SemaDecl.cpp revision 7adb10fa317cd7eacb0959f775e77353d4f24ad1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  if (AddToContext)
297    CurContext->addDecl(D);
298
299  // C++ [basic.scope]p4:
300  //   -- exactly one declaration shall declare a class name or
301  //   enumeration name that is not a typedef name and the other
302  //   declarations shall all refer to the same object or
303  //   enumerator, or all refer to functions and function templates;
304  //   in this case the class name or enumeration name is hidden.
305  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
306    // We are pushing the name of a tag (enum or class).
307    if (CurContext->getLookupContext()
308          == TD->getDeclContext()->getLookupContext()) {
309      // We're pushing the tag into the current context, which might
310      // require some reshuffling in the identifier resolver.
311      IdentifierResolver::iterator
312        I = IdResolver.begin(TD->getDeclName()),
313        IEnd = IdResolver.end();
314      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
315        NamedDecl *PrevDecl = *I;
316        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
317             PrevDecl = *I, ++I) {
318          if (TD->declarationReplaces(*I)) {
319            // This is a redeclaration. Remove it from the chain and
320            // break out, so that we'll add in the shadowed
321            // declaration.
322            S->RemoveDecl(DeclPtrTy::make(*I));
323            if (PrevDecl == *I) {
324              IdResolver.RemoveDecl(*I);
325              IdResolver.AddDecl(TD);
326              return;
327            } else {
328              IdResolver.RemoveDecl(*I);
329              break;
330            }
331          }
332        }
333
334        // There is already a declaration with the same name in the same
335        // scope, which is not a tag declaration. It must be found
336        // before we find the new declaration, so insert the new
337        // declaration at the end of the chain.
338        IdResolver.AddShadowedDecl(TD, PrevDecl);
339
340        return;
341      }
342    }
343  } else if ((isa<FunctionDecl>(D) &&
344              AllowOverloadingOfFunction(D, Context)) ||
345             isa<FunctionTemplateDecl>(D)) {
346    // We are pushing the name of a function or function template,
347    // which might be an overloaded name.
348    IdentifierResolver::iterator Redecl
349      = std::find_if(IdResolver.begin(D->getDeclName()),
350                     IdResolver.end(),
351                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
352                                  D));
353    if (Redecl != IdResolver.end() &&
354        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
355      // There is already a declaration of a function on our
356      // IdResolver chain. Replace it with this declaration.
357      S->RemoveDecl(DeclPtrTy::make(*Redecl));
358      IdResolver.RemoveDecl(*Redecl);
359    }
360  } else if (isa<ObjCInterfaceDecl>(D)) {
361    // We're pushing an Objective-C interface into the current
362    // context. If there is already an alias declaration, remove it first.
363    for (IdentifierResolver::iterator
364           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
365         I != IEnd; ++I) {
366      if (isa<ObjCCompatibleAliasDecl>(*I)) {
367        S->RemoveDecl(DeclPtrTy::make(*I));
368        IdResolver.RemoveDecl(*I);
369        break;
370      }
371    }
372  }
373
374  IdResolver.AddDecl(D);
375}
376
377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
378  if (S->decl_empty()) return;
379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
380         "Scope shouldn't contain decls!");
381
382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
383       I != E; ++I) {
384    Decl *TmpD = (*I).getAs<Decl>();
385    assert(TmpD && "This decl didn't get pushed??");
386
387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
388    NamedDecl *D = cast<NamedDecl>(TmpD);
389
390    if (!D->getDeclName()) continue;
391
392    // Remove this name from our lexical scope.
393    IdResolver.RemoveDecl(D);
394  }
395}
396
397/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
398/// return 0 if one not found.
399ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
401  // creation from this context.
402  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
403
404  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
405}
406
407/// getNonFieldDeclScope - Retrieves the innermost scope, starting
408/// from S, where a non-field would be declared. This routine copes
409/// with the difference between C and C++ scoping rules in structs and
410/// unions. For example, the following code is well-formed in C but
411/// ill-formed in C++:
412/// @code
413/// struct S6 {
414///   enum { BAR } e;
415/// };
416///
417/// void test_S6() {
418///   struct S6 a;
419///   a.e = BAR;
420/// }
421/// @endcode
422/// For the declaration of BAR, this routine will return a different
423/// scope. The scope S will be the scope of the unnamed enumeration
424/// within S6. In C++, this routine will return the scope associated
425/// with S6, because the enumeration's scope is a transparent
426/// context but structures can contain non-field names. In C, this
427/// routine will return the translation unit scope, since the
428/// enumeration's scope is a transparent context and structures cannot
429/// contain non-field names.
430Scope *Sema::getNonFieldDeclScope(Scope *S) {
431  while (((S->getFlags() & Scope::DeclScope) == 0) ||
432         (S->getEntity() &&
433          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
434         (S->isClassScope() && !getLangOptions().CPlusPlus))
435    S = S->getParent();
436  return S;
437}
438
439void Sema::InitBuiltinVaListType() {
440  if (!Context.getBuiltinVaListType().isNull())
441    return;
442
443  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
444  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
445  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
446  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
447}
448
449/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
450/// file scope.  lazily create a decl for it. ForRedeclaration is true
451/// if we're creating this built-in in anticipation of redeclaring the
452/// built-in.
453NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
454                                     Scope *S, bool ForRedeclaration,
455                                     SourceLocation Loc) {
456  Builtin::ID BID = (Builtin::ID)bid;
457
458  if (Context.BuiltinInfo.hasVAListUse(BID))
459    InitBuiltinVaListType();
460
461  ASTContext::GetBuiltinTypeError Error;
462  QualType R = Context.GetBuiltinType(BID, Error);
463  switch (Error) {
464  case ASTContext::GE_None:
465    // Okay
466    break;
467
468  case ASTContext::GE_Missing_stdio:
469    if (ForRedeclaration)
470      Diag(Loc, diag::err_implicit_decl_requires_stdio)
471        << Context.BuiltinInfo.GetName(BID);
472    return 0;
473
474  case ASTContext::GE_Missing_setjmp:
475    if (ForRedeclaration)
476      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
477        << Context.BuiltinInfo.GetName(BID);
478    return 0;
479  }
480
481  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
482    Diag(Loc, diag::ext_implicit_lib_function_decl)
483      << Context.BuiltinInfo.GetName(BID)
484      << R;
485    if (Context.BuiltinInfo.getHeaderName(BID) &&
486        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
487          != Diagnostic::Ignored)
488      Diag(Loc, diag::note_please_include_header)
489        << Context.BuiltinInfo.getHeaderName(BID)
490        << Context.BuiltinInfo.GetName(BID);
491  }
492
493  FunctionDecl *New = FunctionDecl::Create(Context,
494                                           Context.getTranslationUnitDecl(),
495                                           Loc, II, R, /*DInfo=*/0,
496                                           FunctionDecl::Extern, false,
497                                           /*hasPrototype=*/true);
498  New->setImplicit();
499
500  // Create Decl objects for each parameter, adding them to the
501  // FunctionDecl.
502  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
503    llvm::SmallVector<ParmVarDecl*, 16> Params;
504    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
505      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
506                                           FT->getArgType(i), /*DInfo=*/0,
507                                           VarDecl::None, 0));
508    New->setParams(Context, Params.data(), Params.size());
509  }
510
511  AddKnownFunctionAttributes(New);
512
513  // TUScope is the translation-unit scope to insert this function into.
514  // FIXME: This is hideous. We need to teach PushOnScopeChains to
515  // relate Scopes to DeclContexts, and probably eliminate CurContext
516  // entirely, but we're not there yet.
517  DeclContext *SavedContext = CurContext;
518  CurContext = Context.getTranslationUnitDecl();
519  PushOnScopeChains(New, TUScope);
520  CurContext = SavedContext;
521  return New;
522}
523
524/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
525/// same name and scope as a previous declaration 'Old'.  Figure out
526/// how to resolve this situation, merging decls or emitting
527/// diagnostics as appropriate. If there was an error, set New to be invalid.
528///
529void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
530  // If either decl is known invalid already, set the new one to be invalid and
531  // don't bother doing any merging checks.
532  if (New->isInvalidDecl() || OldD->isInvalidDecl())
533    return New->setInvalidDecl();
534
535  // Allow multiple definitions for ObjC built-in typedefs.
536  // FIXME: Verify the underlying types are equivalent!
537  if (getLangOptions().ObjC1) {
538    const IdentifierInfo *TypeID = New->getIdentifier();
539    switch (TypeID->getLength()) {
540    default: break;
541    case 2:
542      if (!TypeID->isStr("id"))
543        break;
544      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'id', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
547      return;
548    case 5:
549      if (!TypeID->isStr("Class"))
550        break;
551      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
552      // Install the built-in type for 'Class', ignoring the current definition.
553      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
554      return;
555    case 3:
556      if (!TypeID->isStr("SEL"))
557        break;
558      Context.setObjCSelType(Context.getTypeDeclType(New));
559      return;
560    case 8:
561      if (!TypeID->isStr("Protocol"))
562        break;
563      Context.setObjCProtoType(New->getUnderlyingType());
564      return;
565    }
566    // Fall through - the typedef name was not a builtin type.
567  }
568  // Verify the old decl was also a type.
569  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
570  if (!Old) {
571    Diag(New->getLocation(), diag::err_redefinition_different_kind)
572      << New->getDeclName();
573    if (OldD->getLocation().isValid())
574      Diag(OldD->getLocation(), diag::note_previous_definition);
575    return New->setInvalidDecl();
576  }
577
578  // Determine the "old" type we'll use for checking and diagnostics.
579  QualType OldType;
580  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
581    OldType = OldTypedef->getUnderlyingType();
582  else
583    OldType = Context.getTypeDeclType(Old);
584
585  // If the typedef types are not identical, reject them in all languages and
586  // with any extensions enabled.
587
588  if (OldType != New->getUnderlyingType() &&
589      Context.getCanonicalType(OldType) !=
590      Context.getCanonicalType(New->getUnderlyingType())) {
591    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
592      << New->getUnderlyingType() << OldType;
593    if (Old->getLocation().isValid())
594      Diag(Old->getLocation(), diag::note_previous_definition);
595    return New->setInvalidDecl();
596  }
597
598  if (getLangOptions().Microsoft)
599    return;
600
601  // C++ [dcl.typedef]p2:
602  //   In a given non-class scope, a typedef specifier can be used to
603  //   redefine the name of any type declared in that scope to refer
604  //   to the type to which it already refers.
605  if (getLangOptions().CPlusPlus) {
606    if (!isa<CXXRecordDecl>(CurContext))
607      return;
608    Diag(New->getLocation(), diag::err_redefinition)
609      << New->getDeclName();
610    Diag(Old->getLocation(), diag::note_previous_definition);
611    return New->setInvalidDecl();
612  }
613
614  // If we have a redefinition of a typedef in C, emit a warning.  This warning
615  // is normally mapped to an error, but can be controlled with
616  // -Wtypedef-redefinition.  If either the original or the redefinition is
617  // in a system header, don't emit this for compatibility with GCC.
618  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
619      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
620       Context.getSourceManager().isInSystemHeader(New->getLocation())))
621    return;
622
623  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
624    << New->getDeclName();
625  Diag(Old->getLocation(), diag::note_previous_definition);
626  return;
627}
628
629/// DeclhasAttr - returns true if decl Declaration already has the target
630/// attribute.
631static bool
632DeclHasAttr(const Decl *decl, const Attr *target) {
633  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
634    if (attr->getKind() == target->getKind())
635      return true;
636
637  return false;
638}
639
640/// MergeAttributes - append attributes from the Old decl to the New one.
641static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
642  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
643    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
644      Attr *NewAttr = attr->clone(C);
645      NewAttr->setInherited(true);
646      New->addAttr(NewAttr);
647    }
648  }
649}
650
651/// Used in MergeFunctionDecl to keep track of function parameters in
652/// C.
653struct GNUCompatibleParamWarning {
654  ParmVarDecl *OldParm;
655  ParmVarDecl *NewParm;
656  QualType PromotedType;
657};
658
659/// MergeFunctionDecl - We just parsed a function 'New' from
660/// declarator D which has the same name and scope as a previous
661/// declaration 'Old'.  Figure out how to resolve this situation,
662/// merging decls or emitting diagnostics as appropriate.
663///
664/// In C++, New and Old must be declarations that are not
665/// overloaded. Use IsOverload to determine whether New and Old are
666/// overloaded, and to select the Old declaration that New should be
667/// merged with.
668///
669/// Returns true if there was an error, false otherwise.
670bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
671  assert(!isa<OverloadedFunctionDecl>(OldD) &&
672         "Cannot merge with an overloaded function declaration");
673
674  // Verify the old decl was also a function.
675  FunctionDecl *Old = 0;
676  if (FunctionTemplateDecl *OldFunctionTemplate
677        = dyn_cast<FunctionTemplateDecl>(OldD))
678    Old = OldFunctionTemplate->getTemplatedDecl();
679  else
680    Old = dyn_cast<FunctionDecl>(OldD);
681  if (!Old) {
682    Diag(New->getLocation(), diag::err_redefinition_different_kind)
683      << New->getDeclName();
684    Diag(OldD->getLocation(), diag::note_previous_definition);
685    return true;
686  }
687
688  // Determine whether the previous declaration was a definition,
689  // implicit declaration, or a declaration.
690  diag::kind PrevDiag;
691  if (Old->isThisDeclarationADefinition())
692    PrevDiag = diag::note_previous_definition;
693  else if (Old->isImplicit())
694    PrevDiag = diag::note_previous_implicit_declaration;
695  else
696    PrevDiag = diag::note_previous_declaration;
697
698  QualType OldQType = Context.getCanonicalType(Old->getType());
699  QualType NewQType = Context.getCanonicalType(New->getType());
700
701  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
702      New->getStorageClass() == FunctionDecl::Static &&
703      Old->getStorageClass() != FunctionDecl::Static) {
704    Diag(New->getLocation(), diag::err_static_non_static)
705      << New;
706    Diag(Old->getLocation(), PrevDiag);
707    return true;
708  }
709
710  if (getLangOptions().CPlusPlus) {
711    // (C++98 13.1p2):
712    //   Certain function declarations cannot be overloaded:
713    //     -- Function declarations that differ only in the return type
714    //        cannot be overloaded.
715    QualType OldReturnType
716      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
717    QualType NewReturnType
718      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
719    if (OldReturnType != NewReturnType) {
720      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
721      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
722      return true;
723    }
724
725    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
726    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
727    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
728        NewMethod->getLexicalDeclContext()->isRecord()) {
729      //    -- Member function declarations with the same name and the
730      //       same parameter types cannot be overloaded if any of them
731      //       is a static member function declaration.
732      if (OldMethod->isStatic() || NewMethod->isStatic()) {
733        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
734        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735        return true;
736      }
737
738      // C++ [class.mem]p1:
739      //   [...] A member shall not be declared twice in the
740      //   member-specification, except that a nested class or member
741      //   class template can be declared and then later defined.
742      unsigned NewDiag;
743      if (isa<CXXConstructorDecl>(OldMethod))
744        NewDiag = diag::err_constructor_redeclared;
745      else if (isa<CXXDestructorDecl>(NewMethod))
746        NewDiag = diag::err_destructor_redeclared;
747      else if (isa<CXXConversionDecl>(NewMethod))
748        NewDiag = diag::err_conv_function_redeclared;
749      else
750        NewDiag = diag::err_member_redeclared;
751
752      Diag(New->getLocation(), NewDiag);
753      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
754    }
755
756    // (C++98 8.3.5p3):
757    //   All declarations for a function shall agree exactly in both the
758    //   return type and the parameter-type-list.
759    if (OldQType == NewQType)
760      return MergeCompatibleFunctionDecls(New, Old);
761
762    // Fall through for conflicting redeclarations and redefinitions.
763  }
764
765  // C: Function types need to be compatible, not identical. This handles
766  // duplicate function decls like "void f(int); void f(enum X);" properly.
767  if (!getLangOptions().CPlusPlus &&
768      Context.typesAreCompatible(OldQType, NewQType)) {
769    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
770    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
771    const FunctionProtoType *OldProto = 0;
772    if (isa<FunctionNoProtoType>(NewFuncType) &&
773        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
774      // The old declaration provided a function prototype, but the
775      // new declaration does not. Merge in the prototype.
776      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
777      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
778                                                 OldProto->arg_type_end());
779      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
780                                         ParamTypes.data(), ParamTypes.size(),
781                                         OldProto->isVariadic(),
782                                         OldProto->getTypeQuals());
783      New->setType(NewQType);
784      New->setHasInheritedPrototype();
785
786      // Synthesize a parameter for each argument type.
787      llvm::SmallVector<ParmVarDecl*, 16> Params;
788      for (FunctionProtoType::arg_type_iterator
789             ParamType = OldProto->arg_type_begin(),
790             ParamEnd = OldProto->arg_type_end();
791           ParamType != ParamEnd; ++ParamType) {
792        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
793                                                 SourceLocation(), 0,
794                                                 *ParamType, /*DInfo=*/0,
795                                                 VarDecl::None, 0);
796        Param->setImplicit();
797        Params.push_back(Param);
798      }
799
800      New->setParams(Context, Params.data(), Params.size());
801    }
802
803    return MergeCompatibleFunctionDecls(New, Old);
804  }
805
806  // GNU C permits a K&R definition to follow a prototype declaration
807  // if the declared types of the parameters in the K&R definition
808  // match the types in the prototype declaration, even when the
809  // promoted types of the parameters from the K&R definition differ
810  // from the types in the prototype. GCC then keeps the types from
811  // the prototype.
812  //
813  // If a variadic prototype is followed by a non-variadic K&R definition,
814  // the K&R definition becomes variadic.  This is sort of an edge case, but
815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
816  // C99 6.9.1p8.
817  if (!getLangOptions().CPlusPlus &&
818      Old->hasPrototype() && !New->hasPrototype() &&
819      New->getType()->getAsFunctionProtoType() &&
820      Old->getNumParams() == New->getNumParams()) {
821    llvm::SmallVector<QualType, 16> ArgTypes;
822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
823    const FunctionProtoType *OldProto
824      = Old->getType()->getAsFunctionProtoType();
825    const FunctionProtoType *NewProto
826      = New->getType()->getAsFunctionProtoType();
827
828    // Determine whether this is the GNU C extension.
