SemaDecl.cpp revision 6ccab97c17c17f38eb92c7fe02c766508875bd97
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  if (OldTypeInfo.getCC() != CC_Default &&
1148      NewTypeInfo.getCC() == CC_Default) {
1149    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1150    New->setType(NewQType);
1151    NewQType = Context.getCanonicalType(NewQType);
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1166    NewQType = Context.getNoReturnType(NewQType);
1167    New->setType(NewQType);
1168    assert(NewQType.isCanonical());
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1173    if (NewType->getRegParmType()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  if (getLangOptions().CPlusPlus) {
1187    // (C++98 13.1p2):
1188    //   Certain function declarations cannot be overloaded:
1189    //     -- Function declarations that differ only in the return type
1190    //        cannot be overloaded.
1191    QualType OldReturnType
1192      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1193    QualType NewReturnType
1194      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1195    QualType ResQT;
1196    if (OldReturnType != NewReturnType) {
1197      if (NewReturnType->isObjCObjectPointerType()
1198          && OldReturnType->isObjCObjectPointerType())
1199        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1200      if (ResQT.isNull()) {
1201        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1202        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1203        return true;
1204      }
1205      else
1206        NewQType = ResQT;
1207    }
1208
1209    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1210    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1211    if (OldMethod && NewMethod) {
1212      // Preserve triviality.
1213      NewMethod->setTrivial(OldMethod->isTrivial());
1214
1215      bool isFriend = NewMethod->getFriendObjectKind();
1216
1217      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1218        //    -- Member function declarations with the same name and the
1219        //       same parameter types cannot be overloaded if any of them
1220        //       is a static member function declaration.
1221        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1222          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1223          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224          return true;
1225        }
1226
1227        // C++ [class.mem]p1:
1228        //   [...] A member shall not be declared twice in the
1229        //   member-specification, except that a nested class or member
1230        //   class template can be declared and then later defined.
1231        unsigned NewDiag;
1232        if (isa<CXXConstructorDecl>(OldMethod))
1233          NewDiag = diag::err_constructor_redeclared;
1234        else if (isa<CXXDestructorDecl>(NewMethod))
1235          NewDiag = diag::err_destructor_redeclared;
1236        else if (isa<CXXConversionDecl>(NewMethod))
1237          NewDiag = diag::err_conv_function_redeclared;
1238        else
1239          NewDiag = diag::err_member_redeclared;
1240
1241        Diag(New->getLocation(), NewDiag);
1242        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1243
1244      // Complain if this is an explicit declaration of a special
1245      // member that was initially declared implicitly.
1246      //
1247      // As an exception, it's okay to befriend such methods in order
1248      // to permit the implicit constructor/destructor/operator calls.
1249      } else if (OldMethod->isImplicit()) {
1250        if (isFriend) {
1251          NewMethod->setImplicit();
1252        } else {
1253          Diag(NewMethod->getLocation(),
1254               diag::err_definition_of_implicitly_declared_member)
1255            << New << getSpecialMember(OldMethod);
1256          return true;
1257        }
1258      }
1259    }
1260
1261    // (C++98 8.3.5p3):
1262    //   All declarations for a function shall agree exactly in both the
1263    //   return type and the parameter-type-list.
1264    // attributes should be ignored when comparing.
1265    if (Context.getNoReturnType(OldQType, false) ==
1266        Context.getNoReturnType(NewQType, false))
1267      return MergeCompatibleFunctionDecls(New, Old);
1268
1269    // Fall through for conflicting redeclarations and redefinitions.
1270  }
1271
1272  // C: Function types need to be compatible, not identical. This handles
1273  // duplicate function decls like "void f(int); void f(enum X);" properly.
1274  if (!getLangOptions().CPlusPlus &&
1275      Context.typesAreCompatible(OldQType, NewQType)) {
1276    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1277    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1278    const FunctionProtoType *OldProto = 0;
1279    if (isa<FunctionNoProtoType>(NewFuncType) &&
1280        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1281      // The old declaration provided a function prototype, but the
1282      // new declaration does not. Merge in the prototype.
1283      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1284      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1285                                                 OldProto->arg_type_end());
1286      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1287                                         ParamTypes.data(), ParamTypes.size(),
1288                                         OldProto->getExtProtoInfo());
1289      New->setType(NewQType);
1290      New->setHasInheritedPrototype();
1291
1292      // Synthesize a parameter for each argument type.
1293      llvm::SmallVector<ParmVarDecl*, 16> Params;
1294      for (FunctionProtoType::arg_type_iterator
1295             ParamType = OldProto->arg_type_begin(),
1296             ParamEnd = OldProto->arg_type_end();
1297           ParamType != ParamEnd; ++ParamType) {
1298        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1299                                                 SourceLocation(), 0,
1300                                                 *ParamType, /*TInfo=*/0,
1301                                                 SC_None, SC_None,
1302                                                 0);
1303        Param->setImplicit();
1304        Params.push_back(Param);
1305      }
1306
1307      New->setParams(Params.data(), Params.size());
1308    }
1309
1310    return MergeCompatibleFunctionDecls(New, Old);
1311  }
1312
1313  // GNU C permits a K&R definition to follow a prototype declaration
1314  // if the declared types of the parameters in the K&R definition
1315  // match the types in the prototype declaration, even when the
1316  // promoted types of the parameters from the K&R definition differ
1317  // from the types in the prototype. GCC then keeps the types from
1318  // the prototype.
1319  //
1320  // If a variadic prototype is followed by a non-variadic K&R definition,
1321  // the K&R definition becomes variadic.  This is sort of an edge case, but
1322  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1323  // C99 6.9.1p8.
1324  if (!getLangOptions().CPlusPlus &&
1325      Old->hasPrototype() && !New->hasPrototype() &&
1326      New->getType()->getAs<FunctionProtoType>() &&
1327      Old->getNumParams() == New->getNumParams()) {
1328    llvm::SmallVector<QualType, 16> ArgTypes;
1329    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1330    const FunctionProtoType *OldProto
1331      = Old->getType()->getAs<FunctionProtoType>();
1332    const FunctionProtoType *NewProto
1333      = New->getType()->getAs<FunctionProtoType>();
1334
1335    // Determine whether this is the GNU C extension.
1336    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1337                                               NewProto->getResultType());
1338    bool LooseCompatible = !MergedReturn.isNull();
1339    for (unsigned Idx = 0, End = Old->getNumParams();
1340         LooseCompatible && Idx != End; ++Idx) {
1341      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1342      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1343      if (Context.typesAreCompatible(OldParm->getType(),
1344                                     NewProto->getArgType(Idx))) {
1345        ArgTypes.push_back(NewParm->getType());
1346      } else if (Context.typesAreCompatible(OldParm->getType(),
1347                                            NewParm->getType(),
1348                                            /*CompareUnqualified=*/true)) {
1349        GNUCompatibleParamWarning Warn
1350          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1351        Warnings.push_back(Warn);
1352        ArgTypes.push_back(NewParm->getType());
1353      } else
1354        LooseCompatible = false;
1355    }
1356
1357    if (LooseCompatible) {
1358      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1359        Diag(Warnings[Warn].NewParm->getLocation(),
1360             diag::ext_param_promoted_not_compatible_with_prototype)
1361          << Warnings[Warn].PromotedType
1362          << Warnings[Warn].OldParm->getType();
1363        if (Warnings[Warn].OldParm->getLocation().isValid())
1364          Diag(Warnings[Warn].OldParm->getLocation(),
1365               diag::note_previous_declaration);
1366      }
1367
1368      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1369                                           ArgTypes.size(),
1370                                           OldProto->getExtProtoInfo()));
1371      return MergeCompatibleFunctionDecls(New, Old);
1372    }
1373
1374    // Fall through to diagnose conflicting types.
1375  }
1376
1377  // A function that has already been declared has been redeclared or defined
1378  // with a different type- show appropriate diagnostic
1379  if (unsigned BuiltinID = Old->getBuiltinID()) {
1380    // The user has declared a builtin function with an incompatible
1381    // signature.
1382    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1383      // The function the user is redeclaring is a library-defined
1384      // function like 'malloc' or 'printf'. Warn about the
1385      // redeclaration, then pretend that we don't know about this
1386      // library built-in.
1387      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1388      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1389        << Old << Old->getType();
1390      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1391      Old->setInvalidDecl();
1392      return false;
1393    }
1394
1395    PrevDiag = diag::note_previous_builtin_declaration;
1396  }
1397
1398  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1399  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1400  return true;
1401}
1402
1403/// \brief Completes the merge of two function declarations that are
1404/// known to be compatible.
1405///
1406/// This routine handles the merging of attributes and other
1407/// properties of function declarations form the old declaration to
1408/// the new declaration, once we know that New is in fact a
1409/// redeclaration of Old.
1410///
1411/// \returns false
1412bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1413  // Merge the attributes
1414  MergeDeclAttributes(New, Old, Context);
1415
1416  // Merge the storage class.
1417  if (Old->getStorageClass() != SC_Extern &&
1418      Old->getStorageClass() != SC_None)
1419    New->setStorageClass(Old->getStorageClass());
1420
1421  // Merge "pure" flag.
1422  if (Old->isPure())
1423    New->setPure();
1424
1425  // Merge the "deleted" flag.
1426  if (Old->isDeleted())
1427    New->setDeleted();
1428
1429  if (getLangOptions().CPlusPlus)
1430    return MergeCXXFunctionDecl(New, Old);
1431
1432  return false;
1433}
1434
1435/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1436/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1437/// situation, merging decls or emitting diagnostics as appropriate.
1438///
1439/// Tentative definition rules (C99 6.9.2p2) are checked by
1440/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1441/// definitions here, since the initializer hasn't been attached.
1442///
1443void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1444  // If the new decl is already invalid, don't do any other checking.
1445  if (New->isInvalidDecl())
1446    return;
1447
1448  // Verify the old decl was also a variable.
1449  VarDecl *Old = 0;
1450  if (!Previous.isSingleResult() ||
1451      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1452    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1453      << New->getDeclName();
1454    Diag(Previous.getRepresentativeDecl()->getLocation(),
1455         diag::note_previous_definition);
1456    return New->setInvalidDecl();
1457  }
1458
1459  // C++ [class.mem]p1:
1460  //   A member shall not be declared twice in the member-specification [...]
1461  //
1462  // Here, we need only consider static data members.
1463  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1464    Diag(New->getLocation(), diag::err_duplicate_member)
1465      << New->getIdentifier();
1466    Diag(Old->getLocation(), diag::note_previous_declaration);
1467    New->setInvalidDecl();
1468  }
1469
1470  MergeDeclAttributes(New, Old, Context);
1471
1472  // Merge the types
1473  QualType MergedT;
1474  if (getLangOptions().CPlusPlus) {
1475    if (Context.hasSameType(New->getType(), Old->getType()))
1476      MergedT = New->getType();
1477    // C++ [basic.link]p10:
1478    //   [...] the types specified by all declarations referring to a given
1479    //   object or function shall be identical, except that declarations for an
1480    //   array object can specify array types that differ by the presence or
1481    //   absence of a major array bound (8.3.4).
1482    else if (Old->getType()->isIncompleteArrayType() &&
1483             New->getType()->isArrayType()) {
1484      CanQual<ArrayType> OldArray
1485        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1486      CanQual<ArrayType> NewArray
1487        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1488      if (OldArray->getElementType() == NewArray->getElementType())
1489        MergedT = New->getType();
1490    } else if (Old->getType()->isArrayType() &&
1491             New->getType()->isIncompleteArrayType()) {
1492      CanQual<ArrayType> OldArray
1493        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1494      CanQual<ArrayType> NewArray
1495        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1496      if (OldArray->getElementType() == NewArray->getElementType())
1497        MergedT = Old->getType();
1498    } else if (New->getType()->isObjCObjectPointerType()
1499               && Old->getType()->isObjCObjectPointerType()) {
1500        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1501    }
1502  } else {
1503    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1504  }
1505  if (MergedT.isNull()) {
1506    Diag(New->getLocation(), diag::err_redefinition_different_type)
1507      << New->getDeclName();
1508    Diag(Old->getLocation(), diag::note_previous_definition);
1509    return New->setInvalidDecl();
1510  }
1511  New->setType(MergedT);
1512
1513  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1514  if (New->getStorageClass() == SC_Static &&
1515      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1516    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1517    Diag(Old->getLocation(), diag::note_previous_definition);
1518    return New->setInvalidDecl();
1519  }
1520  // C99 6.2.2p4:
1521  //   For an identifier declared with the storage-class specifier
1522  //   extern in a scope in which a prior declaration of that
1523  //   identifier is visible,23) if the prior declaration specifies
1524  //   internal or external linkage, the linkage of the identifier at
1525  //   the later declaration is the same as the linkage specified at
1526  //   the prior declaration. If no prior declaration is visible, or
1527  //   if the prior declaration specifies no linkage, then the
1528  //   identifier has external linkage.
1529  if (New->hasExternalStorage() && Old->hasLinkage())
1530    /* Okay */;
1531  else if (New->getStorageClass() != SC_Static &&
1532           Old->getStorageClass() == SC_Static) {
1533    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1534    Diag(Old->getLocation(), diag::note_previous_definition);
1535    return New->setInvalidDecl();
1536  }
1537
1538  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1539
1540  // FIXME: The test for external storage here seems wrong? We still
1541  // need to check for mismatches.
1542  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1543      // Don't complain about out-of-line definitions of static members.
1544      !(Old->getLexicalDeclContext()->isRecord() &&
1545        !New->getLexicalDeclContext()->isRecord())) {
1546    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1547    Diag(Old->getLocation(), diag::note_previous_definition);
1548    return New->setInvalidDecl();
1549  }
1550
1551  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1552    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1553    Diag(Old->getLocation(), diag::note_previous_definition);
1554  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1555    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1556    Diag(Old->getLocation(), diag::note_previous_definition);
1557  }
1558
1559  // C++ doesn't have tentative definitions, so go right ahead and check here.
1560  const VarDecl *Def;
1561  if (getLangOptions().CPlusPlus &&
1562      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1563      (Def = Old->getDefinition())) {
1564    Diag(New->getLocation(), diag::err_redefinition)
1565      << New->getDeclName();
1566    Diag(Def->getLocation(), diag::note_previous_definition);
1567    New->setInvalidDecl();
1568    return;
1569  }
1570  // c99 6.2.2 P4.
1571  // For an identifier declared with the storage-class specifier extern in a
1572  // scope in which a prior declaration of that identifier is visible, if
1573  // the prior declaration specifies internal or external linkage, the linkage
1574  // of the identifier at the later declaration is the same as the linkage
1575  // specified at the prior declaration.
1576  // FIXME. revisit this code.
1577  if (New->hasExternalStorage() &&
1578      Old->getLinkage() == InternalLinkage &&
1579      New->getDeclContext() == Old->getDeclContext())
1580    New->setStorageClass(Old->getStorageClass());
1581
1582  // Keep a chain of previous declarations.
1583  New->setPreviousDeclaration(Old);
1584
1585  // Inherit access appropriately.
1586  New->setAccess(Old->getAccess());
1587}
1588
1589/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1590/// no declarator (e.g. "struct foo;") is parsed.
1591Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1592                                            DeclSpec &DS) {
1593  // FIXME: Error on inline/virtual/explicit
1594  // FIXME: Warn on useless __thread
1595  // FIXME: Warn on useless const/volatile
1596  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1597  // FIXME: Warn on useless attributes
1598  Decl *TagD = 0;
1599  TagDecl *Tag = 0;
1600  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1601      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1602      DS.getTypeSpecType() == DeclSpec::TST_union ||
1603      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1604    TagD = DS.getRepAsDecl();
1605
1606    if (!TagD) // We probably had an error
1607      return 0;
1608
1609    // Note that the above type specs guarantee that the
1610    // type rep is a Decl, whereas in many of the others
1611    // it's a Type.
1612    Tag = dyn_cast<TagDecl>(TagD);
1613  }
1614
1615  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1616    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1617    // or incomplete types shall not be restrict-qualified."
1618    if (TypeQuals & DeclSpec::TQ_restrict)
1619      Diag(DS.getRestrictSpecLoc(),
1620           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1621           << DS.getSourceRange();
1622  }
1623
1624  if (DS.isFriendSpecified()) {
1625    // If we're dealing with a decl but not a TagDecl, assume that
1626    // whatever routines created it handled the friendship aspect.
1627    if (TagD && !Tag)
1628      return 0;
1629    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1630  }
1631
1632  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1633    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1634
1635    if (!Record->getDeclName() && Record->isDefinition() &&
1636        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1637      if (getLangOptions().CPlusPlus ||
1638          Record->getDeclContext()->isRecord())
1639        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1640
1641      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1642        << DS.getSourceRange();
1643    }
1644  }
1645
1646  // Check for Microsoft C extension: anonymous struct.
1647  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1648      CurContext->isRecord() &&
1649      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1650    // Handle 2 kinds of anonymous struct:
1651    //   struct STRUCT;
1652    // and
1653    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1654    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1655    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1656        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1657         DS.getRepAsType().get()->isStructureType())) {
1658      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1659        << DS.getSourceRange();
1660      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1661    }
1662  }
1663
1664  if (getLangOptions().CPlusPlus &&
1665      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1666    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1667      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1668          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1669        Diag(Enum->getLocation(), diag::ext_no_declarators)
1670          << DS.getSourceRange();
1671
1672  if (!DS.isMissingDeclaratorOk() &&
1673      DS.getTypeSpecType() != DeclSpec::TST_error) {
1674    // Warn about typedefs of enums without names, since this is an
1675    // extension in both Microsoft and GNU.
1676    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1677        Tag && isa<EnumDecl>(Tag)) {
1678      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1679        << DS.getSourceRange();
1680      return Tag;
1681    }
1682
1683    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1684      << DS.getSourceRange();
1685  }
1686
1687  return TagD;
1688}
1689
1690/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1691/// builds a statement for it and returns it so it is evaluated.
1692StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1693  StmtResult R;
1694  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1695    Expr *Exp = DS.getRepAsExpr();
1696    QualType Ty = Exp->getType();
1697    if (Ty->isPointerType()) {
1698      do
1699        Ty = Ty->getAs<PointerType>()->getPointeeType();
1700      while (Ty->isPointerType());
1701    }
1702    if (Ty->isVariableArrayType()) {
1703      R = ActOnExprStmt(MakeFullExpr(Exp));
1704    }
1705  }
1706  return R;
1707}
1708
1709/// We are trying to inject an anonymous member into the given scope;
1710/// check if there's an existing declaration that can't be overloaded.
1711///
1712/// \return true if this is a forbidden redeclaration
1713static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1714                                         Scope *S,
1715                                         DeclContext *Owner,
1716                                         DeclarationName Name,
1717                                         SourceLocation NameLoc,
1718                                         unsigned diagnostic) {
1719  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1720                 Sema::ForRedeclaration);
1721  if (!SemaRef.LookupName(R, S)) return false;
1722
1723  if (R.getAsSingle<TagDecl>())
1724    return false;
1725
1726  // Pick a representative declaration.
1727  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1728  assert(PrevDecl && "Expected a non-null Decl");
1729
1730  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1731    return false;
1732
1733  SemaRef.Diag(NameLoc, diagnostic) << Name;
1734  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1735
1736  return true;
1737}
1738
1739/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1740/// anonymous struct or union AnonRecord into the owning context Owner
1741/// and scope S. This routine will be invoked just after we realize
1742/// that an unnamed union or struct is actually an anonymous union or
1743/// struct, e.g.,
1744///
1745/// @code
1746/// union {
1747///   int i;
1748///   float f;
1749/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1750///    // f into the surrounding scope.x
1751/// @endcode
1752///
1753/// This routine is recursive, injecting the names of nested anonymous
1754/// structs/unions into the owning context and scope as well.
1755static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1756                                                DeclContext *Owner,
1757                                                RecordDecl *AnonRecord,
1758                                                AccessSpecifier AS,
1759                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1760                                                      bool MSAnonStruct) {
1761  unsigned diagKind
1762    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1763                            : diag::err_anonymous_struct_member_redecl;
1764
1765  bool Invalid = false;
1766
1767  // Look every FieldDecl and IndirectFieldDecl with a name.
1768  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1769                               DEnd = AnonRecord->decls_end();
1770       D != DEnd; ++D) {
1771    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1772        cast<NamedDecl>(*D)->getDeclName()) {
1773      ValueDecl *VD = cast<ValueDecl>(*D);
1774      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1775                                       VD->getLocation(), diagKind)) {
1776        // C++ [class.union]p2:
1777        //   The names of the members of an anonymous union shall be
1778        //   distinct from the names of any other entity in the
1779        //   scope in which the anonymous union is declared.
1780        Invalid = true;
1781      } else {
1782        // C++ [class.union]p2:
1783        //   For the purpose of name lookup, after the anonymous union
1784        //   definition, the members of the anonymous union are
1785        //   considered to have been defined in the scope in which the
1786        //   anonymous union is declared.
1787        unsigned OldChainingSize = Chaining.size();
1788        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1789          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1790               PE = IF->chain_end(); PI != PE; ++PI)
1791            Chaining.push_back(*PI);
1792        else
1793          Chaining.push_back(VD);
1794
1795        assert(Chaining.size() >= 2);
1796        NamedDecl **NamedChain =
1797          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1798        for (unsigned i = 0; i < Chaining.size(); i++)
1799          NamedChain[i] = Chaining[i];
1800
1801        IndirectFieldDecl* IndirectField =
1802          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1803                                    VD->getIdentifier(), VD->getType(),
1804                                    NamedChain, Chaining.size());
1805
1806        IndirectField->setAccess(AS);
1807        IndirectField->setImplicit();
1808        SemaRef.PushOnScopeChains(IndirectField, S);
1809
1810        // That includes picking up the appropriate access specifier.
1811        if (AS != AS_none) IndirectField->setAccess(AS);
1812
1813        Chaining.resize(OldChainingSize);
1814      }
1815    }
1816  }
1817
1818  return Invalid;
1819}
1820
1821/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1822/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1823/// illegal input values are mapped to SC_None.
1824static StorageClass
1825StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1826  switch (StorageClassSpec) {
1827  case DeclSpec::SCS_unspecified:    return SC_None;
1828  case DeclSpec::SCS_extern:         return SC_Extern;
1829  case DeclSpec::SCS_static:         return SC_Static;
1830  case DeclSpec::SCS_auto:           return SC_Auto;
1831  case DeclSpec::SCS_register:       return SC_Register;
1832  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1833    // Illegal SCSs map to None: error reporting is up to the caller.
1834  case DeclSpec::SCS_mutable:        // Fall through.
1835  case DeclSpec::SCS_typedef:        return SC_None;
1836  }
1837  llvm_unreachable("unknown storage class specifier");
1838}
1839
1840/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1841/// a StorageClass. Any error reporting is up to the caller:
1842/// illegal input values are mapped to SC_None.
1843static StorageClass
1844StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1845  switch (StorageClassSpec) {
1846  case DeclSpec::SCS_unspecified:    return SC_None;
1847  case DeclSpec::SCS_extern:         return SC_Extern;
1848  case DeclSpec::SCS_static:         return SC_Static;
1849  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1850    // Illegal SCSs map to None: error reporting is up to the caller.
1851  case DeclSpec::SCS_auto:           // Fall through.
1852  case DeclSpec::SCS_mutable:        // Fall through.
1853  case DeclSpec::SCS_register:       // Fall through.
1854  case DeclSpec::SCS_typedef:        return SC_None;
1855  }
1856  llvm_unreachable("unknown storage class specifier");
1857}
1858
1859/// BuildAnonymousStructOrUnion - Handle the declaration of an
1860/// anonymous structure or union. Anonymous unions are a C++ feature
1861/// (C++ [class.union]) and a GNU C extension; anonymous structures
1862/// are a GNU C and GNU C++ extension.
1863Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1864                                             AccessSpecifier AS,
1865                                             RecordDecl *Record) {
1866  DeclContext *Owner = Record->getDeclContext();
1867
1868  // Diagnose whether this anonymous struct/union is an extension.
1869  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1870    Diag(Record->getLocation(), diag::ext_anonymous_union);
1871  else if (!Record->isUnion())
1872    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1873
1874  // C and C++ require different kinds of checks for anonymous
1875  // structs/unions.
1876  bool Invalid = false;
1877  if (getLangOptions().CPlusPlus) {
1878    const char* PrevSpec = 0;
1879    unsigned DiagID;
1880    // C++ [class.union]p3:
1881    //   Anonymous unions declared in a named namespace or in the
1882    //   global namespace shall be declared static.
1883    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1884        (isa<TranslationUnitDecl>(Owner) ||
1885         (isa<NamespaceDecl>(Owner) &&
1886          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1887      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1888      Invalid = true;
1889
1890      // Recover by adding 'static'.
1891      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1892                             PrevSpec, DiagID);
1893    }
1894    // C++ [class.union]p3:
1895    //   A storage class is not allowed in a declaration of an
1896    //   anonymous union in a class scope.
1897    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1898             isa<RecordDecl>(Owner)) {
1899      Diag(DS.getStorageClassSpecLoc(),
1900           diag::err_anonymous_union_with_storage_spec);
1901      Invalid = true;
1902
1903      // Recover by removing the storage specifier.
1904      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1905                             PrevSpec, DiagID);
1906    }
1907
1908    // C++ [class.union]p2:
1909    //   The member-specification of an anonymous union shall only
1910    //   define non-static data members. [Note: nested types and
1911    //   functions cannot be declared within an anonymous union. ]
1912    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1913                                 MemEnd = Record->decls_end();
1914         Mem != MemEnd; ++Mem) {
1915      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1916        // C++ [class.union]p3:
1917        //   An anonymous union shall not have private or protected
1918        //   members (clause 11).
1919        assert(FD->getAccess() != AS_none);
1920        if (FD->getAccess() != AS_public) {
1921          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1922            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1923          Invalid = true;
1924        }
1925
1926        if (CheckNontrivialField(FD))
1927          Invalid = true;
1928      } else if ((*Mem)->isImplicit()) {
1929        // Any implicit members are fine.
1930      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1931        // This is a type that showed up in an
1932        // elaborated-type-specifier inside the anonymous struct or
1933        // union, but which actually declares a type outside of the
1934        // anonymous struct or union. It's okay.
1935      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1936        if (!MemRecord->isAnonymousStructOrUnion() &&
1937            MemRecord->getDeclName()) {
1938          // Visual C++ allows type definition in anonymous struct or union.
1939          if (getLangOptions().Microsoft)
1940            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1941              << (int)Record->isUnion();
1942          else {
1943            // This is a nested type declaration.
1944            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1945              << (int)Record->isUnion();
1946            Invalid = true;
1947          }
1948        }
1949      } else if (isa<AccessSpecDecl>(*Mem)) {
1950        // Any access specifier is fine.
1951      } else {
1952        // We have something that isn't a non-static data
1953        // member. Complain about it.
1954        unsigned DK = diag::err_anonymous_record_bad_member;
1955        if (isa<TypeDecl>(*Mem))
1956          DK = diag::err_anonymous_record_with_type;
1957        else if (isa<FunctionDecl>(*Mem))
1958          DK = diag::err_anonymous_record_with_function;
1959        else if (isa<VarDecl>(*Mem))
1960          DK = diag::err_anonymous_record_with_static;
1961
1962        // Visual C++ allows type definition in anonymous struct or union.
