SemaDecl.cpp revision 6e8247556807ecaaac470852222762db998a05b2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous:
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  assert(IIDecl && "Didn't find decl");
141
142  QualType T;
143  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144    DiagnoseUseOfDecl(IIDecl, NameLoc);
145
146    // C++ [temp.local]p2:
147    //   Within the scope of a class template specialization or
148    //   partial specialization, when the injected-class-name is
149    //   not followed by a <, it is equivalent to the
150    //   injected-class-name followed by the template-argument s
151    //   of the class template specialization or partial
152    //   specialization enclosed in <>.
153    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
154      if (RD->isInjectedClassName())
155        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
156          T = Template->getInjectedClassNameType(Context);
157
158    if (T.isNull())
159      T = Context.getTypeDeclType(TD);
160
161    if (SS)
162      T = getQualifiedNameType(*SS, T);
163
164  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165    DiagnoseUseOfDecl(IIDecl, NameLoc);
166    T = Context.getObjCInterfaceType(IDecl);
167  } else
168    return 0;
169
170  return T.getAsOpaquePtr();
171}
172
173/// isTagName() - This method is called *for error recovery purposes only*
174/// to determine if the specified name is a valid tag name ("struct foo").  If
175/// so, this returns the TST for the tag corresponding to it (TST_enum,
176/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
177/// where the user forgot to specify the tag.
178DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
179  // Do a tag name lookup in this scope.
180  LookupResult R;
181  LookupName(R, S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
196                                   SourceLocation IILoc,
197                                   Scope *S,
198                                   const CXXScopeSpec *SS,
199                                   TypeTy *&SuggestedType) {
200  // We don't have anything to suggest (yet).
201  SuggestedType = 0;
202
203  // FIXME: Should we move the logic that tries to recover from a missing tag
204  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
205
206  if (!SS)
207    Diag(IILoc, diag::err_unknown_typename) << &II;
208  else if (DeclContext *DC = computeDeclContext(*SS, false))
209    Diag(IILoc, diag::err_typename_nested_not_found)
210      << &II << DC << SS->getRange();
211  else if (isDependentScopeSpecifier(*SS)) {
212    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
213      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
214      << SourceRange(SS->getRange().getBegin(), IILoc)
215      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
216                                               "typename ");
217    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
218  } else {
219    assert(SS && SS->isInvalid() &&
220           "Invalid scope specifier has already been diagnosed");
221  }
222
223  return true;
224}
225
226// Determines the context to return to after temporarily entering a
227// context.  This depends in an unnecessarily complicated way on the
228// exact ordering of callbacks from the parser.
229DeclContext *Sema::getContainingDC(DeclContext *DC) {
230
231  // Functions defined inline within classes aren't parsed until we've
232  // finished parsing the top-level class, so the top-level class is
233  // the context we'll need to return to.
234  if (isa<FunctionDecl>(DC)) {
235    DC = DC->getLexicalParent();
236
237    // A function not defined within a class will always return to its
238    // lexical context.
239    if (!isa<CXXRecordDecl>(DC))
240      return DC;
241
242    // A C++ inline method/friend is parsed *after* the topmost class
243    // it was declared in is fully parsed ("complete");  the topmost
244    // class is the context we need to return to.
245    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
246      DC = RD;
247
248    // Return the declaration context of the topmost class the inline method is
249    // declared in.
250    return DC;
251  }
252
253  if (isa<ObjCMethodDecl>(DC))
254    return Context.getTranslationUnitDecl();
255
256  return DC->getLexicalParent();
257}
258
259void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
260  assert(getContainingDC(DC) == CurContext &&
261      "The next DeclContext should be lexically contained in the current one.");
262  CurContext = DC;
263  S->setEntity(DC);
264}
265
266void Sema::PopDeclContext() {
267  assert(CurContext && "DeclContext imbalance!");
268
269  CurContext = getContainingDC(CurContext);
270}
271
272/// EnterDeclaratorContext - Used when we must lookup names in the context
273/// of a declarator's nested name specifier.
274void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
275  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
276  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
277  CurContext = DC;
278  assert(CurContext && "No context?");
279  S->setEntity(CurContext);
280}
281
282void Sema::ExitDeclaratorContext(Scope *S) {
283  S->setEntity(PreDeclaratorDC);
284  PreDeclaratorDC = 0;
285
286  // Reset CurContext to the nearest enclosing context.
287  while (!S->getEntity() && S->getParent())
288    S = S->getParent();
289  CurContext = static_cast<DeclContext*>(S->getEntity());
290  assert(CurContext && "No context?");
291}
292
293/// \brief Determine whether we allow overloading of the function
294/// PrevDecl with another declaration.
295///
296/// This routine determines whether overloading is possible, not
297/// whether some new function is actually an overload. It will return
298/// true in C++ (where we can always provide overloads) or, as an
299/// extension, in C when the previous function is already an
300/// overloaded function declaration or has the "overloadable"
301/// attribute.
302static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
303  if (Context.getLangOptions().CPlusPlus)
304    return true;
305
306  if (isa<OverloadedFunctionDecl>(PrevDecl))
307    return true;
308
309  return PrevDecl->getAttr<OverloadableAttr>() != 0;
310}
311
312/// Add this decl to the scope shadowed decl chains.
313void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
314  // Move up the scope chain until we find the nearest enclosing
315  // non-transparent context. The declaration will be introduced into this
316  // scope.
317  while (S->getEntity() &&
318         ((DeclContext *)S->getEntity())->isTransparentContext())
319    S = S->getParent();
320
321  // Add scoped declarations into their context, so that they can be
322  // found later. Declarations without a context won't be inserted
323  // into any context.
324  if (AddToContext)
325    CurContext->addDecl(D);
326
327  // Out-of-line function and variable definitions should not be pushed into
328  // scope.
329  if ((isa<FunctionTemplateDecl>(D) &&
330       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
331      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
332      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
333    return;
334
335  // If this replaces anything in the current scope,
336  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
337                               IEnd = IdResolver.end();
338  for (; I != IEnd; ++I) {
339    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
340      S->RemoveDecl(DeclPtrTy::make(*I));
341      IdResolver.RemoveDecl(*I);
342
343      // Should only need to replace one decl.
344      break;
345    }
346  }
347
348  S->AddDecl(DeclPtrTy::make(D));
349  IdResolver.AddDecl(D);
350}
351
352bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
353  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
354    // Look inside the overload set to determine if any of the declarations
355    // are in scope. (Possibly) build a new overload set containing only
356    // those declarations that are in scope.
357    OverloadedFunctionDecl *NewOvl = 0;
358    bool FoundInScope = false;
359    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
360         FEnd = Ovl->function_end();
361         F != FEnd; ++F) {
362      NamedDecl *FD = F->get();
363      if (!isDeclInScope(FD, Ctx, S)) {
364        if (!NewOvl && F != Ovl->function_begin()) {
365          NewOvl = OverloadedFunctionDecl::Create(Context,
366                                                  F->get()->getDeclContext(),
367                                                  F->get()->getDeclName());
368          D = NewOvl;
369          for (OverloadedFunctionDecl::function_iterator
370               First = Ovl->function_begin();
371               First != F; ++First)
372            NewOvl->addOverload(*First);
373        }
374      } else {
375        FoundInScope = true;
376        if (NewOvl)
377          NewOvl->addOverload(*F);
378      }
379    }
380
381    return FoundInScope;
382  }
383
384  return IdResolver.isDeclInScope(D, Ctx, Context, S);
385}
386
387void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
388  if (S->decl_empty()) return;
389  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
390         "Scope shouldn't contain decls!");
391
392  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
393       I != E; ++I) {
394    Decl *TmpD = (*I).getAs<Decl>();
395    assert(TmpD && "This decl didn't get pushed??");
396
397    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
398    NamedDecl *D = cast<NamedDecl>(TmpD);
399
400    if (!D->getDeclName()) continue;
401
402    // Diagnose unused variables in this scope.
403    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
404        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
405        D->getDeclContext()->isFunctionOrMethod())
406	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
407
408    // Remove this name from our lexical scope.
409    IdResolver.RemoveDecl(D);
410  }
411}
412
413/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
414/// return 0 if one not found.
415ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
416  // The third "scope" argument is 0 since we aren't enabling lazy built-in
417  // creation from this context.
418  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
419
420  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
421}
422
423/// getNonFieldDeclScope - Retrieves the innermost scope, starting
424/// from S, where a non-field would be declared. This routine copes
425/// with the difference between C and C++ scoping rules in structs and
426/// unions. For example, the following code is well-formed in C but
427/// ill-formed in C++:
428/// @code
429/// struct S6 {
430///   enum { BAR } e;
431/// };
432///
433/// void test_S6() {
434///   struct S6 a;
435///   a.e = BAR;
436/// }
437/// @endcode
438/// For the declaration of BAR, this routine will return a different
439/// scope. The scope S will be the scope of the unnamed enumeration
440/// within S6. In C++, this routine will return the scope associated
441/// with S6, because the enumeration's scope is a transparent
442/// context but structures can contain non-field names. In C, this
443/// routine will return the translation unit scope, since the
444/// enumeration's scope is a transparent context and structures cannot
445/// contain non-field names.
446Scope *Sema::getNonFieldDeclScope(Scope *S) {
447  while (((S->getFlags() & Scope::DeclScope) == 0) ||
448         (S->getEntity() &&
449          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
450         (S->isClassScope() && !getLangOptions().CPlusPlus))
451    S = S->getParent();
452  return S;
453}
454
455void Sema::InitBuiltinVaListType() {
456  if (!Context.getBuiltinVaListType().isNull())
457    return;
458
459  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
460  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
461  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
462  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
463}
464
465/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
466/// file scope.  lazily create a decl for it. ForRedeclaration is true
467/// if we're creating this built-in in anticipation of redeclaring the
468/// built-in.
469NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
470                                     Scope *S, bool ForRedeclaration,
471                                     SourceLocation Loc) {
472  Builtin::ID BID = (Builtin::ID)bid;
473
474  if (Context.BuiltinInfo.hasVAListUse(BID))
475    InitBuiltinVaListType();
476
477  ASTContext::GetBuiltinTypeError Error;
478  QualType R = Context.GetBuiltinType(BID, Error);
479  switch (Error) {
480  case ASTContext::GE_None:
481    // Okay
482    break;
483
484  case ASTContext::GE_Missing_stdio:
485    if (ForRedeclaration)
486      Diag(Loc, diag::err_implicit_decl_requires_stdio)
487        << Context.BuiltinInfo.GetName(BID);
488    return 0;
489
490  case ASTContext::GE_Missing_setjmp:
491    if (ForRedeclaration)
492      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
493        << Context.BuiltinInfo.GetName(BID);
494    return 0;
495  }
496
497  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
498    Diag(Loc, diag::ext_implicit_lib_function_decl)
499      << Context.BuiltinInfo.GetName(BID)
500      << R;
501    if (Context.BuiltinInfo.getHeaderName(BID) &&
502        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
503          != Diagnostic::Ignored)
504      Diag(Loc, diag::note_please_include_header)
505        << Context.BuiltinInfo.getHeaderName(BID)
506        << Context.BuiltinInfo.GetName(BID);
507  }
508
509  FunctionDecl *New = FunctionDecl::Create(Context,
510                                           Context.getTranslationUnitDecl(),
511                                           Loc, II, R, /*DInfo=*/0,
512                                           FunctionDecl::Extern, false,
513                                           /*hasPrototype=*/true);
514  New->setImplicit();
515
516  // Create Decl objects for each parameter, adding them to the
517  // FunctionDecl.
518  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
519    llvm::SmallVector<ParmVarDecl*, 16> Params;
520    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
521      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
522                                           FT->getArgType(i), /*DInfo=*/0,
523                                           VarDecl::None, 0));
524    New->setParams(Context, Params.data(), Params.size());
525  }
526
527  AddKnownFunctionAttributes(New);
528
529  // TUScope is the translation-unit scope to insert this function into.
530  // FIXME: This is hideous. We need to teach PushOnScopeChains to
531  // relate Scopes to DeclContexts, and probably eliminate CurContext
532  // entirely, but we're not there yet.
533  DeclContext *SavedContext = CurContext;
534  CurContext = Context.getTranslationUnitDecl();
535  PushOnScopeChains(New, TUScope);
536  CurContext = SavedContext;
537  return New;
538}
539
540/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
541/// same name and scope as a previous declaration 'Old'.  Figure out
542/// how to resolve this situation, merging decls or emitting
543/// diagnostics as appropriate. If there was an error, set New to be invalid.
544///
545void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
546  // If either decl is known invalid already, set the new one to be invalid and
547  // don't bother doing any merging checks.
548  if (New->isInvalidDecl() || OldD->isInvalidDecl())
549    return New->setInvalidDecl();
550
551  // Allow multiple definitions for ObjC built-in typedefs.
552  // FIXME: Verify the underlying types are equivalent!
553  if (getLangOptions().ObjC1) {
554    const IdentifierInfo *TypeID = New->getIdentifier();
555    switch (TypeID->getLength()) {
556    default: break;
557    case 2:
558      if (!TypeID->isStr("id"))
559        break;
560      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
561      // Install the built-in type for 'id', ignoring the current definition.
562      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
563      return;
564    case 5:
565      if (!TypeID->isStr("Class"))
566        break;
567      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
568      // Install the built-in type for 'Class', ignoring the current definition.
569      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
570      return;
571    case 3:
572      if (!TypeID->isStr("SEL"))
573        break;
574      Context.setObjCSelType(Context.getTypeDeclType(New));
575      return;
576    case 8:
577      if (!TypeID->isStr("Protocol"))
578        break;
579      Context.setObjCProtoType(New->getUnderlyingType());
580      return;
581    }
582    // Fall through - the typedef name was not a builtin type.
583  }
584  // Verify the old decl was also a type.
585  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
586  if (!Old) {
587    Diag(New->getLocation(), diag::err_redefinition_different_kind)
588      << New->getDeclName();
589    if (OldD->getLocation().isValid())
590      Diag(OldD->getLocation(), diag::note_previous_definition);
591    return New->setInvalidDecl();
592  }
593
594  // Determine the "old" type we'll use for checking and diagnostics.
595  QualType OldType;
596  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
597    OldType = OldTypedef->getUnderlyingType();
598  else
599    OldType = Context.getTypeDeclType(Old);
600
601  // If the typedef types are not identical, reject them in all languages and
602  // with any extensions enabled.
603
604  if (OldType != New->getUnderlyingType() &&
605      Context.getCanonicalType(OldType) !=
606      Context.getCanonicalType(New->getUnderlyingType())) {
607    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
608      << New->getUnderlyingType() << OldType;
609    if (Old->getLocation().isValid())
610      Diag(Old->getLocation(), diag::note_previous_definition);
611    return New->setInvalidDecl();
612  }
613
614  if (getLangOptions().Microsoft)
615    return;
616
617  // C++ [dcl.typedef]p2:
618  //   In a given non-class scope, a typedef specifier can be used to
619  //   redefine the name of any type declared in that scope to refer
620  //   to the type to which it already refers.
621  if (getLangOptions().CPlusPlus) {
622    if (!isa<CXXRecordDecl>(CurContext))
623      return;
624    Diag(New->getLocation(), diag::err_redefinition)
625      << New->getDeclName();
626    Diag(Old->getLocation(), diag::note_previous_definition);
627    return New->setInvalidDecl();
628  }
629
630  // If we have a redefinition of a typedef in C, emit a warning.  This warning
631  // is normally mapped to an error, but can be controlled with
632  // -Wtypedef-redefinition.  If either the original or the redefinition is
633  // in a system header, don't emit this for compatibility with GCC.
634  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
635      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
636       Context.getSourceManager().isInSystemHeader(New->getLocation())))
637    return;
638
639  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
640    << New->getDeclName();
641  Diag(Old->getLocation(), diag::note_previous_definition);
642  return;
643}
644
645/// DeclhasAttr - returns true if decl Declaration already has the target
646/// attribute.
647static bool
648DeclHasAttr(const Decl *decl, const Attr *target) {
649  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
650    if (attr->getKind() == target->getKind())
651      return true;
652
653  return false;
654}
655
656/// MergeAttributes - append attributes from the Old decl to the New one.
657static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
658  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
659    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
660      Attr *NewAttr = attr->clone(C);
661      NewAttr->setInherited(true);
662      New->addAttr(NewAttr);
663    }
664  }
665}
666
667/// Used in MergeFunctionDecl to keep track of function parameters in
668/// C.
669struct GNUCompatibleParamWarning {
670  ParmVarDecl *OldParm;
671  ParmVarDecl *NewParm;
672  QualType PromotedType;
673};
674
675/// MergeFunctionDecl - We just parsed a function 'New' from
676/// declarator D which has the same name and scope as a previous
677/// declaration 'Old'.  Figure out how to resolve this situation,
678/// merging decls or emitting diagnostics as appropriate.
679///
680/// In C++, New and Old must be declarations that are not
681/// overloaded. Use IsOverload to determine whether New and Old are
682/// overloaded, and to select the Old declaration that New should be
683/// merged with.
684///
685/// Returns true if there was an error, false otherwise.
686bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
687  assert(!isa<OverloadedFunctionDecl>(OldD) &&
688         "Cannot merge with an overloaded function declaration");
689
690  // Verify the old decl was also a function.
691  FunctionDecl *Old = 0;
692  if (FunctionTemplateDecl *OldFunctionTemplate
693        = dyn_cast<FunctionTemplateDecl>(OldD))
694    Old = OldFunctionTemplate->getTemplatedDecl();
695  else
696    Old = dyn_cast<FunctionDecl>(OldD);
697  if (!Old) {
698    Diag(New->getLocation(), diag::err_redefinition_different_kind)
699      << New->getDeclName();
700    Diag(OldD->getLocation(), diag::note_previous_definition);
701    return true;
702  }
703
704  // Determine whether the previous declaration was a definition,
705  // implicit declaration, or a declaration.
706  diag::kind PrevDiag;
707  if (Old->isThisDeclarationADefinition())
708    PrevDiag = diag::note_previous_definition;
709  else if (Old->isImplicit())
710    PrevDiag = diag::note_previous_implicit_declaration;
711  else
712    PrevDiag = diag::note_previous_declaration;
713
714  QualType OldQType = Context.getCanonicalType(Old->getType());
715  QualType NewQType = Context.getCanonicalType(New->getType());
716
717  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
718      New->getStorageClass() == FunctionDecl::Static &&
719      Old->getStorageClass() != FunctionDecl::Static) {
720    Diag(New->getLocation(), diag::err_static_non_static)
721      << New;
722    Diag(Old->getLocation(), PrevDiag);
723    return true;
724  }
725
726  if (getLangOptions().CPlusPlus) {
727    // (C++98 13.1p2):
728    //   Certain function declarations cannot be overloaded:
729    //     -- Function declarations that differ only in the return type
730    //        cannot be overloaded.
731    QualType OldReturnType
732      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
733    QualType NewReturnType
734      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
735    if (OldReturnType != NewReturnType) {
736      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
737      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
738      return true;
739    }
740
741    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
742    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
743    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
744        NewMethod->getLexicalDeclContext()->isRecord()) {
745      //    -- Member function declarations with the same name and the
746      //       same parameter types cannot be overloaded if any of them
747      //       is a static member function declaration.
748      if (OldMethod->isStatic() || NewMethod->isStatic()) {
749        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
750        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
751        return true;
752      }
753
754      // C++ [class.mem]p1:
755      //   [...] A member shall not be declared twice in the
756      //   member-specification, except that a nested class or member
757      //   class template can be declared and then later defined.
758      unsigned NewDiag;
759      if (isa<CXXConstructorDecl>(OldMethod))
760        NewDiag = diag::err_constructor_redeclared;
761      else if (isa<CXXDestructorDecl>(NewMethod))
762        NewDiag = diag::err_destructor_redeclared;
763      else if (isa<CXXConversionDecl>(NewMethod))
764        NewDiag = diag::err_conv_function_redeclared;
765      else
766        NewDiag = diag::err_member_redeclared;
767
768      Diag(New->getLocation(), NewDiag);
769      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
770    }
771
772    // (C++98 8.3.5p3):
773    //   All declarations for a function shall agree exactly in both the
774    //   return type and the parameter-type-list.
775    if (OldQType == NewQType)
776      return MergeCompatibleFunctionDecls(New, Old);
777
778    // Fall through for conflicting redeclarations and redefinitions.
779  }
780
781  // C: Function types need to be compatible, not identical. This handles
782  // duplicate function decls like "void f(int); void f(enum X);" properly.
783  if (!getLangOptions().CPlusPlus &&
784      Context.typesAreCompatible(OldQType, NewQType)) {
785    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
786    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
787    const FunctionProtoType *OldProto = 0;
788    if (isa<FunctionNoProtoType>(NewFuncType) &&
789        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
790      // The old declaration provided a function prototype, but the
791      // new declaration does not. Merge in the prototype.
792      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
793      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
794                                                 OldProto->arg_type_end());
795      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
796                                         ParamTypes.data(), ParamTypes.size(),
797                                         OldProto->isVariadic(),
798                                         OldProto->getTypeQuals());
799      New->setType(NewQType);
800      New->setHasInheritedPrototype();
801
802      // Synthesize a parameter for each argument type.
803      llvm::SmallVector<ParmVarDecl*, 16> Params;
804      for (FunctionProtoType::arg_type_iterator
805             ParamType = OldProto->arg_type_begin(),
806             ParamEnd = OldProto->arg_type_end();
807           ParamType != ParamEnd; ++ParamType) {
808        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
809                                                 SourceLocation(), 0,
810                                                 *ParamType, /*DInfo=*/0,
811                                                 VarDecl::None, 0);
812        Param->setImplicit();
813        Params.push_back(Param);
814      }
815
816      New->setParams(Context, Params.data(), Params.size());
817    }
818
819    return MergeCompatibleFunctionDecls(New, Old);
820  }
821
822  // GNU C permits a K&R definition to follow a prototype declaration
823  // if the declared types of the parameters in the K&R definition
824  // match the types in the prototype declaration, even when the
825  // promoted types of the parameters from the K&R definition differ
826  // from the types in the prototype. GCC then keeps the types from
827  // the prototype.
828  //
829  // If a variadic prototype is followed by a non-variadic K&R definition,
830  // the K&R definition becomes variadic.  This is sort of an edge case, but
831  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
832  // C99 6.9.1p8.
833  if (!getLangOptions().CPlusPlus &&
834      Old->hasPrototype() && !New->hasPrototype() &&
835      New->getType()->getAs<FunctionProtoType>() &&
836      Old->getNumParams() == New->getNumParams()) {
837    llvm::SmallVector<QualType, 16> ArgTypes;
838    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
839    const FunctionProtoType *OldProto
840      = Old->getType()->getAs<FunctionProtoType>();
841    const FunctionProtoType *NewProto
842      = New->getType()->getAs<FunctionProtoType>();
843
844    // Determine whether this is the GNU C extension.