829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
830                                               NewProto->getResultType());
831    bool LooseCompatible = !MergedReturn.isNull();
832    for (unsigned Idx = 0, End = Old->getNumParams();
833         LooseCompatible && Idx != End; ++Idx) {
834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
836      if (Context.typesAreCompatible(OldParm->getType(),
837                                     NewProto->getArgType(Idx))) {
838        ArgTypes.push_back(NewParm->getType());
839      } else if (Context.typesAreCompatible(OldParm->getType(),
840                                            NewParm->getType())) {
841        GNUCompatibleParamWarning Warn
842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
843        Warnings.push_back(Warn);
844        ArgTypes.push_back(NewParm->getType());
845      } else
846        LooseCompatible = false;
847    }
848
849    if (LooseCompatible) {
850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
851        Diag(Warnings[Warn].NewParm->getLocation(),
852             diag::ext_param_promoted_not_compatible_with_prototype)
853          << Warnings[Warn].PromotedType
854          << Warnings[Warn].OldParm->getType();
855        Diag(Warnings[Warn].OldParm->getLocation(),
856             diag::note_previous_declaration);
857      }
858
859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
860                                           ArgTypes.size(),
861                                           OldProto->isVariadic(), 0));
862      return MergeCompatibleFunctionDecls(New, Old);
863    }
864
865    // Fall through to diagnose conflicting types.
866  }
867
868  // A function that has already been declared has been redeclared or defined
869  // with a different type- show appropriate diagnostic
870  if (unsigned BuiltinID = Old->getBuiltinID()) {
871    // The user has declared a builtin function with an incompatible
872    // signature.
873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
874      // The function the user is redeclaring is a library-defined
875      // function like 'malloc' or 'printf'. Warn about the
876      // redeclaration, then pretend that we don't know about this
877      // library built-in.
878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
880        << Old << Old->getType();
881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
882      Old->setInvalidDecl();
883      return false;
884    }
885
886    PrevDiag = diag::note_previous_builtin_declaration;
887  }
888
889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
891  return true;
892}
893
894/// \brief Completes the merge of two function declarations that are
895/// known to be compatible.
896///
897/// This routine handles the merging of attributes and other
898/// properties of function declarations form the old declaration to
899/// the new declaration, once we know that New is in fact a
900/// redeclaration of Old.
901///
902/// \returns false
903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
904  // Merge the attributes
905  MergeAttributes(New, Old, Context);
906
907  // Merge the storage class.
908  if (Old->getStorageClass() != FunctionDecl::Extern &&
909      Old->getStorageClass() != FunctionDecl::None)
910    New->setStorageClass(Old->getStorageClass());
911
912  // Merge "pure" flag.
913  if (Old->isPure())
914    New->setPure();
915
916  // Merge the "deleted" flag.
917  if (Old->isDeleted())
918    New->setDeleted();
919
920  if (getLangOptions().CPlusPlus)
921    return MergeCXXFunctionDecl(New, Old);
922
923  return false;
924}
925
926/// MergeVarDecl - We just parsed a variable 'New' which has the same name
927/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
928/// situation, merging decls or emitting diagnostics as appropriate.
929///
930/// Tentative definition rules (C99 6.9.2p2) are checked by
931/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
932/// definitions here, since the initializer hasn't been attached.
933///
934void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
935  // If either decl is invalid, make sure the new one is marked invalid and
936  // don't do any other checking.
937  if (New->isInvalidDecl() || OldD->isInvalidDecl())
938    return New->setInvalidDecl();
939
940  // Verify the old decl was also a variable.
941  VarDecl *Old = dyn_cast<VarDecl>(OldD);
942  if (!Old) {
943    Diag(New->getLocation(), diag::err_redefinition_different_kind)
944      << New->getDeclName();
945    Diag(OldD->getLocation(), diag::note_previous_definition);
946    return New->setInvalidDecl();
947  }
948
949  MergeAttributes(New, Old, Context);
950
951  // Merge the types
952  QualType MergedT;
953  if (getLangOptions().CPlusPlus) {
954    if (Context.hasSameType(New->getType(), Old->getType()))
955      MergedT = New->getType();
956    // C++ [basic.types]p7:
957    //   [...] The declared type of an array object might be an array of
958    //   unknown size and therefore be incomplete at one point in a
959    //   translation unit and complete later on; [...]
960    else if (Old->getType()->isIncompleteArrayType() &&
961             New->getType()->isArrayType()) {
962      CanQual<ArrayType> OldArray
963        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
964      CanQual<ArrayType> NewArray
965        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
966      if (OldArray->getElementType() == NewArray->getElementType())
967        MergedT = New->getType();
968    }
969  } else {
970    MergedT = Context.mergeTypes(New->getType(), Old->getType());
971  }
972  if (MergedT.isNull()) {
973    Diag(New->getLocation(), diag::err_redefinition_different_type)
974      << New->getDeclName();
975    Diag(Old->getLocation(), diag::note_previous_definition);
976    return New->setInvalidDecl();
977  }
978  New->setType(MergedT);
979
980  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
981  if (New->getStorageClass() == VarDecl::Static &&
982      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
983    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
984    Diag(Old->getLocation(), diag::note_previous_definition);
985    return New->setInvalidDecl();
986  }
987  // C99 6.2.2p4:
988  //   For an identifier declared with the storage-class specifier
989  //   extern in a scope in which a prior declaration of that
990  //   identifier is visible,23) if the prior declaration specifies
991  //   internal or external linkage, the linkage of the identifier at
992  //   the later declaration is the same as the linkage specified at
993  //   the prior declaration. If no prior declaration is visible, or
994  //   if the prior declaration specifies no linkage, then the
995  //   identifier has external linkage.
996  if (New->hasExternalStorage() && Old->hasLinkage())
997    /* Okay */;
998  else if (New->getStorageClass() != VarDecl::Static &&
999           Old->getStorageClass() == VarDecl::Static) {
1000    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1006
1007  // FIXME: The test for external storage here seems wrong? We still
1008  // need to check for mismatches.
1009  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1010      // Don't complain about out-of-line definitions of static members.
1011      !(Old->getLexicalDeclContext()->isRecord() &&
1012        !New->getLexicalDeclContext()->isRecord())) {
1013    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1019    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1022    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1023    Diag(Old->getLocation(), diag::note_previous_definition);
1024  }
1025
1026  // Keep a chain of previous declarations.
1027  New->setPreviousDeclaration(Old);
1028}
1029
1030/// CheckFallThrough - Check that we don't fall off the end of a
1031/// Statement that should return a value.
1032///
1033/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1034/// MaybeFallThrough iff we might or might not fall off the end and
1035/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1036/// that functions not marked noreturn will return.
1037Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1038  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1039
1040  // FIXME: They should never return 0, fix that, delete this code.
1041  if (cfg == 0)
1042    return NeverFallThrough;
1043  // The CFG leaves in dead things, and we don't want to dead code paths to
1044  // confuse us, so we mark all live things first.
1045  std::queue<CFGBlock*> workq;
1046  llvm::BitVector live(cfg->getNumBlockIDs());
1047  // Prep work queue
1048  workq.push(&cfg->getEntry());
1049  // Solve
1050  while (!workq.empty()) {
1051    CFGBlock *item = workq.front();
1052    workq.pop();
1053    live.set(item->getBlockID());
1054    for (CFGBlock::succ_iterator I=item->succ_begin(),
1055           E=item->succ_end();
1056         I != E;
1057         ++I) {
1058      if ((*I) && !live[(*I)->getBlockID()]) {
1059        live.set((*I)->getBlockID());
1060        workq.push(*I);
1061      }
1062    }
1063  }
1064
1065  // Now we know what is live, we check the live precessors of the exit block
1066  // and look for fall through paths, being careful to ignore normal returns,
1067  // and exceptional paths.
1068  bool HasLiveReturn = false;
1069  bool HasFakeEdge = false;
1070  bool HasPlainEdge = false;
1071  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1072         E = cfg->getExit().pred_end();
1073       I != E;
1074       ++I) {
1075    CFGBlock& B = **I;
1076    if (!live[B.getBlockID()])
1077      continue;
1078    if (B.size() == 0) {
1079      // A labeled empty statement, or the entry block...
1080      HasPlainEdge = true;
1081      continue;
1082    }
1083    Stmt *S = B[B.size()-1];
1084    if (isa<ReturnStmt>(S)) {
1085      HasLiveReturn = true;
1086      continue;
1087    }
1088    if (isa<ObjCAtThrowStmt>(S)) {
1089      HasFakeEdge = true;
1090      continue;
1091    }
1092    if (isa<CXXThrowExpr>(S)) {
1093      HasFakeEdge = true;
1094      continue;
1095    }
1096    bool NoReturnEdge = false;
1097    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1098      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1099      if (CEE->getType().getNoReturnAttr()) {
1100        NoReturnEdge = true;
1101        HasFakeEdge = true;
1102      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1103        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1104          if (FD->hasAttr<NoReturnAttr>()) {
1105            NoReturnEdge = true;
1106            HasFakeEdge = true;
1107          }
1108        }
1109      }
1110    }
1111    // FIXME: Add noreturn message sends.
1112    if (NoReturnEdge == false)
1113      HasPlainEdge = true;
1114  }
1115  if (!HasPlainEdge)
1116    return NeverFallThrough;
1117  if (HasFakeEdge || HasLiveReturn)
1118    return MaybeFallThrough;
1119  // This says AlwaysFallThrough for calls to functions that are not marked
1120  // noreturn, that don't return.  If people would like this warning to be more
1121  // accurate, such functions should be marked as noreturn.
1122  return AlwaysFallThrough;
1123}
1124
1125/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1126/// function that should return a value.  Check that we don't fall off the end
1127/// of a noreturn function.  We assume that functions and blocks not marked
1128/// noreturn will return.
1129void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1130  // FIXME: Would be nice if we had a better way to control cascading errors,
1131  // but for now, avoid them.  The problem is that when Parse sees:
1132  //   int foo() { return a; }
1133  // The return is eaten and the Sema code sees just:
1134  //   int foo() { }
1135  // which this code would then warn about.
1136  if (getDiagnostics().hasErrorOccurred())
1137    return;
1138  bool ReturnsVoid = false;
1139  bool HasNoReturn = false;
1140  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1141    if (FD->getResultType()->isVoidType())
1142      ReturnsVoid = true;
1143    if (FD->hasAttr<NoReturnAttr>())
1144      HasNoReturn = true;
1145  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1146    if (MD->getResultType()->isVoidType())
1147      ReturnsVoid = true;
1148    if (MD->hasAttr<NoReturnAttr>())
1149      HasNoReturn = true;
1150  }
1151
1152  // Short circuit for compilation speed.
1153  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1154       == Diagnostic::Ignored || ReturnsVoid)
1155      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1156          == Diagnostic::Ignored || !HasNoReturn)
1157      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1158          == Diagnostic::Ignored || !ReturnsVoid))
1159    return;
1160  // FIXME: Funtion try block
1161  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1162    switch (CheckFallThrough(Body)) {
1163    case MaybeFallThrough:
1164      if (HasNoReturn)
1165        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1166      else if (!ReturnsVoid)
1167        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1168      break;
1169    case AlwaysFallThrough:
1170      if (HasNoReturn)
1171        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1172      else if (!ReturnsVoid)
1173        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1174      break;
1175    case NeverFallThrough:
1176      if (ReturnsVoid)
1177        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1178      break;
1179    }
1180  }
1181}
1182
1183/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1184/// that should return a value.  Check that we don't fall off the end of a
1185/// noreturn block.  We assume that functions and blocks not marked noreturn
1186/// will return.
1187void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1188  // FIXME: Would be nice if we had a better way to control cascading errors,
1189  // but for now, avoid them.  The problem is that when Parse sees:
1190  //   int foo() { return a; }
1191  // The return is eaten and the Sema code sees just:
1192  //   int foo() { }
1193  // which this code would then warn about.
1194  if (getDiagnostics().hasErrorOccurred())
1195    return;
1196  bool ReturnsVoid = false;
1197  bool HasNoReturn = false;
1198  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1199    if (FT->getResultType()->isVoidType())
1200      ReturnsVoid = true;
1201    if (FT->getNoReturnAttr())
1202      HasNoReturn = true;
1203  }
1204
1205  // Short circuit for compilation speed.
1206  if (ReturnsVoid
1207      && !HasNoReturn
1208      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1209          == Diagnostic::Ignored || !ReturnsVoid))
1210    return;
1211  // FIXME: Funtion try block
1212  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1213    switch (CheckFallThrough(Body)) {
1214    case MaybeFallThrough:
1215      if (HasNoReturn)
1216        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1217      else if (!ReturnsVoid)
1218        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1219      break;
1220    case AlwaysFallThrough:
1221      if (HasNoReturn)
1222        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1223      else if (!ReturnsVoid)
1224        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1225      break;
1226    case NeverFallThrough:
1227      if (ReturnsVoid)
1228        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1229      break;
1230    }
1231  }
1232}
1233
1234/// CheckParmsForFunctionDef - Check that the parameters of the given
1235/// function are appropriate for the definition of a function. This
1236/// takes care of any checks that cannot be performed on the
1237/// declaration itself, e.g., that the types of each of the function
1238/// parameters are complete.
1239bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1240  bool HasInvalidParm = false;
1241  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1242    ParmVarDecl *Param = FD->getParamDecl(p);
1243
1244    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1245    // function declarator that is part of a function definition of
1246    // that function shall not have incomplete type.
1247    //
1248    // This is also C++ [dcl.fct]p6.
1249    if (!Param->isInvalidDecl() &&
1250        RequireCompleteType(Param->getLocation(), Param->getType(),
1251                               diag::err_typecheck_decl_incomplete_type)) {
1252      Param->setInvalidDecl();
1253      HasInvalidParm = true;
1254    }
1255
1256    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1257    // declaration of each parameter shall include an identifier.
1258    if (Param->getIdentifier() == 0 &&
1259        !Param->isImplicit() &&
1260        !getLangOptions().CPlusPlus)
1261      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1262  }
1263
1264  return HasInvalidParm;
1265}
1266
1267/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1268/// no declarator (e.g. "struct foo;") is parsed.
1269Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1270  // FIXME: Error on auto/register at file scope
1271  // FIXME: Error on inline/virtual/explicit
1272  // FIXME: Error on invalid restrict
1273  // FIXME: Warn on useless __thread
1274  // FIXME: Warn on useless const/volatile
1275  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1276  // FIXME: Warn on useless attributes
1277  TagDecl *Tag = 0;
1278  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1279      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1280      DS.getTypeSpecType() == DeclSpec::TST_union ||
1281      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1282    if (!DS.getTypeRep()) // We probably had an error
1283      return DeclPtrTy();
1284
1285    // Note that the above type specs guarantee that the
1286    // type rep is a Decl, whereas in many of the others
1287    // it's a Type.
1288    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1289  }
1290
1291  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1292    if (!Record->getDeclName() && Record->isDefinition() &&
1293        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1294      if (getLangOptions().CPlusPlus ||
1295          Record->getDeclContext()->isRecord())
1296        return BuildAnonymousStructOrUnion(S, DS, Record);
1297
1298      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1299        << DS.getSourceRange();
1300    }
1301
1302    // Microsoft allows unnamed struct/union fields. Don't complain
1303    // about them.
1304    // FIXME: Should we support Microsoft's extensions in this area?
1305    if (Record->getDeclName() && getLangOptions().Microsoft)
1306      return DeclPtrTy::make(Tag);
1307  }
1308
1309  if (!DS.isMissingDeclaratorOk() &&
1310      DS.getTypeSpecType() != DeclSpec::TST_error) {
1311    // Warn about typedefs of enums without names, since this is an
1312    // extension in both Microsoft an GNU.
1313    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1314        Tag && isa<EnumDecl>(Tag)) {
1315      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1316        << DS.getSourceRange();
1317      return DeclPtrTy::make(Tag);
1318    }
1319
1320    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1321      << DS.getSourceRange();
1322    return DeclPtrTy();
1323  }
1324
1325  return DeclPtrTy::make(Tag);
1326}
1327
1328/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1329/// anonymous struct or union AnonRecord into the owning context Owner
1330/// and scope S. This routine will be invoked just after we realize
1331/// that an unnamed union or struct is actually an anonymous union or
1332/// struct, e.g.,
1333///
1334/// @code
1335/// union {
1336///   int i;
1337///   float f;
1338/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1339///    // f into the surrounding scope.x
1340/// @endcode
1341///
1342/// This routine is recursive, injecting the names of nested anonymous
1343/// structs/unions into the owning context and scope as well.
1344bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1345                                               RecordDecl *AnonRecord) {
1346  bool Invalid = false;
1347  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1348                               FEnd = AnonRecord->field_end();
1349       F != FEnd; ++F) {
1350    if ((*F)->getDeclName()) {
1351      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1352                                                LookupOrdinaryName, true);
1353      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1354        // C++ [class.union]p2:
1355        //   The names of the members of an anonymous union shall be
1356        //   distinct from the names of any other entity in the
1357        //   scope in which the anonymous union is declared.
1358        unsigned diagKind
1359          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1360                                 : diag::err_anonymous_struct_member_redecl;
1361        Diag((*F)->getLocation(), diagKind)
1362          << (*F)->getDeclName();
1363        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1364        Invalid = true;
1365      } else {
1366        // C++ [class.union]p2:
1367        //   For the purpose of name lookup, after the anonymous union
1368        //   definition, the members of the anonymous union are
1369        //   considered to have been defined in the scope in which the
1370        //   anonymous union is declared.
1371        Owner->makeDeclVisibleInContext(*F);
1372        S->AddDecl(DeclPtrTy::make(*F));
1373        IdResolver.AddDecl(*F);
1374      }
1375    } else if (const RecordType *InnerRecordType
1376                 = (*F)->getType()->getAs<RecordType>()) {
1377      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1378      if (InnerRecord->isAnonymousStructOrUnion())
1379        Invalid = Invalid ||
1380          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1381    }
1382  }
1383
1384  return Invalid;
1385}
1386
1387/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1388/// anonymous structure or union. Anonymous unions are a C++ feature
1389/// (C++ [class.union]) and a GNU C extension; anonymous structures
1390/// are a GNU C and GNU C++ extension.
1391Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1392                                                  RecordDecl *Record) {
1393  DeclContext *Owner = Record->getDeclContext();
1394
1395  // Diagnose whether this anonymous struct/union is an extension.
1396  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1397    Diag(Record->getLocation(), diag::ext_anonymous_union);
1398  else if (!Record->isUnion())
1399    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1400
1401  // C and C++ require different kinds of checks for anonymous
1402  // structs/unions.
1403  bool Invalid = false;
1404  if (getLangOptions().CPlusPlus) {
1405    const char* PrevSpec = 0;
1406    unsigned DiagID;
1407    // C++ [class.union]p3:
1408    //   Anonymous unions declared in a named namespace or in the
1409    //   global namespace shall be declared static.
1410    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1411        (isa<TranslationUnitDecl>(Owner) ||
1412         (isa<NamespaceDecl>(Owner) &&
1413          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1414      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1415      Invalid = true;
1416
1417      // Recover by adding 'static'.
1418      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1419                             PrevSpec, DiagID);
1420    }
1421    // C++ [class.union]p3:
1422    //   A storage class is not allowed in a declaration of an
1423    //   anonymous union in a class scope.
1424    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1425             isa<RecordDecl>(Owner)) {
1426      Diag(DS.getStorageClassSpecLoc(),
1427           diag::err_anonymous_union_with_storage_spec);
1428      Invalid = true;
1429
1430      // Recover by removing the storage specifier.