1963        if (getLangOptions().Microsoft &&
1964            DK == diag::err_anonymous_record_with_type)
1965          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1966            << (int)Record->isUnion();
1967        else {
1968          Diag((*Mem)->getLocation(), DK)
1969              << (int)Record->isUnion();
1970          Invalid = true;
1971        }
1972      }
1973    }
1974  }
1975
1976  if (!Record->isUnion() && !Owner->isRecord()) {
1977    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1978      << (int)getLangOptions().CPlusPlus;
1979    Invalid = true;
1980  }
1981
1982  // Mock up a declarator.
1983  Declarator Dc(DS, Declarator::TypeNameContext);
1984  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1985  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1986
1987  // Create a declaration for this anonymous struct/union.
1988  NamedDecl *Anon = 0;
1989  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1990    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1991                             /*IdentifierInfo=*/0,
1992                             Context.getTypeDeclType(Record),
1993                             TInfo,
1994                             /*BitWidth=*/0, /*Mutable=*/false);
1995    Anon->setAccess(AS);
1996    if (getLangOptions().CPlusPlus)
1997      FieldCollector->Add(cast<FieldDecl>(Anon));
1998  } else {
1999    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2000    assert(SCSpec != DeclSpec::SCS_typedef &&
2001           "Parser allowed 'typedef' as storage class VarDecl.");
2002    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2003    if (SCSpec == DeclSpec::SCS_mutable) {
2004      // mutable can only appear on non-static class members, so it's always
2005      // an error here
2006      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2007      Invalid = true;
2008      SC = SC_None;
2009    }
2010    SCSpec = DS.getStorageClassSpecAsWritten();
2011    VarDecl::StorageClass SCAsWritten
2012      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2013
2014    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2015                           /*IdentifierInfo=*/0,
2016                           Context.getTypeDeclType(Record),
2017                           TInfo, SC, SCAsWritten);
2018  }
2019  Anon->setImplicit();
2020
2021  // Add the anonymous struct/union object to the current
2022  // context. We'll be referencing this object when we refer to one of
2023  // its members.
2024  Owner->addDecl(Anon);
2025
2026  // Inject the members of the anonymous struct/union into the owning
2027  // context and into the identifier resolver chain for name lookup
2028  // purposes.
2029  llvm::SmallVector<NamedDecl*, 2> Chain;
2030  Chain.push_back(Anon);
2031
2032  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2033                                          Chain, false))
2034    Invalid = true;
2035
2036  // Mark this as an anonymous struct/union type. Note that we do not
2037  // do this until after we have already checked and injected the
2038  // members of this anonymous struct/union type, because otherwise
2039  // the members could be injected twice: once by DeclContext when it
2040  // builds its lookup table, and once by
2041  // InjectAnonymousStructOrUnionMembers.
2042  Record->setAnonymousStructOrUnion(true);
2043
2044  if (Invalid)
2045    Anon->setInvalidDecl();
2046
2047  return Anon;
2048}
2049
2050/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2051/// Microsoft C anonymous structure.
2052/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2053/// Example:
2054///
2055/// struct A { int a; };
2056/// struct B { struct A; int b; };
2057///
2058/// void foo() {
2059///   B var;
2060///   var.a = 3;
2061/// }
2062///
2063Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2064                                           RecordDecl *Record) {
2065
2066  // If there is no Record, get the record via the typedef.
2067  if (!Record)
2068    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2069
2070  // Mock up a declarator.
2071  Declarator Dc(DS, Declarator::TypeNameContext);
2072  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2073  assert(TInfo && "couldn't build declarator info for anonymous struct");
2074
2075  // Create a declaration for this anonymous struct.
2076  NamedDecl* Anon = FieldDecl::Create(Context,
2077                             cast<RecordDecl>(CurContext),
2078                             DS.getSourceRange().getBegin(),
2079                             /*IdentifierInfo=*/0,
2080                             Context.getTypeDeclType(Record),
2081                             TInfo,
2082                             /*BitWidth=*/0, /*Mutable=*/false);
2083  Anon->setImplicit();
2084
2085  // Add the anonymous struct object to the current context.
2086  CurContext->addDecl(Anon);
2087
2088  // Inject the members of the anonymous struct into the current
2089  // context and into the identifier resolver chain for name lookup
2090  // purposes.
2091  llvm::SmallVector<NamedDecl*, 2> Chain;
2092  Chain.push_back(Anon);
2093
2094  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2095                                          Record->getDefinition(),
2096                                          AS_none, Chain, true))
2097    Anon->setInvalidDecl();
2098
2099  return Anon;
2100}
2101
2102/// GetNameForDeclarator - Determine the full declaration name for the
2103/// given Declarator.
2104DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2105  return GetNameFromUnqualifiedId(D.getName());
2106}
2107
2108/// \brief Retrieves the declaration name from a parsed unqualified-id.
2109DeclarationNameInfo
2110Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2111  DeclarationNameInfo NameInfo;
2112  NameInfo.setLoc(Name.StartLocation);
2113
2114  switch (Name.getKind()) {
2115
2116  case UnqualifiedId::IK_Identifier:
2117    NameInfo.setName(Name.Identifier);
2118    NameInfo.setLoc(Name.StartLocation);
2119    return NameInfo;
2120
2121  case UnqualifiedId::IK_OperatorFunctionId:
2122    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2123                                           Name.OperatorFunctionId.Operator));
2124    NameInfo.setLoc(Name.StartLocation);
2125    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2126      = Name.OperatorFunctionId.SymbolLocations[0];
2127    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2128      = Name.EndLocation.getRawEncoding();
2129    return NameInfo;
2130
2131  case UnqualifiedId::IK_LiteralOperatorId:
2132    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2133                                                           Name.Identifier));
2134    NameInfo.setLoc(Name.StartLocation);
2135    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2136    return NameInfo;
2137
2138  case UnqualifiedId::IK_ConversionFunctionId: {
2139    TypeSourceInfo *TInfo;
2140    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2141    if (Ty.isNull())
2142      return DeclarationNameInfo();
2143    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2144                                               Context.getCanonicalType(Ty)));
2145    NameInfo.setLoc(Name.StartLocation);
2146    NameInfo.setNamedTypeInfo(TInfo);
2147    return NameInfo;
2148  }
2149
2150  case UnqualifiedId::IK_ConstructorName: {
2151    TypeSourceInfo *TInfo;
2152    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2153    if (Ty.isNull())
2154      return DeclarationNameInfo();
2155    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2156                                              Context.getCanonicalType(Ty)));
2157    NameInfo.setLoc(Name.StartLocation);
2158    NameInfo.setNamedTypeInfo(TInfo);
2159    return NameInfo;
2160  }
2161
2162  case UnqualifiedId::IK_ConstructorTemplateId: {
2163    // In well-formed code, we can only have a constructor
2164    // template-id that refers to the current context, so go there
2165    // to find the actual type being constructed.
2166    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2167    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2168      return DeclarationNameInfo();
2169
2170    // Determine the type of the class being constructed.
2171    QualType CurClassType = Context.getTypeDeclType(CurClass);
2172
2173    // FIXME: Check two things: that the template-id names the same type as
2174    // CurClassType, and that the template-id does not occur when the name
2175    // was qualified.
2176
2177    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2178                                    Context.getCanonicalType(CurClassType)));
2179    NameInfo.setLoc(Name.StartLocation);
2180    // FIXME: should we retrieve TypeSourceInfo?
2181    NameInfo.setNamedTypeInfo(0);
2182    return NameInfo;
2183  }
2184
2185  case UnqualifiedId::IK_DestructorName: {
2186    TypeSourceInfo *TInfo;
2187    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2188    if (Ty.isNull())
2189      return DeclarationNameInfo();
2190    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2191                                              Context.getCanonicalType(Ty)));
2192    NameInfo.setLoc(Name.StartLocation);
2193    NameInfo.setNamedTypeInfo(TInfo);
2194    return NameInfo;
2195  }
2196
2197  case UnqualifiedId::IK_TemplateId: {
2198    TemplateName TName = Name.TemplateId->Template.get();
2199    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2200    return Context.getNameForTemplate(TName, TNameLoc);
2201  }
2202
2203  } // switch (Name.getKind())
2204
2205  assert(false && "Unknown name kind");
2206  return DeclarationNameInfo();
2207}
2208
2209/// isNearlyMatchingFunction - Determine whether the C++ functions
2210/// Declaration and Definition are "nearly" matching. This heuristic
2211/// is used to improve diagnostics in the case where an out-of-line
2212/// function definition doesn't match any declaration within
2213/// the class or namespace.
2214static bool isNearlyMatchingFunction(ASTContext &Context,
2215                                     FunctionDecl *Declaration,
2216                                     FunctionDecl *Definition) {
2217  if (Declaration->param_size() != Definition->param_size())
2218    return false;
2219  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2220    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2221    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2222
2223    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2224                                        DefParamTy.getNonReferenceType()))
2225      return false;
2226  }
2227
2228  return true;
2229}
2230
2231/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2232/// declarator needs to be rebuilt in the current instantiation.
2233/// Any bits of declarator which appear before the name are valid for
2234/// consideration here.  That's specifically the type in the decl spec
2235/// and the base type in any member-pointer chunks.
2236static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2237                                                    DeclarationName Name) {
2238  // The types we specifically need to rebuild are:
2239  //   - typenames, typeofs, and decltypes
2240  //   - types which will become injected class names
2241  // Of course, we also need to rebuild any type referencing such a
2242  // type.  It's safest to just say "dependent", but we call out a
2243  // few cases here.
2244
2245  DeclSpec &DS = D.getMutableDeclSpec();
2246  switch (DS.getTypeSpecType()) {
2247  case DeclSpec::TST_typename:
2248  case DeclSpec::TST_typeofType:
2249  case DeclSpec::TST_decltype: {
2250    // Grab the type from the parser.
2251    TypeSourceInfo *TSI = 0;
2252    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2253    if (T.isNull() || !T->isDependentType()) break;
2254
2255    // Make sure there's a type source info.  This isn't really much
2256    // of a waste; most dependent types should have type source info
2257    // attached already.
2258    if (!TSI)
2259      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2260
2261    // Rebuild the type in the current instantiation.
2262    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2263    if (!TSI) return true;
2264
2265    // Store the new type back in the decl spec.
2266    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2267    DS.UpdateTypeRep(LocType);
2268    break;
2269  }
2270
2271  case DeclSpec::TST_typeofExpr: {
2272    Expr *E = DS.getRepAsExpr();
2273    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2274    if (Result.isInvalid()) return true;
2275    DS.UpdateExprRep(Result.get());
2276    break;
2277  }
2278
2279  default:
2280    // Nothing to do for these decl specs.
2281    break;
2282  }
2283
2284  // It doesn't matter what order we do this in.
2285  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2286    DeclaratorChunk &Chunk = D.getTypeObject(I);
2287
2288    // The only type information in the declarator which can come
2289    // before the declaration name is the base type of a member
2290    // pointer.
2291    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2292      continue;
2293
2294    // Rebuild the scope specifier in-place.
2295    CXXScopeSpec &SS = Chunk.Mem.Scope();
2296    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2297      return true;
2298  }
2299
2300  return false;
2301}
2302
2303Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2304  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2305}
2306
2307Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2308                             MultiTemplateParamsArg TemplateParamLists,
2309                             bool IsFunctionDefinition) {
2310  // TODO: consider using NameInfo for diagnostic.
2311  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2312  DeclarationName Name = NameInfo.getName();
2313
2314  // All of these full declarators require an identifier.  If it doesn't have
2315  // one, the ParsedFreeStandingDeclSpec action should be used.
2316  if (!Name) {
2317    if (!D.isInvalidType())  // Reject this if we think it is valid.
2318      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2319           diag::err_declarator_need_ident)
2320        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2321    return 0;
2322  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2323    return 0;
2324
2325  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2326  // we find one that is.
2327  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2328         (S->getFlags() & Scope::TemplateParamScope) != 0)
2329    S = S->getParent();
2330
2331  DeclContext *DC = CurContext;
2332  if (D.getCXXScopeSpec().isInvalid())
2333    D.setInvalidType();
2334  else if (D.getCXXScopeSpec().isSet()) {
2335    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2336                                        UPPC_DeclarationQualifier))
2337      return 0;
2338
2339    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2340    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2341    if (!DC) {
2342      // If we could not compute the declaration context, it's because the
2343      // declaration context is dependent but does not refer to a class,
2344      // class template, or class template partial specialization. Complain
2345      // and return early, to avoid the coming semantic disaster.
2346      Diag(D.getIdentifierLoc(),
2347           diag::err_template_qualified_declarator_no_match)
2348        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2349        << D.getCXXScopeSpec().getRange();
2350      return 0;
2351    }
2352
2353    bool IsDependentContext = DC->isDependentContext();
2354
2355    if (!IsDependentContext &&
2356        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2357      return 0;
2358
2359    if (isa<CXXRecordDecl>(DC)) {
2360      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2361        Diag(D.getIdentifierLoc(),
2362             diag::err_member_def_undefined_record)
2363          << Name << DC << D.getCXXScopeSpec().getRange();
2364        D.setInvalidType();
2365      } else if (isa<CXXRecordDecl>(CurContext) &&
2366                 !D.getDeclSpec().isFriendSpecified()) {
2367        // The user provided a superfluous scope specifier inside a class
2368        // definition:
2369        //
2370        // class X {
2371        //   void X::f();
2372        // };
2373        if (CurContext->Equals(DC))
2374          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2375            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2376        else
2377          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2378            << Name << D.getCXXScopeSpec().getRange();
2379
2380        // Pretend that this qualifier was not here.
2381        D.getCXXScopeSpec().clear();
2382      }
2383    }
2384
2385    // Check whether we need to rebuild the type of the given
2386    // declaration in the current instantiation.
2387    if (EnteringContext && IsDependentContext &&
2388        TemplateParamLists.size() != 0) {
2389      ContextRAII SavedContext(*this, DC);
2390      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2391        D.setInvalidType();
2392    }
2393  }
2394
2395  // C++ [class.mem]p13:
2396  //   If T is the name of a class, then each of the following shall have a
2397  //   name different from T:
2398  //     - every static data member of class T;
2399  //     - every member function of class T
2400  //     - every member of class T that is itself a type;
2401  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2402    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2403      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2404        << Name;
2405
2406      // If this is a typedef, we'll end up spewing multiple diagnostics.
2407      // Just return early; it's safer.
2408      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2409        return 0;
2410    }
2411
2412  NamedDecl *New;
2413
2414  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2415  QualType R = TInfo->getType();
2416
2417  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2418                                      UPPC_DeclarationType))
2419    D.setInvalidType();
2420
2421  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2422                        ForRedeclaration);
2423
2424  // See if this is a redefinition of a variable in the same scope.
2425  if (!D.getCXXScopeSpec().isSet()) {
2426    bool IsLinkageLookup = false;
2427
2428    // If the declaration we're planning to build will be a function
2429    // or object with linkage, then look for another declaration with
2430    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2431    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2432      /* Do nothing*/;
2433    else if (R->isFunctionType()) {
2434      if (CurContext->isFunctionOrMethod() ||
2435          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2436        IsLinkageLookup = true;
2437    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2438      IsLinkageLookup = true;
2439    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2440             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2441      IsLinkageLookup = true;
2442
2443    if (IsLinkageLookup)
2444      Previous.clear(LookupRedeclarationWithLinkage);
2445
2446    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2447  } else { // Something like "int foo::x;"
2448    LookupQualifiedName(Previous, DC);
2449
2450    // Don't consider using declarations as previous declarations for
2451    // out-of-line members.
2452    RemoveUsingDecls(Previous);
2453
2454    // C++ 7.3.1.2p2:
2455    // Members (including explicit specializations of templates) of a named
2456    // namespace can also be defined outside that namespace by explicit
2457    // qualification of the name being defined, provided that the entity being
2458    // defined was already declared in the namespace and the definition appears
2459    // after the point of declaration in a namespace that encloses the
2460    // declarations namespace.
2461    //
2462    // Note that we only check the context at this point. We don't yet
2463    // have enough information to make sure that PrevDecl is actually
2464    // the declaration we want to match. For example, given:
2465    //
2466    //   class X {
2467    //     void f();
2468    //     void f(float);
2469    //   };
2470    //
2471    //   void X::f(int) { } // ill-formed
2472    //
2473    // In this case, PrevDecl will point to the overload set
2474    // containing the two f's declared in X, but neither of them
2475    // matches.
2476
2477    // First check whether we named the global scope.
2478    if (isa<TranslationUnitDecl>(DC)) {
2479      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2480        << Name << D.getCXXScopeSpec().getRange();
2481    } else {
2482      DeclContext *Cur = CurContext;
2483      while (isa<LinkageSpecDecl>(Cur))
2484        Cur = Cur->getParent();
2485      if (!Cur->Encloses(DC)) {
2486        // The qualifying scope doesn't enclose the original declaration.
2487        // Emit diagnostic based on current scope.
2488        SourceLocation L = D.getIdentifierLoc();
2489        SourceRange R = D.getCXXScopeSpec().getRange();
2490        if (isa<FunctionDecl>(Cur))
2491          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2492        else
2493          Diag(L, diag::err_invalid_declarator_scope)
2494            << Name << cast<NamedDecl>(DC) << R;
2495        D.setInvalidType();
2496      }
2497    }
2498  }
2499
2500  if (Previous.isSingleResult() &&
2501      Previous.getFoundDecl()->isTemplateParameter()) {
2502    // Maybe we will complain about the shadowed template parameter.
2503    if (!D.isInvalidType())
2504      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2505                                          Previous.getFoundDecl()))
2506        D.setInvalidType();
2507
2508    // Just pretend that we didn't see the previous declaration.
2509    Previous.clear();
2510  }
2511
2512  // In C++, the previous declaration we find might be a tag type
2513  // (class or enum). In this case, the new declaration will hide the
2514  // tag type. Note that this does does not apply if we're declaring a
2515  // typedef (C++ [dcl.typedef]p4).
2516  if (Previous.isSingleTagDecl() &&
2517      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2518    Previous.clear();
2519
2520  bool Redeclaration = false;
2521  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2522    if (TemplateParamLists.size()) {
2523      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2524      return 0;
2525    }
2526
2527    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2528  } else if (R->isFunctionType()) {
2529    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2530                                  move(TemplateParamLists),
2531                                  IsFunctionDefinition, Redeclaration);
2532  } else {
2533    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2534                                  move(TemplateParamLists),
2535                                  Redeclaration);
2536  }
2537
2538  if (New == 0)
2539    return 0;
2540
2541  // If this has an identifier and is not an invalid redeclaration or
2542  // function template specialization, add it to the scope stack.
2543  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2544    PushOnScopeChains(New, S);
2545
2546  return New;
2547}
2548
2549/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2550/// types into constant array types in certain situations which would otherwise
2551/// be errors (for GCC compatibility).
2552static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2553                                                    ASTContext &Context,
2554                                                    bool &SizeIsNegative,
2555                                                    llvm::APSInt &Oversized) {
2556  // This method tries to turn a variable array into a constant
2557  // array even when the size isn't an ICE.  This is necessary
2558  // for compatibility with code that depends on gcc's buggy
2559  // constant expression folding, like struct {char x[(int)(char*)2];}
2560  SizeIsNegative = false;
2561  Oversized = 0;
2562
2563  if (T->isDependentType())
2564    return QualType();
2565
2566  QualifierCollector Qs;
2567  const Type *Ty = Qs.strip(T);
2568
2569  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2570    QualType Pointee = PTy->getPointeeType();
2571    QualType FixedType =
2572        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2573                                            Oversized);
2574    if (FixedType.isNull()) return FixedType;
2575    FixedType = Context.getPointerType(FixedType);
2576    return Qs.apply(Context, FixedType);
2577  }
2578  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2579    QualType Inner = PTy->getInnerType();
2580    QualType FixedType =
2581        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2582                                            Oversized);
2583    if (FixedType.isNull()) return FixedType;
2584    FixedType = Context.getParenType(FixedType);
2585    return Qs.apply(Context, FixedType);
2586  }
2587
2588  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2589  if (!VLATy)
2590    return QualType();
2591  // FIXME: We should probably handle this case
2592  if (VLATy->getElementType()->isVariablyModifiedType())
2593    return QualType();
2594
2595  Expr::EvalResult EvalResult;
2596  if (!VLATy->getSizeExpr() ||
2597      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2598      !EvalResult.Val.isInt())
2599    return QualType();
2600
2601  // Check whether the array size is negative.
2602  llvm::APSInt &Res = EvalResult.Val.getInt();
2603  if (Res.isSigned() && Res.isNegative()) {
2604    SizeIsNegative = true;
2605    return QualType();
2606  }
2607
2608  // Check whether the array is too large to be addressed.
2609  unsigned ActiveSizeBits
2610    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2611                                              Res);
2612  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2613    Oversized = Res;
2614    return QualType();
2615  }
2616
2617  return Context.getConstantArrayType(VLATy->getElementType(),
2618                                      Res, ArrayType::Normal, 0);
2619}
2620
2621/// \brief Register the given locally-scoped external C declaration so
2622/// that it can be found later for redeclarations
2623void
2624Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2625                                       const LookupResult &Previous,
2626                                       Scope *S) {
2627  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2628         "Decl is not a locally-scoped decl!");
2629  // Note that we have a locally-scoped external with this name.
2630  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2631
2632  if (!Previous.isSingleResult())
2633    return;
2634
2635  NamedDecl *PrevDecl = Previous.getFoundDecl();
2636
2637  // If there was a previous declaration of this variable, it may be
2638  // in our identifier chain. Update the identifier chain with the new
2639  // declaration.
2640  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2641    // The previous declaration was found on the identifer resolver
2642    // chain, so remove it from its scope.
2643    while (S && !S->isDeclScope(PrevDecl))
2644      S = S->getParent();
2645
2646    if (S)
2647      S->RemoveDecl(PrevDecl);
2648  }
2649}
2650
2651/// \brief Diagnose function specifiers on a declaration of an identifier that
2652/// does not identify a function.
2653void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2654  // FIXME: We should probably indicate the identifier in question to avoid
2655  // confusion for constructs like "inline int a(), b;"
2656  if (D.getDeclSpec().isInlineSpecified())
2657    Diag(D.getDeclSpec().getInlineSpecLoc(),
2658         diag::err_inline_non_function);
2659
2660  if (D.getDeclSpec().isVirtualSpecified())
2661    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2662         diag::err_virtual_non_function);
2663
2664  if (D.getDeclSpec().isExplicitSpecified())
2665    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2666         diag::err_explicit_non_function);
2667}
2668
2669NamedDecl*
2670Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2671                             QualType R,  TypeSourceInfo *TInfo,
2672                             LookupResult &Previous, bool &Redeclaration) {
2673  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2674  if (D.getCXXScopeSpec().isSet()) {
2675    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2676      << D.getCXXScopeSpec().getRange();
2677    D.setInvalidType();
2678    // Pretend we didn't see the scope specifier.
2679    DC = CurContext;
2680    Previous.clear();
2681  }
2682
2683  if (getLangOptions().CPlusPlus) {
2684    // Check that there are no default arguments (C++ only).
2685    CheckExtraCXXDefaultArguments(D);
2686  }
2687
2688  DiagnoseFunctionSpecifiers(D);
2689
2690  if (D.getDeclSpec().isThreadSpecified())
2691    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2692
2693  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2694    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2695      << D.getName().getSourceRange();
2696    return 0;
2697  }
2698
2699  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2700  if (!NewTD) return 0;
2701
2702  // Handle attributes prior to checking for duplicates in MergeVarDecl
2703  ProcessDeclAttributes(S, NewTD, D);
2704
2705  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2706  // then it shall have block scope.
2707  // Note that variably modified types must be fixed before merging the decl so
2708  // that redeclarations will match.
2709  QualType T = NewTD->getUnderlyingType();
2710  if (T->isVariablyModifiedType()) {
2711    getCurFunction()->setHasBranchProtectedScope();
2712
2713    if (S->getFnParent() == 0) {
2714      bool SizeIsNegative;
2715      llvm::APSInt Oversized;
2716      QualType FixedTy =
2717          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2718                                              Oversized);
2719      if (!FixedTy.isNull()) {
2720        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2721        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2722      } else {
2723        if (SizeIsNegative)
2724          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2725        else if (T->isVariableArrayType())
2726          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2727        else if (Oversized.getBoolValue())
2728          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2729            << Oversized.toString(10);
2730        else
2731          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2732        NewTD->setInvalidDecl();
2733      }
2734    }
2735  }
2736
2737  // Merge the decl with the existing one if appropriate. If the decl is
2738  // in an outer scope, it isn't the same thing.
2739  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2740  if (!Previous.empty()) {
2741    Redeclaration = true;
2742    MergeTypeDefDecl(NewTD, Previous);
2743  }
2744
2745  // If this is the C FILE type, notify the AST context.
2746  if (IdentifierInfo *II = NewTD->getIdentifier())
2747    if (!NewTD->isInvalidDecl() &&
2748        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2749      if (II->isStr("FILE"))
2750        Context.setFILEDecl(NewTD);
2751      else if (II->isStr("jmp_buf"))
2752        Context.setjmp_bufDecl(NewTD);
2753      else if (II->isStr("sigjmp_buf"))
2754        Context.setsigjmp_bufDecl(NewTD);
2755      else if (II->isStr("__builtin_va_list"))
2756        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2757    }
2758
2759  return NewTD;
2760}
2761
2762/// \brief Determines whether the given declaration is an out-of-scope
2763/// previous declaration.
2764///
2765/// This routine should be invoked when name lookup has found a
2766/// previous declaration (PrevDecl) that is not in the scope where a
2767/// new declaration by the same name is being introduced. If the new
2768/// declaration occurs in a local scope, previous declarations with
2769/// linkage may still be considered previous declarations (C99
2770/// 6.2.2p4-5, C++ [basic.link]p6).
2771///
2772/// \param PrevDecl the previous declaration found by name
2773/// lookup
2774///
2775/// \param DC the context in which the new declaration is being
2776/// declared.
2777///
2778/// \returns true if PrevDecl is an out-of-scope previous declaration
2779/// for a new delcaration with the same name.
2780static bool
2781isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2782                                ASTContext &Context) {
2783  if (!PrevDecl)
2784    return false;
2785
2786  if (!PrevDecl->hasLinkage())
2787    return false;
2788
2789  if (Context.getLangOptions().CPlusPlus) {
2790    // C++ [basic.link]p6:
2791    //   If there is a visible declaration of an entity with linkage
2792    //   having the same name and type, ignoring entities declared
2793    //   outside the innermost enclosing namespace scope, the block
2794    //   scope declaration declares that same entity and receives the
2795    //   linkage of the previous declaration.
2796    DeclContext *OuterContext = DC->getRedeclContext();
2797    if (!OuterContext->isFunctionOrMethod())
2798      // This rule only applies to block-scope declarations.
2799      return false;
2800
2801    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2802    if (PrevOuterContext->isRecord())
2803      // We found a member function: ignore it.
2804      return false;
2805
2806    // Find the innermost enclosing namespace for the new and
2807    // previous declarations.
