SemaDecl.cpp revision 757c600d696f016fea6b086d0349bcd7a4d06bd1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  return D->isCopyAssignment();
548}
549
550bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
551  assert(D);
552
553  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
554    return false;
555
556  // Ignore class templates.
557  if (D->getDeclContext()->isDependentContext())
558    return false;
559
560  // We warn for unused decls internal to the translation unit.
561  if (D->getLinkage() == ExternalLinkage)
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition())
579      return !Context.DeclMustBeEmitted(FD);
580    return true;
581  }
582
583  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
584    if (VD->isStaticDataMember() &&
585        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
586      return false;
587
588    if ( VD->isFileVarDecl() &&
589        !VD->getType().isConstant(Context))
590      return !Context.DeclMustBeEmitted(VD);
591  }
592
593   return false;
594 }
595
596 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
597  if (!D)
598    return;
599
600  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
601    const FunctionDecl *First = FD->getFirstDeclaration();
602    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
603      return; // First should already be in the vector.
604  }
605
606  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
607    const VarDecl *First = VD->getFirstDeclaration();
608    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612   if (ShouldWarnIfUnusedFileScopedDecl(D))
613     UnusedFileScopedDecls.push_back(D);
614 }
615
616static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
617  if (D->isInvalidDecl())
618    return false;
619
620  if (D->isUsed() || D->hasAttr<UnusedAttr>())
621    return false;
622
623  // White-list anything that isn't a local variable.
624  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
625      !D->getDeclContext()->isFunctionOrMethod())
626    return false;
627
628  // Types of valid local variables should be complete, so this should succeed.
629  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
630
631    // White-list anything with an __attribute__((unused)) type.
632    QualType Ty = VD->getType();
633
634    // Only look at the outermost level of typedef.
635    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
636      if (TT->getDecl()->hasAttr<UnusedAttr>())
637        return false;
638    }
639
640    // If we failed to complete the type for some reason, or if the type is
641    // dependent, don't diagnose the variable.
642    if (Ty->isIncompleteType() || Ty->isDependentType())
643      return false;
644
645    if (const TagType *TT = Ty->getAs<TagType>()) {
646      const TagDecl *Tag = TT->getDecl();
647      if (Tag->hasAttr<UnusedAttr>())
648        return false;
649
650      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
651        // FIXME: Checking for the presence of a user-declared constructor
652        // isn't completely accurate; we'd prefer to check that the initializer
653        // has no side effects.
654        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
655          return false;
656      }
657    }
658
659    // TODO: __attribute__((unused)) templates?
660  }
661
662  return true;
663}
664
665void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
666  if (!ShouldDiagnoseUnusedDecl(D))
667    return;
668
669  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
670    Diag(D->getLocation(), diag::warn_unused_exception_param)
671    << D->getDeclName();
672  else
673    Diag(D->getLocation(), diag::warn_unused_variable)
674    << D->getDeclName();
675}
676
677void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
678  if (S->decl_empty()) return;
679  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
680         "Scope shouldn't contain decls!");
681
682  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
683       I != E; ++I) {
684    Decl *TmpD = (*I);
685    assert(TmpD && "This decl didn't get pushed??");
686
687    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
688    NamedDecl *D = cast<NamedDecl>(TmpD);
689
690    if (!D->getDeclName()) continue;
691
692    // Diagnose unused variables in this scope.
693    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
694      DiagnoseUnusedDecl(D);
695
696    // Remove this name from our lexical scope.
697    IdResolver.RemoveDecl(D);
698  }
699}
700
701/// \brief Look for an Objective-C class in the translation unit.
702///
703/// \param Id The name of the Objective-C class we're looking for. If
704/// typo-correction fixes this name, the Id will be updated
705/// to the fixed name.
706///
707/// \param IdLoc The location of the name in the translation unit.
708///
709/// \param TypoCorrection If true, this routine will attempt typo correction
710/// if there is no class with the given name.
711///
712/// \returns The declaration of the named Objective-C class, or NULL if the
713/// class could not be found.
714ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
715                                              SourceLocation IdLoc,
716                                              bool TypoCorrection) {
717  // The third "scope" argument is 0 since we aren't enabling lazy built-in
718  // creation from this context.
719  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
720
721  if (!IDecl && TypoCorrection) {
722    // Perform typo correction at the given location, but only if we
723    // find an Objective-C class name.
724    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
725    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
726        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
727      Diag(IdLoc, diag::err_undef_interface_suggest)
728        << Id << IDecl->getDeclName()
729        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
730      Diag(IDecl->getLocation(), diag::note_previous_decl)
731        << IDecl->getDeclName();
732
733      Id = IDecl->getIdentifier();
734    }
735  }
736
737  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
738}
739
740/// getNonFieldDeclScope - Retrieves the innermost scope, starting
741/// from S, where a non-field would be declared. This routine copes
742/// with the difference between C and C++ scoping rules in structs and
743/// unions. For example, the following code is well-formed in C but
744/// ill-formed in C++:
745/// @code
746/// struct S6 {
747///   enum { BAR } e;
748/// };
749///
750/// void test_S6() {
751///   struct S6 a;
752///   a.e = BAR;
753/// }
754/// @endcode
755/// For the declaration of BAR, this routine will return a different
756/// scope. The scope S will be the scope of the unnamed enumeration
757/// within S6. In C++, this routine will return the scope associated
758/// with S6, because the enumeration's scope is a transparent
759/// context but structures can contain non-field names. In C, this
760/// routine will return the translation unit scope, since the
761/// enumeration's scope is a transparent context and structures cannot
762/// contain non-field names.
763Scope *Sema::getNonFieldDeclScope(Scope *S) {
764  while (((S->getFlags() & Scope::DeclScope) == 0) ||
765         (S->getEntity() &&
766          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
767         (S->isClassScope() && !getLangOptions().CPlusPlus))
768    S = S->getParent();
769  return S;
770}
771
772void Sema::InitBuiltinVaListType() {
773  if (!Context.getBuiltinVaListType().isNull())
774    return;
775
776  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
777  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
778                                       LookupOrdinaryName, ForRedeclaration);
779  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
780  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
781}
782
783/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
784/// file scope.  lazily create a decl for it. ForRedeclaration is true
785/// if we're creating this built-in in anticipation of redeclaring the
786/// built-in.
787NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
788                                     Scope *S, bool ForRedeclaration,
789                                     SourceLocation Loc) {
790  Builtin::ID BID = (Builtin::ID)bid;
791
792  if (Context.BuiltinInfo.hasVAListUse(BID))
793    InitBuiltinVaListType();
794
795  ASTContext::GetBuiltinTypeError Error;
796  QualType R = Context.GetBuiltinType(BID, Error);
797  switch (Error) {
798  case ASTContext::GE_None:
799    // Okay
800    break;
801
802  case ASTContext::GE_Missing_stdio:
803    if (ForRedeclaration)
804      Diag(Loc, diag::err_implicit_decl_requires_stdio)
805        << Context.BuiltinInfo.GetName(BID);
806    return 0;
807
808  case ASTContext::GE_Missing_setjmp:
809    if (ForRedeclaration)
810      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
811        << Context.BuiltinInfo.GetName(BID);
812    return 0;
813  }
814
815  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
816    Diag(Loc, diag::ext_implicit_lib_function_decl)
817      << Context.BuiltinInfo.GetName(BID)
818      << R;
819    if (Context.BuiltinInfo.getHeaderName(BID) &&
820        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
821          != Diagnostic::Ignored)
822      Diag(Loc, diag::note_please_include_header)
823        << Context.BuiltinInfo.getHeaderName(BID)
824        << Context.BuiltinInfo.GetName(BID);
825  }
826
827  FunctionDecl *New = FunctionDecl::Create(Context,
828                                           Context.getTranslationUnitDecl(),
829                                           Loc, II, R, /*TInfo=*/0,
830                                           SC_Extern,
831                                           SC_None, false,
832                                           /*hasPrototype=*/true);
833  New->setImplicit();
834
835  // Create Decl objects for each parameter, adding them to the
836  // FunctionDecl.
837  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
838    llvm::SmallVector<ParmVarDecl*, 16> Params;
839    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
840      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
841                                           FT->getArgType(i), /*TInfo=*/0,
842                                           SC_None, SC_None, 0));
843    New->setParams(Params.data(), Params.size());
844  }
845
846  AddKnownFunctionAttributes(New);
847
848  // TUScope is the translation-unit scope to insert this function into.
849  // FIXME: This is hideous. We need to teach PushOnScopeChains to
850  // relate Scopes to DeclContexts, and probably eliminate CurContext
851  // entirely, but we're not there yet.
852  DeclContext *SavedContext = CurContext;
853  CurContext = Context.getTranslationUnitDecl();
854  PushOnScopeChains(New, TUScope);
855  CurContext = SavedContext;
856  return New;
857}
858
859/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
860/// same name and scope as a previous declaration 'Old'.  Figure out
861/// how to resolve this situation, merging decls or emitting
862/// diagnostics as appropriate. If there was an error, set New to be invalid.
863///
864void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
865  // If the new decl is known invalid already, don't bother doing any
866  // merging checks.
867  if (New->isInvalidDecl()) return;
868
869  // Allow multiple definitions for ObjC built-in typedefs.
870  // FIXME: Verify the underlying types are equivalent!
871  if (getLangOptions().ObjC1) {
872    const IdentifierInfo *TypeID = New->getIdentifier();
873    switch (TypeID->getLength()) {
874    default: break;
875    case 2:
876      if (!TypeID->isStr("id"))
877        break;
878      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'id', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
881      return;
882    case 5:
883      if (!TypeID->isStr("Class"))
884        break;
885      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'Class', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
888      return;
889    case 3:
890      if (!TypeID->isStr("SEL"))
891        break;
892      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
893      // Install the built-in type for 'SEL', ignoring the current definition.
894      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
895      return;
896    case 8:
897      if (!TypeID->isStr("Protocol"))
898        break;
899      Context.setObjCProtoType(New->getUnderlyingType());
900      return;
901    }
902    // Fall through - the typedef name was not a builtin type.
903  }
904
905  // Verify the old decl was also a type.
906  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
907  if (!Old) {
908    Diag(New->getLocation(), diag::err_redefinition_different_kind)
909      << New->getDeclName();
910
911    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
912    if (OldD->getLocation().isValid())
913      Diag(OldD->getLocation(), diag::note_previous_definition);
914
915    return New->setInvalidDecl();
916  }
917
918  // If the old declaration is invalid, just give up here.
919  if (Old->isInvalidDecl())
920    return New->setInvalidDecl();
921
922  // Determine the "old" type we'll use for checking and diagnostics.
923  QualType OldType;
924  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
925    OldType = OldTypedef->getUnderlyingType();
926  else
927    OldType = Context.getTypeDeclType(Old);
928
929  // If the typedef types are not identical, reject them in all languages and
930  // with any extensions enabled.
931
932  if (OldType != New->getUnderlyingType() &&
933      Context.getCanonicalType(OldType) !=
934      Context.getCanonicalType(New->getUnderlyingType())) {
935    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
936      << New->getUnderlyingType() << OldType;
937    if (Old->getLocation().isValid())
938      Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  // The types match.  Link up the redeclaration chain if the old
943  // declaration was a typedef.
944  // FIXME: this is a potential source of wierdness if the type
945  // spellings don't match exactly.
946  if (isa<TypedefDecl>(Old))
947    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
948
949  if (getLangOptions().Microsoft)
950    return;
951
952  if (getLangOptions().CPlusPlus) {
953    // C++ [dcl.typedef]p2:
954    //   In a given non-class scope, a typedef specifier can be used to
955    //   redefine the name of any type declared in that scope to refer
956    //   to the type to which it already refers.
957    if (!isa<CXXRecordDecl>(CurContext))
958      return;
959
960    // C++0x [dcl.typedef]p4:
961    //   In a given class scope, a typedef specifier can be used to redefine
962    //   any class-name declared in that scope that is not also a typedef-name
963    //   to refer to the type to which it already refers.
964    //
965    // This wording came in via DR424, which was a correction to the
966    // wording in DR56, which accidentally banned code like:
967    //
968    //   struct S {
969    //     typedef struct A { } A;
970    //   };
971    //
972    // in the C++03 standard. We implement the C++0x semantics, which
973    // allow the above but disallow
974    //
975    //   struct S {
976    //     typedef int I;
977    //     typedef int I;
978    //   };
979    //
980    // since that was the intent of DR56.
981    if (!isa<TypedefDecl >(Old))
982      return;
983
984    Diag(New->getLocation(), diag::err_redefinition)
985      << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // If we have a redefinition of a typedef in C, emit a warning.  This warning
991  // is normally mapped to an error, but can be controlled with
992  // -Wtypedef-redefinition.  If either the original or the redefinition is
993  // in a system header, don't emit this for compatibility with GCC.
994  if (getDiagnostics().getSuppressSystemWarnings() &&
995      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
996       Context.getSourceManager().isInSystemHeader(New->getLocation())))
997    return;
998
999  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1000    << New->getDeclName();
1001  Diag(Old->getLocation(), diag::note_previous_definition);
1002  return;
1003}
1004
1005/// DeclhasAttr - returns true if decl Declaration already has the target
1006/// attribute.
1007static bool
1008DeclHasAttr(const Decl *D, const Attr *A) {
1009  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1010  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1011    if ((*i)->getKind() == A->getKind()) {
1012      // FIXME: Don't hardcode this check
1013      if (OA && isa<OwnershipAttr>(*i))
1014        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1015      return true;
1016    }
1017
1018  return false;
1019}
1020
1021/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1022static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1023  if (!Old->hasAttrs())
1024    return;
1025  // Ensure that any moving of objects within the allocated map is done before
1026  // we process them.
1027  if (!New->hasAttrs())
1028    New->setAttrs(AttrVec());
1029  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1030       ++i) {
1031    // FIXME: Make this more general than just checking for Overloadable.
1032    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1033      Attr *NewAttr = (*i)->clone(C);
1034      NewAttr->setInherited(true);
1035      New->addAttr(NewAttr);
1036    }
1037  }
1038}
1039
1040namespace {
1041
1042/// Used in MergeFunctionDecl to keep track of function parameters in
1043/// C.
1044struct GNUCompatibleParamWarning {
1045  ParmVarDecl *OldParm;
1046  ParmVarDecl *NewParm;
1047  QualType PromotedType;
1048};
1049
1050}
1051
1052/// getSpecialMember - get the special member enum for a method.
1053Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1054  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1055    if (Ctor->isCopyConstructor())
1056      return Sema::CXXCopyConstructor;
1057
1058    return Sema::CXXConstructor;
1059  }
1060
1061  if (isa<CXXDestructorDecl>(MD))
1062    return Sema::CXXDestructor;
1063
1064  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1065  return Sema::CXXCopyAssignment;
1066}
1067
1068/// canRedefineFunction - checks if a function can be redefined. Currently,
1069/// only extern inline functions can be redefined, and even then only in
1070/// GNU89 mode.
1071static bool canRedefineFunction(const FunctionDecl *FD,
1072                                const LangOptions& LangOpts) {
1073  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1074          FD->isInlineSpecified() &&
1075          FD->getStorageClass() == SC_Extern);
1076}
1077
1078/// MergeFunctionDecl - We just parsed a function 'New' from
1079/// declarator D which has the same name and scope as a previous
1080/// declaration 'Old'.  Figure out how to resolve this situation,
1081/// merging decls or emitting diagnostics as appropriate.
1082///
1083/// In C++, New and Old must be declarations that are not
1084/// overloaded. Use IsOverload to determine whether New and Old are
1085/// overloaded, and to select the Old declaration that New should be
1086/// merged with.
1087///
1088/// Returns true if there was an error, false otherwise.
1089bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1090  // Verify the old decl was also a function.
1091  FunctionDecl *Old = 0;
1092  if (FunctionTemplateDecl *OldFunctionTemplate
1093        = dyn_cast<FunctionTemplateDecl>(OldD))
1094    Old = OldFunctionTemplate->getTemplatedDecl();
1095  else
1096    Old = dyn_cast<FunctionDecl>(OldD);
1097  if (!Old) {
1098    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1099      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1100      Diag(Shadow->getTargetDecl()->getLocation(),
1101           diag::note_using_decl_target);
1102      Diag(Shadow->getUsingDecl()->getLocation(),
1103           diag::note_using_decl) << 0;
1104      return true;
1105    }
1106
1107    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1108      << New->getDeclName();
1109    Diag(OldD->getLocation(), diag::note_previous_definition);
1110    return true;
1111  }
1112
1113  // Determine whether the previous declaration was a definition,
1114  // implicit declaration, or a declaration.
1115  diag::kind PrevDiag;
1116  if (Old->isThisDeclarationADefinition())
1117    PrevDiag = diag::note_previous_definition;
1118  else if (Old->isImplicit())
1119    PrevDiag = diag::note_previous_implicit_declaration;
1120  else
1121    PrevDiag = diag::note_previous_declaration;
1122
1123  QualType OldQType = Context.getCanonicalType(Old->getType());
1124  QualType NewQType = Context.getCanonicalType(New->getType());
1125
1126  // Don't complain about this if we're in GNU89 mode and the old function
1127  // is an extern inline function.
1128  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1129      New->getStorageClass() == SC_Static &&
1130      Old->getStorageClass() != SC_Static &&
1131      !canRedefineFunction(Old, getLangOptions())) {
1132    Diag(New->getLocation(), diag::err_static_non_static)
1133      << New;
1134    Diag(Old->getLocation(), PrevDiag);
1135    return true;
1136  }
1137
1138  // If a function is first declared with a calling convention, but is
1139  // later declared or defined without one, the second decl assumes the
1140  // calling convention of the first.
1141  //
1142  // For the new decl, we have to look at the NON-canonical type to tell the
1143  // difference between a function that really doesn't have a calling
1144  // convention and one that is declared cdecl. That's because in
1145  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1146  // because it is the default calling convention.
1147  //
1148  // Note also that we DO NOT return at this point, because we still have
1149  // other tests to run.
1150  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1151  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1152  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1153  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1154  if (OldTypeInfo.getCC() != CC_Default &&
1155      NewTypeInfo.getCC() == CC_Default) {
1156    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1157    New->setType(NewQType);
1158    NewQType = Context.getCanonicalType(NewQType);
1159  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1160                                     NewTypeInfo.getCC())) {
1161    // Calling conventions really aren't compatible, so complain.
1162    Diag(New->getLocation(), diag::err_cconv_change)
1163      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1164      << (OldTypeInfo.getCC() == CC_Default)
1165      << (OldTypeInfo.getCC() == CC_Default ? "" :
1166          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1167    Diag(Old->getLocation(), diag::note_previous_declaration);
1168    return true;
1169  }
1170
1171  // FIXME: diagnose the other way around?
1172  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1173    NewQType = Context.getNoReturnType(NewQType);
1174    New->setType(NewQType);
1175    assert(NewQType.isCanonical());
1176  }
1177
1178  // Merge regparm attribute.
1179  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1180    if (NewType->getRegParmType()) {
1181      Diag(New->getLocation(), diag::err_regparm_mismatch)
1182        << NewType->getRegParmType()
1183        << OldType->getRegParmType();
1184      Diag(Old->getLocation(), diag::note_previous_declaration);
1185      return true;
1186    }
1187
1188    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1189    New->setType(NewQType);
1190    assert(NewQType.isCanonical());
1191  }
1192
1193  if (getLangOptions().CPlusPlus) {
1194    // (C++98 13.1p2):
1195    //   Certain function declarations cannot be overloaded:
1196    //     -- Function declarations that differ only in the return type
1197    //        cannot be overloaded.
1198    QualType OldReturnType
1199      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1200    QualType NewReturnType
1201      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1202    QualType ResQT;
1203    if (OldReturnType != NewReturnType) {
1204      if (NewReturnType->isObjCObjectPointerType()
1205          && OldReturnType->isObjCObjectPointerType())
1206        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1207      if (ResQT.isNull()) {
1208        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1209        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210        return true;
1211      }
1212      else
1213        NewQType = ResQT;
1214    }
1215
1216    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1217    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1218    if (OldMethod && NewMethod) {
1219      // Preserve triviality.
1220      NewMethod->setTrivial(OldMethod->isTrivial());
1221
1222      bool isFriend = NewMethod->getFriendObjectKind();
1223
1224      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1225        //    -- Member function declarations with the same name and the
1226        //       same parameter types cannot be overloaded if any of them
1227        //       is a static member function declaration.
1228        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1229          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1230          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1231          return true;
1232        }
1233
1234        // C++ [class.mem]p1:
1235        //   [...] A member shall not be declared twice in the
1236        //   member-specification, except that a nested class or member
1237        //   class template can be declared and then later defined.
1238        unsigned NewDiag;
1239        if (isa<CXXConstructorDecl>(OldMethod))
1240          NewDiag = diag::err_constructor_redeclared;
1241        else if (isa<CXXDestructorDecl>(NewMethod))
1242          NewDiag = diag::err_destructor_redeclared;
1243        else if (isa<CXXConversionDecl>(NewMethod))
1244          NewDiag = diag::err_conv_function_redeclared;
1245        else
1246          NewDiag = diag::err_member_redeclared;
1247
1248        Diag(New->getLocation(), NewDiag);
1249        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1250
1251      // Complain if this is an explicit declaration of a special
1252      // member that was initially declared implicitly.
1253      //
1254      // As an exception, it's okay to befriend such methods in order
1255      // to permit the implicit constructor/destructor/operator calls.
1256      } else if (OldMethod->isImplicit()) {
1257        if (isFriend) {
1258          NewMethod->setImplicit();
1259        } else {
1260          Diag(NewMethod->getLocation(),
1261               diag::err_definition_of_implicitly_declared_member)
1262            << New << getSpecialMember(OldMethod);
1263          return true;
1264        }
1265      }
1266    }
1267
1268    // (C++98 8.3.5p3):
1269    //   All declarations for a function shall agree exactly in both the
1270    //   return type and the parameter-type-list.
1271    // attributes should be ignored when comparing.
1272    if (Context.getNoReturnType(OldQType, false) ==
1273        Context.getNoReturnType(NewQType, false))
1274      return MergeCompatibleFunctionDecls(New, Old);
1275
1276    // Fall through for conflicting redeclarations and redefinitions.
1277  }
1278
1279  // C: Function types need to be compatible, not identical. This handles
1280  // duplicate function decls like "void f(int); void f(enum X);" properly.
1281  if (!getLangOptions().CPlusPlus &&
1282      Context.typesAreCompatible(OldQType, NewQType)) {
1283    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1284    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1285    const FunctionProtoType *OldProto = 0;
1286    if (isa<FunctionNoProtoType>(NewFuncType) &&
1287        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1288      // The old declaration provided a function prototype, but the
1289      // new declaration does not. Merge in the prototype.
1290      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1291      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1292                                                 OldProto->arg_type_end());
1293      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1294                                         ParamTypes.data(), ParamTypes.size(),
1295                                         OldProto->isVariadic(),
1296                                         OldProto->getTypeQuals(),
1297                                         false, false, 0, 0,
1298                                         OldProto->getExtInfo());
1299      New->setType(NewQType);
1300      New->setHasInheritedPrototype();
1301
1302      // Synthesize a parameter for each argument type.
1303      llvm::SmallVector<ParmVarDecl*, 16> Params;
1304      for (FunctionProtoType::arg_type_iterator
1305             ParamType = OldProto->arg_type_begin(),
1306             ParamEnd = OldProto->arg_type_end();
1307           ParamType != ParamEnd; ++ParamType) {
1308        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1309                                                 SourceLocation(), 0,
1310                                                 *ParamType, /*TInfo=*/0,
1311                                                 SC_None, SC_None,
1312                                                 0);
1313        Param->setImplicit();
1314        Params.push_back(Param);
1315      }
1316
1317      New->setParams(Params.data(), Params.size());
1318    }
1319
1320    return MergeCompatibleFunctionDecls(New, Old);
1321  }
1322
1323  // GNU C permits a K&R definition to follow a prototype declaration
1324  // if the declared types of the parameters in the K&R definition
1325  // match the types in the prototype declaration, even when the
1326  // promoted types of the parameters from the K&R definition differ
1327  // from the types in the prototype. GCC then keeps the types from
1328  // the prototype.
1329  //
1330  // If a variadic prototype is followed by a non-variadic K&R definition,
1331  // the K&R definition becomes variadic.  This is sort of an edge case, but
1332  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1333  // C99 6.9.1p8.
1334  if (!getLangOptions().CPlusPlus &&
1335      Old->hasPrototype() && !New->hasPrototype() &&
1336      New->getType()->getAs<FunctionProtoType>() &&
1337      Old->getNumParams() == New->getNumParams()) {
1338    llvm::SmallVector<QualType, 16> ArgTypes;
1339    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1340    const FunctionProtoType *OldProto
1341      = Old->getType()->getAs<FunctionProtoType>();
1342    const FunctionProtoType *NewProto
1343      = New->getType()->getAs<FunctionProtoType>();
1344
1345    // Determine whether this is the GNU C extension.
1346    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1347                                               NewProto->getResultType());
1348    bool LooseCompatible = !MergedReturn.isNull();
1349    for (unsigned Idx = 0, End = Old->getNumParams();
1350         LooseCompatible && Idx != End; ++Idx) {
1351      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1352      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1353      if (Context.typesAreCompatible(OldParm->getType(),
1354                                     NewProto->getArgType(Idx))) {
1355        ArgTypes.push_back(NewParm->getType());
1356      } else if (Context.typesAreCompatible(OldParm->getType(),
1357                                            NewParm->getType(),
1358                                            /*CompareUnqualified=*/true)) {
1359        GNUCompatibleParamWarning Warn
1360          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1361        Warnings.push_back(Warn);
1362        ArgTypes.push_back(NewParm->getType());
1363      } else
1364        LooseCompatible = false;
1365    }
1366
1367    if (LooseCompatible) {
1368      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1369        Diag(Warnings[Warn].NewParm->getLocation(),
1370             diag::ext_param_promoted_not_compatible_with_prototype)
1371          << Warnings[Warn].PromotedType
1372          << Warnings[Warn].OldParm->getType();
1373        if (Warnings[Warn].OldParm->getLocation().isValid())
1374          Diag(Warnings[Warn].OldParm->getLocation(),
1375               diag::note_previous_declaration);
1376      }
1377
1378      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1379                                           ArgTypes.size(),
1380                                           OldProto->isVariadic(), 0,
1381                                           false, false, 0, 0,
1382                                           OldProto->getExtInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on auto/register at file scope
1595  // FIXME: Error on inline/virtual/explicit
1596  // FIXME: Warn on useless __thread
1597  // FIXME: Warn on useless const/volatile
1598  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1599  // FIXME: Warn on useless attributes
1600  Decl *TagD = 0;
1601  TagDecl *Tag = 0;
1602  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1603      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1604      DS.getTypeSpecType() == DeclSpec::TST_union ||
1605      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1606    TagD = DS.getRepAsDecl();
1607
1608    if (!TagD) // We probably had an error
1609      return 0;
1610
1611    // Note that the above type specs guarantee that the
1612    // type rep is a Decl, whereas in many of the others
1613    // it's a Type.