845    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
846                                               NewProto->getResultType());
847    bool LooseCompatible = !MergedReturn.isNull();
848    for (unsigned Idx = 0, End = Old->getNumParams();
849         LooseCompatible && Idx != End; ++Idx) {
850      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
851      ParmVarDecl *NewParm = New->getParamDecl(Idx);
852      if (Context.typesAreCompatible(OldParm->getType(),
853                                     NewProto->getArgType(Idx))) {
854        ArgTypes.push_back(NewParm->getType());
855      } else if (Context.typesAreCompatible(OldParm->getType(),
856                                            NewParm->getType())) {
857        GNUCompatibleParamWarning Warn
858          = { OldParm, NewParm, NewProto->getArgType(Idx) };
859        Warnings.push_back(Warn);
860        ArgTypes.push_back(NewParm->getType());
861      } else
862        LooseCompatible = false;
863    }
864
865    if (LooseCompatible) {
866      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
867        Diag(Warnings[Warn].NewParm->getLocation(),
868             diag::ext_param_promoted_not_compatible_with_prototype)
869          << Warnings[Warn].PromotedType
870          << Warnings[Warn].OldParm->getType();
871        Diag(Warnings[Warn].OldParm->getLocation(),
872             diag::note_previous_declaration);
873      }
874
875      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
876                                           ArgTypes.size(),
877                                           OldProto->isVariadic(), 0));
878      return MergeCompatibleFunctionDecls(New, Old);
879    }
880
881    // Fall through to diagnose conflicting types.
882  }
883
884  // A function that has already been declared has been redeclared or defined
885  // with a different type- show appropriate diagnostic
886  if (unsigned BuiltinID = Old->getBuiltinID()) {
887    // The user has declared a builtin function with an incompatible
888    // signature.
889    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
890      // The function the user is redeclaring is a library-defined
891      // function like 'malloc' or 'printf'. Warn about the
892      // redeclaration, then pretend that we don't know about this
893      // library built-in.
894      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
895      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
896        << Old << Old->getType();
897      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
898      Old->setInvalidDecl();
899      return false;
900    }
901
902    PrevDiag = diag::note_previous_builtin_declaration;
903  }
904
905  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
906  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
907  return true;
908}
909
910/// \brief Completes the merge of two function declarations that are
911/// known to be compatible.
912///
913/// This routine handles the merging of attributes and other
914/// properties of function declarations form the old declaration to
915/// the new declaration, once we know that New is in fact a
916/// redeclaration of Old.
917///
918/// \returns false
919bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
920  // Merge the attributes
921  MergeAttributes(New, Old, Context);
922
923  // Merge the storage class.
924  if (Old->getStorageClass() != FunctionDecl::Extern &&
925      Old->getStorageClass() != FunctionDecl::None)
926    New->setStorageClass(Old->getStorageClass());
927
928  // Merge "pure" flag.
929  if (Old->isPure())
930    New->setPure();
931
932  // Merge the "deleted" flag.
933  if (Old->isDeleted())
934    New->setDeleted();
935
936  if (getLangOptions().CPlusPlus)
937    return MergeCXXFunctionDecl(New, Old);
938
939  return false;
940}
941
942/// MergeVarDecl - We just parsed a variable 'New' which has the same name
943/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
944/// situation, merging decls or emitting diagnostics as appropriate.
945///
946/// Tentative definition rules (C99 6.9.2p2) are checked by
947/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
948/// definitions here, since the initializer hasn't been attached.
949///
950void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
951  // If either decl is invalid, make sure the new one is marked invalid and
952  // don't do any other checking.
953  if (New->isInvalidDecl() || OldD->isInvalidDecl())
954    return New->setInvalidDecl();
955
956  // Verify the old decl was also a variable.
957  VarDecl *Old = dyn_cast<VarDecl>(OldD);
958  if (!Old) {
959    Diag(New->getLocation(), diag::err_redefinition_different_kind)
960      << New->getDeclName();
961    Diag(OldD->getLocation(), diag::note_previous_definition);
962    return New->setInvalidDecl();
963  }
964
965  MergeAttributes(New, Old, Context);
966
967  // Merge the types
968  QualType MergedT;
969  if (getLangOptions().CPlusPlus) {
970    if (Context.hasSameType(New->getType(), Old->getType()))
971      MergedT = New->getType();
972    // C++ [basic.types]p7:
973    //   [...] The declared type of an array object might be an array of
974    //   unknown size and therefore be incomplete at one point in a
975    //   translation unit and complete later on; [...]
976    else if (Old->getType()->isIncompleteArrayType() &&
977             New->getType()->isArrayType()) {
978      CanQual<ArrayType> OldArray
979        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
980      CanQual<ArrayType> NewArray
981        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
982      if (OldArray->getElementType() == NewArray->getElementType())
983        MergedT = New->getType();
984    }
985  } else {
986    MergedT = Context.mergeTypes(New->getType(), Old->getType());
987  }
988  if (MergedT.isNull()) {
989    Diag(New->getLocation(), diag::err_redefinition_different_type)
990      << New->getDeclName();
991    Diag(Old->getLocation(), diag::note_previous_definition);
992    return New->setInvalidDecl();
993  }
994  New->setType(MergedT);
995
996  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
997  if (New->getStorageClass() == VarDecl::Static &&
998      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
999    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1000    Diag(Old->getLocation(), diag::note_previous_definition);
1001    return New->setInvalidDecl();
1002  }
1003  // C99 6.2.2p4:
1004  //   For an identifier declared with the storage-class specifier
1005  //   extern in a scope in which a prior declaration of that
1006  //   identifier is visible,23) if the prior declaration specifies
1007  //   internal or external linkage, the linkage of the identifier at
1008  //   the later declaration is the same as the linkage specified at
1009  //   the prior declaration. If no prior declaration is visible, or
1010  //   if the prior declaration specifies no linkage, then the
1011  //   identifier has external linkage.
1012  if (New->hasExternalStorage() && Old->hasLinkage())
1013    /* Okay */;
1014  else if (New->getStorageClass() != VarDecl::Static &&
1015           Old->getStorageClass() == VarDecl::Static) {
1016    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1017    Diag(Old->getLocation(), diag::note_previous_definition);
1018    return New->setInvalidDecl();
1019  }
1020
1021  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1022
1023  // FIXME: The test for external storage here seems wrong? We still
1024  // need to check for mismatches.
1025  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1026      // Don't complain about out-of-line definitions of static members.
1027      !(Old->getLexicalDeclContext()->isRecord() &&
1028        !New->getLexicalDeclContext()->isRecord())) {
1029    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1030    Diag(Old->getLocation(), diag::note_previous_definition);
1031    return New->setInvalidDecl();
1032  }
1033
1034  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1035    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1038    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1039    Diag(Old->getLocation(), diag::note_previous_definition);
1040  }
1041
1042  // Keep a chain of previous declarations.
1043  New->setPreviousDeclaration(Old);
1044}
1045
1046/// CheckFallThrough - Check that we don't fall off the end of a
1047/// Statement that should return a value.
1048///
1049/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1050/// MaybeFallThrough iff we might or might not fall off the end,
1051/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1052/// return.  We assume NeverFallThrough iff we never fall off the end of the
1053/// statement but we may return.  We assume that functions not marked noreturn
1054/// will return.
1055Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1056  // FIXME: Eventually share this CFG object when we have other warnings based
1057  // of the CFG.  This can be done using AnalysisContext.
1058  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1059
1060  // FIXME: They should never return 0, fix that, delete this code.
1061  if (cfg == 0)
1062    // FIXME: This should be NeverFallThrough
1063    return NeverFallThroughOrReturn;
1064  // The CFG leaves in dead things, and we don't want to dead code paths to
1065  // confuse us, so we mark all live things first.
1066  std::queue<CFGBlock*> workq;
1067  llvm::BitVector live(cfg->getNumBlockIDs());
1068  // Prep work queue
1069  workq.push(&cfg->getEntry());
1070  // Solve
1071  while (!workq.empty()) {
1072    CFGBlock *item = workq.front();
1073    workq.pop();
1074    live.set(item->getBlockID());
1075    for (CFGBlock::succ_iterator I=item->succ_begin(),
1076           E=item->succ_end();
1077         I != E;
1078         ++I) {
1079      if ((*I) && !live[(*I)->getBlockID()]) {
1080        live.set((*I)->getBlockID());
1081        workq.push(*I);
1082      }
1083    }
1084  }
1085
1086  // Now we know what is live, we check the live precessors of the exit block
1087  // and look for fall through paths, being careful to ignore normal returns,
1088  // and exceptional paths.
1089  bool HasLiveReturn = false;
1090  bool HasFakeEdge = false;
1091  bool HasPlainEdge = false;
1092  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1093         E = cfg->getExit().pred_end();
1094       I != E;
1095       ++I) {
1096    CFGBlock& B = **I;
1097    if (!live[B.getBlockID()])
1098      continue;
1099    if (B.size() == 0) {
1100      // A labeled empty statement, or the entry block...
1101      HasPlainEdge = true;
1102      continue;
1103    }
1104    Stmt *S = B[B.size()-1];
1105    if (isa<ReturnStmt>(S)) {
1106      HasLiveReturn = true;
1107      continue;
1108    }
1109    if (isa<ObjCAtThrowStmt>(S)) {
1110      HasFakeEdge = true;
1111      continue;
1112    }
1113    if (isa<CXXThrowExpr>(S)) {
1114      HasFakeEdge = true;
1115      continue;
1116    }
1117    bool NoReturnEdge = false;
1118    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1119      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1120      if (CEE->getType().getNoReturnAttr()) {
1121        NoReturnEdge = true;
1122        HasFakeEdge = true;
1123      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1124        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1125          if (FD->hasAttr<NoReturnAttr>()) {
1126            NoReturnEdge = true;
1127            HasFakeEdge = true;
1128          }
1129        }
1130      }
1131    }
1132    // FIXME: Add noreturn message sends.
1133    if (NoReturnEdge == false)
1134      HasPlainEdge = true;
1135  }
1136  if (!HasPlainEdge) {
1137    if (HasLiveReturn)
1138      return NeverFallThrough;
1139    return NeverFallThroughOrReturn;
1140  }
1141  if (HasFakeEdge || HasLiveReturn)
1142    return MaybeFallThrough;
1143  // This says AlwaysFallThrough for calls to functions that are not marked
1144  // noreturn, that don't return.  If people would like this warning to be more
1145  // accurate, such functions should be marked as noreturn.
1146  return AlwaysFallThrough;
1147}
1148
1149/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1150/// function that should return a value.  Check that we don't fall off the end
1151/// of a noreturn function.  We assume that functions and blocks not marked
1152/// noreturn will return.
1153void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1154  // FIXME: Would be nice if we had a better way to control cascading errors,
1155  // but for now, avoid them.  The problem is that when Parse sees:
1156  //   int foo() { return a; }
1157  // The return is eaten and the Sema code sees just:
1158  //   int foo() { }
1159  // which this code would then warn about.
1160  if (getDiagnostics().hasErrorOccurred())
1161    return;
1162
1163  bool ReturnsVoid = false;
1164  bool HasNoReturn = false;
1165  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1166    // If the result type of the function is a dependent type, we don't know
1167    // whether it will be void or not, so don't
1168    if (FD->getResultType()->isDependentType())
1169      return;
1170    if (FD->getResultType()->isVoidType())
1171      ReturnsVoid = true;
1172    if (FD->hasAttr<NoReturnAttr>())
1173      HasNoReturn = true;
1174  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1175    if (MD->getResultType()->isVoidType())
1176      ReturnsVoid = true;
1177    if (MD->hasAttr<NoReturnAttr>())
1178      HasNoReturn = true;
1179  }
1180
1181  // Short circuit for compilation speed.
1182  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1183       == Diagnostic::Ignored || ReturnsVoid)
1184      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1185          == Diagnostic::Ignored || !HasNoReturn)
1186      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1187          == Diagnostic::Ignored || !ReturnsVoid))
1188    return;
1189  // FIXME: Function try block
1190  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1191    switch (CheckFallThrough(Body)) {
1192    case MaybeFallThrough:
1193      if (HasNoReturn)
1194        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1195      else if (!ReturnsVoid)
1196        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1197      break;
1198    case AlwaysFallThrough:
1199      if (HasNoReturn)
1200        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1201      else if (!ReturnsVoid)
1202        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1203      break;
1204    case NeverFallThroughOrReturn:
1205      if (ReturnsVoid && !HasNoReturn)
1206        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1207      break;
1208    case NeverFallThrough:
1209      break;
1210    }
1211  }
1212}
1213
1214/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1215/// that should return a value.  Check that we don't fall off the end of a
1216/// noreturn block.  We assume that functions and blocks not marked noreturn
1217/// will return.
1218void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1219  // FIXME: Would be nice if we had a better way to control cascading errors,
1220  // but for now, avoid them.  The problem is that when Parse sees:
1221  //   int foo() { return a; }
1222  // The return is eaten and the Sema code sees just:
1223  //   int foo() { }
1224  // which this code would then warn about.
1225  if (getDiagnostics().hasErrorOccurred())
1226    return;
1227  bool ReturnsVoid = false;
1228  bool HasNoReturn = false;
1229  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1230    if (FT->getResultType()->isVoidType())
1231      ReturnsVoid = true;
1232    if (FT->getNoReturnAttr())
1233      HasNoReturn = true;
1234  }
1235
1236  // Short circuit for compilation speed.
1237  if (ReturnsVoid
1238      && !HasNoReturn
1239      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1240          == Diagnostic::Ignored || !ReturnsVoid))
1241    return;
1242  // FIXME: Funtion try block
1243  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1244    switch (CheckFallThrough(Body)) {
1245    case MaybeFallThrough:
1246      if (HasNoReturn)
1247        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1248      else if (!ReturnsVoid)
1249        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1250      break;
1251    case AlwaysFallThrough:
1252      if (HasNoReturn)
1253        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1254      else if (!ReturnsVoid)
1255        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1256      break;
1257    case NeverFallThroughOrReturn:
1258      if (ReturnsVoid)
1259        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1260      break;
1261    case NeverFallThrough:
1262      break;
1263    }
1264  }
1265}
1266
1267/// CheckParmsForFunctionDef - Check that the parameters of the given
1268/// function are appropriate for the definition of a function. This
1269/// takes care of any checks that cannot be performed on the
1270/// declaration itself, e.g., that the types of each of the function
1271/// parameters are complete.
1272bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1273  bool HasInvalidParm = false;
1274  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1275    ParmVarDecl *Param = FD->getParamDecl(p);
1276
1277    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1278    // function declarator that is part of a function definition of
1279    // that function shall not have incomplete type.
1280    //
1281    // This is also C++ [dcl.fct]p6.
1282    if (!Param->isInvalidDecl() &&
1283        RequireCompleteType(Param->getLocation(), Param->getType(),
1284                               diag::err_typecheck_decl_incomplete_type)) {
1285      Param->setInvalidDecl();
1286      HasInvalidParm = true;
1287    }
1288
1289    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1290    // declaration of each parameter shall include an identifier.
1291    if (Param->getIdentifier() == 0 &&
1292        !Param->isImplicit() &&
1293        !getLangOptions().CPlusPlus)
1294      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1295  }
1296
1297  return HasInvalidParm;
1298}
1299
1300/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1301/// no declarator (e.g. "struct foo;") is parsed.
1302Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1303  // FIXME: Error on auto/register at file scope
1304  // FIXME: Error on inline/virtual/explicit
1305  // FIXME: Error on invalid restrict
1306  // FIXME: Warn on useless __thread
1307  // FIXME: Warn on useless const/volatile
1308  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1309  // FIXME: Warn on useless attributes
1310  Decl *TagD = 0;
1311  TagDecl *Tag = 0;
1312  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1313      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1314      DS.getTypeSpecType() == DeclSpec::TST_union ||
1315      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1316    TagD = static_cast<Decl *>(DS.getTypeRep());
1317
1318    if (!TagD) // We probably had an error
1319      return DeclPtrTy();
1320
1321    // Note that the above type specs guarantee that the
1322    // type rep is a Decl, whereas in many of the others
1323    // it's a Type.
1324    Tag = dyn_cast<TagDecl>(TagD);
1325  }
1326
1327  if (DS.isFriendSpecified()) {
1328    // If we're dealing with a class template decl, assume that the
1329    // template routines are handling it.
1330    if (TagD && isa<ClassTemplateDecl>(TagD))
1331      return DeclPtrTy();
1332    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1333  }
1334
1335  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1336    // If there are attributes in the DeclSpec, apply them to the record.
1337    if (const AttributeList *AL = DS.getAttributes())
1338      ProcessDeclAttributeList(S, Record, AL);
1339
1340    if (!Record->getDeclName() && Record->isDefinition() &&
1341        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1342      if (getLangOptions().CPlusPlus ||
1343          Record->getDeclContext()->isRecord())
1344        return BuildAnonymousStructOrUnion(S, DS, Record);
1345
1346      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1347        << DS.getSourceRange();
1348    }
1349
1350    // Microsoft allows unnamed struct/union fields. Don't complain
1351    // about them.
1352    // FIXME: Should we support Microsoft's extensions in this area?
1353    if (Record->getDeclName() && getLangOptions().Microsoft)
1354      return DeclPtrTy::make(Tag);
1355  }
1356
1357  if (!DS.isMissingDeclaratorOk() &&
1358      DS.getTypeSpecType() != DeclSpec::TST_error) {
1359    // Warn about typedefs of enums without names, since this is an
1360    // extension in both Microsoft an GNU.
1361    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1362        Tag && isa<EnumDecl>(Tag)) {
1363      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1364        << DS.getSourceRange();
1365      return DeclPtrTy::make(Tag);
1366    }
1367
1368    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1369      << DS.getSourceRange();
1370    return DeclPtrTy();
1371  }
1372
1373  return DeclPtrTy::make(Tag);
1374}
1375
1376/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1377/// anonymous struct or union AnonRecord into the owning context Owner
1378/// and scope S. This routine will be invoked just after we realize
1379/// that an unnamed union or struct is actually an anonymous union or
1380/// struct, e.g.,
1381///
1382/// @code
1383/// union {
1384///   int i;
1385///   float f;
1386/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1387///    // f into the surrounding scope.x
1388/// @endcode
1389///
1390/// This routine is recursive, injecting the names of nested anonymous
1391/// structs/unions into the owning context and scope as well.
1392bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1393                                               RecordDecl *AnonRecord) {
1394  bool Invalid = false;
1395  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1396                               FEnd = AnonRecord->field_end();
1397       F != FEnd; ++F) {
1398    if ((*F)->getDeclName()) {
1399      LookupResult R;
1400      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1401                          LookupOrdinaryName, true);
1402      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1403      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1404        // C++ [class.union]p2:
1405        //   The names of the members of an anonymous union shall be
1406        //   distinct from the names of any other entity in the
1407        //   scope in which the anonymous union is declared.
1408        unsigned diagKind
1409          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1410                                 : diag::err_anonymous_struct_member_redecl;
1411        Diag((*F)->getLocation(), diagKind)
1412          << (*F)->getDeclName();
1413        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1414        Invalid = true;
1415      } else {
1416        // C++ [class.union]p2:
1417        //   For the purpose of name lookup, after the anonymous union
1418        //   definition, the members of the anonymous union are
1419        //   considered to have been defined in the scope in which the
1420        //   anonymous union is declared.
1421        Owner->makeDeclVisibleInContext(*F);
1422        S->AddDecl(DeclPtrTy::make(*F));
1423        IdResolver.AddDecl(*F);
1424      }
1425    } else if (const RecordType *InnerRecordType
1426                 = (*F)->getType()->getAs<RecordType>()) {
1427      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1428      if (InnerRecord->isAnonymousStructOrUnion())
1429        Invalid = Invalid ||
1430          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1431    }
1432  }
1433
1434  return Invalid;
1435}
1436
1437/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1438/// anonymous structure or union. Anonymous unions are a C++ feature
1439/// (C++ [class.union]) and a GNU C extension; anonymous structures
1440/// are a GNU C and GNU C++ extension.
1441Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1442                                                  RecordDecl *Record) {
1443  DeclContext *Owner = Record->getDeclContext();
1444
1445  // Diagnose whether this anonymous struct/union is an extension.
1446  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1447    Diag(Record->getLocation(), diag::ext_anonymous_union);
1448  else if (!Record->isUnion())
1449    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1450
1451  // C and C++ require different kinds of checks for anonymous
1452  // structs/unions.
1453  bool Invalid = false;
1454  if (getLangOptions().CPlusPlus) {
1455    const char* PrevSpec = 0;
1456    unsigned DiagID;
1457    // C++ [class.union]p3:
1458    //   Anonymous unions declared in a named namespace or in the
1459    //   global namespace shall be declared static.
1460    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1461        (isa<TranslationUnitDecl>(Owner) ||
1462         (isa<NamespaceDecl>(Owner) &&
1463          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1464      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1465      Invalid = true;
1466
1467      // Recover by adding 'static'.
1468      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1469                             PrevSpec, DiagID);
1470    }
1471    // C++ [class.union]p3:
1472    //   A storage class is not allowed in a declaration of an
1473    //   anonymous union in a class scope.
1474    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1475             isa<RecordDecl>(Owner)) {
1476      Diag(DS.getStorageClassSpecLoc(),
1477           diag::err_anonymous_union_with_storage_spec);
1478      Invalid = true;
1479
1480      // Recover by removing the storage specifier.
1481      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1482                             PrevSpec, DiagID);
1483    }
1484
1485    // C++ [class.union]p2:
1486    //   The member-specification of an anonymous union shall only
1487    //   define non-static data members. [Note: nested types and
1488    //   functions cannot be declared within an anonymous union. ]
1489    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1490                                 MemEnd = Record->decls_end();
1491         Mem != MemEnd; ++Mem) {
1492      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1493        // C++ [class.union]p3:
1494        //   An anonymous union shall not have private or protected
1495        //   members (clause 11).
1496        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1497          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1498            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1499          Invalid = true;
1500        }
1501      } else if ((*Mem)->isImplicit()) {
1502        // Any implicit members are fine.
1503      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1504        // This is a type that showed up in an
1505        // elaborated-type-specifier inside the anonymous struct or
1506        // union, but which actually declares a type outside of the
1507        // anonymous struct or union. It's okay.
1508      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1509        if (!MemRecord->isAnonymousStructOrUnion() &&
1510            MemRecord->getDeclName()) {
1511          // This is a nested type declaration.
1512          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1513            << (int)Record->isUnion();
1514          Invalid = true;
1515        }
1516      } else {
1517        // We have something that isn't a non-static data
1518        // member. Complain about it.