2808    OuterContext = OuterContext->getEnclosingNamespaceContext();
2809    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2810
2811    // The previous declaration is in a different namespace, so it
2812    // isn't the same function.
2813    if (!OuterContext->Equals(PrevOuterContext))
2814      return false;
2815  }
2816
2817  return true;
2818}
2819
2820static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2821  CXXScopeSpec &SS = D.getCXXScopeSpec();
2822  if (!SS.isSet()) return;
2823  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2824                       SS.getRange());
2825}
2826
2827NamedDecl*
2828Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2829                              QualType R, TypeSourceInfo *TInfo,
2830                              LookupResult &Previous,
2831                              MultiTemplateParamsArg TemplateParamLists,
2832                              bool &Redeclaration) {
2833  DeclarationName Name = GetNameForDeclarator(D).getName();
2834
2835  // Check that there are no default arguments (C++ only).
2836  if (getLangOptions().CPlusPlus)
2837    CheckExtraCXXDefaultArguments(D);
2838
2839  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2840  assert(SCSpec != DeclSpec::SCS_typedef &&
2841         "Parser allowed 'typedef' as storage class VarDecl.");
2842  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2843  if (SCSpec == DeclSpec::SCS_mutable) {
2844    // mutable can only appear on non-static class members, so it's always
2845    // an error here
2846    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2847    D.setInvalidType();
2848    SC = SC_None;
2849  }
2850  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2851  VarDecl::StorageClass SCAsWritten
2852    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2853
2854  IdentifierInfo *II = Name.getAsIdentifierInfo();
2855  if (!II) {
2856    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2857      << Name.getAsString();
2858    return 0;
2859  }
2860
2861  DiagnoseFunctionSpecifiers(D);
2862
2863  if (!DC->isRecord() && S->getFnParent() == 0) {
2864    // C99 6.9p2: The storage-class specifiers auto and register shall not
2865    // appear in the declaration specifiers in an external declaration.
2866    if (SC == SC_Auto || SC == SC_Register) {
2867
2868      // If this is a register variable with an asm label specified, then this
2869      // is a GNU extension.
2870      if (SC == SC_Register && D.getAsmLabel())
2871        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2872      else
2873        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2874      D.setInvalidType();
2875    }
2876  }
2877
2878  bool isExplicitSpecialization;
2879  VarDecl *NewVD;
2880  if (!getLangOptions().CPlusPlus) {
2881      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2882                              II, R, TInfo, SC, SCAsWritten);
2883
2884    if (D.isInvalidType())
2885      NewVD->setInvalidDecl();
2886  } else {
2887    if (DC->isRecord() && !CurContext->isRecord()) {
2888      // This is an out-of-line definition of a static data member.
2889      if (SC == SC_Static) {
2890        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2891             diag::err_static_out_of_line)
2892          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2893      } else if (SC == SC_None)
2894        SC = SC_Static;
2895    }
2896    if (SC == SC_Static) {
2897      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2898        if (RD->isLocalClass())
2899          Diag(D.getIdentifierLoc(),
2900               diag::err_static_data_member_not_allowed_in_local_class)
2901            << Name << RD->getDeclName();
2902
2903        // C++ [class.union]p1: If a union contains a static data member,
2904        // the program is ill-formed.
2905        //
2906        // We also disallow static data members in anonymous structs.
2907        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2908          Diag(D.getIdentifierLoc(),
2909               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2910            << Name << RD->isUnion();
2911      }
2912    }
2913
2914    // Match up the template parameter lists with the scope specifier, then
2915    // determine whether we have a template or a template specialization.
2916    isExplicitSpecialization = false;
2917    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2918    bool Invalid = false;
2919    if (TemplateParameterList *TemplateParams
2920        = MatchTemplateParametersToScopeSpecifier(
2921                                                  D.getDeclSpec().getSourceRange().getBegin(),
2922                                                  D.getCXXScopeSpec(),
2923                                                  TemplateParamLists.get(),
2924                                                  TemplateParamLists.size(),
2925                                                  /*never a friend*/ false,
2926                                                  isExplicitSpecialization,
2927                                                  Invalid)) {
2928      // All but one template parameter lists have been matching.
2929      --NumMatchedTemplateParamLists;
2930
2931      if (TemplateParams->size() > 0) {
2932        // There is no such thing as a variable template.
2933        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2934          << II
2935          << SourceRange(TemplateParams->getTemplateLoc(),
2936                         TemplateParams->getRAngleLoc());
2937        return 0;
2938      } else {
2939        // There is an extraneous 'template<>' for this variable. Complain
2940        // about it, but allow the declaration of the variable.
2941        Diag(TemplateParams->getTemplateLoc(),
2942             diag::err_template_variable_noparams)
2943          << II
2944          << SourceRange(TemplateParams->getTemplateLoc(),
2945                         TemplateParams->getRAngleLoc());
2946
2947        isExplicitSpecialization = true;
2948      }
2949    }
2950
2951    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2952                            II, R, TInfo, SC, SCAsWritten);
2953
2954    if (D.isInvalidType() || Invalid)
2955      NewVD->setInvalidDecl();
2956
2957    SetNestedNameSpecifier(NewVD, D);
2958
2959    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2960      NewVD->setTemplateParameterListsInfo(Context,
2961                                           NumMatchedTemplateParamLists,
2962                                           TemplateParamLists.release());
2963    }
2964  }
2965
2966  if (D.getDeclSpec().isThreadSpecified()) {
2967    if (NewVD->hasLocalStorage())
2968      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2969    else if (!Context.Target.isTLSSupported())
2970      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2971    else
2972      NewVD->setThreadSpecified(true);
2973  }
2974
2975  // Set the lexical context. If the declarator has a C++ scope specifier, the
2976  // lexical context will be different from the semantic context.
2977  NewVD->setLexicalDeclContext(CurContext);
2978
2979  // Handle attributes prior to checking for duplicates in MergeVarDecl
2980  ProcessDeclAttributes(S, NewVD, D);
2981
2982  // Handle GNU asm-label extension (encoded as an attribute).
2983  if (Expr *E = (Expr*)D.getAsmLabel()) {
2984    // The parser guarantees this is a string.
2985    StringLiteral *SE = cast<StringLiteral>(E);
2986    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2987                                                Context, SE->getString()));
2988  }
2989
2990  // Diagnose shadowed variables before filtering for scope.
2991  if (!D.getCXXScopeSpec().isSet())
2992    CheckShadow(S, NewVD, Previous);
2993
2994  // Don't consider existing declarations that are in a different
2995  // scope and are out-of-semantic-context declarations (if the new
2996  // declaration has linkage).
2997  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2998
2999  if (!getLangOptions().CPlusPlus)
3000    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3001  else {
3002    // Merge the decl with the existing one if appropriate.
3003    if (!Previous.empty()) {
3004      if (Previous.isSingleResult() &&
3005          isa<FieldDecl>(Previous.getFoundDecl()) &&
3006          D.getCXXScopeSpec().isSet()) {
3007        // The user tried to define a non-static data member
3008        // out-of-line (C++ [dcl.meaning]p1).
3009        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3010          << D.getCXXScopeSpec().getRange();
3011        Previous.clear();
3012        NewVD->setInvalidDecl();
3013      }
3014    } else if (D.getCXXScopeSpec().isSet()) {
3015      // No previous declaration in the qualifying scope.
3016      Diag(D.getIdentifierLoc(), diag::err_no_member)
3017        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3018        << D.getCXXScopeSpec().getRange();
3019      NewVD->setInvalidDecl();
3020    }
3021
3022    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3023
3024    // This is an explicit specialization of a static data member. Check it.
3025    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3026        CheckMemberSpecialization(NewVD, Previous))
3027      NewVD->setInvalidDecl();
3028    // For variables declared as __block which require copy construction,
3029    // must capture copy initialization expression here.
3030    if (!NewVD->isInvalidDecl() && NewVD->hasAttr<BlocksAttr>()) {
3031      QualType T = NewVD->getType();
3032      if (!T->isDependentType() && !T->isReferenceType() &&
3033          T->getAs<RecordType>() && !T->isUnionType()) {
3034        Expr *E = new (Context) DeclRefExpr(NewVD, T,
3035                                            VK_LValue, SourceLocation());
3036        ExprResult Res = PerformCopyInitialization(
3037                InitializedEntity::InitializeBlock(NewVD->getLocation(),
3038                                                   T, false),
3039                SourceLocation(),
3040                Owned(E));
3041        if (!Res.isInvalid()) {
3042          Res = MaybeCreateExprWithCleanups(Res);
3043          Expr *Init = Res.takeAs<Expr>();
3044          Context.setBlockVarCopyInits(NewVD, Init);
3045        }
3046      }
3047    }
3048  }
3049
3050  // attributes declared post-definition are currently ignored
3051  // FIXME: This should be handled in attribute merging, not
3052  // here.
3053  if (Previous.isSingleResult()) {
3054    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3055    if (Def && (Def = Def->getDefinition()) &&
3056        Def != NewVD && D.hasAttributes()) {
3057      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3058      Diag(Def->getLocation(), diag::note_previous_definition);
3059    }
3060  }
3061
3062  // If this is a locally-scoped extern C variable, update the map of
3063  // such variables.
3064  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3065      !NewVD->isInvalidDecl())
3066    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3067
3068  // If there's a #pragma GCC visibility in scope, and this isn't a class
3069  // member, set the visibility of this variable.
3070  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3071    AddPushedVisibilityAttribute(NewVD);
3072
3073  MarkUnusedFileScopedDecl(NewVD);
3074
3075  return NewVD;
3076}
3077
3078/// \brief Diagnose variable or built-in function shadowing.  Implements
3079/// -Wshadow.
3080///
3081/// This method is called whenever a VarDecl is added to a "useful"
3082/// scope.
3083///
3084/// \param S the scope in which the shadowing name is being declared
3085/// \param R the lookup of the name
3086///
3087void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3088  // Return if warning is ignored.
3089  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3090        Diagnostic::Ignored)
3091    return;
3092
3093  // Don't diagnose declarations at file scope.  The scope might not
3094  // have a DeclContext if (e.g.) we're parsing a function prototype.
3095  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3096  if (NewDC && NewDC->isFileContext())
3097    return;
3098
3099  // Only diagnose if we're shadowing an unambiguous field or variable.
3100  if (R.getResultKind() != LookupResult::Found)
3101    return;
3102
3103  NamedDecl* ShadowedDecl = R.getFoundDecl();
3104  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3105    return;
3106
3107  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3108
3109  // Only warn about certain kinds of shadowing for class members.
3110  if (NewDC && NewDC->isRecord()) {
3111    // In particular, don't warn about shadowing non-class members.
3112    if (!OldDC->isRecord())
3113      return;
3114
3115    // TODO: should we warn about static data members shadowing
3116    // static data members from base classes?
3117
3118    // TODO: don't diagnose for inaccessible shadowed members.
3119    // This is hard to do perfectly because we might friend the
3120    // shadowing context, but that's just a false negative.
3121  }
3122
3123  // Determine what kind of declaration we're shadowing.
3124  unsigned Kind;
3125  if (isa<RecordDecl>(OldDC)) {
3126    if (isa<FieldDecl>(ShadowedDecl))
3127      Kind = 3; // field
3128    else
3129      Kind = 2; // static data member
3130  } else if (OldDC->isFileContext())
3131    Kind = 1; // global
3132  else
3133    Kind = 0; // local
3134
3135  DeclarationName Name = R.getLookupName();
3136
3137  // Emit warning and note.
3138  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3139  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3140}
3141
3142/// \brief Check -Wshadow without the advantage of a previous lookup.
3143void Sema::CheckShadow(Scope *S, VarDecl *D) {
3144  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3145        Diagnostic::Ignored)
3146    return;
3147
3148  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3149                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3150  LookupName(R, S);
3151  CheckShadow(S, D, R);
3152}
3153
3154/// \brief Perform semantic checking on a newly-created variable
3155/// declaration.
3156///
3157/// This routine performs all of the type-checking required for a
3158/// variable declaration once it has been built. It is used both to
3159/// check variables after they have been parsed and their declarators
3160/// have been translated into a declaration, and to check variables
3161/// that have been instantiated from a template.
3162///
3163/// Sets NewVD->isInvalidDecl() if an error was encountered.
3164void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3165                                    LookupResult &Previous,
3166                                    bool &Redeclaration) {
3167  // If the decl is already known invalid, don't check it.
3168  if (NewVD->isInvalidDecl())
3169    return;
3170
3171  QualType T = NewVD->getType();
3172
3173  if (T->isObjCObjectType()) {
3174    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3175    return NewVD->setInvalidDecl();
3176  }
3177
3178  // Emit an error if an address space was applied to decl with local storage.
3179  // This includes arrays of objects with address space qualifiers, but not
3180  // automatic variables that point to other address spaces.
3181  // ISO/IEC TR 18037 S5.1.2
3182  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3183    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3184    return NewVD->setInvalidDecl();
3185  }
3186
3187  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3188      && !NewVD->hasAttr<BlocksAttr>())
3189    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3190
3191  bool isVM = T->isVariablyModifiedType();
3192  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3193      NewVD->hasAttr<BlocksAttr>())
3194    getCurFunction()->setHasBranchProtectedScope();
3195
3196  if ((isVM && NewVD->hasLinkage()) ||
3197      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3198    bool SizeIsNegative;
3199    llvm::APSInt Oversized;
3200    QualType FixedTy =
3201        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3202                                            Oversized);
3203
3204    if (FixedTy.isNull() && T->isVariableArrayType()) {
3205      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3206      // FIXME: This won't give the correct result for
3207      // int a[10][n];
3208      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3209
3210      if (NewVD->isFileVarDecl())
3211        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3212        << SizeRange;
3213      else if (NewVD->getStorageClass() == SC_Static)
3214        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3215        << SizeRange;
3216      else
3217        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3218        << SizeRange;
3219      return NewVD->setInvalidDecl();
3220    }
3221
3222    if (FixedTy.isNull()) {
3223      if (NewVD->isFileVarDecl())
3224        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3225      else
3226        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3227      return NewVD->setInvalidDecl();
3228    }
3229
3230    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3231    NewVD->setType(FixedTy);
3232  }
3233
3234  if (Previous.empty() && NewVD->isExternC()) {
3235    // Since we did not find anything by this name and we're declaring
3236    // an extern "C" variable, look for a non-visible extern "C"
3237    // declaration with the same name.
3238    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3239      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3240    if (Pos != LocallyScopedExternalDecls.end())
3241      Previous.addDecl(Pos->second);
3242  }
3243
3244  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3245    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3246      << T;
3247    return NewVD->setInvalidDecl();
3248  }
3249
3250  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3251    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3252    return NewVD->setInvalidDecl();
3253  }
3254
3255  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3256    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3257    return NewVD->setInvalidDecl();
3258  }
3259
3260  // Function pointers and references cannot have qualified function type, only
3261  // function pointer-to-members can do that.
3262  QualType Pointee;
3263  unsigned PtrOrRef = 0;
3264  if (const PointerType *Ptr = T->getAs<PointerType>())
3265    Pointee = Ptr->getPointeeType();
3266  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3267    Pointee = Ref->getPointeeType();
3268    PtrOrRef = 1;
3269  }
3270  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3271      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3272    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3273        << PtrOrRef;
3274    return NewVD->setInvalidDecl();
3275  }
3276
3277  if (!Previous.empty()) {
3278    Redeclaration = true;
3279    MergeVarDecl(NewVD, Previous);
3280  }
3281}
3282
3283/// \brief Data used with FindOverriddenMethod
3284struct FindOverriddenMethodData {
3285  Sema *S;
3286  CXXMethodDecl *Method;
3287};
3288
3289/// \brief Member lookup function that determines whether a given C++
3290/// method overrides a method in a base class, to be used with
3291/// CXXRecordDecl::lookupInBases().
3292static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3293                                 CXXBasePath &Path,
3294                                 void *UserData) {
3295  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3296
3297  FindOverriddenMethodData *Data
3298    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3299
3300  DeclarationName Name = Data->Method->getDeclName();
3301
3302  // FIXME: Do we care about other names here too?
3303  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3304    // We really want to find the base class destructor here.
3305    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3306    CanQualType CT = Data->S->Context.getCanonicalType(T);
3307
3308    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3309  }
3310
3311  for (Path.Decls = BaseRecord->lookup(Name);
3312       Path.Decls.first != Path.Decls.second;
3313       ++Path.Decls.first) {
3314    NamedDecl *D = *Path.Decls.first;
3315    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3316      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3317        return true;
3318    }
3319  }
3320
3321  return false;
3322}
3323
3324/// AddOverriddenMethods - See if a method overrides any in the base classes,
3325/// and if so, check that it's a valid override and remember it.
3326bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3327  // Look for virtual methods in base classes that this method might override.
3328  CXXBasePaths Paths;
3329  FindOverriddenMethodData Data;
3330  Data.Method = MD;
3331  Data.S = this;
3332  bool AddedAny = false;
3333  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3334    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3335         E = Paths.found_decls_end(); I != E; ++I) {
3336      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3337        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3338            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3339            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3340          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3341          AddedAny = true;
3342        }
3343      }
3344    }
3345  }
3346
3347  return AddedAny;
3348}
3349
3350static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3351  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3352                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3353  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3354  assert(!Prev.isAmbiguous() &&
3355         "Cannot have an ambiguity in previous-declaration lookup");
3356  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3357       Func != FuncEnd; ++Func) {
3358    if (isa<FunctionDecl>(*Func) &&
3359        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3360      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3361  }
3362}
3363
3364/// CheckClassMemberNameAttributes - Check for class member name checking
3365/// attributes according to [dcl.attr.override]
3366static void
3367CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3368  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3369  if (!MD || !MD->isVirtual())
3370    return;
3371
3372  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3373  bool HasOverriddenMethods =
3374    MD->begin_overridden_methods() != MD->end_overridden_methods();
3375
3376  /// C++ [dcl.attr.override]p2:
3377  ///   If a virtual member function f is marked override and does not override
3378  ///   a member function of a base class the program is ill-formed.
3379  if (HasOverrideAttr && !HasOverriddenMethods) {
3380    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3381      << MD->getDeclName();
3382    return;
3383  }
3384
3385  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3386    return;
3387
3388  /// C++ [dcl.attr.override]p6:
3389  ///   In a class definition marked base_check, if a virtual member function
3390  ///    that is neither implicitly-declared nor a destructor overrides a
3391  ///    member function of a base class and it is not marked override, the
3392  ///    program is ill-formed.
3393  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3394      !isa<CXXDestructorDecl>(MD)) {
3395    llvm::SmallVector<const CXXMethodDecl*, 4>
3396      OverriddenMethods(MD->begin_overridden_methods(),
3397                        MD->end_overridden_methods());
3398
3399    SemaRef.Diag(MD->getLocation(),
3400                 diag::err_function_overriding_without_override)
3401      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3402
3403    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3404      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3405                   diag::note_overridden_virtual_function);
3406  }
3407}
3408
3409NamedDecl*
3410Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3411                              QualType R, TypeSourceInfo *TInfo,
3412                              LookupResult &Previous,
3413                              MultiTemplateParamsArg TemplateParamLists,
3414                              bool IsFunctionDefinition, bool &Redeclaration) {
3415  assert(R.getTypePtr()->isFunctionType());
3416
3417  // TODO: consider using NameInfo for diagnostic.
3418  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3419  DeclarationName Name = NameInfo.getName();
3420  FunctionDecl::StorageClass SC = SC_None;
3421  switch (D.getDeclSpec().getStorageClassSpec()) {
3422  default: assert(0 && "Unknown storage class!");
3423  case DeclSpec::SCS_auto:
3424  case DeclSpec::SCS_register:
3425  case DeclSpec::SCS_mutable:
3426    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3427         diag::err_typecheck_sclass_func);
3428    D.setInvalidType();
3429    break;
3430  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3431  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3432  case DeclSpec::SCS_static: {
3433    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3434      // C99 6.7.1p5:
3435      //   The declaration of an identifier for a function that has
3436      //   block scope shall have no explicit storage-class specifier
3437      //   other than extern
3438      // See also (C++ [dcl.stc]p4).
3439      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3440           diag::err_static_block_func);
3441      SC = SC_None;
3442    } else
3443      SC = SC_Static;
3444    break;
3445  }
3446  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3447  }
3448
3449  if (D.getDeclSpec().isThreadSpecified())
3450    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3451
3452  // Do not allow returning a objc interface by-value.
3453  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3454    Diag(D.getIdentifierLoc(),
3455         diag::err_object_cannot_be_passed_returned_by_value) << 0
3456    << R->getAs<FunctionType>()->getResultType();
3457    D.setInvalidType();
3458  }
3459
3460  FunctionDecl *NewFD;
3461  bool isInline = D.getDeclSpec().isInlineSpecified();
3462  bool isFriend = false;
3463  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3464  FunctionDecl::StorageClass SCAsWritten
3465    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3466  FunctionTemplateDecl *FunctionTemplate = 0;
3467  bool isExplicitSpecialization = false;
3468  bool isFunctionTemplateSpecialization = false;
3469  unsigned NumMatchedTemplateParamLists = 0;
3470
3471  if (!getLangOptions().CPlusPlus) {
3472    // Determine whether the function was written with a
3473    // prototype. This true when:
3474    //   - there is a prototype in the declarator, or
3475    //   - the type R of the function is some kind of typedef or other reference
3476    //     to a type name (which eventually refers to a function type).
3477    bool HasPrototype =
3478    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3479    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3480
3481    NewFD = FunctionDecl::Create(Context, DC,
3482                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3483                                 HasPrototype);
3484    if (D.isInvalidType())
3485      NewFD->setInvalidDecl();
3486
3487    // Set the lexical context.
3488    NewFD->setLexicalDeclContext(CurContext);
3489    // Filter out previous declarations that don't match the scope.
3490    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3491  } else {
3492    isFriend = D.getDeclSpec().isFriendSpecified();
3493    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3494    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3495    bool isVirtualOkay = false;
3496
3497    // Check that the return type is not an abstract class type.
3498    // For record types, this is done by the AbstractClassUsageDiagnoser once
3499    // the class has been completely parsed.
3500    if (!DC->isRecord() &&
3501      RequireNonAbstractType(D.getIdentifierLoc(),
3502                             R->getAs<FunctionType>()->getResultType(),
3503                             diag::err_abstract_type_in_decl,
3504                             AbstractReturnType))
3505      D.setInvalidType();
3506
3507
3508    if (isFriend) {
3509      // C++ [class.friend]p5
3510      //   A function can be defined in a friend declaration of a
3511      //   class . . . . Such a function is implicitly inline.
3512      isInline |= IsFunctionDefinition;
3513    }
3514
3515    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3516      // This is a C++ constructor declaration.
3517      assert(DC->isRecord() &&
3518             "Constructors can only be declared in a member context");
3519
3520      R = CheckConstructorDeclarator(D, R, SC);
3521
3522      // Create the new declaration
3523      NewFD = CXXConstructorDecl::Create(Context,
3524                                         cast<CXXRecordDecl>(DC),
3525                                         NameInfo, R, TInfo,
3526                                         isExplicit, isInline,
3527                                         /*isImplicitlyDeclared=*/false);
3528    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3529      // This is a C++ destructor declaration.
3530      if (DC->isRecord()) {
3531        R = CheckDestructorDeclarator(D, R, SC);
3532
3533        NewFD = CXXDestructorDecl::Create(Context,
3534                                          cast<CXXRecordDecl>(DC),
3535                                          NameInfo, R, TInfo,
3536                                          isInline,
3537                                          /*isImplicitlyDeclared=*/false);
3538        isVirtualOkay = true;
3539      } else {
3540        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3541
3542        // Create a FunctionDecl to satisfy the function definition parsing
3543        // code path.
3544        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3545                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3546                                     /*hasPrototype=*/true);
3547        D.setInvalidType();
3548      }
3549    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3550      if (!DC->isRecord()) {
3551        Diag(D.getIdentifierLoc(),
3552             diag::err_conv_function_not_member);
3553        return 0;
3554      }
3555
3556      CheckConversionDeclarator(D, R, SC);
3557      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3558                                        NameInfo, R, TInfo,
3559                                        isInline, isExplicit);
3560
3561      isVirtualOkay = true;
3562    } else if (DC->isRecord()) {
3563      // If the of the function is the same as the name of the record, then this
3564      // must be an invalid constructor that has a return type.
3565      // (The parser checks for a return type and makes the declarator a
3566      // constructor if it has no return type).
3567      // must have an invalid constructor that has a return type
3568      if (Name.getAsIdentifierInfo() &&
3569          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3570        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3571          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3572          << SourceRange(D.getIdentifierLoc());
3573        return 0;
3574      }
3575
3576      bool isStatic = SC == SC_Static;
3577
3578      // [class.free]p1:
3579      // Any allocation function for a class T is a static member
3580      // (even if not explicitly declared static).
3581      if (Name.getCXXOverloadedOperator() == OO_New ||
3582          Name.getCXXOverloadedOperator() == OO_Array_New)
3583        isStatic = true;
3584
3585      // [class.free]p6 Any deallocation function for a class X is a static member
3586      // (even if not explicitly declared static).
3587      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3588          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3589        isStatic = true;
3590
3591      // This is a C++ method declaration.
3592      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3593                                    NameInfo, R, TInfo,
3594                                    isStatic, SCAsWritten, isInline);
3595
3596      isVirtualOkay = !isStatic;
3597    } else {
3598      // Determine whether the function was written with a
3599      // prototype. This true when:
3600      //   - we're in C++ (where every function has a prototype),
3601      NewFD = FunctionDecl::Create(Context, DC,
3602                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3603                                   true/*HasPrototype*/);
3604    }
3605    SetNestedNameSpecifier(NewFD, D);
3606    isExplicitSpecialization = false;
3607    isFunctionTemplateSpecialization = false;
3608    NumMatchedTemplateParamLists = TemplateParamLists.size();
3609    if (D.isInvalidType())
3610      NewFD->setInvalidDecl();
3611
3612    // Set the lexical context. If the declarator has a C++
3613    // scope specifier, or is the object of a friend declaration, the
3614    // lexical context will be different from the semantic context.
3615    NewFD->setLexicalDeclContext(CurContext);
3616
3617    // Match up the template parameter lists with the scope specifier, then
3618    // determine whether we have a template or a template specialization.
3619    bool Invalid = false;
3620    if (TemplateParameterList *TemplateParams
3621        = MatchTemplateParametersToScopeSpecifier(
3622                                  D.getDeclSpec().getSourceRange().getBegin(),
3623                                  D.getCXXScopeSpec(),
3624                                  TemplateParamLists.get(),
3625                                  TemplateParamLists.size(),
3626                                  isFriend,
3627                                  isExplicitSpecialization,
3628                                  Invalid)) {
3629          // All but one template parameter lists have been matching.
3630          --NumMatchedTemplateParamLists;
3631
3632          if (TemplateParams->size() > 0) {
3633            // This is a function template
3634
3635            // Check that we can declare a template here.
3636            if (CheckTemplateDeclScope(S, TemplateParams))
3637              return 0;
3638
3639            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3640                                                      NewFD->getLocation(),
3641                                                      Name, TemplateParams,
3642                                                      NewFD);
3643            FunctionTemplate->setLexicalDeclContext(CurContext);
3644            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3645          } else {
3646            // This is a function template specialization.