1614    Tag = dyn_cast<TagDecl>(TagD);
1615  }
1616
1617  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1618    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1619    // or incomplete types shall not be restrict-qualified."
1620    if (TypeQuals & DeclSpec::TQ_restrict)
1621      Diag(DS.getRestrictSpecLoc(),
1622           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1623           << DS.getSourceRange();
1624  }
1625
1626  if (DS.isFriendSpecified()) {
1627    // If we're dealing with a class template decl, assume that the
1628    // template routines are handling it.
1629    if (TagD && isa<ClassTemplateDecl>(TagD))
1630      return 0;
1631    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1632  }
1633
1634  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1635    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1636
1637    if (!Record->getDeclName() && Record->isDefinition() &&
1638        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1639      if (getLangOptions().CPlusPlus ||
1640          Record->getDeclContext()->isRecord())
1641        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1642
1643      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1644        << DS.getSourceRange();
1645    }
1646
1647    // Microsoft allows unnamed struct/union fields. Don't complain
1648    // about them.
1649    // FIXME: Should we support Microsoft's extensions in this area?
1650    if (Record->getDeclName() && getLangOptions().Microsoft)
1651      return Tag;
1652  }
1653
1654  if (getLangOptions().CPlusPlus &&
1655      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1656    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1657      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1658          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1659        Diag(Enum->getLocation(), diag::ext_no_declarators)
1660          << DS.getSourceRange();
1661
1662  if (!DS.isMissingDeclaratorOk() &&
1663      DS.getTypeSpecType() != DeclSpec::TST_error) {
1664    // Warn about typedefs of enums without names, since this is an
1665    // extension in both Microsoft and GNU.
1666    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1667        Tag && isa<EnumDecl>(Tag)) {
1668      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1669        << DS.getSourceRange();
1670      return Tag;
1671    }
1672
1673    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1674      << DS.getSourceRange();
1675  }
1676
1677  return TagD;
1678}
1679
1680/// We are trying to inject an anonymous member into the given scope;
1681/// check if there's an existing declaration that can't be overloaded.
1682///
1683/// \return true if this is a forbidden redeclaration
1684static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1685                                         Scope *S,
1686                                         DeclContext *Owner,
1687                                         DeclarationName Name,
1688                                         SourceLocation NameLoc,
1689                                         unsigned diagnostic) {
1690  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1691                 Sema::ForRedeclaration);
1692  if (!SemaRef.LookupName(R, S)) return false;
1693
1694  if (R.getAsSingle<TagDecl>())
1695    return false;
1696
1697  // Pick a representative declaration.
1698  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1699  if (PrevDecl && Owner->isRecord()) {
1700    RecordDecl *Record = cast<RecordDecl>(Owner);
1701    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1702      return false;
1703  }
1704
1705  SemaRef.Diag(NameLoc, diagnostic) << Name;
1706  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1707
1708  return true;
1709}
1710
1711/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1712/// anonymous struct or union AnonRecord into the owning context Owner
1713/// and scope S. This routine will be invoked just after we realize
1714/// that an unnamed union or struct is actually an anonymous union or
1715/// struct, e.g.,
1716///
1717/// @code
1718/// union {
1719///   int i;
1720///   float f;
1721/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1722///    // f into the surrounding scope.x
1723/// @endcode
1724///
1725/// This routine is recursive, injecting the names of nested anonymous
1726/// structs/unions into the owning context and scope as well.
1727static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1728                                                DeclContext *Owner,
1729                                                RecordDecl *AnonRecord,
1730                                                AccessSpecifier AS) {
1731  unsigned diagKind
1732    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1733                            : diag::err_anonymous_struct_member_redecl;
1734
1735  bool Invalid = false;
1736  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1737                               FEnd = AnonRecord->field_end();
1738       F != FEnd; ++F) {
1739    if ((*F)->getDeclName()) {
1740      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1741                                       (*F)->getLocation(), diagKind)) {
1742        // C++ [class.union]p2:
1743        //   The names of the members of an anonymous union shall be
1744        //   distinct from the names of any other entity in the
1745        //   scope in which the anonymous union is declared.
1746        Invalid = true;
1747      } else {
1748        // C++ [class.union]p2:
1749        //   For the purpose of name lookup, after the anonymous union
1750        //   definition, the members of the anonymous union are
1751        //   considered to have been defined in the scope in which the
1752        //   anonymous union is declared.
1753        Owner->makeDeclVisibleInContext(*F);
1754        S->AddDecl(*F);
1755        SemaRef.IdResolver.AddDecl(*F);
1756
1757        // That includes picking up the appropriate access specifier.
1758        if (AS != AS_none) (*F)->setAccess(AS);
1759      }
1760    } else if (const RecordType *InnerRecordType
1761                 = (*F)->getType()->getAs<RecordType>()) {
1762      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1763      if (InnerRecord->isAnonymousStructOrUnion())
1764        Invalid = Invalid ||
1765          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1766                                              InnerRecord, AS);
1767    }
1768  }
1769
1770  return Invalid;
1771}
1772
1773/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1774/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1775/// illegal input values are mapped to SC_None.
1776static StorageClass
1777StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1778  switch (StorageClassSpec) {
1779  case DeclSpec::SCS_unspecified:    return SC_None;
1780  case DeclSpec::SCS_extern:         return SC_Extern;
1781  case DeclSpec::SCS_static:         return SC_Static;
1782  case DeclSpec::SCS_auto:           return SC_Auto;
1783  case DeclSpec::SCS_register:       return SC_Register;
1784  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1785    // Illegal SCSs map to None: error reporting is up to the caller.
1786  case DeclSpec::SCS_mutable:        // Fall through.
1787  case DeclSpec::SCS_typedef:        return SC_None;
1788  }
1789  llvm_unreachable("unknown storage class specifier");
1790}
1791
1792/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1793/// a StorageClass. Any error reporting is up to the caller:
1794/// illegal input values are mapped to SC_None.
1795static StorageClass
1796StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1797  switch (StorageClassSpec) {
1798  case DeclSpec::SCS_unspecified:    return SC_None;
1799  case DeclSpec::SCS_extern:         return SC_Extern;
1800  case DeclSpec::SCS_static:         return SC_Static;
1801  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1802    // Illegal SCSs map to None: error reporting is up to the caller.
1803  case DeclSpec::SCS_auto:           // Fall through.
1804  case DeclSpec::SCS_mutable:        // Fall through.
1805  case DeclSpec::SCS_register:       // Fall through.
1806  case DeclSpec::SCS_typedef:        return SC_None;
1807  }
1808  llvm_unreachable("unknown storage class specifier");
1809}
1810
1811/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1812/// anonymous structure or union. Anonymous unions are a C++ feature
1813/// (C++ [class.union]) and a GNU C extension; anonymous structures
1814/// are a GNU C and GNU C++ extension.
1815Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1816                                             AccessSpecifier AS,
1817                                             RecordDecl *Record) {
1818  DeclContext *Owner = Record->getDeclContext();
1819
1820  // Diagnose whether this anonymous struct/union is an extension.
1821  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1822    Diag(Record->getLocation(), diag::ext_anonymous_union);
1823  else if (!Record->isUnion())
1824    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1825
1826  // C and C++ require different kinds of checks for anonymous
1827  // structs/unions.
1828  bool Invalid = false;
1829  if (getLangOptions().CPlusPlus) {
1830    const char* PrevSpec = 0;
1831    unsigned DiagID;
1832    // C++ [class.union]p3:
1833    //   Anonymous unions declared in a named namespace or in the
1834    //   global namespace shall be declared static.
1835    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1836        (isa<TranslationUnitDecl>(Owner) ||
1837         (isa<NamespaceDecl>(Owner) &&
1838          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1839      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1840      Invalid = true;
1841
1842      // Recover by adding 'static'.
1843      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1844                             PrevSpec, DiagID);
1845    }
1846    // C++ [class.union]p3:
1847    //   A storage class is not allowed in a declaration of an
1848    //   anonymous union in a class scope.
1849    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1850             isa<RecordDecl>(Owner)) {
1851      Diag(DS.getStorageClassSpecLoc(),
1852           diag::err_anonymous_union_with_storage_spec);
1853      Invalid = true;
1854
1855      // Recover by removing the storage specifier.
1856      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1857                             PrevSpec, DiagID);
1858    }
1859
1860    // C++ [class.union]p2:
1861    //   The member-specification of an anonymous union shall only
1862    //   define non-static data members. [Note: nested types and
1863    //   functions cannot be declared within an anonymous union. ]
1864    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1865                                 MemEnd = Record->decls_end();
1866         Mem != MemEnd; ++Mem) {
1867      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1868        // C++ [class.union]p3:
1869        //   An anonymous union shall not have private or protected
1870        //   members (clause 11).
1871        assert(FD->getAccess() != AS_none);
1872        if (FD->getAccess() != AS_public) {
1873          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1874            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1875          Invalid = true;
1876        }
1877
1878        if (CheckNontrivialField(FD))
1879          Invalid = true;
1880      } else if ((*Mem)->isImplicit()) {
1881        // Any implicit members are fine.
1882      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1883        // This is a type that showed up in an
1884        // elaborated-type-specifier inside the anonymous struct or
1885        // union, but which actually declares a type outside of the
1886        // anonymous struct or union. It's okay.
1887      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1888        if (!MemRecord->isAnonymousStructOrUnion() &&
1889            MemRecord->getDeclName()) {
1890          // This is a nested type declaration.
1891          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1892            << (int)Record->isUnion();
1893          Invalid = true;
1894        }
1895      } else if (isa<AccessSpecDecl>(*Mem)) {
1896        // Any access specifier is fine.
1897      } else {
1898        // We have something that isn't a non-static data
1899        // member. Complain about it.
1900        unsigned DK = diag::err_anonymous_record_bad_member;
1901        if (isa<TypeDecl>(*Mem))
1902          DK = diag::err_anonymous_record_with_type;
1903        else if (isa<FunctionDecl>(*Mem))
1904          DK = diag::err_anonymous_record_with_function;
1905        else if (isa<VarDecl>(*Mem))
1906          DK = diag::err_anonymous_record_with_static;
1907        Diag((*Mem)->getLocation(), DK)
1908            << (int)Record->isUnion();
1909          Invalid = true;
1910      }
1911    }
1912  }
1913
1914  if (!Record->isUnion() && !Owner->isRecord()) {
1915    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1916      << (int)getLangOptions().CPlusPlus;
1917    Invalid = true;
1918  }
1919
1920  // Mock up a declarator.
1921  Declarator Dc(DS, Declarator::TypeNameContext);
1922  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1923  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1924
1925  // Create a declaration for this anonymous struct/union.
1926  NamedDecl *Anon = 0;
1927  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1928    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1929                             /*IdentifierInfo=*/0,
1930                             Context.getTypeDeclType(Record),
1931                             TInfo,
1932                             /*BitWidth=*/0, /*Mutable=*/false);
1933    Anon->setAccess(AS);
1934    if (getLangOptions().CPlusPlus) {
1935      FieldCollector->Add(cast<FieldDecl>(Anon));
1936      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1937        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1938    }
1939  } else {
1940    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1941    assert(SCSpec != DeclSpec::SCS_typedef &&
1942           "Parser allowed 'typedef' as storage class VarDecl.");
1943    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1944    if (SCSpec == DeclSpec::SCS_mutable) {
1945      // mutable can only appear on non-static class members, so it's always
1946      // an error here
1947      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1948      Invalid = true;
1949      SC = SC_None;
1950    }
1951    SCSpec = DS.getStorageClassSpecAsWritten();
1952    VarDecl::StorageClass SCAsWritten
1953      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1954
1955    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1956                           /*IdentifierInfo=*/0,
1957                           Context.getTypeDeclType(Record),
1958                           TInfo, SC, SCAsWritten);
1959  }
1960  Anon->setImplicit();
1961
1962  // Add the anonymous struct/union object to the current
1963  // context. We'll be referencing this object when we refer to one of
1964  // its members.
1965  Owner->addDecl(Anon);
1966
1967  // Inject the members of the anonymous struct/union into the owning
1968  // context and into the identifier resolver chain for name lookup
1969  // purposes.
1970  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1971    Invalid = true;
1972
1973  // Mark this as an anonymous struct/union type. Note that we do not
1974  // do this until after we have already checked and injected the
1975  // members of this anonymous struct/union type, because otherwise
1976  // the members could be injected twice: once by DeclContext when it
1977  // builds its lookup table, and once by
1978  // InjectAnonymousStructOrUnionMembers.
1979  Record->setAnonymousStructOrUnion(true);
1980
1981  if (Invalid)
1982    Anon->setInvalidDecl();
1983
1984  return Anon;
1985}
1986
1987
1988/// GetNameForDeclarator - Determine the full declaration name for the
1989/// given Declarator.
1990DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1991  return GetNameFromUnqualifiedId(D.getName());
1992}
1993
1994/// \brief Retrieves the declaration name from a parsed unqualified-id.
1995DeclarationNameInfo
1996Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1997  DeclarationNameInfo NameInfo;
1998  NameInfo.setLoc(Name.StartLocation);
1999
2000  switch (Name.getKind()) {
2001
2002  case UnqualifiedId::IK_Identifier:
2003    NameInfo.setName(Name.Identifier);
2004    NameInfo.setLoc(Name.StartLocation);
2005    return NameInfo;
2006
2007  case UnqualifiedId::IK_OperatorFunctionId:
2008    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2009                                           Name.OperatorFunctionId.Operator));
2010    NameInfo.setLoc(Name.StartLocation);
2011    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2012      = Name.OperatorFunctionId.SymbolLocations[0];
2013    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2014      = Name.EndLocation.getRawEncoding();
2015    return NameInfo;
2016
2017  case UnqualifiedId::IK_LiteralOperatorId:
2018    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2019                                                           Name.Identifier));
2020    NameInfo.setLoc(Name.StartLocation);
2021    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2022    return NameInfo;
2023
2024  case UnqualifiedId::IK_ConversionFunctionId: {
2025    TypeSourceInfo *TInfo;
2026    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2027    if (Ty.isNull())
2028      return DeclarationNameInfo();
2029    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2030                                               Context.getCanonicalType(Ty)));
2031    NameInfo.setLoc(Name.StartLocation);
2032    NameInfo.setNamedTypeInfo(TInfo);
2033    return NameInfo;
2034  }
2035
2036  case UnqualifiedId::IK_ConstructorName: {
2037    TypeSourceInfo *TInfo;
2038    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2039    if (Ty.isNull())
2040      return DeclarationNameInfo();
2041    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2042                                              Context.getCanonicalType(Ty)));
2043    NameInfo.setLoc(Name.StartLocation);
2044    NameInfo.setNamedTypeInfo(TInfo);
2045    return NameInfo;
2046  }
2047
2048  case UnqualifiedId::IK_ConstructorTemplateId: {
2049    // In well-formed code, we can only have a constructor
2050    // template-id that refers to the current context, so go there
2051    // to find the actual type being constructed.
2052    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2053    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2054      return DeclarationNameInfo();
2055
2056    // Determine the type of the class being constructed.
2057    QualType CurClassType = Context.getTypeDeclType(CurClass);
2058
2059    // FIXME: Check two things: that the template-id names the same type as
2060    // CurClassType, and that the template-id does not occur when the name
2061    // was qualified.
2062
2063    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2064                                    Context.getCanonicalType(CurClassType)));
2065    NameInfo.setLoc(Name.StartLocation);
2066    // FIXME: should we retrieve TypeSourceInfo?
2067    NameInfo.setNamedTypeInfo(0);
2068    return NameInfo;
2069  }
2070
2071  case UnqualifiedId::IK_DestructorName: {
2072    TypeSourceInfo *TInfo;
2073    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2074    if (Ty.isNull())
2075      return DeclarationNameInfo();
2076    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2077                                              Context.getCanonicalType(Ty)));
2078    NameInfo.setLoc(Name.StartLocation);
2079    NameInfo.setNamedTypeInfo(TInfo);
2080    return NameInfo;
2081  }
2082
2083  case UnqualifiedId::IK_TemplateId: {
2084    TemplateName TName = Name.TemplateId->Template.get();
2085    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2086    return Context.getNameForTemplate(TName, TNameLoc);
2087  }
2088
2089  } // switch (Name.getKind())
2090
2091  assert(false && "Unknown name kind");
2092  return DeclarationNameInfo();
2093}
2094
2095/// isNearlyMatchingFunction - Determine whether the C++ functions
2096/// Declaration and Definition are "nearly" matching. This heuristic
2097/// is used to improve diagnostics in the case where an out-of-line
2098/// function definition doesn't match any declaration within
2099/// the class or namespace.
2100static bool isNearlyMatchingFunction(ASTContext &Context,
2101                                     FunctionDecl *Declaration,
2102                                     FunctionDecl *Definition) {
2103  if (Declaration->param_size() != Definition->param_size())
2104    return false;
2105  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2106    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2107    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2108
2109    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2110                                        DefParamTy.getNonReferenceType()))
2111      return false;
2112  }
2113
2114  return true;
2115}
2116
2117/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2118/// declarator needs to be rebuilt in the current instantiation.
2119/// Any bits of declarator which appear before the name are valid for
2120/// consideration here.  That's specifically the type in the decl spec
2121/// and the base type in any member-pointer chunks.
2122static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2123                                                    DeclarationName Name) {
2124  // The types we specifically need to rebuild are:
2125  //   - typenames, typeofs, and decltypes
2126  //   - types which will become injected class names
2127  // Of course, we also need to rebuild any type referencing such a
2128  // type.  It's safest to just say "dependent", but we call out a
2129  // few cases here.
2130
2131  DeclSpec &DS = D.getMutableDeclSpec();
2132  switch (DS.getTypeSpecType()) {
2133  case DeclSpec::TST_typename:
2134  case DeclSpec::TST_typeofType:
2135  case DeclSpec::TST_decltype: {
2136    // Grab the type from the parser.
2137    TypeSourceInfo *TSI = 0;
2138    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2139    if (T.isNull() || !T->isDependentType()) break;
2140
2141    // Make sure there's a type source info.  This isn't really much
2142    // of a waste; most dependent types should have type source info
2143    // attached already.
2144    if (!TSI)
2145      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2146
2147    // Rebuild the type in the current instantiation.
2148    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2149    if (!TSI) return true;
2150
2151    // Store the new type back in the decl spec.
2152    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2153    DS.UpdateTypeRep(LocType);
2154    break;
2155  }
2156
2157  case DeclSpec::TST_typeofExpr: {
2158    Expr *E = DS.getRepAsExpr();
2159    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2160    if (Result.isInvalid()) return true;
2161    DS.UpdateExprRep(Result.get());
2162    break;
2163  }
2164
2165  default:
2166    // Nothing to do for these decl specs.
2167    break;
2168  }
2169
2170  // It doesn't matter what order we do this in.
2171  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2172    DeclaratorChunk &Chunk = D.getTypeObject(I);
2173
2174    // The only type information in the declarator which can come
2175    // before the declaration name is the base type of a member
2176    // pointer.
2177    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2178      continue;
2179
2180    // Rebuild the scope specifier in-place.
2181    CXXScopeSpec &SS = Chunk.Mem.Scope();
2182    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2183      return true;
2184  }
2185
2186  return false;
2187}
2188
2189Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2190  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2191}
2192
2193Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2194                             MultiTemplateParamsArg TemplateParamLists,
2195                             bool IsFunctionDefinition) {
2196  // TODO: consider using NameInfo for diagnostic.
2197  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2198  DeclarationName Name = NameInfo.getName();
2199
2200  // All of these full declarators require an identifier.  If it doesn't have
2201  // one, the ParsedFreeStandingDeclSpec action should be used.
2202  if (!Name) {
2203    if (!D.isInvalidType())  // Reject this if we think it is valid.
2204      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2205           diag::err_declarator_need_ident)
2206        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2207    return 0;
2208  }
2209
2210  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2211  // we find one that is.
2212  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2213         (S->getFlags() & Scope::TemplateParamScope) != 0)
2214    S = S->getParent();
2215
2216  DeclContext *DC = CurContext;
2217  if (D.getCXXScopeSpec().isInvalid())
2218    D.setInvalidType();
2219  else if (D.getCXXScopeSpec().isSet()) {
2220    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2221    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2222    if (!DC) {
2223      // If we could not compute the declaration context, it's because the
2224      // declaration context is dependent but does not refer to a class,
2225      // class template, or class template partial specialization. Complain
2226      // and return early, to avoid the coming semantic disaster.
2227      Diag(D.getIdentifierLoc(),
2228           diag::err_template_qualified_declarator_no_match)
2229        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2230        << D.getCXXScopeSpec().getRange();
2231      return 0;
2232    }
2233
2234    bool IsDependentContext = DC->isDependentContext();
2235
2236    if (!IsDependentContext &&
2237        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2238      return 0;
2239
2240    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2241      Diag(D.getIdentifierLoc(),
2242           diag::err_member_def_undefined_record)
2243        << Name << DC << D.getCXXScopeSpec().getRange();
2244      D.setInvalidType();
2245    }
2246
2247    // Check whether we need to rebuild the type of the given
2248    // declaration in the current instantiation.
2249    if (EnteringContext && IsDependentContext &&
2250        TemplateParamLists.size() != 0) {
2251      ContextRAII SavedContext(*this, DC);
2252      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2253        D.setInvalidType();
2254    }
2255  }
2256
2257  NamedDecl *New;
2258
2259  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2260  QualType R = TInfo->getType();
2261
2262  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2263                        ForRedeclaration);
2264
2265  // See if this is a redefinition of a variable in the same scope.
2266  if (!D.getCXXScopeSpec().isSet()) {
2267    bool IsLinkageLookup = false;
2268
2269    // If the declaration we're planning to build will be a function
2270    // or object with linkage, then look for another declaration with
2271    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2272    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2273      /* Do nothing*/;
2274    else if (R->isFunctionType()) {
2275      if (CurContext->isFunctionOrMethod() ||
2276          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2277        IsLinkageLookup = true;
2278    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2279      IsLinkageLookup = true;
2280    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2281             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2282      IsLinkageLookup = true;
2283
2284    if (IsLinkageLookup)
2285      Previous.clear(LookupRedeclarationWithLinkage);
2286
2287    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2288  } else { // Something like "int foo::x;"
2289    LookupQualifiedName(Previous, DC);
2290
2291    // Don't consider using declarations as previous declarations for
2292    // out-of-line members.
2293    RemoveUsingDecls(Previous);
2294
2295    // C++ 7.3.1.2p2:
2296    // Members (including explicit specializations of templates) of a named
2297    // namespace can also be defined outside that namespace by explicit
2298    // qualification of the name being defined, provided that the entity being
2299    // defined was already declared in the namespace and the definition appears
2300    // after the point of declaration in a namespace that encloses the
2301    // declarations namespace.
2302    //
2303    // Note that we only check the context at this point. We don't yet
2304    // have enough information to make sure that PrevDecl is actually
2305    // the declaration we want to match. For example, given:
2306    //
2307    //   class X {
2308    //     void f();
2309    //     void f(float);
2310    //   };
2311    //
2312    //   void X::f(int) { } // ill-formed
2313    //
2314    // In this case, PrevDecl will point to the overload set
2315    // containing the two f's declared in X, but neither of them
2316    // matches.
2317
2318    // First check whether we named the global scope.
2319    if (isa<TranslationUnitDecl>(DC)) {
2320      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2321        << Name << D.getCXXScopeSpec().getRange();
2322    } else {
2323      DeclContext *Cur = CurContext;
2324      while (isa<LinkageSpecDecl>(Cur))
2325        Cur = Cur->getParent();
2326      if (!Cur->Encloses(DC)) {
2327        // The qualifying scope doesn't enclose the original declaration.
2328        // Emit diagnostic based on current scope.
2329        SourceLocation L = D.getIdentifierLoc();
2330        SourceRange R = D.getCXXScopeSpec().getRange();
2331        if (isa<FunctionDecl>(Cur))
2332          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2333        else
2334          Diag(L, diag::err_invalid_declarator_scope)
2335            << Name << cast<NamedDecl>(DC) << R;
2336        D.setInvalidType();
2337      }
2338    }
2339  }
2340
2341  if (Previous.isSingleResult() &&
2342      Previous.getFoundDecl()->isTemplateParameter()) {
2343    // Maybe we will complain about the shadowed template parameter.
2344    if (!D.isInvalidType())
2345      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2346                                          Previous.getFoundDecl()))
2347        D.setInvalidType();
2348
2349    // Just pretend that we didn't see the previous declaration.
2350    Previous.clear();
2351  }
2352
2353  // In C++, the previous declaration we find might be a tag type
2354  // (class or enum). In this case, the new declaration will hide the
2355  // tag type. Note that this does does not apply if we're declaring a
2356  // typedef (C++ [dcl.typedef]p4).
2357  if (Previous.isSingleTagDecl() &&
2358      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2359    Previous.clear();
2360
2361  bool Redeclaration = false;
2362  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2363    if (TemplateParamLists.size()) {
2364      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2365      return 0;
2366    }
2367
2368    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2369  } else if (R->isFunctionType()) {
2370    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2371                                  move(TemplateParamLists),
2372                                  IsFunctionDefinition, Redeclaration);
2373  } else {
2374    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2375                                  move(TemplateParamLists),
2376                                  Redeclaration);
2377  }
2378
2379  if (New == 0)
2380    return 0;
2381
2382  // If this has an identifier and is not an invalid redeclaration or
2383  // function template specialization, add it to the scope stack.