1431      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1432                             PrevSpec, DiagID);
1433    }
1434
1435    // C++ [class.union]p2:
1436    //   The member-specification of an anonymous union shall only
1437    //   define non-static data members. [Note: nested types and
1438    //   functions cannot be declared within an anonymous union. ]
1439    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1440                                 MemEnd = Record->decls_end();
1441         Mem != MemEnd; ++Mem) {
1442      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1443        // C++ [class.union]p3:
1444        //   An anonymous union shall not have private or protected
1445        //   members (clause 11).
1446        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1447          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1448            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1449          Invalid = true;
1450        }
1451      } else if ((*Mem)->isImplicit()) {
1452        // Any implicit members are fine.
1453      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1454        // This is a type that showed up in an
1455        // elaborated-type-specifier inside the anonymous struct or
1456        // union, but which actually declares a type outside of the
1457        // anonymous struct or union. It's okay.
1458      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1459        if (!MemRecord->isAnonymousStructOrUnion() &&
1460            MemRecord->getDeclName()) {
1461          // This is a nested type declaration.
1462          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1463            << (int)Record->isUnion();
1464          Invalid = true;
1465        }
1466      } else {
1467        // We have something that isn't a non-static data
1468        // member. Complain about it.
1469        unsigned DK = diag::err_anonymous_record_bad_member;
1470        if (isa<TypeDecl>(*Mem))
1471          DK = diag::err_anonymous_record_with_type;
1472        else if (isa<FunctionDecl>(*Mem))
1473          DK = diag::err_anonymous_record_with_function;
1474        else if (isa<VarDecl>(*Mem))
1475          DK = diag::err_anonymous_record_with_static;
1476        Diag((*Mem)->getLocation(), DK)
1477            << (int)Record->isUnion();
1478          Invalid = true;
1479      }
1480    }
1481  }
1482
1483  if (!Record->isUnion() && !Owner->isRecord()) {
1484    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1485      << (int)getLangOptions().CPlusPlus;
1486    Invalid = true;
1487  }
1488
1489  // Create a declaration for this anonymous struct/union.
1490  NamedDecl *Anon = 0;
1491  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1492    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1493                             /*IdentifierInfo=*/0,
1494                             Context.getTypeDeclType(Record),
1495                             // FIXME: Type source info.
1496                             /*DInfo=*/0,
1497                             /*BitWidth=*/0, /*Mutable=*/false);
1498    Anon->setAccess(AS_public);
1499    if (getLangOptions().CPlusPlus)
1500      FieldCollector->Add(cast<FieldDecl>(Anon));
1501  } else {
1502    VarDecl::StorageClass SC;
1503    switch (DS.getStorageClassSpec()) {
1504    default: assert(0 && "Unknown storage class!");
1505    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1506    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1507    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1508    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1509    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1510    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1511    case DeclSpec::SCS_mutable:
1512      // mutable can only appear on non-static class members, so it's always
1513      // an error here
1514      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1515      Invalid = true;
1516      SC = VarDecl::None;
1517      break;
1518    }
1519
1520    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1521                           /*IdentifierInfo=*/0,
1522                           Context.getTypeDeclType(Record),
1523                           // FIXME: Type source info.
1524                           /*DInfo=*/0,
1525                           SC);
1526  }
1527  Anon->setImplicit();
1528
1529  // Add the anonymous struct/union object to the current
1530  // context. We'll be referencing this object when we refer to one of
1531  // its members.
1532  Owner->addDecl(Anon);
1533
1534  // Inject the members of the anonymous struct/union into the owning
1535  // context and into the identifier resolver chain for name lookup
1536  // purposes.
1537  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1538    Invalid = true;
1539
1540  // Mark this as an anonymous struct/union type. Note that we do not
1541  // do this until after we have already checked and injected the
1542  // members of this anonymous struct/union type, because otherwise
1543  // the members could be injected twice: once by DeclContext when it
1544  // builds its lookup table, and once by
1545  // InjectAnonymousStructOrUnionMembers.
1546  Record->setAnonymousStructOrUnion(true);
1547
1548  if (Invalid)
1549    Anon->setInvalidDecl();
1550
1551  return DeclPtrTy::make(Anon);
1552}
1553
1554
1555/// GetNameForDeclarator - Determine the full declaration name for the
1556/// given Declarator.
1557DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1558  switch (D.getKind()) {
1559  case Declarator::DK_Abstract:
1560    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1561    return DeclarationName();
1562
1563  case Declarator::DK_Normal:
1564    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1565    return DeclarationName(D.getIdentifier());
1566
1567  case Declarator::DK_Constructor: {
1568    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1569    return Context.DeclarationNames.getCXXConstructorName(
1570                                                Context.getCanonicalType(Ty));
1571  }
1572
1573  case Declarator::DK_Destructor: {
1574    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1575    return Context.DeclarationNames.getCXXDestructorName(
1576                                                Context.getCanonicalType(Ty));
1577  }
1578
1579  case Declarator::DK_Conversion: {
1580    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1581    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1582    return Context.DeclarationNames.getCXXConversionFunctionName(
1583                                                Context.getCanonicalType(Ty));
1584  }
1585
1586  case Declarator::DK_Operator:
1587    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1588    return Context.DeclarationNames.getCXXOperatorName(
1589                                                D.getOverloadedOperator());
1590  }
1591
1592  assert(false && "Unknown name kind");
1593  return DeclarationName();
1594}
1595
1596/// isNearlyMatchingFunction - Determine whether the C++ functions
1597/// Declaration and Definition are "nearly" matching. This heuristic
1598/// is used to improve diagnostics in the case where an out-of-line
1599/// function definition doesn't match any declaration within
1600/// the class or namespace.
1601static bool isNearlyMatchingFunction(ASTContext &Context,
1602                                     FunctionDecl *Declaration,
1603                                     FunctionDecl *Definition) {
1604  if (Declaration->param_size() != Definition->param_size())
1605    return false;
1606  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1607    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1608    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1609
1610    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1611    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1612    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1613      return false;
1614  }
1615
1616  return true;
1617}
1618
1619Sema::DeclPtrTy
1620Sema::HandleDeclarator(Scope *S, Declarator &D,
1621                       MultiTemplateParamsArg TemplateParamLists,
1622                       bool IsFunctionDefinition) {
1623  DeclarationName Name = GetNameForDeclarator(D);
1624
1625  // All of these full declarators require an identifier.  If it doesn't have
1626  // one, the ParsedFreeStandingDeclSpec action should be used.
1627  if (!Name) {
1628    if (!D.isInvalidType())  // Reject this if we think it is valid.
1629      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1630           diag::err_declarator_need_ident)
1631        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1632    return DeclPtrTy();
1633  }
1634
1635  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1636  // we find one that is.
1637  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1638         (S->getFlags() & Scope::TemplateParamScope) != 0)
1639    S = S->getParent();
1640
1641  // If this is an out-of-line definition of a member of a class template
1642  // or class template partial specialization, we may need to rebuild the
1643  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1644  // for more information.
1645  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1646  // handle expressions properly.
1647  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1648  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1649      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1650      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1651       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1652       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1653       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1654    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1655      // FIXME: Preserve type source info.
1656      QualType T = GetTypeFromParser(DS.getTypeRep());
1657      EnterDeclaratorContext(S, DC);
1658      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1659      ExitDeclaratorContext(S);
1660      if (T.isNull())
1661        return DeclPtrTy();
1662      DS.UpdateTypeRep(T.getAsOpaquePtr());
1663    }
1664  }
1665
1666  DeclContext *DC;
1667  NamedDecl *PrevDecl;
1668  NamedDecl *New;
1669
1670  DeclaratorInfo *DInfo = 0;
1671  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1672
1673  // See if this is a redefinition of a variable in the same scope.
1674  if (D.getCXXScopeSpec().isInvalid()) {
1675    DC = CurContext;
1676    PrevDecl = 0;
1677    D.setInvalidType();
1678  } else if (!D.getCXXScopeSpec().isSet()) {
1679    LookupNameKind NameKind = LookupOrdinaryName;
1680
1681    // If the declaration we're planning to build will be a function
1682    // or object with linkage, then look for another declaration with
1683    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1684    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1685      /* Do nothing*/;
1686    else if (R->isFunctionType()) {
1687      if (CurContext->isFunctionOrMethod() ||
1688          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1689        NameKind = LookupRedeclarationWithLinkage;
1690    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1691      NameKind = LookupRedeclarationWithLinkage;
1692    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1693             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1694      NameKind = LookupRedeclarationWithLinkage;
1695
1696    DC = CurContext;
1697    PrevDecl = LookupName(S, Name, NameKind, true,
1698                          NameKind == LookupRedeclarationWithLinkage,
1699                          D.getIdentifierLoc());
1700  } else { // Something like "int foo::x;"
1701    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1702
1703    if (!DC) {
1704      // If we could not compute the declaration context, it's because the
1705      // declaration context is dependent but does not refer to a class,
1706      // class template, or class template partial specialization. Complain
1707      // and return early, to avoid the coming semantic disaster.
1708      Diag(D.getIdentifierLoc(),
1709           diag::err_template_qualified_declarator_no_match)
1710        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1711        << D.getCXXScopeSpec().getRange();
1712      return DeclPtrTy();
1713    }
1714
1715    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1716
1717    // C++ 7.3.1.2p2:
1718    // Members (including explicit specializations of templates) of a named
1719    // namespace can also be defined outside that namespace by explicit
1720    // qualification of the name being defined, provided that the entity being
1721    // defined was already declared in the namespace and the definition appears
1722    // after the point of declaration in a namespace that encloses the
1723    // declarations namespace.
1724    //
1725    // Note that we only check the context at this point. We don't yet
1726    // have enough information to make sure that PrevDecl is actually
1727    // the declaration we want to match. For example, given:
1728    //
1729    //   class X {
1730    //     void f();
1731    //     void f(float);
1732    //   };
1733    //
1734    //   void X::f(int) { } // ill-formed
1735    //
1736    // In this case, PrevDecl will point to the overload set
1737    // containing the two f's declared in X, but neither of them
1738    // matches.
1739
1740    // First check whether we named the global scope.
1741    if (isa<TranslationUnitDecl>(DC)) {
1742      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1743        << Name << D.getCXXScopeSpec().getRange();
1744    } else if (!CurContext->Encloses(DC)) {
1745      // The qualifying scope doesn't enclose the original declaration.
1746      // Emit diagnostic based on current scope.
1747      SourceLocation L = D.getIdentifierLoc();
1748      SourceRange R = D.getCXXScopeSpec().getRange();
1749      if (isa<FunctionDecl>(CurContext))
1750        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1751      else
1752        Diag(L, diag::err_invalid_declarator_scope)
1753          << Name << cast<NamedDecl>(DC) << R;
1754      D.setInvalidType();
1755    }
1756  }
1757
1758  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1759    // Maybe we will complain about the shadowed template parameter.
1760    if (!D.isInvalidType())
1761      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1762        D.setInvalidType();
1763
1764    // Just pretend that we didn't see the previous declaration.
1765    PrevDecl = 0;
1766  }
1767
1768  // In C++, the previous declaration we find might be a tag type
1769  // (class or enum). In this case, the new declaration will hide the
1770  // tag type. Note that this does does not apply if we're declaring a
1771  // typedef (C++ [dcl.typedef]p4).
1772  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1773      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1774    PrevDecl = 0;
1775
1776  bool Redeclaration = false;
1777  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1778    if (TemplateParamLists.size()) {
1779      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1780      return DeclPtrTy();
1781    }
1782
1783    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1784  } else if (R->isFunctionType()) {
1785    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1786                                  move(TemplateParamLists),
1787                                  IsFunctionDefinition, Redeclaration);
1788  } else {
1789    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1790                                  move(TemplateParamLists),
1791                                  Redeclaration);
1792  }
1793
1794  if (New == 0)
1795    return DeclPtrTy();
1796
1797  // If this has an identifier and is not an invalid redeclaration,
1798  // add it to the scope stack.
1799  if (Name && !(Redeclaration && New->isInvalidDecl()))
1800    PushOnScopeChains(New, S);
1801
1802  return DeclPtrTy::make(New);
1803}
1804
1805/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1806/// types into constant array types in certain situations which would otherwise
1807/// be errors (for GCC compatibility).
1808static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1809                                                    ASTContext &Context,
1810                                                    bool &SizeIsNegative) {
1811  // This method tries to turn a variable array into a constant
1812  // array even when the size isn't an ICE.  This is necessary
1813  // for compatibility with code that depends on gcc's buggy
1814  // constant expression folding, like struct {char x[(int)(char*)2];}
1815  SizeIsNegative = false;
1816
1817  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1818    QualType Pointee = PTy->getPointeeType();
1819    QualType FixedType =
1820        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1821    if (FixedType.isNull()) return FixedType;
1822    FixedType = Context.getPointerType(FixedType);
1823    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1824    return FixedType;
1825  }
1826
1827  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1828  if (!VLATy)
1829    return QualType();
1830  // FIXME: We should probably handle this case
1831  if (VLATy->getElementType()->isVariablyModifiedType())
1832    return QualType();
1833
1834  Expr::EvalResult EvalResult;
1835  if (!VLATy->getSizeExpr() ||
1836      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1837      !EvalResult.Val.isInt())
1838    return QualType();
1839
1840  llvm::APSInt &Res = EvalResult.Val.getInt();
1841  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1842    Expr* ArySizeExpr = VLATy->getSizeExpr();
1843    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1844    // so as to transfer ownership to the ConstantArrayWithExpr.
1845    // Alternatively, we could "clone" it (how?).
1846    // Since we don't know how to do things above, we just use the
1847    // very same Expr*.
1848    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1849                                                Res, ArySizeExpr,
1850                                                ArrayType::Normal, 0,
1851                                                VLATy->getBracketsRange());
1852  }
1853
1854  SizeIsNegative = true;
1855  return QualType();
1856}
1857
1858/// \brief Register the given locally-scoped external C declaration so
1859/// that it can be found later for redeclarations
1860void
1861Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1862                                       Scope *S) {
1863  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1864         "Decl is not a locally-scoped decl!");
1865  // Note that we have a locally-scoped external with this name.
1866  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1867
1868  if (!PrevDecl)
1869    return;
1870
1871  // If there was a previous declaration of this variable, it may be
1872  // in our identifier chain. Update the identifier chain with the new
1873  // declaration.
1874  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1875    // The previous declaration was found on the identifer resolver
1876    // chain, so remove it from its scope.
1877    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1878      S = S->getParent();
1879
1880    if (S)
1881      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1882  }
1883}
1884
1885/// \brief Diagnose function specifiers on a declaration of an identifier that
1886/// does not identify a function.
1887void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1888  // FIXME: We should probably indicate the identifier in question to avoid
1889  // confusion for constructs like "inline int a(), b;"
1890  if (D.getDeclSpec().isInlineSpecified())
1891    Diag(D.getDeclSpec().getInlineSpecLoc(),
1892         diag::err_inline_non_function);
1893
1894  if (D.getDeclSpec().isVirtualSpecified())
1895    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1896         diag::err_virtual_non_function);
1897
1898  if (D.getDeclSpec().isExplicitSpecified())
1899    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1900         diag::err_explicit_non_function);
1901}
1902
1903NamedDecl*
1904Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1905                             QualType R,  DeclaratorInfo *DInfo,
1906                             Decl* PrevDecl, bool &Redeclaration) {
1907  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1908  if (D.getCXXScopeSpec().isSet()) {
1909    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1910      << D.getCXXScopeSpec().getRange();
1911    D.setInvalidType();
1912    // Pretend we didn't see the scope specifier.
1913    DC = 0;
1914  }
1915
1916  if (getLangOptions().CPlusPlus) {
1917    // Check that there are no default arguments (C++ only).
1918    CheckExtraCXXDefaultArguments(D);
1919  }
1920
1921  DiagnoseFunctionSpecifiers(D);
1922
1923  if (D.getDeclSpec().isThreadSpecified())
1924    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1925
1926  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1927  if (!NewTD) return 0;
1928
1929  if (D.isInvalidType())
1930    NewTD->setInvalidDecl();
1931
1932  // Handle attributes prior to checking for duplicates in MergeVarDecl
1933  ProcessDeclAttributes(S, NewTD, D);
1934  // Merge the decl with the existing one if appropriate. If the decl is
1935  // in an outer scope, it isn't the same thing.
1936  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1937    Redeclaration = true;
1938    MergeTypeDefDecl(NewTD, PrevDecl);
1939  }
1940
1941  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1942  // then it shall have block scope.
1943  QualType T = NewTD->getUnderlyingType();
1944  if (T->isVariablyModifiedType()) {
1945    CurFunctionNeedsScopeChecking = true;
1946
1947    if (S->getFnParent() == 0) {
1948      bool SizeIsNegative;
1949      QualType FixedTy =
1950          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1951      if (!FixedTy.isNull()) {
1952        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1953        NewTD->setUnderlyingType(FixedTy);
1954      } else {
1955        if (SizeIsNegative)
1956          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1957        else if (T->isVariableArrayType())
1958          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1959        else
1960          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1961        NewTD->setInvalidDecl();
1962      }
1963    }
1964  }
1965
1966  // If this is the C FILE type, notify the AST context.
1967  if (IdentifierInfo *II = NewTD->getIdentifier())
1968    if (!NewTD->isInvalidDecl() &&
1969        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1970      if (II->isStr("FILE"))
1971        Context.setFILEDecl(NewTD);
1972      else if (II->isStr("jmp_buf"))
1973        Context.setjmp_bufDecl(NewTD);
1974      else if (II->isStr("sigjmp_buf"))
1975        Context.setsigjmp_bufDecl(NewTD);
1976    }
1977
1978  return NewTD;
1979}
1980
1981/// \brief Determines whether the given declaration is an out-of-scope
1982/// previous declaration.
1983///
1984/// This routine should be invoked when name lookup has found a
1985/// previous declaration (PrevDecl) that is not in the scope where a
1986/// new declaration by the same name is being introduced. If the new
1987/// declaration occurs in a local scope, previous declarations with
1988/// linkage may still be considered previous declarations (C99
1989/// 6.2.2p4-5, C++ [basic.link]p6).
1990///
1991/// \param PrevDecl the previous declaration found by name
1992/// lookup
1993///
1994/// \param DC the context in which the new declaration is being
1995/// declared.
1996///
1997/// \returns true if PrevDecl is an out-of-scope previous declaration
1998/// for a new delcaration with the same name.
1999static bool
2000isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2001                                ASTContext &Context) {
2002  if (!PrevDecl)
2003    return 0;
2004
2005  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2006  // case we need to check each of the overloaded functions.
