6580/// \brief Determine whether a tag with a given kind is acceptable
6581/// as a redeclaration of the given tag declaration.
6582///
6583/// \returns true if the new tag kind is acceptable, false otherwise.
6584bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6585                                        TagTypeKind NewTag,
6586                                        SourceLocation NewTagLoc,
6587                                        const IdentifierInfo &Name) {
6588  // C++ [dcl.type.elab]p3:
6589  //   The class-key or enum keyword present in the
6590  //   elaborated-type-specifier shall agree in kind with the
6591  //   declaration to which the name in the elaborated-type-specifier
6592  //   refers. This rule also applies to the form of
6593  //   elaborated-type-specifier that declares a class-name or
6594  //   friend class since it can be construed as referring to the
6595  //   definition of the class. Thus, in any
6596  //   elaborated-type-specifier, the enum keyword shall be used to
6597  //   refer to an enumeration (7.2), the union class-key shall be
6598  //   used to refer to a union (clause 9), and either the class or
6599  //   struct class-key shall be used to refer to a class (clause 9)
6600  //   declared using the class or struct class-key.
6601  TagTypeKind OldTag = Previous->getTagKind();
6602  if (OldTag == NewTag)
6603    return true;
6604
6605  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6606      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6607    // Warn about the struct/class tag mismatch.
6608    bool isTemplate = false;
6609    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6610      isTemplate = Record->getDescribedClassTemplate();
6611
6612    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6613      << (NewTag == TTK_Class)
6614      << isTemplate << &Name
6615      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6616                              OldTag == TTK_Class? "class" : "struct");
6617    Diag(Previous->getLocation(), diag::note_previous_use);
6618    return true;
6619  }
6620  return false;
6621}
6622
6623/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6624/// former case, Name will be non-null.  In the later case, Name will be null.
6625/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6626/// reference/declaration/definition of a tag.
6627Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6628                     SourceLocation KWLoc, CXXScopeSpec &SS,
6629                     IdentifierInfo *Name, SourceLocation NameLoc,
6630                     AttributeList *Attr, AccessSpecifier AS,
6631                     MultiTemplateParamsArg TemplateParameterLists,
6632                     bool &OwnedDecl, bool &IsDependent,
6633                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6634                     TypeResult UnderlyingType) {
6635  // If this is not a definition, it must have a name.
6636  assert((Name != 0 || TUK == TUK_Definition) &&
6637         "Nameless record must be a definition!");
6638  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6639
6640  OwnedDecl = false;
6641  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6642
6643  // FIXME: Check explicit specializations more carefully.
6644  bool isExplicitSpecialization = false;
6645  bool Invalid = false;
6646
6647  // We only need to do this matching if we have template parameters
6648  // or a scope specifier, which also conveniently avoids this work
6649  // for non-C++ cases.
6650  if (TemplateParameterLists.size() > 0 ||
6651      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6652    if (TemplateParameterList *TemplateParams
6653          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6654                                                TemplateParameterLists.get(),
6655                                                TemplateParameterLists.size(),
6656                                                    TUK == TUK_Friend,
6657                                                    isExplicitSpecialization,
6658                                                    Invalid)) {
6659      if (TemplateParams->size() > 0) {
6660        // This is a declaration or definition of a class template (which may
6661        // be a member of another template).
6662
6663        if (Invalid)
6664          return 0;
6665
6666        OwnedDecl = false;
6667        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6668                                               SS, Name, NameLoc, Attr,
6669                                               TemplateParams, AS,
6670                                           TemplateParameterLists.size() - 1,
6671                 (TemplateParameterList**) TemplateParameterLists.release());
6672        return Result.get();
6673      } else {
6674        // The "template<>" header is extraneous.
6675        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6676          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6677        isExplicitSpecialization = true;
6678      }
6679    }
6680  }
6681
6682  // Figure out the underlying type if this a enum declaration. We need to do
6683  // this early, because it's needed to detect if this is an incompatible
6684  // redeclaration.
6685  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6686
6687  if (Kind == TTK_Enum) {
6688    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6689      // No underlying type explicitly specified, or we failed to parse the
6690      // type, default to int.
6691      EnumUnderlying = Context.IntTy.getTypePtr();
6692    else if (UnderlyingType.get()) {
6693      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6694      // integral type; any cv-qualification is ignored.
6695      TypeSourceInfo *TI = 0;
6696      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6697      EnumUnderlying = TI;
6698
6699      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6700
6701      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6702        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6703          << T;
6704        // Recover by falling back to int.
6705        EnumUnderlying = Context.IntTy.getTypePtr();
6706      }
6707
6708      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6709                                          UPPC_FixedUnderlyingType))
6710        EnumUnderlying = Context.IntTy.getTypePtr();
6711
6712    } else if (getLangOptions().Microsoft)
6713      // Microsoft enums are always of int type.
6714      EnumUnderlying = Context.IntTy.getTypePtr();
6715  }
6716
6717  DeclContext *SearchDC = CurContext;
6718  DeclContext *DC = CurContext;
6719  bool isStdBadAlloc = false;
6720
6721  RedeclarationKind Redecl = ForRedeclaration;
6722  if (TUK == TUK_Friend || TUK == TUK_Reference)
6723    Redecl = NotForRedeclaration;
6724
6725  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6726
6727  if (Name && SS.isNotEmpty()) {
6728    // We have a nested-name tag ('struct foo::bar').
6729
6730    // Check for invalid 'foo::'.
6731    if (SS.isInvalid()) {
6732      Name = 0;
6733      goto CreateNewDecl;
6734    }
6735
6736    // If this is a friend or a reference to a class in a dependent
6737    // context, don't try to make a decl for it.
6738    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6739      DC = computeDeclContext(SS, false);
6740      if (!DC) {
6741        IsDependent = true;
6742        return 0;
6743      }
6744    } else {
6745      DC = computeDeclContext(SS, true);
6746      if (!DC) {
6747        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6748          << SS.getRange();
6749        return 0;
6750      }
6751    }
6752
6753    if (RequireCompleteDeclContext(SS, DC))
6754      return 0;
6755
6756    SearchDC = DC;
6757    // Look-up name inside 'foo::'.
6758    LookupQualifiedName(Previous, DC);
6759
6760    if (Previous.isAmbiguous())
6761      return 0;
6762
6763    if (Previous.empty()) {
6764      // Name lookup did not find anything. However, if the
6765      // nested-name-specifier refers to the current instantiation,
6766      // and that current instantiation has any dependent base
6767      // classes, we might find something at instantiation time: treat
6768      // this as a dependent elaborated-type-specifier.
6769      // But this only makes any sense for reference-like lookups.
6770      if (Previous.wasNotFoundInCurrentInstantiation() &&
6771          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6772        IsDependent = true;
6773        return 0;
6774      }
6775
6776      // A tag 'foo::bar' must already exist.
6777      Diag(NameLoc, diag::err_not_tag_in_scope)
6778        << Kind << Name << DC << SS.getRange();
6779      Name = 0;
6780      Invalid = true;
6781      goto CreateNewDecl;
6782    }
6783  } else if (Name) {
6784    // If this is a named struct, check to see if there was a previous forward
6785    // declaration or definition.
6786    // FIXME: We're looking into outer scopes here, even when we
6787    // shouldn't be. Doing so can result in ambiguities that we
6788    // shouldn't be diagnosing.
6789    LookupName(Previous, S);
6790
6791    if (Previous.isAmbiguous() &&
6792        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6793      LookupResult::Filter F = Previous.makeFilter();
6794      while (F.hasNext()) {
6795        NamedDecl *ND = F.next();
6796        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6797          F.erase();
6798      }
6799      F.done();
6800    }
6801
6802    // Note:  there used to be some attempt at recovery here.
6803    if (Previous.isAmbiguous())
6804      return 0;
6805
6806    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6807      // FIXME: This makes sure that we ignore the contexts associated
6808      // with C structs, unions, and enums when looking for a matching
6809      // tag declaration or definition. See the similar lookup tweak
6810      // in Sema::LookupName; is there a better way to deal with this?
6811      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6812        SearchDC = SearchDC->getParent();
6813    }
6814  } else if (S->isFunctionPrototypeScope()) {
6815    // If this is an enum declaration in function prototype scope, set its
6816    // initial context to the translation unit.
6817    SearchDC = Context.getTranslationUnitDecl();
6818  }
6819
6820  if (Previous.isSingleResult() &&
6821      Previous.getFoundDecl()->isTemplateParameter()) {
6822    // Maybe we will complain about the shadowed template parameter.
6823    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6824    // Just pretend that we didn't see the previous declaration.
6825    Previous.clear();
6826  }
6827
6828  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6829      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6830    // This is a declaration of or a reference to "std::bad_alloc".
6831    isStdBadAlloc = true;
6832
6833    if (Previous.empty() && StdBadAlloc) {
6834      // std::bad_alloc has been implicitly declared (but made invisible to
6835      // name lookup). Fill in this implicit declaration as the previous
6836      // declaration, so that the declarations get chained appropriately.