3647            isFunctionTemplateSpecialization = true;
3648
3649            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3650            if (isFriend && isFunctionTemplateSpecialization) {
3651              // We want to remove the "template<>", found here.
3652              SourceRange RemoveRange = TemplateParams->getSourceRange();
3653
3654              // If we remove the template<> and the name is not a
3655              // template-id, we're actually silently creating a problem:
3656              // the friend declaration will refer to an untemplated decl,
3657              // and clearly the user wants a template specialization.  So
3658              // we need to insert '<>' after the name.
3659              SourceLocation InsertLoc;
3660              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3661                InsertLoc = D.getName().getSourceRange().getEnd();
3662                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3663              }
3664
3665              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3666              << Name << RemoveRange
3667              << FixItHint::CreateRemoval(RemoveRange)
3668              << FixItHint::CreateInsertion(InsertLoc, "<>");
3669            }
3670          }
3671        }
3672
3673    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3674      NewFD->setTemplateParameterListsInfo(Context,
3675                                           NumMatchedTemplateParamLists,
3676                                           TemplateParamLists.release());
3677    }
3678
3679    if (Invalid) {
3680      NewFD->setInvalidDecl();
3681      if (FunctionTemplate)
3682        FunctionTemplate->setInvalidDecl();
3683    }
3684
3685    // C++ [dcl.fct.spec]p5:
3686    //   The virtual specifier shall only be used in declarations of
3687    //   nonstatic class member functions that appear within a
3688    //   member-specification of a class declaration; see 10.3.
3689    //
3690    if (isVirtual && !NewFD->isInvalidDecl()) {
3691      if (!isVirtualOkay) {
3692        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3693             diag::err_virtual_non_function);
3694      } else if (!CurContext->isRecord()) {
3695        // 'virtual' was specified outside of the class.
3696        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3697          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3698      } else {
3699        // Okay: Add virtual to the method.
3700        NewFD->setVirtualAsWritten(true);
3701      }
3702    }
3703
3704    // C++ [dcl.fct.spec]p3:
3705    //  The inline specifier shall not appear on a block scope function declaration.
3706    if (isInline && !NewFD->isInvalidDecl()) {
3707      if (CurContext->isFunctionOrMethod()) {
3708        // 'inline' is not allowed on block scope function declaration.
3709        Diag(D.getDeclSpec().getInlineSpecLoc(),
3710             diag::err_inline_declaration_block_scope) << Name
3711          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3712      }
3713    }
3714
3715    // C++ [dcl.fct.spec]p6:
3716    //  The explicit specifier shall be used only in the declaration of a
3717    //  constructor or conversion function within its class definition; see 12.3.1
3718    //  and 12.3.2.
3719    if (isExplicit && !NewFD->isInvalidDecl()) {
3720      if (!CurContext->isRecord()) {
3721        // 'explicit' was specified outside of the class.
3722        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3723             diag::err_explicit_out_of_class)
3724          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3725      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3726                 !isa<CXXConversionDecl>(NewFD)) {
3727        // 'explicit' was specified on a function that wasn't a constructor
3728        // or conversion function.
3729        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3730             diag::err_explicit_non_ctor_or_conv_function)
3731          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3732      }
3733    }
3734
3735    // Filter out previous declarations that don't match the scope.
3736    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3737
3738    if (isFriend) {
3739      // For now, claim that the objects have no previous declaration.
3740      if (FunctionTemplate) {
3741        FunctionTemplate->setObjectOfFriendDecl(false);
3742        FunctionTemplate->setAccess(AS_public);
3743      }
3744      NewFD->setObjectOfFriendDecl(false);
3745      NewFD->setAccess(AS_public);
3746    }
3747
3748    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3749      // A method is implicitly inline if it's defined in its class
3750      // definition.
3751      NewFD->setImplicitlyInline();
3752    }
3753
3754    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3755        !CurContext->isRecord()) {
3756      // C++ [class.static]p1:
3757      //   A data or function member of a class may be declared static
3758      //   in a class definition, in which case it is a static member of
3759      //   the class.
3760
3761      // Complain about the 'static' specifier if it's on an out-of-line
3762      // member function definition.
3763      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3764           diag::err_static_out_of_line)
3765        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3766    }
3767  }
3768
3769  // Handle GNU asm-label extension (encoded as an attribute).
3770  if (Expr *E = (Expr*) D.getAsmLabel()) {
3771    // The parser guarantees this is a string.
3772    StringLiteral *SE = cast<StringLiteral>(E);
3773    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3774                                                SE->getString()));
3775  }
3776
3777  // Copy the parameter declarations from the declarator D to the function
3778  // declaration NewFD, if they are available.  First scavenge them into Params.
3779  llvm::SmallVector<ParmVarDecl*, 16> Params;
3780  if (D.isFunctionDeclarator()) {
3781    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3782
3783    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3784    // function that takes no arguments, not a function that takes a
3785    // single void argument.
3786    // We let through "const void" here because Sema::GetTypeForDeclarator
3787    // already checks for that case.
3788    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3789        FTI.ArgInfo[0].Param &&
3790        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3791      // Empty arg list, don't push any params.
3792      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3793
3794      // In C++, the empty parameter-type-list must be spelled "void"; a
3795      // typedef of void is not permitted.
3796      if (getLangOptions().CPlusPlus &&
3797          Param->getType().getUnqualifiedType() != Context.VoidTy)
3798        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3799    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3800      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3801        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3802        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3803        Param->setDeclContext(NewFD);
3804        Params.push_back(Param);
3805
3806        if (Param->isInvalidDecl())
3807          NewFD->setInvalidDecl();
3808      }
3809    }
3810
3811  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3812    // When we're declaring a function with a typedef, typeof, etc as in the
3813    // following example, we'll need to synthesize (unnamed)
3814    // parameters for use in the declaration.
3815    //
3816    // @code
3817    // typedef void fn(int);
3818    // fn f;
3819    // @endcode
3820
3821    // Synthesize a parameter for each argument type.
3822    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3823         AE = FT->arg_type_end(); AI != AE; ++AI) {
3824      ParmVarDecl *Param =
3825        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3826      Params.push_back(Param);
3827    }
3828  } else {
3829    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3830           "Should not need args for typedef of non-prototype fn");
3831  }
3832  // Finally, we know we have the right number of parameters, install them.
3833  NewFD->setParams(Params.data(), Params.size());
3834
3835  bool OverloadableAttrRequired=false; // FIXME: HACK!
3836  if (!getLangOptions().CPlusPlus) {
3837    // Perform semantic checking on the function declaration.
3838    bool isExplctSpecialization=false;
3839    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3840                             Redeclaration,
3841                             /*FIXME:*/OverloadableAttrRequired);
3842    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3843            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3844           "previous declaration set still overloaded");
3845  } else {
3846    // If the declarator is a template-id, translate the parser's template
3847    // argument list into our AST format.
3848    bool HasExplicitTemplateArgs = false;
3849    TemplateArgumentListInfo TemplateArgs;
3850    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3851      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3852      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3853      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3854      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3855                                         TemplateId->getTemplateArgs(),
3856                                         TemplateId->NumArgs);
3857      translateTemplateArguments(TemplateArgsPtr,
3858                                 TemplateArgs);
3859      TemplateArgsPtr.release();
3860
3861      HasExplicitTemplateArgs = true;
3862
3863      if (FunctionTemplate) {
3864        // FIXME: Diagnose function template with explicit template
3865        // arguments.
3866        HasExplicitTemplateArgs = false;
3867      } else if (!isFunctionTemplateSpecialization &&
3868                 !D.getDeclSpec().isFriendSpecified()) {
3869        // We have encountered something that the user meant to be a
3870        // specialization (because it has explicitly-specified template
3871        // arguments) but that was not introduced with a "template<>" (or had
3872        // too few of them).
3873        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3874          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3875          << FixItHint::CreateInsertion(
3876                                        D.getDeclSpec().getSourceRange().getBegin(),
3877                                                  "template<> ");
3878        isFunctionTemplateSpecialization = true;
3879      } else {
3880        // "friend void foo<>(int);" is an implicit specialization decl.
3881        isFunctionTemplateSpecialization = true;
3882      }
3883    } else if (isFriend && isFunctionTemplateSpecialization) {
3884      // This combination is only possible in a recovery case;  the user
3885      // wrote something like:
3886      //   template <> friend void foo(int);
3887      // which we're recovering from as if the user had written:
3888      //   friend void foo<>(int);
3889      // Go ahead and fake up a template id.
3890      HasExplicitTemplateArgs = true;
3891        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3892      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3893    }
3894
3895    // If it's a friend (and only if it's a friend), it's possible
3896    // that either the specialized function type or the specialized
3897    // template is dependent, and therefore matching will fail.  In
3898    // this case, don't check the specialization yet.
3899    if (isFunctionTemplateSpecialization && isFriend &&
3900        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3901      assert(HasExplicitTemplateArgs &&
3902             "friend function specialization without template args");
3903      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3904                                                       Previous))
3905        NewFD->setInvalidDecl();
3906    } else if (isFunctionTemplateSpecialization) {
3907      if (CheckFunctionTemplateSpecialization(NewFD,
3908                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3909                                              Previous))
3910        NewFD->setInvalidDecl();
3911    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3912      if (CheckMemberSpecialization(NewFD, Previous))
3913          NewFD->setInvalidDecl();
3914    }
3915
3916    // Perform semantic checking on the function declaration.
3917    bool flag_c_overloaded=false; // unused for c++
3918    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3919                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3920
3921    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3922            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3923           "previous declaration set still overloaded");
3924
3925    NamedDecl *PrincipalDecl = (FunctionTemplate
3926                                ? cast<NamedDecl>(FunctionTemplate)
3927                                : NewFD);
3928
3929    if (isFriend && Redeclaration) {
3930      AccessSpecifier Access = AS_public;
3931      if (!NewFD->isInvalidDecl())
3932        Access = NewFD->getPreviousDeclaration()->getAccess();
3933
3934      NewFD->setAccess(Access);
3935      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3936
3937      PrincipalDecl->setObjectOfFriendDecl(true);
3938    }
3939
3940    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3941        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3942      PrincipalDecl->setNonMemberOperator();
3943
3944    // If we have a function template, check the template parameter
3945    // list. This will check and merge default template arguments.
3946    if (FunctionTemplate) {
3947      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3948      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3949                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3950                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3951                                                  : TPC_FunctionTemplate);
3952    }
3953
3954    if (NewFD->isInvalidDecl()) {
3955      // Ignore all the rest of this.
3956    } else if (!Redeclaration) {
3957      // Fake up an access specifier if it's supposed to be a class member.
3958      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3959        NewFD->setAccess(AS_public);
3960
3961      // Qualified decls generally require a previous declaration.
3962      if (D.getCXXScopeSpec().isSet()) {
3963        // ...with the major exception of templated-scope or
3964        // dependent-scope friend declarations.
3965
3966        // TODO: we currently also suppress this check in dependent
3967        // contexts because (1) the parameter depth will be off when
3968        // matching friend templates and (2) we might actually be
3969        // selecting a friend based on a dependent factor.  But there
3970        // are situations where these conditions don't apply and we
3971        // can actually do this check immediately.
3972        if (isFriend &&
3973            (NumMatchedTemplateParamLists ||
3974             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3975             CurContext->isDependentContext())) {
3976              // ignore these
3977            } else {
3978              // The user tried to provide an out-of-line definition for a
3979              // function that is a member of a class or namespace, but there
3980              // was no such member function declared (C++ [class.mfct]p2,
3981              // C++ [namespace.memdef]p2). For example:
3982              //
3983              // class X {
3984              //   void f() const;
3985              // };
3986              //
3987              // void X::f() { } // ill-formed
3988              //
3989              // Complain about this problem, and attempt to suggest close
3990              // matches (e.g., those that differ only in cv-qualifiers and
3991              // whether the parameter types are references).
3992              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3993              << Name << DC << D.getCXXScopeSpec().getRange();
3994              NewFD->setInvalidDecl();
3995
3996              DiagnoseInvalidRedeclaration(*this, NewFD);
3997            }
3998
3999        // Unqualified local friend declarations are required to resolve
4000        // to something.
4001        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4002          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4003          NewFD->setInvalidDecl();
4004          DiagnoseInvalidRedeclaration(*this, NewFD);
4005        }
4006
4007    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4008               !isFriend && !isFunctionTemplateSpecialization &&
4009               !isExplicitSpecialization) {
4010      // An out-of-line member function declaration must also be a
4011      // definition (C++ [dcl.meaning]p1).
4012      // Note that this is not the case for explicit specializations of
4013      // function templates or member functions of class templates, per
4014      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4015      // for compatibility with old SWIG code which likes to generate them.
4016      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4017        << D.getCXXScopeSpec().getRange();
4018    }
4019  }
4020
4021
4022  // Handle attributes. We need to have merged decls when handling attributes
4023  // (for example to check for conflicts, etc).
4024  // FIXME: This needs to happen before we merge declarations. Then,
4025  // let attribute merging cope with attribute conflicts.
4026  ProcessDeclAttributes(S, NewFD, D);
4027
4028  // attributes declared post-definition are currently ignored
4029  // FIXME: This should happen during attribute merging
4030  if (Redeclaration && Previous.isSingleResult()) {
4031    const FunctionDecl *Def;
4032    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4033    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4034      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4035      Diag(Def->getLocation(), diag::note_previous_definition);
4036    }
4037  }
4038
4039  AddKnownFunctionAttributes(NewFD);
4040
4041  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4042    // If a function name is overloadable in C, then every function
4043    // with that name must be marked "overloadable".
4044    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4045      << Redeclaration << NewFD;
4046    if (!Previous.empty())
4047      Diag(Previous.getRepresentativeDecl()->getLocation(),
4048           diag::note_attribute_overloadable_prev_overload);
4049    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4050  }
4051
4052  if (NewFD->hasAttr<OverloadableAttr>() &&
4053      !NewFD->getType()->getAs<FunctionProtoType>()) {
4054    Diag(NewFD->getLocation(),
4055         diag::err_attribute_overloadable_no_prototype)
4056      << NewFD;
4057
4058    // Turn this into a variadic function with no parameters.
4059    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4060    FunctionProtoType::ExtProtoInfo EPI;
4061    EPI.Variadic = true;
4062    EPI.ExtInfo = FT->getExtInfo();
4063
4064    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4065    NewFD->setType(R);
4066  }
4067
4068  // If there's a #pragma GCC visibility in scope, and this isn't a class
4069  // member, set the visibility of this function.
4070  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4071    AddPushedVisibilityAttribute(NewFD);
4072
4073  // If this is a locally-scoped extern C function, update the
4074  // map of such names.
4075  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4076      && !NewFD->isInvalidDecl())
4077    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4078
4079  // Set this FunctionDecl's range up to the right paren.
4080  NewFD->setLocEnd(D.getSourceRange().getEnd());
4081
4082  if (getLangOptions().CPlusPlus) {
4083    if (FunctionTemplate) {
4084      if (NewFD->isInvalidDecl())
4085        FunctionTemplate->setInvalidDecl();
4086      return FunctionTemplate;
4087    }
4088    CheckClassMemberNameAttributes(*this, NewFD);
4089  }
4090
4091  MarkUnusedFileScopedDecl(NewFD);
4092  return NewFD;
4093}
4094
4095/// \brief Perform semantic checking of a new function declaration.
4096///
4097/// Performs semantic analysis of the new function declaration
4098/// NewFD. This routine performs all semantic checking that does not
4099/// require the actual declarator involved in the declaration, and is
4100/// used both for the declaration of functions as they are parsed
4101/// (called via ActOnDeclarator) and for the declaration of functions
4102/// that have been instantiated via C++ template instantiation (called
4103/// via InstantiateDecl).
4104///
4105/// \param IsExplicitSpecialiation whether this new function declaration is
4106/// an explicit specialization of the previous declaration.
4107///
4108/// This sets NewFD->isInvalidDecl() to true if there was an error.
4109void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4110                                    LookupResult &Previous,
4111                                    bool IsExplicitSpecialization,
4112                                    bool &Redeclaration,
4113                                    bool &OverloadableAttrRequired) {
4114  // If NewFD is already known erroneous, don't do any of this checking.
4115  if (NewFD->isInvalidDecl()) {
4116    // If this is a class member, mark the class invalid immediately.
4117    // This avoids some consistency errors later.
4118    if (isa<CXXMethodDecl>(NewFD))
4119      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4120
4121    return;
4122  }
4123
4124  if (NewFD->getResultType()->isVariablyModifiedType()) {
4125    // Functions returning a variably modified type violate C99 6.7.5.2p2
4126    // because all functions have linkage.
4127    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4128    return NewFD->setInvalidDecl();
4129  }
4130
4131  if (NewFD->isMain())
4132    CheckMain(NewFD);
4133
4134  // Check for a previous declaration of this name.
4135  if (Previous.empty() && NewFD->isExternC()) {
4136    // Since we did not find anything by this name and we're declaring
4137    // an extern "C" function, look for a non-visible extern "C"
4138    // declaration with the same name.
4139    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4140      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4141    if (Pos != LocallyScopedExternalDecls.end())
4142      Previous.addDecl(Pos->second);
4143  }
4144
4145  // Merge or overload the declaration with an existing declaration of
4146  // the same name, if appropriate.
4147  if (!Previous.empty()) {
4148    // Determine whether NewFD is an overload of PrevDecl or
4149    // a declaration that requires merging. If it's an overload,
4150    // there's no more work to do here; we'll just add the new
4151    // function to the scope.
4152
4153    NamedDecl *OldDecl = 0;
4154    if (!AllowOverloadingOfFunction(Previous, Context)) {
4155      Redeclaration = true;
4156      OldDecl = Previous.getFoundDecl();
4157    } else {
4158      if (!getLangOptions().CPlusPlus)
4159        OverloadableAttrRequired = true;
4160
4161      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4162                            /*NewIsUsingDecl*/ false)) {
4163      case Ovl_Match:
4164        Redeclaration = true;
4165        break;
4166
4167      case Ovl_NonFunction:
4168        Redeclaration = true;
4169        break;
4170
4171      case Ovl_Overload:
4172        Redeclaration = false;
4173        break;
4174      }
4175    }
4176
4177    if (Redeclaration) {
4178      // NewFD and OldDecl represent declarations that need to be
4179      // merged.
4180      if (MergeFunctionDecl(NewFD, OldDecl))
4181        return NewFD->setInvalidDecl();
4182
4183      Previous.clear();
4184      Previous.addDecl(OldDecl);
4185
4186      if (FunctionTemplateDecl *OldTemplateDecl
4187                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4188        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4189        FunctionTemplateDecl *NewTemplateDecl
4190          = NewFD->getDescribedFunctionTemplate();
4191        assert(NewTemplateDecl && "Template/non-template mismatch");
4192        if (CXXMethodDecl *Method
4193              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4194          Method->setAccess(OldTemplateDecl->getAccess());
4195          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4196        }
4197
4198        // If this is an explicit specialization of a member that is a function
4199        // template, mark it as a member specialization.
4200        if (IsExplicitSpecialization &&
4201            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4202          NewTemplateDecl->setMemberSpecialization();
4203          assert(OldTemplateDecl->isMemberSpecialization());
4204        }
4205      } else {
4206        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4207          NewFD->setAccess(OldDecl->getAccess());
4208        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4209      }
4210    }
4211  }
4212
4213  // Semantic checking for this function declaration (in isolation).
4214  if (getLangOptions().CPlusPlus) {
4215    // C++-specific checks.
4216    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4217      CheckConstructor(Constructor);
4218    } else if (CXXDestructorDecl *Destructor =
4219                dyn_cast<CXXDestructorDecl>(NewFD)) {
4220      CXXRecordDecl *Record = Destructor->getParent();
4221      QualType ClassType = Context.getTypeDeclType(Record);
4222
4223      // FIXME: Shouldn't we be able to perform this check even when the class
4224      // type is dependent? Both gcc and edg can handle that.
4225      if (!ClassType->isDependentType()) {
4226        DeclarationName Name
4227          = Context.DeclarationNames.getCXXDestructorName(
4228                                        Context.getCanonicalType(ClassType));
4229        if (NewFD->getDeclName() != Name) {
4230          Diag(NewFD->getLocation(), diag::err_destructor_name);
4231          return NewFD->setInvalidDecl();
4232        }
4233      }
4234    } else if (CXXConversionDecl *Conversion
4235               = dyn_cast<CXXConversionDecl>(NewFD)) {
4236      ActOnConversionDeclarator(Conversion);
4237    }
4238
4239    // Find any virtual functions that this function overrides.
4240    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4241      if (!Method->isFunctionTemplateSpecialization() &&
4242          !Method->getDescribedFunctionTemplate()) {
4243        if (AddOverriddenMethods(Method->getParent(), Method)) {
4244          // If the function was marked as "static", we have a problem.
4245          if (NewFD->getStorageClass() == SC_Static) {
4246            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4247              << NewFD->getDeclName();
4248            for (CXXMethodDecl::method_iterator
4249                      Overridden = Method->begin_overridden_methods(),
4250                   OverriddenEnd = Method->end_overridden_methods();
4251                 Overridden != OverriddenEnd;
4252                 ++Overridden) {
4253              Diag((*Overridden)->getLocation(),
4254                   diag::note_overridden_virtual_function);
4255            }
4256          }
4257        }
4258      }
4259    }
4260
4261    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4262    if (NewFD->isOverloadedOperator() &&
4263        CheckOverloadedOperatorDeclaration(NewFD))
4264      return NewFD->setInvalidDecl();
4265
4266    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4267    if (NewFD->getLiteralIdentifier() &&
4268        CheckLiteralOperatorDeclaration(NewFD))
4269      return NewFD->setInvalidDecl();
4270
4271    // In C++, check default arguments now that we have merged decls. Unless
4272    // the lexical context is the class, because in this case this is done
4273    // during delayed parsing anyway.
4274    if (!CurContext->isRecord())
4275      CheckCXXDefaultArguments(NewFD);
4276  }
4277}
4278
4279void Sema::CheckMain(FunctionDecl* FD) {
4280  // C++ [basic.start.main]p3:  A program that declares main to be inline
4281  //   or static is ill-formed.
4282  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4283  //   shall not appear in a declaration of main.
4284  // static main is not an error under C99, but we should warn about it.
4285  bool isInline = FD->isInlineSpecified();
4286  bool isStatic = FD->getStorageClass() == SC_Static;
4287  if (isInline || isStatic) {
4288    unsigned diagID = diag::warn_unusual_main_decl;
4289    if (isInline || getLangOptions().CPlusPlus)
4290      diagID = diag::err_unusual_main_decl;
4291
4292    int which = isStatic + (isInline << 1) - 1;
4293    Diag(FD->getLocation(), diagID) << which;
4294  }
4295
4296  QualType T = FD->getType();
4297  assert(T->isFunctionType() && "function decl is not of function type");
4298  const FunctionType* FT = T->getAs<FunctionType>();
4299
4300  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4301    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4302    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4303    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4304                                          diag::err_main_returns_nonint);
4305    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4306      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4307                                        "int");
4308    }
4309    FD->setInvalidDecl(true);
4310  }
4311
4312  // Treat protoless main() as nullary.
4313  if (isa<FunctionNoProtoType>(FT)) return;
4314
4315  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4316  unsigned nparams = FTP->getNumArgs();
4317  assert(FD->getNumParams() == nparams);
4318
4319  bool HasExtraParameters = (nparams > 3);
4320
4321  // Darwin passes an undocumented fourth argument of type char**.  If
4322  // other platforms start sprouting these, the logic below will start
4323  // getting shifty.
4324  if (nparams == 4 &&
4325      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4326    HasExtraParameters = false;
4327
4328  if (HasExtraParameters) {
4329    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4330    FD->setInvalidDecl(true);
4331    nparams = 3;
4332  }
4333
4334  // FIXME: a lot of the following diagnostics would be improved
4335  // if we had some location information about types.
4336
4337  QualType CharPP =
4338    Context.getPointerType(Context.getPointerType(Context.CharTy));
4339  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4340
4341  for (unsigned i = 0; i < nparams; ++i) {
4342    QualType AT = FTP->getArgType(i);
4343
4344    bool mismatch = true;
4345
4346    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4347      mismatch = false;
4348    else if (Expected[i] == CharPP) {
4349      // As an extension, the following forms are okay:
4350      //   char const **
4351      //   char const * const *
4352      //   char * const *
4353
4354      QualifierCollector qs;
4355      const PointerType* PT;
4356      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4357          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4358          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4359        qs.removeConst();
4360        mismatch = !qs.empty();
4361      }
4362    }
4363
4364    if (mismatch) {
4365      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4366      // TODO: suggest replacing given type with expected type
4367      FD->setInvalidDecl(true);
4368    }
4369  }
4370
4371  if (nparams == 1 && !FD->isInvalidDecl()) {
4372    Diag(FD->getLocation(), diag::warn_main_one_arg);
4373  }
4374
4375  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4376    Diag(FD->getLocation(), diag::err_main_template_decl);
4377    FD->setInvalidDecl();
4378  }
4379}
4380
4381bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4382  // FIXME: Need strict checking.  In C89, we need to check for
4383  // any assignment, increment, decrement, function-calls, or
4384  // commas outside of a sizeof.  In C99, it's the same list,
4385  // except that the aforementioned are allowed in unevaluated
4386  // expressions.  Everything else falls under the
4387  // "may accept other forms of constant expressions" exception.
4388  // (We never end up here for C++, so the constant expression
4389  // rules there don't matter.)
4390  if (Init->isConstantInitializer(Context, false))
4391    return false;
4392  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4393    << Init->getSourceRange();
4394  return true;
4395}
4396
4397void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4398  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4399}
4400
4401/// AddInitializerToDecl - Adds the initializer Init to the
4402/// declaration dcl. If DirectInit is true, this is C++ direct
4403/// initialization rather than copy initialization.
4404void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4405  // If there is no declaration, there was an error parsing it.  Just ignore
4406  // the initializer.
4407  if (RealDecl == 0)
4408    return;
4409
4410  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4411    // With declarators parsed the way they are, the parser cannot
4412    // distinguish between a normal initializer and a pure-specifier.
4413    // Thus this grotesque test.
4414    IntegerLiteral *IL;
4415    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4416        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4417      CheckPureMethod(Method, Init->getSourceRange());
4418    else {
4419      Diag(Method->getLocation(), diag::err_member_function_initialization)
4420        << Method->getDeclName() << Init->getSourceRange();
4421      Method->setInvalidDecl();
4422    }
4423    return;
4424  }
4425
4426  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4427  if (!VDecl) {
4428    if (getLangOptions().CPlusPlus &&
4429        RealDecl->getLexicalDeclContext()->isRecord() &&
4430        isa<NamedDecl>(RealDecl))
4431      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4432    else
4433      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4434    RealDecl->setInvalidDecl();
4435    return;
4436  }
4437
4438
4439
4440  // A definition must end up with a complete type, which means it must be
4441  // complete with the restriction that an array type might be completed by the
4442  // initializer; note that later code assumes this restriction.
4443  QualType BaseDeclType = VDecl->getType();
4444  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4445    BaseDeclType = Array->getElementType();
4446  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4447                          diag::err_typecheck_decl_incomplete_type)) {
4448    RealDecl->setInvalidDecl();
4449    return;
4450  }
4451
4452  // The variable can not have an abstract class type.