2007  if (!PrevDecl->hasLinkage())
2008    return false;
2009
2010  if (Context.getLangOptions().CPlusPlus) {
2011    // C++ [basic.link]p6:
2012    //   If there is a visible declaration of an entity with linkage
2013    //   having the same name and type, ignoring entities declared
2014    //   outside the innermost enclosing namespace scope, the block
2015    //   scope declaration declares that same entity and receives the
2016    //   linkage of the previous declaration.
2017    DeclContext *OuterContext = DC->getLookupContext();
2018    if (!OuterContext->isFunctionOrMethod())
2019      // This rule only applies to block-scope declarations.
2020      return false;
2021    else {
2022      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2023      if (PrevOuterContext->isRecord())
2024        // We found a member function: ignore it.
2025        return false;
2026      else {
2027        // Find the innermost enclosing namespace for the new and
2028        // previous declarations.
2029        while (!OuterContext->isFileContext())
2030          OuterContext = OuterContext->getParent();
2031        while (!PrevOuterContext->isFileContext())
2032          PrevOuterContext = PrevOuterContext->getParent();
2033
2034        // The previous declaration is in a different namespace, so it
2035        // isn't the same function.
2036        if (OuterContext->getPrimaryContext() !=
2037            PrevOuterContext->getPrimaryContext())
2038          return false;
2039      }
2040    }
2041  }
2042
2043  return true;
2044}
2045
2046NamedDecl*
2047Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2048                              QualType R, DeclaratorInfo *DInfo,
2049                              NamedDecl* PrevDecl,
2050                              MultiTemplateParamsArg TemplateParamLists,
2051                              bool &Redeclaration) {
2052  DeclarationName Name = GetNameForDeclarator(D);
2053
2054  // Check that there are no default arguments (C++ only).
2055  if (getLangOptions().CPlusPlus)
2056    CheckExtraCXXDefaultArguments(D);
2057
2058  VarDecl *NewVD;
2059  VarDecl::StorageClass SC;
2060  switch (D.getDeclSpec().getStorageClassSpec()) {
2061  default: assert(0 && "Unknown storage class!");
2062  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2063  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2064  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2065  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2066  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2067  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2068  case DeclSpec::SCS_mutable:
2069    // mutable can only appear on non-static class members, so it's always
2070    // an error here
2071    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2072    D.setInvalidType();
2073    SC = VarDecl::None;
2074    break;
2075  }
2076
2077  IdentifierInfo *II = Name.getAsIdentifierInfo();
2078  if (!II) {
2079    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2080      << Name.getAsString();
2081    return 0;
2082  }
2083
2084  DiagnoseFunctionSpecifiers(D);
2085
2086  if (!DC->isRecord() && S->getFnParent() == 0) {
2087    // C99 6.9p2: The storage-class specifiers auto and register shall not
2088    // appear in the declaration specifiers in an external declaration.
2089    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2090
2091      // If this is a register variable with an asm label specified, then this
2092      // is a GNU extension.
2093      if (SC == VarDecl::Register && D.getAsmLabel())
2094        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2095      else
2096        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2097      D.setInvalidType();
2098    }
2099  }
2100  if (DC->isRecord() && !CurContext->isRecord()) {
2101    // This is an out-of-line definition of a static data member.
2102    if (SC == VarDecl::Static) {
2103      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2104           diag::err_static_out_of_line)
2105        << CodeModificationHint::CreateRemoval(
2106                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2107    } else if (SC == VarDecl::None)
2108      SC = VarDecl::Static;
2109  }
2110  if (SC == VarDecl::Static) {
2111    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2112      if (RD->isLocalClass())
2113        Diag(D.getIdentifierLoc(),
2114             diag::err_static_data_member_not_allowed_in_local_class)
2115          << Name << RD->getDeclName();
2116    }
2117  }
2118
2119  // Match up the template parameter lists with the scope specifier, then
2120  // determine whether we have a template or a template specialization.
2121  if (TemplateParameterList *TemplateParams
2122      = MatchTemplateParametersToScopeSpecifier(
2123                                  D.getDeclSpec().getSourceRange().getBegin(),
2124                                                D.getCXXScopeSpec(),
2125                        (TemplateParameterList**)TemplateParamLists.get(),
2126                                                 TemplateParamLists.size())) {
2127    if (TemplateParams->size() > 0) {
2128      // There is no such thing as a variable template.
2129      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2130        << II
2131        << SourceRange(TemplateParams->getTemplateLoc(),
2132                       TemplateParams->getRAngleLoc());
2133      return 0;
2134    } else {
2135      // There is an extraneous 'template<>' for this variable. Complain
2136      // about it, but allow the declaration of the variable.
2137      Diag(TemplateParams->getTemplateLoc(),
2138           diag::err_template_variable_noparams)
2139        << II
2140        << SourceRange(TemplateParams->getTemplateLoc(),
2141                       TemplateParams->getRAngleLoc());
2142    }
2143  }
2144
2145  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2146                          II, R, DInfo, SC);
2147
2148  if (D.isInvalidType())
2149    NewVD->setInvalidDecl();
2150
2151  if (D.getDeclSpec().isThreadSpecified()) {
2152    if (NewVD->hasLocalStorage())
2153      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2154    else if (!Context.Target.isTLSSupported())
2155      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2156    else
2157      NewVD->setThreadSpecified(true);
2158  }
2159
2160  // Set the lexical context. If the declarator has a C++ scope specifier, the
2161  // lexical context will be different from the semantic context.
2162  NewVD->setLexicalDeclContext(CurContext);
2163
2164  // Handle attributes prior to checking for duplicates in MergeVarDecl
2165  ProcessDeclAttributes(S, NewVD, D);
2166
2167  // Handle GNU asm-label extension (encoded as an attribute).
2168  if (Expr *E = (Expr*) D.getAsmLabel()) {
2169    // The parser guarantees this is a string.
2170    StringLiteral *SE = cast<StringLiteral>(E);
2171    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2172                                                        SE->getByteLength())));
2173  }
2174
2175  // If name lookup finds a previous declaration that is not in the
2176  // same scope as the new declaration, this may still be an
2177  // acceptable redeclaration.
2178  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2179      !(NewVD->hasLinkage() &&
2180        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2181    PrevDecl = 0;
2182
2183  // Merge the decl with the existing one if appropriate.
2184  if (PrevDecl) {
2185    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2186      // The user tried to define a non-static data member
2187      // out-of-line (C++ [dcl.meaning]p1).
2188      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2189        << D.getCXXScopeSpec().getRange();
2190      PrevDecl = 0;
2191      NewVD->setInvalidDecl();
2192    }
2193  } else if (D.getCXXScopeSpec().isSet()) {
2194    // No previous declaration in the qualifying scope.
2195    NestedNameSpecifier *NNS =
2196      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2197    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2198                          D.getCXXScopeSpec().getRange());
2199    NewVD->setInvalidDecl();
2200  }
2201
2202  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2203
2204  // attributes declared post-definition are currently ignored
2205  if (PrevDecl) {
2206    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2207    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2208      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2209      Diag(Def->getLocation(), diag::note_previous_definition);
2210    }
2211  }
2212
2213  // If this is a locally-scoped extern C variable, update the map of
2214  // such variables.
2215  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2216      !NewVD->isInvalidDecl())
2217    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2218
2219  return NewVD;
2220}
2221
2222/// \brief Perform semantic checking on a newly-created variable
2223/// declaration.
2224///
2225/// This routine performs all of the type-checking required for a
2226/// variable declaration once it has been built. It is used both to
2227/// check variables after they have been parsed and their declarators
2228/// have been translated into a declaration, and to check variables
2229/// that have been instantiated from a template.
2230///
2231/// Sets NewVD->isInvalidDecl() if an error was encountered.
2232void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2233                                    bool &Redeclaration) {
2234  // If the decl is already known invalid, don't check it.
2235  if (NewVD->isInvalidDecl())
2236    return;
2237
2238  QualType T = NewVD->getType();
2239
2240  if (T->isObjCInterfaceType()) {
2241    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2242    return NewVD->setInvalidDecl();
2243  }
2244
2245  // The variable can not have an abstract class type.
2246  if (RequireNonAbstractType(NewVD->getLocation(), T,
2247                             diag::err_abstract_type_in_decl,
2248                             AbstractVariableType))
2249    return NewVD->setInvalidDecl();
2250
2251  // Emit an error if an address space was applied to decl with local storage.
2252  // This includes arrays of objects with address space qualifiers, but not
2253  // automatic variables that point to other address spaces.
2254  // ISO/IEC TR 18037 S5.1.2
2255  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2256    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2257    return NewVD->setInvalidDecl();
2258  }
2259
2260  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2261      && !NewVD->hasAttr<BlocksAttr>())
2262    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2263
2264  bool isVM = T->isVariablyModifiedType();
2265  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2266      NewVD->hasAttr<BlocksAttr>())
2267    CurFunctionNeedsScopeChecking = true;
2268
2269  if ((isVM && NewVD->hasLinkage()) ||
2270      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2271    bool SizeIsNegative;
2272    QualType FixedTy =
2273        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2274
2275    if (FixedTy.isNull() && T->isVariableArrayType()) {
2276      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2277      // FIXME: This won't give the correct result for
2278      // int a[10][n];
2279      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2280
2281      if (NewVD->isFileVarDecl())
2282        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2283        << SizeRange;
2284      else if (NewVD->getStorageClass() == VarDecl::Static)
2285        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2286        << SizeRange;
2287      else
2288        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2289        << SizeRange;
2290      return NewVD->setInvalidDecl();
2291    }
2292
2293    if (FixedTy.isNull()) {
2294      if (NewVD->isFileVarDecl())
2295        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2296      else
2297        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2298      return NewVD->setInvalidDecl();
2299    }
2300
2301    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2302    NewVD->setType(FixedTy);
2303  }
2304
2305  if (!PrevDecl && NewVD->isExternC()) {
2306    // Since we did not find anything by this name and we're declaring
2307    // an extern "C" variable, look for a non-visible extern "C"
2308    // declaration with the same name.
2309    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2310      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2311    if (Pos != LocallyScopedExternalDecls.end())
2312      PrevDecl = Pos->second;
2313  }
2314
2315  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2316    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2317      << T;
2318    return NewVD->setInvalidDecl();
2319  }
2320
2321  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2322    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2323    return NewVD->setInvalidDecl();
2324  }
2325
2326  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2327    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2328    return NewVD->setInvalidDecl();
2329  }
2330
2331  if (PrevDecl) {
2332    Redeclaration = true;
2333    MergeVarDecl(NewVD, PrevDecl);
2334  }
2335}
2336
2337static bool isUsingDecl(Decl *D) {
2338  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2339}
2340
2341NamedDecl*
2342Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2343                              QualType R, DeclaratorInfo *DInfo,
2344                              NamedDecl* PrevDecl,
2345                              MultiTemplateParamsArg TemplateParamLists,
2346                              bool IsFunctionDefinition, bool &Redeclaration) {
2347  assert(R.getTypePtr()->isFunctionType());
2348
2349  DeclarationName Name = GetNameForDeclarator(D);
2350  FunctionDecl::StorageClass SC = FunctionDecl::None;
2351  switch (D.getDeclSpec().getStorageClassSpec()) {
2352  default: assert(0 && "Unknown storage class!");
2353  case DeclSpec::SCS_auto:
2354  case DeclSpec::SCS_register:
2355  case DeclSpec::SCS_mutable:
2356    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2357         diag::err_typecheck_sclass_func);
2358    D.setInvalidType();
2359    break;
2360  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2361  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2362  case DeclSpec::SCS_static: {
2363    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2364      // C99 6.7.1p5:
2365      //   The declaration of an identifier for a function that has
2366      //   block scope shall have no explicit storage-class specifier
2367      //   other than extern
2368      // See also (C++ [dcl.stc]p4).
2369      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2370           diag::err_static_block_func);
2371      SC = FunctionDecl::None;
2372    } else
2373      SC = FunctionDecl::Static;
2374    break;
2375  }
2376  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2377  }
2378
2379  if (D.getDeclSpec().isThreadSpecified())
2380    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2381
2382  bool isFriend = D.getDeclSpec().isFriendSpecified();
2383  bool isInline = D.getDeclSpec().isInlineSpecified();
2384  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2385  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2386
2387  // Check that the return type is not an abstract class type.
2388  // For record types, this is done by the AbstractClassUsageDiagnoser once
2389  // the class has been completely parsed.
2390  if (!DC->isRecord() &&
2391      RequireNonAbstractType(D.getIdentifierLoc(),
2392                             R->getAsFunctionType()->getResultType(),
2393                             diag::err_abstract_type_in_decl,
2394                             AbstractReturnType))
2395    D.setInvalidType();
2396
2397  // Do not allow returning a objc interface by-value.
2398  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2399    Diag(D.getIdentifierLoc(),
2400         diag::err_object_cannot_be_passed_returned_by_value) << 0
2401      << R->getAsFunctionType()->getResultType();
2402    D.setInvalidType();
2403  }
2404
2405  bool isVirtualOkay = false;
2406  FunctionDecl *NewFD;
2407
2408  if (isFriend) {
2409    // DC is the namespace in which the function is being declared.
2410    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2411           "friend function being created in a non-namespace context");
2412
2413    // C++ [class.friend]p5
2414    //   A function can be defined in a friend declaration of a
2415    //   class . . . . Such a function is implicitly inline.
2416    isInline |= IsFunctionDefinition;
2417  }
2418
2419  if (D.getKind() == Declarator::DK_Constructor) {
2420    // This is a C++ constructor declaration.
2421    assert(DC->isRecord() &&
2422           "Constructors can only be declared in a member context");
2423
2424    R = CheckConstructorDeclarator(D, R, SC);
2425
2426    // Create the new declaration
2427    NewFD = CXXConstructorDecl::Create(Context,
2428                                       cast<CXXRecordDecl>(DC),
2429                                       D.getIdentifierLoc(), Name, R, DInfo,
2430                                       isExplicit, isInline,
2431                                       /*isImplicitlyDeclared=*/false);
2432  } else if (D.getKind() == Declarator::DK_Destructor) {
2433    // This is a C++ destructor declaration.
2434    if (DC->isRecord()) {
2435      R = CheckDestructorDeclarator(D, SC);
2436
2437      NewFD = CXXDestructorDecl::Create(Context,
2438                                        cast<CXXRecordDecl>(DC),
2439                                        D.getIdentifierLoc(), Name, R,
2440                                        isInline,
2441                                        /*isImplicitlyDeclared=*/false);
2442
2443      isVirtualOkay = true;
2444    } else {
2445      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2446
2447      // Create a FunctionDecl to satisfy the function definition parsing
2448      // code path.
2449      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2450                                   Name, R, DInfo, SC, isInline,
2451                                   /*hasPrototype=*/true);
2452      D.setInvalidType();
2453    }
2454  } else if (D.getKind() == Declarator::DK_Conversion) {
2455    if (!DC->isRecord()) {
2456      Diag(D.getIdentifierLoc(),
2457           diag::err_conv_function_not_member);
2458      return 0;
2459    }
2460
2461    CheckConversionDeclarator(D, R, SC);
2462    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2463                                      D.getIdentifierLoc(), Name, R, DInfo,
2464                                      isInline, isExplicit);
2465
2466    isVirtualOkay = true;
2467  } else if (DC->isRecord()) {
2468    // If the of the function is the same as the name of the record, then this
2469    // must be an invalid constructor that has a return type.
2470    // (The parser checks for a return type and makes the declarator a
2471    // constructor if it has no return type).
2472    // must have an invalid constructor that has a return type
2473    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2474      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2475        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2476        << SourceRange(D.getIdentifierLoc());
2477      return 0;
2478    }
2479
2480    // This is a C++ method declaration.
2481    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2482                                  D.getIdentifierLoc(), Name, R, DInfo,
2483                                  (SC == FunctionDecl::Static), isInline);
2484
2485    isVirtualOkay = (SC != FunctionDecl::Static);
2486  } else {
2487    // Determine whether the function was written with a
2488    // prototype. This true when:
2489    //   - we're in C++ (where every function has a prototype),
2490    //   - there is a prototype in the declarator, or
2491    //   - the type R of the function is some kind of typedef or other reference
2492    //     to a type name (which eventually refers to a function type).
2493    bool HasPrototype =
2494       getLangOptions().CPlusPlus ||
2495       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2496       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2497
2498    NewFD = FunctionDecl::Create(Context, DC,
2499                                 D.getIdentifierLoc(),
2500                                 Name, R, DInfo, SC, isInline, HasPrototype);
2501  }
2502
2503  if (D.isInvalidType())
2504    NewFD->setInvalidDecl();
2505
2506  // Set the lexical context. If the declarator has a C++
2507  // scope specifier, or is the object of a friend declaration, the
2508  // lexical context will be different from the semantic context.
2509  NewFD->setLexicalDeclContext(CurContext);
2510
2511  if (isFriend)
2512    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2513
2514  // Match up the template parameter lists with the scope specifier, then
2515  // determine whether we have a template or a template specialization.
2516  FunctionTemplateDecl *FunctionTemplate = 0;
2517  if (TemplateParameterList *TemplateParams
2518        = MatchTemplateParametersToScopeSpecifier(
2519                                  D.getDeclSpec().getSourceRange().getBegin(),
2520                                  D.getCXXScopeSpec(),
2521                           (TemplateParameterList**)TemplateParamLists.get(),
2522                                                  TemplateParamLists.size())) {
2523    if (TemplateParams->size() > 0) {
2524      // This is a function template
2525
2526      // Check that we can declare a template here.
2527      if (CheckTemplateDeclScope(S, TemplateParams))
2528        return 0;
2529
2530      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2531                                                      NewFD->getLocation(),
2532                                                      Name, TemplateParams,
2533                                                      NewFD);
2534      FunctionTemplate->setLexicalDeclContext(CurContext);
2535      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2536    } else {
2537      // FIXME: Handle function template specializations
2538    }
2539
2540    // FIXME: Free this memory properly.
2541    TemplateParamLists.release();
2542  }
2543
2544  // C++ [dcl.fct.spec]p5:
2545  //   The virtual specifier shall only be used in declarations of
2546  //   nonstatic class member functions that appear within a
2547  //   member-specification of a class declaration; see 10.3.
2548  //
2549  if (isVirtual && !NewFD->isInvalidDecl()) {
2550    if (!isVirtualOkay) {
2551       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2552           diag::err_virtual_non_function);
2553    } else if (!CurContext->isRecord()) {
2554      // 'virtual' was specified outside of the class.
2555      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2556        << CodeModificationHint::CreateRemoval(
2557                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2558    } else {
2559      // Okay: Add virtual to the method.
2560      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2561      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2562      CurClass->setAggregate(false);
2563      CurClass->setPOD(false);
2564      CurClass->setEmpty(false);
2565      CurClass->setPolymorphic(true);
2566      CurClass->setHasTrivialConstructor(false);
2567      CurClass->setHasTrivialCopyConstructor(false);
2568      CurClass->setHasTrivialCopyAssignment(false);
2569    }
2570  }
2571
2572  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2573    // Look for virtual methods in base classes that this method might override.