1519        unsigned DK = diag::err_anonymous_record_bad_member;
1520        if (isa<TypeDecl>(*Mem))
1521          DK = diag::err_anonymous_record_with_type;
1522        else if (isa<FunctionDecl>(*Mem))
1523          DK = diag::err_anonymous_record_with_function;
1524        else if (isa<VarDecl>(*Mem))
1525          DK = diag::err_anonymous_record_with_static;
1526        Diag((*Mem)->getLocation(), DK)
1527            << (int)Record->isUnion();
1528          Invalid = true;
1529      }
1530    }
1531  }
1532
1533  if (!Record->isUnion() && !Owner->isRecord()) {
1534    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1535      << (int)getLangOptions().CPlusPlus;
1536    Invalid = true;
1537  }
1538
1539  // Mock up a declarator.
1540  Declarator Dc(DS, Declarator::TypeNameContext);
1541  DeclaratorInfo *DInfo = 0;
1542  GetTypeForDeclarator(Dc, S, &DInfo);
1543  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1544
1545  // Create a declaration for this anonymous struct/union.
1546  NamedDecl *Anon = 0;
1547  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1548    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1549                             /*IdentifierInfo=*/0,
1550                             Context.getTypeDeclType(Record),
1551                             DInfo,
1552                             /*BitWidth=*/0, /*Mutable=*/false);
1553    Anon->setAccess(AS_public);
1554    if (getLangOptions().CPlusPlus)
1555      FieldCollector->Add(cast<FieldDecl>(Anon));
1556  } else {
1557    VarDecl::StorageClass SC;
1558    switch (DS.getStorageClassSpec()) {
1559    default: assert(0 && "Unknown storage class!");
1560    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1561    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1562    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1563    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1564    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1565    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1566    case DeclSpec::SCS_mutable:
1567      // mutable can only appear on non-static class members, so it's always
1568      // an error here
1569      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1570      Invalid = true;
1571      SC = VarDecl::None;
1572      break;
1573    }
1574
1575    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1576                           /*IdentifierInfo=*/0,
1577                           Context.getTypeDeclType(Record),
1578                           DInfo,
1579                           SC);
1580  }
1581  Anon->setImplicit();
1582
1583  // Add the anonymous struct/union object to the current
1584  // context. We'll be referencing this object when we refer to one of
1585  // its members.
1586  Owner->addDecl(Anon);
1587
1588  // Inject the members of the anonymous struct/union into the owning
1589  // context and into the identifier resolver chain for name lookup
1590  // purposes.
1591  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1592    Invalid = true;
1593
1594  // Mark this as an anonymous struct/union type. Note that we do not
1595  // do this until after we have already checked and injected the
1596  // members of this anonymous struct/union type, because otherwise
1597  // the members could be injected twice: once by DeclContext when it
1598  // builds its lookup table, and once by
1599  // InjectAnonymousStructOrUnionMembers.
1600  Record->setAnonymousStructOrUnion(true);
1601
1602  if (Invalid)
1603    Anon->setInvalidDecl();
1604
1605  return DeclPtrTy::make(Anon);
1606}
1607
1608
1609/// GetNameForDeclarator - Determine the full declaration name for the
1610/// given Declarator.
1611DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1612  return GetNameFromUnqualifiedId(D.getName());
1613}
1614
1615/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1616DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1617  switch (Name.getKind()) {
1618    case UnqualifiedId::IK_Identifier:
1619      return DeclarationName(Name.Identifier);
1620
1621    case UnqualifiedId::IK_OperatorFunctionId:
1622      return Context.DeclarationNames.getCXXOperatorName(
1623                                                         Name.OperatorFunctionId.Operator);
1624
1625    case UnqualifiedId::IK_ConversionFunctionId: {
1626      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1627      if (Ty.isNull())
1628        return DeclarationName();
1629
1630      return Context.DeclarationNames.getCXXConversionFunctionName(
1631                                                                   Context.getCanonicalType(Ty));
1632    }
1633
1634    case UnqualifiedId::IK_ConstructorName: {
1635      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1636      if (Ty.isNull())
1637        return DeclarationName();
1638
1639      return Context.DeclarationNames.getCXXConstructorName(
1640                                                            Context.getCanonicalType(Ty));
1641    }
1642
1643    case UnqualifiedId::IK_DestructorName: {
1644      QualType Ty = GetTypeFromParser(Name.DestructorName);
1645      if (Ty.isNull())
1646        return DeclarationName();
1647
1648      return Context.DeclarationNames.getCXXDestructorName(
1649                                                           Context.getCanonicalType(Ty));
1650    }
1651
1652    case UnqualifiedId::IK_TemplateId: {
1653      TemplateName TName
1654      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1655      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1656        return Template->getDeclName();
1657      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1658        return Ovl->getDeclName();
1659
1660      return DeclarationName();
1661    }
1662  }
1663
1664  assert(false && "Unknown name kind");
1665  return DeclarationName();
1666}
1667
1668/// isNearlyMatchingFunction - Determine whether the C++ functions
1669/// Declaration and Definition are "nearly" matching. This heuristic
1670/// is used to improve diagnostics in the case where an out-of-line
1671/// function definition doesn't match any declaration within
1672/// the class or namespace.
1673static bool isNearlyMatchingFunction(ASTContext &Context,
1674                                     FunctionDecl *Declaration,
1675                                     FunctionDecl *Definition) {
1676  if (Declaration->param_size() != Definition->param_size())
1677    return false;
1678  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1679    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1680    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1681
1682    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1683    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1684    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1685      return false;
1686  }
1687
1688  return true;
1689}
1690
1691Sema::DeclPtrTy
1692Sema::HandleDeclarator(Scope *S, Declarator &D,
1693                       MultiTemplateParamsArg TemplateParamLists,
1694                       bool IsFunctionDefinition) {
1695  DeclarationName Name = GetNameForDeclarator(D);
1696
1697  // All of these full declarators require an identifier.  If it doesn't have
1698  // one, the ParsedFreeStandingDeclSpec action should be used.
1699  if (!Name) {
1700    if (!D.isInvalidType())  // Reject this if we think it is valid.
1701      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1702           diag::err_declarator_need_ident)
1703        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1704    return DeclPtrTy();
1705  }
1706
1707  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1708  // we find one that is.
1709  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1710         (S->getFlags() & Scope::TemplateParamScope) != 0)
1711    S = S->getParent();
1712
1713  // If this is an out-of-line definition of a member of a class template
1714  // or class template partial specialization, we may need to rebuild the
1715  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1716  // for more information.
1717  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1718  // handle expressions properly.
1719  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1720  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1721      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1722      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1723       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1724       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1725       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1726    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1727      // FIXME: Preserve type source info.
1728      QualType T = GetTypeFromParser(DS.getTypeRep());
1729      EnterDeclaratorContext(S, DC);
1730      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1731      ExitDeclaratorContext(S);
1732      if (T.isNull())
1733        return DeclPtrTy();
1734      DS.UpdateTypeRep(T.getAsOpaquePtr());
1735    }
1736  }
1737
1738  DeclContext *DC;
1739  NamedDecl *PrevDecl;
1740  NamedDecl *New;
1741
1742  DeclaratorInfo *DInfo = 0;
1743  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1744
1745  // See if this is a redefinition of a variable in the same scope.
1746  if (D.getCXXScopeSpec().isInvalid()) {
1747    DC = CurContext;
1748    PrevDecl = 0;
1749    D.setInvalidType();
1750  } else if (!D.getCXXScopeSpec().isSet()) {
1751    LookupNameKind NameKind = LookupOrdinaryName;
1752
1753    // If the declaration we're planning to build will be a function
1754    // or object with linkage, then look for another declaration with
1755    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1756    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1757      /* Do nothing*/;
1758    else if (R->isFunctionType()) {
1759      if (CurContext->isFunctionOrMethod() ||
1760          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1761        NameKind = LookupRedeclarationWithLinkage;
1762    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1763      NameKind = LookupRedeclarationWithLinkage;
1764    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1765             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1766      NameKind = LookupRedeclarationWithLinkage;
1767
1768    DC = CurContext;
1769    LookupResult R;
1770    LookupName(R, S, Name, NameKind, true,
1771               NameKind == LookupRedeclarationWithLinkage,
1772               D.getIdentifierLoc());
1773    PrevDecl = R.getAsSingleDecl(Context);
1774  } else { // Something like "int foo::x;"
1775    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1776
1777    if (!DC) {
1778      // If we could not compute the declaration context, it's because the
1779      // declaration context is dependent but does not refer to a class,
1780      // class template, or class template partial specialization. Complain
1781      // and return early, to avoid the coming semantic disaster.
1782      Diag(D.getIdentifierLoc(),
1783           diag::err_template_qualified_declarator_no_match)
1784        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1785        << D.getCXXScopeSpec().getRange();
1786      return DeclPtrTy();
1787    }
1788
1789    if (!DC->isDependentContext() &&
1790        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1791      return DeclPtrTy();
1792
1793    LookupResult Res;
1794    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1795    PrevDecl = Res.getAsSingleDecl(Context);
1796
1797    // C++ 7.3.1.2p2:
1798    // Members (including explicit specializations of templates) of a named
1799    // namespace can also be defined outside that namespace by explicit
1800    // qualification of the name being defined, provided that the entity being
1801    // defined was already declared in the namespace and the definition appears
1802    // after the point of declaration in a namespace that encloses the
1803    // declarations namespace.
1804    //
1805    // Note that we only check the context at this point. We don't yet
1806    // have enough information to make sure that PrevDecl is actually
1807    // the declaration we want to match. For example, given:
1808    //
1809    //   class X {
1810    //     void f();
1811    //     void f(float);
1812    //   };
1813    //
1814    //   void X::f(int) { } // ill-formed
1815    //
1816    // In this case, PrevDecl will point to the overload set
1817    // containing the two f's declared in X, but neither of them
1818    // matches.
1819
1820    // First check whether we named the global scope.
1821    if (isa<TranslationUnitDecl>(DC)) {
1822      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1823        << Name << D.getCXXScopeSpec().getRange();
1824    } else if (!CurContext->Encloses(DC)) {
1825      // The qualifying scope doesn't enclose the original declaration.
1826      // Emit diagnostic based on current scope.
1827      SourceLocation L = D.getIdentifierLoc();
1828      SourceRange R = D.getCXXScopeSpec().getRange();
1829      if (isa<FunctionDecl>(CurContext))
1830        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1831      else
1832        Diag(L, diag::err_invalid_declarator_scope)
1833          << Name << cast<NamedDecl>(DC) << R;
1834      D.setInvalidType();
1835    }
1836  }
1837
1838  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1839    // Maybe we will complain about the shadowed template parameter.
1840    if (!D.isInvalidType())
1841      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1842        D.setInvalidType();
1843
1844    // Just pretend that we didn't see the previous declaration.
1845    PrevDecl = 0;
1846  }
1847
1848  // In C++, the previous declaration we find might be a tag type
1849  // (class or enum). In this case, the new declaration will hide the
1850  // tag type. Note that this does does not apply if we're declaring a
1851  // typedef (C++ [dcl.typedef]p4).
1852  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1853      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1854    PrevDecl = 0;
1855
1856  bool Redeclaration = false;
1857  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1858    if (TemplateParamLists.size()) {
1859      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1860      return DeclPtrTy();
1861    }
1862
1863    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1864  } else if (R->isFunctionType()) {
1865    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1866                                  move(TemplateParamLists),
1867                                  IsFunctionDefinition, Redeclaration);
1868  } else {
1869    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1870                                  move(TemplateParamLists),
1871                                  Redeclaration);
1872  }
1873
1874  if (New == 0)
1875    return DeclPtrTy();
1876
1877  // If this has an identifier and is not an invalid redeclaration or
1878  // function template specialization, add it to the scope stack.
1879  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1880      !(isa<FunctionDecl>(New) &&
1881        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1882    PushOnScopeChains(New, S);
1883
1884  return DeclPtrTy::make(New);
1885}
1886
1887/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1888/// types into constant array types in certain situations which would otherwise
1889/// be errors (for GCC compatibility).
1890static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1891                                                    ASTContext &Context,
1892                                                    bool &SizeIsNegative) {
1893  // This method tries to turn a variable array into a constant
1894  // array even when the size isn't an ICE.  This is necessary
1895  // for compatibility with code that depends on gcc's buggy
1896  // constant expression folding, like struct {char x[(int)(char*)2];}
1897  SizeIsNegative = false;
1898
1899  QualifierCollector Qs;
1900  const Type *Ty = Qs.strip(T);
1901
1902  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1903    QualType Pointee = PTy->getPointeeType();
1904    QualType FixedType =
1905        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1906    if (FixedType.isNull()) return FixedType;
1907    FixedType = Context.getPointerType(FixedType);
1908    return Qs.apply(FixedType);
1909  }
1910
1911  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1912  if (!VLATy)
1913    return QualType();
1914  // FIXME: We should probably handle this case
1915  if (VLATy->getElementType()->isVariablyModifiedType())
1916    return QualType();
1917
1918  Expr::EvalResult EvalResult;
1919  if (!VLATy->getSizeExpr() ||
1920      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1921      !EvalResult.Val.isInt())
1922    return QualType();
1923
1924  llvm::APSInt &Res = EvalResult.Val.getInt();
1925  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1926    // TODO: preserve the size expression in declarator info
1927    return Context.getConstantArrayType(VLATy->getElementType(),
1928                                        Res, ArrayType::Normal, 0);
1929  }
1930
1931  SizeIsNegative = true;
1932  return QualType();
1933}
1934
1935/// \brief Register the given locally-scoped external C declaration so
1936/// that it can be found later for redeclarations
1937void
1938Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1939                                       Scope *S) {
1940  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1941         "Decl is not a locally-scoped decl!");
1942  // Note that we have a locally-scoped external with this name.
1943  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1944
1945  if (!PrevDecl)
1946    return;
1947
1948  // If there was a previous declaration of this variable, it may be
1949  // in our identifier chain. Update the identifier chain with the new
1950  // declaration.
1951  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1952    // The previous declaration was found on the identifer resolver
1953    // chain, so remove it from its scope.
1954    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1955      S = S->getParent();
1956
1957    if (S)
1958      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1959  }
1960}
1961
1962/// \brief Diagnose function specifiers on a declaration of an identifier that
1963/// does not identify a function.
1964void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1965  // FIXME: We should probably indicate the identifier in question to avoid
1966  // confusion for constructs like "inline int a(), b;"
1967  if (D.getDeclSpec().isInlineSpecified())
1968    Diag(D.getDeclSpec().getInlineSpecLoc(),
1969         diag::err_inline_non_function);
1970
1971  if (D.getDeclSpec().isVirtualSpecified())
1972    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1973         diag::err_virtual_non_function);
1974
1975  if (D.getDeclSpec().isExplicitSpecified())
1976    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1977         diag::err_explicit_non_function);
1978}
1979
1980NamedDecl*
1981Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1982                             QualType R,  DeclaratorInfo *DInfo,
1983                             NamedDecl* PrevDecl, bool &Redeclaration) {
1984  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1985  if (D.getCXXScopeSpec().isSet()) {
1986    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1987      << D.getCXXScopeSpec().getRange();
1988    D.setInvalidType();
1989    // Pretend we didn't see the scope specifier.
1990    DC = 0;
1991  }
1992
1993  if (getLangOptions().CPlusPlus) {
1994    // Check that there are no default arguments (C++ only).
1995    CheckExtraCXXDefaultArguments(D);
1996  }
1997
1998  DiagnoseFunctionSpecifiers(D);
1999
2000  if (D.getDeclSpec().isThreadSpecified())
2001    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2002
2003  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2004  if (!NewTD) return 0;
2005
2006  // Handle attributes prior to checking for duplicates in MergeVarDecl
2007  ProcessDeclAttributes(S, NewTD, D);
2008  // Merge the decl with the existing one if appropriate. If the decl is
2009  // in an outer scope, it isn't the same thing.
2010  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2011    Redeclaration = true;
2012    MergeTypeDefDecl(NewTD, PrevDecl);
2013  }
2014
2015  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2016  // then it shall have block scope.
2017  QualType T = NewTD->getUnderlyingType();
2018  if (T->isVariablyModifiedType()) {
2019    CurFunctionNeedsScopeChecking = true;
2020
2021    if (S->getFnParent() == 0) {
2022      bool SizeIsNegative;
2023      QualType FixedTy =
2024          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2025      if (!FixedTy.isNull()) {
2026        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2027        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2028      } else {
2029        if (SizeIsNegative)
2030          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2031        else if (T->isVariableArrayType())
2032          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2033        else
2034          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2035        NewTD->setInvalidDecl();
2036      }
2037    }
2038  }
2039
2040  // If this is the C FILE type, notify the AST context.
2041  if (IdentifierInfo *II = NewTD->getIdentifier())
2042    if (!NewTD->isInvalidDecl() &&
2043        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2044      if (II->isStr("FILE"))
2045        Context.setFILEDecl(NewTD);
2046      else if (II->isStr("jmp_buf"))
2047        Context.setjmp_bufDecl(NewTD);
2048      else if (II->isStr("sigjmp_buf"))
2049        Context.setsigjmp_bufDecl(NewTD);
2050    }
2051
2052  return NewTD;
2053}
2054
2055/// \brief Determines whether the given declaration is an out-of-scope
2056/// previous declaration.
2057///
2058/// This routine should be invoked when name lookup has found a
2059/// previous declaration (PrevDecl) that is not in the scope where a
2060/// new declaration by the same name is being introduced. If the new
2061/// declaration occurs in a local scope, previous declarations with
2062/// linkage may still be considered previous declarations (C99
2063/// 6.2.2p4-5, C++ [basic.link]p6).
2064///
2065/// \param PrevDecl the previous declaration found by name
2066/// lookup
2067///
2068/// \param DC the context in which the new declaration is being
2069/// declared.
2070///
2071/// \returns true if PrevDecl is an out-of-scope previous declaration
2072/// for a new delcaration with the same name.
2073static bool
2074isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2075                                ASTContext &Context) {
2076  if (!PrevDecl)
2077    return 0;
2078
2079  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2080  // case we need to check each of the overloaded functions.
2081  if (!PrevDecl->hasLinkage())
2082    return false;
2083
2084  if (Context.getLangOptions().CPlusPlus) {
2085    // C++ [basic.link]p6:
2086    //   If there is a visible declaration of an entity with linkage
2087    //   having the same name and type, ignoring entities declared
2088    //   outside the innermost enclosing namespace scope, the block
2089    //   scope declaration declares that same entity and receives the
2090    //   linkage of the previous declaration.
2091    DeclContext *OuterContext = DC->getLookupContext();
2092    if (!OuterContext->isFunctionOrMethod())
2093      // This rule only applies to block-scope declarations.
2094      return false;
2095    else {
2096      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2097      if (PrevOuterContext->isRecord())
2098        // We found a member function: ignore it.
2099        return false;
2100      else {
2101        // Find the innermost enclosing namespace for the new and
2102        // previous declarations.
2103        while (!OuterContext->isFileContext())
2104          OuterContext = OuterContext->getParent();
2105        while (!PrevOuterContext->isFileContext())
2106          PrevOuterContext = PrevOuterContext->getParent();
2107
2108        // The previous declaration is in a different namespace, so it
2109        // isn't the same function.
2110        if (OuterContext->getPrimaryContext() !=
2111            PrevOuterContext->getPrimaryContext())
2112          return false;
2113      }
2114    }
2115  }
2116
2117  return true;
2118}
2119
2120NamedDecl*
2121Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2122                              QualType R, DeclaratorInfo *DInfo,
2123                              NamedDecl* PrevDecl,
2124                              MultiTemplateParamsArg TemplateParamLists,
2125                              bool &Redeclaration) {
2126  DeclarationName Name = GetNameForDeclarator(D);
2127
2128  // Check that there are no default arguments (C++ only).
2129  if (getLangOptions().CPlusPlus)
2130    CheckExtraCXXDefaultArguments(D);
2131
2132  VarDecl *NewVD;
2133  VarDecl::StorageClass SC;
2134  switch (D.getDeclSpec().getStorageClassSpec()) {
2135  default: assert(0 && "Unknown storage class!");
2136  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2137  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2138  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2139  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2140  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2141  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2142  case DeclSpec::SCS_mutable:
2143    // mutable can only appear on non-static class members, so it's always
2144    // an error here
2145    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2146    D.setInvalidType();
2147    SC = VarDecl::None;
2148    break;
2149  }
2150
2151  IdentifierInfo *II = Name.getAsIdentifierInfo();
2152  if (!II) {
2153    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2154      << Name.getAsString();
2155    return 0;
2156  }
2157
2158  DiagnoseFunctionSpecifiers(D);
2159
2160  if (!DC->isRecord() && S->getFnParent() == 0) {
2161    // C99 6.9p2: The storage-class specifiers auto and register shall not
2162    // appear in the declaration specifiers in an external declaration.
2163    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2164
2165      // If this is a register variable with an asm label specified, then this
2166      // is a GNU extension.
2167      if (SC == VarDecl::Register && D.getAsmLabel())
2168        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2169      else
2170        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2171      D.setInvalidType();
2172    }
2173  }
2174  if (DC->isRecord() && !CurContext->isRecord()) {
2175    // This is an out-of-line definition of a static data member.
2176    if (SC == VarDecl::Static) {
2177      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2178           diag::err_static_out_of_line)
2179        << CodeModificationHint::CreateRemoval(
2180                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2181    } else if (SC == VarDecl::None)
2182      SC = VarDecl::Static;
2183  }
2184  if (SC == VarDecl::Static) {
2185    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2186      if (RD->isLocalClass())
2187        Diag(D.getIdentifierLoc(),
2188             diag::err_static_data_member_not_allowed_in_local_class)
2189          << Name << RD->getDeclName();
2190    }
2191  }
2192
2193  // Match up the template parameter lists with the scope specifier, then
2194  // determine whether we have a template or a template specialization.
2195  bool isExplicitSpecialization = false;
2196  if (TemplateParameterList *TemplateParams
2197        = MatchTemplateParametersToScopeSpecifier(
2198                                  D.getDeclSpec().getSourceRange().getBegin(),
2199                                                  D.getCXXScopeSpec(),
2200                        (TemplateParameterList**)TemplateParamLists.get(),
2201                                                   TemplateParamLists.size(),
2202                                                  isExplicitSpecialization)) {
2203    if (TemplateParams->size() > 0) {
2204      // There is no such thing as a variable template.
2205      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2206        << II
2207        << SourceRange(TemplateParams->getTemplateLoc(),
2208                       TemplateParams->getRAngleLoc());
2209      return 0;
2210    } else {
2211      // There is an extraneous 'template<>' for this variable. Complain
2212      // about it, but allow the declaration of the variable.
2213      Diag(TemplateParams->getTemplateLoc(),
2214           diag::err_template_variable_noparams)
2215        << II
2216        << SourceRange(TemplateParams->getTemplateLoc(),
2217                       TemplateParams->getRAngleLoc());
2218
2219      isExplicitSpecialization = true;
2220    }
2221  }
2222
2223  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2224                          II, R, DInfo, SC);
2225
2226  if (D.isInvalidType())
2227    NewVD->setInvalidDecl();
2228
2229  if (D.getDeclSpec().isThreadSpecified()) {
2230    if (NewVD->hasLocalStorage())
2231      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2232    else if (!Context.Target.isTLSSupported())
2233      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2234    else
2235      NewVD->setThreadSpecified(true);
2236  }
2237
2238  // Set the lexical context. If the declarator has a C++ scope specifier, the
2239  // lexical context will be different from the semantic context.