2384  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2385    PushOnScopeChains(New, S);
2386
2387  return New;
2388}
2389
2390/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2391/// types into constant array types in certain situations which would otherwise
2392/// be errors (for GCC compatibility).
2393static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2394                                                    ASTContext &Context,
2395                                                    bool &SizeIsNegative,
2396                                                    llvm::APSInt &Oversized) {
2397  // This method tries to turn a variable array into a constant
2398  // array even when the size isn't an ICE.  This is necessary
2399  // for compatibility with code that depends on gcc's buggy
2400  // constant expression folding, like struct {char x[(int)(char*)2];}
2401  SizeIsNegative = false;
2402  Oversized = 0;
2403
2404  if (T->isDependentType())
2405    return QualType();
2406
2407  QualifierCollector Qs;
2408  const Type *Ty = Qs.strip(T);
2409
2410  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2411    QualType Pointee = PTy->getPointeeType();
2412    QualType FixedType =
2413        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2414                                            Oversized);
2415    if (FixedType.isNull()) return FixedType;
2416    FixedType = Context.getPointerType(FixedType);
2417    return Qs.apply(FixedType);
2418  }
2419
2420  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2421  if (!VLATy)
2422    return QualType();
2423  // FIXME: We should probably handle this case
2424  if (VLATy->getElementType()->isVariablyModifiedType())
2425    return QualType();
2426
2427  Expr::EvalResult EvalResult;
2428  if (!VLATy->getSizeExpr() ||
2429      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2430      !EvalResult.Val.isInt())
2431    return QualType();
2432
2433  // Check whether the array size is negative.
2434  llvm::APSInt &Res = EvalResult.Val.getInt();
2435  if (Res.isSigned() && Res.isNegative()) {
2436    SizeIsNegative = true;
2437    return QualType();
2438  }
2439
2440  // Check whether the array is too large to be addressed.
2441  unsigned ActiveSizeBits
2442    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2443                                              Res);
2444  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2445    Oversized = Res;
2446    return QualType();
2447  }
2448
2449  return Context.getConstantArrayType(VLATy->getElementType(),
2450                                      Res, ArrayType::Normal, 0);
2451}
2452
2453/// \brief Register the given locally-scoped external C declaration so
2454/// that it can be found later for redeclarations
2455void
2456Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2457                                       const LookupResult &Previous,
2458                                       Scope *S) {
2459  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2460         "Decl is not a locally-scoped decl!");
2461  // Note that we have a locally-scoped external with this name.
2462  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2463
2464  if (!Previous.isSingleResult())
2465    return;
2466
2467  NamedDecl *PrevDecl = Previous.getFoundDecl();
2468
2469  // If there was a previous declaration of this variable, it may be
2470  // in our identifier chain. Update the identifier chain with the new
2471  // declaration.
2472  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2473    // The previous declaration was found on the identifer resolver
2474    // chain, so remove it from its scope.
2475    while (S && !S->isDeclScope(PrevDecl))
2476      S = S->getParent();
2477
2478    if (S)
2479      S->RemoveDecl(PrevDecl);
2480  }
2481}
2482
2483/// \brief Diagnose function specifiers on a declaration of an identifier that
2484/// does not identify a function.
2485void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2486  // FIXME: We should probably indicate the identifier in question to avoid
2487  // confusion for constructs like "inline int a(), b;"
2488  if (D.getDeclSpec().isInlineSpecified())
2489    Diag(D.getDeclSpec().getInlineSpecLoc(),
2490         diag::err_inline_non_function);
2491
2492  if (D.getDeclSpec().isVirtualSpecified())
2493    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2494         diag::err_virtual_non_function);
2495
2496  if (D.getDeclSpec().isExplicitSpecified())
2497    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2498         diag::err_explicit_non_function);
2499}
2500
2501NamedDecl*
2502Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2503                             QualType R,  TypeSourceInfo *TInfo,
2504                             LookupResult &Previous, bool &Redeclaration) {
2505  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2506  if (D.getCXXScopeSpec().isSet()) {
2507    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2508      << D.getCXXScopeSpec().getRange();
2509    D.setInvalidType();
2510    // Pretend we didn't see the scope specifier.
2511    DC = CurContext;
2512    Previous.clear();
2513  }
2514
2515  if (getLangOptions().CPlusPlus) {
2516    // Check that there are no default arguments (C++ only).
2517    CheckExtraCXXDefaultArguments(D);
2518  }
2519
2520  DiagnoseFunctionSpecifiers(D);
2521
2522  if (D.getDeclSpec().isThreadSpecified())
2523    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2524
2525  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2526    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2527      << D.getName().getSourceRange();
2528    return 0;
2529  }
2530
2531  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2532  if (!NewTD) return 0;
2533
2534  // Handle attributes prior to checking for duplicates in MergeVarDecl
2535  ProcessDeclAttributes(S, NewTD, D);
2536
2537  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2538  // then it shall have block scope.
2539  // Note that variably modified types must be fixed before merging the decl so
2540  // that redeclarations will match.
2541  QualType T = NewTD->getUnderlyingType();
2542  if (T->isVariablyModifiedType()) {
2543    getCurFunction()->setHasBranchProtectedScope();
2544
2545    if (S->getFnParent() == 0) {
2546      bool SizeIsNegative;
2547      llvm::APSInt Oversized;
2548      QualType FixedTy =
2549          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2550                                              Oversized);
2551      if (!FixedTy.isNull()) {
2552        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2553        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2554      } else {
2555        if (SizeIsNegative)
2556          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2557        else if (T->isVariableArrayType())
2558          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2559        else if (Oversized.getBoolValue())
2560          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2561            << Oversized.toString(10);
2562        else
2563          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2564        NewTD->setInvalidDecl();
2565      }
2566    }
2567  }
2568
2569  // Merge the decl with the existing one if appropriate. If the decl is
2570  // in an outer scope, it isn't the same thing.
2571  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2572  if (!Previous.empty()) {
2573    Redeclaration = true;
2574    MergeTypeDefDecl(NewTD, Previous);
2575  }
2576
2577  // If this is the C FILE type, notify the AST context.
2578  if (IdentifierInfo *II = NewTD->getIdentifier())
2579    if (!NewTD->isInvalidDecl() &&
2580        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2581      if (II->isStr("FILE"))
2582        Context.setFILEDecl(NewTD);
2583      else if (II->isStr("jmp_buf"))
2584        Context.setjmp_bufDecl(NewTD);
2585      else if (II->isStr("sigjmp_buf"))
2586        Context.setsigjmp_bufDecl(NewTD);
2587    }
2588
2589  return NewTD;
2590}
2591
2592/// \brief Determines whether the given declaration is an out-of-scope
2593/// previous declaration.
2594///
2595/// This routine should be invoked when name lookup has found a
2596/// previous declaration (PrevDecl) that is not in the scope where a
2597/// new declaration by the same name is being introduced. If the new
2598/// declaration occurs in a local scope, previous declarations with
2599/// linkage may still be considered previous declarations (C99
2600/// 6.2.2p4-5, C++ [basic.link]p6).
2601///
2602/// \param PrevDecl the previous declaration found by name
2603/// lookup
2604///
2605/// \param DC the context in which the new declaration is being
2606/// declared.
2607///
2608/// \returns true if PrevDecl is an out-of-scope previous declaration
2609/// for a new delcaration with the same name.
2610static bool
2611isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2612                                ASTContext &Context) {
2613  if (!PrevDecl)
2614    return 0;
2615
2616  if (!PrevDecl->hasLinkage())
2617    return false;
2618
2619  if (Context.getLangOptions().CPlusPlus) {
2620    // C++ [basic.link]p6:
2621    //   If there is a visible declaration of an entity with linkage
2622    //   having the same name and type, ignoring entities declared
2623    //   outside the innermost enclosing namespace scope, the block
2624    //   scope declaration declares that same entity and receives the
2625    //   linkage of the previous declaration.
2626    DeclContext *OuterContext = DC->getLookupContext();
2627    if (!OuterContext->isFunctionOrMethod())
2628      // This rule only applies to block-scope declarations.
2629      return false;
2630
2631    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2632    if (PrevOuterContext->isRecord())
2633      // We found a member function: ignore it.
2634      return false;
2635
2636    // Find the innermost enclosing namespace for the new and
2637    // previous declarations.
2638    while (!OuterContext->isFileContext())
2639      OuterContext = OuterContext->getParent();
2640    while (!PrevOuterContext->isFileContext())
2641      PrevOuterContext = PrevOuterContext->getParent();
2642
2643    // The previous declaration is in a different namespace, so it
2644    // isn't the same function.
2645    if (!OuterContext->Equals(PrevOuterContext))
2646      return false;
2647  }
2648
2649  return true;
2650}
2651
2652static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2653  CXXScopeSpec &SS = D.getCXXScopeSpec();
2654  if (!SS.isSet()) return;
2655  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2656                       SS.getRange());
2657}
2658
2659NamedDecl*
2660Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2661                              QualType R, TypeSourceInfo *TInfo,
2662                              LookupResult &Previous,
2663                              MultiTemplateParamsArg TemplateParamLists,
2664                              bool &Redeclaration) {
2665  DeclarationName Name = GetNameForDeclarator(D).getName();
2666
2667  // Check that there are no default arguments (C++ only).
2668  if (getLangOptions().CPlusPlus)
2669    CheckExtraCXXDefaultArguments(D);
2670
2671  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2672  assert(SCSpec != DeclSpec::SCS_typedef &&
2673         "Parser allowed 'typedef' as storage class VarDecl.");
2674  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2675  if (SCSpec == DeclSpec::SCS_mutable) {
2676    // mutable can only appear on non-static class members, so it's always
2677    // an error here
2678    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2679    D.setInvalidType();
2680    SC = SC_None;
2681  }
2682  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2683  VarDecl::StorageClass SCAsWritten
2684    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2685
2686  IdentifierInfo *II = Name.getAsIdentifierInfo();
2687  if (!II) {
2688    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2689      << Name.getAsString();
2690    return 0;
2691  }
2692
2693  DiagnoseFunctionSpecifiers(D);
2694
2695  if (!DC->isRecord() && S->getFnParent() == 0) {
2696    // C99 6.9p2: The storage-class specifiers auto and register shall not
2697    // appear in the declaration specifiers in an external declaration.
2698    if (SC == SC_Auto || SC == SC_Register) {
2699
2700      // If this is a register variable with an asm label specified, then this
2701      // is a GNU extension.
2702      if (SC == SC_Register && D.getAsmLabel())
2703        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2704      else
2705        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2706      D.setInvalidType();
2707    }
2708  }
2709  if (DC->isRecord() && !CurContext->isRecord()) {
2710    // This is an out-of-line definition of a static data member.
2711    if (SC == SC_Static) {
2712      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2713           diag::err_static_out_of_line)
2714        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2715    } else if (SC == SC_None)
2716      SC = SC_Static;
2717  }
2718  if (SC == SC_Static) {
2719    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2720      if (RD->isLocalClass())
2721        Diag(D.getIdentifierLoc(),
2722             diag::err_static_data_member_not_allowed_in_local_class)
2723          << Name << RD->getDeclName();
2724    }
2725  }
2726
2727  // Match up the template parameter lists with the scope specifier, then
2728  // determine whether we have a template or a template specialization.
2729  bool isExplicitSpecialization = false;
2730  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2731  bool Invalid = false;
2732  if (TemplateParameterList *TemplateParams
2733        = MatchTemplateParametersToScopeSpecifier(
2734                                  D.getDeclSpec().getSourceRange().getBegin(),
2735                                                  D.getCXXScopeSpec(),
2736                        (TemplateParameterList**)TemplateParamLists.get(),
2737                                                   TemplateParamLists.size(),
2738                                                  /*never a friend*/ false,
2739                                                  isExplicitSpecialization,
2740                                                  Invalid)) {
2741    // All but one template parameter lists have been matching.
2742    --NumMatchedTemplateParamLists;
2743
2744    if (TemplateParams->size() > 0) {
2745      // There is no such thing as a variable template.
2746      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2747        << II
2748        << SourceRange(TemplateParams->getTemplateLoc(),
2749                       TemplateParams->getRAngleLoc());
2750      return 0;
2751    } else {
2752      // There is an extraneous 'template<>' for this variable. Complain
2753      // about it, but allow the declaration of the variable.
2754      Diag(TemplateParams->getTemplateLoc(),
2755           diag::err_template_variable_noparams)
2756        << II
2757        << SourceRange(TemplateParams->getTemplateLoc(),
2758                       TemplateParams->getRAngleLoc());
2759
2760      isExplicitSpecialization = true;
2761    }
2762  }
2763
2764  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2765                                   II, R, TInfo, SC, SCAsWritten);
2766
2767  if (D.isInvalidType() || Invalid)
2768    NewVD->setInvalidDecl();
2769
2770  SetNestedNameSpecifier(NewVD, D);
2771
2772  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2773    NewVD->setTemplateParameterListsInfo(Context,
2774                                         NumMatchedTemplateParamLists,
2775                        (TemplateParameterList**)TemplateParamLists.release());
2776  }
2777
2778  if (D.getDeclSpec().isThreadSpecified()) {
2779    if (NewVD->hasLocalStorage())
2780      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2781    else if (!Context.Target.isTLSSupported())
2782      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2783    else
2784      NewVD->setThreadSpecified(true);
2785  }
2786
2787  // Set the lexical context. If the declarator has a C++ scope specifier, the
2788  // lexical context will be different from the semantic context.
2789  NewVD->setLexicalDeclContext(CurContext);
2790
2791  // Handle attributes prior to checking for duplicates in MergeVarDecl
2792  ProcessDeclAttributes(S, NewVD, D);
2793
2794  // Handle GNU asm-label extension (encoded as an attribute).
2795  if (Expr *E = (Expr*) D.getAsmLabel()) {
2796    // The parser guarantees this is a string.
2797    StringLiteral *SE = cast<StringLiteral>(E);
2798    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2799                                                Context, SE->getString()));
2800  }
2801
2802  // Diagnose shadowed variables before filtering for scope.
2803  if (!D.getCXXScopeSpec().isSet())
2804    CheckShadow(S, NewVD, Previous);
2805
2806  // Don't consider existing declarations that are in a different
2807  // scope and are out-of-semantic-context declarations (if the new
2808  // declaration has linkage).
2809  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2810
2811  // Merge the decl with the existing one if appropriate.
2812  if (!Previous.empty()) {
2813    if (Previous.isSingleResult() &&
2814        isa<FieldDecl>(Previous.getFoundDecl()) &&
2815        D.getCXXScopeSpec().isSet()) {
2816      // The user tried to define a non-static data member
2817      // out-of-line (C++ [dcl.meaning]p1).
2818      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2819        << D.getCXXScopeSpec().getRange();
2820      Previous.clear();
2821      NewVD->setInvalidDecl();
2822    }
2823  } else if (D.getCXXScopeSpec().isSet()) {
2824    // No previous declaration in the qualifying scope.
2825    Diag(D.getIdentifierLoc(), diag::err_no_member)
2826      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2827      << D.getCXXScopeSpec().getRange();
2828    NewVD->setInvalidDecl();
2829  }
2830
2831  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2832
2833  // This is an explicit specialization of a static data member. Check it.
2834  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2835      CheckMemberSpecialization(NewVD, Previous))
2836    NewVD->setInvalidDecl();
2837
2838  // attributes declared post-definition are currently ignored
2839  // FIXME: This should be handled in attribute merging, not
2840  // here.
2841  if (Previous.isSingleResult()) {
2842    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2843    if (Def && (Def = Def->getDefinition()) &&
2844        Def != NewVD && D.hasAttributes()) {
2845      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2846      Diag(Def->getLocation(), diag::note_previous_definition);
2847    }
2848  }
2849
2850  // If this is a locally-scoped extern C variable, update the map of
2851  // such variables.
2852  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2853      !NewVD->isInvalidDecl())
2854    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2855
2856  // If there's a #pragma GCC visibility in scope, and this isn't a class
2857  // member, set the visibility of this variable.
2858  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2859    AddPushedVisibilityAttribute(NewVD);
2860
2861  MarkUnusedFileScopedDecl(NewVD);
2862
2863  return NewVD;
2864}
2865
2866/// \brief Diagnose variable or built-in function shadowing.  Implements
2867/// -Wshadow.
2868///
2869/// This method is called whenever a VarDecl is added to a "useful"
2870/// scope.
2871///
2872/// \param S the scope in which the shadowing name is being declared
2873/// \param R the lookup of the name
2874///
2875void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2876  // Return if warning is ignored.
2877  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2878    return;
2879
2880  // Don't diagnose declarations at file scope.  The scope might not
2881  // have a DeclContext if (e.g.) we're parsing a function prototype.
2882  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2883  if (NewDC && NewDC->isFileContext())
2884    return;
2885
2886  // Only diagnose if we're shadowing an unambiguous field or variable.
2887  if (R.getResultKind() != LookupResult::Found)
2888    return;
2889
2890  NamedDecl* ShadowedDecl = R.getFoundDecl();
2891  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2892    return;
2893
2894  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2895
2896  // Only warn about certain kinds of shadowing for class members.
2897  if (NewDC && NewDC->isRecord()) {
2898    // In particular, don't warn about shadowing non-class members.
2899    if (!OldDC->isRecord())
2900      return;
2901
2902    // TODO: should we warn about static data members shadowing
2903    // static data members from base classes?
2904
2905    // TODO: don't diagnose for inaccessible shadowed members.
2906    // This is hard to do perfectly because we might friend the
2907    // shadowing context, but that's just a false negative.
2908  }
2909
2910  // Determine what kind of declaration we're shadowing.
2911  unsigned Kind;
2912  if (isa<RecordDecl>(OldDC)) {
2913    if (isa<FieldDecl>(ShadowedDecl))
2914      Kind = 3; // field
2915    else
2916      Kind = 2; // static data member
2917  } else if (OldDC->isFileContext())
2918    Kind = 1; // global
2919  else
2920    Kind = 0; // local
2921
2922  DeclarationName Name = R.getLookupName();
2923
2924  // Emit warning and note.
2925  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2926  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2927}
2928
2929/// \brief Check -Wshadow without the advantage of a previous lookup.
2930void Sema::CheckShadow(Scope *S, VarDecl *D) {
2931  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2932                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2933  LookupName(R, S);
2934  CheckShadow(S, D, R);
2935}
2936
2937/// \brief Perform semantic checking on a newly-created variable
2938/// declaration.
2939///
2940/// This routine performs all of the type-checking required for a
2941/// variable declaration once it has been built. It is used both to
2942/// check variables after they have been parsed and their declarators
2943/// have been translated into a declaration, and to check variables
2944/// that have been instantiated from a template.
2945///
2946/// Sets NewVD->isInvalidDecl() if an error was encountered.
2947void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2948                                    LookupResult &Previous,
2949                                    bool &Redeclaration) {
2950  // If the decl is already known invalid, don't check it.
2951  if (NewVD->isInvalidDecl())
2952    return;
2953
2954  QualType T = NewVD->getType();
2955
2956  if (T->isObjCObjectType()) {
2957    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2958    return NewVD->setInvalidDecl();
2959  }
2960
2961  // Emit an error if an address space was applied to decl with local storage.
2962  // This includes arrays of objects with address space qualifiers, but not
2963  // automatic variables that point to other address spaces.
2964  // ISO/IEC TR 18037 S5.1.2
2965  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2966    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2967    return NewVD->setInvalidDecl();
2968  }
2969
2970  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2971      && !NewVD->hasAttr<BlocksAttr>())
2972    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2973
2974  bool isVM = T->isVariablyModifiedType();
2975  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2976      NewVD->hasAttr<BlocksAttr>())
2977    getCurFunction()->setHasBranchProtectedScope();
2978
2979  if ((isVM && NewVD->hasLinkage()) ||
2980      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2981    bool SizeIsNegative;
2982    llvm::APSInt Oversized;
2983    QualType FixedTy =
2984        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2985                                            Oversized);
2986
2987    if (FixedTy.isNull() && T->isVariableArrayType()) {
2988      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2989      // FIXME: This won't give the correct result for
2990      // int a[10][n];
2991      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2992
2993      if (NewVD->isFileVarDecl())
2994        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2995        << SizeRange;
2996      else if (NewVD->getStorageClass() == SC_Static)
2997        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2998        << SizeRange;
2999      else
3000        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3001        << SizeRange;
3002      return NewVD->setInvalidDecl();
3003    }
3004
3005    if (FixedTy.isNull()) {
3006      if (NewVD->isFileVarDecl())
3007        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3008      else
3009        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3010      return NewVD->setInvalidDecl();
3011    }
3012
3013    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3014    NewVD->setType(FixedTy);
3015  }
3016
3017  if (Previous.empty() && NewVD->isExternC()) {
3018    // Since we did not find anything by this name and we're declaring
3019    // an extern "C" variable, look for a non-visible extern "C"
3020    // declaration with the same name.
3021    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3022      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3023    if (Pos != LocallyScopedExternalDecls.end())
3024      Previous.addDecl(Pos->second);
3025  }
3026
3027  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3028    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3029      << T;
3030    return NewVD->setInvalidDecl();
3031  }
3032
3033  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3034    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3035    return NewVD->setInvalidDecl();
3036  }
3037
3038  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3039    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3040    return NewVD->setInvalidDecl();
3041  }
3042
3043  // Function pointers and references cannot have qualified function type, only
3044  // function pointer-to-members can do that.
3045  QualType Pointee;
3046  unsigned PtrOrRef = 0;
3047  if (const PointerType *Ptr = T->getAs<PointerType>())
3048    Pointee = Ptr->getPointeeType();
3049  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3050    Pointee = Ref->getPointeeType();
3051    PtrOrRef = 1;
3052  }
3053  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3054      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3055    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3056        << PtrOrRef;
3057    return NewVD->setInvalidDecl();
3058  }
3059
3060  if (!Previous.empty()) {
3061    Redeclaration = true;
3062    MergeVarDecl(NewVD, Previous);
3063  }
3064}
3065
3066/// \brief Data used with FindOverriddenMethod
3067struct FindOverriddenMethodData {
3068  Sema *S;
3069  CXXMethodDecl *Method;
3070};
3071
3072/// \brief Member lookup function that determines whether a given C++
3073/// method overrides a method in a base class, to be used with
3074/// CXXRecordDecl::lookupInBases().
3075static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3076                                 CXXBasePath &Path,
3077                                 void *UserData) {
3078  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3079
3080  FindOverriddenMethodData *Data
3081    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3082
3083  DeclarationName Name = Data->Method->getDeclName();
3084
3085  // FIXME: Do we care about other names here too?
3086  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3087    // We really want to find the base class destructor here.
3088    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3089    CanQualType CT = Data->S->Context.getCanonicalType(T);
3090
3091    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3092  }
3093
3094  for (Path.Decls = BaseRecord->lookup(Name);
3095       Path.Decls.first != Path.Decls.second;
3096       ++Path.Decls.first) {
3097    NamedDecl *D = *Path.Decls.first;
3098    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3099      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3100        return true;
3101    }
3102  }
3103
3104  return false;
3105}
3106
3107/// AddOverriddenMethods - See if a method overrides any in the base classes,
3108/// and if so, check that it's a valid override and remember it.
3109void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3110  // Look for virtual methods in base classes that this method might override.
3111  CXXBasePaths Paths;
3112  FindOverriddenMethodData Data;
3113  Data.Method = MD;
3114  Data.S = this;
3115  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3116    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3117         E = Paths.found_decls_end(); I != E; ++I) {
3118      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3119        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3120            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3121            !CheckOverridingFunctionAttributes(MD, OldMD))
3122          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3123      }
3124    }
3125  }
3126}
3127
3128NamedDecl*
3129Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3130                              QualType R, TypeSourceInfo *TInfo,
3131                              LookupResult &Previous,
3132                              MultiTemplateParamsArg TemplateParamLists,
3133                              bool IsFunctionDefinition, bool &Redeclaration) {
3134  assert(R.getTypePtr()->isFunctionType());
3135
3136  // TODO: consider using NameInfo for diagnostic.
3137  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3138  DeclarationName Name = NameInfo.getName();
3139  FunctionDecl::StorageClass SC = SC_None;
3140  switch (D.getDeclSpec().getStorageClassSpec()) {
3141  default: assert(0 && "Unknown storage class!");
3142  case DeclSpec::SCS_auto:
3143  case DeclSpec::SCS_register:
3144  case DeclSpec::SCS_mutable:
3145    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3146         diag::err_typecheck_sclass_func);
3147    D.setInvalidType();
3148    break;
3149  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3150  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3151  case DeclSpec::SCS_static: {
3152    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3153      // C99 6.7.1p5:
3154      //   The declaration of an identifier for a function that has
3155      //   block scope shall have no explicit storage-class specifier
3156      //   other than extern
3157      // See also (C++ [dcl.stc]p4).
3158      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3159           diag::err_static_block_func);
3160      SC = SC_None;
3161    } else
3162      SC = SC_Static;
3163    break;
3164  }
3165  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern;break;
3166  }
3167
3168  if (D.getDeclSpec().isThreadSpecified())
3169    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3170
3171  bool isFriend = D.getDeclSpec().isFriendSpecified();
3172  bool isInline = D.getDeclSpec().isInlineSpecified();
3173  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3174  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3175
3176  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3177  FunctionDecl::StorageClass SCAsWritten
3178    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3179
3180  // Check that the return type is not an abstract class type.
3181  // For record types, this is done by the AbstractClassUsageDiagnoser once
3182  // the class has been completely parsed.
3183  if (!DC->isRecord() &&
3184      RequireNonAbstractType(D.getIdentifierLoc(),
3185                             R->getAs<FunctionType>()->getResultType(),
3186                             diag::err_abstract_type_in_decl,
3187                             AbstractReturnType))
3188    D.setInvalidType();
3189
3190  // Do not allow returning a objc interface by-value.