6837      Previous.addDecl(getStdBadAlloc());
6838    }
6839  }
6840
6841  // If we didn't find a previous declaration, and this is a reference
6842  // (or friend reference), move to the correct scope.  In C++, we
6843  // also need to do a redeclaration lookup there, just in case
6844  // there's a shadow friend decl.
6845  if (Name && Previous.empty() &&
6846      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6847    if (Invalid) goto CreateNewDecl;
6848    assert(SS.isEmpty());
6849
6850    if (TUK == TUK_Reference) {
6851      // C++ [basic.scope.pdecl]p5:
6852      //   -- for an elaborated-type-specifier of the form
6853      //
6854      //          class-key identifier
6855      //
6856      //      if the elaborated-type-specifier is used in the
6857      //      decl-specifier-seq or parameter-declaration-clause of a
6858      //      function defined in namespace scope, the identifier is
6859      //      declared as a class-name in the namespace that contains
6860      //      the declaration; otherwise, except as a friend
6861      //      declaration, the identifier is declared in the smallest
6862      //      non-class, non-function-prototype scope that contains the
6863      //      declaration.
6864      //
6865      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6866      // C structs and unions.
6867      //
6868      // It is an error in C++ to declare (rather than define) an enum
6869      // type, including via an elaborated type specifier.  We'll
6870      // diagnose that later; for now, declare the enum in the same
6871      // scope as we would have picked for any other tag type.
6872      //
6873      // GNU C also supports this behavior as part of its incomplete
6874      // enum types extension, while GNU C++ does not.
6875      //
6876      // Find the context where we'll be declaring the tag.
6877      // FIXME: We would like to maintain the current DeclContext as the
6878      // lexical context,
6879      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6880        SearchDC = SearchDC->getParent();
6881
6882      // Find the scope where we'll be declaring the tag.
6883      while (S->isClassScope() ||
6884             (getLangOptions().CPlusPlus &&
6885              S->isFunctionPrototypeScope()) ||
6886             ((S->getFlags() & Scope::DeclScope) == 0) ||
6887             (S->getEntity() &&
6888              ((DeclContext *)S->getEntity())->isTransparentContext()))
6889        S = S->getParent();
6890    } else {
6891      assert(TUK == TUK_Friend);
6892      // C++ [namespace.memdef]p3:
6893      //   If a friend declaration in a non-local class first declares a
6894      //   class or function, the friend class or function is a member of
6895      //   the innermost enclosing namespace.
6896      SearchDC = SearchDC->getEnclosingNamespaceContext();
6897    }
6898
6899    // In C++, we need to do a redeclaration lookup to properly
6900    // diagnose some problems.
6901    if (getLangOptions().CPlusPlus) {
6902      Previous.setRedeclarationKind(ForRedeclaration);
6903      LookupQualifiedName(Previous, SearchDC);
6904    }
6905  }
6906
6907  if (!Previous.empty()) {
6908    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6909
6910    // It's okay to have a tag decl in the same scope as a typedef
6911    // which hides a tag decl in the same scope.  Finding this
6912    // insanity with a redeclaration lookup can only actually happen
6913    // in C++.
6914    //
6915    // This is also okay for elaborated-type-specifiers, which is
6916    // technically forbidden by the current standard but which is
6917    // okay according to the likely resolution of an open issue;
6918    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6919    if (getLangOptions().CPlusPlus) {
6920      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6921        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6922          TagDecl *Tag = TT->getDecl();
6923          if (Tag->getDeclName() == Name &&
6924              Tag->getDeclContext()->getRedeclContext()
6925                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6926            PrevDecl = Tag;
6927            Previous.clear();
6928            Previous.addDecl(Tag);
6929            Previous.resolveKind();
6930          }
6931        }
6932      }
6933    }
6934
6935    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6936      // If this is a use of a previous tag, or if the tag is already declared
6937      // in the same scope (so that the definition/declaration completes or
6938      // rementions the tag), reuse the decl.
6939      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6940          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6941        // Make sure that this wasn't declared as an enum and now used as a
6942        // struct or something similar.
6943        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6944          bool SafeToContinue
6945            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6946               Kind != TTK_Enum);
6947          if (SafeToContinue)
6948            Diag(KWLoc, diag::err_use_with_wrong_tag)
6949              << Name
6950              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6951                                              PrevTagDecl->getKindName());
6952          else
6953            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6954          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6955
6956          if (SafeToContinue)
6957            Kind = PrevTagDecl->getTagKind();
6958          else {
6959            // Recover by making this an anonymous redefinition.
6960            Name = 0;
6961            Previous.clear();
6962            Invalid = true;
6963          }
6964        }
6965
6966        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6967          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6968
6969          // All conflicts with previous declarations are recovered by
6970          // returning the previous declaration.
6971          if (ScopedEnum != PrevEnum->isScoped()) {
6972            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6973              << PrevEnum->isScoped();
6974            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6975            return PrevTagDecl;
6976          }
6977          else if (EnumUnderlying && PrevEnum->isFixed()) {
6978            QualType T;
6979            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6980                T = TI->getType();
6981            else
6982                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6983
6984            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6985              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6986                   diag::err_enum_redeclare_type_mismatch)
6987                << T
6988                << PrevEnum->getIntegerType();
6989              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6990              return PrevTagDecl;
6991            }
6992          }
6993          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6994            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6995              << PrevEnum->isFixed();
6996            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6997            return PrevTagDecl;
6998          }
6999        }
7000
7001        if (!Invalid) {
7002          // If this is a use, just return the declaration we found.
7003
7004          // FIXME: In the future, return a variant or some other clue
7005          // for the consumer of this Decl to know it doesn't own it.
7006          // For our current ASTs this shouldn't be a problem, but will
7007          // need to be changed with DeclGroups.
7008          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
7009              TUK == TUK_Friend)
7010            return PrevTagDecl;
7011
7012          // Diagnose attempts to redefine a tag.
7013          if (TUK == TUK_Definition) {
7014            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7015              // If we're defining a specialization and the previous definition
7016              // is from an implicit instantiation, don't emit an error
7017              // here; we'll catch this in the general case below.
7018              if (!isExplicitSpecialization ||
7019                  !isa<CXXRecordDecl>(Def) ||
7020                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7021                                               == TSK_ExplicitSpecialization) {
7022                Diag(NameLoc, diag::err_redefinition) << Name;
7023                Diag(Def->getLocation(), diag::note_previous_definition);
7024                // If this is a redefinition, recover by making this
7025                // struct be anonymous, which will make any later
7026                // references get the previous definition.
7027                Name = 0;
7028                Previous.clear();
7029                Invalid = true;
7030              }
7031            } else {
7032              // If the type is currently being defined, complain
7033              // about a nested redefinition.
7034              const TagType *Tag
7035                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7036              if (Tag->isBeingDefined()) {
7037                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7038                Diag(PrevTagDecl->getLocation(),
7039                     diag::note_previous_definition);
7040                Name = 0;
7041                Previous.clear();
7042                Invalid = true;
7043              }
7044            }
7045
7046            // Okay, this is definition of a previously declared or referenced
7047            // tag PrevDecl. We're going to create a new Decl for it.
7048          }
7049        }
7050        // If we get here we have (another) forward declaration or we
7051        // have a definition.  Just create a new decl.
7052
7053      } else {
7054        // If we get here, this is a definition of a new tag type in a nested
7055        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7056        // new decl/type.  We set PrevDecl to NULL so that the entities
7057        // have distinct types.
7058        Previous.clear();
7059      }
7060      // If we get here, we're going to create a new Decl. If PrevDecl
7061      // is non-NULL, it's a definition of the tag declared by
7062      // PrevDecl. If it's NULL, we have a new definition.
7063
7064
7065    // Otherwise, PrevDecl is not a tag, but was found with tag
7066    // lookup.  This is only actually possible in C++, where a few
7067    // things like templates still live in the tag namespace.
7068    } else {
7069      assert(getLangOptions().CPlusPlus);
7070
7071      // Use a better diagnostic if an elaborated-type-specifier
7072      // found the wrong kind of type on the first
7073      // (non-redeclaration) lookup.
7074      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7075          !Previous.isForRedeclaration()) {
7076        unsigned Kind = 0;
7077        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7078        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7079        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7080        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7081        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7082        Invalid = true;
7083
7084      // Otherwise, only diagnose if the declaration is in scope.
7085      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7086                                isExplicitSpecialization)) {
7087        // do nothing
7088
7089      // Diagnose implicit declarations introduced by elaborated types.
7090      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7091        unsigned Kind = 0;
7092        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7093        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7094        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7095        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7096        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7097        Invalid = true;
7098
7099      // Otherwise it's a declaration.  Call out a particularly common
7100      // case here.
7101      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7102        unsigned Kind = 0;
7103        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7104        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7105          << Name << Kind << TND->getUnderlyingType();
7106        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7107        Invalid = true;
7108
7109      // Otherwise, diagnose.
7110      } else {
7111        // The tag name clashes with something else in the target scope,
7112        // issue an error and recover by making this tag be anonymous.
7113        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7114        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7115        Name = 0;
7116        Invalid = true;
7117      }
7118
7119      // The existing declaration isn't relevant to us; we're in a
7120      // new scope, so clear out the previous declaration.