2240  NewVD->setLexicalDeclContext(CurContext);
2241
2242  // Handle attributes prior to checking for duplicates in MergeVarDecl
2243  ProcessDeclAttributes(S, NewVD, D);
2244
2245  // Handle GNU asm-label extension (encoded as an attribute).
2246  if (Expr *E = (Expr*) D.getAsmLabel()) {
2247    // The parser guarantees this is a string.
2248    StringLiteral *SE = cast<StringLiteral>(E);
2249    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2250                                                        SE->getByteLength())));
2251  }
2252
2253  // If name lookup finds a previous declaration that is not in the
2254  // same scope as the new declaration, this may still be an
2255  // acceptable redeclaration.
2256  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2257      !(NewVD->hasLinkage() &&
2258        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2259    PrevDecl = 0;
2260
2261  // Merge the decl with the existing one if appropriate.
2262  if (PrevDecl) {
2263    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2264      // The user tried to define a non-static data member
2265      // out-of-line (C++ [dcl.meaning]p1).
2266      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2267        << D.getCXXScopeSpec().getRange();
2268      PrevDecl = 0;
2269      NewVD->setInvalidDecl();
2270    }
2271  } else if (D.getCXXScopeSpec().isSet()) {
2272    // No previous declaration in the qualifying scope.
2273    Diag(D.getIdentifierLoc(), diag::err_no_member)
2274      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2275      << D.getCXXScopeSpec().getRange();
2276    NewVD->setInvalidDecl();
2277  }
2278
2279  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2280
2281  // This is an explicit specialization of a static data member. Check it.
2282  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2283      CheckMemberSpecialization(NewVD, PrevDecl))
2284    NewVD->setInvalidDecl();
2285
2286  // attributes declared post-definition are currently ignored
2287  if (PrevDecl) {
2288    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2289    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2290      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2291      Diag(Def->getLocation(), diag::note_previous_definition);
2292    }
2293  }
2294
2295  // If this is a locally-scoped extern C variable, update the map of
2296  // such variables.
2297  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2298      !NewVD->isInvalidDecl())
2299    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2300
2301  return NewVD;
2302}
2303
2304/// \brief Perform semantic checking on a newly-created variable
2305/// declaration.
2306///
2307/// This routine performs all of the type-checking required for a
2308/// variable declaration once it has been built. It is used both to
2309/// check variables after they have been parsed and their declarators
2310/// have been translated into a declaration, and to check variables
2311/// that have been instantiated from a template.
2312///
2313/// Sets NewVD->isInvalidDecl() if an error was encountered.
2314void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2315                                    bool &Redeclaration) {
2316  // If the decl is already known invalid, don't check it.
2317  if (NewVD->isInvalidDecl())
2318    return;
2319
2320  QualType T = NewVD->getType();
2321
2322  if (T->isObjCInterfaceType()) {
2323    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2324    return NewVD->setInvalidDecl();
2325  }
2326
2327  // The variable can not have an abstract class type.
2328  if (RequireNonAbstractType(NewVD->getLocation(), T,
2329                             diag::err_abstract_type_in_decl,
2330                             AbstractVariableType))
2331    return NewVD->setInvalidDecl();
2332
2333  // Emit an error if an address space was applied to decl with local storage.
2334  // This includes arrays of objects with address space qualifiers, but not
2335  // automatic variables that point to other address spaces.
2336  // ISO/IEC TR 18037 S5.1.2
2337  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2338    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2339    return NewVD->setInvalidDecl();
2340  }
2341
2342  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2343      && !NewVD->hasAttr<BlocksAttr>())
2344    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2345
2346  bool isVM = T->isVariablyModifiedType();
2347  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2348      NewVD->hasAttr<BlocksAttr>())
2349    CurFunctionNeedsScopeChecking = true;
2350
2351  if ((isVM && NewVD->hasLinkage()) ||
2352      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2353    bool SizeIsNegative;
2354    QualType FixedTy =
2355        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2356
2357    if (FixedTy.isNull() && T->isVariableArrayType()) {
2358      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2359      // FIXME: This won't give the correct result for
2360      // int a[10][n];
2361      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2362
2363      if (NewVD->isFileVarDecl())
2364        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2365        << SizeRange;
2366      else if (NewVD->getStorageClass() == VarDecl::Static)
2367        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2368        << SizeRange;
2369      else
2370        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2371        << SizeRange;
2372      return NewVD->setInvalidDecl();
2373    }
2374
2375    if (FixedTy.isNull()) {
2376      if (NewVD->isFileVarDecl())
2377        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2378      else
2379        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2380      return NewVD->setInvalidDecl();
2381    }
2382
2383    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2384    NewVD->setType(FixedTy);
2385  }
2386
2387  if (!PrevDecl && NewVD->isExternC()) {
2388    // Since we did not find anything by this name and we're declaring
2389    // an extern "C" variable, look for a non-visible extern "C"
2390    // declaration with the same name.
2391    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2392      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2393    if (Pos != LocallyScopedExternalDecls.end())
2394      PrevDecl = Pos->second;
2395  }
2396
2397  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2398    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2399      << T;
2400    return NewVD->setInvalidDecl();
2401  }
2402
2403  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2404    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2405    return NewVD->setInvalidDecl();
2406  }
2407
2408  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2409    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2410    return NewVD->setInvalidDecl();
2411  }
2412
2413  if (PrevDecl) {
2414    Redeclaration = true;
2415    MergeVarDecl(NewVD, PrevDecl);
2416  }
2417}
2418
2419static bool isUsingDecl(Decl *D) {
2420  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2421}
2422
2423/// \brief Data used with FindOverriddenMethod
2424struct FindOverriddenMethodData {
2425  Sema *S;
2426  CXXMethodDecl *Method;
2427};
2428
2429/// \brief Member lookup function that determines whether a given C++
2430/// method overrides a method in a base class, to be used with
2431/// CXXRecordDecl::lookupInBases().
2432static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2433                                 CXXBasePath &Path,
2434                                 void *UserData) {
2435  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2436
2437  FindOverriddenMethodData *Data
2438    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2439  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2440       Path.Decls.first != Path.Decls.second;
2441       ++Path.Decls.first) {
2442    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2443      OverloadedFunctionDecl::function_iterator MatchedDecl;
2444      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2445        return true;
2446    }
2447  }
2448
2449  return false;
2450}
2451
2452NamedDecl*
2453Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2454                              QualType R, DeclaratorInfo *DInfo,
2455                              NamedDecl* PrevDecl,
2456                              MultiTemplateParamsArg TemplateParamLists,
2457                              bool IsFunctionDefinition, bool &Redeclaration) {
2458  assert(R.getTypePtr()->isFunctionType());
2459
2460  DeclarationName Name = GetNameForDeclarator(D);
2461  FunctionDecl::StorageClass SC = FunctionDecl::None;
2462  switch (D.getDeclSpec().getStorageClassSpec()) {
2463  default: assert(0 && "Unknown storage class!");
2464  case DeclSpec::SCS_auto:
2465  case DeclSpec::SCS_register:
2466  case DeclSpec::SCS_mutable:
2467    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2468         diag::err_typecheck_sclass_func);
2469    D.setInvalidType();
2470    break;
2471  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2472  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2473  case DeclSpec::SCS_static: {
2474    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2475      // C99 6.7.1p5:
2476      //   The declaration of an identifier for a function that has
2477      //   block scope shall have no explicit storage-class specifier
2478      //   other than extern
2479      // See also (C++ [dcl.stc]p4).
2480      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2481           diag::err_static_block_func);
2482      SC = FunctionDecl::None;
2483    } else
2484      SC = FunctionDecl::Static;
2485    break;
2486  }
2487  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2488  }
2489
2490  if (D.getDeclSpec().isThreadSpecified())
2491    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2492
2493  bool isFriend = D.getDeclSpec().isFriendSpecified();
2494  bool isInline = D.getDeclSpec().isInlineSpecified();
2495  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2496  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2497
2498  // Check that the return type is not an abstract class type.
2499  // For record types, this is done by the AbstractClassUsageDiagnoser once
2500  // the class has been completely parsed.
2501  if (!DC->isRecord() &&
2502      RequireNonAbstractType(D.getIdentifierLoc(),
2503                             R->getAs<FunctionType>()->getResultType(),
2504                             diag::err_abstract_type_in_decl,
2505                             AbstractReturnType))
2506    D.setInvalidType();
2507
2508  // Do not allow returning a objc interface by-value.
2509  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2510    Diag(D.getIdentifierLoc(),
2511         diag::err_object_cannot_be_passed_returned_by_value) << 0
2512      << R->getAs<FunctionType>()->getResultType();
2513    D.setInvalidType();
2514  }
2515
2516  bool isVirtualOkay = false;
2517  FunctionDecl *NewFD;
2518
2519  if (isFriend) {
2520    // DC is the namespace in which the function is being declared.
2521    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2522           "friend function being created in a non-namespace context");
2523
2524    // C++ [class.friend]p5
2525    //   A function can be defined in a friend declaration of a
2526    //   class . . . . Such a function is implicitly inline.
2527    isInline |= IsFunctionDefinition;
2528  }
2529
2530  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2531    // This is a C++ constructor declaration.
2532    assert(DC->isRecord() &&
2533           "Constructors can only be declared in a member context");
2534
2535    R = CheckConstructorDeclarator(D, R, SC);
2536
2537    // Create the new declaration
2538    NewFD = CXXConstructorDecl::Create(Context,
2539                                       cast<CXXRecordDecl>(DC),
2540                                       D.getIdentifierLoc(), Name, R, DInfo,
2541                                       isExplicit, isInline,
2542                                       /*isImplicitlyDeclared=*/false);
2543  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2544    // This is a C++ destructor declaration.
2545    if (DC->isRecord()) {
2546      R = CheckDestructorDeclarator(D, SC);
2547
2548      NewFD = CXXDestructorDecl::Create(Context,
2549                                        cast<CXXRecordDecl>(DC),
2550                                        D.getIdentifierLoc(), Name, R,
2551                                        isInline,
2552                                        /*isImplicitlyDeclared=*/false);
2553
2554      isVirtualOkay = true;
2555    } else {
2556      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2557
2558      // Create a FunctionDecl to satisfy the function definition parsing
2559      // code path.
2560      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2561                                   Name, R, DInfo, SC, isInline,
2562                                   /*hasPrototype=*/true);
2563      D.setInvalidType();
2564    }
2565  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2566    if (!DC->isRecord()) {
2567      Diag(D.getIdentifierLoc(),
2568           diag::err_conv_function_not_member);
2569      return 0;
2570    }
2571
2572    CheckConversionDeclarator(D, R, SC);
2573    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2574                                      D.getIdentifierLoc(), Name, R, DInfo,
2575                                      isInline, isExplicit);
2576
2577    isVirtualOkay = true;
2578  } else if (DC->isRecord()) {
2579    // If the of the function is the same as the name of the record, then this
2580    // must be an invalid constructor that has a return type.
2581    // (The parser checks for a return type and makes the declarator a
2582    // constructor if it has no return type).
2583    // must have an invalid constructor that has a return type
2584    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2585      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2586        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2587        << SourceRange(D.getIdentifierLoc());
2588      return 0;
2589    }
2590
2591    // This is a C++ method declaration.
2592    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2593                                  D.getIdentifierLoc(), Name, R, DInfo,
2594                                  (SC == FunctionDecl::Static), isInline);
2595
2596    isVirtualOkay = (SC != FunctionDecl::Static);
2597  } else {
2598    // Determine whether the function was written with a
2599    // prototype. This true when:
2600    //   - we're in C++ (where every function has a prototype),
2601    //   - there is a prototype in the declarator, or
2602    //   - the type R of the function is some kind of typedef or other reference
2603    //     to a type name (which eventually refers to a function type).
2604    bool HasPrototype =
2605       getLangOptions().CPlusPlus ||
2606       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2607       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2608
2609    NewFD = FunctionDecl::Create(Context, DC,
2610                                 D.getIdentifierLoc(),
2611                                 Name, R, DInfo, SC, isInline, HasPrototype);
2612  }
2613
2614  if (D.isInvalidType())
2615    NewFD->setInvalidDecl();
2616
2617  // Set the lexical context. If the declarator has a C++
2618  // scope specifier, or is the object of a friend declaration, the
2619  // lexical context will be different from the semantic context.
2620  NewFD->setLexicalDeclContext(CurContext);
2621
2622  // Match up the template parameter lists with the scope specifier, then
2623  // determine whether we have a template or a template specialization.
2624  FunctionTemplateDecl *FunctionTemplate = 0;
2625  bool isExplicitSpecialization = false;
2626  bool isFunctionTemplateSpecialization = false;
2627  if (TemplateParameterList *TemplateParams
2628        = MatchTemplateParametersToScopeSpecifier(
2629                                  D.getDeclSpec().getSourceRange().getBegin(),
2630                                  D.getCXXScopeSpec(),
2631                           (TemplateParameterList**)TemplateParamLists.get(),
2632                                                  TemplateParamLists.size(),
2633                                                  isExplicitSpecialization)) {
2634    if (TemplateParams->size() > 0) {
2635      // This is a function template
2636
2637      // Check that we can declare a template here.
2638      if (CheckTemplateDeclScope(S, TemplateParams))
2639        return 0;
2640
2641      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2642                                                      NewFD->getLocation(),
2643                                                      Name, TemplateParams,
2644                                                      NewFD);
2645      FunctionTemplate->setLexicalDeclContext(CurContext);
2646      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2647    } else {
2648      // This is a function template specialization.
2649      isFunctionTemplateSpecialization = true;
2650    }
2651
2652    // FIXME: Free this memory properly.
2653    TemplateParamLists.release();
2654  }
2655
2656  // C++ [dcl.fct.spec]p5:
2657  //   The virtual specifier shall only be used in declarations of
2658  //   nonstatic class member functions that appear within a
2659  //   member-specification of a class declaration; see 10.3.
2660  //
2661  if (isVirtual && !NewFD->isInvalidDecl()) {
2662    if (!isVirtualOkay) {
2663       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2664           diag::err_virtual_non_function);
2665    } else if (!CurContext->isRecord()) {
2666      // 'virtual' was specified outside of the class.
2667      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2668        << CodeModificationHint::CreateRemoval(
2669                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2670    } else {
2671      // Okay: Add virtual to the method.
2672      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2673      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2674      CurClass->setAggregate(false);
2675      CurClass->setPOD(false);
2676      CurClass->setEmpty(false);
2677      CurClass->setPolymorphic(true);
2678      CurClass->setHasTrivialConstructor(false);
2679      CurClass->setHasTrivialCopyConstructor(false);
2680      CurClass->setHasTrivialCopyAssignment(false);
2681    }
2682  }
2683
2684  if (isFriend) {
2685    if (FunctionTemplate) {
2686      FunctionTemplate->setObjectOfFriendDecl(
2687                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2688      FunctionTemplate->setAccess(AS_public);
2689    }
2690    else
2691      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2692
2693    NewFD->setAccess(AS_public);
2694  }
2695
2696
2697  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2698    // Look for virtual methods in base classes that this method might override.
2699    CXXBasePaths Paths;
2700    FindOverriddenMethodData Data;
2701    Data.Method = NewMD;
2702    Data.S = this;
2703    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2704                                                Paths)) {
2705      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2706           E = Paths.found_decls_end(); I != E; ++I) {
2707        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2708          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2709              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2710            NewMD->addOverriddenMethod(OldMD);
2711        }
2712      }
2713    }
2714  }
2715
2716  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2717      !CurContext->isRecord()) {
2718    // C++ [class.static]p1:
2719    //   A data or function member of a class may be declared static
2720    //   in a class definition, in which case it is a static member of
2721    //   the class.
2722
2723    // Complain about the 'static' specifier if it's on an out-of-line
2724    // member function definition.
2725    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2726         diag::err_static_out_of_line)
2727      << CodeModificationHint::CreateRemoval(
2728                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2729  }
2730
2731  // Handle GNU asm-label extension (encoded as an attribute).
2732  if (Expr *E = (Expr*) D.getAsmLabel()) {
2733    // The parser guarantees this is a string.
2734    StringLiteral *SE = cast<StringLiteral>(E);
2735    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2736                                                        SE->getByteLength())));
2737  }
2738
2739  // Copy the parameter declarations from the declarator D to the function
2740  // declaration NewFD, if they are available.  First scavenge them into Params.
2741  llvm::SmallVector<ParmVarDecl*, 16> Params;
2742  if (D.getNumTypeObjects() > 0) {
2743    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2744
2745    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2746    // function that takes no arguments, not a function that takes a
2747    // single void argument.
2748    // We let through "const void" here because Sema::GetTypeForDeclarator
2749    // already checks for that case.
2750    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2751        FTI.ArgInfo[0].Param &&
2752        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2753      // Empty arg list, don't push any params.
2754      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2755
2756      // In C++, the empty parameter-type-list must be spelled "void"; a
2757      // typedef of void is not permitted.
2758      if (getLangOptions().CPlusPlus &&
2759          Param->getType().getUnqualifiedType() != Context.VoidTy)
2760        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2761      // FIXME: Leaks decl?
2762    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2763      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2764        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2765        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2766        Param->setDeclContext(NewFD);
2767        Params.push_back(Param);
2768      }
2769    }
2770
2771  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2772    // When we're declaring a function with a typedef, typeof, etc as in the
2773    // following example, we'll need to synthesize (unnamed)
2774    // parameters for use in the declaration.
2775    //
2776    // @code
2777    // typedef void fn(int);
2778    // fn f;
2779    // @endcode
2780
2781    // Synthesize a parameter for each argument type.
2782    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2783         AE = FT->arg_type_end(); AI != AE; ++AI) {
2784      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2785                                               SourceLocation(), 0,
2786                                               *AI, /*DInfo=*/0,
2787                                               VarDecl::None, 0);
2788      Param->setImplicit();
2789      Params.push_back(Param);
2790    }
2791  } else {
2792    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2793           "Should not need args for typedef of non-prototype fn");
2794  }
2795  // Finally, we know we have the right number of parameters, install them.
2796  NewFD->setParams(Context, Params.data(), Params.size());
2797
2798  // If name lookup finds a previous declaration that is not in the
2799  // same scope as the new declaration, this may still be an
2800  // acceptable redeclaration.
2801  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2802      !(NewFD->hasLinkage() &&
2803        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2804    PrevDecl = 0;
2805
2806  // If the declarator is a template-id, translate the parser's template
2807  // argument list into our AST format.
2808  bool HasExplicitTemplateArgs = false;
2809  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2810  SourceLocation LAngleLoc, RAngleLoc;
2811  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2812    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2813    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2814                                       TemplateId->getTemplateArgs(),
2815                                       TemplateId->getTemplateArgIsType(),
2816                                       TemplateId->NumArgs);
2817    translateTemplateArguments(TemplateArgsPtr,
2818                               TemplateId->getTemplateArgLocations(),
2819                               TemplateArgs);
2820    TemplateArgsPtr.release();
2821
2822    HasExplicitTemplateArgs = true;
2823    LAngleLoc = TemplateId->LAngleLoc;
2824    RAngleLoc = TemplateId->RAngleLoc;
2825
2826    if (FunctionTemplate) {
2827      // FIXME: Diagnose function template with explicit template
2828      // arguments.
2829      HasExplicitTemplateArgs = false;
2830    } else if (!isFunctionTemplateSpecialization &&
2831               !D.getDeclSpec().isFriendSpecified()) {
2832      // We have encountered something that the user meant to be a
2833      // specialization (because it has explicitly-specified template
2834      // arguments) but that was not introduced with a "template<>" (or had
2835      // too few of them).
2836      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2837        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2838        << CodeModificationHint::CreateInsertion(
2839                                   D.getDeclSpec().getSourceRange().getBegin(),
2840                                                 "template<> ");
2841      isFunctionTemplateSpecialization = true;
2842    }
2843  }
2844
2845  if (isFunctionTemplateSpecialization) {
2846      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2847                                              LAngleLoc, TemplateArgs.data(),
2848                                              TemplateArgs.size(), RAngleLoc,
2849                                              PrevDecl))
2850        NewFD->setInvalidDecl();
2851  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2852             CheckMemberSpecialization(NewFD, PrevDecl))
2853    NewFD->setInvalidDecl();
2854
2855  // Perform semantic checking on the function declaration.
2856  bool OverloadableAttrRequired = false; // FIXME: HACK!
2857  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2858                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2859
2860  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2861    // An out-of-line member function declaration must also be a
2862    // definition (C++ [dcl.meaning]p1).
2863    // Note that this is not the case for explicit specializations of
2864    // function templates or member functions of class templates, per
2865    // C++ [temp.expl.spec]p2.
2866    if (!IsFunctionDefinition && !isFriend &&
2867        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2868      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2869        << D.getCXXScopeSpec().getRange();
2870      NewFD->setInvalidDecl();
2871    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2872      // The user tried to provide an out-of-line definition for a
2873      // function that is a member of a class or namespace, but there
2874      // was no such member function declared (C++ [class.mfct]p2,
2875      // C++ [namespace.memdef]p2). For example:
2876      //
2877      // class X {
2878      //   void f() const;
2879      // };
2880      //
2881      // void X::f() { } // ill-formed
2882      //
2883      // Complain about this problem, and attempt to suggest close
2884      // matches (e.g., those that differ only in cv-qualifiers and
2885      // whether the parameter types are references).
2886      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2887        << Name << DC << D.getCXXScopeSpec().getRange();
2888      NewFD->setInvalidDecl();
2889
2890      LookupResult Prev;
2891      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2892      assert(!Prev.isAmbiguous() &&
2893             "Cannot have an ambiguity in previous-declaration lookup");
2894      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2895           Func != FuncEnd; ++Func) {
2896        if (isa<FunctionDecl>(*Func) &&
2897            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2898          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2899      }
2900
2901      PrevDecl = 0;
2902    }
2903  }
2904
2905  // Handle attributes. We need to have merged decls when handling attributes
2906  // (for example to check for conflicts, etc).
2907  // FIXME: This needs to happen before we merge declarations. Then,
2908  // let attribute merging cope with attribute conflicts.
2909  ProcessDeclAttributes(S, NewFD, D);
2910
2911  // attributes declared post-definition are currently ignored
2912  if (Redeclaration && PrevDecl) {
2913    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2914    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2915      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2916      Diag(Def->getLocation(), diag::note_previous_definition);
2917    }
2918  }
2919
2920  AddKnownFunctionAttributes(NewFD);
2921
2922  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2923    // If a function name is overloadable in C, then every function
2924    // with that name must be marked "overloadable".