3191  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3192    Diag(D.getIdentifierLoc(),
3193         diag::err_object_cannot_be_passed_returned_by_value) << 0
3194      << R->getAs<FunctionType>()->getResultType();
3195    D.setInvalidType();
3196  }
3197
3198  bool isVirtualOkay = false;
3199  FunctionDecl *NewFD;
3200
3201  if (isFriend) {
3202    // C++ [class.friend]p5
3203    //   A function can be defined in a friend declaration of a
3204    //   class . . . . Such a function is implicitly inline.
3205    isInline |= IsFunctionDefinition;
3206  }
3207
3208  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3209    // This is a C++ constructor declaration.
3210    assert(DC->isRecord() &&
3211           "Constructors can only be declared in a member context");
3212
3213    R = CheckConstructorDeclarator(D, R, SC);
3214
3215    // Create the new declaration
3216    NewFD = CXXConstructorDecl::Create(Context,
3217                                       cast<CXXRecordDecl>(DC),
3218                                       NameInfo, R, TInfo,
3219                                       isExplicit, isInline,
3220                                       /*isImplicitlyDeclared=*/false);
3221  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3222    // This is a C++ destructor declaration.
3223    if (DC->isRecord()) {
3224      R = CheckDestructorDeclarator(D, R, SC);
3225
3226      NewFD = CXXDestructorDecl::Create(Context,
3227                                        cast<CXXRecordDecl>(DC),
3228                                        NameInfo, R,
3229                                        isInline,
3230                                        /*isImplicitlyDeclared=*/false);
3231      NewFD->setTypeSourceInfo(TInfo);
3232
3233      isVirtualOkay = true;
3234    } else {
3235      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3236
3237      // Create a FunctionDecl to satisfy the function definition parsing
3238      // code path.
3239      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3240                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3241                                   /*hasPrototype=*/true);
3242      D.setInvalidType();
3243    }
3244  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3245    if (!DC->isRecord()) {
3246      Diag(D.getIdentifierLoc(),
3247           diag::err_conv_function_not_member);
3248      return 0;
3249    }
3250
3251    CheckConversionDeclarator(D, R, SC);
3252    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3253                                      NameInfo, R, TInfo,
3254                                      isInline, isExplicit);
3255
3256    isVirtualOkay = true;
3257  } else if (DC->isRecord()) {
3258    // If the of the function is the same as the name of the record, then this
3259    // must be an invalid constructor that has a return type.
3260    // (The parser checks for a return type and makes the declarator a
3261    // constructor if it has no return type).
3262    // must have an invalid constructor that has a return type
3263    if (Name.getAsIdentifierInfo() &&
3264        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3265      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3266        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3267        << SourceRange(D.getIdentifierLoc());
3268      return 0;
3269    }
3270
3271    bool isStatic = SC == SC_Static;
3272
3273    // [class.free]p1:
3274    // Any allocation function for a class T is a static member
3275    // (even if not explicitly declared static).
3276    if (Name.getCXXOverloadedOperator() == OO_New ||
3277        Name.getCXXOverloadedOperator() == OO_Array_New)
3278      isStatic = true;
3279
3280    // [class.free]p6 Any deallocation function for a class X is a static member
3281    // (even if not explicitly declared static).
3282    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3283        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3284      isStatic = true;
3285
3286    // This is a C++ method declaration.
3287    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3288                                  NameInfo, R, TInfo,
3289                                  isStatic, SCAsWritten, isInline);
3290
3291    isVirtualOkay = !isStatic;
3292  } else {
3293    // Determine whether the function was written with a
3294    // prototype. This true when:
3295    //   - we're in C++ (where every function has a prototype),
3296    //   - there is a prototype in the declarator, or
3297    //   - the type R of the function is some kind of typedef or other reference
3298    //     to a type name (which eventually refers to a function type).
3299    bool HasPrototype =
3300       getLangOptions().CPlusPlus ||
3301       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3302       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3303
3304    NewFD = FunctionDecl::Create(Context, DC,
3305                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3306                                 HasPrototype);
3307  }
3308
3309  if (D.isInvalidType())
3310    NewFD->setInvalidDecl();
3311
3312  SetNestedNameSpecifier(NewFD, D);
3313
3314  // Set the lexical context. If the declarator has a C++
3315  // scope specifier, or is the object of a friend declaration, the
3316  // lexical context will be different from the semantic context.
3317  NewFD->setLexicalDeclContext(CurContext);
3318
3319  // Match up the template parameter lists with the scope specifier, then
3320  // determine whether we have a template or a template specialization.
3321  FunctionTemplateDecl *FunctionTemplate = 0;
3322  bool isExplicitSpecialization = false;
3323  bool isFunctionTemplateSpecialization = false;
3324  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3325  bool Invalid = false;
3326  if (TemplateParameterList *TemplateParams
3327        = MatchTemplateParametersToScopeSpecifier(
3328                                  D.getDeclSpec().getSourceRange().getBegin(),
3329                                  D.getCXXScopeSpec(),
3330                           (TemplateParameterList**)TemplateParamLists.get(),
3331                                                  TemplateParamLists.size(),
3332                                                  isFriend,
3333                                                  isExplicitSpecialization,
3334                                                  Invalid)) {
3335    // All but one template parameter lists have been matching.
3336    --NumMatchedTemplateParamLists;
3337
3338    if (TemplateParams->size() > 0) {
3339      // This is a function template
3340
3341      // Check that we can declare a template here.
3342      if (CheckTemplateDeclScope(S, TemplateParams))
3343        return 0;
3344
3345      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3346                                                      NewFD->getLocation(),
3347                                                      Name, TemplateParams,
3348                                                      NewFD);
3349      FunctionTemplate->setLexicalDeclContext(CurContext);
3350      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3351    } else {
3352      // This is a function template specialization.
3353      isFunctionTemplateSpecialization = true;
3354
3355      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3356      if (isFriend && isFunctionTemplateSpecialization) {
3357        // We want to remove the "template<>", found here.
3358        SourceRange RemoveRange = TemplateParams->getSourceRange();
3359
3360        // If we remove the template<> and the name is not a
3361        // template-id, we're actually silently creating a problem:
3362        // the friend declaration will refer to an untemplated decl,
3363        // and clearly the user wants a template specialization.  So
3364        // we need to insert '<>' after the name.
3365        SourceLocation InsertLoc;
3366        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3367          InsertLoc = D.getName().getSourceRange().getEnd();
3368          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3369        }
3370
3371        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3372          << Name << RemoveRange
3373          << FixItHint::CreateRemoval(RemoveRange)
3374          << FixItHint::CreateInsertion(InsertLoc, "<>");
3375      }
3376    }
3377  }
3378
3379  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3380    NewFD->setTemplateParameterListsInfo(Context,
3381                                         NumMatchedTemplateParamLists,
3382                        (TemplateParameterList**)TemplateParamLists.release());
3383  }
3384
3385  if (Invalid) {
3386    NewFD->setInvalidDecl();
3387    if (FunctionTemplate)
3388      FunctionTemplate->setInvalidDecl();
3389  }
3390
3391  // C++ [dcl.fct.spec]p5:
3392  //   The virtual specifier shall only be used in declarations of
3393  //   nonstatic class member functions that appear within a
3394  //   member-specification of a class declaration; see 10.3.
3395  //
3396  if (isVirtual && !NewFD->isInvalidDecl()) {
3397    if (!isVirtualOkay) {
3398       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3399           diag::err_virtual_non_function);
3400    } else if (!CurContext->isRecord()) {
3401      // 'virtual' was specified outside of the class.
3402      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3403        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3404    } else {
3405      // Okay: Add virtual to the method.
3406      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3407      CurClass->setMethodAsVirtual(NewFD);
3408    }
3409  }
3410
3411  // C++ [dcl.fct.spec]p3:
3412  //  The inline specifier shall not appear on a block scope function declaration.
3413  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3414    if (CurContext->isFunctionOrMethod()) {
3415      // 'inline' is not allowed on block scope function declaration.
3416      Diag(D.getDeclSpec().getInlineSpecLoc(),
3417           diag::err_inline_declaration_block_scope) << Name
3418        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3419    }
3420  }
3421
3422  // C++ [dcl.fct.spec]p6:
3423  //  The explicit specifier shall be used only in the declaration of a
3424  //  constructor or conversion function within its class definition; see 12.3.1
3425  //  and 12.3.2.
3426  if (isExplicit && !NewFD->isInvalidDecl()) {
3427    if (!CurContext->isRecord()) {
3428      // 'explicit' was specified outside of the class.
3429      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3430           diag::err_explicit_out_of_class)
3431        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3432    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3433               !isa<CXXConversionDecl>(NewFD)) {
3434      // 'explicit' was specified on a function that wasn't a constructor
3435      // or conversion function.
3436      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3437           diag::err_explicit_non_ctor_or_conv_function)
3438        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3439    }
3440  }
3441
3442  // Filter out previous declarations that don't match the scope.
3443  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3444
3445  if (isFriend) {
3446    // DC is the namespace in which the function is being declared.
3447    assert((DC->isFileContext() || !Previous.empty()) &&
3448           "previously-undeclared friend function being created "
3449           "in a non-namespace context");
3450
3451    // For now, claim that the objects have no previous declaration.
3452    if (FunctionTemplate) {
3453      FunctionTemplate->setObjectOfFriendDecl(false);
3454      FunctionTemplate->setAccess(AS_public);
3455    }
3456    NewFD->setObjectOfFriendDecl(false);
3457    NewFD->setAccess(AS_public);
3458  }
3459
3460  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3461      !CurContext->isRecord()) {
3462    // C++ [class.static]p1:
3463    //   A data or function member of a class may be declared static
3464    //   in a class definition, in which case it is a static member of
3465    //   the class.
3466
3467    // Complain about the 'static' specifier if it's on an out-of-line
3468    // member function definition.
3469    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3470         diag::err_static_out_of_line)
3471      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3472  }
3473
3474  // Handle GNU asm-label extension (encoded as an attribute).
3475  if (Expr *E = (Expr*) D.getAsmLabel()) {
3476    // The parser guarantees this is a string.
3477    StringLiteral *SE = cast<StringLiteral>(E);
3478    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3479                                                SE->getString()));
3480  }
3481
3482  // Copy the parameter declarations from the declarator D to the function
3483  // declaration NewFD, if they are available.  First scavenge them into Params.
3484  llvm::SmallVector<ParmVarDecl*, 16> Params;
3485  if (D.getNumTypeObjects() > 0) {
3486    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3487
3488    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3489    // function that takes no arguments, not a function that takes a
3490    // single void argument.
3491    // We let through "const void" here because Sema::GetTypeForDeclarator
3492    // already checks for that case.
3493    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3494        FTI.ArgInfo[0].Param &&
3495        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3496      // Empty arg list, don't push any params.
3497      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3498
3499      // In C++, the empty parameter-type-list must be spelled "void"; a
3500      // typedef of void is not permitted.
3501      if (getLangOptions().CPlusPlus &&
3502          Param->getType().getUnqualifiedType() != Context.VoidTy)
3503        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3504      // FIXME: Leaks decl?
3505    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3506      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3507        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3508        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3509        Param->setDeclContext(NewFD);
3510        Params.push_back(Param);
3511
3512        if (Param->isInvalidDecl())
3513          NewFD->setInvalidDecl();
3514      }
3515    }
3516
3517  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3518    // When we're declaring a function with a typedef, typeof, etc as in the
3519    // following example, we'll need to synthesize (unnamed)
3520    // parameters for use in the declaration.
3521    //
3522    // @code
3523    // typedef void fn(int);
3524    // fn f;
3525    // @endcode
3526
3527    // Synthesize a parameter for each argument type.
3528    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3529         AE = FT->arg_type_end(); AI != AE; ++AI) {
3530      ParmVarDecl *Param =
3531        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3532      Params.push_back(Param);
3533    }
3534  } else {
3535    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3536           "Should not need args for typedef of non-prototype fn");
3537  }
3538  // Finally, we know we have the right number of parameters, install them.
3539  NewFD->setParams(Params.data(), Params.size());
3540
3541  // If the declarator is a template-id, translate the parser's template
3542  // argument list into our AST format.
3543  bool HasExplicitTemplateArgs = false;
3544  TemplateArgumentListInfo TemplateArgs;
3545  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3546    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3547    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3548    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3549    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3550                                       TemplateId->getTemplateArgs(),
3551                                       TemplateId->NumArgs);
3552    translateTemplateArguments(TemplateArgsPtr,
3553                               TemplateArgs);
3554    TemplateArgsPtr.release();
3555
3556    HasExplicitTemplateArgs = true;
3557
3558    if (FunctionTemplate) {
3559      // FIXME: Diagnose function template with explicit template
3560      // arguments.
3561      HasExplicitTemplateArgs = false;
3562    } else if (!isFunctionTemplateSpecialization &&
3563               !D.getDeclSpec().isFriendSpecified()) {
3564      // We have encountered something that the user meant to be a
3565      // specialization (because it has explicitly-specified template
3566      // arguments) but that was not introduced with a "template<>" (or had
3567      // too few of them).
3568      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3569        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3570        << FixItHint::CreateInsertion(
3571                                   D.getDeclSpec().getSourceRange().getBegin(),
3572                                                 "template<> ");
3573      isFunctionTemplateSpecialization = true;
3574    } else {
3575      // "friend void foo<>(int);" is an implicit specialization decl.
3576      isFunctionTemplateSpecialization = true;
3577    }
3578  } else if (isFriend && isFunctionTemplateSpecialization) {
3579    // This combination is only possible in a recovery case;  the user
3580    // wrote something like:
3581    //   template <> friend void foo(int);
3582    // which we're recovering from as if the user had written:
3583    //   friend void foo<>(int);
3584    // Go ahead and fake up a template id.
3585    HasExplicitTemplateArgs = true;
3586    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3587    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3588  }
3589
3590  // If it's a friend (and only if it's a friend), it's possible
3591  // that either the specialized function type or the specialized
3592  // template is dependent, and therefore matching will fail.  In
3593  // this case, don't check the specialization yet.
3594  if (isFunctionTemplateSpecialization && isFriend &&
3595      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3596    assert(HasExplicitTemplateArgs &&
3597           "friend function specialization without template args");
3598    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3599                                                     Previous))
3600      NewFD->setInvalidDecl();
3601  } else if (isFunctionTemplateSpecialization) {
3602    if (CheckFunctionTemplateSpecialization(NewFD,
3603                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3604                                            Previous))
3605      NewFD->setInvalidDecl();
3606  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3607    if (CheckMemberSpecialization(NewFD, Previous))
3608      NewFD->setInvalidDecl();
3609  }
3610
3611  // Perform semantic checking on the function declaration.
3612  bool OverloadableAttrRequired = false; // FIXME: HACK!
3613  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3614                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3615
3616  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3617          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3618         "previous declaration set still overloaded");
3619
3620  NamedDecl *PrincipalDecl = (FunctionTemplate
3621                              ? cast<NamedDecl>(FunctionTemplate)
3622                              : NewFD);
3623
3624  if (isFriend && Redeclaration) {
3625    AccessSpecifier Access = AS_public;
3626    if (!NewFD->isInvalidDecl())
3627      Access = NewFD->getPreviousDeclaration()->getAccess();
3628
3629    NewFD->setAccess(Access);
3630    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3631
3632    PrincipalDecl->setObjectOfFriendDecl(true);
3633  }
3634
3635  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3636      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3637    PrincipalDecl->setNonMemberOperator();
3638
3639  // If we have a function template, check the template parameter
3640  // list. This will check and merge default template arguments.
3641  if (FunctionTemplate) {
3642    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3643    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3644                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3645             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3646                                                : TPC_FunctionTemplate);
3647  }
3648
3649  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3650    // Fake up an access specifier if it's supposed to be a class member.
3651    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3652      NewFD->setAccess(AS_public);
3653
3654    // An out-of-line member function declaration must also be a
3655    // definition (C++ [dcl.meaning]p1).
3656    // Note that this is not the case for explicit specializations of
3657    // function templates or member functions of class templates, per
3658    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3659    // for compatibility with old SWIG code which likes to generate them.
3660    if (!IsFunctionDefinition && !isFriend &&
3661        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3662      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3663        << D.getCXXScopeSpec().getRange();
3664    }
3665    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3666      // The user tried to provide an out-of-line definition for a
3667      // function that is a member of a class or namespace, but there
3668      // was no such member function declared (C++ [class.mfct]p2,
3669      // C++ [namespace.memdef]p2). For example:
3670      //
3671      // class X {
3672      //   void f() const;
3673      // };
3674      //
3675      // void X::f() { } // ill-formed
3676      //
3677      // Complain about this problem, and attempt to suggest close
3678      // matches (e.g., those that differ only in cv-qualifiers and
3679      // whether the parameter types are references).
3680      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3681        << Name << DC << D.getCXXScopeSpec().getRange();
3682      NewFD->setInvalidDecl();
3683
3684      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3685                        ForRedeclaration);
3686      LookupQualifiedName(Prev, DC);
3687      assert(!Prev.isAmbiguous() &&
3688             "Cannot have an ambiguity in previous-declaration lookup");
3689      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3690           Func != FuncEnd; ++Func) {
3691        if (isa<FunctionDecl>(*Func) &&
3692            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3693          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3694      }
3695    }
3696  }
3697
3698  // Handle attributes. We need to have merged decls when handling attributes
3699  // (for example to check for conflicts, etc).
3700  // FIXME: This needs to happen before we merge declarations. Then,
3701  // let attribute merging cope with attribute conflicts.
3702  ProcessDeclAttributes(S, NewFD, D);
3703
3704  // attributes declared post-definition are currently ignored
3705  // FIXME: This should happen during attribute merging
3706  if (Redeclaration && Previous.isSingleResult()) {
3707    const FunctionDecl *Def;
3708    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3709    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3710      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3711      Diag(Def->getLocation(), diag::note_previous_definition);
3712    }
3713  }
3714
3715  AddKnownFunctionAttributes(NewFD);
3716
3717  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3718    // If a function name is overloadable in C, then every function
3719    // with that name must be marked "overloadable".
3720    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3721      << Redeclaration << NewFD;
3722    if (!Previous.empty())
3723      Diag(Previous.getRepresentativeDecl()->getLocation(),
3724           diag::note_attribute_overloadable_prev_overload);
3725    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3726  }
3727
3728  if (NewFD->hasAttr<OverloadableAttr>() &&
3729      !NewFD->getType()->getAs<FunctionProtoType>()) {
3730    Diag(NewFD->getLocation(),
3731         diag::err_attribute_overloadable_no_prototype)
3732      << NewFD;
3733
3734    // Turn this into a variadic function with no parameters.
3735    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3736    QualType R = Context.getFunctionType(FT->getResultType(),
3737                                         0, 0, true, 0, false, false, 0, 0,
3738                                         FT->getExtInfo());
3739    NewFD->setType(R);
3740  }
3741
3742  // If there's a #pragma GCC visibility in scope, and this isn't a class
3743  // member, set the visibility of this function.
3744  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3745    AddPushedVisibilityAttribute(NewFD);
3746
3747  // If this is a locally-scoped extern C function, update the
3748  // map of such names.
3749  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3750      && !NewFD->isInvalidDecl())
3751    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3752
3753  // Set this FunctionDecl's range up to the right paren.
3754  NewFD->setLocEnd(D.getSourceRange().getEnd());
3755
3756  if (FunctionTemplate && NewFD->isInvalidDecl())
3757    FunctionTemplate->setInvalidDecl();
3758
3759  if (FunctionTemplate)
3760    return FunctionTemplate;
3761
3762  MarkUnusedFileScopedDecl(NewFD);
3763
3764  return NewFD;
3765}
3766
3767/// \brief Perform semantic checking of a new function declaration.
3768///
3769/// Performs semantic analysis of the new function declaration
3770/// NewFD. This routine performs all semantic checking that does not
3771/// require the actual declarator involved in the declaration, and is
3772/// used both for the declaration of functions as they are parsed
3773/// (called via ActOnDeclarator) and for the declaration of functions
3774/// that have been instantiated via C++ template instantiation (called
3775/// via InstantiateDecl).
3776///
3777/// \param IsExplicitSpecialiation whether this new function declaration is
3778/// an explicit specialization of the previous declaration.
3779///
3780/// This sets NewFD->isInvalidDecl() to true if there was an error.
3781void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3782                                    LookupResult &Previous,
3783                                    bool IsExplicitSpecialization,
3784                                    bool &Redeclaration,
3785                                    bool &OverloadableAttrRequired) {
3786  // If NewFD is already known erroneous, don't do any of this checking.
3787  if (NewFD->isInvalidDecl()) {
3788    // If this is a class member, mark the class invalid immediately.
3789    // This avoids some consistency errors later.
3790    if (isa<CXXMethodDecl>(NewFD))
3791      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3792
3793    return;
3794  }
3795
3796  if (NewFD->getResultType()->isVariablyModifiedType()) {
3797    // Functions returning a variably modified type violate C99 6.7.5.2p2
3798    // because all functions have linkage.
3799    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3800    return NewFD->setInvalidDecl();
3801  }
3802
3803  if (NewFD->isMain())
3804    CheckMain(NewFD);
3805
3806  // Check for a previous declaration of this name.
3807  if (Previous.empty() && NewFD->isExternC()) {
3808    // Since we did not find anything by this name and we're declaring
3809    // an extern "C" function, look for a non-visible extern "C"
3810    // declaration with the same name.
3811    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3812      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3813    if (Pos != LocallyScopedExternalDecls.end())
3814      Previous.addDecl(Pos->second);
3815  }
3816
3817  // Merge or overload the declaration with an existing declaration of
3818  // the same name, if appropriate.
3819  if (!Previous.empty()) {
3820    // Determine whether NewFD is an overload of PrevDecl or
3821    // a declaration that requires merging. If it's an overload,
3822    // there's no more work to do here; we'll just add the new
3823    // function to the scope.
3824
3825    NamedDecl *OldDecl = 0;
3826    if (!AllowOverloadingOfFunction(Previous, Context)) {
3827      Redeclaration = true;
3828      OldDecl = Previous.getFoundDecl();
3829    } else {
3830      if (!getLangOptions().CPlusPlus)
3831        OverloadableAttrRequired = true;
3832
3833      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3834                            /*NewIsUsingDecl*/ false)) {
3835      case Ovl_Match:
3836        Redeclaration = true;
3837        break;
3838
3839      case Ovl_NonFunction:
3840        Redeclaration = true;
3841        break;
3842
3843      case Ovl_Overload:
3844        Redeclaration = false;
3845        break;
3846      }
3847    }
3848
3849    if (Redeclaration) {
3850      // NewFD and OldDecl represent declarations that need to be
3851      // merged.
3852      if (MergeFunctionDecl(NewFD, OldDecl))
3853        return NewFD->setInvalidDecl();
3854
3855      Previous.clear();
3856      Previous.addDecl(OldDecl);
3857
3858      if (FunctionTemplateDecl *OldTemplateDecl
3859                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3860        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3861        FunctionTemplateDecl *NewTemplateDecl
3862          = NewFD->getDescribedFunctionTemplate();
3863        assert(NewTemplateDecl && "Template/non-template mismatch");
3864        if (CXXMethodDecl *Method
3865              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3866          Method->setAccess(OldTemplateDecl->getAccess());
3867          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3868        }
3869
3870        // If this is an explicit specialization of a member that is a function
3871        // template, mark it as a member specialization.
3872        if (IsExplicitSpecialization &&
3873            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3874          NewTemplateDecl->setMemberSpecialization();
3875          assert(OldTemplateDecl->isMemberSpecialization());
3876        }
3877      } else {
3878        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3879          NewFD->setAccess(OldDecl->getAccess());
3880        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3881      }
3882    }
3883  }
3884
3885  // Semantic checking for this function declaration (in isolation).
3886  if (getLangOptions().CPlusPlus) {
3887    // C++-specific checks.
3888    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3889      CheckConstructor(Constructor);
3890    } else if (CXXDestructorDecl *Destructor =
3891                dyn_cast<CXXDestructorDecl>(NewFD)) {
3892      CXXRecordDecl *Record = Destructor->getParent();
3893      QualType ClassType = Context.getTypeDeclType(Record);
3894
3895      // FIXME: Shouldn't we be able to perform this check even when the class
3896      // type is dependent? Both gcc and edg can handle that.
3897      if (!ClassType->isDependentType()) {
3898        DeclarationName Name
3899          = Context.DeclarationNames.getCXXDestructorName(
3900                                        Context.getCanonicalType(ClassType));
3901//         NewFD->getDeclName().dump();
3902//         Name.dump();
3903        if (NewFD->getDeclName() != Name) {
3904          Diag(NewFD->getLocation(), diag::err_destructor_name);
3905          return NewFD->setInvalidDecl();
3906        }
3907      }
3908
3909      Record->setUserDeclaredDestructor(true);
3910      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3911      // user-defined destructor.
3912      Record->setPOD(false);
3913
3914      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3915      // declared destructor.
3916      // FIXME: C++0x: don't do this for "= default" destructors
3917      Record->setHasTrivialDestructor(false);
3918    } else if (CXXConversionDecl *Conversion
3919               = dyn_cast<CXXConversionDecl>(NewFD)) {
3920      ActOnConversionDeclarator(Conversion);
3921    }
3922
3923    // Find any virtual functions that this function overrides.
3924    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3925      if (!Method->isFunctionTemplateSpecialization() &&
3926          !Method->getDescribedFunctionTemplate())
3927        AddOverriddenMethods(Method->getParent(), Method);
3928    }
3929
3930    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3931    if (NewFD->isOverloadedOperator() &&
3932        CheckOverloadedOperatorDeclaration(NewFD))
3933      return NewFD->setInvalidDecl();
3934
3935    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3936    if (NewFD->getLiteralIdentifier() &&
3937        CheckLiteralOperatorDeclaration(NewFD))
3938      return NewFD->setInvalidDecl();
3939
3940    // In C++, check default arguments now that we have merged decls. Unless
3941    // the lexical context is the class, because in this case this is done
3942    // during delayed parsing anyway.