2574
2575    BasePaths Paths;
2576    if (LookupInBases(cast<CXXRecordDecl>(DC),
2577                      MemberLookupCriteria(NewMD), Paths)) {
2578      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2579           E = Paths.found_decls_end(); I != E; ++I) {
2580        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2581          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2582              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2583            NewMD->addOverriddenMethod(OldMD);
2584        }
2585      }
2586    }
2587  }
2588
2589  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2590      !CurContext->isRecord()) {
2591    // C++ [class.static]p1:
2592    //   A data or function member of a class may be declared static
2593    //   in a class definition, in which case it is a static member of
2594    //   the class.
2595
2596    // Complain about the 'static' specifier if it's on an out-of-line
2597    // member function definition.
2598    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2599         diag::err_static_out_of_line)
2600      << CodeModificationHint::CreateRemoval(
2601                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2602  }
2603
2604  // Handle GNU asm-label extension (encoded as an attribute).
2605  if (Expr *E = (Expr*) D.getAsmLabel()) {
2606    // The parser guarantees this is a string.
2607    StringLiteral *SE = cast<StringLiteral>(E);
2608    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2609                                                        SE->getByteLength())));
2610  }
2611
2612  // Copy the parameter declarations from the declarator D to the function
2613  // declaration NewFD, if they are available.  First scavenge them into Params.
2614  llvm::SmallVector<ParmVarDecl*, 16> Params;
2615  if (D.getNumTypeObjects() > 0) {
2616    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2617
2618    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2619    // function that takes no arguments, not a function that takes a
2620    // single void argument.
2621    // We let through "const void" here because Sema::GetTypeForDeclarator
2622    // already checks for that case.
2623    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2624        FTI.ArgInfo[0].Param &&
2625        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2626      // Empty arg list, don't push any params.
2627      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2628
2629      // In C++, the empty parameter-type-list must be spelled "void"; a
2630      // typedef of void is not permitted.
2631      if (getLangOptions().CPlusPlus &&
2632          Param->getType().getUnqualifiedType() != Context.VoidTy)
2633        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2634      // FIXME: Leaks decl?
2635    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2636      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2637        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2638        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2639        Param->setDeclContext(NewFD);
2640        Params.push_back(Param);
2641      }
2642    }
2643
2644  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2645    // When we're declaring a function with a typedef, typeof, etc as in the
2646    // following example, we'll need to synthesize (unnamed)
2647    // parameters for use in the declaration.
2648    //
2649    // @code
2650    // typedef void fn(int);
2651    // fn f;
2652    // @endcode
2653
2654    // Synthesize a parameter for each argument type.
2655    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2656         AE = FT->arg_type_end(); AI != AE; ++AI) {
2657      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2658                                               SourceLocation(), 0,
2659                                               *AI, /*DInfo=*/0,
2660                                               VarDecl::None, 0);
2661      Param->setImplicit();
2662      Params.push_back(Param);
2663    }
2664  } else {
2665    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2666           "Should not need args for typedef of non-prototype fn");
2667  }
2668  // Finally, we know we have the right number of parameters, install them.
2669  NewFD->setParams(Context, Params.data(), Params.size());
2670
2671  // If name lookup finds a previous declaration that is not in the
2672  // same scope as the new declaration, this may still be an
2673  // acceptable redeclaration.
2674  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2675      !(NewFD->hasLinkage() &&
2676        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2677    PrevDecl = 0;
2678
2679  // Perform semantic checking on the function declaration.
2680  bool OverloadableAttrRequired = false; // FIXME: HACK!
2681  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2682                           /*FIXME:*/OverloadableAttrRequired);
2683
2684  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2685    // An out-of-line member function declaration must also be a
2686    // definition (C++ [dcl.meaning]p1).
2687    if (!IsFunctionDefinition && !isFriend) {
2688      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2689        << D.getCXXScopeSpec().getRange();
2690      NewFD->setInvalidDecl();
2691    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2692      // The user tried to provide an out-of-line definition for a
2693      // function that is a member of a class or namespace, but there
2694      // was no such member function declared (C++ [class.mfct]p2,
2695      // C++ [namespace.memdef]p2). For example:
2696      //
2697      // class X {
2698      //   void f() const;
2699      // };
2700      //
2701      // void X::f() { } // ill-formed
2702      //
2703      // Complain about this problem, and attempt to suggest close
2704      // matches (e.g., those that differ only in cv-qualifiers and
2705      // whether the parameter types are references).
2706      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2707        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2708      NewFD->setInvalidDecl();
2709
2710      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2711                                              true);
2712      assert(!Prev.isAmbiguous() &&
2713             "Cannot have an ambiguity in previous-declaration lookup");
2714      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2715           Func != FuncEnd; ++Func) {
2716        if (isa<FunctionDecl>(*Func) &&
2717            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2718          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2719      }
2720
2721      PrevDecl = 0;
2722    }
2723  }
2724
2725  // Handle attributes. We need to have merged decls when handling attributes
2726  // (for example to check for conflicts, etc).
2727  // FIXME: This needs to happen before we merge declarations. Then,
2728  // let attribute merging cope with attribute conflicts.
2729  ProcessDeclAttributes(S, NewFD, D);
2730
2731  // attributes declared post-definition are currently ignored
2732  if (Redeclaration && PrevDecl) {
2733    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2734    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2735      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2736      Diag(Def->getLocation(), diag::note_previous_definition);
2737    }
2738  }
2739
2740  AddKnownFunctionAttributes(NewFD);
2741
2742  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2743    // If a function name is overloadable in C, then every function
2744    // with that name must be marked "overloadable".
2745    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2746      << Redeclaration << NewFD;
2747    if (PrevDecl)
2748      Diag(PrevDecl->getLocation(),
2749           diag::note_attribute_overloadable_prev_overload);
2750    NewFD->addAttr(::new (Context) OverloadableAttr());
2751  }
2752
2753  // If this is a locally-scoped extern C function, update the
2754  // map of such names.
2755  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2756      && !NewFD->isInvalidDecl())
2757    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2758
2759  // Set this FunctionDecl's range up to the right paren.
2760  NewFD->setLocEnd(D.getSourceRange().getEnd());
2761
2762  if (FunctionTemplate && NewFD->isInvalidDecl())
2763    FunctionTemplate->setInvalidDecl();
2764
2765  if (FunctionTemplate)
2766    return FunctionTemplate;
2767
2768  return NewFD;
2769}
2770
2771/// \brief Perform semantic checking of a new function declaration.
2772///
2773/// Performs semantic analysis of the new function declaration
2774/// NewFD. This routine performs all semantic checking that does not
2775/// require the actual declarator involved in the declaration, and is
2776/// used both for the declaration of functions as they are parsed
2777/// (called via ActOnDeclarator) and for the declaration of functions
2778/// that have been instantiated via C++ template instantiation (called
2779/// via InstantiateDecl).
2780///
2781/// This sets NewFD->isInvalidDecl() to true if there was an error.
2782void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2783                                    bool &Redeclaration,
2784                                    bool &OverloadableAttrRequired) {
2785  // If NewFD is already known erroneous, don't do any of this checking.
2786  if (NewFD->isInvalidDecl())
2787    return;
2788
2789  if (NewFD->getResultType()->isVariablyModifiedType()) {
2790    // Functions returning a variably modified type violate C99 6.7.5.2p2
2791    // because all functions have linkage.
2792    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2793    return NewFD->setInvalidDecl();
2794  }
2795
2796  if (NewFD->isMain())
2797    CheckMain(NewFD);
2798
2799  // Check for a previous declaration of this name.
2800  if (!PrevDecl && NewFD->isExternC()) {
2801    // Since we did not find anything by this name and we're declaring
2802    // an extern "C" function, look for a non-visible extern "C"
2803    // declaration with the same name.
2804    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2805      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2806    if (Pos != LocallyScopedExternalDecls.end())
2807      PrevDecl = Pos->second;
2808  }
2809
2810  // Merge or overload the declaration with an existing declaration of
2811  // the same name, if appropriate.
2812  if (PrevDecl) {
2813    // Determine whether NewFD is an overload of PrevDecl or
2814    // a declaration that requires merging. If it's an overload,
2815    // there's no more work to do here; we'll just add the new
2816    // function to the scope.
2817    OverloadedFunctionDecl::function_iterator MatchedDecl;
2818
2819    if (!getLangOptions().CPlusPlus &&
2820        AllowOverloadingOfFunction(PrevDecl, Context)) {
2821      OverloadableAttrRequired = true;
2822
2823      // Functions marked "overloadable" must have a prototype (that
2824      // we can't get through declaration merging).
2825      if (!NewFD->getType()->getAsFunctionProtoType()) {
2826        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2827          << NewFD;
2828        Redeclaration = true;
2829
2830        // Turn this into a variadic function with no parameters.
2831        QualType R = Context.getFunctionType(
2832                       NewFD->getType()->getAsFunctionType()->getResultType(),
2833                       0, 0, true, 0);
2834        NewFD->setType(R);
2835        return NewFD->setInvalidDecl();
2836      }
2837    }
2838
2839    if (PrevDecl &&
2840        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2841         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2842      Redeclaration = true;
2843      Decl *OldDecl = PrevDecl;
2844
2845      // If PrevDecl was an overloaded function, extract the
2846      // FunctionDecl that matched.
2847      if (isa<OverloadedFunctionDecl>(PrevDecl))
2848        OldDecl = *MatchedDecl;
2849
2850      // NewFD and OldDecl represent declarations that need to be
2851      // merged.
2852      if (MergeFunctionDecl(NewFD, OldDecl))
2853        return NewFD->setInvalidDecl();
2854
2855      if (FunctionTemplateDecl *OldTemplateDecl
2856            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2857        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2858      else {
2859        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2860          NewFD->setAccess(OldDecl->getAccess());
2861        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2862      }
2863    }
2864  }
2865
2866  // Semantic checking for this function declaration (in isolation).
2867  if (getLangOptions().CPlusPlus) {
2868    // C++-specific checks.
2869    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2870      CheckConstructor(Constructor);
2871    } else if (isa<CXXDestructorDecl>(NewFD)) {
2872      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2873      QualType ClassType = Context.getTypeDeclType(Record);
2874      if (!ClassType->isDependentType()) {
2875        DeclarationName Name
2876          = Context.DeclarationNames.getCXXDestructorName(
2877                                        Context.getCanonicalType(ClassType));
2878        if (NewFD->getDeclName() != Name) {
2879          Diag(NewFD->getLocation(), diag::err_destructor_name);
2880          return NewFD->setInvalidDecl();
2881        }
2882      }
2883      Record->setUserDeclaredDestructor(true);
2884      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2885      // user-defined destructor.
2886      Record->setPOD(false);
2887
2888      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2889      // declared destructor.
2890      // FIXME: C++0x: don't do this for "= default" destructors
2891      Record->setHasTrivialDestructor(false);
2892    } else if (CXXConversionDecl *Conversion
2893               = dyn_cast<CXXConversionDecl>(NewFD))
2894      ActOnConversionDeclarator(Conversion);
2895
2896    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2897    if (NewFD->isOverloadedOperator() &&
2898        CheckOverloadedOperatorDeclaration(NewFD))
2899      return NewFD->setInvalidDecl();
2900
2901    // In C++, check default arguments now that we have merged decls. Unless
2902    // the lexical context is the class, because in this case this is done
2903    // during delayed parsing anyway.
2904    if (!CurContext->isRecord())
2905      CheckCXXDefaultArguments(NewFD);
2906  }
2907}
2908
2909void Sema::CheckMain(FunctionDecl* FD) {
2910  // C++ [basic.start.main]p3:  A program that declares main to be inline
2911  //   or static is ill-formed.
2912  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2913  //   shall not appear in a declaration of main.
2914  // static main is not an error under C99, but we should warn about it.
2915  bool isInline = FD->isInline();
2916  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2917  if (isInline || isStatic) {
2918    unsigned diagID = diag::warn_unusual_main_decl;
2919    if (isInline || getLangOptions().CPlusPlus)
2920      diagID = diag::err_unusual_main_decl;
2921
2922    int which = isStatic + (isInline << 1) - 1;
2923    Diag(FD->getLocation(), diagID) << which;
2924  }
2925
2926  QualType T = FD->getType();
2927  assert(T->isFunctionType() && "function decl is not of function type");
2928  const FunctionType* FT = T->getAsFunctionType();
2929
2930  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2931    // TODO: add a replacement fixit to turn the return type into 'int'.
2932    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2933    FD->setInvalidDecl(true);
2934  }
2935
2936  // Treat protoless main() as nullary.
2937  if (isa<FunctionNoProtoType>(FT)) return;
2938
2939  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2940  unsigned nparams = FTP->getNumArgs();
2941  assert(FD->getNumParams() == nparams);
2942
2943  if (nparams > 3) {
2944    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2945    FD->setInvalidDecl(true);
2946    nparams = 3;
2947  }
2948
2949  // FIXME: a lot of the following diagnostics would be improved
2950  // if we had some location information about types.
2951
2952  QualType CharPP =
2953    Context.getPointerType(Context.getPointerType(Context.CharTy));
2954  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2955
2956  for (unsigned i = 0; i < nparams; ++i) {
2957    QualType AT = FTP->getArgType(i);
2958
2959    bool mismatch = true;
2960
2961    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2962      mismatch = false;
2963    else if (Expected[i] == CharPP) {
2964      // As an extension, the following forms are okay:
2965      //   char const **
2966      //   char const * const *
2967      //   char * const *
2968
2969      QualifierSet qs;
2970      const PointerType* PT;
2971      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2972          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2973          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2974        qs.removeConst();
2975        mismatch = !qs.empty();
2976      }
2977    }
2978
2979    if (mismatch) {
2980      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2981      // TODO: suggest replacing given type with expected type
2982      FD->setInvalidDecl(true);
2983    }
2984  }
2985
2986  if (nparams == 1 && !FD->isInvalidDecl()) {
2987    Diag(FD->getLocation(), diag::warn_main_one_arg);
2988  }
2989}
2990
2991bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2992  // FIXME: Need strict checking.  In C89, we need to check for
2993  // any assignment, increment, decrement, function-calls, or
2994  // commas outside of a sizeof.  In C99, it's the same list,
2995  // except that the aforementioned are allowed in unevaluated
2996  // expressions.  Everything else falls under the
2997  // "may accept other forms of constant expressions" exception.
2998  // (We never end up here for C++, so the constant expression
2999  // rules there don't matter.)
3000  if (Init->isConstantInitializer(Context))
3001    return false;
3002  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3003    << Init->getSourceRange();
3004  return true;
3005}
3006
3007void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3008  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3009}
3010
3011/// AddInitializerToDecl - Adds the initializer Init to the
3012/// declaration dcl. If DirectInit is true, this is C++ direct
3013/// initialization rather than copy initialization.
3014void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3015  Decl *RealDecl = dcl.getAs<Decl>();
3016  // If there is no declaration, there was an error parsing it.  Just ignore
3017  // the initializer.
3018  if (RealDecl == 0)
3019    return;
3020
3021  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3022    // With declarators parsed the way they are, the parser cannot
3023    // distinguish between a normal initializer and a pure-specifier.
3024    // Thus this grotesque test.
3025    IntegerLiteral *IL;
3026    Expr *Init = static_cast<Expr *>(init.get());
3027    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3028        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3029      if (Method->isVirtualAsWritten()) {
3030        Method->setPure();
3031
3032        // A class is abstract if at least one function is pure virtual.
3033        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3034      } else if (!Method->isInvalidDecl()) {
3035        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3036          << Method->getDeclName() << Init->getSourceRange();
3037        Method->setInvalidDecl();
3038      }
3039    } else {
3040      Diag(Method->getLocation(), diag::err_member_function_initialization)
3041        << Method->getDeclName() << Init->getSourceRange();
3042      Method->setInvalidDecl();
3043    }
3044    return;
3045  }
3046
3047  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3048  if (!VDecl) {
3049    if (getLangOptions().CPlusPlus &&
3050        RealDecl->getLexicalDeclContext()->isRecord() &&
3051        isa<NamedDecl>(RealDecl))
3052      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3053        << cast<NamedDecl>(RealDecl)->getDeclName();
3054    else
3055      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3056    RealDecl->setInvalidDecl();
3057    return;
3058  }
3059
3060  if (!VDecl->getType()->isArrayType() &&
3061      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3062                          diag::err_typecheck_decl_incomplete_type)) {
3063    RealDecl->setInvalidDecl();
3064    return;
3065  }
3066
3067  const VarDecl *Def = 0;
3068  if (VDecl->getDefinition(Def)) {
3069    Diag(VDecl->getLocation(), diag::err_redefinition)
3070      << VDecl->getDeclName();
3071    Diag(Def->getLocation(), diag::note_previous_definition);
3072    VDecl->setInvalidDecl();
3073    return;
3074  }
3075
3076  // Take ownership of the expression, now that we're sure we have somewhere
3077  // to put it.
3078  Expr *Init = init.takeAs<Expr>();
3079  assert(Init && "missing initializer");
3080
3081  // Get the decls type and save a reference for later, since
3082  // CheckInitializerTypes may change it.
3083  QualType DclT = VDecl->getType(), SavT = DclT;
3084  if (VDecl->isBlockVarDecl()) {
3085    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3086      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3087      VDecl->setInvalidDecl();
3088    } else if (!VDecl->isInvalidDecl()) {
3089      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3090                                VDecl->getDeclName(), DirectInit))
3091        VDecl->setInvalidDecl();
3092
3093      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3094      // Don't check invalid declarations to avoid emitting useless diagnostics.
3095      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3096        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3097          CheckForConstantInitializer(Init, DclT);
3098      }
3099    }
3100  } else if (VDecl->isStaticDataMember() &&
3101             VDecl->getLexicalDeclContext()->isRecord()) {
3102    // This is an in-class initialization for a static data member, e.g.,
3103    //
3104    // struct S {
3105    //   static const int value = 17;
3106    // };
3107
3108    // Attach the initializer
3109    VDecl->setInit(Context, Init);
3110
3111    // C++ [class.mem]p4:
3112    //   A member-declarator can contain a constant-initializer only
3113    //   if it declares a static member (9.4) of const integral or
3114    //   const enumeration type, see 9.4.2.
3115    QualType T = VDecl->getType();
3116    if (!T->isDependentType() &&
3117        (!Context.getCanonicalType(T).isConstQualified() ||
3118         !T->isIntegralType())) {
3119      Diag(VDecl->getLocation(), diag::err_member_initialization)
3120        << VDecl->getDeclName() << Init->getSourceRange();
3121      VDecl->setInvalidDecl();
3122    } else {
3123      // C++ [class.static.data]p4:
3124      //   If a static data member is of const integral or const
3125      //   enumeration type, its declaration in the class definition
3126      //   can specify a constant-initializer which shall be an
3127      //   integral constant expression (5.19).
3128      if (!Init->isTypeDependent() &&
3129          !Init->getType()->isIntegralType()) {
3130        // We have a non-dependent, non-integral or enumeration type.