2925    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2926      << Redeclaration << NewFD;
2927    if (PrevDecl)
2928      Diag(PrevDecl->getLocation(),
2929           diag::note_attribute_overloadable_prev_overload);
2930    NewFD->addAttr(::new (Context) OverloadableAttr());
2931  }
2932
2933  // If this is a locally-scoped extern C function, update the
2934  // map of such names.
2935  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2936      && !NewFD->isInvalidDecl())
2937    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2938
2939  // Set this FunctionDecl's range up to the right paren.
2940  NewFD->setLocEnd(D.getSourceRange().getEnd());
2941
2942  if (FunctionTemplate && NewFD->isInvalidDecl())
2943    FunctionTemplate->setInvalidDecl();
2944
2945  if (FunctionTemplate)
2946    return FunctionTemplate;
2947
2948  return NewFD;
2949}
2950
2951/// \brief Perform semantic checking of a new function declaration.
2952///
2953/// Performs semantic analysis of the new function declaration
2954/// NewFD. This routine performs all semantic checking that does not
2955/// require the actual declarator involved in the declaration, and is
2956/// used both for the declaration of functions as they are parsed
2957/// (called via ActOnDeclarator) and for the declaration of functions
2958/// that have been instantiated via C++ template instantiation (called
2959/// via InstantiateDecl).
2960///
2961/// \param IsExplicitSpecialiation whether this new function declaration is
2962/// an explicit specialization of the previous declaration.
2963///
2964/// This sets NewFD->isInvalidDecl() to true if there was an error.
2965void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2966                                    bool IsExplicitSpecialization,
2967                                    bool &Redeclaration,
2968                                    bool &OverloadableAttrRequired) {
2969  // If NewFD is already known erroneous, don't do any of this checking.
2970  if (NewFD->isInvalidDecl())
2971    return;
2972
2973  if (NewFD->getResultType()->isVariablyModifiedType()) {
2974    // Functions returning a variably modified type violate C99 6.7.5.2p2
2975    // because all functions have linkage.
2976    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2977    return NewFD->setInvalidDecl();
2978  }
2979
2980  if (NewFD->isMain())
2981    CheckMain(NewFD);
2982
2983  // Check for a previous declaration of this name.
2984  if (!PrevDecl && NewFD->isExternC()) {
2985    // Since we did not find anything by this name and we're declaring
2986    // an extern "C" function, look for a non-visible extern "C"
2987    // declaration with the same name.
2988    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2989      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2990    if (Pos != LocallyScopedExternalDecls.end())
2991      PrevDecl = Pos->second;
2992  }
2993
2994  // Merge or overload the declaration with an existing declaration of
2995  // the same name, if appropriate.
2996  if (PrevDecl) {
2997    // Determine whether NewFD is an overload of PrevDecl or
2998    // a declaration that requires merging. If it's an overload,
2999    // there's no more work to do here; we'll just add the new
3000    // function to the scope.
3001    OverloadedFunctionDecl::function_iterator MatchedDecl;
3002
3003    if (!getLangOptions().CPlusPlus &&
3004        AllowOverloadingOfFunction(PrevDecl, Context)) {
3005      OverloadableAttrRequired = true;
3006
3007      // Functions marked "overloadable" must have a prototype (that
3008      // we can't get through declaration merging).
3009      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3010        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3011          << NewFD;
3012        Redeclaration = true;
3013
3014        // Turn this into a variadic function with no parameters.
3015        QualType R = Context.getFunctionType(
3016                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3017                       0, 0, true, 0);
3018        NewFD->setType(R);
3019        return NewFD->setInvalidDecl();
3020      }
3021    }
3022
3023    if (PrevDecl &&
3024        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3025         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3026      Redeclaration = true;
3027      Decl *OldDecl = PrevDecl;
3028
3029      // If PrevDecl was an overloaded function, extract the
3030      // FunctionDecl that matched.
3031      if (isa<OverloadedFunctionDecl>(PrevDecl))
3032        OldDecl = *MatchedDecl;
3033
3034      // NewFD and OldDecl represent declarations that need to be
3035      // merged.
3036      if (MergeFunctionDecl(NewFD, OldDecl))
3037        return NewFD->setInvalidDecl();
3038
3039      if (FunctionTemplateDecl *OldTemplateDecl
3040                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3041        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3042        FunctionTemplateDecl *NewTemplateDecl
3043          = NewFD->getDescribedFunctionTemplate();
3044        assert(NewTemplateDecl && "Template/non-template mismatch");
3045        if (CXXMethodDecl *Method
3046              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3047          Method->setAccess(OldTemplateDecl->getAccess());
3048          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3049        }
3050
3051        // If this is an explicit specialization of a member that is a function
3052        // template, mark it as a member specialization.
3053        if (IsExplicitSpecialization &&
3054            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3055          NewTemplateDecl->setMemberSpecialization();
3056          assert(OldTemplateDecl->isMemberSpecialization());
3057        }
3058      } else {
3059        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3060          NewFD->setAccess(OldDecl->getAccess());
3061        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3062      }
3063    }
3064  }
3065
3066  // Semantic checking for this function declaration (in isolation).
3067  if (getLangOptions().CPlusPlus) {
3068    // C++-specific checks.
3069    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3070      CheckConstructor(Constructor);
3071    } else if (isa<CXXDestructorDecl>(NewFD)) {
3072      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3073      QualType ClassType = Context.getTypeDeclType(Record);
3074      if (!ClassType->isDependentType()) {
3075        DeclarationName Name
3076          = Context.DeclarationNames.getCXXDestructorName(
3077                                        Context.getCanonicalType(ClassType));
3078        if (NewFD->getDeclName() != Name) {
3079          Diag(NewFD->getLocation(), diag::err_destructor_name);
3080          return NewFD->setInvalidDecl();
3081        }
3082      }
3083      Record->setUserDeclaredDestructor(true);
3084      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3085      // user-defined destructor.
3086      Record->setPOD(false);
3087
3088      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3089      // declared destructor.
3090      // FIXME: C++0x: don't do this for "= default" destructors
3091      Record->setHasTrivialDestructor(false);
3092    } else if (CXXConversionDecl *Conversion
3093               = dyn_cast<CXXConversionDecl>(NewFD))
3094      ActOnConversionDeclarator(Conversion);
3095
3096    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3097    if (NewFD->isOverloadedOperator() &&
3098        CheckOverloadedOperatorDeclaration(NewFD))
3099      return NewFD->setInvalidDecl();
3100
3101    // In C++, check default arguments now that we have merged decls. Unless
3102    // the lexical context is the class, because in this case this is done
3103    // during delayed parsing anyway.
3104    if (!CurContext->isRecord())
3105      CheckCXXDefaultArguments(NewFD);
3106  }
3107}
3108
3109void Sema::CheckMain(FunctionDecl* FD) {
3110  // C++ [basic.start.main]p3:  A program that declares main to be inline
3111  //   or static is ill-formed.
3112  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3113  //   shall not appear in a declaration of main.
3114  // static main is not an error under C99, but we should warn about it.
3115  bool isInline = FD->isInlineSpecified();
3116  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3117  if (isInline || isStatic) {
3118    unsigned diagID = diag::warn_unusual_main_decl;
3119    if (isInline || getLangOptions().CPlusPlus)
3120      diagID = diag::err_unusual_main_decl;
3121
3122    int which = isStatic + (isInline << 1) - 1;
3123    Diag(FD->getLocation(), diagID) << which;
3124  }
3125
3126  QualType T = FD->getType();
3127  assert(T->isFunctionType() && "function decl is not of function type");
3128  const FunctionType* FT = T->getAs<FunctionType>();
3129
3130  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3131    // TODO: add a replacement fixit to turn the return type into 'int'.
3132    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3133    FD->setInvalidDecl(true);
3134  }
3135
3136  // Treat protoless main() as nullary.
3137  if (isa<FunctionNoProtoType>(FT)) return;
3138
3139  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3140  unsigned nparams = FTP->getNumArgs();
3141  assert(FD->getNumParams() == nparams);
3142
3143  if (nparams > 3) {
3144    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3145    FD->setInvalidDecl(true);
3146    nparams = 3;
3147  }
3148
3149  // FIXME: a lot of the following diagnostics would be improved
3150  // if we had some location information about types.
3151
3152  QualType CharPP =
3153    Context.getPointerType(Context.getPointerType(Context.CharTy));
3154  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3155
3156  for (unsigned i = 0; i < nparams; ++i) {
3157    QualType AT = FTP->getArgType(i);
3158
3159    bool mismatch = true;
3160
3161    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3162      mismatch = false;
3163    else if (Expected[i] == CharPP) {
3164      // As an extension, the following forms are okay:
3165      //   char const **
3166      //   char const * const *
3167      //   char * const *
3168
3169      QualifierCollector qs;
3170      const PointerType* PT;
3171      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3172          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3173          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3174        qs.removeConst();
3175        mismatch = !qs.empty();
3176      }
3177    }
3178
3179    if (mismatch) {
3180      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3181      // TODO: suggest replacing given type with expected type
3182      FD->setInvalidDecl(true);
3183    }
3184  }
3185
3186  if (nparams == 1 && !FD->isInvalidDecl()) {
3187    Diag(FD->getLocation(), diag::warn_main_one_arg);
3188  }
3189}
3190
3191bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3192  // FIXME: Need strict checking.  In C89, we need to check for
3193  // any assignment, increment, decrement, function-calls, or
3194  // commas outside of a sizeof.  In C99, it's the same list,
3195  // except that the aforementioned are allowed in unevaluated
3196  // expressions.  Everything else falls under the
3197  // "may accept other forms of constant expressions" exception.
3198  // (We never end up here for C++, so the constant expression
3199  // rules there don't matter.)
3200  if (Init->isConstantInitializer(Context))
3201    return false;
3202  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3203    << Init->getSourceRange();
3204  return true;
3205}
3206
3207void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3208  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3209}
3210
3211/// AddInitializerToDecl - Adds the initializer Init to the
3212/// declaration dcl. If DirectInit is true, this is C++ direct
3213/// initialization rather than copy initialization.
3214void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3215  Decl *RealDecl = dcl.getAs<Decl>();
3216  // If there is no declaration, there was an error parsing it.  Just ignore
3217  // the initializer.
3218  if (RealDecl == 0)
3219    return;
3220
3221  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3222    // With declarators parsed the way they are, the parser cannot
3223    // distinguish between a normal initializer and a pure-specifier.
3224    // Thus this grotesque test.
3225    IntegerLiteral *IL;
3226    Expr *Init = static_cast<Expr *>(init.get());
3227    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3228        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3229      if (Method->isVirtualAsWritten()) {
3230        Method->setPure();
3231
3232        // A class is abstract if at least one function is pure virtual.
3233        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3234      } else if (!Method->isInvalidDecl()) {
3235        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3236          << Method->getDeclName() << Init->getSourceRange();
3237        Method->setInvalidDecl();
3238      }
3239    } else {
3240      Diag(Method->getLocation(), diag::err_member_function_initialization)
3241        << Method->getDeclName() << Init->getSourceRange();
3242      Method->setInvalidDecl();
3243    }
3244    return;
3245  }
3246
3247  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3248  if (!VDecl) {
3249    if (getLangOptions().CPlusPlus &&
3250        RealDecl->getLexicalDeclContext()->isRecord() &&
3251        isa<NamedDecl>(RealDecl))
3252      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3253        << cast<NamedDecl>(RealDecl)->getDeclName();
3254    else
3255      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3256    RealDecl->setInvalidDecl();
3257    return;
3258  }
3259
3260  if (!VDecl->getType()->isArrayType() &&
3261      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3262                          diag::err_typecheck_decl_incomplete_type)) {
3263    RealDecl->setInvalidDecl();
3264    return;
3265  }
3266
3267  const VarDecl *Def = 0;
3268  if (VDecl->getDefinition(Def)) {
3269    Diag(VDecl->getLocation(), diag::err_redefinition)
3270      << VDecl->getDeclName();
3271    Diag(Def->getLocation(), diag::note_previous_definition);
3272    VDecl->setInvalidDecl();
3273    return;
3274  }
3275
3276  // Take ownership of the expression, now that we're sure we have somewhere
3277  // to put it.
3278  Expr *Init = init.takeAs<Expr>();
3279  assert(Init && "missing initializer");
3280
3281  // Get the decls type and save a reference for later, since
3282  // CheckInitializerTypes may change it.
3283  QualType DclT = VDecl->getType(), SavT = DclT;
3284  if (VDecl->isBlockVarDecl()) {
3285    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3286      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3287      VDecl->setInvalidDecl();
3288    } else if (!VDecl->isInvalidDecl()) {
3289      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3290                                VDecl->getDeclName(), DirectInit))
3291        VDecl->setInvalidDecl();
3292
3293      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3294      // Don't check invalid declarations to avoid emitting useless diagnostics.
3295      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3296        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3297          CheckForConstantInitializer(Init, DclT);
3298      }
3299    }
3300  } else if (VDecl->isStaticDataMember() &&
3301             VDecl->getLexicalDeclContext()->isRecord()) {
3302    // This is an in-class initialization for a static data member, e.g.,
3303    //
3304    // struct S {
3305    //   static const int value = 17;
3306    // };
3307
3308    // Attach the initializer
3309    VDecl->setInit(Context, Init);
3310
3311    // C++ [class.mem]p4:
3312    //   A member-declarator can contain a constant-initializer only
3313    //   if it declares a static member (9.4) of const integral or
3314    //   const enumeration type, see 9.4.2.
3315    QualType T = VDecl->getType();
3316    if (!T->isDependentType() &&
3317        (!Context.getCanonicalType(T).isConstQualified() ||
3318         !T->isIntegralType())) {
3319      Diag(VDecl->getLocation(), diag::err_member_initialization)
3320        << VDecl->getDeclName() << Init->getSourceRange();
3321      VDecl->setInvalidDecl();
3322    } else {
3323      // C++ [class.static.data]p4:
3324      //   If a static data member is of const integral or const
3325      //   enumeration type, its declaration in the class definition
3326      //   can specify a constant-initializer which shall be an
3327      //   integral constant expression (5.19).
3328      if (!Init->isTypeDependent() &&
3329          !Init->getType()->isIntegralType()) {
3330        // We have a non-dependent, non-integral or enumeration type.
3331        Diag(Init->getSourceRange().getBegin(),
3332             diag::err_in_class_initializer_non_integral_type)
3333          << Init->getType() << Init->getSourceRange();
3334        VDecl->setInvalidDecl();
3335      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3336        // Check whether the expression is a constant expression.
3337        llvm::APSInt Value;
3338        SourceLocation Loc;
3339        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3340          Diag(Loc, diag::err_in_class_initializer_non_constant)
3341            << Init->getSourceRange();
3342          VDecl->setInvalidDecl();
3343        } else if (!VDecl->getType()->isDependentType())
3344          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3345      }
3346    }
3347  } else if (VDecl->isFileVarDecl()) {
3348    if (VDecl->getStorageClass() == VarDecl::Extern)
3349      Diag(VDecl->getLocation(), diag::warn_extern_init);
3350    if (!VDecl->isInvalidDecl())
3351      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3352                                VDecl->getDeclName(), DirectInit))
3353        VDecl->setInvalidDecl();
3354
3355    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3356    // Don't check invalid declarations to avoid emitting useless diagnostics.
3357    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3358      // C99 6.7.8p4. All file scoped initializers need to be constant.
3359      CheckForConstantInitializer(Init, DclT);
3360    }
3361  }
3362  // If the type changed, it means we had an incomplete type that was
3363  // completed by the initializer. For example:
3364  //   int ary[] = { 1, 3, 5 };
3365  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3366  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3367    VDecl->setType(DclT);
3368    Init->setType(DclT);
3369  }
3370
3371  Init = MaybeCreateCXXExprWithTemporaries(Init,
3372                                           /*ShouldDestroyTemporaries=*/true);
3373  // Attach the initializer to the decl.
3374  VDecl->setInit(Context, Init);
3375
3376  // If the previous declaration of VDecl was a tentative definition,
3377  // remove it from the set of tentative definitions.
3378  if (VDecl->getPreviousDeclaration() &&
3379      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3380    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3381    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3382  }
3383
3384  return;
3385}
3386
3387void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3388                                  bool TypeContainsUndeducedAuto) {
3389  Decl *RealDecl = dcl.getAs<Decl>();
3390
3391  // If there is no declaration, there was an error parsing it. Just ignore it.
3392  if (RealDecl == 0)
3393    return;
3394
3395  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3396    QualType Type = Var->getType();
3397
3398    // Record tentative definitions.
3399    if (Var->isTentativeDefinition(Context)) {
3400      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3401        InsertPair =
3402           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3403
3404      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3405      // want the second one in the map.
3406      InsertPair.first->second = Var;
3407
3408      // However, for the list, we don't care about the order, just make sure
3409      // that there are no dupes for a given declaration name.
3410      if (InsertPair.second)
3411        TentativeDefinitionList.push_back(Var->getDeclName());
3412    }
3413
3414    // C++ [dcl.init.ref]p3:
3415    //   The initializer can be omitted for a reference only in a
3416    //   parameter declaration (8.3.5), in the declaration of a
3417    //   function return type, in the declaration of a class member
3418    //   within its class declaration (9.2), and where the extern
3419    //   specifier is explicitly used.
3420    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3421      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3422        << Var->getDeclName()
3423        << SourceRange(Var->getLocation(), Var->getLocation());
3424      Var->setInvalidDecl();
3425      return;
3426    }
3427
3428    // C++0x [dcl.spec.auto]p3
3429    if (TypeContainsUndeducedAuto) {
3430      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3431        << Var->getDeclName() << Type;
3432      Var->setInvalidDecl();
3433      return;
3434    }
3435
3436    // An array without size is an incomplete type, and there are no special
3437    // rules in C++ to make such a definition acceptable.
3438    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3439        !Var->hasExternalStorage()) {
3440      Diag(Var->getLocation(),
3441           diag::err_typecheck_incomplete_array_needs_initializer);
3442      Var->setInvalidDecl();
3443      return;
3444    }
3445
3446    // C++ [temp.expl.spec]p15:
3447    //   An explicit specialization of a static data member of a template is a
3448    //   definition if the declaration includes an initializer; otherwise, it
3449    //   is a declaration.
3450    if (Var->isStaticDataMember() &&
3451        Var->getInstantiatedFromStaticDataMember() &&
3452        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3453      return;
3454
3455    // C++ [dcl.init]p9:
3456    //   If no initializer is specified for an object, and the object
3457    //   is of (possibly cv-qualified) non-POD class type (or array
3458    //   thereof), the object shall be default-initialized; if the
3459    //   object is of const-qualified type, the underlying class type
3460    //   shall have a user-declared default constructor.
3461    //
3462    // FIXME: Diagnose the "user-declared default constructor" bit.
3463    if (getLangOptions().CPlusPlus) {
3464      QualType InitType = Type;
3465      if (const ArrayType *Array = Context.getAsArrayType(Type))
3466        InitType = Context.getBaseElementType(Array);
3467      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3468          InitType->isRecordType() && !InitType->isDependentType()) {
3469        if (!RequireCompleteType(Var->getLocation(), InitType,
3470                                 diag::err_invalid_incomplete_type_use)) {
3471          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3472
3473          CXXConstructorDecl *Constructor
3474            = PerformInitializationByConstructor(InitType,
3475                                                 MultiExprArg(*this, 0, 0),
3476                                                 Var->getLocation(),
3477                                               SourceRange(Var->getLocation(),
3478                                                           Var->getLocation()),
3479                                                 Var->getDeclName(),
3480                                                 IK_Default,
3481                                                 ConstructorArgs);
3482
3483          // FIXME: Location info for the variable initialization?
3484          if (!Constructor)
3485            Var->setInvalidDecl();
3486          else {
3487            // FIXME: Cope with initialization of arrays
3488            if (!Constructor->isTrivial() &&
3489                InitializeVarWithConstructor(Var, Constructor,
3490                                             move_arg(ConstructorArgs)))
3491              Var->setInvalidDecl();
3492
3493            FinalizeVarWithDestructor(Var, InitType);
3494          }
3495        } else {
3496          Var->setInvalidDecl();
3497        }
3498      }
3499    }
3500
3501#if 0
3502    // FIXME: Temporarily disabled because we are not properly parsing
3503    // linkage specifications on declarations, e.g.,
3504    //
3505    //   extern "C" const CGPoint CGPointerZero;
3506    //
3507    // C++ [dcl.init]p9:
3508    //
3509    //     If no initializer is specified for an object, and the
3510    //     object is of (possibly cv-qualified) non-POD class type (or
3511    //     array thereof), the object shall be default-initialized; if
3512    //     the object is of const-qualified type, the underlying class
3513    //     type shall have a user-declared default
3514    //     constructor. Otherwise, if no initializer is specified for
3515    //     an object, the object and its subobjects, if any, have an
3516    //     indeterminate initial value; if the object or any of its
3517    //     subobjects are of const-qualified type, the program is
3518    //     ill-formed.
3519    //
3520    // This isn't technically an error in C, so we don't diagnose it.
3521    //
3522    // FIXME: Actually perform the POD/user-defined default
3523    // constructor check.
3524    if (getLangOptions().CPlusPlus &&
3525        Context.getCanonicalType(Type).isConstQualified() &&
3526        !Var->hasExternalStorage())
3527      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3528        << Var->getName()
3529        << SourceRange(Var->getLocation(), Var->getLocation());
3530#endif
3531  }
3532}
3533
3534Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3535                                                   DeclPtrTy *Group,
3536                                                   unsigned NumDecls) {
3537  llvm::SmallVector<Decl*, 8> Decls;
3538
3539  if (DS.isTypeSpecOwned())
3540    Decls.push_back((Decl*)DS.getTypeRep());
3541
3542  for (unsigned i = 0; i != NumDecls; ++i)
3543    if (Decl *D = Group[i].getAs<Decl>())
3544      Decls.push_back(D);
3545
3546  // Perform semantic analysis that depends on having fully processed both
3547  // the declarator and initializer.
3548  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3549    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3550    if (!IDecl)
3551      continue;
3552    QualType T = IDecl->getType();
3553
3554    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3555    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3556    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3557      if (T->isDependentType()) {
3558        // If T is dependent, we should not require a complete type.
3559        // (RequireCompleteType shouldn't be called with dependent types.)
3560        // But we still can at least check if we've got an array of unspecified
3561        // size without an initializer.
3562        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3563            !IDecl->getInit()) {
3564          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3565            << T;
3566          IDecl->setInvalidDecl();
3567        }
3568      } else if (!IDecl->isInvalidDecl()) {
3569        // If T is an incomplete array type with an initializer list that is
3570        // dependent on something, its size has not been fixed. We could attempt
3571        // to fix the size for such arrays, but we would still have to check
3572        // here for initializers containing a C++0x vararg expansion, e.g.
3573        // template <typename... Args> void f(Args... args) {
3574        //   int vals[] = { args };
3575        // }
3576        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3577        Expr *Init = IDecl->getInit();
3578        if (IAT && Init &&
3579            (Init->isTypeDependent() || Init->isValueDependent())) {
3580          // Check that the member type of the array is complete, at least.