7121      Previous.clear();
7122    }
7123  }
7124
7125CreateNewDecl:
7126
7127  TagDecl *PrevDecl = 0;
7128  if (Previous.isSingleResult())
7129    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7130
7131  // If there is an identifier, use the location of the identifier as the
7132  // location of the decl, otherwise use the location of the struct/union
7133  // keyword.
7134  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7135
7136  // Otherwise, create a new declaration. If there is a previous
7137  // declaration of the same entity, the two will be linked via
7138  // PrevDecl.
7139  TagDecl *New;
7140
7141  bool IsForwardReference = false;
7142  if (Kind == TTK_Enum) {
7143    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7144    // enum X { A, B, C } D;    D should chain to X.
7145    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7146                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7147                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7148    // If this is an undefined enum, warn.
7149    if (TUK != TUK_Definition && !Invalid) {
7150      TagDecl *Def;
7151      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7152        // C++0x: 7.2p2: opaque-enum-declaration.
7153        // Conflicts are diagnosed above. Do nothing.
7154      }
7155      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7156        Diag(Loc, diag::ext_forward_ref_enum_def)
7157          << New;
7158        Diag(Def->getLocation(), diag::note_previous_definition);
7159      } else {
7160        unsigned DiagID = diag::ext_forward_ref_enum;
7161        if (getLangOptions().Microsoft)
7162          DiagID = diag::ext_ms_forward_ref_enum;
7163        else if (getLangOptions().CPlusPlus)
7164          DiagID = diag::err_forward_ref_enum;
7165        Diag(Loc, DiagID);
7166
7167        // If this is a forward-declared reference to an enumeration, make a
7168        // note of it; we won't actually be introducing the declaration into
7169        // the declaration context.
7170        if (TUK == TUK_Reference)
7171          IsForwardReference = true;
7172      }
7173    }
7174
7175    if (EnumUnderlying) {
7176      EnumDecl *ED = cast<EnumDecl>(New);
7177      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7178        ED->setIntegerTypeSourceInfo(TI);
7179      else
7180        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7181      ED->setPromotionType(ED->getIntegerType());
7182    }
7183
7184  } else {
7185    // struct/union/class
7186
7187    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7188    // struct X { int A; } D;    D should chain to X.
7189    if (getLangOptions().CPlusPlus) {
7190      // FIXME: Look for a way to use RecordDecl for simple structs.
7191      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7192                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7193
7194      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7195        StdBadAlloc = cast<CXXRecordDecl>(New);
7196    } else
7197      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7198                               cast_or_null<RecordDecl>(PrevDecl));
7199  }
7200
7201  // Maybe add qualifier info.
7202  if (SS.isNotEmpty()) {
7203    if (SS.isSet()) {
7204      New->setQualifierInfo(SS.getWithLocInContext(Context));
7205      if (TemplateParameterLists.size() > 0) {
7206        New->setTemplateParameterListsInfo(Context,
7207                                           TemplateParameterLists.size(),
7208                    (TemplateParameterList**) TemplateParameterLists.release());
7209      }
7210    }
7211    else
7212      Invalid = true;
7213  }
7214
7215  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7216    // Add alignment attributes if necessary; these attributes are checked when
7217    // the ASTContext lays out the structure.
7218    //
7219    // It is important for implementing the correct semantics that this
7220    // happen here (in act on tag decl). The #pragma pack stack is
7221    // maintained as a result of parser callbacks which can occur at
7222    // many points during the parsing of a struct declaration (because
7223    // the #pragma tokens are effectively skipped over during the
7224    // parsing of the struct).
7225    AddAlignmentAttributesForRecord(RD);
7226
7227    AddMsStructLayoutForRecord(RD);
7228  }
7229
7230  // If this is a specialization of a member class (of a class template),
7231  // check the specialization.
7232  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7233    Invalid = true;
7234
7235  if (Invalid)
7236    New->setInvalidDecl();
7237
7238  if (Attr)
7239    ProcessDeclAttributeList(S, New, Attr);
7240
7241  // If we're declaring or defining a tag in function prototype scope
7242  // in C, note that this type can only be used within the function.
7243  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7244    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7245
7246  // Set the lexical context. If the tag has a C++ scope specifier, the
7247  // lexical context will be different from the semantic context.
7248  New->setLexicalDeclContext(CurContext);
7249
7250  // Mark this as a friend decl if applicable.
7251  if (TUK == TUK_Friend)
7252    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7253
7254  // Set the access specifier.
7255  if (!Invalid && SearchDC->isRecord())
7256    SetMemberAccessSpecifier(New, PrevDecl, AS);
7257
7258  if (TUK == TUK_Definition)
7259    New->startDefinition();
7260
7261  // If this has an identifier, add it to the scope stack.
7262  if (TUK == TUK_Friend) {
7263    // We might be replacing an existing declaration in the lookup tables;
7264    // if so, borrow its access specifier.
7265    if (PrevDecl)
7266      New->setAccess(PrevDecl->getAccess());
7267
7268    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7269    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7270    if (Name) // can be null along some error paths
7271      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7272        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7273  } else if (Name) {
7274    S = getNonFieldDeclScope(S);
7275    PushOnScopeChains(New, S, !IsForwardReference);
7276    if (IsForwardReference)
7277      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7278
7279  } else {
7280    CurContext->addDecl(New);
7281  }
7282
7283  // If this is the C FILE type, notify the AST context.
7284  if (IdentifierInfo *II = New->getIdentifier())
7285    if (!New->isInvalidDecl() &&
7286        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7287        II->isStr("FILE"))
7288      Context.setFILEDecl(New);
7289
7290  OwnedDecl = true;
7291  return New;
7292}
7293
7294void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7295  AdjustDeclIfTemplate(TagD);
7296  TagDecl *Tag = cast<TagDecl>(TagD);
7297
7298  // Enter the tag context.
7299  PushDeclContext(S, Tag);
7300}
7301
7302void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7303                                           SourceLocation FinalLoc,
7304                                           SourceLocation LBraceLoc) {
7305  AdjustDeclIfTemplate(TagD);
7306  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7307
7308  FieldCollector->StartClass();
7309
7310  if (!Record->getIdentifier())
7311    return;
7312
7313  if (FinalLoc.isValid())
7314    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7315
7316  // C++ [class]p2:
7317  //   [...] The class-name is also inserted into the scope of the
7318  //   class itself; this is known as the injected-class-name. For
7319  //   purposes of access checking, the injected-class-name is treated
7320  //   as if it were a public member name.
7321  CXXRecordDecl *InjectedClassName
7322    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7323                            Record->getLocStart(), Record->getLocation(),
7324                            Record->getIdentifier(),
7325                            /*PrevDecl=*/0,
7326                            /*DelayTypeCreation=*/true);
7327  Context.getTypeDeclType(InjectedClassName, Record);
7328  InjectedClassName->setImplicit();
7329  InjectedClassName->setAccess(AS_public);
7330  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7331      InjectedClassName->setDescribedClassTemplate(Template);
7332  PushOnScopeChains(InjectedClassName, S);
7333  assert(InjectedClassName->isInjectedClassName() &&
7334         "Broken injected-class-name");
7335}
7336
7337void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7338                                    SourceLocation RBraceLoc) {
7339  AdjustDeclIfTemplate(TagD);
7340  TagDecl *Tag = cast<TagDecl>(TagD);
7341  Tag->setRBraceLoc(RBraceLoc);
7342
7343  if (isa<CXXRecordDecl>(Tag))
7344    FieldCollector->FinishClass();
7345
7346  // Exit this scope of this tag's definition.
7347  PopDeclContext();
7348
7349  // Notify the consumer that we've defined a tag.
7350  Consumer.HandleTagDeclDefinition(Tag);
7351}
7352
7353void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7354  AdjustDeclIfTemplate(TagD);
7355  TagDecl *Tag = cast<TagDecl>(TagD);
7356  Tag->setInvalidDecl();
7357
7358  // We're undoing ActOnTagStartDefinition here, not
7359  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7360  // the FieldCollector.
7361
7362  PopDeclContext();
7363}
7364
7365// Note that FieldName may be null for anonymous bitfields.
7366bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7367                          QualType FieldTy, const Expr *BitWidth,
7368                          bool *ZeroWidth) {
7369  // Default to true; that shouldn't confuse checks for emptiness
7370  if (ZeroWidth)
7371    *ZeroWidth = true;
7372
7373  // C99 6.7.2.1p4 - verify the field type.
7374  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7375  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7376    // Handle incomplete types with specific error.
7377    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7378      return true;
7379    if (FieldName)
7380      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7381        << FieldName << FieldTy << BitWidth->getSourceRange();
7382    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7383      << FieldTy << BitWidth->getSourceRange();
7384  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7385                                             UPPC_BitFieldWidth))
7386    return true;
7387
7388  // If the bit-width is type- or value-dependent, don't try to check
7389  // it now.
7390  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7391    return false;
7392
7393  llvm::APSInt Value;
7394  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7395    return true;
7396
7397  if (Value != 0 && ZeroWidth)
7398    *ZeroWidth = false;
7399
7400  // Zero-width bitfield is ok for anonymous field.