3131        Diag(Init->getSourceRange().getBegin(),
3132             diag::err_in_class_initializer_non_integral_type)
3133          << Init->getType() << Init->getSourceRange();
3134        VDecl->setInvalidDecl();
3135      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3136        // Check whether the expression is a constant expression.
3137        llvm::APSInt Value;
3138        SourceLocation Loc;
3139        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3140          Diag(Loc, diag::err_in_class_initializer_non_constant)
3141            << Init->getSourceRange();
3142          VDecl->setInvalidDecl();
3143        } else if (!VDecl->getType()->isDependentType())
3144          ImpCastExprToType(Init, VDecl->getType());
3145      }
3146    }
3147  } else if (VDecl->isFileVarDecl()) {
3148    if (VDecl->getStorageClass() == VarDecl::Extern)
3149      Diag(VDecl->getLocation(), diag::warn_extern_init);
3150    if (!VDecl->isInvalidDecl())
3151      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3152                                VDecl->getDeclName(), DirectInit))
3153        VDecl->setInvalidDecl();
3154
3155    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3156    // Don't check invalid declarations to avoid emitting useless diagnostics.
3157    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3158      // C99 6.7.8p4. All file scoped initializers need to be constant.
3159      CheckForConstantInitializer(Init, DclT);
3160    }
3161  }
3162  // If the type changed, it means we had an incomplete type that was
3163  // completed by the initializer. For example:
3164  //   int ary[] = { 1, 3, 5 };
3165  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3166  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3167    VDecl->setType(DclT);
3168    Init->setType(DclT);
3169  }
3170
3171  Init = MaybeCreateCXXExprWithTemporaries(Init,
3172                                           /*ShouldDestroyTemporaries=*/true);
3173  // Attach the initializer to the decl.
3174  VDecl->setInit(Context, Init);
3175
3176  // If the previous declaration of VDecl was a tentative definition,
3177  // remove it from the set of tentative definitions.
3178  if (VDecl->getPreviousDeclaration() &&
3179      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3180    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3181    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3182  }
3183
3184  return;
3185}
3186
3187void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3188                                  bool TypeContainsUndeducedAuto) {
3189  Decl *RealDecl = dcl.getAs<Decl>();
3190
3191  // If there is no declaration, there was an error parsing it. Just ignore it.
3192  if (RealDecl == 0)
3193    return;
3194
3195  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3196    QualType Type = Var->getType();
3197
3198    // Record tentative definitions.
3199    if (Var->isTentativeDefinition(Context)) {
3200      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3201        InsertPair =
3202           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3203
3204      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3205      // want the second one in the map.
3206      InsertPair.first->second = Var;
3207
3208      // However, for the list, we don't care about the order, just make sure
3209      // that there are no dupes for a given declaration name.
3210      if (InsertPair.second)
3211        TentativeDefinitionList.push_back(Var->getDeclName());
3212    }
3213
3214    // C++ [dcl.init.ref]p3:
3215    //   The initializer can be omitted for a reference only in a
3216    //   parameter declaration (8.3.5), in the declaration of a
3217    //   function return type, in the declaration of a class member
3218    //   within its class declaration (9.2), and where the extern
3219    //   specifier is explicitly used.
3220    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3221      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3222        << Var->getDeclName()
3223        << SourceRange(Var->getLocation(), Var->getLocation());
3224      Var->setInvalidDecl();
3225      return;
3226    }
3227
3228    // C++0x [dcl.spec.auto]p3
3229    if (TypeContainsUndeducedAuto) {
3230      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3231        << Var->getDeclName() << Type;
3232      Var->setInvalidDecl();
3233      return;
3234    }
3235
3236    // C++ [dcl.init]p9:
3237    //   If no initializer is specified for an object, and the object
3238    //   is of (possibly cv-qualified) non-POD class type (or array
3239    //   thereof), the object shall be default-initialized; if the
3240    //   object is of const-qualified type, the underlying class type
3241    //   shall have a user-declared default constructor.
3242    //
3243    // FIXME: Diagnose the "user-declared default constructor" bit.
3244    if (getLangOptions().CPlusPlus) {
3245      QualType InitType = Type;
3246      if (const ArrayType *Array = Context.getAsArrayType(Type))
3247        InitType = Array->getElementType();
3248      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3249          InitType->isRecordType() && !InitType->isDependentType()) {
3250        if (!RequireCompleteType(Var->getLocation(), InitType,
3251                                 diag::err_invalid_incomplete_type_use)) {
3252          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3253
3254          CXXConstructorDecl *Constructor
3255            = PerformInitializationByConstructor(InitType,
3256                                                 MultiExprArg(*this, 0, 0),
3257                                                 Var->getLocation(),
3258                                               SourceRange(Var->getLocation(),
3259                                                           Var->getLocation()),
3260                                                 Var->getDeclName(),
3261                                                 IK_Default,
3262                                                 ConstructorArgs);
3263
3264          // FIXME: Location info for the variable initialization?
3265          if (!Constructor)
3266            Var->setInvalidDecl();
3267          else {
3268            // FIXME: Cope with initialization of arrays
3269            if (!Constructor->isTrivial() &&
3270                InitializeVarWithConstructor(Var, Constructor, InitType,
3271                                             move_arg(ConstructorArgs)))
3272              Var->setInvalidDecl();
3273
3274            FinalizeVarWithDestructor(Var, InitType);
3275          }
3276        }
3277      }
3278    }
3279
3280#if 0
3281    // FIXME: Temporarily disabled because we are not properly parsing
3282    // linkage specifications on declarations, e.g.,
3283    //
3284    //   extern "C" const CGPoint CGPointerZero;
3285    //
3286    // C++ [dcl.init]p9:
3287    //
3288    //     If no initializer is specified for an object, and the
3289    //     object is of (possibly cv-qualified) non-POD class type (or
3290    //     array thereof), the object shall be default-initialized; if
3291    //     the object is of const-qualified type, the underlying class
3292    //     type shall have a user-declared default
3293    //     constructor. Otherwise, if no initializer is specified for
3294    //     an object, the object and its subobjects, if any, have an
3295    //     indeterminate initial value; if the object or any of its
3296    //     subobjects are of const-qualified type, the program is
3297    //     ill-formed.
3298    //
3299    // This isn't technically an error in C, so we don't diagnose it.
3300    //
3301    // FIXME: Actually perform the POD/user-defined default
3302    // constructor check.
3303    if (getLangOptions().CPlusPlus &&
3304        Context.getCanonicalType(Type).isConstQualified() &&
3305        !Var->hasExternalStorage())
3306      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3307        << Var->getName()
3308        << SourceRange(Var->getLocation(), Var->getLocation());
3309#endif
3310  }
3311}
3312
3313Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3314                                                   DeclPtrTy *Group,
3315                                                   unsigned NumDecls) {
3316  llvm::SmallVector<Decl*, 8> Decls;
3317
3318  if (DS.isTypeSpecOwned())
3319    Decls.push_back((Decl*)DS.getTypeRep());
3320
3321  for (unsigned i = 0; i != NumDecls; ++i)
3322    if (Decl *D = Group[i].getAs<Decl>())
3323      Decls.push_back(D);
3324
3325  // Perform semantic analysis that depends on having fully processed both
3326  // the declarator and initializer.
3327  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3328    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3329    if (!IDecl)
3330      continue;
3331    QualType T = IDecl->getType();
3332
3333    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3334    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3335    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3336      if (!IDecl->isInvalidDecl() &&
3337          RequireCompleteType(IDecl->getLocation(), T,
3338                              diag::err_typecheck_decl_incomplete_type))
3339        IDecl->setInvalidDecl();
3340    }
3341    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3342    // object that has file scope without an initializer, and without a
3343    // storage-class specifier or with the storage-class specifier "static",
3344    // constitutes a tentative definition. Note: A tentative definition with
3345    // external linkage is valid (C99 6.2.2p5).
3346    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3347      if (const IncompleteArrayType *ArrayT
3348          = Context.getAsIncompleteArrayType(T)) {
3349        if (RequireCompleteType(IDecl->getLocation(),
3350                                ArrayT->getElementType(),
3351                                diag::err_illegal_decl_array_incomplete_type))
3352          IDecl->setInvalidDecl();
3353      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3354        // C99 6.9.2p3: If the declaration of an identifier for an object is
3355        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3356        // declared type shall not be an incomplete type.
3357        // NOTE: code such as the following
3358        //     static struct s;
3359        //     struct s { int a; };
3360        // is accepted by gcc. Hence here we issue a warning instead of
3361        // an error and we do not invalidate the static declaration.
3362        // NOTE: to avoid multiple warnings, only check the first declaration.
3363        if (IDecl->getPreviousDeclaration() == 0)
3364          RequireCompleteType(IDecl->getLocation(), T,
3365                              diag::ext_typecheck_decl_incomplete_type);
3366      }
3367    }
3368  }
3369  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3370                                                   Decls.data(), Decls.size()));
3371}
3372
3373
3374/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3375/// to introduce parameters into function prototype scope.
3376Sema::DeclPtrTy
3377Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3378  const DeclSpec &DS = D.getDeclSpec();
3379
3380  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3381  VarDecl::StorageClass StorageClass = VarDecl::None;
3382  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3383    StorageClass = VarDecl::Register;
3384  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3385    Diag(DS.getStorageClassSpecLoc(),
3386         diag::err_invalid_storage_class_in_func_decl);
3387    D.getMutableDeclSpec().ClearStorageClassSpecs();
3388  }
3389
3390  if (D.getDeclSpec().isThreadSpecified())
3391    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3392
3393  DiagnoseFunctionSpecifiers(D);
3394
3395  // Check that there are no default arguments inside the type of this
3396  // parameter (C++ only).
3397  if (getLangOptions().CPlusPlus)
3398    CheckExtraCXXDefaultArguments(D);
3399
3400  DeclaratorInfo *DInfo = 0;
3401  TagDecl *OwnedDecl = 0;
3402  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3403                                               &OwnedDecl);
3404
3405  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3406    // C++ [dcl.fct]p6:
3407    //   Types shall not be defined in return or parameter types.
3408    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3409      << Context.getTypeDeclType(OwnedDecl);
3410  }
3411
3412  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3413  // Can this happen for params?  We already checked that they don't conflict
3414  // among each other.  Here they can only shadow globals, which is ok.
3415  IdentifierInfo *II = D.getIdentifier();
3416  if (II) {
3417    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3418      if (PrevDecl->isTemplateParameter()) {
3419        // Maybe we will complain about the shadowed template parameter.
3420        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3421        // Just pretend that we didn't see the previous declaration.
3422        PrevDecl = 0;
3423      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3424        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3425
3426        // Recover by removing the name
3427        II = 0;
3428        D.SetIdentifier(0, D.getIdentifierLoc());
3429      }
3430    }
3431  }
3432
3433  // Parameters can not be abstract class types.
3434  // For record types, this is done by the AbstractClassUsageDiagnoser once
3435  // the class has been completely parsed.
3436  if (!CurContext->isRecord() &&
3437      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3438                             diag::err_abstract_type_in_decl,
3439                             AbstractParamType))
3440    D.setInvalidType(true);
3441
3442  QualType T = adjustParameterType(parmDeclType);
3443
3444  ParmVarDecl *New;
3445  if (T == parmDeclType) // parameter type did not need adjustment
3446    New = ParmVarDecl::Create(Context, CurContext,
3447                              D.getIdentifierLoc(), II,
3448                              parmDeclType, DInfo, StorageClass,
3449                              0);
3450  else // keep track of both the adjusted and unadjusted types
3451    New = OriginalParmVarDecl::Create(Context, CurContext,
3452                                      D.getIdentifierLoc(), II, T, DInfo,
3453                                      parmDeclType, StorageClass, 0);
3454
3455  if (D.isInvalidType())
3456    New->setInvalidDecl();
3457
3458  // Parameter declarators cannot be interface types. All ObjC objects are
3459  // passed by reference.
3460  if (T->isObjCInterfaceType()) {
3461    Diag(D.getIdentifierLoc(),
3462         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3463    New->setInvalidDecl();
3464  }
3465
3466  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3467  if (D.getCXXScopeSpec().isSet()) {
3468    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3469      << D.getCXXScopeSpec().getRange();
3470    New->setInvalidDecl();
3471  }
3472
3473  // Add the parameter declaration into this scope.
3474  S->AddDecl(DeclPtrTy::make(New));
3475  if (II)
3476    IdResolver.AddDecl(New);
3477
3478  ProcessDeclAttributes(S, New, D);
3479
3480  if (New->hasAttr<BlocksAttr>()) {
3481    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3482  }
3483  return DeclPtrTy::make(New);
3484}
3485
3486void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3487                                           SourceLocation LocAfterDecls) {
3488  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3489         "Not a function declarator!");
3490  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3491
3492  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3493  // for a K&R function.
3494  if (!FTI.hasPrototype) {
3495    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3496      --i;
3497      if (FTI.ArgInfo[i].Param == 0) {
3498        std::string Code = "  int ";
3499        Code += FTI.ArgInfo[i].Ident->getName();
3500        Code += ";\n";
3501        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3502          << FTI.ArgInfo[i].Ident
3503          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3504
3505        // Implicitly declare the argument as type 'int' for lack of a better
3506        // type.
3507        DeclSpec DS;
3508        const char* PrevSpec; // unused
3509        unsigned DiagID; // unused
3510        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3511                           PrevSpec, DiagID);
3512        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3513        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3514        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3515      }
3516    }
3517  }
3518}
3519
3520Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3521                                              Declarator &D) {
3522  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3523  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3524         "Not a function declarator!");
3525  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3526
3527  if (FTI.hasPrototype) {
3528    // FIXME: Diagnose arguments without names in C.
3529  }
3530
3531  Scope *ParentScope = FnBodyScope->getParent();
3532
3533  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3534                                  MultiTemplateParamsArg(*this),
3535                                  /*IsFunctionDefinition=*/true);
3536  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3537}
3538
3539Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3540  if (!D)
3541    return D;
3542  FunctionDecl *FD = 0;
3543
3544  if (FunctionTemplateDecl *FunTmpl
3545        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3546    FD = FunTmpl->getTemplatedDecl();
3547  else
3548    FD = cast<FunctionDecl>(D.getAs<Decl>());
3549
3550  CurFunctionNeedsScopeChecking = false;
3551
3552  // See if this is a redefinition.
3553  const FunctionDecl *Definition;
3554  if (FD->getBody(Definition)) {
3555    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3556    Diag(Definition->getLocation(), diag::note_previous_definition);
3557  }
3558
3559  // Builtin functions cannot be defined.
3560  if (unsigned BuiltinID = FD->getBuiltinID()) {
3561    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3562      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3563      FD->setInvalidDecl();
3564    }
3565  }
3566
3567  // The return type of a function definition must be complete
3568  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3569  QualType ResultType = FD->getResultType();
3570  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3571      !FD->isInvalidDecl() &&
3572      RequireCompleteType(FD->getLocation(), ResultType,
3573                          diag::err_func_def_incomplete_result))
3574    FD->setInvalidDecl();
3575
3576  // GNU warning -Wmissing-prototypes:
3577  //   Warn if a global function is defined without a previous
3578  //   prototype declaration. This warning is issued even if the
3579  //   definition itself provides a prototype. The aim is to detect
3580  //   global functions that fail to be declared in header files.
3581  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3582      !FD->isMain()) {
3583    bool MissingPrototype = true;
3584    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3585         Prev; Prev = Prev->getPreviousDeclaration()) {
3586      // Ignore any declarations that occur in function or method
3587      // scope, because they aren't visible from the header.
3588      if (Prev->getDeclContext()->isFunctionOrMethod())
3589        continue;
3590
3591      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3592      break;
3593    }
3594
3595    if (MissingPrototype)
3596      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3597  }
3598
3599  if (FnBodyScope)
3600    PushDeclContext(FnBodyScope, FD);
3601
3602  // Check the validity of our function parameters
3603  CheckParmsForFunctionDef(FD);
3604
3605  // Introduce our parameters into the function scope
3606  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3607    ParmVarDecl *Param = FD->getParamDecl(p);
3608    Param->setOwningFunction(FD);
3609
3610    // If this has an identifier, add it to the scope stack.
3611    if (Param->getIdentifier() && FnBodyScope)
3612      PushOnScopeChains(Param, FnBodyScope);
3613  }
3614
3615  // Checking attributes of current function definition
3616  // dllimport attribute.
3617  if (FD->getAttr<DLLImportAttr>() &&
3618      (!FD->getAttr<DLLExportAttr>())) {
3619    // dllimport attribute cannot be applied to definition.
3620    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3621      Diag(FD->getLocation(),
3622           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3623        << "dllimport";
3624      FD->setInvalidDecl();
3625      return DeclPtrTy::make(FD);
3626    } else {
3627      // If a symbol previously declared dllimport is later defined, the
3628      // attribute is ignored in subsequent references, and a warning is
3629      // emitted.
3630      Diag(FD->getLocation(),
3631           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3632        << FD->getNameAsCString() << "dllimport";
3633    }
3634  }
3635  return DeclPtrTy::make(FD);
3636}
3637
3638Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3639  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3640}
3641
3642Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3643                                              bool IsInstantiation) {
3644  Decl *dcl = D.getAs<Decl>();
3645  Stmt *Body = BodyArg.takeAs<Stmt>();
3646
3647  FunctionDecl *FD = 0;
3648  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3649  if (FunTmpl)
3650    FD = FunTmpl->getTemplatedDecl();
3651  else
3652    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3653
3654  if (FD) {
3655    FD->setBody(Body);
3656    if (FD->isMain())
3657      // C and C++ allow for main to automagically return 0.
3658      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3659      FD->setHasImplicitReturnZero(true);
3660    else
3661      CheckFallThroughForFunctionDef(FD, Body);
3662
3663    if (!FD->isInvalidDecl())
3664      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3665
3666    // C++ [basic.def.odr]p2:
3667    //   [...] A virtual member function is used if it is not pure. [...]
3668    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3669      if (Method->isVirtual() && !Method->isPure())
3670        MarkDeclarationReferenced(Method->getLocation(), Method);
3671
3672    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3673  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3674    assert(MD == getCurMethodDecl() && "Method parsing confused");
3675    MD->setBody(Body);
3676    CheckFallThroughForFunctionDef(MD, Body);
3677    MD->setEndLoc(Body->getLocEnd());
3678
3679    if (!MD->isInvalidDecl())
3680      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3681  } else {
3682    Body->Destroy(Context);
3683    return DeclPtrTy();
3684  }
3685  if (!IsInstantiation)
3686    PopDeclContext();
3687
3688  // Verify and clean out per-function state.
3689
3690  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3691
3692  // Check goto/label use.
3693  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3694       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3695    LabelStmt *L = I->second;
3696
3697    // Verify that we have no forward references left.  If so, there was a goto
3698    // or address of a label taken, but no definition of it.  Label fwd
3699    // definitions are indicated with a null substmt.