3581          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3582                                  diag::err_typecheck_decl_incomplete_type))
3583            IDecl->setInvalidDecl();
3584        } else if (RequireCompleteType(IDecl->getLocation(), T,
3585                                      diag::err_typecheck_decl_incomplete_type))
3586          IDecl->setInvalidDecl();
3587      }
3588    }
3589    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3590    // object that has file scope without an initializer, and without a
3591    // storage-class specifier or with the storage-class specifier "static",
3592    // constitutes a tentative definition. Note: A tentative definition with
3593    // external linkage is valid (C99 6.2.2p5).
3594    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3595      if (const IncompleteArrayType *ArrayT
3596          = Context.getAsIncompleteArrayType(T)) {
3597        if (RequireCompleteType(IDecl->getLocation(),
3598                                ArrayT->getElementType(),
3599                                diag::err_illegal_decl_array_incomplete_type))
3600          IDecl->setInvalidDecl();
3601      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3602        // C99 6.9.2p3: If the declaration of an identifier for an object is
3603        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3604        // declared type shall not be an incomplete type.
3605        // NOTE: code such as the following
3606        //     static struct s;
3607        //     struct s { int a; };
3608        // is accepted by gcc. Hence here we issue a warning instead of
3609        // an error and we do not invalidate the static declaration.
3610        // NOTE: to avoid multiple warnings, only check the first declaration.
3611        if (IDecl->getPreviousDeclaration() == 0)
3612          RequireCompleteType(IDecl->getLocation(), T,
3613                              diag::ext_typecheck_decl_incomplete_type);
3614      }
3615    }
3616  }
3617  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3618                                                   Decls.data(), Decls.size()));
3619}
3620
3621
3622/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3623/// to introduce parameters into function prototype scope.
3624Sema::DeclPtrTy
3625Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3626  const DeclSpec &DS = D.getDeclSpec();
3627
3628  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3629  VarDecl::StorageClass StorageClass = VarDecl::None;
3630  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3631    StorageClass = VarDecl::Register;
3632  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3633    Diag(DS.getStorageClassSpecLoc(),
3634         diag::err_invalid_storage_class_in_func_decl);
3635    D.getMutableDeclSpec().ClearStorageClassSpecs();
3636  }
3637
3638  if (D.getDeclSpec().isThreadSpecified())
3639    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3640
3641  DiagnoseFunctionSpecifiers(D);
3642
3643  // Check that there are no default arguments inside the type of this
3644  // parameter (C++ only).
3645  if (getLangOptions().CPlusPlus)
3646    CheckExtraCXXDefaultArguments(D);
3647
3648  DeclaratorInfo *DInfo = 0;
3649  TagDecl *OwnedDecl = 0;
3650  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3651
3652  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3653    // C++ [dcl.fct]p6:
3654    //   Types shall not be defined in return or parameter types.
3655    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3656      << Context.getTypeDeclType(OwnedDecl);
3657  }
3658
3659  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3660  // Can this happen for params?  We already checked that they don't conflict
3661  // among each other.  Here they can only shadow globals, which is ok.
3662  IdentifierInfo *II = D.getIdentifier();
3663  if (II) {
3664    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3665      if (PrevDecl->isTemplateParameter()) {
3666        // Maybe we will complain about the shadowed template parameter.
3667        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3668        // Just pretend that we didn't see the previous declaration.
3669        PrevDecl = 0;
3670      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3671        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3672
3673        // Recover by removing the name
3674        II = 0;
3675        D.SetIdentifier(0, D.getIdentifierLoc());
3676      }
3677    }
3678  }
3679
3680  // Parameters can not be abstract class types.
3681  // For record types, this is done by the AbstractClassUsageDiagnoser once
3682  // the class has been completely parsed.
3683  if (!CurContext->isRecord() &&
3684      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3685                             diag::err_abstract_type_in_decl,
3686                             AbstractParamType))
3687    D.setInvalidType(true);
3688
3689  QualType T = adjustParameterType(parmDeclType);
3690
3691  ParmVarDecl *New
3692    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3693                          T, DInfo, StorageClass, 0);
3694
3695  if (D.isInvalidType())
3696    New->setInvalidDecl();
3697
3698  // Parameter declarators cannot be interface types. All ObjC objects are
3699  // passed by reference.
3700  if (T->isObjCInterfaceType()) {
3701    Diag(D.getIdentifierLoc(),
3702         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3703    New->setInvalidDecl();
3704  }
3705
3706  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3707  if (D.getCXXScopeSpec().isSet()) {
3708    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3709      << D.getCXXScopeSpec().getRange();
3710    New->setInvalidDecl();
3711  }
3712
3713  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3714  // duration shall not be qualified by an address-space qualifier."
3715  // Since all parameters have automatic store duration, they can not have
3716  // an address space.
3717  if (T.getAddressSpace() != 0) {
3718    Diag(D.getIdentifierLoc(),
3719         diag::err_arg_with_address_space);
3720    New->setInvalidDecl();
3721  }
3722
3723
3724  // Add the parameter declaration into this scope.
3725  S->AddDecl(DeclPtrTy::make(New));
3726  if (II)
3727    IdResolver.AddDecl(New);
3728
3729  ProcessDeclAttributes(S, New, D);
3730
3731  if (New->hasAttr<BlocksAttr>()) {
3732    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3733  }
3734  return DeclPtrTy::make(New);
3735}
3736
3737void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3738                                           SourceLocation LocAfterDecls) {
3739  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3740         "Not a function declarator!");
3741  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3742
3743  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3744  // for a K&R function.
3745  if (!FTI.hasPrototype) {
3746    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3747      --i;
3748      if (FTI.ArgInfo[i].Param == 0) {
3749        llvm::SmallString<256> Code;
3750        llvm::raw_svector_ostream(Code) << "  int "
3751                                        << FTI.ArgInfo[i].Ident->getName()
3752                                        << ";\n";
3753        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3754          << FTI.ArgInfo[i].Ident
3755          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3756
3757        // Implicitly declare the argument as type 'int' for lack of a better
3758        // type.
3759        DeclSpec DS;
3760        const char* PrevSpec; // unused
3761        unsigned DiagID; // unused
3762        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3763                           PrevSpec, DiagID);
3764        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3765        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3766        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3767      }
3768    }
3769  }
3770}
3771
3772Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3773                                              Declarator &D) {
3774  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3775  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3776         "Not a function declarator!");
3777  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3778
3779  if (FTI.hasPrototype) {
3780    // FIXME: Diagnose arguments without names in C.
3781  }
3782
3783  Scope *ParentScope = FnBodyScope->getParent();
3784
3785  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3786                                  MultiTemplateParamsArg(*this),
3787                                  /*IsFunctionDefinition=*/true);
3788  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3789}
3790
3791Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3792  // Clear the last template instantiation error context.
3793  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3794
3795  if (!D)
3796    return D;
3797  FunctionDecl *FD = 0;
3798
3799  if (FunctionTemplateDecl *FunTmpl
3800        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3801    FD = FunTmpl->getTemplatedDecl();
3802  else
3803    FD = cast<FunctionDecl>(D.getAs<Decl>());
3804
3805  CurFunctionNeedsScopeChecking = false;
3806
3807  // See if this is a redefinition.
3808  const FunctionDecl *Definition;
3809  if (FD->getBody(Definition)) {
3810    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3811    Diag(Definition->getLocation(), diag::note_previous_definition);
3812  }
3813
3814  // Builtin functions cannot be defined.
3815  if (unsigned BuiltinID = FD->getBuiltinID()) {
3816    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3817      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3818      FD->setInvalidDecl();
3819    }
3820  }
3821
3822  // The return type of a function definition must be complete
3823  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3824  QualType ResultType = FD->getResultType();
3825  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3826      !FD->isInvalidDecl() &&
3827      RequireCompleteType(FD->getLocation(), ResultType,
3828                          diag::err_func_def_incomplete_result))
3829    FD->setInvalidDecl();
3830
3831  // GNU warning -Wmissing-prototypes:
3832  //   Warn if a global function is defined without a previous
3833  //   prototype declaration. This warning is issued even if the
3834  //   definition itself provides a prototype. The aim is to detect
3835  //   global functions that fail to be declared in header files.
3836  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3837      !FD->isMain()) {
3838    bool MissingPrototype = true;
3839    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3840         Prev; Prev = Prev->getPreviousDeclaration()) {
3841      // Ignore any declarations that occur in function or method
3842      // scope, because they aren't visible from the header.
3843      if (Prev->getDeclContext()->isFunctionOrMethod())
3844        continue;
3845
3846      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3847      break;
3848    }
3849
3850    if (MissingPrototype)
3851      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3852  }
3853
3854  if (FnBodyScope)
3855    PushDeclContext(FnBodyScope, FD);
3856
3857  // Check the validity of our function parameters
3858  CheckParmsForFunctionDef(FD);
3859
3860  // Introduce our parameters into the function scope
3861  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3862    ParmVarDecl *Param = FD->getParamDecl(p);
3863    Param->setOwningFunction(FD);
3864
3865    // If this has an identifier, add it to the scope stack.
3866    if (Param->getIdentifier() && FnBodyScope)
3867      PushOnScopeChains(Param, FnBodyScope);
3868  }
3869
3870  // Checking attributes of current function definition
3871  // dllimport attribute.
3872  if (FD->getAttr<DLLImportAttr>() &&
3873      (!FD->getAttr<DLLExportAttr>())) {
3874    // dllimport attribute cannot be applied to definition.
3875    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3876      Diag(FD->getLocation(),
3877           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3878        << "dllimport";
3879      FD->setInvalidDecl();
3880      return DeclPtrTy::make(FD);
3881    } else {
3882      // If a symbol previously declared dllimport is later defined, the
3883      // attribute is ignored in subsequent references, and a warning is
3884      // emitted.
3885      Diag(FD->getLocation(),
3886           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3887        << FD->getNameAsCString() << "dllimport";
3888    }
3889  }
3890  return DeclPtrTy::make(FD);
3891}
3892
3893Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3894  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3895}
3896
3897Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3898                                              bool IsInstantiation) {
3899  Decl *dcl = D.getAs<Decl>();
3900  Stmt *Body = BodyArg.takeAs<Stmt>();
3901
3902  FunctionDecl *FD = 0;
3903  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3904  if (FunTmpl)
3905    FD = FunTmpl->getTemplatedDecl();
3906  else
3907    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3908
3909  if (FD) {
3910    FD->setBody(Body);
3911    if (FD->isMain())
3912      // C and C++ allow for main to automagically return 0.
3913      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3914      FD->setHasImplicitReturnZero(true);
3915    else
3916      CheckFallThroughForFunctionDef(FD, Body);
3917
3918    if (!FD->isInvalidDecl())
3919      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3920
3921    // C++ [basic.def.odr]p2:
3922    //   [...] A virtual member function is used if it is not pure. [...]
3923    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3924      if (Method->isVirtual() && !Method->isPure())
3925        MarkDeclarationReferenced(Method->getLocation(), Method);
3926
3927    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3928  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3929    assert(MD == getCurMethodDecl() && "Method parsing confused");
3930    MD->setBody(Body);
3931    CheckFallThroughForFunctionDef(MD, Body);
3932    MD->setEndLoc(Body->getLocEnd());
3933
3934    if (!MD->isInvalidDecl())
3935      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3936  } else {
3937    Body->Destroy(Context);
3938    return DeclPtrTy();
3939  }
3940  if (!IsInstantiation)
3941    PopDeclContext();
3942
3943  // Verify and clean out per-function state.
3944
3945  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3946
3947  // Check goto/label use.
3948  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3949       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3950    LabelStmt *L = I->second;
3951
3952    // Verify that we have no forward references left.  If so, there was a goto
3953    // or address of a label taken, but no definition of it.  Label fwd
3954    // definitions are indicated with a null substmt.
3955    if (L->getSubStmt() != 0)
3956      continue;
3957
3958    // Emit error.
3959    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3960
3961    // At this point, we have gotos that use the bogus label.  Stitch it into
3962    // the function body so that they aren't leaked and that the AST is well
3963    // formed.
3964    if (Body == 0) {
3965      // The whole function wasn't parsed correctly, just delete this.
3966      L->Destroy(Context);
3967      continue;
3968    }
3969
3970    // Otherwise, the body is valid: we want to stitch the label decl into the
3971    // function somewhere so that it is properly owned and so that the goto
3972    // has a valid target.  Do this by creating a new compound stmt with the
3973    // label in it.
3974
3975    // Give the label a sub-statement.
3976    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3977
3978    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3979                               cast<CXXTryStmt>(Body)->getTryBlock() :
3980                               cast<CompoundStmt>(Body);
3981    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3982    Elements.push_back(L);
3983    Compound->setStmts(Context, &Elements[0], Elements.size());
3984  }
3985  FunctionLabelMap.clear();
3986
3987  if (!Body) return D;
3988
3989  // Verify that that gotos and switch cases don't jump into scopes illegally.
3990  if (CurFunctionNeedsScopeChecking)
3991    DiagnoseInvalidJumps(Body);
3992
3993  // C++ constructors that have function-try-blocks can't have return
3994  // statements in the handlers of that block. (C++ [except.handle]p14)
3995  // Verify this.
3996  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3997    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3998
3999  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4000    computeBaseOrMembersToDestroy(Destructor);
4001  return D;
4002}
4003
4004/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4005/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4006NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4007                                          IdentifierInfo &II, Scope *S) {
4008  // Before we produce a declaration for an implicitly defined
4009  // function, see whether there was a locally-scoped declaration of
4010  // this name as a function or variable. If so, use that
4011  // (non-visible) declaration, and complain about it.
4012  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4013    = LocallyScopedExternalDecls.find(&II);
4014  if (Pos != LocallyScopedExternalDecls.end()) {
4015    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4016    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4017    return Pos->second;
4018  }
4019
4020  // Extension in C99.  Legal in C90, but warn about it.
4021  if (II.getName().startswith("__builtin_"))
4022    Diag(Loc, diag::warn_builtin_unknown) << &II;
4023  else if (getLangOptions().C99)
4024    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4025  else
4026    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4027
4028  // Set a Declarator for the implicit definition: int foo();
4029  const char *Dummy;
4030  DeclSpec DS;
4031  unsigned DiagID;
4032  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4033  Error = Error; // Silence warning.
4034  assert(!Error && "Error setting up implicit decl!");
4035  Declarator D(DS, Declarator::BlockContext);
4036  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4037                                             0, 0, false, SourceLocation(),
4038                                             false, 0,0,0, Loc, Loc, D),
4039                SourceLocation());
4040  D.SetIdentifier(&II, Loc);
4041
4042  // Insert this function into translation-unit scope.
4043
4044  DeclContext *PrevDC = CurContext;
4045  CurContext = Context.getTranslationUnitDecl();
4046
4047  FunctionDecl *FD =
4048 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4049  FD->setImplicit();
4050
4051  CurContext = PrevDC;
4052
4053  AddKnownFunctionAttributes(FD);
4054
4055  return FD;
4056}
4057
4058/// \brief Adds any function attributes that we know a priori based on
4059/// the declaration of this function.
4060///
4061/// These attributes can apply both to implicitly-declared builtins
4062/// (like __builtin___printf_chk) or to library-declared functions
4063/// like NSLog or printf.
4064void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4065  if (FD->isInvalidDecl())
4066    return;
4067
4068  // If this is a built-in function, map its builtin attributes to
4069  // actual attributes.
4070  if (unsigned BuiltinID = FD->getBuiltinID()) {
4071    // Handle printf-formatting attributes.
4072    unsigned FormatIdx;
4073    bool HasVAListArg;
4074    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4075      if (!FD->getAttr<FormatAttr>())
4076        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4077                                             HasVAListArg ? 0 : FormatIdx + 2));
4078    }
4079
4080    // Mark const if we don't care about errno and that is the only
4081    // thing preventing the function from being const. This allows
4082    // IRgen to use LLVM intrinsics for such functions.
4083    if (!getLangOptions().MathErrno &&
4084        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4085      if (!FD->getAttr<ConstAttr>())
4086        FD->addAttr(::new (Context) ConstAttr());
4087    }
4088
4089    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4090      FD->addAttr(::new (Context) NoReturnAttr());
4091  }
4092
4093  IdentifierInfo *Name = FD->getIdentifier();
4094  if (!Name)
4095    return;
4096  if ((!getLangOptions().CPlusPlus &&
4097       FD->getDeclContext()->isTranslationUnit()) ||
4098      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4099       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4100       LinkageSpecDecl::lang_c)) {
4101    // Okay: this could be a libc/libm/Objective-C function we know
4102    // about.
4103  } else
4104    return;
4105
4106  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4107    // FIXME: NSLog and NSLogv should be target specific
4108    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4109      // FIXME: We known better than our headers.
4110      const_cast<FormatAttr *>(Format)->setType("printf");
4111    } else
4112      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4113                                             Name->isStr("NSLogv") ? 0 : 2));
4114  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4115    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4116    // target-specific builtins, perhaps?
4117    if (!FD->getAttr<FormatAttr>())
4118      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4119                                             Name->isStr("vasprintf") ? 0 : 3));
4120  }
4121}
4122
4123TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4124                                    DeclaratorInfo *DInfo) {
4125  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4126  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4127
4128  if (!DInfo) {
4129    assert(D.isInvalidType() && "no declarator info for valid type");
4130    DInfo = Context.getTrivialDeclaratorInfo(T);
4131  }
4132
4133  // Scope manipulation handled by caller.
4134  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4135                                           D.getIdentifierLoc(),
4136                                           D.getIdentifier(),
4137                                           DInfo);
4138
4139  if (const TagType *TT = T->getAs<TagType>()) {
4140    TagDecl *TD = TT->getDecl();
4141
4142    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4143    // keep track of the TypedefDecl.
4144    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4145      TD->setTypedefForAnonDecl(NewTD);
4146  }
4147
4148  if (D.isInvalidType())
4149    NewTD->setInvalidDecl();
4150  return NewTD;
4151}
4152
4153
4154/// \brief Determine whether a tag with a given kind is acceptable
4155/// as a redeclaration of the given tag declaration.
4156///
4157/// \returns true if the new tag kind is acceptable, false otherwise.
4158bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4159                                        TagDecl::TagKind NewTag,
4160                                        SourceLocation NewTagLoc,
4161                                        const IdentifierInfo &Name) {
4162  // C++ [dcl.type.elab]p3:
4163  //   The class-key or enum keyword present in the
4164  //   elaborated-type-specifier shall agree in kind with the
4165  //   declaration to which the name in theelaborated-type-specifier
4166  //   refers. This rule also applies to the form of
4167  //   elaborated-type-specifier that declares a class-name or
4168  //   friend class since it can be construed as referring to the
4169  //   definition of the class. Thus, in any
4170  //   elaborated-type-specifier, the enum keyword shall be used to
4171  //   refer to an enumeration (7.2), the union class-keyshall be
4172  //   used to refer to a union (clause 9), and either the class or
4173  //   struct class-key shall be used to refer to a class (clause 9)
4174  //   declared using the class or struct class-key.
4175  TagDecl::TagKind OldTag = Previous->getTagKind();
4176  if (OldTag == NewTag)
4177    return true;
4178
4179  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4180      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4181    // Warn about the struct/class tag mismatch.
4182    bool isTemplate = false;
4183    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4184      isTemplate = Record->getDescribedClassTemplate();
4185
4186    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4187      << (NewTag == TagDecl::TK_class)
4188      << isTemplate << &Name
4189      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4190                              OldTag == TagDecl::TK_class? "class" : "struct");
4191    Diag(Previous->getLocation(), diag::note_previous_use);
4192    return true;
4193  }
4194  return false;
4195}
4196
4197/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4198/// former case, Name will be non-null.  In the later case, Name will be null.
4199/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4200/// reference/declaration/definition of a tag.
4201Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4202                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4203                               IdentifierInfo *Name, SourceLocation NameLoc,
4204                               AttributeList *Attr, AccessSpecifier AS,
4205                               MultiTemplateParamsArg TemplateParameterLists,
4206                               bool &OwnedDecl, bool &IsDependent) {
4207  // If this is not a definition, it must have a name.
4208  assert((Name != 0 || TUK == TUK_Definition) &&
4209         "Nameless record must be a definition!");
4210
4211  OwnedDecl = false;
4212  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4213
4214  // FIXME: Check explicit specializations more carefully.
4215  bool isExplicitSpecialization = false;
4216  if (TUK != TUK_Reference) {
4217    if (TemplateParameterList *TemplateParams
4218          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4219                        (TemplateParameterList**)TemplateParameterLists.get(),
4220                                              TemplateParameterLists.size(),
4221                                                    isExplicitSpecialization)) {
4222      if (TemplateParams->size() > 0) {
4223        // This is a declaration or definition of a class template (which may
4224        // be a member of another template).
4225        OwnedDecl = false;
4226        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4227                                               SS, Name, NameLoc, Attr,
4228                                               TemplateParams,
4229                                               AS);
4230        TemplateParameterLists.release();
4231        return Result.get();
4232      } else {
4233        // The "template<>" header is extraneous.
4234        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4235          << ElaboratedType::getNameForTagKind(Kind) << Name;
4236        isExplicitSpecialization = true;
4237      }
4238    }
4239
4240    TemplateParameterLists.release();
4241  }
4242
4243  DeclContext *SearchDC = CurContext;
4244  DeclContext *DC = CurContext;
4245  NamedDecl *PrevDecl = 0;
4246  bool isStdBadAlloc = false;
4247  bool Invalid = false;
4248
4249  bool RedeclarationOnly = (TUK != TUK_Reference);
4250
4251  if (Name && SS.isNotEmpty()) {
4252    // We have a nested-name tag ('struct foo::bar').
4253
4254    // Check for invalid 'foo::'.
4255    if (SS.isInvalid()) {
4256      Name = 0;
4257      goto CreateNewDecl;
4258    }
4259
4260    // If this is a friend or a reference to a class in a dependent
4261    // context, don't try to make a decl for it.
4262    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4263      DC = computeDeclContext(SS, false);
4264      if (!DC) {
4265        IsDependent = true;
4266        return DeclPtrTy();
4267      }
4268    }
4269
4270    if (RequireCompleteDeclContext(SS))
4271      return DeclPtrTy::make((Decl *)0);
4272
4273    DC = computeDeclContext(SS, true);
4274    SearchDC = DC;
4275    // Look-up name inside 'foo::'.
4276    LookupResult R;
4277    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4278
4279    if (R.isAmbiguous()) {
4280      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4281      return DeclPtrTy();
4282    }
4283
4284    if (R.getKind() == LookupResult::Found)
4285      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4286
4287    // A tag 'foo::bar' must already exist.
4288    if (!PrevDecl) {
4289      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4290      Name = 0;
4291      Invalid = true;
4292      goto CreateNewDecl;
4293    }
4294  } else if (Name) {
4295    // If this is a named struct, check to see if there was a previous forward
4296    // declaration or definition.