3943    if (!CurContext->isRecord())
3944      CheckCXXDefaultArguments(NewFD);
3945  }
3946}
3947
3948void Sema::CheckMain(FunctionDecl* FD) {
3949  // C++ [basic.start.main]p3:  A program that declares main to be inline
3950  //   or static is ill-formed.
3951  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3952  //   shall not appear in a declaration of main.
3953  // static main is not an error under C99, but we should warn about it.
3954  bool isInline = FD->isInlineSpecified();
3955  bool isStatic = FD->getStorageClass() == SC_Static;
3956  if (isInline || isStatic) {
3957    unsigned diagID = diag::warn_unusual_main_decl;
3958    if (isInline || getLangOptions().CPlusPlus)
3959      diagID = diag::err_unusual_main_decl;
3960
3961    int which = isStatic + (isInline << 1) - 1;
3962    Diag(FD->getLocation(), diagID) << which;
3963  }
3964
3965  QualType T = FD->getType();
3966  assert(T->isFunctionType() && "function decl is not of function type");
3967  const FunctionType* FT = T->getAs<FunctionType>();
3968
3969  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3970    // TODO: add a replacement fixit to turn the return type into 'int'.
3971    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3972    FD->setInvalidDecl(true);
3973  }
3974
3975  // Treat protoless main() as nullary.
3976  if (isa<FunctionNoProtoType>(FT)) return;
3977
3978  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3979  unsigned nparams = FTP->getNumArgs();
3980  assert(FD->getNumParams() == nparams);
3981
3982  bool HasExtraParameters = (nparams > 3);
3983
3984  // Darwin passes an undocumented fourth argument of type char**.  If
3985  // other platforms start sprouting these, the logic below will start
3986  // getting shifty.
3987  if (nparams == 4 &&
3988      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3989    HasExtraParameters = false;
3990
3991  if (HasExtraParameters) {
3992    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3993    FD->setInvalidDecl(true);
3994    nparams = 3;
3995  }
3996
3997  // FIXME: a lot of the following diagnostics would be improved
3998  // if we had some location information about types.
3999
4000  QualType CharPP =
4001    Context.getPointerType(Context.getPointerType(Context.CharTy));
4002  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4003
4004  for (unsigned i = 0; i < nparams; ++i) {
4005    QualType AT = FTP->getArgType(i);
4006
4007    bool mismatch = true;
4008
4009    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4010      mismatch = false;
4011    else if (Expected[i] == CharPP) {
4012      // As an extension, the following forms are okay:
4013      //   char const **
4014      //   char const * const *
4015      //   char * const *
4016
4017      QualifierCollector qs;
4018      const PointerType* PT;
4019      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4020          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4021          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4022        qs.removeConst();
4023        mismatch = !qs.empty();
4024      }
4025    }
4026
4027    if (mismatch) {
4028      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4029      // TODO: suggest replacing given type with expected type
4030      FD->setInvalidDecl(true);
4031    }
4032  }
4033
4034  if (nparams == 1 && !FD->isInvalidDecl()) {
4035    Diag(FD->getLocation(), diag::warn_main_one_arg);
4036  }
4037}
4038
4039bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4040  // FIXME: Need strict checking.  In C89, we need to check for
4041  // any assignment, increment, decrement, function-calls, or
4042  // commas outside of a sizeof.  In C99, it's the same list,
4043  // except that the aforementioned are allowed in unevaluated
4044  // expressions.  Everything else falls under the
4045  // "may accept other forms of constant expressions" exception.
4046  // (We never end up here for C++, so the constant expression
4047  // rules there don't matter.)
4048  if (Init->isConstantInitializer(Context, false))
4049    return false;
4050  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4051    << Init->getSourceRange();
4052  return true;
4053}
4054
4055void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4056  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4057}
4058
4059/// AddInitializerToDecl - Adds the initializer Init to the
4060/// declaration dcl. If DirectInit is true, this is C++ direct
4061/// initialization rather than copy initialization.
4062void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4063  // If there is no declaration, there was an error parsing it.  Just ignore
4064  // the initializer.
4065  if (RealDecl == 0)
4066    return;
4067
4068  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4069    // With declarators parsed the way they are, the parser cannot
4070    // distinguish between a normal initializer and a pure-specifier.
4071    // Thus this grotesque test.
4072    IntegerLiteral *IL;
4073    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4074        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4075      CheckPureMethod(Method, Init->getSourceRange());
4076    else {
4077      Diag(Method->getLocation(), diag::err_member_function_initialization)
4078        << Method->getDeclName() << Init->getSourceRange();
4079      Method->setInvalidDecl();
4080    }
4081    return;
4082  }
4083
4084  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4085  if (!VDecl) {
4086    if (getLangOptions().CPlusPlus &&
4087        RealDecl->getLexicalDeclContext()->isRecord() &&
4088        isa<NamedDecl>(RealDecl))
4089      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4090        << cast<NamedDecl>(RealDecl)->getDeclName();
4091    else
4092      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4093    RealDecl->setInvalidDecl();
4094    return;
4095  }
4096
4097
4098
4099  // A definition must end up with a complete type, which means it must be
4100  // complete with the restriction that an array type might be completed by the
4101  // initializer; note that later code assumes this restriction.
4102  QualType BaseDeclType = VDecl->getType();
4103  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4104    BaseDeclType = Array->getElementType();
4105  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4106                          diag::err_typecheck_decl_incomplete_type)) {
4107    RealDecl->setInvalidDecl();
4108    return;
4109  }
4110
4111  // The variable can not have an abstract class type.
4112  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4113                             diag::err_abstract_type_in_decl,
4114                             AbstractVariableType))
4115    VDecl->setInvalidDecl();
4116
4117  const VarDecl *Def;
4118  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4119    Diag(VDecl->getLocation(), diag::err_redefinition)
4120      << VDecl->getDeclName();
4121    Diag(Def->getLocation(), diag::note_previous_definition);
4122    VDecl->setInvalidDecl();
4123    return;
4124  }
4125
4126  // C++ [class.static.data]p4
4127  //   If a static data member is of const integral or const
4128  //   enumeration type, its declaration in the class definition can
4129  //   specify a constant-initializer which shall be an integral
4130  //   constant expression (5.19). In that case, the member can appear
4131  //   in integral constant expressions. The member shall still be
4132  //   defined in a namespace scope if it is used in the program and the
4133  //   namespace scope definition shall not contain an initializer.
4134  //
4135  // We already performed a redefinition check above, but for static
4136  // data members we also need to check whether there was an in-class
4137  // declaration with an initializer.
4138  const VarDecl* PrevInit = 0;
4139  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4140    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4141    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4142    return;
4143  }
4144
4145  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4146    getCurFunction()->setHasBranchProtectedScope();
4147
4148  // Capture the variable that is being initialized and the style of
4149  // initialization.
4150  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4151
4152  // FIXME: Poor source location information.
4153  InitializationKind Kind
4154    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4155                                                   Init->getLocStart(),
4156                                                   Init->getLocEnd())
4157                : InitializationKind::CreateCopy(VDecl->getLocation(),
4158                                                 Init->getLocStart());
4159
4160  // Get the decls type and save a reference for later, since
4161  // CheckInitializerTypes may change it.
4162  QualType DclT = VDecl->getType(), SavT = DclT;
4163  if (VDecl->isBlockVarDecl()) {
4164    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4165      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4166      VDecl->setInvalidDecl();
4167    } else if (!VDecl->isInvalidDecl()) {
4168      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4169      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4170                                                MultiExprArg(*this, &Init, 1),
4171                                                &DclT);
4172      if (Result.isInvalid()) {
4173        VDecl->setInvalidDecl();
4174        return;
4175      }
4176
4177      Init = Result.takeAs<Expr>();
4178
4179      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4180      // Don't check invalid declarations to avoid emitting useless diagnostics.
4181      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4182        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4183          CheckForConstantInitializer(Init, DclT);
4184      }
4185    }
4186  } else if (VDecl->isStaticDataMember() &&
4187             VDecl->getLexicalDeclContext()->isRecord()) {
4188    // This is an in-class initialization for a static data member, e.g.,
4189    //
4190    // struct S {
4191    //   static const int value = 17;
4192    // };
4193
4194    // Attach the initializer
4195    VDecl->setInit(Init);
4196
4197    // C++ [class.mem]p4:
4198    //   A member-declarator can contain a constant-initializer only
4199    //   if it declares a static member (9.4) of const integral or
4200    //   const enumeration type, see 9.4.2.
4201    QualType T = VDecl->getType();
4202    if (!T->isDependentType() &&
4203        (!Context.getCanonicalType(T).isConstQualified() ||
4204         !T->isIntegralOrEnumerationType())) {
4205      Diag(VDecl->getLocation(), diag::err_member_initialization)
4206        << VDecl->getDeclName() << Init->getSourceRange();
4207      VDecl->setInvalidDecl();
4208    } else {
4209      // C++ [class.static.data]p4:
4210      //   If a static data member is of const integral or const
4211      //   enumeration type, its declaration in the class definition
4212      //   can specify a constant-initializer which shall be an
4213      //   integral constant expression (5.19).
4214      if (!Init->isTypeDependent() &&
4215          !Init->getType()->isIntegralOrEnumerationType()) {
4216        // We have a non-dependent, non-integral or enumeration type.
4217        Diag(Init->getSourceRange().getBegin(),
4218             diag::err_in_class_initializer_non_integral_type)
4219          << Init->getType() << Init->getSourceRange();
4220        VDecl->setInvalidDecl();
4221      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4222        // Check whether the expression is a constant expression.
4223        llvm::APSInt Value;
4224        SourceLocation Loc;
4225        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4226          Diag(Loc, diag::err_in_class_initializer_non_constant)
4227            << Init->getSourceRange();
4228          VDecl->setInvalidDecl();
4229        } else if (!VDecl->getType()->isDependentType())
4230          ImpCastExprToType(Init, VDecl->getType(), CK_IntegralCast);
4231      }
4232    }
4233  } else if (VDecl->isFileVarDecl()) {
4234    if (VDecl->getStorageClass() == SC_Extern &&
4235        (!getLangOptions().CPlusPlus ||
4236         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4237      Diag(VDecl->getLocation(), diag::warn_extern_init);
4238    if (!VDecl->isInvalidDecl()) {
4239      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4240      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4241                                                MultiExprArg(*this, &Init, 1),
4242                                                &DclT);
4243      if (Result.isInvalid()) {
4244        VDecl->setInvalidDecl();
4245        return;
4246      }
4247
4248      Init = Result.takeAs<Expr>();
4249    }
4250
4251    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4252    // Don't check invalid declarations to avoid emitting useless diagnostics.
4253    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4254      // C99 6.7.8p4. All file scoped initializers need to be constant.
4255      CheckForConstantInitializer(Init, DclT);
4256    }
4257  }
4258  // If the type changed, it means we had an incomplete type that was
4259  // completed by the initializer. For example:
4260  //   int ary[] = { 1, 3, 5 };
4261  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4262  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4263    VDecl->setType(DclT);
4264    Init->setType(DclT);
4265  }
4266
4267  Init = MaybeCreateCXXExprWithTemporaries(Init);
4268  // Attach the initializer to the decl.
4269  VDecl->setInit(Init);
4270
4271  if (getLangOptions().CPlusPlus) {
4272    if (!VDecl->isInvalidDecl() &&
4273        !VDecl->getDeclContext()->isDependentContext() &&
4274        VDecl->hasGlobalStorage() &&
4275        !Init->isConstantInitializer(Context,
4276                                     VDecl->getType()->isReferenceType()))
4277      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4278        << Init->getSourceRange();
4279
4280    // Make sure we mark the destructor as used if necessary.
4281    QualType InitType = VDecl->getType();
4282    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4283      InitType = Context.getBaseElementType(Array);
4284    if (const RecordType *Record = InitType->getAs<RecordType>())
4285      FinalizeVarWithDestructor(VDecl, Record);
4286  }
4287
4288  return;
4289}
4290
4291/// ActOnInitializerError - Given that there was an error parsing an
4292/// initializer for the given declaration, try to return to some form
4293/// of sanity.
4294void Sema::ActOnInitializerError(Decl *D) {
4295  // Our main concern here is re-establishing invariants like "a
4296  // variable's type is either dependent or complete".
4297  if (!D || D->isInvalidDecl()) return;
4298
4299  VarDecl *VD = dyn_cast<VarDecl>(D);
4300  if (!VD) return;
4301
4302  QualType Ty = VD->getType();
4303  if (Ty->isDependentType()) return;
4304
4305  // Require a complete type.
4306  if (RequireCompleteType(VD->getLocation(),
4307                          Context.getBaseElementType(Ty),
4308                          diag::err_typecheck_decl_incomplete_type)) {
4309    VD->setInvalidDecl();
4310    return;
4311  }
4312
4313  // Require an abstract type.
4314  if (RequireNonAbstractType(VD->getLocation(), Ty,
4315                             diag::err_abstract_type_in_decl,
4316                             AbstractVariableType)) {
4317    VD->setInvalidDecl();
4318    return;
4319  }
4320
4321  // Don't bother complaining about constructors or destructors,
4322  // though.
4323}
4324
4325void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4326                                  bool TypeContainsUndeducedAuto) {
4327  // If there is no declaration, there was an error parsing it. Just ignore it.
4328  if (RealDecl == 0)
4329    return;
4330
4331  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4332    QualType Type = Var->getType();
4333
4334    // C++0x [dcl.spec.auto]p3
4335    if (TypeContainsUndeducedAuto) {
4336      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4337        << Var->getDeclName() << Type;
4338      Var->setInvalidDecl();
4339      return;
4340    }
4341
4342    switch (Var->isThisDeclarationADefinition()) {
4343    case VarDecl::Definition:
4344      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4345        break;
4346
4347      // We have an out-of-line definition of a static data member
4348      // that has an in-class initializer, so we type-check this like
4349      // a declaration.
4350      //
4351      // Fall through
4352
4353    case VarDecl::DeclarationOnly:
4354      // It's only a declaration.
4355
4356      // Block scope. C99 6.7p7: If an identifier for an object is
4357      // declared with no linkage (C99 6.2.2p6), the type for the
4358      // object shall be complete.
4359      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4360          !Var->getLinkage() && !Var->isInvalidDecl() &&
4361          RequireCompleteType(Var->getLocation(), Type,
4362                              diag::err_typecheck_decl_incomplete_type))
4363        Var->setInvalidDecl();
4364
4365      // Make sure that the type is not abstract.
4366      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4367          RequireNonAbstractType(Var->getLocation(), Type,
4368                                 diag::err_abstract_type_in_decl,
4369                                 AbstractVariableType))
4370        Var->setInvalidDecl();
4371      return;
4372
4373    case VarDecl::TentativeDefinition:
4374      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4375      // object that has file scope without an initializer, and without a
4376      // storage-class specifier or with the storage-class specifier "static",
4377      // constitutes a tentative definition. Note: A tentative definition with
4378      // external linkage is valid (C99 6.2.2p5).
4379      if (!Var->isInvalidDecl()) {
4380        if (const IncompleteArrayType *ArrayT
4381                                    = Context.getAsIncompleteArrayType(Type)) {
4382          if (RequireCompleteType(Var->getLocation(),
4383                                  ArrayT->getElementType(),
4384                                  diag::err_illegal_decl_array_incomplete_type))
4385            Var->setInvalidDecl();
4386        } else if (Var->getStorageClass() == SC_Static) {
4387          // C99 6.9.2p3: If the declaration of an identifier for an object is
4388          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4389          // declared type shall not be an incomplete type.
4390          // NOTE: code such as the following
4391          //     static struct s;
4392          //     struct s { int a; };
4393          // is accepted by gcc. Hence here we issue a warning instead of
4394          // an error and we do not invalidate the static declaration.
4395          // NOTE: to avoid multiple warnings, only check the first declaration.
4396          if (Var->getPreviousDeclaration() == 0)
4397            RequireCompleteType(Var->getLocation(), Type,
4398                                diag::ext_typecheck_decl_incomplete_type);
4399        }
4400      }
4401
4402      // Record the tentative definition; we're done.
4403      if (!Var->isInvalidDecl())
4404        TentativeDefinitions.push_back(Var);
4405      return;
4406    }
4407
4408    // Provide a specific diagnostic for uninitialized variable
4409    // definitions with incomplete array type.
4410    if (Type->isIncompleteArrayType()) {
4411      Diag(Var->getLocation(),
4412           diag::err_typecheck_incomplete_array_needs_initializer);
4413      Var->setInvalidDecl();
4414      return;
4415    }
4416
4417    // Provide a specific diagnostic for uninitialized variable
4418    // definitions with reference type.
4419    if (Type->isReferenceType()) {
4420      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4421        << Var->getDeclName()
4422        << SourceRange(Var->getLocation(), Var->getLocation());
4423      Var->setInvalidDecl();
4424      return;
4425    }
4426
4427    // Do not attempt to type-check the default initializer for a
4428    // variable with dependent type.
4429    if (Type->isDependentType())
4430      return;
4431
4432    if (Var->isInvalidDecl())
4433      return;
4434
4435    if (RequireCompleteType(Var->getLocation(),
4436                            Context.getBaseElementType(Type),
4437                            diag::err_typecheck_decl_incomplete_type)) {
4438      Var->setInvalidDecl();
4439      return;
4440    }
4441
4442    // The variable can not have an abstract class type.
4443    if (RequireNonAbstractType(Var->getLocation(), Type,
4444                               diag::err_abstract_type_in_decl,
4445                               AbstractVariableType)) {
4446      Var->setInvalidDecl();
4447      return;
4448    }
4449
4450    const RecordType *Record
4451      = Context.getBaseElementType(Type)->getAs<RecordType>();
4452    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4453        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4454      // C++03 [dcl.init]p9:
4455      //   If no initializer is specified for an object, and the
4456      //   object is of (possibly cv-qualified) non-POD class type (or
4457      //   array thereof), the object shall be default-initialized; if
4458      //   the object is of const-qualified type, the underlying class
4459      //   type shall have a user-declared default
4460      //   constructor. Otherwise, if no initializer is specified for
4461      //   a non- static object, the object and its subobjects, if
4462      //   any, have an indeterminate initial value); if the object
4463      //   or any of its subobjects are of const-qualified type, the
4464      //   program is ill-formed.
4465      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4466    } else {
4467      // Check for jumps past the implicit initializer.  C++0x
4468      // clarifies that this applies to a "variable with automatic
4469      // storage duration", not a "local variable".
4470      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4471        getCurFunction()->setHasBranchProtectedScope();
4472
4473      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4474      InitializationKind Kind
4475        = InitializationKind::CreateDefault(Var->getLocation());
4476
4477      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4478      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4479                                        MultiExprArg(*this, 0, 0));
4480      if (Init.isInvalid())
4481        Var->setInvalidDecl();
4482      else if (Init.get()) {
4483        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4484
4485        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4486            Var->hasGlobalStorage() &&
4487            !Var->getDeclContext()->isDependentContext() &&
4488            !Var->getInit()->isConstantInitializer(Context, false))
4489          Diag(Var->getLocation(), diag::warn_global_constructor);
4490      }
4491    }
4492
4493    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4494      FinalizeVarWithDestructor(Var, Record);
4495  }
4496}
4497
4498Sema::DeclGroupPtrTy
4499Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4500                              Decl **Group, unsigned NumDecls) {
4501  llvm::SmallVector<Decl*, 8> Decls;
4502
4503  if (DS.isTypeSpecOwned())
4504    Decls.push_back(DS.getRepAsDecl());
4505
4506  for (unsigned i = 0; i != NumDecls; ++i)
4507    if (Decl *D = Group[i])
4508      Decls.push_back(D);
4509
4510  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4511                                                   Decls.data(), Decls.size()));
4512}
4513
4514
4515/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4516/// to introduce parameters into function prototype scope.
4517Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4518  const DeclSpec &DS = D.getDeclSpec();
4519
4520  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4521  VarDecl::StorageClass StorageClass = SC_None;
4522  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4523  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4524    StorageClass = SC_Register;
4525    StorageClassAsWritten = SC_Register;
4526  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4527    Diag(DS.getStorageClassSpecLoc(),
4528         diag::err_invalid_storage_class_in_func_decl);
4529    D.getMutableDeclSpec().ClearStorageClassSpecs();
4530  }
4531
4532  if (D.getDeclSpec().isThreadSpecified())
4533    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4534
4535  DiagnoseFunctionSpecifiers(D);
4536
4537  // Check that there are no default arguments inside the type of this
4538  // parameter (C++ only).
4539  if (getLangOptions().CPlusPlus)
4540    CheckExtraCXXDefaultArguments(D);
4541
4542  TagDecl *OwnedDecl = 0;
4543  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4544  QualType parmDeclType = TInfo->getType();
4545
4546  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4547    // C++ [dcl.fct]p6:
4548    //   Types shall not be defined in return or parameter types.
4549    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4550      << Context.getTypeDeclType(OwnedDecl);
4551  }
4552
4553  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4554  IdentifierInfo *II = D.getIdentifier();
4555  if (II) {
4556    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4557                   ForRedeclaration);
4558    LookupName(R, S);
4559    if (R.isSingleResult()) {
4560      NamedDecl *PrevDecl = R.getFoundDecl();
4561      if (PrevDecl->isTemplateParameter()) {
4562        // Maybe we will complain about the shadowed template parameter.
4563        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4564        // Just pretend that we didn't see the previous declaration.
4565        PrevDecl = 0;
4566      } else if (S->isDeclScope(PrevDecl)) {
4567        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4568        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4569
4570        // Recover by removing the name
4571        II = 0;
4572        D.SetIdentifier(0, D.getIdentifierLoc());
4573        D.setInvalidType(true);
4574      }
4575    }
4576  }
4577
4578  // Temporarily put parameter variables in the translation unit, not
4579  // the enclosing context.  This prevents them from accidentally
4580  // looking like class members in C++.
4581  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4582                                    TInfo, parmDeclType, II,
4583                                    D.getIdentifierLoc(),
4584                                    StorageClass, StorageClassAsWritten);
4585
4586  if (D.isInvalidType())
4587    New->setInvalidDecl();
4588
4589  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4590  if (D.getCXXScopeSpec().isSet()) {
4591    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4592      << D.getCXXScopeSpec().getRange();
4593    New->setInvalidDecl();
4594  }
4595
4596  // Add the parameter declaration into this scope.
4597  S->AddDecl(New);
4598  if (II)
4599    IdResolver.AddDecl(New);
4600
4601  ProcessDeclAttributes(S, New, D);
4602
4603  if (New->hasAttr<BlocksAttr>()) {
4604    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4605  }
4606  return New;
4607}
4608
4609/// \brief Synthesizes a variable for a parameter arising from a
4610/// typedef.
4611ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4612                                              SourceLocation Loc,
4613                                              QualType T) {
4614  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4615                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4616                                           SC_None, SC_None, 0);
4617  Param->setImplicit();
4618  return Param;
4619}
4620
4621void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4622                                    ParmVarDecl * const *ParamEnd) {
4623  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4624        Diagnostic::Ignored)
4625    return;
4626
4627  // Don't diagnose unused-parameter errors in template instantiations; we
4628  // will already have done so in the template itself.
4629  if (!ActiveTemplateInstantiations.empty())
4630    return;
4631
4632  for (; Param != ParamEnd; ++Param) {
4633    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4634        !(*Param)->hasAttr<UnusedAttr>()) {
4635      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4636        << (*Param)->getDeclName();
4637    }
4638  }
4639}
4640
4641ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4642                                  TypeSourceInfo *TSInfo, QualType T,
4643                                  IdentifierInfo *Name,
4644                                  SourceLocation NameLoc,
4645                                  VarDecl::StorageClass StorageClass,
4646                                  VarDecl::StorageClass StorageClassAsWritten) {
4647  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4648                                         adjustParameterType(T), TSInfo,
4649                                         StorageClass, StorageClassAsWritten,
4650                                         0);
4651
4652  // Parameters can not be abstract class types.
4653  // For record types, this is done by the AbstractClassUsageDiagnoser once
4654  // the class has been completely parsed.
4655  if (!CurContext->isRecord() &&
4656      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4657                             AbstractParamType))
4658    New->setInvalidDecl();
4659
4660  // Parameter declarators cannot be interface types. All ObjC objects are
4661  // passed by reference.
4662  if (T->isObjCObjectType()) {
4663    Diag(NameLoc,
4664         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4665    New->setInvalidDecl();
4666  }
4667
4668  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4669  // duration shall not be qualified by an address-space qualifier."
4670  // Since all parameters have automatic store duration, they can not have
4671  // an address space.
4672  if (T.getAddressSpace() != 0) {
4673    Diag(NameLoc, diag::err_arg_with_address_space);
4674    New->setInvalidDecl();
4675  }
4676
4677  return New;
4678}
4679
4680void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4681                                           SourceLocation LocAfterDecls) {
4682  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4683         "Not a function declarator!");
4684  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4685
4686  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4687  // for a K&R function.
4688  if (!FTI.hasPrototype) {
4689    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4690      --i;
4691      if (FTI.ArgInfo[i].Param == 0) {
4692        llvm::SmallString<256> Code;
4693        llvm::raw_svector_ostream(Code) << "  int "
4694                                        << FTI.ArgInfo[i].Ident->getName()
4695                                        << ";\n";
4696        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4697          << FTI.ArgInfo[i].Ident
4698          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4699
4700        // Implicitly declare the argument as type 'int' for lack of a better
4701        // type.
4702        DeclSpec DS;
4703        const char* PrevSpec; // unused
4704        unsigned DiagID; // unused
4705        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4706                           PrevSpec, DiagID);
4707        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4708        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4709        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4710      }
4711    }
4712  }
4713}
4714
4715Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4716                                         Declarator &D) {
4717  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4718  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4719         "Not a function declarator!");
4720  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4721
4722  if (FTI.hasPrototype) {
4723    // FIXME: Diagnose arguments without names in C.
4724  }
4725
4726  Scope *ParentScope = FnBodyScope->getParent();
4727
4728  Decl *DP = HandleDeclarator(ParentScope, D,
4729                              MultiTemplateParamsArg(*this),
4730                              /*IsFunctionDefinition=*/true);
4731  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4732}
4733
4734static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4735  // Don't warn about invalid declarations.