3700    if (L->getSubStmt() != 0)
3701      continue;
3702
3703    // Emit error.
3704    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3705
3706    // At this point, we have gotos that use the bogus label.  Stitch it into
3707    // the function body so that they aren't leaked and that the AST is well
3708    // formed.
3709    if (Body == 0) {
3710      // The whole function wasn't parsed correctly, just delete this.
3711      L->Destroy(Context);
3712      continue;
3713    }
3714
3715    // Otherwise, the body is valid: we want to stitch the label decl into the
3716    // function somewhere so that it is properly owned and so that the goto
3717    // has a valid target.  Do this by creating a new compound stmt with the
3718    // label in it.
3719
3720    // Give the label a sub-statement.
3721    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3722
3723    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3724                               cast<CXXTryStmt>(Body)->getTryBlock() :
3725                               cast<CompoundStmt>(Body);
3726    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3727    Elements.push_back(L);
3728    Compound->setStmts(Context, &Elements[0], Elements.size());
3729  }
3730  FunctionLabelMap.clear();
3731
3732  if (!Body) return D;
3733
3734  // Verify that that gotos and switch cases don't jump into scopes illegally.
3735  if (CurFunctionNeedsScopeChecking)
3736    DiagnoseInvalidJumps(Body);
3737
3738  // C++ constructors that have function-try-blocks can't have return
3739  // statements in the handlers of that block. (C++ [except.handle]p14)
3740  // Verify this.
3741  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3742    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3743
3744  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3745    computeBaseOrMembersToDestroy(Destructor);
3746  return D;
3747}
3748
3749/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3750/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3751NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3752                                          IdentifierInfo &II, Scope *S) {
3753  // Before we produce a declaration for an implicitly defined
3754  // function, see whether there was a locally-scoped declaration of
3755  // this name as a function or variable. If so, use that
3756  // (non-visible) declaration, and complain about it.
3757  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3758    = LocallyScopedExternalDecls.find(&II);
3759  if (Pos != LocallyScopedExternalDecls.end()) {
3760    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3761    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3762    return Pos->second;
3763  }
3764
3765  // Extension in C99.  Legal in C90, but warn about it.
3766  if (getLangOptions().C99)
3767    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3768  else
3769    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3770
3771  // FIXME: handle stuff like:
3772  // void foo() { extern float X(); }
3773  // void bar() { X(); }  <-- implicit decl for X in another scope.
3774
3775  // Set a Declarator for the implicit definition: int foo();
3776  const char *Dummy;
3777  DeclSpec DS;
3778  unsigned DiagID;
3779  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3780  Error = Error; // Silence warning.
3781  assert(!Error && "Error setting up implicit decl!");
3782  Declarator D(DS, Declarator::BlockContext);
3783  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3784                                             0, 0, false, SourceLocation(),
3785                                             false, 0,0,0, Loc, Loc, D),
3786                SourceLocation());
3787  D.SetIdentifier(&II, Loc);
3788
3789  // Insert this function into translation-unit scope.
3790
3791  DeclContext *PrevDC = CurContext;
3792  CurContext = Context.getTranslationUnitDecl();
3793
3794  FunctionDecl *FD =
3795 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3796  FD->setImplicit();
3797
3798  CurContext = PrevDC;
3799
3800  AddKnownFunctionAttributes(FD);
3801
3802  return FD;
3803}
3804
3805/// \brief Adds any function attributes that we know a priori based on
3806/// the declaration of this function.
3807///
3808/// These attributes can apply both to implicitly-declared builtins
3809/// (like __builtin___printf_chk) or to library-declared functions
3810/// like NSLog or printf.
3811void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3812  if (FD->isInvalidDecl())
3813    return;
3814
3815  // If this is a built-in function, map its builtin attributes to
3816  // actual attributes.
3817  if (unsigned BuiltinID = FD->getBuiltinID()) {
3818    // Handle printf-formatting attributes.
3819    unsigned FormatIdx;
3820    bool HasVAListArg;
3821    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3822      if (!FD->getAttr<FormatAttr>())
3823        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3824                                             HasVAListArg ? 0 : FormatIdx + 2));
3825    }
3826
3827    // Mark const if we don't care about errno and that is the only
3828    // thing preventing the function from being const. This allows
3829    // IRgen to use LLVM intrinsics for such functions.
3830    if (!getLangOptions().MathErrno &&
3831        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3832      if (!FD->getAttr<ConstAttr>())
3833        FD->addAttr(::new (Context) ConstAttr());
3834    }
3835
3836    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3837      FD->addAttr(::new (Context) NoReturnAttr());
3838  }
3839
3840  IdentifierInfo *Name = FD->getIdentifier();
3841  if (!Name)
3842    return;
3843  if ((!getLangOptions().CPlusPlus &&
3844       FD->getDeclContext()->isTranslationUnit()) ||
3845      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3846       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3847       LinkageSpecDecl::lang_c)) {
3848    // Okay: this could be a libc/libm/Objective-C function we know
3849    // about.
3850  } else
3851    return;
3852
3853  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3854    // FIXME: NSLog and NSLogv should be target specific
3855    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3856      // FIXME: We known better than our headers.
3857      const_cast<FormatAttr *>(Format)->setType("printf");
3858    } else
3859      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3860                                             Name->isStr("NSLogv") ? 0 : 2));
3861  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3862    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3863    // target-specific builtins, perhaps?
3864    if (!FD->getAttr<FormatAttr>())
3865      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3866                                             Name->isStr("vasprintf") ? 0 : 3));
3867  }
3868}
3869
3870TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3871  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3872  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3873
3874  // Scope manipulation handled by caller.
3875  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3876                                           D.getIdentifierLoc(),
3877                                           D.getIdentifier(),
3878                                           T);
3879
3880  if (const TagType *TT = T->getAs<TagType>()) {
3881    TagDecl *TD = TT->getDecl();
3882
3883    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3884    // keep track of the TypedefDecl.
3885    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3886      TD->setTypedefForAnonDecl(NewTD);
3887  }
3888
3889  if (D.isInvalidType())
3890    NewTD->setInvalidDecl();
3891  return NewTD;
3892}
3893
3894
3895/// \brief Determine whether a tag with a given kind is acceptable
3896/// as a redeclaration of the given tag declaration.
3897///
3898/// \returns true if the new tag kind is acceptable, false otherwise.
3899bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3900                                        TagDecl::TagKind NewTag,
3901                                        SourceLocation NewTagLoc,
3902                                        const IdentifierInfo &Name) {
3903  // C++ [dcl.type.elab]p3:
3904  //   The class-key or enum keyword present in the
3905  //   elaborated-type-specifier shall agree in kind with the
3906  //   declaration to which the name in theelaborated-type-specifier
3907  //   refers. This rule also applies to the form of
3908  //   elaborated-type-specifier that declares a class-name or
3909  //   friend class since it can be construed as referring to the
3910  //   definition of the class. Thus, in any
3911  //   elaborated-type-specifier, the enum keyword shall be used to
3912  //   refer to an enumeration (7.2), the union class-keyshall be
3913  //   used to refer to a union (clause 9), and either the class or
3914  //   struct class-key shall be used to refer to a class (clause 9)
3915  //   declared using the class or struct class-key.
3916  TagDecl::TagKind OldTag = Previous->getTagKind();
3917  if (OldTag == NewTag)
3918    return true;
3919
3920  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3921      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3922    // Warn about the struct/class tag mismatch.
3923    bool isTemplate = false;
3924    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3925      isTemplate = Record->getDescribedClassTemplate();
3926
3927    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3928      << (NewTag == TagDecl::TK_class)
3929      << isTemplate << &Name
3930      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3931                              OldTag == TagDecl::TK_class? "class" : "struct");
3932    Diag(Previous->getLocation(), diag::note_previous_use);
3933    return true;
3934  }
3935  return false;
3936}
3937
3938/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3939/// former case, Name will be non-null.  In the later case, Name will be null.
3940/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3941/// reference/declaration/definition of a tag.
3942Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3943                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3944                               IdentifierInfo *Name, SourceLocation NameLoc,
3945                               AttributeList *Attr, AccessSpecifier AS,
3946                               MultiTemplateParamsArg TemplateParameterLists,
3947                               bool &OwnedDecl, bool &IsDependent) {
3948  // If this is not a definition, it must have a name.
3949  assert((Name != 0 || TUK == TUK_Definition) &&
3950         "Nameless record must be a definition!");
3951
3952  OwnedDecl = false;
3953  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
3954
3955  if (TUK != TUK_Reference) {
3956    if (TemplateParameterList *TemplateParams
3957          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3958                        (TemplateParameterList**)TemplateParameterLists.get(),
3959                                              TemplateParameterLists.size())) {
3960      if (TemplateParams->size() > 0) {
3961        // This is a declaration or definition of a class template (which may
3962        // be a member of another template).
3963        OwnedDecl = false;
3964        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3965                                               SS, Name, NameLoc, Attr,
3966                                               TemplateParams,
3967                                               AS);
3968        TemplateParameterLists.release();
3969        return Result.get();
3970      } else {
3971        // FIXME: diagnose the extraneous 'template<>', once we recover
3972        // slightly better in ParseTemplate.cpp from bogus template
3973        // parameters.
3974      }
3975    }
3976  }
3977
3978  DeclContext *SearchDC = CurContext;
3979  DeclContext *DC = CurContext;
3980  NamedDecl *PrevDecl = 0;
3981  bool isStdBadAlloc = false;
3982  bool Invalid = false;
3983
3984  if (Name && SS.isNotEmpty()) {
3985    // We have a nested-name tag ('struct foo::bar').
3986
3987    // Check for invalid 'foo::'.
3988    if (SS.isInvalid()) {
3989      Name = 0;
3990      goto CreateNewDecl;
3991    }
3992
3993    // If this is a friend or a reference to a class in a dependent
3994    // context, don't try to make a decl for it.
3995    if (TUK == TUK_Friend || TUK == TUK_Reference) {
3996      DC = computeDeclContext(SS, false);
3997      if (!DC) {
3998        IsDependent = true;
3999        return DeclPtrTy();
4000      }
4001    }
4002
4003    if (RequireCompleteDeclContext(SS))
4004      return DeclPtrTy::make((Decl *)0);
4005
4006    DC = computeDeclContext(SS, true);
4007    SearchDC = DC;
4008    // Look-up name inside 'foo::'.
4009    PrevDecl
4010      = dyn_cast_or_null<TagDecl>(
4011               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4012
4013    // A tag 'foo::bar' must already exist.
4014    if (PrevDecl == 0) {
4015      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4016      Name = 0;
4017      Invalid = true;
4018      goto CreateNewDecl;
4019    }
4020  } else if (Name) {
4021    // If this is a named struct, check to see if there was a previous forward
4022    // declaration or definition.
4023    // FIXME: We're looking into outer scopes here, even when we
4024    // shouldn't be. Doing so can result in ambiguities that we
4025    // shouldn't be diagnosing.
4026    LookupResult R = LookupName(S, Name, LookupTagName,
4027                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4028    if (R.isAmbiguous()) {
4029      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4030      // FIXME: This is not best way to recover from case like:
4031      //
4032      // struct S s;
4033      //
4034      // causes needless "incomplete type" error later.
4035      Name = 0;
4036      PrevDecl = 0;
4037      Invalid = true;
4038    } else
4039      PrevDecl = R;
4040
4041    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4042      // FIXME: This makes sure that we ignore the contexts associated
4043      // with C structs, unions, and enums when looking for a matching
4044      // tag declaration or definition. See the similar lookup tweak
4045      // in Sema::LookupName; is there a better way to deal with this?
4046      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4047        SearchDC = SearchDC->getParent();
4048    }
4049  }
4050
4051  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4052    // Maybe we will complain about the shadowed template parameter.
4053    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4054    // Just pretend that we didn't see the previous declaration.
4055    PrevDecl = 0;
4056  }
4057
4058  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4059      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4060    // This is a declaration of or a reference to "std::bad_alloc".
4061    isStdBadAlloc = true;
4062
4063    if (!PrevDecl && StdBadAlloc) {
4064      // std::bad_alloc has been implicitly declared (but made invisible to
4065      // name lookup). Fill in this implicit declaration as the previous
4066      // declaration, so that the declarations get chained appropriately.
4067      PrevDecl = StdBadAlloc;
4068    }
4069  }
4070
4071  if (PrevDecl) {
4072    // Check whether the previous declaration is usable.
4073    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4074
4075    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4076      // If this is a use of a previous tag, or if the tag is already declared
4077      // in the same scope (so that the definition/declaration completes or
4078      // rementions the tag), reuse the decl.
4079      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4080          isDeclInScope(PrevDecl, SearchDC, S)) {
4081        // Make sure that this wasn't declared as an enum and now used as a
4082        // struct or something similar.
4083        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4084          bool SafeToContinue
4085            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4086               Kind != TagDecl::TK_enum);
4087          if (SafeToContinue)
4088            Diag(KWLoc, diag::err_use_with_wrong_tag)
4089              << Name
4090              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4091                                                  PrevTagDecl->getKindName());
4092          else
4093            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4094          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4095
4096          if (SafeToContinue)
4097            Kind = PrevTagDecl->getTagKind();
4098          else {
4099            // Recover by making this an anonymous redefinition.
4100            Name = 0;
4101            PrevDecl = 0;
4102            Invalid = true;
4103          }
4104        }
4105
4106        if (!Invalid) {
4107          // If this is a use, just return the declaration we found.
4108
4109          // FIXME: In the future, return a variant or some other clue
4110          // for the consumer of this Decl to know it doesn't own it.
4111          // For our current ASTs this shouldn't be a problem, but will
4112          // need to be changed with DeclGroups.
4113          if (TUK == TUK_Reference)
4114            return DeclPtrTy::make(PrevDecl);
4115
4116          // If this is a friend, make sure we create the new
4117          // declaration in the appropriate semantic context.
4118          if (TUK == TUK_Friend)
4119            SearchDC = PrevDecl->getDeclContext();
4120
4121          // Diagnose attempts to redefine a tag.
4122          if (TUK == TUK_Definition) {
4123            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4124              Diag(NameLoc, diag::err_redefinition) << Name;
4125              Diag(Def->getLocation(), diag::note_previous_definition);
4126              // If this is a redefinition, recover by making this
4127              // struct be anonymous, which will make any later
4128              // references get the previous definition.
4129              Name = 0;
4130              PrevDecl = 0;
4131              Invalid = true;
4132            } else {
4133              // If the type is currently being defined, complain
4134              // about a nested redefinition.
4135              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4136              if (Tag->isBeingDefined()) {
4137                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4138                Diag(PrevTagDecl->getLocation(),
4139                     diag::note_previous_definition);
4140                Name = 0;
4141                PrevDecl = 0;
4142                Invalid = true;
4143              }
4144            }
4145
4146            // Okay, this is definition of a previously declared or referenced
4147            // tag PrevDecl. We're going to create a new Decl for it.
4148          }
4149        }
4150        // If we get here we have (another) forward declaration or we
4151        // have a definition.  Just create a new decl.
4152
4153      } else {
4154        // If we get here, this is a definition of a new tag type in a nested
4155        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4156        // new decl/type.  We set PrevDecl to NULL so that the entities
4157        // have distinct types.
4158        PrevDecl = 0;
4159      }
4160      // If we get here, we're going to create a new Decl. If PrevDecl
4161      // is non-NULL, it's a definition of the tag declared by
4162      // PrevDecl. If it's NULL, we have a new definition.
4163    } else {
4164      // PrevDecl is a namespace, template, or anything else
4165      // that lives in the IDNS_Tag identifier namespace.
4166      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4167        // The tag name clashes with a namespace name, issue an error and
4168        // recover by making this tag be anonymous.
4169        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4170        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4171        Name = 0;
4172        PrevDecl = 0;
4173        Invalid = true;
4174      } else {
4175        // The existing declaration isn't relevant to us; we're in a
4176        // new scope, so clear out the previous declaration.
4177        PrevDecl = 0;
4178      }
4179    }
4180  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4181             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4182    // C++ [basic.scope.pdecl]p5:
4183    //   -- for an elaborated-type-specifier of the form
4184    //
4185    //          class-key identifier
4186    //
4187    //      if the elaborated-type-specifier is used in the
4188    //      decl-specifier-seq or parameter-declaration-clause of a
4189    //      function defined in namespace scope, the identifier is
4190    //      declared as a class-name in the namespace that contains
4191    //      the declaration; otherwise, except as a friend
4192    //      declaration, the identifier is declared in the smallest
4193    //      non-class, non-function-prototype scope that contains the
4194    //      declaration.
4195    //
4196    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4197    // C structs and unions.
4198    //
4199    // GNU C also supports this behavior as part of its incomplete
4200    // enum types extension, while GNU C++ does not.
4201    //
4202    // Find the context where we'll be declaring the tag.
4203    // FIXME: We would like to maintain the current DeclContext as the
4204    // lexical context,
4205    while (SearchDC->isRecord())
4206      SearchDC = SearchDC->getParent();
4207
4208    // Find the scope where we'll be declaring the tag.
4209    while (S->isClassScope() ||
4210           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4211           ((S->getFlags() & Scope::DeclScope) == 0) ||
4212           (S->getEntity() &&
4213            ((DeclContext *)S->getEntity())->isTransparentContext()))
4214      S = S->getParent();
4215
4216  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4217    // C++ [namespace.memdef]p3:
4218    //   If a friend declaration in a non-local class first declares a
4219    //   class or function, the friend class or function is a member of
4220    //   the innermost enclosing namespace.
4221    while (!SearchDC->isFileContext())
4222      SearchDC = SearchDC->getParent();
4223
4224    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4225    while (S->getEntity() != SearchDC)
4226      S = S->getParent();
4227  }
4228
4229CreateNewDecl:
4230
4231  // If there is an identifier, use the location of the identifier as the
4232  // location of the decl, otherwise use the location of the struct/union
4233  // keyword.
4234  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4235
4236  // Otherwise, create a new declaration. If there is a previous
4237  // declaration of the same entity, the two will be linked via
4238  // PrevDecl.
4239  TagDecl *New;
4240
4241  if (Kind == TagDecl::TK_enum) {
4242    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4243    // enum X { A, B, C } D;    D should chain to X.
4244    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4245                           cast_or_null<EnumDecl>(PrevDecl));
4246    // If this is an undefined enum, warn.
4247    if (TUK != TUK_Definition && !Invalid)  {
4248      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4249                                              : diag::ext_forward_ref_enum;
4250      Diag(Loc, DK);
4251    }
4252  } else {
4253    // struct/union/class
4254
4255    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4256    // struct X { int A; } D;    D should chain to X.
4257    if (getLangOptions().CPlusPlus) {
4258      // FIXME: Look for a way to use RecordDecl for simple structs.