7401  if (Value == 0 && FieldName)
7402    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7403
7404  if (Value.isSigned() && Value.isNegative()) {
7405    if (FieldName)
7406      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7407               << FieldName << Value.toString(10);
7408    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7409      << Value.toString(10);
7410  }
7411
7412  if (!FieldTy->isDependentType()) {
7413    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7414    if (Value.getZExtValue() > TypeSize) {
7415      if (!getLangOptions().CPlusPlus) {
7416        if (FieldName)
7417          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7418            << FieldName << (unsigned)Value.getZExtValue()
7419            << (unsigned)TypeSize;
7420
7421        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7422          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7423      }
7424
7425      if (FieldName)
7426        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7427          << FieldName << (unsigned)Value.getZExtValue()
7428          << (unsigned)TypeSize;
7429      else
7430        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7431          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7432    }
7433  }
7434
7435  return false;
7436}
7437
7438/// ActOnField - Each field of a struct/union/class is passed into this in order
7439/// to create a FieldDecl object for it.
7440Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7441                                 SourceLocation DeclStart,
7442                                 Declarator &D, ExprTy *BitfieldWidth) {
7443  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7444                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7445                               AS_public);
7446  return Res;
7447}
7448
7449/// HandleField - Analyze a field of a C struct or a C++ data member.
7450///
7451FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7452                             SourceLocation DeclStart,
7453                             Declarator &D, Expr *BitWidth,
7454                             AccessSpecifier AS) {
7455  IdentifierInfo *II = D.getIdentifier();
7456  SourceLocation Loc = DeclStart;
7457  if (II) Loc = D.getIdentifierLoc();
7458
7459  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7460  QualType T = TInfo->getType();
7461  if (getLangOptions().CPlusPlus) {
7462    CheckExtraCXXDefaultArguments(D);
7463
7464    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7465                                        UPPC_DataMemberType)) {
7466      D.setInvalidType();
7467      T = Context.IntTy;
7468      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7469    }
7470  }
7471
7472  DiagnoseFunctionSpecifiers(D);
7473
7474  if (D.getDeclSpec().isThreadSpecified())
7475    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7476
7477  // Check to see if this name was declared as a member previously
7478  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7479  LookupName(Previous, S);
7480  assert((Previous.empty() || Previous.isOverloadedResult() ||
7481          Previous.isSingleResult())
7482    && "Lookup of member name should be either overloaded, single or null");
7483
7484  // If the name is overloaded then get any declaration else get the single result
7485  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7486    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7487
7488  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7489    // Maybe we will complain about the shadowed template parameter.
7490    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7491    // Just pretend that we didn't see the previous declaration.
7492    PrevDecl = 0;
7493  }
7494
7495  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7496    PrevDecl = 0;
7497
7498  bool Mutable
7499    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7500  SourceLocation TSSL = D.getSourceRange().getBegin();
7501  FieldDecl *NewFD
7502    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7503                     AS, PrevDecl, &D);
7504
7505  if (NewFD->isInvalidDecl())
7506    Record->setInvalidDecl();
7507
7508  if (NewFD->isInvalidDecl() && PrevDecl) {
7509    // Don't introduce NewFD into scope; there's already something
7510    // with the same name in the same scope.
7511  } else if (II) {
7512    PushOnScopeChains(NewFD, S);
7513  } else
7514    Record->addDecl(NewFD);
7515
7516  return NewFD;
7517}
7518
7519/// \brief Build a new FieldDecl and check its well-formedness.
7520///
7521/// This routine builds a new FieldDecl given the fields name, type,
7522/// record, etc. \p PrevDecl should refer to any previous declaration
7523/// with the same name and in the same scope as the field to be
7524/// created.
7525///
7526/// \returns a new FieldDecl.
7527///
7528/// \todo The Declarator argument is a hack. It will be removed once
7529FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7530                                TypeSourceInfo *TInfo,
7531                                RecordDecl *Record, SourceLocation Loc,
7532                                bool Mutable, Expr *BitWidth,
7533                                SourceLocation TSSL,
7534                                AccessSpecifier AS, NamedDecl *PrevDecl,
7535                                Declarator *D) {
7536  IdentifierInfo *II = Name.getAsIdentifierInfo();
7537  bool InvalidDecl = false;
7538  if (D) InvalidDecl = D->isInvalidType();
7539
7540  // If we receive a broken type, recover by assuming 'int' and
7541  // marking this declaration as invalid.
7542  if (T.isNull()) {
7543    InvalidDecl = true;
7544    T = Context.IntTy;
7545  }
7546
7547  QualType EltTy = Context.getBaseElementType(T);
7548  if (!EltTy->isDependentType() &&
7549      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7550    // Fields of incomplete type force their record to be invalid.
7551    Record->setInvalidDecl();
7552    InvalidDecl = true;
7553  }
7554
7555  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7556  // than a variably modified type.
7557  if (!InvalidDecl && T->isVariablyModifiedType()) {
7558    bool SizeIsNegative;
7559    llvm::APSInt Oversized;
7560    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7561                                                           SizeIsNegative,
7562                                                           Oversized);
7563    if (!FixedTy.isNull()) {
7564      Diag(Loc, diag::warn_illegal_constant_array_size);
7565      T = FixedTy;
7566    } else {
7567      if (SizeIsNegative)
7568        Diag(Loc, diag::err_typecheck_negative_array_size);
7569      else if (Oversized.getBoolValue())
7570        Diag(Loc, diag::err_array_too_large)
7571          << Oversized.toString(10);
7572      else
7573        Diag(Loc, diag::err_typecheck_field_variable_size);
7574      InvalidDecl = true;
7575    }
7576  }
7577
7578  // Fields can not have abstract class types
7579  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7580                                             diag::err_abstract_type_in_decl,
7581                                             AbstractFieldType))
7582    InvalidDecl = true;
7583
7584  bool ZeroWidth = false;
7585  // If this is declared as a bit-field, check the bit-field.
7586  if (!InvalidDecl && BitWidth &&
7587      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7588    InvalidDecl = true;
7589    BitWidth = 0;
7590    ZeroWidth = false;
7591  }
7592
7593  // Check that 'mutable' is consistent with the type of the declaration.
7594  if (!InvalidDecl && Mutable) {
7595    unsigned DiagID = 0;
7596    if (T->isReferenceType())
7597      DiagID = diag::err_mutable_reference;
7598    else if (T.isConstQualified())
7599      DiagID = diag::err_mutable_const;
7600
7601    if (DiagID) {
7602      SourceLocation ErrLoc = Loc;
7603      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7604        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7605      Diag(ErrLoc, DiagID);
7606      Mutable = false;
7607      InvalidDecl = true;
7608    }
7609  }
7610
7611  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7612                                       BitWidth, Mutable);
7613  if (InvalidDecl)
7614    NewFD->setInvalidDecl();
7615
7616  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7617    Diag(Loc, diag::err_duplicate_member) << II;
7618    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7619    NewFD->setInvalidDecl();
7620  }
7621
7622  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7623    if (Record->isUnion()) {
7624      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7625        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7626        if (RDecl->getDefinition()) {
7627          // C++ [class.union]p1: An object of a class with a non-trivial
7628          // constructor, a non-trivial copy constructor, a non-trivial
7629          // destructor, or a non-trivial copy assignment operator
7630          // cannot be a member of a union, nor can an array of such
7631          // objects.
7632          // TODO: C++0x alters this restriction significantly.
7633          if (CheckNontrivialField(NewFD))
7634            NewFD->setInvalidDecl();
7635        }
7636      }
7637
7638      // C++ [class.union]p1: If a union contains a member of reference type,
7639      // the program is ill-formed.
7640      if (EltTy->isReferenceType()) {
7641        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7642          << NewFD->getDeclName() << EltTy;
7643        NewFD->setInvalidDecl();
7644      }
7645    }
7646  }
7647
7648  // FIXME: We need to pass in the attributes given an AST
7649  // representation, not a parser representation.
7650  if (D)
7651    // FIXME: What to pass instead of TUScope?
7652    ProcessDeclAttributes(TUScope, NewFD, *D);
7653
7654  if (T.isObjCGCWeak())
7655    Diag(Loc, diag::warn_attribute_weak_on_field);
7656
7657  NewFD->setAccess(AS);
7658  return NewFD;
7659}
7660
7661bool Sema::CheckNontrivialField(FieldDecl *FD) {
7662  assert(FD);
7663  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7664
7665  if (FD->isInvalidDecl())
7666    return true;
7667
7668  QualType EltTy = Context.getBaseElementType(FD->getType());
7669  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7670    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7671    if (RDecl->getDefinition()) {
7672      // We check for copy constructors before constructors
7673      // because otherwise we'll never get complaints about
7674      // copy constructors.