4297    // FIXME: We're looking into outer scopes here, even when we
4298    // shouldn't be. Doing so can result in ambiguities that we
4299    // shouldn't be diagnosing.
4300    LookupResult R;
4301    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4302    if (R.isAmbiguous()) {
4303      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4304      // FIXME: This is not best way to recover from case like:
4305      //
4306      // struct S s;
4307      //
4308      // causes needless "incomplete type" error later.
4309      Name = 0;
4310      PrevDecl = 0;
4311      Invalid = true;
4312    } else
4313      PrevDecl = R.getAsSingleDecl(Context);
4314
4315    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4316      // FIXME: This makes sure that we ignore the contexts associated
4317      // with C structs, unions, and enums when looking for a matching
4318      // tag declaration or definition. See the similar lookup tweak
4319      // in Sema::LookupName; is there a better way to deal with this?
4320      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4321        SearchDC = SearchDC->getParent();
4322    }
4323  }
4324
4325  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4326    // Maybe we will complain about the shadowed template parameter.
4327    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4328    // Just pretend that we didn't see the previous declaration.
4329    PrevDecl = 0;
4330  }
4331
4332  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4333      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4334    // This is a declaration of or a reference to "std::bad_alloc".
4335    isStdBadAlloc = true;
4336
4337    if (!PrevDecl && StdBadAlloc) {
4338      // std::bad_alloc has been implicitly declared (but made invisible to
4339      // name lookup). Fill in this implicit declaration as the previous
4340      // declaration, so that the declarations get chained appropriately.
4341      PrevDecl = StdBadAlloc;
4342    }
4343  }
4344
4345  if (PrevDecl) {
4346    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4347      // If this is a use of a previous tag, or if the tag is already declared
4348      // in the same scope (so that the definition/declaration completes or
4349      // rementions the tag), reuse the decl.
4350      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4351          isDeclInScope(PrevDecl, SearchDC, S)) {
4352        // Make sure that this wasn't declared as an enum and now used as a
4353        // struct or something similar.
4354        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4355          bool SafeToContinue
4356            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4357               Kind != TagDecl::TK_enum);
4358          if (SafeToContinue)
4359            Diag(KWLoc, diag::err_use_with_wrong_tag)
4360              << Name
4361              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4362                                                  PrevTagDecl->getKindName());
4363          else
4364            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4365          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4366
4367          if (SafeToContinue)
4368            Kind = PrevTagDecl->getTagKind();
4369          else {
4370            // Recover by making this an anonymous redefinition.
4371            Name = 0;
4372            PrevDecl = 0;
4373            Invalid = true;
4374          }
4375        }
4376
4377        if (!Invalid) {
4378          // If this is a use, just return the declaration we found.
4379
4380          // FIXME: In the future, return a variant or some other clue
4381          // for the consumer of this Decl to know it doesn't own it.
4382          // For our current ASTs this shouldn't be a problem, but will
4383          // need to be changed with DeclGroups.
4384          if (TUK == TUK_Reference || TUK == TUK_Friend)
4385            return DeclPtrTy::make(PrevDecl);
4386
4387          // Diagnose attempts to redefine a tag.
4388          if (TUK == TUK_Definition) {
4389            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4390              // If we're defining a specialization and the previous definition
4391              // is from an implicit instantiation, don't emit an error
4392              // here; we'll catch this in the general case below.
4393              if (!isExplicitSpecialization ||
4394                  !isa<CXXRecordDecl>(Def) ||
4395                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4396                                               == TSK_ExplicitSpecialization) {
4397                Diag(NameLoc, diag::err_redefinition) << Name;
4398                Diag(Def->getLocation(), diag::note_previous_definition);
4399                // If this is a redefinition, recover by making this
4400                // struct be anonymous, which will make any later
4401                // references get the previous definition.
4402                Name = 0;
4403                PrevDecl = 0;
4404                Invalid = true;
4405              }
4406            } else {
4407              // If the type is currently being defined, complain
4408              // about a nested redefinition.
4409              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4410              if (Tag->isBeingDefined()) {
4411                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4412                Diag(PrevTagDecl->getLocation(),
4413                     diag::note_previous_definition);
4414                Name = 0;
4415                PrevDecl = 0;
4416                Invalid = true;
4417              }
4418            }
4419
4420            // Okay, this is definition of a previously declared or referenced
4421            // tag PrevDecl. We're going to create a new Decl for it.
4422          }
4423        }
4424        // If we get here we have (another) forward declaration or we
4425        // have a definition.  Just create a new decl.
4426
4427      } else {
4428        // If we get here, this is a definition of a new tag type in a nested
4429        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4430        // new decl/type.  We set PrevDecl to NULL so that the entities
4431        // have distinct types.
4432        PrevDecl = 0;
4433      }
4434      // If we get here, we're going to create a new Decl. If PrevDecl
4435      // is non-NULL, it's a definition of the tag declared by
4436      // PrevDecl. If it's NULL, we have a new definition.
4437    } else {
4438      // PrevDecl is a namespace, template, or anything else
4439      // that lives in the IDNS_Tag identifier namespace.
4440      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4441        // The tag name clashes with a namespace name, issue an error and
4442        // recover by making this tag be anonymous.
4443        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4444        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4445        Name = 0;
4446        PrevDecl = 0;
4447        Invalid = true;
4448      } else {
4449        // The existing declaration isn't relevant to us; we're in a
4450        // new scope, so clear out the previous declaration.
4451        PrevDecl = 0;
4452      }
4453    }
4454  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4455             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4456    // C++ [basic.scope.pdecl]p5:
4457    //   -- for an elaborated-type-specifier of the form
4458    //
4459    //          class-key identifier
4460    //
4461    //      if the elaborated-type-specifier is used in the
4462    //      decl-specifier-seq or parameter-declaration-clause of a
4463    //      function defined in namespace scope, the identifier is
4464    //      declared as a class-name in the namespace that contains
4465    //      the declaration; otherwise, except as a friend
4466    //      declaration, the identifier is declared in the smallest
4467    //      non-class, non-function-prototype scope that contains the
4468    //      declaration.
4469    //
4470    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4471    // C structs and unions.
4472    //
4473    // GNU C also supports this behavior as part of its incomplete
4474    // enum types extension, while GNU C++ does not.
4475    //
4476    // Find the context where we'll be declaring the tag.
4477    // FIXME: We would like to maintain the current DeclContext as the
4478    // lexical context,
4479    while (SearchDC->isRecord())
4480      SearchDC = SearchDC->getParent();
4481
4482    // Find the scope where we'll be declaring the tag.
4483    while (S->isClassScope() ||
4484           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4485           ((S->getFlags() & Scope::DeclScope) == 0) ||
4486           (S->getEntity() &&
4487            ((DeclContext *)S->getEntity())->isTransparentContext()))
4488      S = S->getParent();
4489
4490  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4491    // C++ [namespace.memdef]p3:
4492    //   If a friend declaration in a non-local class first declares a
4493    //   class or function, the friend class or function is a member of
4494    //   the innermost enclosing namespace.
4495    while (!SearchDC->isFileContext())
4496      SearchDC = SearchDC->getParent();
4497
4498    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4499    while (S->getEntity() != SearchDC)
4500      S = S->getParent();
4501  }
4502
4503CreateNewDecl:
4504
4505  // If there is an identifier, use the location of the identifier as the
4506  // location of the decl, otherwise use the location of the struct/union
4507  // keyword.
4508  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4509
4510  // Otherwise, create a new declaration. If there is a previous
4511  // declaration of the same entity, the two will be linked via
4512  // PrevDecl.
4513  TagDecl *New;
4514
4515  if (Kind == TagDecl::TK_enum) {
4516    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4517    // enum X { A, B, C } D;    D should chain to X.
4518    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4519                           cast_or_null<EnumDecl>(PrevDecl));
4520    // If this is an undefined enum, warn.
4521    if (TUK != TUK_Definition && !Invalid)  {
4522      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4523                                              : diag::ext_forward_ref_enum;
4524      Diag(Loc, DK);
4525    }
4526  } else {
4527    // struct/union/class
4528
4529    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4530    // struct X { int A; } D;    D should chain to X.
4531    if (getLangOptions().CPlusPlus) {
4532      // FIXME: Look for a way to use RecordDecl for simple structs.
4533      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4534                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4535
4536      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4537        StdBadAlloc = cast<CXXRecordDecl>(New);
4538    } else
4539      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4540                               cast_or_null<RecordDecl>(PrevDecl));
4541  }
4542
4543  if (Kind != TagDecl::TK_enum) {
4544    // Handle #pragma pack: if the #pragma pack stack has non-default
4545    // alignment, make up a packed attribute for this decl. These
4546    // attributes are checked when the ASTContext lays out the
4547    // structure.
4548    //
4549    // It is important for implementing the correct semantics that this
4550    // happen here (in act on tag decl). The #pragma pack stack is
4551    // maintained as a result of parser callbacks which can occur at
4552    // many points during the parsing of a struct declaration (because
4553    // the #pragma tokens are effectively skipped over during the
4554    // parsing of the struct).
4555    if (unsigned Alignment = getPragmaPackAlignment())
4556      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4557  }
4558
4559  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4560    // C++ [dcl.typedef]p3:
4561    //   [...] Similarly, in a given scope, a class or enumeration
4562    //   shall not be declared with the same name as a typedef-name
4563    //   that is declared in that scope and refers to a type other
4564    //   than the class or enumeration itself.
4565    LookupResult Lookup;
4566    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4567    TypedefDecl *PrevTypedef = 0;
4568    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4569      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4570
4571    NamedDecl *PrevTypedefNamed = PrevTypedef;
4572    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4573        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4574          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4575      Diag(Loc, diag::err_tag_definition_of_typedef)
4576        << Context.getTypeDeclType(New)
4577        << PrevTypedef->getUnderlyingType();
4578      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4579      Invalid = true;
4580    }
4581  }
4582
4583  // If this is a specialization of a member class (of a class template),
4584  // check the specialization.
4585  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4586    Invalid = true;
4587
4588  if (Invalid)
4589    New->setInvalidDecl();
4590
4591  if (Attr)
4592    ProcessDeclAttributeList(S, New, Attr);
4593
4594  // If we're declaring or defining a tag in function prototype scope
4595  // in C, note that this type can only be used within the function.
4596  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4597    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4598
4599  // Set the lexical context. If the tag has a C++ scope specifier, the
4600  // lexical context will be different from the semantic context.
4601  New->setLexicalDeclContext(CurContext);
4602
4603  // Mark this as a friend decl if applicable.
4604  if (TUK == TUK_Friend)
4605    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4606
4607  // Set the access specifier.
4608  if (!Invalid && TUK != TUK_Friend)
4609    SetMemberAccessSpecifier(New, PrevDecl, AS);
4610
4611  if (TUK == TUK_Definition)
4612    New->startDefinition();
4613
4614  // If this has an identifier, add it to the scope stack.
4615  if (TUK == TUK_Friend) {
4616    // We might be replacing an existing declaration in the lookup tables;
4617    // if so, borrow its access specifier.
4618    if (PrevDecl)
4619      New->setAccess(PrevDecl->getAccess());
4620
4621    // Friend tag decls are visible in fairly strange ways.
4622    if (!CurContext->isDependentContext()) {
4623      DeclContext *DC = New->getDeclContext()->getLookupContext();
4624      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4625      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4626        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4627    }
4628  } else if (Name) {
4629    S = getNonFieldDeclScope(S);
4630    PushOnScopeChains(New, S);
4631  } else {
4632    CurContext->addDecl(New);
4633  }
4634
4635  // If this is the C FILE type, notify the AST context.
4636  if (IdentifierInfo *II = New->getIdentifier())
4637    if (!New->isInvalidDecl() &&
4638        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4639        II->isStr("FILE"))
4640      Context.setFILEDecl(New);
4641
4642  OwnedDecl = true;
4643  return DeclPtrTy::make(New);
4644}
4645
4646void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4647  AdjustDeclIfTemplate(TagD);
4648  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4649
4650  // Enter the tag context.
4651  PushDeclContext(S, Tag);
4652
4653  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4654    FieldCollector->StartClass();
4655
4656    if (Record->getIdentifier()) {
4657      // C++ [class]p2:
4658      //   [...] The class-name is also inserted into the scope of the
4659      //   class itself; this is known as the injected-class-name. For
4660      //   purposes of access checking, the injected-class-name is treated
4661      //   as if it were a public member name.
4662      CXXRecordDecl *InjectedClassName
4663        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4664                                CurContext, Record->getLocation(),
4665                                Record->getIdentifier(),
4666                                Record->getTagKeywordLoc(),
4667                                Record);
4668      InjectedClassName->setImplicit();
4669      InjectedClassName->setAccess(AS_public);
4670      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4671        InjectedClassName->setDescribedClassTemplate(Template);
4672      PushOnScopeChains(InjectedClassName, S);
4673      assert(InjectedClassName->isInjectedClassName() &&
4674             "Broken injected-class-name");
4675    }
4676  }
4677}
4678
4679void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4680                                    SourceLocation RBraceLoc) {
4681  AdjustDeclIfTemplate(TagD);
4682  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4683  Tag->setRBraceLoc(RBraceLoc);
4684
4685  if (isa<CXXRecordDecl>(Tag))
4686    FieldCollector->FinishClass();
4687
4688  // Exit this scope of this tag's definition.
4689  PopDeclContext();
4690
4691  // Notify the consumer that we've defined a tag.
4692  Consumer.HandleTagDeclDefinition(Tag);
4693}
4694
4695// Note that FieldName may be null for anonymous bitfields.
4696bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4697                          QualType FieldTy, const Expr *BitWidth,
4698                          bool *ZeroWidth) {
4699  // Default to true; that shouldn't confuse checks for emptiness
4700  if (ZeroWidth)
4701    *ZeroWidth = true;
4702
4703  // C99 6.7.2.1p4 - verify the field type.
4704  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4705  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4706    // Handle incomplete types with specific error.
4707    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4708      return true;
4709    if (FieldName)
4710      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4711        << FieldName << FieldTy << BitWidth->getSourceRange();
4712    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4713      << FieldTy << BitWidth->getSourceRange();
4714  }
4715
4716  // If the bit-width is type- or value-dependent, don't try to check
4717  // it now.
4718  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4719    return false;
4720
4721  llvm::APSInt Value;
4722  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4723    return true;
4724
4725  if (Value != 0 && ZeroWidth)
4726    *ZeroWidth = false;
4727
4728  // Zero-width bitfield is ok for anonymous field.
4729  if (Value == 0 && FieldName)
4730    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4731
4732  if (Value.isSigned() && Value.isNegative()) {
4733    if (FieldName)
4734      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4735               << FieldName << Value.toString(10);
4736    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4737      << Value.toString(10);
4738  }
4739
4740  if (!FieldTy->isDependentType()) {
4741    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4742    if (Value.getZExtValue() > TypeSize) {
4743      if (FieldName)
4744        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4745          << FieldName << (unsigned)TypeSize;
4746      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4747        << (unsigned)TypeSize;
4748    }
4749  }
4750
4751  return false;
4752}
4753
4754/// ActOnField - Each field of a struct/union/class is passed into this in order
4755/// to create a FieldDecl object for it.
4756Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4757                                 SourceLocation DeclStart,
4758                                 Declarator &D, ExprTy *BitfieldWidth) {
4759  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4760                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4761                               AS_public);
4762  return DeclPtrTy::make(Res);
4763}
4764
4765/// HandleField - Analyze a field of a C struct or a C++ data member.
4766///
4767FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4768                             SourceLocation DeclStart,
4769                             Declarator &D, Expr *BitWidth,
4770                             AccessSpecifier AS) {
4771  IdentifierInfo *II = D.getIdentifier();
4772  SourceLocation Loc = DeclStart;
4773  if (II) Loc = D.getIdentifierLoc();
4774
4775  DeclaratorInfo *DInfo = 0;
4776  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4777  if (getLangOptions().CPlusPlus)
4778    CheckExtraCXXDefaultArguments(D);
4779
4780  DiagnoseFunctionSpecifiers(D);
4781
4782  if (D.getDeclSpec().isThreadSpecified())
4783    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4784
4785  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4786
4787  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4788    // Maybe we will complain about the shadowed template parameter.
4789    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4790    // Just pretend that we didn't see the previous declaration.
4791    PrevDecl = 0;
4792  }
4793
4794  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4795    PrevDecl = 0;
4796
4797  bool Mutable
4798    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4799  SourceLocation TSSL = D.getSourceRange().getBegin();
4800  FieldDecl *NewFD
4801    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4802                     AS, PrevDecl, &D);
4803  if (NewFD->isInvalidDecl() && PrevDecl) {
4804    // Don't introduce NewFD into scope; there's already something
4805    // with the same name in the same scope.
4806  } else if (II) {
4807    PushOnScopeChains(NewFD, S);
4808  } else
4809    Record->addDecl(NewFD);
4810
4811  return NewFD;
4812}
4813
4814/// \brief Build a new FieldDecl and check its well-formedness.
4815///
4816/// This routine builds a new FieldDecl given the fields name, type,
4817/// record, etc. \p PrevDecl should refer to any previous declaration
4818/// with the same name and in the same scope as the field to be
4819/// created.
4820///
4821/// \returns a new FieldDecl.
4822///
4823/// \todo The Declarator argument is a hack. It will be removed once
4824FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4825                                DeclaratorInfo *DInfo,
4826                                RecordDecl *Record, SourceLocation Loc,
4827                                bool Mutable, Expr *BitWidth,
4828                                SourceLocation TSSL,
4829                                AccessSpecifier AS, NamedDecl *PrevDecl,
4830                                Declarator *D) {
4831  IdentifierInfo *II = Name.getAsIdentifierInfo();
4832  bool InvalidDecl = false;
4833  if (D) InvalidDecl = D->isInvalidType();
4834
4835  // If we receive a broken type, recover by assuming 'int' and
4836  // marking this declaration as invalid.
4837  if (T.isNull()) {
4838    InvalidDecl = true;
4839    T = Context.IntTy;
4840  }
4841
4842  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4843  // than a variably modified type.
4844  if (T->isVariablyModifiedType()) {
4845    bool SizeIsNegative;
4846    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4847                                                           SizeIsNegative);
4848    if (!FixedTy.isNull()) {
4849      Diag(Loc, diag::warn_illegal_constant_array_size);
4850      T = FixedTy;
4851    } else {
4852      if (SizeIsNegative)
4853        Diag(Loc, diag::err_typecheck_negative_array_size);
4854      else
4855        Diag(Loc, diag::err_typecheck_field_variable_size);
4856      InvalidDecl = true;
4857    }
4858  }
4859
4860  // Fields can not have abstract class types
4861  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4862                             AbstractFieldType))
4863    InvalidDecl = true;
4864
4865  bool ZeroWidth = false;
4866  // If this is declared as a bit-field, check the bit-field.
4867  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4868    InvalidDecl = true;
4869    DeleteExpr(BitWidth);
4870    BitWidth = 0;
4871    ZeroWidth = false;
4872  }
4873
4874  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4875                                       BitWidth, Mutable);
4876  if (InvalidDecl)
4877    NewFD->setInvalidDecl();
4878
4879  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4880    Diag(Loc, diag::err_duplicate_member) << II;
4881    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4882    NewFD->setInvalidDecl();
4883  }
4884
4885  if (getLangOptions().CPlusPlus) {
4886    QualType EltTy = Context.getBaseElementType(T);
4887
4888    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4889
4890    if (!T->isPODType())
4891      CXXRecord->setPOD(false);
4892    if (!ZeroWidth)
4893      CXXRecord->setEmpty(false);
4894
4895    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4896      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4897
4898      if (!RDecl->hasTrivialConstructor())
4899        CXXRecord->setHasTrivialConstructor(false);
4900      if (!RDecl->hasTrivialCopyConstructor())
4901        CXXRecord->setHasTrivialCopyConstructor(false);
4902      if (!RDecl->hasTrivialCopyAssignment())
4903        CXXRecord->setHasTrivialCopyAssignment(false);
4904      if (!RDecl->hasTrivialDestructor())
4905        CXXRecord->setHasTrivialDestructor(false);
4906
4907      // C++ 9.5p1: An object of a class with a non-trivial
4908      // constructor, a non-trivial copy constructor, a non-trivial
4909      // destructor, or a non-trivial copy assignment operator
4910      // cannot be a member of a union, nor can an array of such
4911      // objects.
4912      // TODO: C++0x alters this restriction significantly.
4913      if (Record->isUnion()) {
4914        // We check for copy constructors before constructors
4915        // because otherwise we'll never get complaints about
4916        // copy constructors.
4917
4918        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4919
4920        CXXSpecialMember member;
4921        if (!RDecl->hasTrivialCopyConstructor())
4922          member = CXXCopyConstructor;
4923        else if (!RDecl->hasTrivialConstructor())
4924          member = CXXDefaultConstructor;
4925        else if (!RDecl->hasTrivialCopyAssignment())
4926          member = CXXCopyAssignment;
4927        else if (!RDecl->hasTrivialDestructor())
4928          member = CXXDestructor;
4929        else
4930          member = invalid;
4931
4932        if (member != invalid) {
4933          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4934          DiagnoseNontrivial(RT, member);
4935          NewFD->setInvalidDecl();
4936        }
4937      }
4938    }
4939  }
4940
4941  // FIXME: We need to pass in the attributes given an AST
4942  // representation, not a parser representation.
4943  if (D)
4944    // FIXME: What to pass instead of TUScope?
4945    ProcessDeclAttributes(TUScope, NewFD, *D);
4946
4947  if (T.isObjCGCWeak())
4948    Diag(Loc, diag::warn_attribute_weak_on_field);
4949
4950  NewFD->setAccess(AS);
4951
4952  // C++ [dcl.init.aggr]p1:
4953  //   An aggregate is an array or a class (clause 9) with [...] no
4954  //   private or protected non-static data members (clause 11).
4955  // A POD must be an aggregate.
4956  if (getLangOptions().CPlusPlus &&
4957      (AS == AS_private || AS == AS_protected)) {
4958    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4959    CXXRecord->setAggregate(false);
4960    CXXRecord->setPOD(false);
4961  }
4962
4963  return NewFD;
4964}
4965
4966/// DiagnoseNontrivial - Given that a class has a non-trivial
4967/// special member, figure out why.
4968void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4969  QualType QT(T, 0U);
4970  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4971
4972  // Check whether the member was user-declared.
4973  switch (member) {
4974  case CXXDefaultConstructor:
4975    if (RD->hasUserDeclaredConstructor()) {
4976      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4977      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
4978        const FunctionDecl *body = 0;
4979        ci->getBody(body);
4980        if (!body ||
4981            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
4982          SourceLocation CtorLoc = ci->getLocation();
4983          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4984          return;
4985        }
4986      }
4987
4988      assert(0 && "found no user-declared constructors");
4989      return;
4990    }
4991    break;
4992
4993  case CXXCopyConstructor:
4994    if (RD->hasUserDeclaredCopyConstructor()) {
4995      SourceLocation CtorLoc =
4996        RD->getCopyConstructor(Context, 0)->getLocation();
4997      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4998      return;
4999    }
5000    break;
5001
5002  case CXXCopyAssignment:
5003    if (RD->hasUserDeclaredCopyAssignment()) {
5004      // FIXME: this should use the location of the copy
5005      // assignment, not the type.