4453  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4454                             diag::err_abstract_type_in_decl,
4455                             AbstractVariableType))
4456    VDecl->setInvalidDecl();
4457
4458  const VarDecl *Def;
4459  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4460    Diag(VDecl->getLocation(), diag::err_redefinition)
4461      << VDecl->getDeclName();
4462    Diag(Def->getLocation(), diag::note_previous_definition);
4463    VDecl->setInvalidDecl();
4464    return;
4465  }
4466
4467  // C++ [class.static.data]p4
4468  //   If a static data member is of const integral or const
4469  //   enumeration type, its declaration in the class definition can
4470  //   specify a constant-initializer which shall be an integral
4471  //   constant expression (5.19). In that case, the member can appear
4472  //   in integral constant expressions. The member shall still be
4473  //   defined in a namespace scope if it is used in the program and the
4474  //   namespace scope definition shall not contain an initializer.
4475  //
4476  // We already performed a redefinition check above, but for static
4477  // data members we also need to check whether there was an in-class
4478  // declaration with an initializer.
4479  const VarDecl* PrevInit = 0;
4480  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4481    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4482    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4483    return;
4484  }
4485
4486  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4487    getCurFunction()->setHasBranchProtectedScope();
4488
4489  // Capture the variable that is being initialized and the style of
4490  // initialization.
4491  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4492
4493  // FIXME: Poor source location information.
4494  InitializationKind Kind
4495    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4496                                                   Init->getLocStart(),
4497                                                   Init->getLocEnd())
4498                : InitializationKind::CreateCopy(VDecl->getLocation(),
4499                                                 Init->getLocStart());
4500
4501  // Get the decls type and save a reference for later, since
4502  // CheckInitializerTypes may change it.
4503  QualType DclT = VDecl->getType(), SavT = DclT;
4504  if (VDecl->isLocalVarDecl()) {
4505    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4506      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4507      VDecl->setInvalidDecl();
4508    } else if (!VDecl->isInvalidDecl()) {
4509      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4510      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4511                                                MultiExprArg(*this, &Init, 1),
4512                                                &DclT);
4513      if (Result.isInvalid()) {
4514        VDecl->setInvalidDecl();
4515        return;
4516      }
4517
4518      Init = Result.takeAs<Expr>();
4519
4520      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4521      // Don't check invalid declarations to avoid emitting useless diagnostics.
4522      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4523        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4524          CheckForConstantInitializer(Init, DclT);
4525      }
4526    }
4527  } else if (VDecl->isStaticDataMember() &&
4528             VDecl->getLexicalDeclContext()->isRecord()) {
4529    // This is an in-class initialization for a static data member, e.g.,
4530    //
4531    // struct S {
4532    //   static const int value = 17;
4533    // };
4534
4535    // Try to perform the initialization regardless.
4536    if (!VDecl->isInvalidDecl()) {
4537      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4538      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4539                                          MultiExprArg(*this, &Init, 1),
4540                                          &DclT);
4541      if (Result.isInvalid()) {
4542        VDecl->setInvalidDecl();
4543        return;
4544      }
4545
4546      Init = Result.takeAs<Expr>();
4547    }
4548
4549    // C++ [class.mem]p4:
4550    //   A member-declarator can contain a constant-initializer only
4551    //   if it declares a static member (9.4) of const integral or
4552    //   const enumeration type, see 9.4.2.
4553    QualType T = VDecl->getType();
4554
4555    // Do nothing on dependent types.
4556    if (T->isDependentType()) {
4557
4558    // Require constness.
4559    } else if (!T.isConstQualified()) {
4560      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4561        << Init->getSourceRange();
4562      VDecl->setInvalidDecl();
4563
4564    // We allow integer constant expressions in all cases.
4565    } else if (T->isIntegralOrEnumerationType()) {
4566      if (!Init->isValueDependent()) {
4567        // Check whether the expression is a constant expression.
4568        llvm::APSInt Value;
4569        SourceLocation Loc;
4570        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4571          Diag(Loc, diag::err_in_class_initializer_non_constant)
4572            << Init->getSourceRange();
4573          VDecl->setInvalidDecl();
4574        }
4575      }
4576
4577    // We allow floating-point constants as an extension in C++03, and
4578    // C++0x has far more complicated rules that we don't really
4579    // implement fully.
4580    } else {
4581      bool Allowed = false;
4582      if (getLangOptions().CPlusPlus0x) {
4583        Allowed = T->isLiteralType();
4584      } else if (T->isFloatingType()) { // also permits complex, which is ok
4585        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4586          << T << Init->getSourceRange();
4587        Allowed = true;
4588      }
4589
4590      if (!Allowed) {
4591        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4592          << T << Init->getSourceRange();
4593        VDecl->setInvalidDecl();
4594
4595      // TODO: there are probably expressions that pass here that shouldn't.
4596      } else if (!Init->isValueDependent() &&
4597                 !Init->isConstantInitializer(Context, false)) {
4598        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4599          << Init->getSourceRange();
4600        VDecl->setInvalidDecl();
4601      }
4602    }
4603  } else if (VDecl->isFileVarDecl()) {
4604    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4605        (!getLangOptions().CPlusPlus ||
4606         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4607      Diag(VDecl->getLocation(), diag::warn_extern_init);
4608    if (!VDecl->isInvalidDecl()) {
4609      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4610      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4611                                                MultiExprArg(*this, &Init, 1),
4612                                                &DclT);
4613      if (Result.isInvalid()) {
4614        VDecl->setInvalidDecl();
4615        return;
4616      }
4617
4618      Init = Result.takeAs<Expr>();
4619    }
4620
4621    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4622    // Don't check invalid declarations to avoid emitting useless diagnostics.
4623    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4624      // C99 6.7.8p4. All file scoped initializers need to be constant.
4625      CheckForConstantInitializer(Init, DclT);
4626    }
4627  }
4628  // If the type changed, it means we had an incomplete type that was
4629  // completed by the initializer. For example:
4630  //   int ary[] = { 1, 3, 5 };
4631  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4632  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4633    VDecl->setType(DclT);
4634    Init->setType(DclT);
4635  }
4636
4637
4638  // If this variable is a local declaration with record type, make sure it
4639  // doesn't have a flexible member initialization.  We only support this as a
4640  // global/static definition.
4641  if (VDecl->hasLocalStorage())
4642    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4643      if (RT->getDecl()->hasFlexibleArrayMember()) {
4644        // Check whether the initializer tries to initialize the flexible
4645        // array member itself to anything other than an empty initializer list.
4646        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4647          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4648                                         RT->getDecl()->field_end()) - 1;
4649          if (Index < ILE->getNumInits() &&
4650              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4651                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4652            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4653            VDecl->setInvalidDecl();
4654          }
4655        }
4656      }
4657
4658  // Check any implicit conversions within the expression.
4659  CheckImplicitConversions(Init, VDecl->getLocation());
4660
4661  Init = MaybeCreateExprWithCleanups(Init);
4662  // Attach the initializer to the decl.
4663  VDecl->setInit(Init);
4664
4665  if (getLangOptions().CPlusPlus) {
4666    if (!VDecl->isInvalidDecl() &&
4667        !VDecl->getDeclContext()->isDependentContext() &&
4668        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4669        !Init->isConstantInitializer(Context,
4670                                     VDecl->getType()->isReferenceType()))
4671      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4672        << Init->getSourceRange();
4673
4674    // Make sure we mark the destructor as used if necessary.
4675    QualType InitType = VDecl->getType();
4676    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4677      InitType = Context.getBaseElementType(Array);
4678    if (const RecordType *Record = InitType->getAs<RecordType>())
4679      FinalizeVarWithDestructor(VDecl, Record);
4680  }
4681
4682  return;
4683}
4684
4685/// ActOnInitializerError - Given that there was an error parsing an
4686/// initializer for the given declaration, try to return to some form
4687/// of sanity.
4688void Sema::ActOnInitializerError(Decl *D) {
4689  // Our main concern here is re-establishing invariants like "a
4690  // variable's type is either dependent or complete".
4691  if (!D || D->isInvalidDecl()) return;
4692
4693  VarDecl *VD = dyn_cast<VarDecl>(D);
4694  if (!VD) return;
4695
4696  QualType Ty = VD->getType();
4697  if (Ty->isDependentType()) return;
4698
4699  // Require a complete type.
4700  if (RequireCompleteType(VD->getLocation(),
4701                          Context.getBaseElementType(Ty),
4702                          diag::err_typecheck_decl_incomplete_type)) {
4703    VD->setInvalidDecl();
4704    return;
4705  }
4706
4707  // Require an abstract type.
4708  if (RequireNonAbstractType(VD->getLocation(), Ty,
4709                             diag::err_abstract_type_in_decl,
4710                             AbstractVariableType)) {
4711    VD->setInvalidDecl();
4712    return;
4713  }
4714
4715  // Don't bother complaining about constructors or destructors,
4716  // though.
4717}
4718
4719void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4720                                  bool TypeContainsUndeducedAuto) {
4721  // If there is no declaration, there was an error parsing it. Just ignore it.
4722  if (RealDecl == 0)
4723    return;
4724
4725  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4726    QualType Type = Var->getType();
4727
4728    // C++0x [dcl.spec.auto]p3
4729    if (TypeContainsUndeducedAuto) {
4730      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4731        << Var->getDeclName() << Type;
4732      Var->setInvalidDecl();
4733      return;
4734    }
4735
4736    switch (Var->isThisDeclarationADefinition()) {
4737    case VarDecl::Definition:
4738      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4739        break;
4740
4741      // We have an out-of-line definition of a static data member
4742      // that has an in-class initializer, so we type-check this like
4743      // a declaration.
4744      //
4745      // Fall through
4746
4747    case VarDecl::DeclarationOnly:
4748      // It's only a declaration.
4749
4750      // Block scope. C99 6.7p7: If an identifier for an object is
4751      // declared with no linkage (C99 6.2.2p6), the type for the
4752      // object shall be complete.
4753      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4754          !Var->getLinkage() && !Var->isInvalidDecl() &&
4755          RequireCompleteType(Var->getLocation(), Type,
4756                              diag::err_typecheck_decl_incomplete_type))
4757        Var->setInvalidDecl();
4758
4759      // Make sure that the type is not abstract.
4760      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4761          RequireNonAbstractType(Var->getLocation(), Type,
4762                                 diag::err_abstract_type_in_decl,
4763                                 AbstractVariableType))
4764        Var->setInvalidDecl();
4765      return;
4766
4767    case VarDecl::TentativeDefinition:
4768      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4769      // object that has file scope without an initializer, and without a
4770      // storage-class specifier or with the storage-class specifier "static",
4771      // constitutes a tentative definition. Note: A tentative definition with
4772      // external linkage is valid (C99 6.2.2p5).
4773      if (!Var->isInvalidDecl()) {
4774        if (const IncompleteArrayType *ArrayT
4775                                    = Context.getAsIncompleteArrayType(Type)) {
4776          if (RequireCompleteType(Var->getLocation(),
4777                                  ArrayT->getElementType(),
4778                                  diag::err_illegal_decl_array_incomplete_type))
4779            Var->setInvalidDecl();
4780        } else if (Var->getStorageClass() == SC_Static) {
4781          // C99 6.9.2p3: If the declaration of an identifier for an object is
4782          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4783          // declared type shall not be an incomplete type.
4784          // NOTE: code such as the following
4785          //     static struct s;
4786          //     struct s { int a; };
4787          // is accepted by gcc. Hence here we issue a warning instead of
4788          // an error and we do not invalidate the static declaration.
4789          // NOTE: to avoid multiple warnings, only check the first declaration.
4790          if (Var->getPreviousDeclaration() == 0)
4791            RequireCompleteType(Var->getLocation(), Type,
4792                                diag::ext_typecheck_decl_incomplete_type);
4793        }
4794      }
4795
4796      // Record the tentative definition; we're done.
4797      if (!Var->isInvalidDecl())
4798        TentativeDefinitions.push_back(Var);
4799      return;
4800    }
4801
4802    // Provide a specific diagnostic for uninitialized variable
4803    // definitions with incomplete array type.
4804    if (Type->isIncompleteArrayType()) {
4805      Diag(Var->getLocation(),
4806           diag::err_typecheck_incomplete_array_needs_initializer);
4807      Var->setInvalidDecl();
4808      return;
4809    }
4810
4811    // Provide a specific diagnostic for uninitialized variable
4812    // definitions with reference type.
4813    if (Type->isReferenceType()) {
4814      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4815        << Var->getDeclName()
4816        << SourceRange(Var->getLocation(), Var->getLocation());
4817      Var->setInvalidDecl();
4818      return;
4819    }
4820
4821    // Do not attempt to type-check the default initializer for a
4822    // variable with dependent type.
4823    if (Type->isDependentType())
4824      return;
4825
4826    if (Var->isInvalidDecl())
4827      return;
4828
4829    if (RequireCompleteType(Var->getLocation(),
4830                            Context.getBaseElementType(Type),
4831                            diag::err_typecheck_decl_incomplete_type)) {
4832      Var->setInvalidDecl();
4833      return;
4834    }
4835
4836    // The variable can not have an abstract class type.
4837    if (RequireNonAbstractType(Var->getLocation(), Type,
4838                               diag::err_abstract_type_in_decl,
4839                               AbstractVariableType)) {
4840      Var->setInvalidDecl();
4841      return;
4842    }
4843
4844    const RecordType *Record
4845      = Context.getBaseElementType(Type)->getAs<RecordType>();
4846    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4847        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4848      // C++03 [dcl.init]p9:
4849      //   If no initializer is specified for an object, and the
4850      //   object is of (possibly cv-qualified) non-POD class type (or
4851      //   array thereof), the object shall be default-initialized; if
4852      //   the object is of const-qualified type, the underlying class
4853      //   type shall have a user-declared default
4854      //   constructor. Otherwise, if no initializer is specified for
4855      //   a non- static object, the object and its subobjects, if
4856      //   any, have an indeterminate initial value); if the object
4857      //   or any of its subobjects are of const-qualified type, the
4858      //   program is ill-formed.
4859      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4860    } else {
4861      // Check for jumps past the implicit initializer.  C++0x
4862      // clarifies that this applies to a "variable with automatic
4863      // storage duration", not a "local variable".
4864      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4865        getCurFunction()->setHasBranchProtectedScope();
4866
4867      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4868      InitializationKind Kind
4869        = InitializationKind::CreateDefault(Var->getLocation());
4870
4871      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4872      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4873                                        MultiExprArg(*this, 0, 0));
4874      if (Init.isInvalid())
4875        Var->setInvalidDecl();
4876      else if (Init.get()) {
4877        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4878
4879        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4880            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4881            !Var->getDeclContext()->isDependentContext() &&
4882            !Var->getInit()->isConstantInitializer(Context, false))
4883          Diag(Var->getLocation(), diag::warn_global_constructor);
4884      }
4885    }
4886
4887    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4888      FinalizeVarWithDestructor(Var, Record);
4889  }
4890}
4891
4892Sema::DeclGroupPtrTy
4893Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4894                              Decl **Group, unsigned NumDecls) {
4895  llvm::SmallVector<Decl*, 8> Decls;
4896
4897  if (DS.isTypeSpecOwned())
4898    Decls.push_back(DS.getRepAsDecl());
4899
4900  for (unsigned i = 0; i != NumDecls; ++i)
4901    if (Decl *D = Group[i])
4902      Decls.push_back(D);
4903
4904  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4905                                                   Decls.data(), Decls.size()));
4906}
4907
4908
4909/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4910/// to introduce parameters into function prototype scope.
4911Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4912  const DeclSpec &DS = D.getDeclSpec();
4913
4914  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4915  VarDecl::StorageClass StorageClass = SC_None;
4916  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4917  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4918    StorageClass = SC_Register;
4919    StorageClassAsWritten = SC_Register;
4920  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4921    Diag(DS.getStorageClassSpecLoc(),
4922         diag::err_invalid_storage_class_in_func_decl);
4923    D.getMutableDeclSpec().ClearStorageClassSpecs();
4924  }
4925
4926  if (D.getDeclSpec().isThreadSpecified())
4927    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4928
4929  DiagnoseFunctionSpecifiers(D);
4930
4931  // Check that there are no default arguments inside the type of this
4932  // parameter (C++ only).
4933  if (getLangOptions().CPlusPlus)
4934    CheckExtraCXXDefaultArguments(D);
4935
4936  TagDecl *OwnedDecl = 0;
4937  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4938  QualType parmDeclType = TInfo->getType();
4939
4940  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4941    // C++ [dcl.fct]p6:
4942    //   Types shall not be defined in return or parameter types.
4943    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4944      << Context.getTypeDeclType(OwnedDecl);
4945  }
4946
4947  // Ensure we have a valid name
4948  IdentifierInfo *II = 0;
4949  if (D.hasName()) {
4950    II = D.getIdentifier();
4951    if (!II) {
4952      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4953        << GetNameForDeclarator(D).getName().getAsString();
4954      D.setInvalidType(true);
4955    }
4956  }
4957
4958  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4959  if (II) {
4960    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4961                   ForRedeclaration);
4962    LookupName(R, S);
4963    if (R.isSingleResult()) {
4964      NamedDecl *PrevDecl = R.getFoundDecl();
4965      if (PrevDecl->isTemplateParameter()) {
4966        // Maybe we will complain about the shadowed template parameter.
4967        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4968        // Just pretend that we didn't see the previous declaration.
4969        PrevDecl = 0;
4970      } else if (S->isDeclScope(PrevDecl)) {
4971        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4972        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4973
4974        // Recover by removing the name
4975        II = 0;
4976        D.SetIdentifier(0, D.getIdentifierLoc());
4977        D.setInvalidType(true);
4978      }
4979    }
4980  }
4981
4982  // Temporarily put parameter variables in the translation unit, not
4983  // the enclosing context.  This prevents them from accidentally
4984  // looking like class members in C++.
4985  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4986                                    TInfo, parmDeclType, II,
4987                                    D.getIdentifierLoc(),
4988                                    StorageClass, StorageClassAsWritten);
4989
4990  if (D.isInvalidType())
4991    New->setInvalidDecl();
4992
4993  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4994  if (D.getCXXScopeSpec().isSet()) {
4995    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4996      << D.getCXXScopeSpec().getRange();
4997    New->setInvalidDecl();
4998  }
4999
5000  // Add the parameter declaration into this scope.
5001  S->AddDecl(New);
5002  if (II)
5003    IdResolver.AddDecl(New);
5004
5005  ProcessDeclAttributes(S, New, D);
5006
5007  if (New->hasAttr<BlocksAttr>()) {
5008    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5009  }
5010  return New;
5011}
5012
5013/// \brief Synthesizes a variable for a parameter arising from a
5014/// typedef.
5015ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5016                                              SourceLocation Loc,
5017                                              QualType T) {
5018  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5019                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5020                                           SC_None, SC_None, 0);
5021  Param->setImplicit();
5022  return Param;
5023}
5024
5025void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5026                                    ParmVarDecl * const *ParamEnd) {
5027  // Don't diagnose unused-parameter errors in template instantiations; we
5028  // will already have done so in the template itself.
5029  if (!ActiveTemplateInstantiations.empty())
5030    return;
5031
5032  for (; Param != ParamEnd; ++Param) {
5033    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5034        !(*Param)->hasAttr<UnusedAttr>()) {
5035      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5036        << (*Param)->getDeclName();
5037    }
5038  }
5039}
5040
5041void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5042                                                  ParmVarDecl * const *ParamEnd,
5043                                                  QualType ReturnTy,
5044                                                  NamedDecl *D) {
5045  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5046    return;
5047
5048  // Warn if the return value is pass-by-value and larger than the specified
5049  // threshold.
5050  if (ReturnTy->isPODType()) {
5051    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5052    if (Size > LangOpts.NumLargeByValueCopy)
5053      Diag(D->getLocation(), diag::warn_return_value_size)
5054          << D->getDeclName() << Size;
5055  }
5056
5057  // Warn if any parameter is pass-by-value and larger than the specified
5058  // threshold.
5059  for (; Param != ParamEnd; ++Param) {
5060    QualType T = (*Param)->getType();
5061    if (!T->isPODType())
5062      continue;
5063    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5064    if (Size > LangOpts.NumLargeByValueCopy)
5065      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5066          << (*Param)->getDeclName() << Size;
5067  }
5068}
5069
5070ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5071                                  TypeSourceInfo *TSInfo, QualType T,
5072                                  IdentifierInfo *Name,
5073                                  SourceLocation NameLoc,
5074                                  VarDecl::StorageClass StorageClass,
5075                                  VarDecl::StorageClass StorageClassAsWritten) {
5076  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5077                                         adjustParameterType(T), TSInfo,
5078                                         StorageClass, StorageClassAsWritten,
5079                                         0);
5080
5081  // Parameters can not be abstract class types.
5082  // For record types, this is done by the AbstractClassUsageDiagnoser once
5083  // the class has been completely parsed.
5084  if (!CurContext->isRecord() &&
5085      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5086                             AbstractParamType))
5087    New->setInvalidDecl();
5088
5089  // Parameter declarators cannot be interface types. All ObjC objects are
5090  // passed by reference.
5091  if (T->isObjCObjectType()) {
5092    Diag(NameLoc,
5093         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5094    New->setInvalidDecl();
5095  }
5096
5097  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5098  // duration shall not be qualified by an address-space qualifier."
5099  // Since all parameters have automatic store duration, they can not have
5100  // an address space.
5101  if (T.getAddressSpace() != 0) {
5102    Diag(NameLoc, diag::err_arg_with_address_space);
5103    New->setInvalidDecl();
5104  }
5105
5106  return New;
5107}
5108
5109void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5110                                           SourceLocation LocAfterDecls) {
5111  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5112
5113  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5114  // for a K&R function.
5115  if (!FTI.hasPrototype) {
5116    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5117      --i;
5118      if (FTI.ArgInfo[i].Param == 0) {
5119        llvm::SmallString<256> Code;
5120        llvm::raw_svector_ostream(Code) << "  int "
5121                                        << FTI.ArgInfo[i].Ident->getName()
5122                                        << ";\n";
5123        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5124          << FTI.ArgInfo[i].Ident
5125          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5126
5127        // Implicitly declare the argument as type 'int' for lack of a better
5128        // type.
5129        DeclSpec DS;
5130        const char* PrevSpec; // unused
5131        unsigned DiagID; // unused
5132        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5133                           PrevSpec, DiagID);
5134        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5135        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5136        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5137      }
5138    }
5139  }
5140}
5141
5142Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5143                                         Declarator &D) {
5144  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5145  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5146  Scope *ParentScope = FnBodyScope->getParent();
5147
5148  Decl *DP = HandleDeclarator(ParentScope, D,
5149                              MultiTemplateParamsArg(*this),
5150                              /*IsFunctionDefinition=*/true);
5151  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5152}
5153
5154static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5155  // Don't warn about invalid declarations.
5156  if (FD->isInvalidDecl())
5157    return false;
5158
5159  // Or declarations that aren't global.
5160  if (!FD->isGlobal())
5161    return false;
5162
5163  // Don't warn about C++ member functions.
5164  if (isa<CXXMethodDecl>(FD))
5165    return false;
5166
5167  // Don't warn about 'main'.
5168  if (FD->isMain())
5169    return false;
5170
5171  // Don't warn about inline functions.
5172  if (FD->isInlineSpecified())
5173    return false;
5174
5175  // Don't warn about function templates.
5176  if (FD->getDescribedFunctionTemplate())
5177    return false;
5178
5179  // Don't warn about function template specializations.
5180  if (FD->isFunctionTemplateSpecialization())
5181    return false;
5182
5183  bool MissingPrototype = true;
5184  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5185       Prev; Prev = Prev->getPreviousDeclaration()) {
5186    // Ignore any declarations that occur in function or method
5187    // scope, because they aren't visible from the header.
5188    if (Prev->getDeclContext()->isFunctionOrMethod())
5189      continue;
5190
5191    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5192    break;
5193  }
5194
5195  return MissingPrototype;
5196}
5197
5198Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5199  // Clear the last template instantiation error context.
5200  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5201
5202  if (!D)
5203    return D;
5204  FunctionDecl *FD = 0;
5205
5206  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5207    FD = FunTmpl->getTemplatedDecl();
5208  else
5209    FD = cast<FunctionDecl>(D);
5210
5211  // Enter a new function scope
5212  PushFunctionScope();
5213
5214  // See if this is a redefinition.
5215  // But don't complain if we're in GNU89 mode and the previous definition
5216  // was an extern inline function.
5217  const FunctionDecl *Definition;
5218  if (FD->hasBody(Definition) &&
5219      !canRedefineFunction(Definition, getLangOptions())) {
5220    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5221        Definition->getStorageClass() == SC_Extern)
5222      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5223        << FD->getDeclName() << getLangOptions().CPlusPlus;
5224    else
5225      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5226    Diag(Definition->getLocation(), diag::note_previous_definition);
5227  }
5228
5229  // Builtin functions cannot be defined.
5230  if (unsigned BuiltinID = FD->getBuiltinID()) {
5231    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5232      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5233      FD->setInvalidDecl();
5234    }
5235  }
5236
5237  // The return type of a function definition must be complete
5238  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5239  QualType ResultType = FD->getResultType();
5240  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5241      !FD->isInvalidDecl() &&
5242      RequireCompleteType(FD->getLocation(), ResultType,
5243                          diag::err_func_def_incomplete_result))
5244    FD->setInvalidDecl();
5245
5246  // GNU warning -Wmissing-prototypes:
5247  //   Warn if a global function is defined without a previous
5248  //   prototype declaration. This warning is issued even if the
5249  //   definition itself provides a prototype. The aim is to detect
5250  //   global functions that fail to be declared in header files.
5251  if (ShouldWarnAboutMissingPrototype(FD))
5252    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5253
5254  if (FnBodyScope)
5255    PushDeclContext(FnBodyScope, FD);
5256
5257  // Check the validity of our function parameters
5258  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5259                           /*CheckParameterNames=*/true);
5260
5261  // Introduce our parameters into the function scope
5262  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5263    ParmVarDecl *Param = FD->getParamDecl(p);
5264    Param->setOwningFunction(FD);
5265
5266    // If this has an identifier, add it to the scope stack.
5267    if (Param->getIdentifier() && FnBodyScope) {
5268      CheckShadow(FnBodyScope, Param);
5269
5270      PushOnScopeChains(Param, FnBodyScope);
5271    }
5272  }
5273
5274  // Checking attributes of current function definition
5275  // dllimport attribute.
5276  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5277  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5278    // dllimport attribute cannot be directly applied to definition.
5279    if (!DA->isInherited()) {
5280      Diag(FD->getLocation(),
5281           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5282        << "dllimport";
5283      FD->setInvalidDecl();
5284      return FD;
5285    }
5286
5287    // Visual C++ appears to not think this is an issue, so only issue
5288    // a warning when Microsoft extensions are disabled.
5289    if (!LangOpts.Microsoft) {
5290      // If a symbol previously declared dllimport is later defined, the
5291      // attribute is ignored in subsequent references, and a warning is
5292      // emitted.