4736  if (FD->isInvalidDecl())
4737    return false;
4738
4739  // Or declarations that aren't global.
4740  if (!FD->isGlobal())
4741    return false;
4742
4743  // Don't warn about C++ member functions.
4744  if (isa<CXXMethodDecl>(FD))
4745    return false;
4746
4747  // Don't warn about 'main'.
4748  if (FD->isMain())
4749    return false;
4750
4751  // Don't warn about inline functions.
4752  if (FD->isInlineSpecified())
4753    return false;
4754
4755  // Don't warn about function templates.
4756  if (FD->getDescribedFunctionTemplate())
4757    return false;
4758
4759  // Don't warn about function template specializations.
4760  if (FD->isFunctionTemplateSpecialization())
4761    return false;
4762
4763  bool MissingPrototype = true;
4764  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4765       Prev; Prev = Prev->getPreviousDeclaration()) {
4766    // Ignore any declarations that occur in function or method
4767    // scope, because they aren't visible from the header.
4768    if (Prev->getDeclContext()->isFunctionOrMethod())
4769      continue;
4770
4771    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4772    break;
4773  }
4774
4775  return MissingPrototype;
4776}
4777
4778Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4779  // Clear the last template instantiation error context.
4780  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4781
4782  if (!D)
4783    return D;
4784  FunctionDecl *FD = 0;
4785
4786  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4787    FD = FunTmpl->getTemplatedDecl();
4788  else
4789    FD = cast<FunctionDecl>(D);
4790
4791  // Enter a new function scope
4792  PushFunctionScope();
4793
4794  // See if this is a redefinition.
4795  // But don't complain if we're in GNU89 mode and the previous definition
4796  // was an extern inline function.
4797  const FunctionDecl *Definition;
4798  if (FD->hasBody(Definition) &&
4799      !canRedefineFunction(Definition, getLangOptions())) {
4800    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4801    Diag(Definition->getLocation(), diag::note_previous_definition);
4802  }
4803
4804  // Builtin functions cannot be defined.
4805  if (unsigned BuiltinID = FD->getBuiltinID()) {
4806    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4807      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4808      FD->setInvalidDecl();
4809    }
4810  }
4811
4812  // The return type of a function definition must be complete
4813  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4814  QualType ResultType = FD->getResultType();
4815  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4816      !FD->isInvalidDecl() &&
4817      RequireCompleteType(FD->getLocation(), ResultType,
4818                          diag::err_func_def_incomplete_result))
4819    FD->setInvalidDecl();
4820
4821  // GNU warning -Wmissing-prototypes:
4822  //   Warn if a global function is defined without a previous
4823  //   prototype declaration. This warning is issued even if the
4824  //   definition itself provides a prototype. The aim is to detect
4825  //   global functions that fail to be declared in header files.
4826  if (ShouldWarnAboutMissingPrototype(FD))
4827    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4828
4829  if (FnBodyScope)
4830    PushDeclContext(FnBodyScope, FD);
4831
4832  // Check the validity of our function parameters
4833  CheckParmsForFunctionDef(FD);
4834
4835  bool ShouldCheckShadow =
4836    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4837
4838  // Introduce our parameters into the function scope
4839  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4840    ParmVarDecl *Param = FD->getParamDecl(p);
4841    Param->setOwningFunction(FD);
4842
4843    // If this has an identifier, add it to the scope stack.
4844    if (Param->getIdentifier() && FnBodyScope) {
4845      if (ShouldCheckShadow)
4846        CheckShadow(FnBodyScope, Param);
4847
4848      PushOnScopeChains(Param, FnBodyScope);
4849    }
4850  }
4851
4852  // Checking attributes of current function definition
4853  // dllimport attribute.
4854  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4855  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4856    // dllimport attribute cannot be directly applied to definition.
4857    if (!DA->isInherited()) {
4858      Diag(FD->getLocation(),
4859           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4860        << "dllimport";
4861      FD->setInvalidDecl();
4862      return FD;
4863    }
4864
4865    // Visual C++ appears to not think this is an issue, so only issue
4866    // a warning when Microsoft extensions are disabled.
4867    if (!LangOpts.Microsoft) {
4868      // If a symbol previously declared dllimport is later defined, the
4869      // attribute is ignored in subsequent references, and a warning is
4870      // emitted.
4871      Diag(FD->getLocation(),
4872           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4873        << FD->getName() << "dllimport";
4874    }
4875  }
4876  return FD;
4877}
4878
4879/// \brief Given the set of return statements within a function body,
4880/// compute the variables that are subject to the named return value
4881/// optimization.
4882///
4883/// Each of the variables that is subject to the named return value
4884/// optimization will be marked as NRVO variables in the AST, and any
4885/// return statement that has a marked NRVO variable as its NRVO candidate can
4886/// use the named return value optimization.
4887///
4888/// This function applies a very simplistic algorithm for NRVO: if every return
4889/// statement in the function has the same NRVO candidate, that candidate is
4890/// the NRVO variable.
4891///
4892/// FIXME: Employ a smarter algorithm that accounts for multiple return
4893/// statements and the lifetimes of the NRVO candidates. We should be able to
4894/// find a maximal set of NRVO variables.
4895static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4896  ReturnStmt **Returns = Scope->Returns.data();
4897
4898  const VarDecl *NRVOCandidate = 0;
4899  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4900    if (!Returns[I]->getNRVOCandidate())
4901      return;
4902
4903    if (!NRVOCandidate)
4904      NRVOCandidate = Returns[I]->getNRVOCandidate();
4905    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4906      return;
4907  }
4908
4909  if (NRVOCandidate)
4910    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4911}
4912
4913Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4914  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4915}
4916
4917Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4918                                    bool IsInstantiation) {
4919  FunctionDecl *FD = 0;
4920  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4921  if (FunTmpl)
4922    FD = FunTmpl->getTemplatedDecl();
4923  else
4924    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4925
4926  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4927
4928  if (FD) {
4929    FD->setBody(Body);
4930    if (FD->isMain()) {
4931      // C and C++ allow for main to automagically return 0.
4932      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4933      FD->setHasImplicitReturnZero(true);
4934      WP.disableCheckFallThrough();
4935    }
4936
4937    if (!FD->isInvalidDecl()) {
4938      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4939
4940      // If this is a constructor, we need a vtable.
4941      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4942        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4943
4944      ComputeNRVO(Body, getCurFunction());
4945    }
4946
4947    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4948  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4949    assert(MD == getCurMethodDecl() && "Method parsing confused");
4950    MD->setBody(Body);
4951    MD->setEndLoc(Body->getLocEnd());
4952    if (!MD->isInvalidDecl())
4953      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4954  } else {
4955    return 0;
4956  }
4957
4958  // Verify and clean out per-function state.
4959
4960  // Check goto/label use.
4961  FunctionScopeInfo *CurFn = getCurFunction();
4962  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4963         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
4964    LabelStmt *L = I->second;
4965
4966    // Verify that we have no forward references left.  If so, there was a goto
4967    // or address of a label taken, but no definition of it.  Label fwd
4968    // definitions are indicated with a null substmt.
4969    if (L->getSubStmt() != 0)
4970      continue;
4971
4972    // Emit error.
4973    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4974
4975    // At this point, we have gotos that use the bogus label.  Stitch it into
4976    // the function body so that they aren't leaked and that the AST is well
4977    // formed.
4978    if (Body == 0) {
4979      // The whole function wasn't parsed correctly.
4980      continue;
4981    }
4982
4983    // Otherwise, the body is valid: we want to stitch the label decl into the
4984    // function somewhere so that it is properly owned and so that the goto
4985    // has a valid target.  Do this by creating a new compound stmt with the
4986    // label in it.
4987
4988    // Give the label a sub-statement.
4989    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4990
4991    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4992                               cast<CXXTryStmt>(Body)->getTryBlock() :
4993                               cast<CompoundStmt>(Body);
4994    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4995                                          Compound->body_end());
4996    Elements.push_back(L);
4997    Compound->setStmts(Context, Elements.data(), Elements.size());
4998  }
4999
5000  if (Body) {
5001    // C++ constructors that have function-try-blocks can't have return
5002    // statements in the handlers of that block. (C++ [except.handle]p14)
5003    // Verify this.
5004    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5005      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5006
5007    // Verify that that gotos and switch cases don't jump into scopes illegally.
5008    // Verify that that gotos and switch cases don't jump into scopes illegally.
5009    if (getCurFunction()->NeedsScopeChecking() &&
5010        !dcl->isInvalidDecl() &&
5011        !hasAnyErrorsInThisFunction())
5012      DiagnoseInvalidJumps(Body);
5013
5014    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5015      if (!Destructor->getParent()->isDependentType())
5016        CheckDestructor(Destructor);
5017
5018      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5019                                             Destructor->getParent());
5020    }
5021
5022    // If any errors have occurred, clear out any temporaries that may have
5023    // been leftover. This ensures that these temporaries won't be picked up for
5024    // deletion in some later function.
5025    if (PP.getDiagnostics().hasErrorOccurred())
5026      ExprTemporaries.clear();
5027    else if (!isa<FunctionTemplateDecl>(dcl)) {
5028      // Since the body is valid, issue any analysis-based warnings that are
5029      // enabled.
5030      QualType ResultType;
5031      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5032        AnalysisWarnings.IssueWarnings(WP, FD);
5033      } else {
5034        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5035        AnalysisWarnings.IssueWarnings(WP, MD);
5036      }
5037    }
5038
5039    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5040  }
5041
5042  if (!IsInstantiation)
5043    PopDeclContext();
5044
5045  PopFunctionOrBlockScope();
5046
5047  // If any errors have occurred, clear out any temporaries that may have
5048  // been leftover. This ensures that these temporaries won't be picked up for
5049  // deletion in some later function.
5050  if (getDiagnostics().hasErrorOccurred())
5051    ExprTemporaries.clear();
5052
5053  return dcl;
5054}
5055
5056/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5057/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5058NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5059                                          IdentifierInfo &II, Scope *S) {
5060  // Before we produce a declaration for an implicitly defined
5061  // function, see whether there was a locally-scoped declaration of
5062  // this name as a function or variable. If so, use that
5063  // (non-visible) declaration, and complain about it.
5064  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5065    = LocallyScopedExternalDecls.find(&II);
5066  if (Pos != LocallyScopedExternalDecls.end()) {
5067    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5068    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5069    return Pos->second;
5070  }
5071
5072  // Extension in C99.  Legal in C90, but warn about it.
5073  if (II.getName().startswith("__builtin_"))
5074    Diag(Loc, diag::warn_builtin_unknown) << &II;
5075  else if (getLangOptions().C99)
5076    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5077  else
5078    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5079
5080  // Set a Declarator for the implicit definition: int foo();
5081  const char *Dummy;
5082  DeclSpec DS;
5083  unsigned DiagID;
5084  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5085  Error = Error; // Silence warning.
5086  assert(!Error && "Error setting up implicit decl!");
5087  Declarator D(DS, Declarator::BlockContext);
5088  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5089                                             0, 0, false, SourceLocation(),
5090                                             false, 0,0,0, Loc, Loc, D),
5091                SourceLocation());
5092  D.SetIdentifier(&II, Loc);
5093
5094  // Insert this function into translation-unit scope.
5095
5096  DeclContext *PrevDC = CurContext;
5097  CurContext = Context.getTranslationUnitDecl();
5098
5099  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5100  FD->setImplicit();
5101
5102  CurContext = PrevDC;
5103
5104  AddKnownFunctionAttributes(FD);
5105
5106  return FD;
5107}
5108
5109/// \brief Adds any function attributes that we know a priori based on
5110/// the declaration of this function.
5111///
5112/// These attributes can apply both to implicitly-declared builtins
5113/// (like __builtin___printf_chk) or to library-declared functions
5114/// like NSLog or printf.
5115void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5116  if (FD->isInvalidDecl())
5117    return;
5118
5119  // If this is a built-in function, map its builtin attributes to
5120  // actual attributes.
5121  if (unsigned BuiltinID = FD->getBuiltinID()) {
5122    // Handle printf-formatting attributes.
5123    unsigned FormatIdx;
5124    bool HasVAListArg;
5125    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5126      if (!FD->getAttr<FormatAttr>())
5127        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5128                                                "printf", FormatIdx+1,
5129                                               HasVAListArg ? 0 : FormatIdx+2));
5130    }
5131    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5132                                             HasVAListArg)) {
5133     if (!FD->getAttr<FormatAttr>())
5134       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5135                                              "scanf", FormatIdx+1,
5136                                              HasVAListArg ? 0 : FormatIdx+2));
5137    }
5138
5139    // Mark const if we don't care about errno and that is the only
5140    // thing preventing the function from being const. This allows
5141    // IRgen to use LLVM intrinsics for such functions.
5142    if (!getLangOptions().MathErrno &&
5143        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5144      if (!FD->getAttr<ConstAttr>())
5145        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5146    }
5147
5148    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5149      FD->setType(Context.getNoReturnType(FD->getType()));
5150    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5151      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5152    if (Context.BuiltinInfo.isConst(BuiltinID))
5153      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5154  }
5155
5156  IdentifierInfo *Name = FD->getIdentifier();
5157  if (!Name)
5158    return;
5159  if ((!getLangOptions().CPlusPlus &&
5160       FD->getDeclContext()->isTranslationUnit()) ||
5161      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5162       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5163       LinkageSpecDecl::lang_c)) {
5164    // Okay: this could be a libc/libm/Objective-C function we know
5165    // about.
5166  } else
5167    return;
5168
5169  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5170    // FIXME: NSLog and NSLogv should be target specific
5171    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5172      // FIXME: We known better than our headers.
5173      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5174    } else
5175      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5176                                             "printf", 1,
5177                                             Name->isStr("NSLogv") ? 0 : 2));
5178  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5179    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5180    // target-specific builtins, perhaps?
5181    if (!FD->getAttr<FormatAttr>())
5182      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5183                                             "printf", 2,
5184                                             Name->isStr("vasprintf") ? 0 : 3));
5185  }
5186}
5187
5188TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5189                                    TypeSourceInfo *TInfo) {
5190  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5191  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5192
5193  if (!TInfo) {
5194    assert(D.isInvalidType() && "no declarator info for valid type");
5195    TInfo = Context.getTrivialTypeSourceInfo(T);
5196  }
5197
5198  // Scope manipulation handled by caller.
5199  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5200                                           D.getIdentifierLoc(),
5201                                           D.getIdentifier(),
5202                                           TInfo);
5203
5204  if (const TagType *TT = T->getAs<TagType>()) {
5205    TagDecl *TD = TT->getDecl();
5206
5207    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5208    // keep track of the TypedefDecl.
5209    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5210      TD->setTypedefForAnonDecl(NewTD);
5211  }
5212
5213  if (D.isInvalidType())
5214    NewTD->setInvalidDecl();
5215  return NewTD;
5216}
5217
5218
5219/// \brief Determine whether a tag with a given kind is acceptable
5220/// as a redeclaration of the given tag declaration.
5221///
5222/// \returns true if the new tag kind is acceptable, false otherwise.
5223bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5224                                        TagTypeKind NewTag,
5225                                        SourceLocation NewTagLoc,
5226                                        const IdentifierInfo &Name) {
5227  // C++ [dcl.type.elab]p3:
5228  //   The class-key or enum keyword present in the
5229  //   elaborated-type-specifier shall agree in kind with the
5230  //   declaration to which the name in the elaborated-type-specifier
5231  //   refers. This rule also applies to the form of
5232  //   elaborated-type-specifier that declares a class-name or
5233  //   friend class since it can be construed as referring to the
5234  //   definition of the class. Thus, in any
5235  //   elaborated-type-specifier, the enum keyword shall be used to
5236  //   refer to an enumeration (7.2), the union class-key shall be
5237  //   used to refer to a union (clause 9), and either the class or
5238  //   struct class-key shall be used to refer to a class (clause 9)
5239  //   declared using the class or struct class-key.
5240  TagTypeKind OldTag = Previous->getTagKind();
5241  if (OldTag == NewTag)
5242    return true;
5243
5244  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5245      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5246    // Warn about the struct/class tag mismatch.
5247    bool isTemplate = false;
5248    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5249      isTemplate = Record->getDescribedClassTemplate();
5250
5251    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5252      << (NewTag == TTK_Class)
5253      << isTemplate << &Name
5254      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5255                              OldTag == TTK_Class? "class" : "struct");
5256    Diag(Previous->getLocation(), diag::note_previous_use);
5257    return true;
5258  }
5259  return false;
5260}
5261
5262/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5263/// former case, Name will be non-null.  In the later case, Name will be null.
5264/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5265/// reference/declaration/definition of a tag.
5266Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5267                               SourceLocation KWLoc, CXXScopeSpec &SS,
5268                               IdentifierInfo *Name, SourceLocation NameLoc,
5269                               AttributeList *Attr, AccessSpecifier AS,
5270                               MultiTemplateParamsArg TemplateParameterLists,
5271                               bool &OwnedDecl, bool &IsDependent) {
5272  // If this is not a definition, it must have a name.
5273  assert((Name != 0 || TUK == TUK_Definition) &&
5274         "Nameless record must be a definition!");
5275
5276  OwnedDecl = false;
5277  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5278
5279  // FIXME: Check explicit specializations more carefully.
5280  bool isExplicitSpecialization = false;
5281  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5282  bool Invalid = false;
5283  if (TUK != TUK_Reference) {
5284    if (TemplateParameterList *TemplateParams
5285          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5286                        (TemplateParameterList**)TemplateParameterLists.get(),
5287                                              TemplateParameterLists.size(),
5288                                                    TUK == TUK_Friend,
5289                                                    isExplicitSpecialization,
5290                                                    Invalid)) {
5291      // All but one template parameter lists have been matching.
5292      --NumMatchedTemplateParamLists;
5293
5294      if (TemplateParams->size() > 0) {
5295        // This is a declaration or definition of a class template (which may
5296        // be a member of another template).
5297        if (Invalid)
5298          return 0;
5299
5300        OwnedDecl = false;
5301        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5302                                               SS, Name, NameLoc, Attr,
5303                                               TemplateParams,
5304                                               AS);
5305        TemplateParameterLists.release();
5306        return Result.get();
5307      } else {
5308        // The "template<>" header is extraneous.
5309        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5310          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5311        isExplicitSpecialization = true;
5312      }
5313    }
5314  }
5315
5316  DeclContext *SearchDC = CurContext;
5317  DeclContext *DC = CurContext;
5318  bool isStdBadAlloc = false;
5319
5320  RedeclarationKind Redecl = ForRedeclaration;
5321  if (TUK == TUK_Friend || TUK == TUK_Reference)
5322    Redecl = NotForRedeclaration;
5323
5324  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5325
5326  if (Name && SS.isNotEmpty()) {
5327    // We have a nested-name tag ('struct foo::bar').
5328
5329    // Check for invalid 'foo::'.
5330    if (SS.isInvalid()) {
5331      Name = 0;
5332      goto CreateNewDecl;
5333    }
5334
5335    // If this is a friend or a reference to a class in a dependent
5336    // context, don't try to make a decl for it.
5337    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5338      DC = computeDeclContext(SS, false);
5339      if (!DC) {
5340        IsDependent = true;
5341        return 0;
5342      }
5343    } else {
5344      DC = computeDeclContext(SS, true);
5345      if (!DC) {
5346        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5347          << SS.getRange();
5348        return 0;
5349      }
5350    }
5351
5352    if (RequireCompleteDeclContext(SS, DC))
5353      return 0;
5354
5355    SearchDC = DC;
5356    // Look-up name inside 'foo::'.
5357    LookupQualifiedName(Previous, DC);
5358
5359    if (Previous.isAmbiguous())
5360      return 0;
5361
5362    if (Previous.empty()) {
5363      // Name lookup did not find anything. However, if the
5364      // nested-name-specifier refers to the current instantiation,
5365      // and that current instantiation has any dependent base
5366      // classes, we might find something at instantiation time: treat
5367      // this as a dependent elaborated-type-specifier.
5368      if (Previous.wasNotFoundInCurrentInstantiation()) {
5369        IsDependent = true;
5370        return 0;
5371      }
5372
5373      // A tag 'foo::bar' must already exist.
5374      Diag(NameLoc, diag::err_not_tag_in_scope)
5375        << Kind << Name << DC << SS.getRange();
5376      Name = 0;
5377      Invalid = true;
5378      goto CreateNewDecl;
5379    }
5380  } else if (Name) {
5381    // If this is a named struct, check to see if there was a previous forward
5382    // declaration or definition.
5383    // FIXME: We're looking into outer scopes here, even when we
5384    // shouldn't be. Doing so can result in ambiguities that we
5385    // shouldn't be diagnosing.
5386    LookupName(Previous, S);
5387
5388    // Note:  there used to be some attempt at recovery here.
5389    if (Previous.isAmbiguous())
5390      return 0;
5391
5392    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5393      // FIXME: This makes sure that we ignore the contexts associated
5394      // with C structs, unions, and enums when looking for a matching
5395      // tag declaration or definition. See the similar lookup tweak
5396      // in Sema::LookupName; is there a better way to deal with this?
5397      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5398        SearchDC = SearchDC->getParent();
5399    }
5400  }
5401
5402  if (Previous.isSingleResult() &&
5403      Previous.getFoundDecl()->isTemplateParameter()) {
5404    // Maybe we will complain about the shadowed template parameter.
5405    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5406    // Just pretend that we didn't see the previous declaration.
5407    Previous.clear();
5408  }
5409
5410  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5411      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5412    // This is a declaration of or a reference to "std::bad_alloc".
5413    isStdBadAlloc = true;
5414
5415    if (Previous.empty() && StdBadAlloc) {
5416      // std::bad_alloc has been implicitly declared (but made invisible to
5417      // name lookup). Fill in this implicit declaration as the previous
5418      // declaration, so that the declarations get chained appropriately.
5419      Previous.addDecl(getStdBadAlloc());
5420    }
5421  }
5422
5423  // If we didn't find a previous declaration, and this is a reference
5424  // (or friend reference), move to the correct scope.  In C++, we
5425  // also need to do a redeclaration lookup there, just in case
5426  // there's a shadow friend decl.
5427  if (Name && Previous.empty() &&
5428      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5429    if (Invalid) goto CreateNewDecl;
5430    assert(SS.isEmpty());
5431
5432    if (TUK == TUK_Reference) {
5433      // C++ [basic.scope.pdecl]p5:
5434      //   -- for an elaborated-type-specifier of the form
5435      //
5436      //          class-key identifier
5437      //
5438      //      if the elaborated-type-specifier is used in the
5439      //      decl-specifier-seq or parameter-declaration-clause of a
5440      //      function defined in namespace scope, the identifier is
5441      //      declared as a class-name in the namespace that contains
5442      //      the declaration; otherwise, except as a friend
5443      //      declaration, the identifier is declared in the smallest
5444      //      non-class, non-function-prototype scope that contains the
5445      //      declaration.
5446      //
5447      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5448      // C structs and unions.
5449      //
5450      // It is an error in C++ to declare (rather than define) an enum
5451      // type, including via an elaborated type specifier.  We'll
5452      // diagnose that later; for now, declare the enum in the same
5453      // scope as we would have picked for any other tag type.
5454      //
5455      // GNU C also supports this behavior as part of its incomplete
5456      // enum types extension, while GNU C++ does not.
5457      //
5458      // Find the context where we'll be declaring the tag.
5459      // FIXME: We would like to maintain the current DeclContext as the
5460      // lexical context,
5461      while (SearchDC->isRecord())
5462        SearchDC = SearchDC->getParent();
5463
5464      // Find the scope where we'll be declaring the tag.
5465      while (S->isClassScope() ||
5466             (getLangOptions().CPlusPlus &&
5467              S->isFunctionPrototypeScope()) ||
5468             ((S->getFlags() & Scope::DeclScope) == 0) ||
5469             (S->getEntity() &&
5470              ((DeclContext *)S->getEntity())->isTransparentContext()))
5471        S = S->getParent();
5472    } else {
5473      assert(TUK == TUK_Friend);
5474      // C++ [namespace.memdef]p3:
5475      //   If a friend declaration in a non-local class first declares a
5476      //   class or function, the friend class or function is a member of
5477      //   the innermost enclosing namespace.
5478      SearchDC = SearchDC->getEnclosingNamespaceContext();
5479    }
5480
5481    // In C++, we need to do a redeclaration lookup to properly
5482    // diagnose some problems.
5483    if (getLangOptions().CPlusPlus) {
5484      Previous.setRedeclarationKind(ForRedeclaration);
5485      LookupQualifiedName(Previous, SearchDC);
5486    }
5487  }
5488
5489  if (!Previous.empty()) {
5490    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5491
5492    // It's okay to have a tag decl in the same scope as a typedef
5493    // which hides a tag decl in the same scope.  Finding this
5494    // insanity with a redeclaration lookup can only actually happen
5495    // in C++.
5496    //
5497    // This is also okay for elaborated-type-specifiers, which is
5498    // technically forbidden by the current standard but which is
5499    // okay according to the likely resolution of an open issue;
5500    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5501    if (getLangOptions().CPlusPlus) {
5502      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5503        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5504          TagDecl *Tag = TT->getDecl();
5505          if (Tag->getDeclName() == Name &&
5506              Tag->getDeclContext()->getLookupContext()
5507                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5508            PrevDecl = Tag;
5509            Previous.clear();
5510            Previous.addDecl(Tag);
5511            Previous.resolveKind();
5512          }
5513        }
5514      }
5515    }
5516
5517    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5518      // If this is a use of a previous tag, or if the tag is already declared
5519      // in the same scope (so that the definition/declaration completes or
5520      // rementions the tag), reuse the decl.
5521      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5522          isDeclInScope(PrevDecl, SearchDC, S)) {
5523        // Make sure that this wasn't declared as an enum and now used as a
5524        // struct or something similar.
5525        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5526          bool SafeToContinue
5527            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5528               Kind != TTK_Enum);
5529          if (SafeToContinue)
5530            Diag(KWLoc, diag::err_use_with_wrong_tag)
5531              << Name
5532              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5533                                              PrevTagDecl->getKindName());
5534          else
5535            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5536          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5537
5538          if (SafeToContinue)
5539            Kind = PrevTagDecl->getTagKind();
5540          else {
5541            // Recover by making this an anonymous redefinition.