5006      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5007      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5008      return;
5009    }
5010    break;
5011
5012  case CXXDestructor:
5013    if (RD->hasUserDeclaredDestructor()) {
5014      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5015      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5016      return;
5017    }
5018    break;
5019  }
5020
5021  typedef CXXRecordDecl::base_class_iterator base_iter;
5022
5023  // Virtual bases and members inhibit trivial copying/construction,
5024  // but not trivial destruction.
5025  if (member != CXXDestructor) {
5026    // Check for virtual bases.  vbases includes indirect virtual bases,
5027    // so we just iterate through the direct bases.
5028    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5029      if (bi->isVirtual()) {
5030        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5031        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5032        return;
5033      }
5034
5035    // Check for virtual methods.
5036    typedef CXXRecordDecl::method_iterator meth_iter;
5037    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5038         ++mi) {
5039      if (mi->isVirtual()) {
5040        SourceLocation MLoc = mi->getSourceRange().getBegin();
5041        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5042        return;
5043      }
5044    }
5045  }
5046
5047  bool (CXXRecordDecl::*hasTrivial)() const;
5048  switch (member) {
5049  case CXXDefaultConstructor:
5050    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5051  case CXXCopyConstructor:
5052    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5053  case CXXCopyAssignment:
5054    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5055  case CXXDestructor:
5056    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5057  default:
5058    assert(0 && "unexpected special member"); return;
5059  }
5060
5061  // Check for nontrivial bases (and recurse).
5062  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5063    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5064    assert(BaseRT && "Don't know how to handle dependent bases");
5065    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5066    if (!(BaseRecTy->*hasTrivial)()) {
5067      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5068      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5069      DiagnoseNontrivial(BaseRT, member);
5070      return;
5071    }
5072  }
5073
5074  // Check for nontrivial members (and recurse).
5075  typedef RecordDecl::field_iterator field_iter;
5076  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5077       ++fi) {
5078    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5079    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5080      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5081
5082      if (!(EltRD->*hasTrivial)()) {
5083        SourceLocation FLoc = (*fi)->getLocation();
5084        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5085        DiagnoseNontrivial(EltRT, member);
5086        return;
5087      }
5088    }
5089  }
5090
5091  assert(0 && "found no explanation for non-trivial member");
5092}
5093
5094/// TranslateIvarVisibility - Translate visibility from a token ID to an
5095///  AST enum value.
5096static ObjCIvarDecl::AccessControl
5097TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5098  switch (ivarVisibility) {
5099  default: assert(0 && "Unknown visitibility kind");
5100  case tok::objc_private: return ObjCIvarDecl::Private;
5101  case tok::objc_public: return ObjCIvarDecl::Public;
5102  case tok::objc_protected: return ObjCIvarDecl::Protected;
5103  case tok::objc_package: return ObjCIvarDecl::Package;
5104  }
5105}
5106
5107/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5108/// in order to create an IvarDecl object for it.
5109Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5110                                SourceLocation DeclStart,
5111                                DeclPtrTy IntfDecl,
5112                                Declarator &D, ExprTy *BitfieldWidth,
5113                                tok::ObjCKeywordKind Visibility) {
5114
5115  IdentifierInfo *II = D.getIdentifier();
5116  Expr *BitWidth = (Expr*)BitfieldWidth;
5117  SourceLocation Loc = DeclStart;
5118  if (II) Loc = D.getIdentifierLoc();
5119
5120  // FIXME: Unnamed fields can be handled in various different ways, for
5121  // example, unnamed unions inject all members into the struct namespace!
5122
5123  DeclaratorInfo *DInfo = 0;
5124  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5125
5126  if (BitWidth) {
5127    // 6.7.2.1p3, 6.7.2.1p4
5128    if (VerifyBitField(Loc, II, T, BitWidth)) {
5129      D.setInvalidType();
5130      DeleteExpr(BitWidth);
5131      BitWidth = 0;
5132    }
5133  } else {
5134    // Not a bitfield.
5135
5136    // validate II.
5137
5138  }
5139
5140  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5141  // than a variably modified type.
5142  if (T->isVariablyModifiedType()) {
5143    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5144    D.setInvalidType();
5145  }
5146
5147  // Get the visibility (access control) for this ivar.
5148  ObjCIvarDecl::AccessControl ac =
5149    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5150                                        : ObjCIvarDecl::None;
5151  // Must set ivar's DeclContext to its enclosing interface.
5152  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5153  DeclContext *EnclosingContext;
5154  if (ObjCImplementationDecl *IMPDecl =
5155      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5156    // Case of ivar declared in an implementation. Context is that of its class.
5157    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5158    assert(IDecl && "No class- ActOnIvar");
5159    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5160  } else
5161    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5162  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5163
5164  // Construct the decl.
5165  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5166                                             EnclosingContext, Loc, II, T,
5167                                             DInfo, ac, (Expr *)BitfieldWidth);
5168
5169  if (II) {
5170    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5171    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5172        && !isa<TagDecl>(PrevDecl)) {
5173      Diag(Loc, diag::err_duplicate_member) << II;
5174      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5175      NewID->setInvalidDecl();
5176    }
5177  }
5178
5179  // Process attributes attached to the ivar.
5180  ProcessDeclAttributes(S, NewID, D);
5181
5182  if (D.isInvalidType())
5183    NewID->setInvalidDecl();
5184
5185  if (II) {
5186    // FIXME: When interfaces are DeclContexts, we'll need to add
5187    // these to the interface.
5188    S->AddDecl(DeclPtrTy::make(NewID));
5189    IdResolver.AddDecl(NewID);
5190  }
5191
5192  return DeclPtrTy::make(NewID);
5193}
5194
5195void Sema::ActOnFields(Scope* S,
5196                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5197                       DeclPtrTy *Fields, unsigned NumFields,
5198                       SourceLocation LBrac, SourceLocation RBrac,
5199                       AttributeList *Attr) {
5200  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5201  assert(EnclosingDecl && "missing record or interface decl");
5202
5203  // If the decl this is being inserted into is invalid, then it may be a
5204  // redeclaration or some other bogus case.  Don't try to add fields to it.
5205  if (EnclosingDecl->isInvalidDecl()) {
5206    // FIXME: Deallocate fields?
5207    return;
5208  }
5209
5210
5211  // Verify that all the fields are okay.
5212  unsigned NumNamedMembers = 0;
5213  llvm::SmallVector<FieldDecl*, 32> RecFields;
5214
5215  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5216  for (unsigned i = 0; i != NumFields; ++i) {
5217    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5218
5219    // Get the type for the field.
5220    Type *FDTy = FD->getType().getTypePtr();
5221
5222    if (!FD->isAnonymousStructOrUnion()) {
5223      // Remember all fields written by the user.
5224      RecFields.push_back(FD);
5225    }
5226
5227    // If the field is already invalid for some reason, don't emit more
5228    // diagnostics about it.
5229    if (FD->isInvalidDecl())
5230      continue;
5231
5232    // C99 6.7.2.1p2:
5233    //   A structure or union shall not contain a member with
5234    //   incomplete or function type (hence, a structure shall not
5235    //   contain an instance of itself, but may contain a pointer to
5236    //   an instance of itself), except that the last member of a
5237    //   structure with more than one named member may have incomplete
5238    //   array type; such a structure (and any union containing,
5239    //   possibly recursively, a member that is such a structure)
5240    //   shall not be a member of a structure or an element of an
5241    //   array.
5242    if (FDTy->isFunctionType()) {
5243      // Field declared as a function.
5244      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5245        << FD->getDeclName();
5246      FD->setInvalidDecl();
5247      EnclosingDecl->setInvalidDecl();
5248      continue;
5249    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5250               Record && Record->isStruct()) {
5251      // Flexible array member.
5252      if (NumNamedMembers < 1) {
5253        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5254          << FD->getDeclName();
5255        FD->setInvalidDecl();
5256        EnclosingDecl->setInvalidDecl();
5257        continue;
5258      }
5259      // Okay, we have a legal flexible array member at the end of the struct.
5260      if (Record)
5261        Record->setHasFlexibleArrayMember(true);
5262    } else if (!FDTy->isDependentType() &&
5263               RequireCompleteType(FD->getLocation(), FD->getType(),
5264                                   diag::err_field_incomplete)) {
5265      // Incomplete type
5266      FD->setInvalidDecl();
5267      EnclosingDecl->setInvalidDecl();
5268      continue;
5269    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5270      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5271        // If this is a member of a union, then entire union becomes "flexible".
5272        if (Record && Record->isUnion()) {
5273          Record->setHasFlexibleArrayMember(true);
5274        } else {
5275          // If this is a struct/class and this is not the last element, reject
5276          // it.  Note that GCC supports variable sized arrays in the middle of
5277          // structures.
5278          if (i != NumFields-1)
5279            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5280              << FD->getDeclName() << FD->getType();
5281          else {
5282            // We support flexible arrays at the end of structs in
5283            // other structs as an extension.
5284            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5285              << FD->getDeclName();
5286            if (Record)
5287              Record->setHasFlexibleArrayMember(true);
5288          }
5289        }
5290      }
5291      if (Record && FDTTy->getDecl()->hasObjectMember())
5292        Record->setHasObjectMember(true);
5293    } else if (FDTy->isObjCInterfaceType()) {
5294      /// A field cannot be an Objective-c object
5295      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5296      FD->setInvalidDecl();
5297      EnclosingDecl->setInvalidDecl();
5298      continue;
5299    } else if (getLangOptions().ObjC1 &&
5300               getLangOptions().getGCMode() != LangOptions::NonGC &&
5301               Record &&
5302               (FD->getType()->isObjCObjectPointerType() ||
5303                FD->getType().isObjCGCStrong()))
5304      Record->setHasObjectMember(true);
5305    // Keep track of the number of named members.
5306    if (FD->getIdentifier())
5307      ++NumNamedMembers;
5308  }
5309
5310  // Okay, we successfully defined 'Record'.
5311  if (Record) {
5312    Record->completeDefinition(Context);
5313  } else {
5314    ObjCIvarDecl **ClsFields =
5315      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5316    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5317      ID->setIVarList(ClsFields, RecFields.size(), Context);
5318      ID->setLocEnd(RBrac);
5319      // Add ivar's to class's DeclContext.
5320      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5321        ClsFields[i]->setLexicalDeclContext(ID);
5322        ID->addDecl(ClsFields[i]);
5323      }
5324      // Must enforce the rule that ivars in the base classes may not be
5325      // duplicates.
5326      if (ID->getSuperClass()) {
5327        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5328             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5329          ObjCIvarDecl* Ivar = (*IVI);
5330
5331          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5332            ObjCIvarDecl* prevIvar =
5333              ID->getSuperClass()->lookupInstanceVariable(II);
5334            if (prevIvar) {
5335              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5336              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5337            }
5338          }
5339        }
5340      }
5341    } else if (ObjCImplementationDecl *IMPDecl =
5342                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5343      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5344      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5345        // Ivar declared in @implementation never belongs to the implementation.
5346        // Only it is in implementation's lexical context.
5347        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5348      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5349    }
5350  }
5351
5352  if (Attr)
5353    ProcessDeclAttributeList(S, Record, Attr);
5354}
5355
5356EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5357                                          EnumConstantDecl *LastEnumConst,
5358                                          SourceLocation IdLoc,
5359                                          IdentifierInfo *Id,
5360                                          ExprArg val) {
5361  Expr *Val = (Expr *)val.get();
5362
5363  llvm::APSInt EnumVal(32);
5364  QualType EltTy;
5365  if (Val && !Val->isTypeDependent()) {
5366    // Make sure to promote the operand type to int.
5367    UsualUnaryConversions(Val);
5368    if (Val != val.get()) {
5369      val.release();
5370      val = Val;
5371    }
5372
5373    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5374    SourceLocation ExpLoc;
5375    if (!Val->isValueDependent() &&
5376        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5377      Val = 0;
5378    } else {
5379      EltTy = Val->getType();
5380    }
5381  }
5382
5383  if (!Val) {
5384    if (LastEnumConst) {
5385      // Assign the last value + 1.
5386      EnumVal = LastEnumConst->getInitVal();
5387      ++EnumVal;
5388
5389      // Check for overflow on increment.
5390      if (EnumVal < LastEnumConst->getInitVal())
5391        Diag(IdLoc, diag::warn_enum_value_overflow);
5392
5393      EltTy = LastEnumConst->getType();
5394    } else {
5395      // First value, set to zero.
5396      EltTy = Context.IntTy;
5397      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5398    }
5399  }
5400
5401  val.release();
5402  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5403                                  Val, EnumVal);
5404}
5405
5406
5407Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5408                                        DeclPtrTy lastEnumConst,
5409                                        SourceLocation IdLoc,
5410                                        IdentifierInfo *Id,
5411                                        SourceLocation EqualLoc, ExprTy *val) {
5412  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5413  EnumConstantDecl *LastEnumConst =
5414    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5415  Expr *Val = static_cast<Expr*>(val);
5416
5417  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5418  // we find one that is.
5419  S = getNonFieldDeclScope(S);
5420
5421  // Verify that there isn't already something declared with this name in this
5422  // scope.
5423  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5424  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5425    // Maybe we will complain about the shadowed template parameter.
5426    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5427    // Just pretend that we didn't see the previous declaration.
5428    PrevDecl = 0;
5429  }
5430
5431  if (PrevDecl) {
5432    // When in C++, we may get a TagDecl with the same name; in this case the
5433    // enum constant will 'hide' the tag.
5434    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5435           "Received TagDecl when not in C++!");
5436    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5437      if (isa<EnumConstantDecl>(PrevDecl))
5438        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5439      else
5440        Diag(IdLoc, diag::err_redefinition) << Id;
5441      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5442      if (Val) Val->Destroy(Context);
5443      return DeclPtrTy();
5444    }
5445  }
5446
5447  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5448                                            IdLoc, Id, Owned(Val));
5449
5450  // Register this decl in the current scope stack.
5451  if (New)
5452    PushOnScopeChains(New, S);
5453
5454  return DeclPtrTy::make(New);
5455}
5456
5457void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5458                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5459                         DeclPtrTy *Elements, unsigned NumElements,
5460                         Scope *S, AttributeList *Attr) {
5461  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5462  QualType EnumType = Context.getTypeDeclType(Enum);
5463
5464  if (Attr)
5465    ProcessDeclAttributeList(S, Enum, Attr);
5466
5467  // TODO: If the result value doesn't fit in an int, it must be a long or long
5468  // long value.  ISO C does not support this, but GCC does as an extension,
5469  // emit a warning.
5470  unsigned IntWidth = Context.Target.getIntWidth();
5471  unsigned CharWidth = Context.Target.getCharWidth();
5472  unsigned ShortWidth = Context.Target.getShortWidth();
5473
5474  // Verify that all the values are okay, compute the size of the values, and
5475  // reverse the list.
5476  unsigned NumNegativeBits = 0;
5477  unsigned NumPositiveBits = 0;
5478
5479  // Keep track of whether all elements have type int.
5480  bool AllElementsInt = true;
5481
5482  for (unsigned i = 0; i != NumElements; ++i) {
5483    EnumConstantDecl *ECD =
5484      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5485    if (!ECD) continue;  // Already issued a diagnostic.
5486
5487    // If the enum value doesn't fit in an int, emit an extension warning.
5488    const llvm::APSInt &InitVal = ECD->getInitVal();
5489    assert(InitVal.getBitWidth() >= IntWidth &&
5490           "Should have promoted value to int");
5491    if (InitVal.getBitWidth() > IntWidth) {
5492      llvm::APSInt V(InitVal);
5493      V.trunc(IntWidth);
5494      V.extend(InitVal.getBitWidth());
5495      if (V != InitVal)
5496        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5497          << InitVal.toString(10);
5498    }
5499
5500    // Keep track of the size of positive and negative values.
5501    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5502      NumPositiveBits = std::max(NumPositiveBits,
5503                                 (unsigned)InitVal.getActiveBits());
5504    else
5505      NumNegativeBits = std::max(NumNegativeBits,
5506                                 (unsigned)InitVal.getMinSignedBits());
5507
5508    // Keep track of whether every enum element has type int (very commmon).
5509    if (AllElementsInt)
5510      AllElementsInt = ECD->getType() == Context.IntTy;
5511  }
5512
5513  // Figure out the type that should be used for this enum.
5514  // FIXME: Support -fshort-enums.
5515  QualType BestType;
5516  unsigned BestWidth;
5517
5518  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5519
5520  if (NumNegativeBits) {
5521    // If there is a negative value, figure out the smallest integer type (of
5522    // int/long/longlong) that fits.
5523    // If it's packed, check also if it fits a char or a short.
5524    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5525        BestType = Context.SignedCharTy;
5526        BestWidth = CharWidth;
5527    } else if (Packed && NumNegativeBits <= ShortWidth &&
5528               NumPositiveBits < ShortWidth) {
5529        BestType = Context.ShortTy;
5530        BestWidth = ShortWidth;
5531    }
5532    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5533      BestType = Context.IntTy;
5534      BestWidth = IntWidth;
5535    } else {
5536      BestWidth = Context.Target.getLongWidth();
5537
5538      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5539        BestType = Context.LongTy;
5540      else {
5541        BestWidth = Context.Target.getLongLongWidth();
5542
5543        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5544          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5545        BestType = Context.LongLongTy;
5546      }
5547    }
5548  } else {
5549    // If there is no negative value, figure out which of uint, ulong, ulonglong
5550    // fits.
5551    // If it's packed, check also if it fits a char or a short.
5552    if (Packed && NumPositiveBits <= CharWidth) {
5553        BestType = Context.UnsignedCharTy;
5554        BestWidth = CharWidth;
5555    } else if (Packed && NumPositiveBits <= ShortWidth) {
5556        BestType = Context.UnsignedShortTy;
5557        BestWidth = ShortWidth;
5558    }
5559    else if (NumPositiveBits <= IntWidth) {
5560      BestType = Context.UnsignedIntTy;
5561      BestWidth = IntWidth;
5562    } else if (NumPositiveBits <=
5563               (BestWidth = Context.Target.getLongWidth())) {
5564      BestType = Context.UnsignedLongTy;
5565    } else {
5566      BestWidth = Context.Target.getLongLongWidth();
5567      assert(NumPositiveBits <= BestWidth &&
5568             "How could an initializer get larger than ULL?");
5569      BestType = Context.UnsignedLongLongTy;
5570    }
5571  }
5572
5573  // Loop over all of the enumerator constants, changing their types to match
5574  // the type of the enum if needed.
5575  for (unsigned i = 0; i != NumElements; ++i) {
5576    EnumConstantDecl *ECD =
5577      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5578    if (!ECD) continue;  // Already issued a diagnostic.
5579
5580    // Standard C says the enumerators have int type, but we allow, as an
5581    // extension, the enumerators to be larger than int size.  If each
5582    // enumerator value fits in an int, type it as an int, otherwise type it the
5583    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5584    // that X has type 'int', not 'unsigned'.
5585    if (ECD->getType() == Context.IntTy) {
5586      // Make sure the init value is signed.
5587      llvm::APSInt IV = ECD->getInitVal();
5588      IV.setIsSigned(true);
5589      ECD->setInitVal(IV);
5590
5591      if (getLangOptions().CPlusPlus)
5592        // C++ [dcl.enum]p4: Following the closing brace of an
5593        // enum-specifier, each enumerator has the type of its
5594        // enumeration.
5595        ECD->setType(EnumType);
5596      continue;  // Already int type.
5597    }
5598
5599    // Determine whether the value fits into an int.
5600    llvm::APSInt InitVal = ECD->getInitVal();
5601    bool FitsInInt;
5602    if (InitVal.isUnsigned() || !InitVal.isNegative())
5603      FitsInInt = InitVal.getActiveBits() < IntWidth;
5604    else
5605      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5606
5607    // If it fits into an integer type, force it.  Otherwise force it to match
5608    // the enum decl type.
5609    QualType NewTy;
5610    unsigned NewWidth;
5611    bool NewSign;
5612    if (FitsInInt) {
5613      NewTy = Context.IntTy;
5614      NewWidth = IntWidth;
5615      NewSign = true;
5616    } else if (ECD->getType() == BestType) {
5617      // Already the right type!
5618      if (getLangOptions().CPlusPlus)
5619        // C++ [dcl.enum]p4: Following the closing brace of an
5620        // enum-specifier, each enumerator has the type of its
5621        // enumeration.
5622        ECD->setType(EnumType);
5623      continue;
5624    } else {
5625      NewTy = BestType;
5626      NewWidth = BestWidth;
5627      NewSign = BestType->isSignedIntegerType();
5628    }
5629
5630    // Adjust the APSInt value.
5631    InitVal.extOrTrunc(NewWidth);
5632    InitVal.setIsSigned(NewSign);
5633    ECD->setInitVal(InitVal);
5634
5635    // Adjust the Expr initializer and type.
5636    if (ECD->getInitExpr())
5637      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5638                                                      CastExpr::CK_IntegralCast,
5639                                                      ECD->getInitExpr(),
5640                                                      /*isLvalue=*/false));
5641    if (getLangOptions().CPlusPlus)
5642      // C++ [dcl.enum]p4: Following the closing brace of an
5643      // enum-specifier, each enumerator has the type of its
5644      // enumeration.
5645      ECD->setType(EnumType);
5646    else
5647      ECD->setType(NewTy);
5648  }
5649
5650  Enum->completeDefinition(Context, BestType);
5651}
5652
5653Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5654                                            ExprArg expr) {
5655  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5656
5657  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5658                                                   Loc, AsmString);
5659  CurContext->addDecl(New);
5660  return DeclPtrTy::make(New);
5661}
5662
5663void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5664                             SourceLocation PragmaLoc,
5665                             SourceLocation NameLoc) {
5666  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5667
5668  if (PrevDecl) {
5669    PrevDecl->addAttr(::new (Context) WeakAttr());
5670  } else {
5671    (void)WeakUndeclaredIdentifiers.insert(
5672      std::pair<IdentifierInfo*,WeakInfo>
5673        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5674  }
5675}
5676
5677void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5678                                IdentifierInfo* AliasName,
5679                                SourceLocation PragmaLoc,
5680                                SourceLocation NameLoc,
5681                                SourceLocation AliasNameLoc) {
5682  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5683  WeakInfo W = WeakInfo(Name, NameLoc);
5684
5685  if (PrevDecl) {
5686    if (!PrevDecl->hasAttr<AliasAttr>())
5687      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5688        DeclApplyPragmaWeak(TUScope, ND, W);
5689  } else {
5690    (void)WeakUndeclaredIdentifiers.insert(
5691      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5692  }
5693}
5694