5293      Diag(FD->getLocation(),
5294           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5295        << FD->getName() << "dllimport";
5296    }
5297  }
5298  return FD;
5299}
5300
5301/// \brief Given the set of return statements within a function body,
5302/// compute the variables that are subject to the named return value
5303/// optimization.
5304///
5305/// Each of the variables that is subject to the named return value
5306/// optimization will be marked as NRVO variables in the AST, and any
5307/// return statement that has a marked NRVO variable as its NRVO candidate can
5308/// use the named return value optimization.
5309///
5310/// This function applies a very simplistic algorithm for NRVO: if every return
5311/// statement in the function has the same NRVO candidate, that candidate is
5312/// the NRVO variable.
5313///
5314/// FIXME: Employ a smarter algorithm that accounts for multiple return
5315/// statements and the lifetimes of the NRVO candidates. We should be able to
5316/// find a maximal set of NRVO variables.
5317static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5318  ReturnStmt **Returns = Scope->Returns.data();
5319
5320  const VarDecl *NRVOCandidate = 0;
5321  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5322    if (!Returns[I]->getNRVOCandidate())
5323      return;
5324
5325    if (!NRVOCandidate)
5326      NRVOCandidate = Returns[I]->getNRVOCandidate();
5327    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5328      return;
5329  }
5330
5331  if (NRVOCandidate)
5332    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5333}
5334
5335Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5336  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5337}
5338
5339Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5340                                    bool IsInstantiation) {
5341  FunctionDecl *FD = 0;
5342  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5343  if (FunTmpl)
5344    FD = FunTmpl->getTemplatedDecl();
5345  else
5346    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5347
5348  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5349
5350  if (FD) {
5351    FD->setBody(Body);
5352    if (FD->isMain()) {
5353      // C and C++ allow for main to automagically return 0.
5354      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5355      FD->setHasImplicitReturnZero(true);
5356      WP.disableCheckFallThrough();
5357    }
5358
5359    if (!FD->isInvalidDecl()) {
5360      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5361      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5362                                             FD->getResultType(), FD);
5363
5364      // If this is a constructor, we need a vtable.
5365      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5366        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5367
5368      ComputeNRVO(Body, getCurFunction());
5369    }
5370
5371    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5372  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5373    assert(MD == getCurMethodDecl() && "Method parsing confused");
5374    MD->setBody(Body);
5375    MD->setEndLoc(Body->getLocEnd());
5376    if (!MD->isInvalidDecl()) {
5377      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5378      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5379                                             MD->getResultType(), MD);
5380    }
5381  } else {
5382    return 0;
5383  }
5384
5385  // Verify and clean out per-function state.
5386
5387  // Check goto/label use.
5388  FunctionScopeInfo *CurFn = getCurFunction();
5389  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5390         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5391    LabelStmt *L = I->second;
5392
5393    // Verify that we have no forward references left.  If so, there was a goto
5394    // or address of a label taken, but no definition of it.  Label fwd
5395    // definitions are indicated with a null substmt.
5396    if (L->getSubStmt() != 0) {
5397      if (!L->isUsed())
5398        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5399      continue;
5400    }
5401
5402    // Emit error.
5403    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5404
5405    // At this point, we have gotos that use the bogus label.  Stitch it into
5406    // the function body so that they aren't leaked and that the AST is well
5407    // formed.
5408    if (Body == 0) {
5409      // The whole function wasn't parsed correctly.
5410      continue;
5411    }
5412
5413    // Otherwise, the body is valid: we want to stitch the label decl into the
5414    // function somewhere so that it is properly owned and so that the goto
5415    // has a valid target.  Do this by creating a new compound stmt with the
5416    // label in it.
5417
5418    // Give the label a sub-statement.
5419    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5420
5421    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5422                               cast<CXXTryStmt>(Body)->getTryBlock() :
5423                               cast<CompoundStmt>(Body);
5424    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5425                                          Compound->body_end());
5426    Elements.push_back(L);
5427    Compound->setStmts(Context, Elements.data(), Elements.size());
5428  }
5429
5430  if (Body) {
5431    // C++ constructors that have function-try-blocks can't have return
5432    // statements in the handlers of that block. (C++ [except.handle]p14)
5433    // Verify this.
5434    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5435      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5436
5437    // Verify that that gotos and switch cases don't jump into scopes illegally.
5438    // Verify that that gotos and switch cases don't jump into scopes illegally.
5439    if (getCurFunction()->NeedsScopeChecking() &&
5440        !dcl->isInvalidDecl() &&
5441        !hasAnyErrorsInThisFunction())
5442      DiagnoseInvalidJumps(Body);
5443
5444    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5445      if (!Destructor->getParent()->isDependentType())
5446        CheckDestructor(Destructor);
5447
5448      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5449                                             Destructor->getParent());
5450    }
5451
5452    // If any errors have occurred, clear out any temporaries that may have
5453    // been leftover. This ensures that these temporaries won't be picked up for
5454    // deletion in some later function.
5455    if (PP.getDiagnostics().hasErrorOccurred())
5456      ExprTemporaries.clear();
5457    else if (!isa<FunctionTemplateDecl>(dcl)) {
5458      // Since the body is valid, issue any analysis-based warnings that are
5459      // enabled.
5460      QualType ResultType;
5461      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5462        AnalysisWarnings.IssueWarnings(WP, FD);
5463      } else {
5464        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5465        AnalysisWarnings.IssueWarnings(WP, MD);
5466      }
5467    }
5468
5469    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5470  }
5471
5472  if (!IsInstantiation)
5473    PopDeclContext();
5474
5475  PopFunctionOrBlockScope();
5476
5477  // If any errors have occurred, clear out any temporaries that may have
5478  // been leftover. This ensures that these temporaries won't be picked up for
5479  // deletion in some later function.
5480  if (getDiagnostics().hasErrorOccurred())
5481    ExprTemporaries.clear();
5482
5483  return dcl;
5484}
5485
5486/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5487/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5488NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5489                                          IdentifierInfo &II, Scope *S) {
5490  // Before we produce a declaration for an implicitly defined
5491  // function, see whether there was a locally-scoped declaration of
5492  // this name as a function or variable. If so, use that
5493  // (non-visible) declaration, and complain about it.
5494  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5495    = LocallyScopedExternalDecls.find(&II);
5496  if (Pos != LocallyScopedExternalDecls.end()) {
5497    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5498    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5499    return Pos->second;
5500  }
5501
5502  // Extension in C99.  Legal in C90, but warn about it.
5503  if (II.getName().startswith("__builtin_"))
5504    Diag(Loc, diag::warn_builtin_unknown) << &II;
5505  else if (getLangOptions().C99)
5506    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5507  else
5508    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5509
5510  // Set a Declarator for the implicit definition: int foo();
5511  const char *Dummy;
5512  DeclSpec DS;
5513  unsigned DiagID;
5514  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5515  Error = Error; // Silence warning.
5516  assert(!Error && "Error setting up implicit decl!");
5517  Declarator D(DS, Declarator::BlockContext);
5518  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5519                                             0, 0, false, SourceLocation(),
5520                                             false, 0,0,0, Loc, Loc, D),
5521                SourceLocation());
5522  D.SetIdentifier(&II, Loc);
5523
5524  // Insert this function into translation-unit scope.
5525
5526  DeclContext *PrevDC = CurContext;
5527  CurContext = Context.getTranslationUnitDecl();
5528
5529  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5530  FD->setImplicit();
5531
5532  CurContext = PrevDC;
5533
5534  AddKnownFunctionAttributes(FD);
5535
5536  return FD;
5537}
5538
5539/// \brief Adds any function attributes that we know a priori based on
5540/// the declaration of this function.
5541///
5542/// These attributes can apply both to implicitly-declared builtins
5543/// (like __builtin___printf_chk) or to library-declared functions
5544/// like NSLog or printf.
5545void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5546  if (FD->isInvalidDecl())
5547    return;
5548
5549  // If this is a built-in function, map its builtin attributes to
5550  // actual attributes.
5551  if (unsigned BuiltinID = FD->getBuiltinID()) {
5552    // Handle printf-formatting attributes.
5553    unsigned FormatIdx;
5554    bool HasVAListArg;
5555    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5556      if (!FD->getAttr<FormatAttr>())
5557        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5558                                                "printf", FormatIdx+1,
5559                                               HasVAListArg ? 0 : FormatIdx+2));
5560    }
5561    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5562                                             HasVAListArg)) {
5563     if (!FD->getAttr<FormatAttr>())
5564       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5565                                              "scanf", FormatIdx+1,
5566                                              HasVAListArg ? 0 : FormatIdx+2));
5567    }
5568
5569    // Mark const if we don't care about errno and that is the only
5570    // thing preventing the function from being const. This allows
5571    // IRgen to use LLVM intrinsics for such functions.
5572    if (!getLangOptions().MathErrno &&
5573        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5574      if (!FD->getAttr<ConstAttr>())
5575        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5576    }
5577
5578    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5579      FD->setType(Context.getNoReturnType(FD->getType()));
5580    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5581      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5582    if (Context.BuiltinInfo.isConst(BuiltinID))
5583      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5584  }
5585
5586  IdentifierInfo *Name = FD->getIdentifier();
5587  if (!Name)
5588    return;
5589  if ((!getLangOptions().CPlusPlus &&
5590       FD->getDeclContext()->isTranslationUnit()) ||
5591      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5592       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5593       LinkageSpecDecl::lang_c)) {
5594    // Okay: this could be a libc/libm/Objective-C function we know
5595    // about.
5596  } else
5597    return;
5598
5599  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5600    // FIXME: NSLog and NSLogv should be target specific
5601    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5602      // FIXME: We known better than our headers.
5603      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5604    } else
5605      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5606                                             "printf", 1,
5607                                             Name->isStr("NSLogv") ? 0 : 2));
5608  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5609    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5610    // target-specific builtins, perhaps?
5611    if (!FD->getAttr<FormatAttr>())
5612      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5613                                             "printf", 2,
5614                                             Name->isStr("vasprintf") ? 0 : 3));
5615  }
5616}
5617
5618TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5619                                    TypeSourceInfo *TInfo) {
5620  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5621  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5622
5623  if (!TInfo) {
5624    assert(D.isInvalidType() && "no declarator info for valid type");
5625    TInfo = Context.getTrivialTypeSourceInfo(T);
5626  }
5627
5628  // Scope manipulation handled by caller.
5629  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5630                                           D.getIdentifierLoc(),
5631                                           D.getIdentifier(),
5632                                           TInfo);
5633
5634  if (const TagType *TT = T->getAs<TagType>()) {
5635    TagDecl *TD = TT->getDecl();
5636
5637    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5638    // keep track of the TypedefDecl.
5639    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5640      TD->setTypedefForAnonDecl(NewTD);
5641  }
5642
5643  if (D.isInvalidType())
5644    NewTD->setInvalidDecl();
5645  return NewTD;
5646}
5647
5648
5649/// \brief Determine whether a tag with a given kind is acceptable
5650/// as a redeclaration of the given tag declaration.
5651///
5652/// \returns true if the new tag kind is acceptable, false otherwise.
5653bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5654                                        TagTypeKind NewTag,
5655                                        SourceLocation NewTagLoc,
5656                                        const IdentifierInfo &Name) {
5657  // C++ [dcl.type.elab]p3:
5658  //   The class-key or enum keyword present in the
5659  //   elaborated-type-specifier shall agree in kind with the
5660  //   declaration to which the name in the elaborated-type-specifier
5661  //   refers. This rule also applies to the form of
5662  //   elaborated-type-specifier that declares a class-name or
5663  //   friend class since it can be construed as referring to the
5664  //   definition of the class. Thus, in any
5665  //   elaborated-type-specifier, the enum keyword shall be used to
5666  //   refer to an enumeration (7.2), the union class-key shall be
5667  //   used to refer to a union (clause 9), and either the class or
5668  //   struct class-key shall be used to refer to a class (clause 9)
5669  //   declared using the class or struct class-key.
5670  TagTypeKind OldTag = Previous->getTagKind();
5671  if (OldTag == NewTag)
5672    return true;
5673
5674  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5675      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5676    // Warn about the struct/class tag mismatch.
5677    bool isTemplate = false;
5678    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5679      isTemplate = Record->getDescribedClassTemplate();
5680
5681    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5682      << (NewTag == TTK_Class)
5683      << isTemplate << &Name
5684      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5685                              OldTag == TTK_Class? "class" : "struct");
5686    Diag(Previous->getLocation(), diag::note_previous_use);
5687    return true;
5688  }
5689  return false;
5690}
5691
5692/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5693/// former case, Name will be non-null.  In the later case, Name will be null.
5694/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5695/// reference/declaration/definition of a tag.
5696Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5697                     SourceLocation KWLoc, CXXScopeSpec &SS,
5698                     IdentifierInfo *Name, SourceLocation NameLoc,
5699                     AttributeList *Attr, AccessSpecifier AS,
5700                     MultiTemplateParamsArg TemplateParameterLists,
5701                     bool &OwnedDecl, bool &IsDependent,
5702                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5703                     TypeResult UnderlyingType) {
5704  // If this is not a definition, it must have a name.
5705  assert((Name != 0 || TUK == TUK_Definition) &&
5706         "Nameless record must be a definition!");
5707  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5708
5709  OwnedDecl = false;
5710  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5711
5712  // FIXME: Check explicit specializations more carefully.
5713  bool isExplicitSpecialization = false;
5714  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5715  bool Invalid = false;
5716
5717  // We only need to do this matching if we have template parameters
5718  // or a scope specifier, which also conveniently avoids this work
5719  // for non-C++ cases.
5720  if (NumMatchedTemplateParamLists ||
5721      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5722    if (TemplateParameterList *TemplateParams
5723          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5724                                                TemplateParameterLists.get(),
5725                                               TemplateParameterLists.size(),
5726                                                    TUK == TUK_Friend,
5727                                                    isExplicitSpecialization,
5728                                                    Invalid)) {
5729      // All but one template parameter lists have been matching.
5730      --NumMatchedTemplateParamLists;
5731
5732      if (TemplateParams->size() > 0) {
5733        // This is a declaration or definition of a class template (which may
5734        // be a member of another template).
5735        if (Invalid)
5736          return 0;
5737
5738        OwnedDecl = false;
5739        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5740                                               SS, Name, NameLoc, Attr,
5741                                               TemplateParams,
5742                                               AS);
5743        TemplateParameterLists.release();
5744        return Result.get();
5745      } else {
5746        // The "template<>" header is extraneous.
5747        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5748          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5749        isExplicitSpecialization = true;
5750      }
5751    }
5752  }
5753
5754  // Figure out the underlying type if this a enum declaration. We need to do
5755  // this early, because it's needed to detect if this is an incompatible
5756  // redeclaration.
5757  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5758
5759  if (Kind == TTK_Enum) {
5760    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5761      // No underlying type explicitly specified, or we failed to parse the
5762      // type, default to int.
5763      EnumUnderlying = Context.IntTy.getTypePtr();
5764    else if (UnderlyingType.get()) {
5765      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5766      // integral type; any cv-qualification is ignored.
5767      TypeSourceInfo *TI = 0;
5768      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5769      EnumUnderlying = TI;
5770
5771      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5772
5773      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5774        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5775          << T;
5776        // Recover by falling back to int.
5777        EnumUnderlying = Context.IntTy.getTypePtr();
5778      }
5779
5780      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5781                                          UPPC_FixedUnderlyingType))
5782        EnumUnderlying = Context.IntTy.getTypePtr();
5783
5784    } else if (getLangOptions().Microsoft)
5785      // Microsoft enums are always of int type.
5786      EnumUnderlying = Context.IntTy.getTypePtr();
5787  }
5788
5789  DeclContext *SearchDC = CurContext;
5790  DeclContext *DC = CurContext;
5791  bool isStdBadAlloc = false;
5792
5793  RedeclarationKind Redecl = ForRedeclaration;
5794  if (TUK == TUK_Friend || TUK == TUK_Reference)
5795    Redecl = NotForRedeclaration;
5796
5797  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5798
5799  if (Name && SS.isNotEmpty()) {
5800    // We have a nested-name tag ('struct foo::bar').
5801
5802    // Check for invalid 'foo::'.
5803    if (SS.isInvalid()) {
5804      Name = 0;
5805      goto CreateNewDecl;
5806    }
5807
5808    // If this is a friend or a reference to a class in a dependent
5809    // context, don't try to make a decl for it.
5810    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5811      DC = computeDeclContext(SS, false);
5812      if (!DC) {
5813        IsDependent = true;
5814        return 0;
5815      }
5816    } else {
5817      DC = computeDeclContext(SS, true);
5818      if (!DC) {
5819        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5820          << SS.getRange();
5821        return 0;
5822      }
5823    }
5824
5825    if (RequireCompleteDeclContext(SS, DC))
5826      return 0;
5827
5828    SearchDC = DC;
5829    // Look-up name inside 'foo::'.
5830    LookupQualifiedName(Previous, DC);
5831
5832    if (Previous.isAmbiguous())
5833      return 0;
5834
5835    if (Previous.empty()) {
5836      // Name lookup did not find anything. However, if the
5837      // nested-name-specifier refers to the current instantiation,
5838      // and that current instantiation has any dependent base
5839      // classes, we might find something at instantiation time: treat
5840      // this as a dependent elaborated-type-specifier.
5841      // But this only makes any sense for reference-like lookups.
5842      if (Previous.wasNotFoundInCurrentInstantiation() &&
5843          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5844        IsDependent = true;
5845        return 0;
5846      }
5847
5848      // A tag 'foo::bar' must already exist.
5849      Diag(NameLoc, diag::err_not_tag_in_scope)
5850        << Kind << Name << DC << SS.getRange();
5851      Name = 0;
5852      Invalid = true;
5853      goto CreateNewDecl;
5854    }
5855  } else if (Name) {
5856    // If this is a named struct, check to see if there was a previous forward
5857    // declaration or definition.
5858    // FIXME: We're looking into outer scopes here, even when we
5859    // shouldn't be. Doing so can result in ambiguities that we
5860    // shouldn't be diagnosing.
5861    LookupName(Previous, S);
5862
5863    // Note:  there used to be some attempt at recovery here.
5864    if (Previous.isAmbiguous())
5865      return 0;
5866
5867    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5868      // FIXME: This makes sure that we ignore the contexts associated
5869      // with C structs, unions, and enums when looking for a matching
5870      // tag declaration or definition. See the similar lookup tweak
5871      // in Sema::LookupName; is there a better way to deal with this?
5872      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5873        SearchDC = SearchDC->getParent();
5874    }
5875  } else if (S->isFunctionPrototypeScope()) {
5876    // If this is an enum declaration in function prototype scope, set its
5877    // initial context to the translation unit.
5878    SearchDC = Context.getTranslationUnitDecl();
5879  }
5880
5881  if (Previous.isSingleResult() &&
5882      Previous.getFoundDecl()->isTemplateParameter()) {
5883    // Maybe we will complain about the shadowed template parameter.
5884    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5885    // Just pretend that we didn't see the previous declaration.
5886    Previous.clear();
5887  }
5888
5889  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5890      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5891    // This is a declaration of or a reference to "std::bad_alloc".
5892    isStdBadAlloc = true;
5893
5894    if (Previous.empty() && StdBadAlloc) {
5895      // std::bad_alloc has been implicitly declared (but made invisible to
5896      // name lookup). Fill in this implicit declaration as the previous
5897      // declaration, so that the declarations get chained appropriately.
5898      Previous.addDecl(getStdBadAlloc());
5899    }
5900  }
5901
5902  // If we didn't find a previous declaration, and this is a reference
5903  // (or friend reference), move to the correct scope.  In C++, we
5904  // also need to do a redeclaration lookup there, just in case
5905  // there's a shadow friend decl.
5906  if (Name && Previous.empty() &&
5907      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5908    if (Invalid) goto CreateNewDecl;
5909    assert(SS.isEmpty());
5910
5911    if (TUK == TUK_Reference) {
5912      // C++ [basic.scope.pdecl]p5:
5913      //   -- for an elaborated-type-specifier of the form
5914      //
5915      //          class-key identifier
5916      //
5917      //      if the elaborated-type-specifier is used in the
5918      //      decl-specifier-seq or parameter-declaration-clause of a
5919      //      function defined in namespace scope, the identifier is
5920      //      declared as a class-name in the namespace that contains
5921      //      the declaration; otherwise, except as a friend
5922      //      declaration, the identifier is declared in the smallest
5923      //      non-class, non-function-prototype scope that contains the
5924      //      declaration.
5925      //
5926      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5927      // C structs and unions.
5928      //
5929      // It is an error in C++ to declare (rather than define) an enum
5930      // type, including via an elaborated type specifier.  We'll
5931      // diagnose that later; for now, declare the enum in the same
5932      // scope as we would have picked for any other tag type.
5933      //
5934      // GNU C also supports this behavior as part of its incomplete
5935      // enum types extension, while GNU C++ does not.
5936      //
5937      // Find the context where we'll be declaring the tag.
5938      // FIXME: We would like to maintain the current DeclContext as the
5939      // lexical context,
5940      while (SearchDC->isRecord())
5941        SearchDC = SearchDC->getParent();
5942
5943      // Find the scope where we'll be declaring the tag.
5944      while (S->isClassScope() ||
5945             (getLangOptions().CPlusPlus &&
5946              S->isFunctionPrototypeScope()) ||
5947             ((S->getFlags() & Scope::DeclScope) == 0) ||
5948             (S->getEntity() &&
5949              ((DeclContext *)S->getEntity())->isTransparentContext()))
5950        S = S->getParent();
5951    } else {
5952      assert(TUK == TUK_Friend);
5953      // C++ [namespace.memdef]p3:
5954      //   If a friend declaration in a non-local class first declares a
5955      //   class or function, the friend class or function is a member of
5956      //   the innermost enclosing namespace.
5957      SearchDC = SearchDC->getEnclosingNamespaceContext();
5958    }
5959
5960    // In C++, we need to do a redeclaration lookup to properly
5961    // diagnose some problems.
5962    if (getLangOptions().CPlusPlus) {
5963      Previous.setRedeclarationKind(ForRedeclaration);
5964      LookupQualifiedName(Previous, SearchDC);
5965    }
5966  }
5967
5968  if (!Previous.empty()) {
5969    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5970
5971    // It's okay to have a tag decl in the same scope as a typedef
5972    // which hides a tag decl in the same scope.  Finding this
5973    // insanity with a redeclaration lookup can only actually happen
5974    // in C++.
5975    //
5976    // This is also okay for elaborated-type-specifiers, which is
5977    // technically forbidden by the current standard but which is
5978    // okay according to the likely resolution of an open issue;
5979    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5980    if (getLangOptions().CPlusPlus) {
5981      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5982        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5983          TagDecl *Tag = TT->getDecl();
5984          if (Tag->getDeclName() == Name &&
5985              Tag->getDeclContext()->getRedeclContext()
5986                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5987            PrevDecl = Tag;
5988            Previous.clear();
5989            Previous.addDecl(Tag);
5990            Previous.resolveKind();
5991          }
5992        }
5993      }
5994    }
5995
5996    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5997      // If this is a use of a previous tag, or if the tag is already declared
5998      // in the same scope (so that the definition/declaration completes or
5999      // rementions the tag), reuse the decl.
6000      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6001          isDeclInScope(PrevDecl, SearchDC, S)) {
6002        // Make sure that this wasn't declared as an enum and now used as a
6003        // struct or something similar.
6004        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6005          bool SafeToContinue
6006            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6007               Kind != TTK_Enum);
6008          if (SafeToContinue)
6009            Diag(KWLoc, diag::err_use_with_wrong_tag)
6010              << Name
6011              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6012                                              PrevTagDecl->getKindName());
6013          else
6014            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6015          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6016
6017          if (SafeToContinue)
6018            Kind = PrevTagDecl->getTagKind();
6019          else {
6020            // Recover by making this an anonymous redefinition.
6021            Name = 0;
6022            Previous.clear();
6023            Invalid = true;
6024          }
6025        }
6026
6027        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6028          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6029
6030          // All conflicts with previous declarations are recovered by
6031          // returning the previous declaration.
6032          if (ScopedEnum != PrevEnum->isScoped()) {
6033            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6034              << PrevEnum->isScoped();
6035            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6036            return PrevTagDecl;
6037          }
6038          else if (EnumUnderlying && PrevEnum->isFixed()) {
6039            QualType T;
6040            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6041                T = TI->getType();
6042            else
6043                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6044
6045            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6046              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6047                   diag::err_enum_redeclare_type_mismatch)
6048                << T
6049                << PrevEnum->getIntegerType();
6050              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6051              return PrevTagDecl;
6052            }
6053          }
6054          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6055            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6056              << PrevEnum->isFixed();
6057            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6058            return PrevTagDecl;
6059          }
6060        }
6061
6062        if (!Invalid) {
6063          // If this is a use, just return the declaration we found.
6064
6065          // FIXME: In the future, return a variant or some other clue
6066          // for the consumer of this Decl to know it doesn't own it.
6067          // For our current ASTs this shouldn't be a problem, but will
6068          // need to be changed with DeclGroups.
6069          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6070              TUK == TUK_Friend)
6071            return PrevTagDecl;
6072
6073          // Diagnose attempts to redefine a tag.
6074          if (TUK == TUK_Definition) {
6075            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6076              // If we're defining a specialization and the previous definition
6077              // is from an implicit instantiation, don't emit an error
6078              // here; we'll catch this in the general case below.
6079              if (!isExplicitSpecialization ||
6080                  !isa<CXXRecordDecl>(Def) ||
6081                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6082                                               == TSK_ExplicitSpecialization) {
6083                Diag(NameLoc, diag::err_redefinition) << Name;
6084                Diag(Def->getLocation(), diag::note_previous_definition);
6085                // If this is a redefinition, recover by making this
6086                // struct be anonymous, which will make any later
6087                // references get the previous definition.
6088                Name = 0;
6089                Previous.clear();
6090                Invalid = true;
6091              }
6092            } else {
6093              // If the type is currently being defined, complain
6094              // about a nested redefinition.
6095              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6096              if (Tag->isBeingDefined()) {
6097                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6098                Diag(PrevTagDecl->getLocation(),
6099                     diag::note_previous_definition);
6100                Name = 0;
6101                Previous.clear();
6102                Invalid = true;
6103              }
6104            }
6105
6106            // Okay, this is definition of a previously declared or referenced
6107            // tag PrevDecl. We're going to create a new Decl for it.
6108          }
6109        }
6110        // If we get here we have (another) forward declaration or we
6111        // have a definition.  Just create a new decl.
6112
6113      } else {
6114        // If we get here, this is a definition of a new tag type in a nested
6115        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6116        // new decl/type.  We set PrevDecl to NULL so that the entities
6117        // have distinct types.
6118        Previous.clear();
6119      }
6120      // If we get here, we're going to create a new Decl. If PrevDecl
6121      // is non-NULL, it's a definition of the tag declared by
6122      // PrevDecl. If it's NULL, we have a new definition.
6123
6124
6125    // Otherwise, PrevDecl is not a tag, but was found with tag
6126    // lookup.  This is only actually possible in C++, where a few
6127    // things like templates still live in the tag namespace.