5542            Name = 0;
5543            Previous.clear();
5544            Invalid = true;
5545          }
5546        }
5547
5548        if (!Invalid) {
5549          // If this is a use, just return the declaration we found.
5550
5551          // FIXME: In the future, return a variant or some other clue
5552          // for the consumer of this Decl to know it doesn't own it.
5553          // For our current ASTs this shouldn't be a problem, but will
5554          // need to be changed with DeclGroups.
5555          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5556              TUK == TUK_Friend)
5557            return PrevTagDecl;
5558
5559          // Diagnose attempts to redefine a tag.
5560          if (TUK == TUK_Definition) {
5561            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5562              // If we're defining a specialization and the previous definition
5563              // is from an implicit instantiation, don't emit an error
5564              // here; we'll catch this in the general case below.
5565              if (!isExplicitSpecialization ||
5566                  !isa<CXXRecordDecl>(Def) ||
5567                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5568                                               == TSK_ExplicitSpecialization) {
5569                Diag(NameLoc, diag::err_redefinition) << Name;
5570                Diag(Def->getLocation(), diag::note_previous_definition);
5571                // If this is a redefinition, recover by making this
5572                // struct be anonymous, which will make any later
5573                // references get the previous definition.
5574                Name = 0;
5575                Previous.clear();
5576                Invalid = true;
5577              }
5578            } else {
5579              // If the type is currently being defined, complain
5580              // about a nested redefinition.
5581              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5582              if (Tag->isBeingDefined()) {
5583                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5584                Diag(PrevTagDecl->getLocation(),
5585                     diag::note_previous_definition);
5586                Name = 0;
5587                Previous.clear();
5588                Invalid = true;
5589              }
5590            }
5591
5592            // Okay, this is definition of a previously declared or referenced
5593            // tag PrevDecl. We're going to create a new Decl for it.
5594          }
5595        }
5596        // If we get here we have (another) forward declaration or we
5597        // have a definition.  Just create a new decl.
5598
5599      } else {
5600        // If we get here, this is a definition of a new tag type in a nested
5601        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5602        // new decl/type.  We set PrevDecl to NULL so that the entities
5603        // have distinct types.
5604        Previous.clear();
5605      }
5606      // If we get here, we're going to create a new Decl. If PrevDecl
5607      // is non-NULL, it's a definition of the tag declared by
5608      // PrevDecl. If it's NULL, we have a new definition.
5609
5610
5611    // Otherwise, PrevDecl is not a tag, but was found with tag
5612    // lookup.  This is only actually possible in C++, where a few
5613    // things like templates still live in the tag namespace.
5614    } else {
5615      assert(getLangOptions().CPlusPlus);
5616
5617      // Use a better diagnostic if an elaborated-type-specifier
5618      // found the wrong kind of type on the first
5619      // (non-redeclaration) lookup.
5620      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5621          !Previous.isForRedeclaration()) {
5622        unsigned Kind = 0;
5623        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5624        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5625        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5626        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5627        Invalid = true;
5628
5629      // Otherwise, only diagnose if the declaration is in scope.
5630      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5631        // do nothing
5632
5633      // Diagnose implicit declarations introduced by elaborated types.
5634      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5635        unsigned Kind = 0;
5636        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5637        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5638        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5639        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5640        Invalid = true;
5641
5642      // Otherwise it's a declaration.  Call out a particularly common
5643      // case here.
5644      } else if (isa<TypedefDecl>(PrevDecl)) {
5645        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5646          << Name
5647          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5648        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5649        Invalid = true;
5650
5651      // Otherwise, diagnose.
5652      } else {
5653        // The tag name clashes with something else in the target scope,
5654        // issue an error and recover by making this tag be anonymous.
5655        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5656        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5657        Name = 0;
5658        Invalid = true;
5659      }
5660
5661      // The existing declaration isn't relevant to us; we're in a
5662      // new scope, so clear out the previous declaration.
5663      Previous.clear();
5664    }
5665  }
5666
5667CreateNewDecl:
5668
5669  TagDecl *PrevDecl = 0;
5670  if (Previous.isSingleResult())
5671    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5672
5673  // If there is an identifier, use the location of the identifier as the
5674  // location of the decl, otherwise use the location of the struct/union
5675  // keyword.
5676  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5677
5678  // Otherwise, create a new declaration. If there is a previous
5679  // declaration of the same entity, the two will be linked via
5680  // PrevDecl.
5681  TagDecl *New;
5682
5683  if (Kind == TTK_Enum) {
5684    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5685    // enum X { A, B, C } D;    D should chain to X.
5686    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5687                           cast_or_null<EnumDecl>(PrevDecl));
5688    // If this is an undefined enum, warn.
5689    if (TUK != TUK_Definition && !Invalid) {
5690      TagDecl *Def;
5691      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5692        Diag(Loc, diag::ext_forward_ref_enum_def)
5693          << New;
5694        Diag(Def->getLocation(), diag::note_previous_definition);
5695      } else {
5696        Diag(Loc,
5697             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5698                                       : diag::ext_forward_ref_enum);
5699      }
5700    }
5701  } else {
5702    // struct/union/class
5703
5704    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5705    // struct X { int A; } D;    D should chain to X.
5706    if (getLangOptions().CPlusPlus) {
5707      // FIXME: Look for a way to use RecordDecl for simple structs.
5708      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5709                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5710
5711      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5712        StdBadAlloc = cast<CXXRecordDecl>(New);
5713    } else
5714      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5715                               cast_or_null<RecordDecl>(PrevDecl));
5716  }
5717
5718  // Maybe add qualifier info.
5719  if (SS.isNotEmpty()) {
5720    if (SS.isSet()) {
5721      NestedNameSpecifier *NNS
5722        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5723      New->setQualifierInfo(NNS, SS.getRange());
5724      if (NumMatchedTemplateParamLists > 0) {
5725        New->setTemplateParameterListsInfo(Context,
5726                                           NumMatchedTemplateParamLists,
5727                    (TemplateParameterList**) TemplateParameterLists.release());
5728      }
5729    }
5730    else
5731      Invalid = true;
5732  }
5733
5734  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5735    // Add alignment attributes if necessary; these attributes are checked when
5736    // the ASTContext lays out the structure.
5737    //
5738    // It is important for implementing the correct semantics that this
5739    // happen here (in act on tag decl). The #pragma pack stack is
5740    // maintained as a result of parser callbacks which can occur at
5741    // many points during the parsing of a struct declaration (because
5742    // the #pragma tokens are effectively skipped over during the
5743    // parsing of the struct).
5744    AddAlignmentAttributesForRecord(RD);
5745  }
5746
5747  // If this is a specialization of a member class (of a class template),
5748  // check the specialization.
5749  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5750    Invalid = true;
5751
5752  if (Invalid)
5753    New->setInvalidDecl();
5754
5755  if (Attr)
5756    ProcessDeclAttributeList(S, New, Attr);
5757
5758  // If we're declaring or defining a tag in function prototype scope
5759  // in C, note that this type can only be used within the function.
5760  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5761    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5762
5763  // Set the lexical context. If the tag has a C++ scope specifier, the
5764  // lexical context will be different from the semantic context.
5765  New->setLexicalDeclContext(CurContext);
5766
5767  // Mark this as a friend decl if applicable.
5768  if (TUK == TUK_Friend)
5769    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5770
5771  // Set the access specifier.
5772  if (!Invalid && SearchDC->isRecord())
5773    SetMemberAccessSpecifier(New, PrevDecl, AS);
5774
5775  if (TUK == TUK_Definition)
5776    New->startDefinition();
5777
5778  // If this has an identifier, add it to the scope stack.
5779  if (TUK == TUK_Friend) {
5780    // We might be replacing an existing declaration in the lookup tables;
5781    // if so, borrow its access specifier.
5782    if (PrevDecl)
5783      New->setAccess(PrevDecl->getAccess());
5784
5785    DeclContext *DC = New->getDeclContext()->getLookupContext();
5786    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5787    if (Name) // can be null along some error paths
5788      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5789        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5790  } else if (Name) {
5791    S = getNonFieldDeclScope(S);
5792    PushOnScopeChains(New, S);
5793  } else {
5794    CurContext->addDecl(New);
5795  }
5796
5797  // If this is the C FILE type, notify the AST context.
5798  if (IdentifierInfo *II = New->getIdentifier())
5799    if (!New->isInvalidDecl() &&
5800        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5801        II->isStr("FILE"))
5802      Context.setFILEDecl(New);
5803
5804  OwnedDecl = true;
5805  return New;
5806}
5807
5808void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5809  AdjustDeclIfTemplate(TagD);
5810  TagDecl *Tag = cast<TagDecl>(TagD);
5811
5812  // Enter the tag context.
5813  PushDeclContext(S, Tag);
5814}
5815
5816void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5817                                           SourceLocation LBraceLoc) {
5818  AdjustDeclIfTemplate(TagD);
5819  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5820
5821  FieldCollector->StartClass();
5822
5823  if (!Record->getIdentifier())
5824    return;
5825
5826  // C++ [class]p2:
5827  //   [...] The class-name is also inserted into the scope of the
5828  //   class itself; this is known as the injected-class-name. For
5829  //   purposes of access checking, the injected-class-name is treated
5830  //   as if it were a public member name.
5831  CXXRecordDecl *InjectedClassName
5832    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5833                            CurContext, Record->getLocation(),
5834                            Record->getIdentifier(),
5835                            Record->getTagKeywordLoc(),
5836                            Record);
5837  InjectedClassName->setImplicit();
5838  InjectedClassName->setAccess(AS_public);
5839  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5840      InjectedClassName->setDescribedClassTemplate(Template);
5841  PushOnScopeChains(InjectedClassName, S);
5842  assert(InjectedClassName->isInjectedClassName() &&
5843         "Broken injected-class-name");
5844}
5845
5846void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5847                                    SourceLocation RBraceLoc) {
5848  AdjustDeclIfTemplate(TagD);
5849  TagDecl *Tag = cast<TagDecl>(TagD);
5850  Tag->setRBraceLoc(RBraceLoc);
5851
5852  if (isa<CXXRecordDecl>(Tag))
5853    FieldCollector->FinishClass();
5854
5855  // Exit this scope of this tag's definition.
5856  PopDeclContext();
5857
5858  // Notify the consumer that we've defined a tag.
5859  Consumer.HandleTagDeclDefinition(Tag);
5860}
5861
5862void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5863  AdjustDeclIfTemplate(TagD);
5864  TagDecl *Tag = cast<TagDecl>(TagD);
5865  Tag->setInvalidDecl();
5866
5867  // We're undoing ActOnTagStartDefinition here, not
5868  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5869  // the FieldCollector.
5870
5871  PopDeclContext();
5872}
5873
5874// Note that FieldName may be null for anonymous bitfields.
5875bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5876                          QualType FieldTy, const Expr *BitWidth,
5877                          bool *ZeroWidth) {
5878  // Default to true; that shouldn't confuse checks for emptiness
5879  if (ZeroWidth)
5880    *ZeroWidth = true;
5881
5882  // C99 6.7.2.1p4 - verify the field type.
5883  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5884  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5885    // Handle incomplete types with specific error.
5886    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5887      return true;
5888    if (FieldName)
5889      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5890        << FieldName << FieldTy << BitWidth->getSourceRange();
5891    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5892      << FieldTy << BitWidth->getSourceRange();
5893  }
5894
5895  // If the bit-width is type- or value-dependent, don't try to check
5896  // it now.
5897  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5898    return false;
5899
5900  llvm::APSInt Value;
5901  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5902    return true;
5903
5904  if (Value != 0 && ZeroWidth)
5905    *ZeroWidth = false;
5906
5907  // Zero-width bitfield is ok for anonymous field.
5908  if (Value == 0 && FieldName)
5909    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5910
5911  if (Value.isSigned() && Value.isNegative()) {
5912    if (FieldName)
5913      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5914               << FieldName << Value.toString(10);
5915    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5916      << Value.toString(10);
5917  }
5918
5919  if (!FieldTy->isDependentType()) {
5920    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5921    if (Value.getZExtValue() > TypeSize) {
5922      if (!getLangOptions().CPlusPlus) {
5923        if (FieldName)
5924          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5925            << FieldName << (unsigned)Value.getZExtValue()
5926            << (unsigned)TypeSize;
5927
5928        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5929          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5930      }
5931
5932      if (FieldName)
5933        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5934          << FieldName << (unsigned)Value.getZExtValue()
5935          << (unsigned)TypeSize;
5936      else
5937        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5938          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5939    }
5940  }
5941
5942  return false;
5943}
5944
5945/// ActOnField - Each field of a struct/union/class is passed into this in order
5946/// to create a FieldDecl object for it.
5947Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5948                                 SourceLocation DeclStart,
5949                                 Declarator &D, ExprTy *BitfieldWidth) {
5950  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5951                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5952                               AS_public);
5953  return Res;
5954}
5955
5956/// HandleField - Analyze a field of a C struct or a C++ data member.
5957///
5958FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5959                             SourceLocation DeclStart,
5960                             Declarator &D, Expr *BitWidth,
5961                             AccessSpecifier AS) {
5962  IdentifierInfo *II = D.getIdentifier();
5963  SourceLocation Loc = DeclStart;
5964  if (II) Loc = D.getIdentifierLoc();
5965
5966  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5967  QualType T = TInfo->getType();
5968  if (getLangOptions().CPlusPlus)
5969    CheckExtraCXXDefaultArguments(D);
5970
5971  DiagnoseFunctionSpecifiers(D);
5972
5973  if (D.getDeclSpec().isThreadSpecified())
5974    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5975
5976  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5977                                         ForRedeclaration);
5978
5979  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5980    // Maybe we will complain about the shadowed template parameter.
5981    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5982    // Just pretend that we didn't see the previous declaration.
5983    PrevDecl = 0;
5984  }
5985
5986  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5987    PrevDecl = 0;
5988
5989  bool Mutable
5990    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5991  SourceLocation TSSL = D.getSourceRange().getBegin();
5992  FieldDecl *NewFD
5993    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5994                     AS, PrevDecl, &D);
5995
5996  if (NewFD->isInvalidDecl())
5997    Record->setInvalidDecl();
5998
5999  if (NewFD->isInvalidDecl() && PrevDecl) {
6000    // Don't introduce NewFD into scope; there's already something
6001    // with the same name in the same scope.
6002  } else if (II) {
6003    PushOnScopeChains(NewFD, S);
6004  } else
6005    Record->addDecl(NewFD);
6006
6007  return NewFD;
6008}
6009
6010/// \brief Build a new FieldDecl and check its well-formedness.
6011///
6012/// This routine builds a new FieldDecl given the fields name, type,
6013/// record, etc. \p PrevDecl should refer to any previous declaration
6014/// with the same name and in the same scope as the field to be
6015/// created.
6016///
6017/// \returns a new FieldDecl.
6018///
6019/// \todo The Declarator argument is a hack. It will be removed once
6020FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6021                                TypeSourceInfo *TInfo,
6022                                RecordDecl *Record, SourceLocation Loc,
6023                                bool Mutable, Expr *BitWidth,
6024                                SourceLocation TSSL,
6025                                AccessSpecifier AS, NamedDecl *PrevDecl,
6026                                Declarator *D) {
6027  IdentifierInfo *II = Name.getAsIdentifierInfo();
6028  bool InvalidDecl = false;
6029  if (D) InvalidDecl = D->isInvalidType();
6030
6031  // If we receive a broken type, recover by assuming 'int' and
6032  // marking this declaration as invalid.
6033  if (T.isNull()) {
6034    InvalidDecl = true;
6035    T = Context.IntTy;
6036  }
6037
6038  QualType EltTy = Context.getBaseElementType(T);
6039  if (!EltTy->isDependentType() &&
6040      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6041    // Fields of incomplete type force their record to be invalid.
6042    Record->setInvalidDecl();
6043    InvalidDecl = true;
6044  }
6045
6046  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6047  // than a variably modified type.
6048  if (!InvalidDecl && T->isVariablyModifiedType()) {
6049    bool SizeIsNegative;
6050    llvm::APSInt Oversized;
6051    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6052                                                           SizeIsNegative,
6053                                                           Oversized);
6054    if (!FixedTy.isNull()) {
6055      Diag(Loc, diag::warn_illegal_constant_array_size);
6056      T = FixedTy;
6057    } else {
6058      if (SizeIsNegative)
6059        Diag(Loc, diag::err_typecheck_negative_array_size);
6060      else if (Oversized.getBoolValue())
6061        Diag(Loc, diag::err_array_too_large)
6062          << Oversized.toString(10);
6063      else
6064        Diag(Loc, diag::err_typecheck_field_variable_size);
6065      InvalidDecl = true;
6066    }
6067  }
6068
6069  // Fields can not have abstract class types
6070  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6071                                             diag::err_abstract_type_in_decl,
6072                                             AbstractFieldType))
6073    InvalidDecl = true;
6074
6075  bool ZeroWidth = false;
6076  // If this is declared as a bit-field, check the bit-field.
6077  if (!InvalidDecl && BitWidth &&
6078      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6079    InvalidDecl = true;
6080    DeleteExpr(BitWidth);
6081    BitWidth = 0;
6082    ZeroWidth = false;
6083  }
6084
6085  // Check that 'mutable' is consistent with the type of the declaration.
6086  if (!InvalidDecl && Mutable) {
6087    unsigned DiagID = 0;
6088    if (T->isReferenceType())
6089      DiagID = diag::err_mutable_reference;
6090    else if (T.isConstQualified())
6091      DiagID = diag::err_mutable_const;
6092
6093    if (DiagID) {
6094      SourceLocation ErrLoc = Loc;
6095      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6096        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6097      Diag(ErrLoc, DiagID);
6098      Mutable = false;
6099      InvalidDecl = true;
6100    }
6101  }
6102
6103  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6104                                       BitWidth, Mutable);
6105  if (InvalidDecl)
6106    NewFD->setInvalidDecl();
6107
6108  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6109    Diag(Loc, diag::err_duplicate_member) << II;
6110    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6111    NewFD->setInvalidDecl();
6112  }
6113
6114  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6115    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6116
6117    if (!T->isPODType())
6118      CXXRecord->setPOD(false);
6119    if (!ZeroWidth)
6120      CXXRecord->setEmpty(false);
6121
6122    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6123      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6124      if (RDecl->getDefinition()) {
6125        if (!RDecl->hasTrivialConstructor())
6126          CXXRecord->setHasTrivialConstructor(false);
6127        if (!RDecl->hasTrivialCopyConstructor())
6128          CXXRecord->setHasTrivialCopyConstructor(false);
6129        if (!RDecl->hasTrivialCopyAssignment())
6130          CXXRecord->setHasTrivialCopyAssignment(false);
6131        if (!RDecl->hasTrivialDestructor())
6132          CXXRecord->setHasTrivialDestructor(false);
6133
6134        // C++ 9.5p1: An object of a class with a non-trivial
6135        // constructor, a non-trivial copy constructor, a non-trivial
6136        // destructor, or a non-trivial copy assignment operator
6137        // cannot be a member of a union, nor can an array of such
6138        // objects.
6139        // TODO: C++0x alters this restriction significantly.
6140        if (Record->isUnion() && CheckNontrivialField(NewFD))
6141          NewFD->setInvalidDecl();
6142      }
6143    }
6144  }
6145
6146  // FIXME: We need to pass in the attributes given an AST
6147  // representation, not a parser representation.
6148  if (D)
6149    // FIXME: What to pass instead of TUScope?
6150    ProcessDeclAttributes(TUScope, NewFD, *D);
6151
6152  if (T.isObjCGCWeak())
6153    Diag(Loc, diag::warn_attribute_weak_on_field);
6154
6155  NewFD->setAccess(AS);
6156
6157  // C++ [dcl.init.aggr]p1:
6158  //   An aggregate is an array or a class (clause 9) with [...] no
6159  //   private or protected non-static data members (clause 11).
6160  // A POD must be an aggregate.
6161  if (getLangOptions().CPlusPlus &&
6162      (AS == AS_private || AS == AS_protected)) {
6163    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6164    CXXRecord->setAggregate(false);
6165    CXXRecord->setPOD(false);
6166  }
6167
6168  return NewFD;
6169}
6170
6171bool Sema::CheckNontrivialField(FieldDecl *FD) {
6172  assert(FD);
6173  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6174
6175  if (FD->isInvalidDecl())
6176    return true;
6177
6178  QualType EltTy = Context.getBaseElementType(FD->getType());
6179  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6180    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6181    if (RDecl->getDefinition()) {
6182      // We check for copy constructors before constructors
6183      // because otherwise we'll never get complaints about
6184      // copy constructors.
6185
6186      CXXSpecialMember member = CXXInvalid;
6187      if (!RDecl->hasTrivialCopyConstructor())
6188        member = CXXCopyConstructor;
6189      else if (!RDecl->hasTrivialConstructor())
6190        member = CXXConstructor;
6191      else if (!RDecl->hasTrivialCopyAssignment())
6192        member = CXXCopyAssignment;
6193      else if (!RDecl->hasTrivialDestructor())
6194        member = CXXDestructor;
6195
6196      if (member != CXXInvalid) {
6197        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6198              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6199        DiagnoseNontrivial(RT, member);
6200        return true;
6201      }
6202    }
6203  }
6204
6205  return false;
6206}
6207
6208/// DiagnoseNontrivial - Given that a class has a non-trivial
6209/// special member, figure out why.
6210void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6211  QualType QT(T, 0U);
6212  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6213
6214  // Check whether the member was user-declared.
6215  switch (member) {
6216  case CXXInvalid:
6217    break;
6218
6219  case CXXConstructor:
6220    if (RD->hasUserDeclaredConstructor()) {
6221      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6222      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6223        const FunctionDecl *body = 0;
6224        ci->hasBody(body);
6225        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6226          SourceLocation CtorLoc = ci->getLocation();
6227          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6228          return;
6229        }
6230      }
6231
6232      assert(0 && "found no user-declared constructors");
6233      return;
6234    }
6235    break;
6236
6237  case CXXCopyConstructor:
6238    if (RD->hasUserDeclaredCopyConstructor()) {
6239      SourceLocation CtorLoc =
6240        RD->getCopyConstructor(Context, 0)->getLocation();
6241      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6242      return;
6243    }
6244    break;
6245
6246  case CXXCopyAssignment:
6247    if (RD->hasUserDeclaredCopyAssignment()) {
6248      // FIXME: this should use the location of the copy
6249      // assignment, not the type.
6250      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6251      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6252      return;
6253    }
6254    break;
6255
6256  case CXXDestructor:
6257    if (RD->hasUserDeclaredDestructor()) {
6258      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6259      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6260      return;
6261    }
6262    break;
6263  }
6264
6265  typedef CXXRecordDecl::base_class_iterator base_iter;
6266
6267  // Virtual bases and members inhibit trivial copying/construction,
6268  // but not trivial destruction.
6269  if (member != CXXDestructor) {
6270    // Check for virtual bases.  vbases includes indirect virtual bases,
6271    // so we just iterate through the direct bases.
6272    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6273      if (bi->isVirtual()) {
6274        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6275        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6276        return;
6277      }
6278
6279    // Check for virtual methods.
6280    typedef CXXRecordDecl::method_iterator meth_iter;
6281    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6282         ++mi) {
6283      if (mi->isVirtual()) {
6284        SourceLocation MLoc = mi->getSourceRange().getBegin();
6285        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6286        return;
6287      }
6288    }
6289  }
6290
6291  bool (CXXRecordDecl::*hasTrivial)() const;
6292  switch (member) {
6293  case CXXConstructor:
6294    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6295  case CXXCopyConstructor:
6296    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6297  case CXXCopyAssignment:
6298    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6299  case CXXDestructor:
6300    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6301  default:
6302    assert(0 && "unexpected special member"); return;
6303  }
6304
6305  // Check for nontrivial bases (and recurse).
6306  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6307    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6308    assert(BaseRT && "Don't know how to handle dependent bases");
6309    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6310    if (!(BaseRecTy->*hasTrivial)()) {
6311      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6312      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6313      DiagnoseNontrivial(BaseRT, member);
6314      return;
6315    }
6316  }
6317
6318  // Check for nontrivial members (and recurse).
6319  typedef RecordDecl::field_iterator field_iter;
6320  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6321       ++fi) {
6322    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6323    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6324      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6325
6326      if (!(EltRD->*hasTrivial)()) {
6327        SourceLocation FLoc = (*fi)->getLocation();
6328        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6329        DiagnoseNontrivial(EltRT, member);
6330        return;
6331      }
6332    }
6333  }
6334
6335  assert(0 && "found no explanation for non-trivial member");
6336}
6337
6338/// TranslateIvarVisibility - Translate visibility from a token ID to an
6339///  AST enum value.
6340static ObjCIvarDecl::AccessControl
6341TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6342  switch (ivarVisibility) {
6343  default: assert(0 && "Unknown visitibility kind");
6344  case tok::objc_private: return ObjCIvarDecl::Private;
6345  case tok::objc_public: return ObjCIvarDecl::Public;
6346  case tok::objc_protected: return ObjCIvarDecl::Protected;
6347  case tok::objc_package: return ObjCIvarDecl::Package;
6348  }
6349}
6350
6351/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6352/// in order to create an IvarDecl object for it.
6353Decl *Sema::ActOnIvar(Scope *S,
6354                                SourceLocation DeclStart,
6355                                Decl *IntfDecl,
6356                                Declarator &D, ExprTy *BitfieldWidth,
6357                                tok::ObjCKeywordKind Visibility) {
6358
6359  IdentifierInfo *II = D.getIdentifier();
6360  Expr *BitWidth = (Expr*)BitfieldWidth;
6361  SourceLocation Loc = DeclStart;
6362  if (II) Loc = D.getIdentifierLoc();
6363
6364  // FIXME: Unnamed fields can be handled in various different ways, for
6365  // example, unnamed unions inject all members into the struct namespace!