7675
7676      CXXSpecialMember member = CXXInvalid;
7677      if (!RDecl->hasTrivialCopyConstructor())
7678        member = CXXCopyConstructor;
7679      else if (!RDecl->hasTrivialDefaultConstructor())
7680        member = CXXConstructor;
7681      else if (!RDecl->hasTrivialCopyAssignment())
7682        member = CXXCopyAssignment;
7683      else if (!RDecl->hasTrivialDestructor())
7684        member = CXXDestructor;
7685
7686      if (member != CXXInvalid) {
7687        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7688              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7689        DiagnoseNontrivial(RT, member);
7690        return true;
7691      }
7692    }
7693  }
7694
7695  return false;
7696}
7697
7698/// DiagnoseNontrivial - Given that a class has a non-trivial
7699/// special member, figure out why.
7700void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7701  QualType QT(T, 0U);
7702  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7703
7704  // Check whether the member was user-declared.
7705  switch (member) {
7706  case CXXInvalid:
7707    break;
7708
7709  case CXXConstructor:
7710    if (RD->hasUserDeclaredConstructor()) {
7711      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7712      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7713        const FunctionDecl *body = 0;
7714        ci->hasBody(body);
7715        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7716          SourceLocation CtorLoc = ci->getLocation();
7717          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7718          return;
7719        }
7720      }
7721
7722      assert(0 && "found no user-declared constructors");
7723      return;
7724    }
7725    break;
7726
7727  case CXXCopyConstructor:
7728    if (RD->hasUserDeclaredCopyConstructor()) {
7729      SourceLocation CtorLoc =
7730        RD->getCopyConstructor(Context, 0)->getLocation();
7731      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7732      return;
7733    }
7734    break;
7735
7736  case CXXCopyAssignment:
7737    if (RD->hasUserDeclaredCopyAssignment()) {
7738      // FIXME: this should use the location of the copy
7739      // assignment, not the type.
7740      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7741      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7742      return;
7743    }
7744    break;
7745
7746  case CXXDestructor:
7747    if (RD->hasUserDeclaredDestructor()) {
7748      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7749      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7750      return;
7751    }
7752    break;
7753  }
7754
7755  typedef CXXRecordDecl::base_class_iterator base_iter;
7756
7757  // Virtual bases and members inhibit trivial copying/construction,
7758  // but not trivial destruction.
7759  if (member != CXXDestructor) {
7760    // Check for virtual bases.  vbases includes indirect virtual bases,
7761    // so we just iterate through the direct bases.
7762    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7763      if (bi->isVirtual()) {
7764        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7765        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7766        return;
7767      }
7768
7769    // Check for virtual methods.
7770    typedef CXXRecordDecl::method_iterator meth_iter;
7771    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7772         ++mi) {
7773      if (mi->isVirtual()) {
7774        SourceLocation MLoc = mi->getSourceRange().getBegin();
7775        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7776        return;
7777      }
7778    }
7779  }
7780
7781  bool (CXXRecordDecl::*hasTrivial)() const;
7782  switch (member) {
7783  case CXXConstructor:
7784    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7785  case CXXCopyConstructor:
7786    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7787  case CXXCopyAssignment:
7788    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7789  case CXXDestructor:
7790    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7791  default:
7792    assert(0 && "unexpected special member"); return;
7793  }
7794
7795  // Check for nontrivial bases (and recurse).
7796  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7797    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7798    assert(BaseRT && "Don't know how to handle dependent bases");
7799    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7800    if (!(BaseRecTy->*hasTrivial)()) {
7801      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7802      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7803      DiagnoseNontrivial(BaseRT, member);
7804      return;
7805    }
7806  }
7807
7808  // Check for nontrivial members (and recurse).
7809  typedef RecordDecl::field_iterator field_iter;
7810  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7811       ++fi) {
7812    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7813    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7814      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7815
7816      if (!(EltRD->*hasTrivial)()) {
7817        SourceLocation FLoc = (*fi)->getLocation();
7818        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7819        DiagnoseNontrivial(EltRT, member);
7820        return;
7821      }
7822    }
7823  }
7824
7825  assert(0 && "found no explanation for non-trivial member");
7826}
7827
7828/// TranslateIvarVisibility - Translate visibility from a token ID to an
7829///  AST enum value.
7830static ObjCIvarDecl::AccessControl
7831TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7832  switch (ivarVisibility) {
7833  default: assert(0 && "Unknown visitibility kind");
7834  case tok::objc_private: return ObjCIvarDecl::Private;
7835  case tok::objc_public: return ObjCIvarDecl::Public;
7836  case tok::objc_protected: return ObjCIvarDecl::Protected;
7837  case tok::objc_package: return ObjCIvarDecl::Package;
7838  }
7839}
7840
7841/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7842/// in order to create an IvarDecl object for it.
7843Decl *Sema::ActOnIvar(Scope *S,
7844                                SourceLocation DeclStart,
7845                                Decl *IntfDecl,
7846                                Declarator &D, ExprTy *BitfieldWidth,
7847                                tok::ObjCKeywordKind Visibility) {
7848
7849  IdentifierInfo *II = D.getIdentifier();
7850  Expr *BitWidth = (Expr*)BitfieldWidth;
7851  SourceLocation Loc = DeclStart;
7852  if (II) Loc = D.getIdentifierLoc();
7853
7854  // FIXME: Unnamed fields can be handled in various different ways, for
7855  // example, unnamed unions inject all members into the struct namespace!
7856
7857  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7858  QualType T = TInfo->getType();
7859
7860  if (BitWidth) {
7861    // 6.7.2.1p3, 6.7.2.1p4
7862    if (VerifyBitField(Loc, II, T, BitWidth)) {
7863      D.setInvalidType();
7864      BitWidth = 0;
7865    }
7866  } else {
7867    // Not a bitfield.
7868
7869    // validate II.
7870
7871  }
7872  if (T->isReferenceType()) {
7873    Diag(Loc, diag::err_ivar_reference_type);
7874    D.setInvalidType();
7875  }
7876  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7877  // than a variably modified type.
7878  else if (T->isVariablyModifiedType()) {
7879    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7880    D.setInvalidType();
7881  }
7882
7883  // Get the visibility (access control) for this ivar.
7884  ObjCIvarDecl::AccessControl ac =
7885    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7886                                        : ObjCIvarDecl::None;
7887  // Must set ivar's DeclContext to its enclosing interface.
7888  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7889  ObjCContainerDecl *EnclosingContext;
7890  if (ObjCImplementationDecl *IMPDecl =
7891      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7892    if (!LangOpts.ObjCNonFragileABI2) {
7893    // Case of ivar declared in an implementation. Context is that of its class.
7894      EnclosingContext = IMPDecl->getClassInterface();
7895      assert(EnclosingContext && "Implementation has no class interface!");
7896    }
7897    else
7898      EnclosingContext = EnclosingDecl;
7899  } else {
7900    if (ObjCCategoryDecl *CDecl =
7901        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7902      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7903        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7904        return 0;
7905      }
7906    }
7907    EnclosingContext = EnclosingDecl;
7908  }
7909
7910  // Construct the decl.
7911  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7912                                             DeclStart, Loc, II, T,
7913                                             TInfo, ac, (Expr *)BitfieldWidth);
7914
7915  if (II) {
7916    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7917                                           ForRedeclaration);
7918    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7919        && !isa<TagDecl>(PrevDecl)) {
7920      Diag(Loc, diag::err_duplicate_member) << II;
7921      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7922      NewID->setInvalidDecl();
7923    }
7924  }
7925
7926  // Process attributes attached to the ivar.
7927  ProcessDeclAttributes(S, NewID, D);
7928
7929  if (D.isInvalidType())
7930    NewID->setInvalidDecl();
7931
7932  if (II) {
7933    // FIXME: When interfaces are DeclContexts, we'll need to add
7934    // these to the interface.
7935    S->AddDecl(NewID);
7936    IdResolver.AddDecl(NewID);
7937  }
7938
7939  return NewID;
7940}
7941
7942/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7943/// class and class extensions. For every class @interface and class
7944/// extension @interface, if the last ivar is a bitfield of any type,
7945/// then add an implicit `char :0` ivar to the end of that interface.
7946void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7947                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7948  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7949    return;
7950
7951  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7952  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7953
7954  if (!Ivar->isBitField())
7955    return;
7956  uint64_t BitFieldSize =
7957    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7958  if (BitFieldSize == 0)
7959    return;
7960  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7961  if (!ID) {
7962    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7963      if (!CD->IsClassExtension())
7964        return;
7965    }
7966    // No need to add this to end of @implementation.
7967    else
7968      return;
7969  }
7970  // All conditions are met. Add a new bitfield to the tail end of ivars.
7971  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7972  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7973
7974  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7975                              DeclLoc, DeclLoc, 0,
7976                              Context.CharTy,
7977                              Context.CreateTypeSourceInfo(Context.CharTy),
7978                              ObjCIvarDecl::Private, BW,
7979                              true);
7980  AllIvarDecls.push_back(Ivar);
7981}
7982
7983void Sema::ActOnFields(Scope* S,
7984                       SourceLocation RecLoc, Decl *EnclosingDecl,
7985                       Decl **Fields, unsigned NumFields,
7986                       SourceLocation LBrac, SourceLocation RBrac,
7987                       AttributeList *Attr) {
7988  assert(EnclosingDecl && "missing record or interface decl");
7989
7990  // If the decl this is being inserted into is invalid, then it may be a
7991  // redeclaration or some other bogus case.  Don't try to add fields to it.