6128    } else {
6129      assert(getLangOptions().CPlusPlus);
6130
6131      // Use a better diagnostic if an elaborated-type-specifier
6132      // found the wrong kind of type on the first
6133      // (non-redeclaration) lookup.
6134      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6135          !Previous.isForRedeclaration()) {
6136        unsigned Kind = 0;
6137        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6138        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6139        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6140        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6141        Invalid = true;
6142
6143      // Otherwise, only diagnose if the declaration is in scope.
6144      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6145        // do nothing
6146
6147      // Diagnose implicit declarations introduced by elaborated types.
6148      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6149        unsigned Kind = 0;
6150        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6151        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6152        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6153        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6154        Invalid = true;
6155
6156      // Otherwise it's a declaration.  Call out a particularly common
6157      // case here.
6158      } else if (isa<TypedefDecl>(PrevDecl)) {
6159        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6160          << Name
6161          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6162        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6163        Invalid = true;
6164
6165      // Otherwise, diagnose.
6166      } else {
6167        // The tag name clashes with something else in the target scope,
6168        // issue an error and recover by making this tag be anonymous.
6169        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6170        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6171        Name = 0;
6172        Invalid = true;
6173      }
6174
6175      // The existing declaration isn't relevant to us; we're in a
6176      // new scope, so clear out the previous declaration.
6177      Previous.clear();
6178    }
6179  }
6180
6181CreateNewDecl:
6182
6183  TagDecl *PrevDecl = 0;
6184  if (Previous.isSingleResult())
6185    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6186
6187  // If there is an identifier, use the location of the identifier as the
6188  // location of the decl, otherwise use the location of the struct/union
6189  // keyword.
6190  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6191
6192  // Otherwise, create a new declaration. If there is a previous
6193  // declaration of the same entity, the two will be linked via
6194  // PrevDecl.
6195  TagDecl *New;
6196
6197  bool IsForwardReference = false;
6198  if (Kind == TTK_Enum) {
6199    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6200    // enum X { A, B, C } D;    D should chain to X.
6201    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6202                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6203                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6204    // If this is an undefined enum, warn.
6205    if (TUK != TUK_Definition && !Invalid) {
6206      TagDecl *Def;
6207      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6208        // C++0x: 7.2p2: opaque-enum-declaration.
6209        // Conflicts are diagnosed above. Do nothing.
6210      }
6211      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6212        Diag(Loc, diag::ext_forward_ref_enum_def)
6213          << New;
6214        Diag(Def->getLocation(), diag::note_previous_definition);
6215      } else {
6216        unsigned DiagID = diag::ext_forward_ref_enum;
6217        if (getLangOptions().Microsoft)
6218          DiagID = diag::ext_ms_forward_ref_enum;
6219        else if (getLangOptions().CPlusPlus)
6220          DiagID = diag::err_forward_ref_enum;
6221        Diag(Loc, DiagID);
6222
6223        // If this is a forward-declared reference to an enumeration, make a
6224        // note of it; we won't actually be introducing the declaration into
6225        // the declaration context.
6226        if (TUK == TUK_Reference)
6227          IsForwardReference = true;
6228      }
6229    }
6230
6231    if (EnumUnderlying) {
6232      EnumDecl *ED = cast<EnumDecl>(New);
6233      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6234        ED->setIntegerTypeSourceInfo(TI);
6235      else
6236        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6237      ED->setPromotionType(ED->getIntegerType());
6238    }
6239
6240  } else {
6241    // struct/union/class
6242
6243    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6244    // struct X { int A; } D;    D should chain to X.
6245    if (getLangOptions().CPlusPlus) {
6246      // FIXME: Look for a way to use RecordDecl for simple structs.
6247      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6248                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6249
6250      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6251        StdBadAlloc = cast<CXXRecordDecl>(New);
6252    } else
6253      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6254                               cast_or_null<RecordDecl>(PrevDecl));
6255  }
6256
6257  // Maybe add qualifier info.
6258  if (SS.isNotEmpty()) {
6259    if (SS.isSet()) {
6260      NestedNameSpecifier *NNS
6261        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6262      New->setQualifierInfo(NNS, SS.getRange());
6263      if (NumMatchedTemplateParamLists > 0) {
6264        New->setTemplateParameterListsInfo(Context,
6265                                           NumMatchedTemplateParamLists,
6266                    (TemplateParameterList**) TemplateParameterLists.release());
6267      }
6268    }
6269    else
6270      Invalid = true;
6271  }
6272
6273  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6274    // Add alignment attributes if necessary; these attributes are checked when
6275    // the ASTContext lays out the structure.
6276    //
6277    // It is important for implementing the correct semantics that this
6278    // happen here (in act on tag decl). The #pragma pack stack is
6279    // maintained as a result of parser callbacks which can occur at
6280    // many points during the parsing of a struct declaration (because
6281    // the #pragma tokens are effectively skipped over during the
6282    // parsing of the struct).
6283    AddAlignmentAttributesForRecord(RD);
6284  }
6285
6286  // If this is a specialization of a member class (of a class template),
6287  // check the specialization.
6288  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6289    Invalid = true;
6290
6291  if (Invalid)
6292    New->setInvalidDecl();
6293
6294  if (Attr)
6295    ProcessDeclAttributeList(S, New, Attr);
6296
6297  // If we're declaring or defining a tag in function prototype scope
6298  // in C, note that this type can only be used within the function.
6299  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6300    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6301
6302  // Set the lexical context. If the tag has a C++ scope specifier, the
6303  // lexical context will be different from the semantic context.
6304  New->setLexicalDeclContext(CurContext);
6305
6306  // Mark this as a friend decl if applicable.
6307  if (TUK == TUK_Friend)
6308    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6309
6310  // Set the access specifier.
6311  if (!Invalid && SearchDC->isRecord())
6312    SetMemberAccessSpecifier(New, PrevDecl, AS);
6313
6314  if (TUK == TUK_Definition)
6315    New->startDefinition();
6316
6317  // If this has an identifier, add it to the scope stack.
6318  if (TUK == TUK_Friend) {
6319    // We might be replacing an existing declaration in the lookup tables;
6320    // if so, borrow its access specifier.
6321    if (PrevDecl)
6322      New->setAccess(PrevDecl->getAccess());
6323
6324    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6325    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6326    if (Name) // can be null along some error paths
6327      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6328        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6329  } else if (Name) {
6330    S = getNonFieldDeclScope(S);
6331    PushOnScopeChains(New, S, !IsForwardReference);
6332    if (IsForwardReference)
6333      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6334
6335  } else {
6336    CurContext->addDecl(New);
6337  }
6338
6339  // If this is the C FILE type, notify the AST context.
6340  if (IdentifierInfo *II = New->getIdentifier())
6341    if (!New->isInvalidDecl() &&
6342        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6343        II->isStr("FILE"))
6344      Context.setFILEDecl(New);
6345
6346  OwnedDecl = true;
6347  return New;
6348}
6349
6350void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6351  AdjustDeclIfTemplate(TagD);
6352  TagDecl *Tag = cast<TagDecl>(TagD);
6353
6354  // Enter the tag context.
6355  PushDeclContext(S, Tag);
6356}
6357
6358void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6359                                           SourceLocation LBraceLoc) {
6360  AdjustDeclIfTemplate(TagD);
6361  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6362
6363  FieldCollector->StartClass();
6364
6365  if (!Record->getIdentifier())
6366    return;
6367
6368  // C++ [class]p2:
6369  //   [...] The class-name is also inserted into the scope of the
6370  //   class itself; this is known as the injected-class-name. For
6371  //   purposes of access checking, the injected-class-name is treated
6372  //   as if it were a public member name.
6373  CXXRecordDecl *InjectedClassName
6374    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6375                            CurContext, Record->getLocation(),
6376                            Record->getIdentifier(),
6377                            Record->getTagKeywordLoc(),
6378                            /*PrevDecl=*/0,
6379                            /*DelayTypeCreation=*/true);
6380  Context.getTypeDeclType(InjectedClassName, Record);
6381  InjectedClassName->setImplicit();
6382  InjectedClassName->setAccess(AS_public);
6383  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6384      InjectedClassName->setDescribedClassTemplate(Template);
6385  PushOnScopeChains(InjectedClassName, S);
6386  assert(InjectedClassName->isInjectedClassName() &&
6387         "Broken injected-class-name");
6388}
6389
6390void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6391                                    SourceLocation RBraceLoc) {
6392  AdjustDeclIfTemplate(TagD);
6393  TagDecl *Tag = cast<TagDecl>(TagD);
6394  Tag->setRBraceLoc(RBraceLoc);
6395
6396  if (isa<CXXRecordDecl>(Tag))
6397    FieldCollector->FinishClass();
6398
6399  // Exit this scope of this tag's definition.
6400  PopDeclContext();
6401
6402  // Notify the consumer that we've defined a tag.
6403  Consumer.HandleTagDeclDefinition(Tag);
6404}
6405
6406void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6407  AdjustDeclIfTemplate(TagD);
6408  TagDecl *Tag = cast<TagDecl>(TagD);
6409  Tag->setInvalidDecl();
6410
6411  // We're undoing ActOnTagStartDefinition here, not
6412  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6413  // the FieldCollector.
6414
6415  PopDeclContext();
6416}
6417
6418// Note that FieldName may be null for anonymous bitfields.
6419bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6420                          QualType FieldTy, const Expr *BitWidth,
6421                          bool *ZeroWidth) {
6422  // Default to true; that shouldn't confuse checks for emptiness
6423  if (ZeroWidth)
6424    *ZeroWidth = true;
6425
6426  // C99 6.7.2.1p4 - verify the field type.
6427  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6428  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6429    // Handle incomplete types with specific error.
6430    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6431      return true;
6432    if (FieldName)
6433      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6434        << FieldName << FieldTy << BitWidth->getSourceRange();
6435    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6436      << FieldTy << BitWidth->getSourceRange();
6437  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6438                                             UPPC_BitFieldWidth))
6439    return true;
6440
6441  // If the bit-width is type- or value-dependent, don't try to check
6442  // it now.
6443  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6444    return false;
6445
6446  llvm::APSInt Value;
6447  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6448    return true;
6449
6450  if (Value != 0 && ZeroWidth)
6451    *ZeroWidth = false;
6452
6453  // Zero-width bitfield is ok for anonymous field.
6454  if (Value == 0 && FieldName)
6455    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6456
6457  if (Value.isSigned() && Value.isNegative()) {
6458    if (FieldName)
6459      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6460               << FieldName << Value.toString(10);
6461    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6462      << Value.toString(10);
6463  }
6464
6465  if (!FieldTy->isDependentType()) {
6466    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6467    if (Value.getZExtValue() > TypeSize) {
6468      if (!getLangOptions().CPlusPlus) {
6469        if (FieldName)
6470          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6471            << FieldName << (unsigned)Value.getZExtValue()
6472            << (unsigned)TypeSize;
6473
6474        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6475          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6476      }
6477
6478      if (FieldName)
6479        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6480          << FieldName << (unsigned)Value.getZExtValue()
6481          << (unsigned)TypeSize;
6482      else
6483        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6484          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6485    }
6486  }
6487
6488  return false;
6489}
6490
6491/// ActOnField - Each field of a struct/union/class is passed into this in order
6492/// to create a FieldDecl object for it.
6493Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6494                                 SourceLocation DeclStart,
6495                                 Declarator &D, ExprTy *BitfieldWidth) {
6496  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6497                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6498                               AS_public);
6499  return Res;
6500}
6501
6502/// HandleField - Analyze a field of a C struct or a C++ data member.
6503///
6504FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6505                             SourceLocation DeclStart,
6506                             Declarator &D, Expr *BitWidth,
6507                             AccessSpecifier AS) {
6508  IdentifierInfo *II = D.getIdentifier();
6509  SourceLocation Loc = DeclStart;
6510  if (II) Loc = D.getIdentifierLoc();
6511
6512  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6513  QualType T = TInfo->getType();
6514  if (getLangOptions().CPlusPlus) {
6515    CheckExtraCXXDefaultArguments(D);
6516
6517    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6518                                        UPPC_DataMemberType)) {
6519      D.setInvalidType();
6520      T = Context.IntTy;
6521      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6522    }
6523  }
6524
6525  DiagnoseFunctionSpecifiers(D);
6526
6527  if (D.getDeclSpec().isThreadSpecified())
6528    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6529
6530  // Check to see if this name was declared as a member previously
6531  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6532  LookupName(Previous, S);
6533  assert((Previous.empty() || Previous.isOverloadedResult() ||
6534          Previous.isSingleResult())
6535    && "Lookup of member name should be either overloaded, single or null");
6536
6537  // If the name is overloaded then get any declaration else get the single result
6538  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6539    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6540
6541  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6542    // Maybe we will complain about the shadowed template parameter.
6543    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6544    // Just pretend that we didn't see the previous declaration.
6545    PrevDecl = 0;
6546  }
6547
6548  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6549    PrevDecl = 0;
6550
6551  bool Mutable
6552    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6553  SourceLocation TSSL = D.getSourceRange().getBegin();
6554  FieldDecl *NewFD
6555    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6556                     AS, PrevDecl, &D);
6557
6558  if (NewFD->isInvalidDecl())
6559    Record->setInvalidDecl();
6560
6561  if (NewFD->isInvalidDecl() && PrevDecl) {
6562    // Don't introduce NewFD into scope; there's already something
6563    // with the same name in the same scope.
6564  } else if (II) {
6565    PushOnScopeChains(NewFD, S);
6566  } else
6567    Record->addDecl(NewFD);
6568
6569  return NewFD;
6570}
6571
6572/// \brief Build a new FieldDecl and check its well-formedness.
6573///
6574/// This routine builds a new FieldDecl given the fields name, type,
6575/// record, etc. \p PrevDecl should refer to any previous declaration
6576/// with the same name and in the same scope as the field to be
6577/// created.
6578///
6579/// \returns a new FieldDecl.
6580///
6581/// \todo The Declarator argument is a hack. It will be removed once
6582FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6583                                TypeSourceInfo *TInfo,
6584                                RecordDecl *Record, SourceLocation Loc,
6585                                bool Mutable, Expr *BitWidth,
6586                                SourceLocation TSSL,
6587                                AccessSpecifier AS, NamedDecl *PrevDecl,
6588                                Declarator *D) {
6589  IdentifierInfo *II = Name.getAsIdentifierInfo();
6590  bool InvalidDecl = false;
6591  if (D) InvalidDecl = D->isInvalidType();
6592
6593  // If we receive a broken type, recover by assuming 'int' and
6594  // marking this declaration as invalid.
6595  if (T.isNull()) {
6596    InvalidDecl = true;
6597    T = Context.IntTy;
6598  }
6599
6600  QualType EltTy = Context.getBaseElementType(T);
6601  if (!EltTy->isDependentType() &&
6602      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6603    // Fields of incomplete type force their record to be invalid.
6604    Record->setInvalidDecl();
6605    InvalidDecl = true;
6606  }
6607
6608  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6609  // than a variably modified type.
6610  if (!InvalidDecl && T->isVariablyModifiedType()) {
6611    bool SizeIsNegative;
6612    llvm::APSInt Oversized;
6613    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6614                                                           SizeIsNegative,
6615                                                           Oversized);
6616    if (!FixedTy.isNull()) {
6617      Diag(Loc, diag::warn_illegal_constant_array_size);
6618      T = FixedTy;
6619    } else {
6620      if (SizeIsNegative)
6621        Diag(Loc, diag::err_typecheck_negative_array_size);
6622      else if (Oversized.getBoolValue())
6623        Diag(Loc, diag::err_array_too_large)
6624          << Oversized.toString(10);
6625      else
6626        Diag(Loc, diag::err_typecheck_field_variable_size);
6627      InvalidDecl = true;
6628    }
6629  }
6630
6631  // Fields can not have abstract class types
6632  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6633                                             diag::err_abstract_type_in_decl,
6634                                             AbstractFieldType))
6635    InvalidDecl = true;
6636
6637  bool ZeroWidth = false;
6638  // If this is declared as a bit-field, check the bit-field.
6639  if (!InvalidDecl && BitWidth &&
6640      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6641    InvalidDecl = true;
6642    BitWidth = 0;
6643    ZeroWidth = false;
6644  }
6645
6646  // Check that 'mutable' is consistent with the type of the declaration.
6647  if (!InvalidDecl && Mutable) {
6648    unsigned DiagID = 0;
6649    if (T->isReferenceType())
6650      DiagID = diag::err_mutable_reference;
6651    else if (T.isConstQualified())
6652      DiagID = diag::err_mutable_const;
6653
6654    if (DiagID) {
6655      SourceLocation ErrLoc = Loc;
6656      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6657        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6658      Diag(ErrLoc, DiagID);
6659      Mutable = false;
6660      InvalidDecl = true;
6661    }
6662  }
6663
6664  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6665                                       BitWidth, Mutable);
6666  if (InvalidDecl)
6667    NewFD->setInvalidDecl();
6668
6669  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6670    Diag(Loc, diag::err_duplicate_member) << II;
6671    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6672    NewFD->setInvalidDecl();
6673  }
6674
6675  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6676    if (Record->isUnion()) {
6677      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6678        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6679        if (RDecl->getDefinition()) {
6680          // C++ [class.union]p1: An object of a class with a non-trivial
6681          // constructor, a non-trivial copy constructor, a non-trivial
6682          // destructor, or a non-trivial copy assignment operator
6683          // cannot be a member of a union, nor can an array of such
6684          // objects.
6685          // TODO: C++0x alters this restriction significantly.
6686          if (CheckNontrivialField(NewFD))
6687            NewFD->setInvalidDecl();
6688        }
6689      }
6690
6691      // C++ [class.union]p1: If a union contains a member of reference type,
6692      // the program is ill-formed.
6693      if (EltTy->isReferenceType()) {
6694        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6695          << NewFD->getDeclName() << EltTy;
6696        NewFD->setInvalidDecl();
6697      }
6698    }
6699  }
6700
6701  // FIXME: We need to pass in the attributes given an AST
6702  // representation, not a parser representation.
6703  if (D)
6704    // FIXME: What to pass instead of TUScope?
6705    ProcessDeclAttributes(TUScope, NewFD, *D);
6706
6707  if (T.isObjCGCWeak())
6708    Diag(Loc, diag::warn_attribute_weak_on_field);
6709
6710  NewFD->setAccess(AS);
6711  return NewFD;
6712}
6713
6714bool Sema::CheckNontrivialField(FieldDecl *FD) {
6715  assert(FD);
6716  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6717
6718  if (FD->isInvalidDecl())
6719    return true;
6720
6721  QualType EltTy = Context.getBaseElementType(FD->getType());
6722  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6723    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6724    if (RDecl->getDefinition()) {
6725      // We check for copy constructors before constructors
6726      // because otherwise we'll never get complaints about
6727      // copy constructors.
6728
6729      CXXSpecialMember member = CXXInvalid;
6730      if (!RDecl->hasTrivialCopyConstructor())
6731        member = CXXCopyConstructor;
6732      else if (!RDecl->hasTrivialConstructor())
6733        member = CXXConstructor;
6734      else if (!RDecl->hasTrivialCopyAssignment())
6735        member = CXXCopyAssignment;
6736      else if (!RDecl->hasTrivialDestructor())
6737        member = CXXDestructor;
6738
6739      if (member != CXXInvalid) {
6740        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6741              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6742        DiagnoseNontrivial(RT, member);
6743        return true;
6744      }
6745    }
6746  }
6747
6748  return false;
6749}
6750
6751/// DiagnoseNontrivial - Given that a class has a non-trivial
6752/// special member, figure out why.
6753void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6754  QualType QT(T, 0U);
6755  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6756
6757  // Check whether the member was user-declared.
6758  switch (member) {
6759  case CXXInvalid:
6760    break;
6761
6762  case CXXConstructor:
6763    if (RD->hasUserDeclaredConstructor()) {
6764      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6765      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6766        const FunctionDecl *body = 0;
6767        ci->hasBody(body);
6768        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6769          SourceLocation CtorLoc = ci->getLocation();
6770          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6771          return;
6772        }
6773      }
6774
6775      assert(0 && "found no user-declared constructors");
6776      return;
6777    }
6778    break;
6779
6780  case CXXCopyConstructor:
6781    if (RD->hasUserDeclaredCopyConstructor()) {
6782      SourceLocation CtorLoc =
6783        RD->getCopyConstructor(Context, 0)->getLocation();
6784      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6785      return;
6786    }
6787    break;
6788
6789  case CXXCopyAssignment:
6790    if (RD->hasUserDeclaredCopyAssignment()) {
6791      // FIXME: this should use the location of the copy
6792      // assignment, not the type.
6793      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6794      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6795      return;
6796    }
6797    break;
6798
6799  case CXXDestructor:
6800    if (RD->hasUserDeclaredDestructor()) {
6801      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6802      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6803      return;
6804    }
6805    break;
6806  }
6807
6808  typedef CXXRecordDecl::base_class_iterator base_iter;
6809
6810  // Virtual bases and members inhibit trivial copying/construction,
6811  // but not trivial destruction.
6812  if (member != CXXDestructor) {
6813    // Check for virtual bases.  vbases includes indirect virtual bases,
6814    // so we just iterate through the direct bases.
6815    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6816      if (bi->isVirtual()) {
6817        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6818        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6819        return;
6820      }
6821
6822    // Check for virtual methods.
6823    typedef CXXRecordDecl::method_iterator meth_iter;
6824    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6825         ++mi) {
6826      if (mi->isVirtual()) {
6827        SourceLocation MLoc = mi->getSourceRange().getBegin();
6828        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6829        return;
6830      }
6831    }
6832  }
6833
6834  bool (CXXRecordDecl::*hasTrivial)() const;
6835  switch (member) {
6836  case CXXConstructor:
6837    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6838  case CXXCopyConstructor:
6839    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6840  case CXXCopyAssignment:
6841    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6842  case CXXDestructor:
6843    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6844  default:
6845    assert(0 && "unexpected special member"); return;
6846  }
6847
6848  // Check for nontrivial bases (and recurse).
6849  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6850    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6851    assert(BaseRT && "Don't know how to handle dependent bases");
6852    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6853    if (!(BaseRecTy->*hasTrivial)()) {
6854      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6855      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6856      DiagnoseNontrivial(BaseRT, member);
6857      return;
6858    }
6859  }
6860
6861  // Check for nontrivial members (and recurse).
6862  typedef RecordDecl::field_iterator field_iter;
6863  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6864       ++fi) {
6865    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6866    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6867      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6868
6869      if (!(EltRD->*hasTrivial)()) {
6870        SourceLocation FLoc = (*fi)->getLocation();
6871        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6872        DiagnoseNontrivial(EltRT, member);
6873        return;
6874      }
6875    }
6876  }
6877
6878  assert(0 && "found no explanation for non-trivial member");
6879}
6880
6881/// TranslateIvarVisibility - Translate visibility from a token ID to an
6882///  AST enum value.
6883static ObjCIvarDecl::AccessControl
6884TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6885  switch (ivarVisibility) {
6886  default: assert(0 && "Unknown visitibility kind");
6887  case tok::objc_private: return ObjCIvarDecl::Private;
6888  case tok::objc_public: return ObjCIvarDecl::Public;
6889  case tok::objc_protected: return ObjCIvarDecl::Protected;
6890  case tok::objc_package: return ObjCIvarDecl::Package;
6891  }
6892}
6893
6894/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6895/// in order to create an IvarDecl object for it.
6896Decl *Sema::ActOnIvar(Scope *S,
6897                                SourceLocation DeclStart,
6898                                Decl *IntfDecl,
6899                                Declarator &D, ExprTy *BitfieldWidth,
6900                                tok::ObjCKeywordKind Visibility) {
6901
6902  IdentifierInfo *II = D.getIdentifier();
6903  Expr *BitWidth = (Expr*)BitfieldWidth;
6904  SourceLocation Loc = DeclStart;
6905  if (II) Loc = D.getIdentifierLoc();
6906
6907  // FIXME: Unnamed fields can be handled in various different ways, for
6908  // example, unnamed unions inject all members into the struct namespace!
6909
6910  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6911  QualType T = TInfo->getType();
6912
6913  if (BitWidth) {
6914    // 6.7.2.1p3, 6.7.2.1p4
6915    if (VerifyBitField(Loc, II, T, BitWidth)) {
6916      D.setInvalidType();
6917      BitWidth = 0;
6918    }
6919  } else {
6920    // Not a bitfield.
6921
6922    // validate II.
6923
6924  }
6925  if (T->isReferenceType()) {
6926    Diag(Loc, diag::err_ivar_reference_type);
6927    D.setInvalidType();
6928  }
6929  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6930  // than a variably modified type.
6931  else if (T->isVariablyModifiedType()) {
6932    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6933    D.setInvalidType();
6934  }
6935
6936  // Get the visibility (access control) for this ivar.
6937  ObjCIvarDecl::AccessControl ac =
6938    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6939                                        : ObjCIvarDecl::None;
6940  // Must set ivar's DeclContext to its enclosing interface.
6941  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6942  ObjCContainerDecl *EnclosingContext;
6943  if (ObjCImplementationDecl *IMPDecl =
6944      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6945    if (!LangOpts.ObjCNonFragileABI2) {
6946    // Case of ivar declared in an implementation. Context is that of its class.
6947      EnclosingContext = IMPDecl->getClassInterface();
6948      assert(EnclosingContext && "Implementation has no class interface!");
6949    }
6950    else
6951      EnclosingContext = EnclosingDecl;
6952  } else {
6953    if (ObjCCategoryDecl *CDecl =
6954        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6955      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6956        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6957        return 0;
6958      }
6959    }
6960    EnclosingContext = EnclosingDecl;
6961  }
6962
6963  // Construct the decl.
6964  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6965                                             EnclosingContext, Loc, II, T,
6966                                             TInfo, ac, (Expr *)BitfieldWidth);
6967
6968  if (II) {
6969    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6970                                           ForRedeclaration);
6971    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6972        && !isa<TagDecl>(PrevDecl)) {
6973      Diag(Loc, diag::err_duplicate_member) << II;
6974      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6975      NewID->setInvalidDecl();
6976    }
6977  }
6978
6979  // Process attributes attached to the ivar.
6980  ProcessDeclAttributes(S, NewID, D);
6981
6982  if (D.isInvalidType())
6983    NewID->setInvalidDecl();
6984
6985  if (II) {
6986    // FIXME: When interfaces are DeclContexts, we'll need to add
6987    // these to the interface.
6988    S->AddDecl(NewID);
6989    IdResolver.AddDecl(NewID);
6990  }
6991
6992  return NewID;
6993}
6994
6995/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6996/// class and class extensions. For every class @interface and class
6997/// extension @interface, if the last ivar is a bitfield of any type,
6998/// then add an implicit `char :0` ivar to the end of that interface.
6999void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7000                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7001  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7002    return;
7003
7004  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7005  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7006
7007  if (!Ivar->isBitField())
7008    return;
7009  uint64_t BitFieldSize =
7010    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7011  if (BitFieldSize == 0)
7012    return;
7013  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7014  if (!ID) {
7015    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7016      if (!CD->IsClassExtension())
7017        return;
7018    }
7019    // No need to add this to end of @implementation.
7020    else
7021      return;
7022  }
7023  // All conditions are met. Add a new bitfield to the tail end of ivars.