6366
6367  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6368  QualType T = TInfo->getType();
6369
6370  if (BitWidth) {
6371    // 6.7.2.1p3, 6.7.2.1p4
6372    if (VerifyBitField(Loc, II, T, BitWidth)) {
6373      D.setInvalidType();
6374      DeleteExpr(BitWidth);
6375      BitWidth = 0;
6376    }
6377  } else {
6378    // Not a bitfield.
6379
6380    // validate II.
6381
6382  }
6383  if (T->isReferenceType()) {
6384    Diag(Loc, diag::err_ivar_reference_type);
6385    D.setInvalidType();
6386  }
6387  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6388  // than a variably modified type.
6389  else if (T->isVariablyModifiedType()) {
6390    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6391    D.setInvalidType();
6392  }
6393
6394  // Get the visibility (access control) for this ivar.
6395  ObjCIvarDecl::AccessControl ac =
6396    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6397                                        : ObjCIvarDecl::None;
6398  // Must set ivar's DeclContext to its enclosing interface.
6399  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6400  ObjCContainerDecl *EnclosingContext;
6401  if (ObjCImplementationDecl *IMPDecl =
6402      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6403    if (!LangOpts.ObjCNonFragileABI2) {
6404    // Case of ivar declared in an implementation. Context is that of its class.
6405      EnclosingContext = IMPDecl->getClassInterface();
6406      assert(EnclosingContext && "Implementation has no class interface!");
6407    }
6408    else
6409      EnclosingContext = EnclosingDecl;
6410  } else {
6411    if (ObjCCategoryDecl *CDecl =
6412        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6413      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6414        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6415        return 0;
6416      }
6417    }
6418    EnclosingContext = EnclosingDecl;
6419  }
6420
6421  // Construct the decl.
6422  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6423                                             EnclosingContext, Loc, II, T,
6424                                             TInfo, ac, (Expr *)BitfieldWidth);
6425
6426  if (II) {
6427    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6428                                           ForRedeclaration);
6429    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6430        && !isa<TagDecl>(PrevDecl)) {
6431      Diag(Loc, diag::err_duplicate_member) << II;
6432      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6433      NewID->setInvalidDecl();
6434    }
6435  }
6436
6437  // Process attributes attached to the ivar.
6438  ProcessDeclAttributes(S, NewID, D);
6439
6440  if (D.isInvalidType())
6441    NewID->setInvalidDecl();
6442
6443  if (II) {
6444    // FIXME: When interfaces are DeclContexts, we'll need to add
6445    // these to the interface.
6446    S->AddDecl(NewID);
6447    IdResolver.AddDecl(NewID);
6448  }
6449
6450  return NewID;
6451}
6452
6453/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6454/// class and class extensions. For every class @interface and class
6455/// extension @interface, if the last ivar is a bitfield of any type,
6456/// then add an implicit `char :0` ivar to the end of that interface.
6457void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6458                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6459  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6460    return;
6461
6462  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6463  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6464
6465  if (!Ivar->isBitField())
6466    return;
6467  uint64_t BitFieldSize =
6468    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6469  if (BitFieldSize == 0)
6470    return;
6471  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6472  if (!ID) {
6473    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6474      if (!CD->IsClassExtension())
6475        return;
6476    }
6477    // No need to add this to end of @implementation.
6478    else
6479      return;
6480  }
6481  // All conditions are met. Add a new bitfield to the tail end of ivars.
6482  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6483  Expr * BW =
6484    new (Context) IntegerLiteral(Zero, Context.CharTy, DeclLoc);
6485
6486  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6487                              DeclLoc, 0,
6488                              Context.CharTy,
6489                              Context.CreateTypeSourceInfo(Context.CharTy),
6490                              ObjCIvarDecl::Private, BW,
6491                              true);
6492  AllIvarDecls.push_back(Ivar);
6493}
6494
6495void Sema::ActOnFields(Scope* S,
6496                       SourceLocation RecLoc, Decl *EnclosingDecl,
6497                       Decl **Fields, unsigned NumFields,
6498                       SourceLocation LBrac, SourceLocation RBrac,
6499                       AttributeList *Attr) {
6500  assert(EnclosingDecl && "missing record or interface decl");
6501
6502  // If the decl this is being inserted into is invalid, then it may be a
6503  // redeclaration or some other bogus case.  Don't try to add fields to it.
6504  if (EnclosingDecl->isInvalidDecl()) {
6505    // FIXME: Deallocate fields?
6506    return;
6507  }
6508
6509
6510  // Verify that all the fields are okay.
6511  unsigned NumNamedMembers = 0;
6512  llvm::SmallVector<FieldDecl*, 32> RecFields;
6513
6514  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6515  for (unsigned i = 0; i != NumFields; ++i) {
6516    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6517
6518    // Get the type for the field.
6519    Type *FDTy = FD->getType().getTypePtr();
6520
6521    if (!FD->isAnonymousStructOrUnion()) {
6522      // Remember all fields written by the user.
6523      RecFields.push_back(FD);
6524    }
6525
6526    // If the field is already invalid for some reason, don't emit more
6527    // diagnostics about it.
6528    if (FD->isInvalidDecl()) {
6529      EnclosingDecl->setInvalidDecl();
6530      continue;
6531    }
6532
6533    // C99 6.7.2.1p2:
6534    //   A structure or union shall not contain a member with
6535    //   incomplete or function type (hence, a structure shall not
6536    //   contain an instance of itself, but may contain a pointer to
6537    //   an instance of itself), except that the last member of a
6538    //   structure with more than one named member may have incomplete
6539    //   array type; such a structure (and any union containing,
6540    //   possibly recursively, a member that is such a structure)
6541    //   shall not be a member of a structure or an element of an
6542    //   array.
6543    if (FDTy->isFunctionType()) {
6544      // Field declared as a function.
6545      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6546        << FD->getDeclName();
6547      FD->setInvalidDecl();
6548      EnclosingDecl->setInvalidDecl();
6549      continue;
6550    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6551               Record && Record->isStruct()) {
6552      // Flexible array member.
6553      if (NumNamedMembers < 1) {
6554        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6555          << FD->getDeclName();
6556        FD->setInvalidDecl();
6557        EnclosingDecl->setInvalidDecl();
6558        continue;
6559      }
6560      if (!FD->getType()->isDependentType() &&
6561          !Context.getBaseElementType(FD->getType())->isPODType()) {
6562        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6563          << FD->getDeclName() << FD->getType();
6564        FD->setInvalidDecl();
6565        EnclosingDecl->setInvalidDecl();
6566        continue;
6567      }
6568
6569      // Okay, we have a legal flexible array member at the end of the struct.
6570      if (Record)
6571        Record->setHasFlexibleArrayMember(true);
6572    } else if (!FDTy->isDependentType() &&
6573               RequireCompleteType(FD->getLocation(), FD->getType(),
6574                                   diag::err_field_incomplete)) {
6575      // Incomplete type
6576      FD->setInvalidDecl();
6577      EnclosingDecl->setInvalidDecl();
6578      continue;
6579    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6580      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6581        // If this is a member of a union, then entire union becomes "flexible".
6582        if (Record && Record->isUnion()) {
6583          Record->setHasFlexibleArrayMember(true);
6584        } else {
6585          // If this is a struct/class and this is not the last element, reject
6586          // it.  Note that GCC supports variable sized arrays in the middle of
6587          // structures.
6588          if (i != NumFields-1)
6589            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6590              << FD->getDeclName() << FD->getType();
6591          else {
6592            // We support flexible arrays at the end of structs in
6593            // other structs as an extension.
6594            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6595              << FD->getDeclName();
6596            if (Record)
6597              Record->setHasFlexibleArrayMember(true);
6598          }
6599        }
6600      }
6601      if (Record && FDTTy->getDecl()->hasObjectMember())
6602        Record->setHasObjectMember(true);
6603    } else if (FDTy->isObjCObjectType()) {
6604      /// A field cannot be an Objective-c object
6605      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6606      FD->setInvalidDecl();
6607      EnclosingDecl->setInvalidDecl();
6608      continue;
6609    } else if (getLangOptions().ObjC1 &&
6610               getLangOptions().getGCMode() != LangOptions::NonGC &&
6611               Record &&
6612               (FD->getType()->isObjCObjectPointerType() ||
6613                FD->getType().isObjCGCStrong()))
6614      Record->setHasObjectMember(true);
6615    else if (Context.getAsArrayType(FD->getType())) {
6616      QualType BaseType = Context.getBaseElementType(FD->getType());
6617      if (Record && BaseType->isRecordType() &&
6618          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6619        Record->setHasObjectMember(true);
6620    }
6621    // Keep track of the number of named members.
6622    if (FD->getIdentifier())
6623      ++NumNamedMembers;
6624  }
6625
6626  // Okay, we successfully defined 'Record'.
6627  if (Record) {
6628    Record->completeDefinition();
6629  } else {
6630    ObjCIvarDecl **ClsFields =
6631      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6632    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6633      ID->setLocEnd(RBrac);
6634      // Add ivar's to class's DeclContext.
6635      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6636        ClsFields[i]->setLexicalDeclContext(ID);
6637        ID->addDecl(ClsFields[i]);
6638      }
6639      // Must enforce the rule that ivars in the base classes may not be
6640      // duplicates.
6641      if (ID->getSuperClass())
6642        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6643    } else if (ObjCImplementationDecl *IMPDecl =
6644                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6645      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6646      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6647        // Ivar declared in @implementation never belongs to the implementation.
6648        // Only it is in implementation's lexical context.
6649        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6650      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6651    } else if (ObjCCategoryDecl *CDecl =
6652                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6653      // case of ivars in class extension; all other cases have been
6654      // reported as errors elsewhere.
6655      // FIXME. Class extension does not have a LocEnd field.
6656      // CDecl->setLocEnd(RBrac);
6657      // Add ivar's to class extension's DeclContext.
6658      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6659        ClsFields[i]->setLexicalDeclContext(CDecl);
6660        CDecl->addDecl(ClsFields[i]);
6661      }
6662    }
6663  }
6664
6665  if (Attr)
6666    ProcessDeclAttributeList(S, Record, Attr);
6667
6668  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6669  // set the visibility of this record.
6670  if (Record && !Record->getDeclContext()->isRecord())
6671    AddPushedVisibilityAttribute(Record);
6672}
6673
6674/// \brief Determine whether the given integral value is representable within
6675/// the given type T.
6676static bool isRepresentableIntegerValue(ASTContext &Context,
6677                                        llvm::APSInt &Value,
6678                                        QualType T) {
6679  assert(T->isIntegralType(Context) && "Integral type required!");
6680  unsigned BitWidth = Context.getIntWidth(T);
6681
6682  if (Value.isUnsigned() || Value.isNonNegative())
6683    return Value.getActiveBits() < BitWidth;
6684
6685  return Value.getMinSignedBits() <= BitWidth;
6686}
6687
6688// \brief Given an integral type, return the next larger integral type
6689// (or a NULL type of no such type exists).
6690static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6691  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6692  // enum checking below.
6693  assert(T->isIntegralType(Context) && "Integral type required!");
6694  const unsigned NumTypes = 4;
6695  QualType SignedIntegralTypes[NumTypes] = {
6696    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6697  };
6698  QualType UnsignedIntegralTypes[NumTypes] = {
6699    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6700    Context.UnsignedLongLongTy
6701  };
6702
6703  unsigned BitWidth = Context.getTypeSize(T);
6704  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6705                                            : UnsignedIntegralTypes;
6706  for (unsigned I = 0; I != NumTypes; ++I)
6707    if (Context.getTypeSize(Types[I]) > BitWidth)
6708      return Types[I];
6709
6710  return QualType();
6711}
6712
6713EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6714                                          EnumConstantDecl *LastEnumConst,
6715                                          SourceLocation IdLoc,
6716                                          IdentifierInfo *Id,
6717                                          Expr *Val) {
6718  unsigned IntWidth = Context.Target.getIntWidth();
6719  llvm::APSInt EnumVal(IntWidth);
6720  QualType EltTy;
6721  if (Val) {
6722    if (Enum->isDependentType() || Val->isTypeDependent())
6723      EltTy = Context.DependentTy;
6724    else {
6725      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6726      SourceLocation ExpLoc;
6727      if (!Val->isValueDependent() &&
6728          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6729        Val = 0;
6730      } else {
6731        if (!getLangOptions().CPlusPlus) {
6732          // C99 6.7.2.2p2:
6733          //   The expression that defines the value of an enumeration constant
6734          //   shall be an integer constant expression that has a value
6735          //   representable as an int.
6736
6737          // Complain if the value is not representable in an int.
6738          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6739            Diag(IdLoc, diag::ext_enum_value_not_int)
6740              << EnumVal.toString(10) << Val->getSourceRange()
6741              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6742          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6743            // Force the type of the expression to 'int'.
6744            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6745          }
6746        }
6747
6748        // C++0x [dcl.enum]p5:
6749        //   If the underlying type is not fixed, the type of each enumerator
6750        //   is the type of its initializing value:
6751        //     - If an initializer is specified for an enumerator, the
6752        //       initializing value has the same type as the expression.
6753        EltTy = Val->getType();
6754      }
6755    }
6756  }
6757
6758  if (!Val) {
6759    if (Enum->isDependentType())
6760      EltTy = Context.DependentTy;
6761    else if (!LastEnumConst) {
6762      // C++0x [dcl.enum]p5:
6763      //   If the underlying type is not fixed, the type of each enumerator
6764      //   is the type of its initializing value:
6765      //     - If no initializer is specified for the first enumerator, the
6766      //       initializing value has an unspecified integral type.
6767      //
6768      // GCC uses 'int' for its unspecified integral type, as does
6769      // C99 6.7.2.2p3.
6770      EltTy = Context.IntTy;
6771    } else {
6772      // Assign the last value + 1.
6773      EnumVal = LastEnumConst->getInitVal();
6774      ++EnumVal;
6775      EltTy = LastEnumConst->getType();
6776
6777      // Check for overflow on increment.
6778      if (EnumVal < LastEnumConst->getInitVal()) {
6779        // C++0x [dcl.enum]p5:
6780        //   If the underlying type is not fixed, the type of each enumerator
6781        //   is the type of its initializing value:
6782        //
6783        //     - Otherwise the type of the initializing value is the same as
6784        //       the type of the initializing value of the preceding enumerator
6785        //       unless the incremented value is not representable in that type,
6786        //       in which case the type is an unspecified integral type
6787        //       sufficient to contain the incremented value. If no such type
6788        //       exists, the program is ill-formed.
6789        QualType T = getNextLargerIntegralType(Context, EltTy);
6790        if (T.isNull()) {
6791          // There is no integral type larger enough to represent this
6792          // value. Complain, then allow the value to wrap around.
6793          EnumVal = LastEnumConst->getInitVal();
6794          EnumVal.zext(EnumVal.getBitWidth() * 2);
6795          Diag(IdLoc, diag::warn_enumerator_too_large)
6796            << EnumVal.toString(10);
6797        } else {
6798          EltTy = T;
6799        }
6800
6801        // Retrieve the last enumerator's value, extent that type to the
6802        // type that is supposed to be large enough to represent the incremented
6803        // value, then increment.
6804        EnumVal = LastEnumConst->getInitVal();
6805        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6806        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6807        ++EnumVal;
6808
6809        // If we're not in C++, diagnose the overflow of enumerator values,
6810        // which in C99 means that the enumerator value is not representable in
6811        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6812        // permits enumerator values that are representable in some larger
6813        // integral type.
6814        if (!getLangOptions().CPlusPlus && !T.isNull())
6815          Diag(IdLoc, diag::warn_enum_value_overflow);
6816      } else if (!getLangOptions().CPlusPlus &&
6817                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6818        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6819        Diag(IdLoc, diag::ext_enum_value_not_int)
6820          << EnumVal.toString(10) << 1;
6821      }
6822    }
6823  }
6824
6825  if (!EltTy->isDependentType()) {
6826    // Make the enumerator value match the signedness and size of the
6827    // enumerator's type.
6828    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6829    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6830  }
6831
6832  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6833                                  Val, EnumVal);
6834}
6835
6836
6837Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6838                                        Decl *lastEnumConst,
6839                                        SourceLocation IdLoc,
6840                                        IdentifierInfo *Id,
6841                                        SourceLocation EqualLoc, ExprTy *val) {
6842  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6843  EnumConstantDecl *LastEnumConst =
6844    cast_or_null<EnumConstantDecl>(lastEnumConst);
6845  Expr *Val = static_cast<Expr*>(val);
6846
6847  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6848  // we find one that is.
6849  S = getNonFieldDeclScope(S);
6850
6851  // Verify that there isn't already something declared with this name in this
6852  // scope.
6853  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6854                                         ForRedeclaration);
6855  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6856    // Maybe we will complain about the shadowed template parameter.
6857    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6858    // Just pretend that we didn't see the previous declaration.
6859    PrevDecl = 0;
6860  }
6861
6862  if (PrevDecl) {
6863    // When in C++, we may get a TagDecl with the same name; in this case the
6864    // enum constant will 'hide' the tag.
6865    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6866           "Received TagDecl when not in C++!");
6867    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6868      if (isa<EnumConstantDecl>(PrevDecl))
6869        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6870      else
6871        Diag(IdLoc, diag::err_redefinition) << Id;
6872      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6873      return 0;
6874    }
6875  }
6876
6877  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6878                                            IdLoc, Id, Val);
6879
6880  // Register this decl in the current scope stack.
6881  if (New) {
6882    New->setAccess(TheEnumDecl->getAccess());
6883    PushOnScopeChains(New, S);
6884  }
6885
6886  return New;
6887}
6888
6889void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6890                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6891                         Decl **Elements, unsigned NumElements,
6892                         Scope *S, AttributeList *Attr) {
6893  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6894  QualType EnumType = Context.getTypeDeclType(Enum);
6895
6896  if (Attr)
6897    ProcessDeclAttributeList(S, Enum, Attr);
6898
6899  if (Enum->isDependentType()) {
6900    for (unsigned i = 0; i != NumElements; ++i) {
6901      EnumConstantDecl *ECD =
6902        cast_or_null<EnumConstantDecl>(Elements[i]);
6903      if (!ECD) continue;
6904
6905      ECD->setType(EnumType);
6906    }
6907
6908    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6909    return;
6910  }
6911
6912  // TODO: If the result value doesn't fit in an int, it must be a long or long
6913  // long value.  ISO C does not support this, but GCC does as an extension,
6914  // emit a warning.
6915  unsigned IntWidth = Context.Target.getIntWidth();
6916  unsigned CharWidth = Context.Target.getCharWidth();
6917  unsigned ShortWidth = Context.Target.getShortWidth();
6918
6919  // Verify that all the values are okay, compute the size of the values, and
6920  // reverse the list.
6921  unsigned NumNegativeBits = 0;
6922  unsigned NumPositiveBits = 0;
6923
6924  // Keep track of whether all elements have type int.
6925  bool AllElementsInt = true;
6926
6927  for (unsigned i = 0; i != NumElements; ++i) {
6928    EnumConstantDecl *ECD =
6929      cast_or_null<EnumConstantDecl>(Elements[i]);
6930    if (!ECD) continue;  // Already issued a diagnostic.
6931
6932    const llvm::APSInt &InitVal = ECD->getInitVal();
6933
6934    // Keep track of the size of positive and negative values.
6935    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6936      NumPositiveBits = std::max(NumPositiveBits,
6937                                 (unsigned)InitVal.getActiveBits());
6938    else
6939      NumNegativeBits = std::max(NumNegativeBits,
6940                                 (unsigned)InitVal.getMinSignedBits());
6941
6942    // Keep track of whether every enum element has type int (very commmon).
6943    if (AllElementsInt)
6944      AllElementsInt = ECD->getType() == Context.IntTy;
6945  }
6946
6947  // Figure out the type that should be used for this enum.
6948  // FIXME: Support -fshort-enums.
6949  QualType BestType;
6950  unsigned BestWidth;
6951
6952  // C++0x N3000 [conv.prom]p3:
6953  //   An rvalue of an unscoped enumeration type whose underlying
6954  //   type is not fixed can be converted to an rvalue of the first
6955  //   of the following types that can represent all the values of
6956  //   the enumeration: int, unsigned int, long int, unsigned long
6957  //   int, long long int, or unsigned long long int.
6958  // C99 6.4.4.3p2:
6959  //   An identifier declared as an enumeration constant has type int.
6960  // The C99 rule is modified by a gcc extension
6961  QualType BestPromotionType;
6962
6963  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6964
6965  if (NumNegativeBits) {
6966    // If there is a negative value, figure out the smallest integer type (of
6967    // int/long/longlong) that fits.
6968    // If it's packed, check also if it fits a char or a short.
6969    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6970      BestType = Context.SignedCharTy;
6971      BestWidth = CharWidth;
6972    } else if (Packed && NumNegativeBits <= ShortWidth &&
6973               NumPositiveBits < ShortWidth) {
6974      BestType = Context.ShortTy;
6975      BestWidth = ShortWidth;
6976    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6977      BestType = Context.IntTy;
6978      BestWidth = IntWidth;
6979    } else {
6980      BestWidth = Context.Target.getLongWidth();
6981
6982      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6983        BestType = Context.LongTy;
6984      } else {
6985        BestWidth = Context.Target.getLongLongWidth();
6986
6987        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6988          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6989        BestType = Context.LongLongTy;
6990      }
6991    }
6992    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6993  } else {
6994    // If there is no negative value, figure out the smallest type that fits
6995    // all of the enumerator values.
6996    // If it's packed, check also if it fits a char or a short.
6997    if (Packed && NumPositiveBits <= CharWidth) {
6998      BestType = Context.UnsignedCharTy;
6999      BestPromotionType = Context.IntTy;
7000      BestWidth = CharWidth;
7001    } else if (Packed && NumPositiveBits <= ShortWidth) {
7002      BestType = Context.UnsignedShortTy;
7003      BestPromotionType = Context.IntTy;
7004      BestWidth = ShortWidth;
7005    } else if (NumPositiveBits <= IntWidth) {
7006      BestType = Context.UnsignedIntTy;
7007      BestWidth = IntWidth;
7008      BestPromotionType
7009        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7010                           ? Context.UnsignedIntTy : Context.IntTy;
7011    } else if (NumPositiveBits <=
7012               (BestWidth = Context.Target.getLongWidth())) {
7013      BestType = Context.UnsignedLongTy;
7014      BestPromotionType
7015        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7016                           ? Context.UnsignedLongTy : Context.LongTy;
7017    } else {
7018      BestWidth = Context.Target.getLongLongWidth();
7019      assert(NumPositiveBits <= BestWidth &&
7020             "How could an initializer get larger than ULL?");
7021      BestType = Context.UnsignedLongLongTy;
7022      BestPromotionType
7023        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7024                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7025    }
7026  }
7027
7028  // Loop over all of the enumerator constants, changing their types to match
7029  // the type of the enum if needed.
7030  for (unsigned i = 0; i != NumElements; ++i) {
7031    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7032    if (!ECD) continue;  // Already issued a diagnostic.
7033
7034    // Standard C says the enumerators have int type, but we allow, as an
7035    // extension, the enumerators to be larger than int size.  If each
7036    // enumerator value fits in an int, type it as an int, otherwise type it the
7037    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7038    // that X has type 'int', not 'unsigned'.
7039
7040    // Determine whether the value fits into an int.
7041    llvm::APSInt InitVal = ECD->getInitVal();
7042
7043    // If it fits into an integer type, force it.  Otherwise force it to match
7044    // the enum decl type.
7045    QualType NewTy;
7046    unsigned NewWidth;
7047    bool NewSign;
7048    if (!getLangOptions().CPlusPlus &&
7049        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7050      NewTy = Context.IntTy;
7051      NewWidth = IntWidth;
7052      NewSign = true;
7053    } else if (ECD->getType() == BestType) {
7054      // Already the right type!
7055      if (getLangOptions().CPlusPlus)
7056        // C++ [dcl.enum]p4: Following the closing brace of an
7057        // enum-specifier, each enumerator has the type of its
7058        // enumeration.
7059        ECD->setType(EnumType);
7060      continue;
7061    } else {
7062      NewTy = BestType;
7063      NewWidth = BestWidth;
7064      NewSign = BestType->isSignedIntegerType();
7065    }
7066
7067    // Adjust the APSInt value.
7068    InitVal.extOrTrunc(NewWidth);
7069    InitVal.setIsSigned(NewSign);
7070    ECD->setInitVal(InitVal);
7071
7072    // Adjust the Expr initializer and type.
7073    if (ECD->getInitExpr())
7074      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7075                                                CK_IntegralCast,
7076                                                ECD->getInitExpr(),
7077                                                /*base paths*/ 0,
7078                                                VK_RValue));
7079    if (getLangOptions().CPlusPlus)
7080      // C++ [dcl.enum]p4: Following the closing brace of an
7081      // enum-specifier, each enumerator has the type of its
7082      // enumeration.
7083      ECD->setType(EnumType);
7084    else
7085      ECD->setType(NewTy);
7086  }
7087
7088  Enum->completeDefinition(BestType, BestPromotionType,
7089                           NumPositiveBits, NumNegativeBits);
7090}
7091
7092Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7093  StringLiteral *AsmString = cast<StringLiteral>(expr);
7094
7095  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7096                                                   Loc, AsmString);
7097  CurContext->addDecl(New);
7098  return New;
7099}
7100
7101void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7102                             SourceLocation PragmaLoc,
7103                             SourceLocation NameLoc) {
7104  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7105
7106  if (PrevDecl) {
7107    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7108  } else {
7109    (void)WeakUndeclaredIdentifiers.insert(
7110      std::pair<IdentifierInfo*,WeakInfo>
7111        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7112  }
7113}
7114
7115void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7116                                IdentifierInfo* AliasName,
7117                                SourceLocation PragmaLoc,
7118                                SourceLocation NameLoc,
7119                                SourceLocation AliasNameLoc) {
7120  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7121                                    LookupOrdinaryName);
7122  WeakInfo W = WeakInfo(Name, NameLoc);
7123
7124  if (PrevDecl) {
7125    if (!PrevDecl->hasAttr<AliasAttr>())
7126      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7127        DeclApplyPragmaWeak(TUScope, ND, W);
7128  } else {
7129    (void)WeakUndeclaredIdentifiers.insert(
7130      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7131  }
7132}
7133