7992  if (EnclosingDecl->isInvalidDecl()) {
7993    // FIXME: Deallocate fields?
7994    return;
7995  }
7996
7997
7998  // Verify that all the fields are okay.
7999  unsigned NumNamedMembers = 0;
8000  llvm::SmallVector<FieldDecl*, 32> RecFields;
8001
8002  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8003  for (unsigned i = 0; i != NumFields; ++i) {
8004    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8005
8006    // Get the type for the field.
8007    const Type *FDTy = FD->getType().getTypePtr();
8008
8009    if (!FD->isAnonymousStructOrUnion()) {
8010      // Remember all fields written by the user.
8011      RecFields.push_back(FD);
8012    }
8013
8014    // If the field is already invalid for some reason, don't emit more
8015    // diagnostics about it.
8016    if (FD->isInvalidDecl()) {
8017      EnclosingDecl->setInvalidDecl();
8018      continue;
8019    }
8020
8021    // C99 6.7.2.1p2:
8022    //   A structure or union shall not contain a member with
8023    //   incomplete or function type (hence, a structure shall not
8024    //   contain an instance of itself, but may contain a pointer to
8025    //   an instance of itself), except that the last member of a
8026    //   structure with more than one named member may have incomplete
8027    //   array type; such a structure (and any union containing,
8028    //   possibly recursively, a member that is such a structure)
8029    //   shall not be a member of a structure or an element of an
8030    //   array.
8031    if (FDTy->isFunctionType()) {
8032      // Field declared as a function.
8033      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8034        << FD->getDeclName();
8035      FD->setInvalidDecl();
8036      EnclosingDecl->setInvalidDecl();
8037      continue;
8038    } else if (FDTy->isIncompleteArrayType() && Record &&
8039               ((i == NumFields - 1 && !Record->isUnion()) ||
8040                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8041                 (i == NumFields - 1 || Record->isUnion())))) {
8042      // Flexible array member.
8043      // Microsoft and g++ is more permissive regarding flexible array.
8044      // It will accept flexible array in union and also
8045      // as the sole element of a struct/class.
8046      if (getLangOptions().Microsoft) {
8047        if (Record->isUnion())
8048          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8049            << FD->getDeclName();
8050        else if (NumFields == 1)
8051          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8052            << FD->getDeclName() << Record->getTagKind();
8053      } else if (getLangOptions().CPlusPlus) {
8054        if (Record->isUnion())
8055          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8056            << FD->getDeclName();
8057        else if (NumFields == 1)
8058          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8059            << FD->getDeclName() << Record->getTagKind();
8060      } else if (NumNamedMembers < 1) {
8061        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8062          << FD->getDeclName();
8063        FD->setInvalidDecl();
8064        EnclosingDecl->setInvalidDecl();
8065        continue;
8066      }
8067      if (!FD->getType()->isDependentType() &&
8068          !Context.getBaseElementType(FD->getType())->isPODType()) {
8069        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8070          << FD->getDeclName() << FD->getType();
8071        FD->setInvalidDecl();
8072        EnclosingDecl->setInvalidDecl();
8073        continue;
8074      }
8075      // Okay, we have a legal flexible array member at the end of the struct.
8076      if (Record)
8077        Record->setHasFlexibleArrayMember(true);
8078    } else if (!FDTy->isDependentType() &&
8079               RequireCompleteType(FD->getLocation(), FD->getType(),
8080                                   diag::err_field_incomplete)) {
8081      // Incomplete type
8082      FD->setInvalidDecl();
8083      EnclosingDecl->setInvalidDecl();
8084      continue;
8085    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8086      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8087        // If this is a member of a union, then entire union becomes "flexible".
8088        if (Record && Record->isUnion()) {
8089          Record->setHasFlexibleArrayMember(true);
8090        } else {
8091          // If this is a struct/class and this is not the last element, reject
8092          // it.  Note that GCC supports variable sized arrays in the middle of
8093          // structures.
8094          if (i != NumFields-1)
8095            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8096              << FD->getDeclName() << FD->getType();
8097          else {
8098            // We support flexible arrays at the end of structs in
8099            // other structs as an extension.
8100            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8101              << FD->getDeclName();
8102            if (Record)
8103              Record->setHasFlexibleArrayMember(true);
8104          }
8105        }
8106      }
8107      if (Record && FDTTy->getDecl()->hasObjectMember())
8108        Record->setHasObjectMember(true);
8109    } else if (FDTy->isObjCObjectType()) {
8110      /// A field cannot be an Objective-c object
8111      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8112      FD->setInvalidDecl();
8113      EnclosingDecl->setInvalidDecl();
8114      continue;
8115    } else if (getLangOptions().ObjC1 &&
8116               getLangOptions().getGCMode() != LangOptions::NonGC &&
8117               Record &&
8118               (FD->getType()->isObjCObjectPointerType() ||
8119                FD->getType().isObjCGCStrong()))
8120      Record->setHasObjectMember(true);
8121    else if (Context.getAsArrayType(FD->getType())) {
8122      QualType BaseType = Context.getBaseElementType(FD->getType());
8123      if (Record && BaseType->isRecordType() &&
8124          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8125        Record->setHasObjectMember(true);
8126    }
8127    // Keep track of the number of named members.
8128    if (FD->getIdentifier())
8129      ++NumNamedMembers;
8130  }
8131
8132  // Okay, we successfully defined 'Record'.
8133  if (Record) {
8134    bool Completed = false;
8135    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8136      if (!CXXRecord->isInvalidDecl()) {
8137        // Set access bits correctly on the directly-declared conversions.
8138        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8139        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8140             I != E; ++I)
8141          Convs->setAccess(I, (*I)->getAccess());
8142
8143        if (!CXXRecord->isDependentType()) {
8144          // Add any implicitly-declared members to this class.
8145          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8146
8147          // If we have virtual base classes, we may end up finding multiple
8148          // final overriders for a given virtual function. Check for this
8149          // problem now.
8150          if (CXXRecord->getNumVBases()) {
8151            CXXFinalOverriderMap FinalOverriders;
8152            CXXRecord->getFinalOverriders(FinalOverriders);
8153
8154            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8155                                             MEnd = FinalOverriders.end();
8156                 M != MEnd; ++M) {
8157              for (OverridingMethods::iterator SO = M->second.begin(),
8158                                            SOEnd = M->second.end();
8159                   SO != SOEnd; ++SO) {
8160                assert(SO->second.size() > 0 &&
8161                       "Virtual function without overridding functions?");
8162                if (SO->second.size() == 1)
8163                  continue;
8164
8165                // C++ [class.virtual]p2:
8166                //   In a derived class, if a virtual member function of a base
8167                //   class subobject has more than one final overrider the
8168                //   program is ill-formed.
8169                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8170                  << (NamedDecl *)M->first << Record;
8171                Diag(M->first->getLocation(),
8172                     diag::note_overridden_virtual_function);
8173                for (OverridingMethods::overriding_iterator
8174                          OM = SO->second.begin(),
8175                       OMEnd = SO->second.end();
8176                     OM != OMEnd; ++OM)
8177                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8178                    << (NamedDecl *)M->first << OM->Method->getParent();
8179
8180                Record->setInvalidDecl();
8181              }
8182            }
8183            CXXRecord->completeDefinition(&FinalOverriders);
8184            Completed = true;
8185          }
8186        }
8187      }
8188    }
8189
8190    if (!Completed)
8191      Record->completeDefinition();
8192  } else {
8193    ObjCIvarDecl **ClsFields =
8194      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8195    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8196      ID->setLocEnd(RBrac);
8197      // Add ivar's to class's DeclContext.
8198      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8199        ClsFields[i]->setLexicalDeclContext(ID);
8200        ID->addDecl(ClsFields[i]);
8201      }
8202      // Must enforce the rule that ivars in the base classes may not be
8203      // duplicates.
8204      if (ID->getSuperClass())
8205        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8206    } else if (ObjCImplementationDecl *IMPDecl =
8207                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8208      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8209      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8210        // Ivar declared in @implementation never belongs to the implementation.
8211        // Only it is in implementation's lexical context.
8212        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8213      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8214    } else if (ObjCCategoryDecl *CDecl =
8215                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8216      // case of ivars in class extension; all other cases have been
8217      // reported as errors elsewhere.
8218      // FIXME. Class extension does not have a LocEnd field.
8219      // CDecl->setLocEnd(RBrac);
8220      // Add ivar's to class extension's DeclContext.
8221      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8222        ClsFields[i]->setLexicalDeclContext(CDecl);
8223        CDecl->addDecl(ClsFields[i]);
8224      }
8225    }
8226  }
8227
8228  if (Attr)
8229    ProcessDeclAttributeList(S, Record, Attr);
8230
8231  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8232  // set the visibility of this record.
8233  if (Record && !Record->getDeclContext()->isRecord())
8234    AddPushedVisibilityAttribute(Record);
8235}
8236
8237/// \brief Determine whether the given integral value is representable within
8238/// the given type T.