7024  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7025  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7026
7027  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7028                              DeclLoc, 0,
7029                              Context.CharTy,
7030                              Context.CreateTypeSourceInfo(Context.CharTy),
7031                              ObjCIvarDecl::Private, BW,
7032                              true);
7033  AllIvarDecls.push_back(Ivar);
7034}
7035
7036void Sema::ActOnFields(Scope* S,
7037                       SourceLocation RecLoc, Decl *EnclosingDecl,
7038                       Decl **Fields, unsigned NumFields,
7039                       SourceLocation LBrac, SourceLocation RBrac,
7040                       AttributeList *Attr) {
7041  assert(EnclosingDecl && "missing record or interface decl");
7042
7043  // If the decl this is being inserted into is invalid, then it may be a
7044  // redeclaration or some other bogus case.  Don't try to add fields to it.
7045  if (EnclosingDecl->isInvalidDecl()) {
7046    // FIXME: Deallocate fields?
7047    return;
7048  }
7049
7050
7051  // Verify that all the fields are okay.
7052  unsigned NumNamedMembers = 0;
7053  llvm::SmallVector<FieldDecl*, 32> RecFields;
7054
7055  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7056  for (unsigned i = 0; i != NumFields; ++i) {
7057    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7058
7059    // Get the type for the field.
7060    Type *FDTy = FD->getType().getTypePtr();
7061
7062    if (!FD->isAnonymousStructOrUnion()) {
7063      // Remember all fields written by the user.
7064      RecFields.push_back(FD);
7065    }
7066
7067    // If the field is already invalid for some reason, don't emit more
7068    // diagnostics about it.
7069    if (FD->isInvalidDecl()) {
7070      EnclosingDecl->setInvalidDecl();
7071      continue;
7072    }
7073
7074    // C99 6.7.2.1p2:
7075    //   A structure or union shall not contain a member with
7076    //   incomplete or function type (hence, a structure shall not
7077    //   contain an instance of itself, but may contain a pointer to
7078    //   an instance of itself), except that the last member of a
7079    //   structure with more than one named member may have incomplete
7080    //   array type; such a structure (and any union containing,
7081    //   possibly recursively, a member that is such a structure)
7082    //   shall not be a member of a structure or an element of an
7083    //   array.
7084    if (FDTy->isFunctionType()) {
7085      // Field declared as a function.
7086      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7087        << FD->getDeclName();
7088      FD->setInvalidDecl();
7089      EnclosingDecl->setInvalidDecl();
7090      continue;
7091    } else if (FDTy->isIncompleteArrayType() && Record &&
7092               ((i == NumFields - 1 && !Record->isUnion()) ||
7093                (getLangOptions().Microsoft &&
7094                 (i == NumFields - 1 || Record->isUnion())))) {
7095      // Flexible array member.
7096      // Microsoft is more permissive regarding flexible array.
7097      // It will accept flexible array in union and also
7098      // as the sole element of a struct/class.
7099      if (getLangOptions().Microsoft) {
7100        if (Record->isUnion())
7101          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7102            << FD->getDeclName();
7103        else if (NumFields == 1)
7104          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7105            << FD->getDeclName() << Record->getTagKind();
7106      } else  if (NumNamedMembers < 1) {
7107        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7108          << FD->getDeclName();
7109        FD->setInvalidDecl();
7110        EnclosingDecl->setInvalidDecl();
7111        continue;
7112      }
7113      if (!FD->getType()->isDependentType() &&
7114          !Context.getBaseElementType(FD->getType())->isPODType()) {
7115        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7116          << FD->getDeclName() << FD->getType();
7117        FD->setInvalidDecl();
7118        EnclosingDecl->setInvalidDecl();
7119        continue;
7120      }
7121      // Okay, we have a legal flexible array member at the end of the struct.
7122      if (Record)
7123        Record->setHasFlexibleArrayMember(true);
7124    } else if (!FDTy->isDependentType() &&
7125               RequireCompleteType(FD->getLocation(), FD->getType(),
7126                                   diag::err_field_incomplete)) {
7127      // Incomplete type
7128      FD->setInvalidDecl();
7129      EnclosingDecl->setInvalidDecl();
7130      continue;
7131    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7132      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7133        // If this is a member of a union, then entire union becomes "flexible".
7134        if (Record && Record->isUnion()) {
7135          Record->setHasFlexibleArrayMember(true);
7136        } else {
7137          // If this is a struct/class and this is not the last element, reject
7138          // it.  Note that GCC supports variable sized arrays in the middle of
7139          // structures.
7140          if (i != NumFields-1)
7141            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7142              << FD->getDeclName() << FD->getType();
7143          else {
7144            // We support flexible arrays at the end of structs in
7145            // other structs as an extension.
7146            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7147              << FD->getDeclName();
7148            if (Record)
7149              Record->setHasFlexibleArrayMember(true);
7150          }
7151        }
7152      }
7153      if (Record && FDTTy->getDecl()->hasObjectMember())
7154        Record->setHasObjectMember(true);
7155    } else if (FDTy->isObjCObjectType()) {
7156      /// A field cannot be an Objective-c object
7157      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7158      FD->setInvalidDecl();
7159      EnclosingDecl->setInvalidDecl();
7160      continue;
7161    } else if (getLangOptions().ObjC1 &&
7162               getLangOptions().getGCMode() != LangOptions::NonGC &&
7163               Record &&
7164               (FD->getType()->isObjCObjectPointerType() ||
7165                FD->getType().isObjCGCStrong()))
7166      Record->setHasObjectMember(true);
7167    else if (Context.getAsArrayType(FD->getType())) {
7168      QualType BaseType = Context.getBaseElementType(FD->getType());
7169      if (Record && BaseType->isRecordType() &&
7170          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7171        Record->setHasObjectMember(true);
7172    }
7173    // Keep track of the number of named members.
7174    if (FD->getIdentifier())
7175      ++NumNamedMembers;
7176  }
7177
7178  // Okay, we successfully defined 'Record'.
7179  if (Record) {
7180    bool Completed = false;
7181    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7182      if (!CXXRecord->isInvalidDecl()) {
7183        // Set access bits correctly on the directly-declared conversions.
7184        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7185        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7186             I != E; ++I)
7187          Convs->setAccess(I, (*I)->getAccess());
7188
7189        if (!CXXRecord->isDependentType()) {
7190          // Add any implicitly-declared members to this class.
7191          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7192
7193          // If we have virtual base classes, we may end up finding multiple
7194          // final overriders for a given virtual function. Check for this
7195          // problem now.
7196          if (CXXRecord->getNumVBases()) {
7197            CXXFinalOverriderMap FinalOverriders;
7198            CXXRecord->getFinalOverriders(FinalOverriders);
7199
7200            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7201                                             MEnd = FinalOverriders.end();
7202                 M != MEnd; ++M) {
7203              for (OverridingMethods::iterator SO = M->second.begin(),
7204                                            SOEnd = M->second.end();
7205                   SO != SOEnd; ++SO) {
7206                assert(SO->second.size() > 0 &&
7207                       "Virtual function without overridding functions?");
7208                if (SO->second.size() == 1)
7209                  continue;
7210
7211                // C++ [class.virtual]p2:
7212                //   In a derived class, if a virtual member function of a base
7213                //   class subobject has more than one final overrider the
7214                //   program is ill-formed.
7215                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7216                  << (NamedDecl *)M->first << Record;
7217                Diag(M->first->getLocation(),
7218                     diag::note_overridden_virtual_function);
7219                for (OverridingMethods::overriding_iterator
7220                          OM = SO->second.begin(),
7221                       OMEnd = SO->second.end();
7222                     OM != OMEnd; ++OM)
7223                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7224                    << (NamedDecl *)M->first << OM->Method->getParent();
7225
7226                Record->setInvalidDecl();
7227              }
7228            }
7229            CXXRecord->completeDefinition(&FinalOverriders);
7230            Completed = true;
7231          }
7232        }
7233      }
7234    }
7235
7236    if (!Completed)
7237      Record->completeDefinition();
7238  } else {
7239    ObjCIvarDecl **ClsFields =
7240      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7241    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7242      ID->setLocEnd(RBrac);
7243      // Add ivar's to class's DeclContext.
7244      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7245        ClsFields[i]->setLexicalDeclContext(ID);
7246        ID->addDecl(ClsFields[i]);
7247      }
7248      // Must enforce the rule that ivars in the base classes may not be
7249      // duplicates.
7250      if (ID->getSuperClass())
7251        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7252    } else if (ObjCImplementationDecl *IMPDecl =
7253                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7254      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7255      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7256        // Ivar declared in @implementation never belongs to the implementation.
7257        // Only it is in implementation's lexical context.
7258        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7259      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7260    } else if (ObjCCategoryDecl *CDecl =
7261                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7262      // case of ivars in class extension; all other cases have been
7263      // reported as errors elsewhere.
7264      // FIXME. Class extension does not have a LocEnd field.
7265      // CDecl->setLocEnd(RBrac);
7266      // Add ivar's to class extension's DeclContext.
7267      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7268        ClsFields[i]->setLexicalDeclContext(CDecl);
7269        CDecl->addDecl(ClsFields[i]);
7270      }
7271    }
7272  }
7273
7274  if (Attr)
7275    ProcessDeclAttributeList(S, Record, Attr);
7276
7277  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7278  // set the visibility of this record.
7279  if (Record && !Record->getDeclContext()->isRecord())
7280    AddPushedVisibilityAttribute(Record);
7281}
7282
7283/// \brief Determine whether the given integral value is representable within
7284/// the given type T.
7285static bool isRepresentableIntegerValue(ASTContext &Context,
7286                                        llvm::APSInt &Value,
7287                                        QualType T) {
7288  assert(T->isIntegralType(Context) && "Integral type required!");
7289  unsigned BitWidth = Context.getIntWidth(T);
7290
7291  if (Value.isUnsigned() || Value.isNonNegative()) {
7292    if (T->isSignedIntegerType())
7293      --BitWidth;
7294    return Value.getActiveBits() <= BitWidth;
7295  }
7296  return Value.getMinSignedBits() <= BitWidth;
7297}
7298
7299// \brief Given an integral type, return the next larger integral type
7300// (or a NULL type of no such type exists).
7301static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7302  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7303  // enum checking below.
7304  assert(T->isIntegralType(Context) && "Integral type required!");
7305  const unsigned NumTypes = 4;
7306  QualType SignedIntegralTypes[NumTypes] = {
7307    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7308  };
7309  QualType UnsignedIntegralTypes[NumTypes] = {
7310    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7311    Context.UnsignedLongLongTy
7312  };
7313
7314  unsigned BitWidth = Context.getTypeSize(T);
7315  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7316                                            : UnsignedIntegralTypes;
7317  for (unsigned I = 0; I != NumTypes; ++I)
7318    if (Context.getTypeSize(Types[I]) > BitWidth)
7319      return Types[I];
7320
7321  return QualType();
7322}
7323
7324EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7325                                          EnumConstantDecl *LastEnumConst,
7326                                          SourceLocation IdLoc,
7327                                          IdentifierInfo *Id,
7328                                          Expr *Val) {
7329  unsigned IntWidth = Context.Target.getIntWidth();
7330  llvm::APSInt EnumVal(IntWidth);
7331  QualType EltTy;
7332
7333  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7334    Val = 0;
7335
7336  if (Val) {
7337    if (Enum->isDependentType() || Val->isTypeDependent())
7338      EltTy = Context.DependentTy;
7339    else {
7340      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7341      SourceLocation ExpLoc;
7342      if (!Val->isValueDependent() &&
7343          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7344        Val = 0;
7345      } else {
7346        if (!getLangOptions().CPlusPlus) {
7347          // C99 6.7.2.2p2:
7348          //   The expression that defines the value of an enumeration constant
7349          //   shall be an integer constant expression that has a value
7350          //   representable as an int.
7351
7352          // Complain if the value is not representable in an int.
7353          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7354            Diag(IdLoc, diag::ext_enum_value_not_int)
7355              << EnumVal.toString(10) << Val->getSourceRange()
7356              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7357          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7358            // Force the type of the expression to 'int'.
7359            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7360          }
7361        }
7362
7363        if (Enum->isFixed()) {
7364          EltTy = Enum->getIntegerType();
7365
7366          // C++0x [dcl.enum]p5:
7367          //   ... if the initializing value of an enumerator cannot be
7368          //   represented by the underlying type, the program is ill-formed.
7369          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7370            if (getLangOptions().Microsoft) {
7371              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7372              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7373            } else
7374              Diag(IdLoc, diag::err_enumerator_too_large)
7375                << EltTy;
7376          } else
7377            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7378        }
7379        else {
7380          // C++0x [dcl.enum]p5:
7381          //   If the underlying type is not fixed, the type of each enumerator
7382          //   is the type of its initializing value:
7383          //     - If an initializer is specified for an enumerator, the
7384          //       initializing value has the same type as the expression.
7385          EltTy = Val->getType();
7386        }
7387      }
7388    }
7389  }
7390
7391  if (!Val) {
7392    if (Enum->isDependentType())
7393      EltTy = Context.DependentTy;
7394    else if (!LastEnumConst) {
7395      // C++0x [dcl.enum]p5:
7396      //   If the underlying type is not fixed, the type of each enumerator
7397      //   is the type of its initializing value:
7398      //     - If no initializer is specified for the first enumerator, the
7399      //       initializing value has an unspecified integral type.
7400      //
7401      // GCC uses 'int' for its unspecified integral type, as does
7402      // C99 6.7.2.2p3.
7403      if (Enum->isFixed()) {
7404        EltTy = Enum->getIntegerType();
7405      }
7406      else {
7407        EltTy = Context.IntTy;
7408      }
7409    } else {
7410      // Assign the last value + 1.
7411      EnumVal = LastEnumConst->getInitVal();
7412      ++EnumVal;
7413      EltTy = LastEnumConst->getType();
7414
7415      // Check for overflow on increment.
7416      if (EnumVal < LastEnumConst->getInitVal()) {
7417        // C++0x [dcl.enum]p5:
7418        //   If the underlying type is not fixed, the type of each enumerator
7419        //   is the type of its initializing value:
7420        //
7421        //     - Otherwise the type of the initializing value is the same as
7422        //       the type of the initializing value of the preceding enumerator
7423        //       unless the incremented value is not representable in that type,
7424        //       in which case the type is an unspecified integral type
7425        //       sufficient to contain the incremented value. If no such type
7426        //       exists, the program is ill-formed.
7427        QualType T = getNextLargerIntegralType(Context, EltTy);
7428        if (T.isNull() || Enum->isFixed()) {
7429          // There is no integral type larger enough to represent this
7430          // value. Complain, then allow the value to wrap around.
7431          EnumVal = LastEnumConst->getInitVal();
7432          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7433          ++EnumVal;
7434          if (Enum->isFixed())
7435            // When the underlying type is fixed, this is ill-formed.
7436            Diag(IdLoc, diag::err_enumerator_wrapped)
7437              << EnumVal.toString(10)
7438              << EltTy;
7439          else
7440            Diag(IdLoc, diag::warn_enumerator_too_large)
7441              << EnumVal.toString(10);
7442        } else {
7443          EltTy = T;
7444        }
7445
7446        // Retrieve the last enumerator's value, extent that type to the
7447        // type that is supposed to be large enough to represent the incremented
7448        // value, then increment.
7449        EnumVal = LastEnumConst->getInitVal();
7450        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7451        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7452        ++EnumVal;
7453
7454        // If we're not in C++, diagnose the overflow of enumerator values,
7455        // which in C99 means that the enumerator value is not representable in
7456        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7457        // permits enumerator values that are representable in some larger
7458        // integral type.
7459        if (!getLangOptions().CPlusPlus && !T.isNull())
7460          Diag(IdLoc, diag::warn_enum_value_overflow);
7461      } else if (!getLangOptions().CPlusPlus &&
7462                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7463        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7464        Diag(IdLoc, diag::ext_enum_value_not_int)
7465          << EnumVal.toString(10) << 1;
7466      }
7467    }
7468  }
7469
7470  if (!EltTy->isDependentType()) {
7471    // Make the enumerator value match the signedness and size of the
7472    // enumerator's type.
7473    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7474    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7475  }
7476
7477  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7478                                  Val, EnumVal);
7479}
7480
7481
7482Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7483                              SourceLocation IdLoc, IdentifierInfo *Id,
7484                              AttributeList *Attr,
7485                              SourceLocation EqualLoc, ExprTy *val) {
7486  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7487  EnumConstantDecl *LastEnumConst =
7488    cast_or_null<EnumConstantDecl>(lastEnumConst);
7489  Expr *Val = static_cast<Expr*>(val);
7490
7491  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7492  // we find one that is.
7493  S = getNonFieldDeclScope(S);
7494
7495  // Verify that there isn't already something declared with this name in this
7496  // scope.
7497  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7498                                         ForRedeclaration);
7499  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7500    // Maybe we will complain about the shadowed template parameter.
7501    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7502    // Just pretend that we didn't see the previous declaration.
7503    PrevDecl = 0;
7504  }
7505
7506  if (PrevDecl) {
7507    // When in C++, we may get a TagDecl with the same name; in this case the
7508    // enum constant will 'hide' the tag.
7509    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7510           "Received TagDecl when not in C++!");
7511    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7512      if (isa<EnumConstantDecl>(PrevDecl))
7513        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7514      else
7515        Diag(IdLoc, diag::err_redefinition) << Id;
7516      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7517      return 0;
7518    }
7519  }
7520
7521  // C++ [class.mem]p13:
7522  //   If T is the name of a class, then each of the following shall have a
7523  //   name different from T:
7524  //     - every enumerator of every member of class T that is an enumerated
7525  //       type
7526  if (CXXRecordDecl *Record
7527                      = dyn_cast<CXXRecordDecl>(
7528                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7529    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7530      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7531
7532  EnumConstantDecl *New =
7533    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7534
7535  if (New) {
7536    // Process attributes.
7537    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7538
7539    // Register this decl in the current scope stack.
7540    New->setAccess(TheEnumDecl->getAccess());
7541    PushOnScopeChains(New, S);
7542  }
7543
7544  return New;
7545}
7546
7547void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7548                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7549                         Decl **Elements, unsigned NumElements,
7550                         Scope *S, AttributeList *Attr) {
7551  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7552  QualType EnumType = Context.getTypeDeclType(Enum);
7553
7554  if (Attr)
7555    ProcessDeclAttributeList(S, Enum, Attr);
7556
7557  if (Enum->isDependentType()) {
7558    for (unsigned i = 0; i != NumElements; ++i) {
7559      EnumConstantDecl *ECD =
7560        cast_or_null<EnumConstantDecl>(Elements[i]);
7561      if (!ECD) continue;
7562
7563      ECD->setType(EnumType);
7564    }
7565
7566    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7567    return;
7568  }
7569
7570  // TODO: If the result value doesn't fit in an int, it must be a long or long
7571  // long value.  ISO C does not support this, but GCC does as an extension,
7572  // emit a warning.
7573  unsigned IntWidth = Context.Target.getIntWidth();
7574  unsigned CharWidth = Context.Target.getCharWidth();
7575  unsigned ShortWidth = Context.Target.getShortWidth();
7576
7577  // Verify that all the values are okay, compute the size of the values, and
7578  // reverse the list.
7579  unsigned NumNegativeBits = 0;
7580  unsigned NumPositiveBits = 0;
7581
7582  // Keep track of whether all elements have type int.
7583  bool AllElementsInt = true;
7584
7585  for (unsigned i = 0; i != NumElements; ++i) {
7586    EnumConstantDecl *ECD =
7587      cast_or_null<EnumConstantDecl>(Elements[i]);
7588    if (!ECD) continue;  // Already issued a diagnostic.
7589
7590    const llvm::APSInt &InitVal = ECD->getInitVal();
7591
7592    // Keep track of the size of positive and negative values.
7593    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7594      NumPositiveBits = std::max(NumPositiveBits,
7595                                 (unsigned)InitVal.getActiveBits());
7596    else
7597      NumNegativeBits = std::max(NumNegativeBits,
7598                                 (unsigned)InitVal.getMinSignedBits());
7599
7600    // Keep track of whether every enum element has type int (very commmon).
7601    if (AllElementsInt)
7602      AllElementsInt = ECD->getType() == Context.IntTy;
7603  }
7604
7605  // Figure out the type that should be used for this enum.
7606  QualType BestType;
7607  unsigned BestWidth;
7608
7609  // C++0x N3000 [conv.prom]p3:
7610  //   An rvalue of an unscoped enumeration type whose underlying
7611  //   type is not fixed can be converted to an rvalue of the first
7612  //   of the following types that can represent all the values of
7613  //   the enumeration: int, unsigned int, long int, unsigned long
7614  //   int, long long int, or unsigned long long int.
7615  // C99 6.4.4.3p2:
7616  //   An identifier declared as an enumeration constant has type int.
7617  // The C99 rule is modified by a gcc extension
7618  QualType BestPromotionType;
7619
7620  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7621  // -fshort-enums is the equivalent to specifying the packed attribute on all
7622  // enum definitions.
7623  if (LangOpts.ShortEnums)
7624    Packed = true;
7625
7626  if (Enum->isFixed()) {
7627    BestType = BestPromotionType = Enum->getIntegerType();
7628    // We don't need to set BestWidth, because BestType is going to be the type
7629    // of the enumerators, but we do anyway because otherwise some compilers
7630    // warn that it might be used uninitialized.
7631    BestWidth = CharWidth;
7632  }
7633  else if (NumNegativeBits) {
7634    // If there is a negative value, figure out the smallest integer type (of
7635    // int/long/longlong) that fits.
7636    // If it's packed, check also if it fits a char or a short.
7637    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7638      BestType = Context.SignedCharTy;
7639      BestWidth = CharWidth;
7640    } else if (Packed && NumNegativeBits <= ShortWidth &&
7641               NumPositiveBits < ShortWidth) {
7642      BestType = Context.ShortTy;
7643      BestWidth = ShortWidth;
7644    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7645      BestType = Context.IntTy;
7646      BestWidth = IntWidth;
7647    } else {
7648      BestWidth = Context.Target.getLongWidth();
7649
7650      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7651        BestType = Context.LongTy;
7652      } else {
7653        BestWidth = Context.Target.getLongLongWidth();
7654
7655        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7656          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7657        BestType = Context.LongLongTy;
7658      }
7659    }
7660    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7661  } else {
7662    // If there is no negative value, figure out the smallest type that fits
7663    // all of the enumerator values.
7664    // If it's packed, check also if it fits a char or a short.
7665    if (Packed && NumPositiveBits <= CharWidth) {
7666      BestType = Context.UnsignedCharTy;
7667      BestPromotionType = Context.IntTy;
7668      BestWidth = CharWidth;
7669    } else if (Packed && NumPositiveBits <= ShortWidth) {
7670      BestType = Context.UnsignedShortTy;
7671      BestPromotionType = Context.IntTy;
7672      BestWidth = ShortWidth;
7673    } else if (NumPositiveBits <= IntWidth) {
7674      BestType = Context.UnsignedIntTy;
7675      BestWidth = IntWidth;
7676      BestPromotionType
7677        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7678                           ? Context.UnsignedIntTy : Context.IntTy;
7679    } else if (NumPositiveBits <=
7680               (BestWidth = Context.Target.getLongWidth())) {
7681      BestType = Context.UnsignedLongTy;
7682      BestPromotionType
7683        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7684                           ? Context.UnsignedLongTy : Context.LongTy;
7685    } else {
7686      BestWidth = Context.Target.getLongLongWidth();
7687      assert(NumPositiveBits <= BestWidth &&
7688             "How could an initializer get larger than ULL?");
7689      BestType = Context.UnsignedLongLongTy;
7690      BestPromotionType
7691        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7692                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7693    }
7694  }
7695
7696  // Loop over all of the enumerator constants, changing their types to match
7697  // the type of the enum if needed.
7698  for (unsigned i = 0; i != NumElements; ++i) {
7699    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7700    if (!ECD) continue;  // Already issued a diagnostic.
7701
7702    // Standard C says the enumerators have int type, but we allow, as an
7703    // extension, the enumerators to be larger than int size.  If each
7704    // enumerator value fits in an int, type it as an int, otherwise type it the
7705    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7706    // that X has type 'int', not 'unsigned'.
7707
7708    // Determine whether the value fits into an int.
7709    llvm::APSInt InitVal = ECD->getInitVal();
7710
7711    // If it fits into an integer type, force it.  Otherwise force it to match
7712    // the enum decl type.
7713    QualType NewTy;
7714    unsigned NewWidth;
7715    bool NewSign;
7716    if (!getLangOptions().CPlusPlus &&
7717        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7718      NewTy = Context.IntTy;
7719      NewWidth = IntWidth;
7720      NewSign = true;
7721    } else if (ECD->getType() == BestType) {
7722      // Already the right type!
7723      if (getLangOptions().CPlusPlus)
7724        // C++ [dcl.enum]p4: Following the closing brace of an
7725        // enum-specifier, each enumerator has the type of its
7726        // enumeration.
7727        ECD->setType(EnumType);
7728      continue;
7729    } else {
7730      NewTy = BestType;
7731      NewWidth = BestWidth;
7732      NewSign = BestType->isSignedIntegerType();
7733    }
7734
7735    // Adjust the APSInt value.
7736    InitVal = InitVal.extOrTrunc(NewWidth);
7737    InitVal.setIsSigned(NewSign);
7738    ECD->setInitVal(InitVal);
7739
7740    // Adjust the Expr initializer and type.
7741    if (ECD->getInitExpr())
7742      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7743                                                CK_IntegralCast,
7744                                                ECD->getInitExpr(),
7745                                                /*base paths*/ 0,
7746                                                VK_RValue));
7747    if (getLangOptions().CPlusPlus)
7748      // C++ [dcl.enum]p4: Following the closing brace of an
7749      // enum-specifier, each enumerator has the type of its
7750      // enumeration.
7751      ECD->setType(EnumType);
7752    else
7753      ECD->setType(NewTy);
7754  }
7755
7756  Enum->completeDefinition(BestType, BestPromotionType,
7757                           NumPositiveBits, NumNegativeBits);
7758}
7759
7760Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7761  StringLiteral *AsmString = cast<StringLiteral>(expr);
7762
7763  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7764                                                   Loc, AsmString);
7765  CurContext->addDecl(New);
7766  return New;
7767}
7768
7769void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7770                             SourceLocation PragmaLoc,
7771                             SourceLocation NameLoc) {
7772  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7773
7774  if (PrevDecl) {
7775    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7776  } else {
7777    (void)WeakUndeclaredIdentifiers.insert(
7778      std::pair<IdentifierInfo*,WeakInfo>
7779        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7780  }
7781}
7782
7783void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7784                                IdentifierInfo* AliasName,
7785                                SourceLocation PragmaLoc,
7786                                SourceLocation NameLoc,
7787                                SourceLocation AliasNameLoc) {
7788  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7789                                    LookupOrdinaryName);
7790  WeakInfo W = WeakInfo(Name, NameLoc);
7791
7792  if (PrevDecl) {
7793    if (!PrevDecl->hasAttr<AliasAttr>())
7794      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7795        DeclApplyPragmaWeak(TUScope, ND, W);
7796  } else {
7797    (void)WeakUndeclaredIdentifiers.insert(
7798      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7799  }
7800}
7801