8239static bool isRepresentableIntegerValue(ASTContext &Context,
8240                                        llvm::APSInt &Value,
8241                                        QualType T) {
8242  assert(T->isIntegralType(Context) && "Integral type required!");
8243  unsigned BitWidth = Context.getIntWidth(T);
8244
8245  if (Value.isUnsigned() || Value.isNonNegative()) {
8246    if (T->isSignedIntegerType())
8247      --BitWidth;
8248    return Value.getActiveBits() <= BitWidth;
8249  }
8250  return Value.getMinSignedBits() <= BitWidth;
8251}
8252
8253// \brief Given an integral type, return the next larger integral type
8254// (or a NULL type of no such type exists).
8255static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8256  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8257  // enum checking below.
8258  assert(T->isIntegralType(Context) && "Integral type required!");
8259  const unsigned NumTypes = 4;
8260  QualType SignedIntegralTypes[NumTypes] = {
8261    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8262  };
8263  QualType UnsignedIntegralTypes[NumTypes] = {
8264    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8265    Context.UnsignedLongLongTy
8266  };
8267
8268  unsigned BitWidth = Context.getTypeSize(T);
8269  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8270                                            : UnsignedIntegralTypes;
8271  for (unsigned I = 0; I != NumTypes; ++I)
8272    if (Context.getTypeSize(Types[I]) > BitWidth)
8273      return Types[I];
8274
8275  return QualType();
8276}
8277
8278EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8279                                          EnumConstantDecl *LastEnumConst,
8280                                          SourceLocation IdLoc,
8281                                          IdentifierInfo *Id,
8282                                          Expr *Val) {
8283  unsigned IntWidth = Context.Target.getIntWidth();
8284  llvm::APSInt EnumVal(IntWidth);
8285  QualType EltTy;
8286
8287  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8288    Val = 0;
8289
8290  if (Val) {
8291    if (Enum->isDependentType() || Val->isTypeDependent())
8292      EltTy = Context.DependentTy;
8293    else {
8294      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8295      SourceLocation ExpLoc;
8296      if (!Val->isValueDependent() &&
8297          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8298        Val = 0;
8299      } else {
8300        if (!getLangOptions().CPlusPlus) {
8301          // C99 6.7.2.2p2:
8302          //   The expression that defines the value of an enumeration constant
8303          //   shall be an integer constant expression that has a value
8304          //   representable as an int.
8305
8306          // Complain if the value is not representable in an int.
8307          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8308            Diag(IdLoc, diag::ext_enum_value_not_int)
8309              << EnumVal.toString(10) << Val->getSourceRange()
8310              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8311          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8312            // Force the type of the expression to 'int'.
8313            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8314          }
8315        }
8316
8317        if (Enum->isFixed()) {
8318          EltTy = Enum->getIntegerType();
8319
8320          // C++0x [dcl.enum]p5:
8321          //   ... if the initializing value of an enumerator cannot be
8322          //   represented by the underlying type, the program is ill-formed.
8323          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8324            if (getLangOptions().Microsoft) {
8325              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8326              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8327            } else
8328              Diag(IdLoc, diag::err_enumerator_too_large)
8329                << EltTy;
8330          } else
8331            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8332        }
8333        else {
8334          // C++0x [dcl.enum]p5:
8335          //   If the underlying type is not fixed, the type of each enumerator
8336          //   is the type of its initializing value:
8337          //     - If an initializer is specified for an enumerator, the
8338          //       initializing value has the same type as the expression.
8339          EltTy = Val->getType();
8340        }
8341      }
8342    }
8343  }
8344
8345  if (!Val) {
8346    if (Enum->isDependentType())
8347      EltTy = Context.DependentTy;
8348    else if (!LastEnumConst) {
8349      // C++0x [dcl.enum]p5:
8350      //   If the underlying type is not fixed, the type of each enumerator
8351      //   is the type of its initializing value:
8352      //     - If no initializer is specified for the first enumerator, the
8353      //       initializing value has an unspecified integral type.
8354      //
8355      // GCC uses 'int' for its unspecified integral type, as does
8356      // C99 6.7.2.2p3.
8357      if (Enum->isFixed()) {
8358        EltTy = Enum->getIntegerType();
8359      }
8360      else {
8361        EltTy = Context.IntTy;
8362      }
8363    } else {
8364      // Assign the last value + 1.
8365      EnumVal = LastEnumConst->getInitVal();
8366      ++EnumVal;
8367      EltTy = LastEnumConst->getType();
8368
8369      // Check for overflow on increment.
8370      if (EnumVal < LastEnumConst->getInitVal()) {
8371        // C++0x [dcl.enum]p5:
8372        //   If the underlying type is not fixed, the type of each enumerator
8373        //   is the type of its initializing value:
8374        //
8375        //     - Otherwise the type of the initializing value is the same as
8376        //       the type of the initializing value of the preceding enumerator
8377        //       unless the incremented value is not representable in that type,
8378        //       in which case the type is an unspecified integral type
8379        //       sufficient to contain the incremented value. If no such type
8380        //       exists, the program is ill-formed.
8381        QualType T = getNextLargerIntegralType(Context, EltTy);
8382        if (T.isNull() || Enum->isFixed()) {
8383          // There is no integral type larger enough to represent this
8384          // value. Complain, then allow the value to wrap around.
8385          EnumVal = LastEnumConst->getInitVal();
8386          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8387          ++EnumVal;
8388          if (Enum->isFixed())
8389            // When the underlying type is fixed, this is ill-formed.
8390            Diag(IdLoc, diag::err_enumerator_wrapped)
8391              << EnumVal.toString(10)
8392              << EltTy;
8393          else
8394            Diag(IdLoc, diag::warn_enumerator_too_large)
8395              << EnumVal.toString(10);
8396        } else {
8397          EltTy = T;
8398        }
8399
8400        // Retrieve the last enumerator's value, extent that type to the
8401        // type that is supposed to be large enough to represent the incremented
8402        // value, then increment.
8403        EnumVal = LastEnumConst->getInitVal();
8404        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8405        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8406        ++EnumVal;
8407
8408        // If we're not in C++, diagnose the overflow of enumerator values,
8409        // which in C99 means that the enumerator value is not representable in
8410        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8411        // permits enumerator values that are representable in some larger
8412        // integral type.
8413        if (!getLangOptions().CPlusPlus && !T.isNull())
8414          Diag(IdLoc, diag::warn_enum_value_overflow);
8415      } else if (!getLangOptions().CPlusPlus &&
8416                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8417        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8418        Diag(IdLoc, diag::ext_enum_value_not_int)
8419          << EnumVal.toString(10) << 1;
8420      }
8421    }
8422  }
8423
8424  if (!EltTy->isDependentType()) {
8425    // Make the enumerator value match the signedness and size of the
8426    // enumerator's type.
8427    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8428    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8429  }
8430
8431  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8432                                  Val, EnumVal);
8433}
8434
8435
8436Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8437                              SourceLocation IdLoc, IdentifierInfo *Id,
8438                              AttributeList *Attr,
8439                              SourceLocation EqualLoc, ExprTy *val) {
8440  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8441  EnumConstantDecl *LastEnumConst =
8442    cast_or_null<EnumConstantDecl>(lastEnumConst);
8443  Expr *Val = static_cast<Expr*>(val);
8444
8445  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8446  // we find one that is.
8447  S = getNonFieldDeclScope(S);
8448
8449  // Verify that there isn't already something declared with this name in this
8450  // scope.
8451  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8452                                         ForRedeclaration);
8453  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8454    // Maybe we will complain about the shadowed template parameter.
8455    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8456    // Just pretend that we didn't see the previous declaration.
8457    PrevDecl = 0;
8458  }
8459
8460  if (PrevDecl) {
8461    // When in C++, we may get a TagDecl with the same name; in this case the
8462    // enum constant will 'hide' the tag.
8463    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8464           "Received TagDecl when not in C++!");
8465    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8466      if (isa<EnumConstantDecl>(PrevDecl))
8467        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8468      else
8469        Diag(IdLoc, diag::err_redefinition) << Id;
8470      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8471      return 0;
8472    }
8473  }
8474
8475  // C++ [class.mem]p13:
8476  //   If T is the name of a class, then each of the following shall have a
8477  //   name different from T:
8478  //     - every enumerator of every member of class T that is an enumerated
8479  //       type
8480  if (CXXRecordDecl *Record
8481                      = dyn_cast<CXXRecordDecl>(
8482                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8483    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8484      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8485
8486  EnumConstantDecl *New =
8487    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8488
8489  if (New) {
8490    // Process attributes.
8491    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8492
8493    // Register this decl in the current scope stack.
8494    New->setAccess(TheEnumDecl->getAccess());
8495    PushOnScopeChains(New, S);
8496  }
8497
8498  return New;
8499}
8500
8501void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8502                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8503                         Decl **Elements, unsigned NumElements,
8504                         Scope *S, AttributeList *Attr) {
8505  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8506  QualType EnumType = Context.getTypeDeclType(Enum);
8507
8508  if (Attr)
8509    ProcessDeclAttributeList(S, Enum, Attr);
8510
8511  if (Enum->isDependentType()) {
8512    for (unsigned i = 0; i != NumElements; ++i) {
8513      EnumConstantDecl *ECD =
8514        cast_or_null<EnumConstantDecl>(Elements[i]);
8515      if (!ECD) continue;
8516
8517      ECD->setType(EnumType);
8518    }
8519
8520    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8521    return;
8522  }
8523
8524  // TODO: If the result value doesn't fit in an int, it must be a long or long
8525  // long value.  ISO C does not support this, but GCC does as an extension,
8526  // emit a warning.
8527  unsigned IntWidth = Context.Target.getIntWidth();
8528  unsigned CharWidth = Context.Target.getCharWidth();
8529  unsigned ShortWidth = Context.Target.getShortWidth();
8530
8531  // Verify that all the values are okay, compute the size of the values, and
8532  // reverse the list.
8533  unsigned NumNegativeBits = 0;
8534  unsigned NumPositiveBits = 0;
8535
8536  // Keep track of whether all elements have type int.
8537  bool AllElementsInt = true;
8538
8539  for (unsigned i = 0; i != NumElements; ++i) {
8540    EnumConstantDecl *ECD =
8541      cast_or_null<EnumConstantDecl>(Elements[i]);
8542    if (!ECD) continue;  // Already issued a diagnostic.
8543
8544    const llvm::APSInt &InitVal = ECD->getInitVal();
8545
8546    // Keep track of the size of positive and negative values.
8547    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8548      NumPositiveBits = std::max(NumPositiveBits,
8549                                 (unsigned)InitVal.getActiveBits());
8550    else
8551      NumNegativeBits = std::max(NumNegativeBits,
8552                                 (unsigned)InitVal.getMinSignedBits());
8553
8554    // Keep track of whether every enum element has type int (very commmon).
8555    if (AllElementsInt)
8556      AllElementsInt = ECD->getType() == Context.IntTy;
8557  }
8558
8559  // Figure out the type that should be used for this enum.
8560  QualType BestType;
8561  unsigned BestWidth;
8562
8563  // C++0x N3000 [conv.prom]p3:
8564  //   An rvalue of an unscoped enumeration type whose underlying
8565  //   type is not fixed can be converted to an rvalue of the first
8566  //   of the following types that can represent all the values of
8567  //   the enumeration: int, unsigned int, long int, unsigned long
8568  //   int, long long int, or unsigned long long int.
8569  // C99 6.4.4.3p2:
8570  //   An identifier declared as an enumeration constant has type int.
8571  // The C99 rule is modified by a gcc extension
8572  QualType BestPromotionType;
8573
8574  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8575  // -fshort-enums is the equivalent to specifying the packed attribute on all
8576  // enum definitions.
8577  if (LangOpts.ShortEnums)
8578    Packed = true;
8579
8580  if (Enum->isFixed()) {
8581    BestType = BestPromotionType = Enum->getIntegerType();
8582    // We don't need to set BestWidth, because BestType is going to be the type
8583    // of the enumerators, but we do anyway because otherwise some compilers
8584    // warn that it might be used uninitialized.
8585    BestWidth = CharWidth;
8586  }
8587  else if (NumNegativeBits) {
8588    // If there is a negative value, figure out the smallest integer type (of
8589    // int/long/longlong) that fits.
8590    // If it's packed, check also if it fits a char or a short.
8591    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8592      BestType = Context.SignedCharTy;
8593      BestWidth = CharWidth;
8594    } else if (Packed && NumNegativeBits <= ShortWidth &&
8595               NumPositiveBits < ShortWidth) {
8596      BestType = Context.ShortTy;
8597      BestWidth = ShortWidth;
8598    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8599      BestType = Context.IntTy;
8600      BestWidth = IntWidth;
8601    } else {
8602      BestWidth = Context.Target.getLongWidth();
8603
8604      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8605        BestType = Context.LongTy;
8606      } else {
8607        BestWidth = Context.Target.getLongLongWidth();
8608
8609        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8610          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8611        BestType = Context.LongLongTy;
8612      }
8613    }
8614    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8615  } else {
8616    // If there is no negative value, figure out the smallest type that fits
8617    // all of the enumerator values.
8618    // If it's packed, check also if it fits a char or a short.
8619    if (Packed && NumPositiveBits <= CharWidth) {
8620      BestType = Context.UnsignedCharTy;
8621      BestPromotionType = Context.IntTy;
8622      BestWidth = CharWidth;
8623    } else if (Packed && NumPositiveBits <= ShortWidth) {
8624      BestType = Context.UnsignedShortTy;
8625      BestPromotionType = Context.IntTy;
8626      BestWidth = ShortWidth;
8627    } else if (NumPositiveBits <= IntWidth) {
8628      BestType = Context.UnsignedIntTy;
8629      BestWidth = IntWidth;
8630      BestPromotionType
8631        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8632                           ? Context.UnsignedIntTy : Context.IntTy;
8633    } else if (NumPositiveBits <=
8634               (BestWidth = Context.Target.getLongWidth())) {
8635      BestType = Context.UnsignedLongTy;
8636      BestPromotionType
8637        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8638                           ? Context.UnsignedLongTy : Context.LongTy;
8639    } else {
8640      BestWidth = Context.Target.getLongLongWidth();
8641      assert(NumPositiveBits <= BestWidth &&
8642             "How could an initializer get larger than ULL?");
8643      BestType = Context.UnsignedLongLongTy;
8644      BestPromotionType
8645        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8646                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8647    }
8648  }
8649
8650  // Loop over all of the enumerator constants, changing their types to match
8651  // the type of the enum if needed.
8652  for (unsigned i = 0; i != NumElements; ++i) {
8653    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8654    if (!ECD) continue;  // Already issued a diagnostic.
8655
8656    // Standard C says the enumerators have int type, but we allow, as an
8657    // extension, the enumerators to be larger than int size.  If each
8658    // enumerator value fits in an int, type it as an int, otherwise type it the
8659    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8660    // that X has type 'int', not 'unsigned'.
8661
8662    // Determine whether the value fits into an int.
8663    llvm::APSInt InitVal = ECD->getInitVal();
8664
8665    // If it fits into an integer type, force it.  Otherwise force it to match
8666    // the enum decl type.
8667    QualType NewTy;
8668    unsigned NewWidth;
8669    bool NewSign;
8670    if (!getLangOptions().CPlusPlus &&
8671        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8672      NewTy = Context.IntTy;
8673      NewWidth = IntWidth;
8674      NewSign = true;
8675    } else if (ECD->getType() == BestType) {
8676      // Already the right type!
8677      if (getLangOptions().CPlusPlus)
8678        // C++ [dcl.enum]p4: Following the closing brace of an
8679        // enum-specifier, each enumerator has the type of its
8680        // enumeration.
8681        ECD->setType(EnumType);
8682      continue;
8683    } else {
8684      NewTy = BestType;
8685      NewWidth = BestWidth;
8686      NewSign = BestType->isSignedIntegerType();
8687    }
8688
8689    // Adjust the APSInt value.
8690    InitVal = InitVal.extOrTrunc(NewWidth);
8691    InitVal.setIsSigned(NewSign);
8692    ECD->setInitVal(InitVal);
8693
8694    // Adjust the Expr initializer and type.
8695    if (ECD->getInitExpr() &&
8696	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8697      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8698                                                CK_IntegralCast,
8699                                                ECD->getInitExpr(),
8700                                                /*base paths*/ 0,
8701                                                VK_RValue));
8702    if (getLangOptions().CPlusPlus)
8703      // C++ [dcl.enum]p4: Following the closing brace of an
8704      // enum-specifier, each enumerator has the type of its
8705      // enumeration.
8706      ECD->setType(EnumType);
8707    else
8708      ECD->setType(NewTy);
8709  }
8710
8711  Enum->completeDefinition(BestType, BestPromotionType,
8712                           NumPositiveBits, NumNegativeBits);
8713}
8714
8715Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8716                                  SourceLocation StartLoc,
8717                                  SourceLocation EndLoc) {
8718  StringLiteral *AsmString = cast<StringLiteral>(expr);
8719
8720  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8721                                                   AsmString, StartLoc,
8722                                                   EndLoc);
8723  CurContext->addDecl(New);
8724  return New;
8725}
8726
8727void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8728                             SourceLocation PragmaLoc,
8729                             SourceLocation NameLoc) {
8730  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8731
8732  if (PrevDecl) {
8733    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8734  } else {
8735    (void)WeakUndeclaredIdentifiers.insert(
8736      std::pair<IdentifierInfo*,WeakInfo>
8737        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8738  }
8739}
8740
8741void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8742                                IdentifierInfo* AliasName,
8743                                SourceLocation PragmaLoc,
8744                                SourceLocation NameLoc,
8745                                SourceLocation AliasNameLoc) {
8746  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8747                                    LookupOrdinaryName);
8748  WeakInfo W = WeakInfo(Name, NameLoc);
8749
8750  if (PrevDecl) {
8751    if (!PrevDecl->hasAttr<AliasAttr>())
8752      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8753        DeclApplyPragmaWeak(TUScope, ND, W);
8754  } else {
8755    (void)WeakUndeclaredIdentifiers.insert(
8756      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8757  }
8758}
8759