4259      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4260                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4261
4262      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4263        StdBadAlloc = cast<CXXRecordDecl>(New);
4264    } else
4265      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4266                               cast_or_null<RecordDecl>(PrevDecl));
4267  }
4268
4269  if (Kind != TagDecl::TK_enum) {
4270    // Handle #pragma pack: if the #pragma pack stack has non-default
4271    // alignment, make up a packed attribute for this decl. These
4272    // attributes are checked when the ASTContext lays out the
4273    // structure.
4274    //
4275    // It is important for implementing the correct semantics that this
4276    // happen here (in act on tag decl). The #pragma pack stack is
4277    // maintained as a result of parser callbacks which can occur at
4278    // many points during the parsing of a struct declaration (because
4279    // the #pragma tokens are effectively skipped over during the
4280    // parsing of the struct).
4281    if (unsigned Alignment = getPragmaPackAlignment())
4282      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4283  }
4284
4285  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4286    // C++ [dcl.typedef]p3:
4287    //   [...] Similarly, in a given scope, a class or enumeration
4288    //   shall not be declared with the same name as a typedef-name
4289    //   that is declared in that scope and refers to a type other
4290    //   than the class or enumeration itself.
4291    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4292    TypedefDecl *PrevTypedef = 0;
4293    if (Lookup.getKind() == LookupResult::Found)
4294      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4295
4296    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4297        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4298          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4299      Diag(Loc, diag::err_tag_definition_of_typedef)
4300        << Context.getTypeDeclType(New)
4301        << PrevTypedef->getUnderlyingType();
4302      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4303      Invalid = true;
4304    }
4305  }
4306
4307  if (Invalid)
4308    New->setInvalidDecl();
4309
4310  if (Attr)
4311    ProcessDeclAttributeList(S, New, Attr);
4312
4313  // If we're declaring or defining a tag in function prototype scope
4314  // in C, note that this type can only be used within the function.
4315  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4316    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4317
4318  // Set the lexical context. If the tag has a C++ scope specifier, the
4319  // lexical context will be different from the semantic context.
4320  New->setLexicalDeclContext(CurContext);
4321
4322  // Mark this as a friend decl if applicable.
4323  if (TUK == TUK_Friend)
4324    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4325
4326  // Set the access specifier.
4327  if (!Invalid && TUK != TUK_Friend)
4328    SetMemberAccessSpecifier(New, PrevDecl, AS);
4329
4330  if (TUK == TUK_Definition)
4331    New->startDefinition();
4332
4333  // If this has an identifier, add it to the scope stack.
4334  if (TUK == TUK_Friend) {
4335    // We might be replacing an existing declaration in the lookup tables;
4336    // if so, borrow its access specifier.
4337    if (PrevDecl)
4338      New->setAccess(PrevDecl->getAccess());
4339
4340    // Friend tag decls are visible in fairly strange ways.
4341    if (!CurContext->isDependentContext()) {
4342      DeclContext *DC = New->getDeclContext()->getLookupContext();
4343      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4344      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4345        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4346    }
4347  } else if (Name) {
4348    S = getNonFieldDeclScope(S);
4349    PushOnScopeChains(New, S);
4350  } else {
4351    CurContext->addDecl(New);
4352  }
4353
4354  // If this is the C FILE type, notify the AST context.
4355  if (IdentifierInfo *II = New->getIdentifier())
4356    if (!New->isInvalidDecl() &&
4357        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4358        II->isStr("FILE"))
4359      Context.setFILEDecl(New);
4360
4361  OwnedDecl = true;
4362  return DeclPtrTy::make(New);
4363}
4364
4365void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4366  AdjustDeclIfTemplate(TagD);
4367  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4368
4369  // Enter the tag context.
4370  PushDeclContext(S, Tag);
4371
4372  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4373    FieldCollector->StartClass();
4374
4375    if (Record->getIdentifier()) {
4376      // C++ [class]p2:
4377      //   [...] The class-name is also inserted into the scope of the
4378      //   class itself; this is known as the injected-class-name. For
4379      //   purposes of access checking, the injected-class-name is treated
4380      //   as if it were a public member name.
4381      CXXRecordDecl *InjectedClassName
4382        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4383                                CurContext, Record->getLocation(),
4384                                Record->getIdentifier(),
4385                                Record->getTagKeywordLoc(),
4386                                Record);
4387      InjectedClassName->setImplicit();
4388      InjectedClassName->setAccess(AS_public);
4389      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4390        InjectedClassName->setDescribedClassTemplate(Template);
4391      PushOnScopeChains(InjectedClassName, S);
4392      assert(InjectedClassName->isInjectedClassName() &&
4393             "Broken injected-class-name");
4394    }
4395  }
4396}
4397
4398void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4399                                    SourceLocation RBraceLoc) {
4400  AdjustDeclIfTemplate(TagD);
4401  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4402  Tag->setRBraceLoc(RBraceLoc);
4403
4404  if (isa<CXXRecordDecl>(Tag))
4405    FieldCollector->FinishClass();
4406
4407  // Exit this scope of this tag's definition.
4408  PopDeclContext();
4409
4410  // Notify the consumer that we've defined a tag.
4411  Consumer.HandleTagDeclDefinition(Tag);
4412}
4413
4414// Note that FieldName may be null for anonymous bitfields.
4415bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4416                          QualType FieldTy, const Expr *BitWidth,
4417                          bool *ZeroWidth) {
4418  // Default to true; that shouldn't confuse checks for emptiness
4419  if (ZeroWidth)
4420    *ZeroWidth = true;
4421
4422  // C99 6.7.2.1p4 - verify the field type.
4423  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4424  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4425    // Handle incomplete types with specific error.
4426    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4427      return true;
4428    if (FieldName)
4429      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4430        << FieldName << FieldTy << BitWidth->getSourceRange();
4431    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4432      << FieldTy << BitWidth->getSourceRange();
4433  }
4434
4435  // If the bit-width is type- or value-dependent, don't try to check
4436  // it now.
4437  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4438    return false;
4439
4440  llvm::APSInt Value;
4441  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4442    return true;
4443
4444  if (Value != 0 && ZeroWidth)
4445    *ZeroWidth = false;
4446
4447  // Zero-width bitfield is ok for anonymous field.
4448  if (Value == 0 && FieldName)
4449    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4450
4451  if (Value.isSigned() && Value.isNegative()) {
4452    if (FieldName)
4453      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4454               << FieldName << Value.toString(10);
4455    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4456      << Value.toString(10);
4457  }
4458
4459  if (!FieldTy->isDependentType()) {
4460    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4461    if (Value.getZExtValue() > TypeSize) {
4462      if (FieldName)
4463        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4464          << FieldName << (unsigned)TypeSize;
4465      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4466        << (unsigned)TypeSize;
4467    }
4468  }
4469
4470  return false;
4471}
4472
4473/// ActOnField - Each field of a struct/union/class is passed into this in order
4474/// to create a FieldDecl object for it.
4475Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4476                                 SourceLocation DeclStart,
4477                                 Declarator &D, ExprTy *BitfieldWidth) {
4478  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4479                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4480                               AS_public);
4481  return DeclPtrTy::make(Res);
4482}
4483
4484/// HandleField - Analyze a field of a C struct or a C++ data member.
4485///
4486FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4487                             SourceLocation DeclStart,
4488                             Declarator &D, Expr *BitWidth,
4489                             AccessSpecifier AS) {
4490  IdentifierInfo *II = D.getIdentifier();
4491  SourceLocation Loc = DeclStart;
4492  if (II) Loc = D.getIdentifierLoc();
4493
4494  DeclaratorInfo *DInfo = 0;
4495  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4496  if (getLangOptions().CPlusPlus)
4497    CheckExtraCXXDefaultArguments(D);
4498
4499  DiagnoseFunctionSpecifiers(D);
4500
4501  if (D.getDeclSpec().isThreadSpecified())
4502    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4503
4504  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4505
4506  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4507    // Maybe we will complain about the shadowed template parameter.
4508    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4509    // Just pretend that we didn't see the previous declaration.
4510    PrevDecl = 0;
4511  }
4512
4513  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4514    PrevDecl = 0;
4515
4516  bool Mutable
4517    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4518  SourceLocation TSSL = D.getSourceRange().getBegin();
4519  FieldDecl *NewFD
4520    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4521                     AS, PrevDecl, &D);
4522  if (NewFD->isInvalidDecl() && PrevDecl) {
4523    // Don't introduce NewFD into scope; there's already something
4524    // with the same name in the same scope.
4525  } else if (II) {
4526    PushOnScopeChains(NewFD, S);
4527  } else
4528    Record->addDecl(NewFD);
4529
4530  return NewFD;
4531}
4532
4533/// \brief Build a new FieldDecl and check its well-formedness.
4534///
4535/// This routine builds a new FieldDecl given the fields name, type,
4536/// record, etc. \p PrevDecl should refer to any previous declaration
4537/// with the same name and in the same scope as the field to be
4538/// created.
4539///
4540/// \returns a new FieldDecl.
4541///
4542/// \todo The Declarator argument is a hack. It will be removed once
4543FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4544                                DeclaratorInfo *DInfo,
4545                                RecordDecl *Record, SourceLocation Loc,
4546                                bool Mutable, Expr *BitWidth,
4547                                SourceLocation TSSL,
4548                                AccessSpecifier AS, NamedDecl *PrevDecl,
4549                                Declarator *D) {
4550  IdentifierInfo *II = Name.getAsIdentifierInfo();
4551  bool InvalidDecl = false;
4552  if (D) InvalidDecl = D->isInvalidType();
4553
4554  // If we receive a broken type, recover by assuming 'int' and
4555  // marking this declaration as invalid.
4556  if (T.isNull()) {
4557    InvalidDecl = true;
4558    T = Context.IntTy;
4559  }
4560
4561  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4562  // than a variably modified type.
4563  if (T->isVariablyModifiedType()) {
4564    bool SizeIsNegative;
4565    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4566                                                           SizeIsNegative);
4567    if (!FixedTy.isNull()) {
4568      Diag(Loc, diag::warn_illegal_constant_array_size);
4569      T = FixedTy;
4570    } else {
4571      if (SizeIsNegative)
4572        Diag(Loc, diag::err_typecheck_negative_array_size);
4573      else
4574        Diag(Loc, diag::err_typecheck_field_variable_size);
4575      InvalidDecl = true;
4576    }
4577  }
4578
4579  // Fields can not have abstract class types
4580  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4581                             AbstractFieldType))
4582    InvalidDecl = true;
4583
4584  bool ZeroWidth = false;
4585  // If this is declared as a bit-field, check the bit-field.
4586  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4587    InvalidDecl = true;
4588    DeleteExpr(BitWidth);
4589    BitWidth = 0;
4590    ZeroWidth = false;
4591  }
4592
4593  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4594                                       BitWidth, Mutable);
4595  if (InvalidDecl)
4596    NewFD->setInvalidDecl();
4597
4598  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4599    Diag(Loc, diag::err_duplicate_member) << II;
4600    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4601    NewFD->setInvalidDecl();
4602  }
4603
4604  if (getLangOptions().CPlusPlus) {
4605    QualType EltTy = Context.getBaseElementType(T);
4606
4607    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4608
4609    if (!T->isPODType())
4610      CXXRecord->setPOD(false);
4611    if (!ZeroWidth)
4612      CXXRecord->setEmpty(false);
4613
4614    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4615      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4616
4617      if (!RDecl->hasTrivialConstructor())
4618        CXXRecord->setHasTrivialConstructor(false);
4619      if (!RDecl->hasTrivialCopyConstructor())
4620        CXXRecord->setHasTrivialCopyConstructor(false);
4621      if (!RDecl->hasTrivialCopyAssignment())
4622        CXXRecord->setHasTrivialCopyAssignment(false);
4623      if (!RDecl->hasTrivialDestructor())
4624        CXXRecord->setHasTrivialDestructor(false);
4625
4626      // C++ 9.5p1: An object of a class with a non-trivial
4627      // constructor, a non-trivial copy constructor, a non-trivial
4628      // destructor, or a non-trivial copy assignment operator
4629      // cannot be a member of a union, nor can an array of such
4630      // objects.
4631      // TODO: C++0x alters this restriction significantly.
4632      if (Record->isUnion()) {
4633        // We check for copy constructors before constructors
4634        // because otherwise we'll never get complaints about
4635        // copy constructors.
4636
4637        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4638
4639        CXXSpecialMember member;
4640        if (!RDecl->hasTrivialCopyConstructor())
4641          member = CXXCopyConstructor;
4642        else if (!RDecl->hasTrivialConstructor())
4643          member = CXXDefaultConstructor;
4644        else if (!RDecl->hasTrivialCopyAssignment())
4645          member = CXXCopyAssignment;
4646        else if (!RDecl->hasTrivialDestructor())
4647          member = CXXDestructor;
4648        else
4649          member = invalid;
4650
4651        if (member != invalid) {
4652          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4653          DiagnoseNontrivial(RT, member);
4654          NewFD->setInvalidDecl();
4655        }
4656      }
4657    }
4658  }
4659
4660  // FIXME: We need to pass in the attributes given an AST
4661  // representation, not a parser representation.
4662  if (D)
4663    // FIXME: What to pass instead of TUScope?
4664    ProcessDeclAttributes(TUScope, NewFD, *D);
4665
4666  if (T.isObjCGCWeak())
4667    Diag(Loc, diag::warn_attribute_weak_on_field);
4668
4669  NewFD->setAccess(AS);
4670
4671  // C++ [dcl.init.aggr]p1:
4672  //   An aggregate is an array or a class (clause 9) with [...] no
4673  //   private or protected non-static data members (clause 11).
4674  // A POD must be an aggregate.
4675  if (getLangOptions().CPlusPlus &&
4676      (AS == AS_private || AS == AS_protected)) {
4677    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4678    CXXRecord->setAggregate(false);
4679    CXXRecord->setPOD(false);
4680  }
4681
4682  return NewFD;
4683}
4684
4685/// DiagnoseNontrivial - Given that a class has a non-trivial
4686/// special member, figure out why.
4687void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4688  QualType QT(T, 0U);
4689  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4690
4691  // Check whether the member was user-declared.
4692  switch (member) {
4693  case CXXDefaultConstructor:
4694    if (RD->hasUserDeclaredConstructor()) {
4695      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4696      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4697        if (!ci->isImplicitlyDefined(Context)) {
4698          SourceLocation CtorLoc = ci->getLocation();
4699          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4700          return;
4701        }
4702
4703      assert(0 && "found no user-declared constructors");
4704      return;
4705    }
4706    break;
4707
4708  case CXXCopyConstructor:
4709    if (RD->hasUserDeclaredCopyConstructor()) {
4710      SourceLocation CtorLoc =
4711        RD->getCopyConstructor(Context, 0)->getLocation();
4712      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4713      return;
4714    }
4715    break;
4716
4717  case CXXCopyAssignment:
4718    if (RD->hasUserDeclaredCopyAssignment()) {
4719      // FIXME: this should use the location of the copy
4720      // assignment, not the type.
4721      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4722      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4723      return;
4724    }
4725    break;
4726
4727  case CXXDestructor:
4728    if (RD->hasUserDeclaredDestructor()) {
4729      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4730      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4731      return;
4732    }
4733    break;
4734  }
4735
4736  typedef CXXRecordDecl::base_class_iterator base_iter;
4737
4738  // Virtual bases and members inhibit trivial copying/construction,
4739  // but not trivial destruction.
4740  if (member != CXXDestructor) {
4741    // Check for virtual bases.  vbases includes indirect virtual bases,
4742    // so we just iterate through the direct bases.
4743    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4744      if (bi->isVirtual()) {
4745        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4746        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4747        return;
4748      }
4749
4750    // Check for virtual methods.
4751    typedef CXXRecordDecl::method_iterator meth_iter;
4752    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4753         ++mi) {
4754      if (mi->isVirtual()) {
4755        SourceLocation MLoc = mi->getSourceRange().getBegin();
4756        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4757        return;
4758      }
4759    }
4760  }
4761
4762  bool (CXXRecordDecl::*hasTrivial)() const;
4763  switch (member) {
4764  case CXXDefaultConstructor:
4765    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4766  case CXXCopyConstructor:
4767    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4768  case CXXCopyAssignment:
4769    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4770  case CXXDestructor:
4771    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4772  default:
4773    assert(0 && "unexpected special member"); return;
4774  }
4775
4776  // Check for nontrivial bases (and recurse).
4777  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4778    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4779    assert(BaseRT);
4780    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4781    if (!(BaseRecTy->*hasTrivial)()) {
4782      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4783      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4784      DiagnoseNontrivial(BaseRT, member);
4785      return;
4786    }
4787  }
4788
4789  // Check for nontrivial members (and recurse).
4790  typedef RecordDecl::field_iterator field_iter;
4791  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4792       ++fi) {
4793    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4794    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4795      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4796
4797      if (!(EltRD->*hasTrivial)()) {
4798        SourceLocation FLoc = (*fi)->getLocation();
4799        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4800        DiagnoseNontrivial(EltRT, member);
4801        return;
4802      }
4803    }
4804  }
4805
4806  assert(0 && "found no explanation for non-trivial member");
4807}
4808
4809/// TranslateIvarVisibility - Translate visibility from a token ID to an
4810///  AST enum value.
4811static ObjCIvarDecl::AccessControl
4812TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4813  switch (ivarVisibility) {
4814  default: assert(0 && "Unknown visitibility kind");
4815  case tok::objc_private: return ObjCIvarDecl::Private;
4816  case tok::objc_public: return ObjCIvarDecl::Public;
4817  case tok::objc_protected: return ObjCIvarDecl::Protected;
4818  case tok::objc_package: return ObjCIvarDecl::Package;
4819  }
4820}
4821
4822/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4823/// in order to create an IvarDecl object for it.
4824Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4825                                SourceLocation DeclStart,
4826                                DeclPtrTy IntfDecl,
4827                                Declarator &D, ExprTy *BitfieldWidth,
4828                                tok::ObjCKeywordKind Visibility) {
4829
4830  IdentifierInfo *II = D.getIdentifier();
4831  Expr *BitWidth = (Expr*)BitfieldWidth;
4832  SourceLocation Loc = DeclStart;
4833  if (II) Loc = D.getIdentifierLoc();
4834
4835  // FIXME: Unnamed fields can be handled in various different ways, for
4836  // example, unnamed unions inject all members into the struct namespace!
4837
4838  DeclaratorInfo *DInfo = 0;
4839  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4840
4841  if (BitWidth) {
4842    // 6.7.2.1p3, 6.7.2.1p4
4843    if (VerifyBitField(Loc, II, T, BitWidth)) {
4844      D.setInvalidType();
4845      DeleteExpr(BitWidth);
4846      BitWidth = 0;
4847    }
4848  } else {
4849    // Not a bitfield.
4850
4851    // validate II.
4852
4853  }
4854
4855  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4856  // than a variably modified type.
4857  if (T->isVariablyModifiedType()) {
4858    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4859    D.setInvalidType();
4860  }
4861
4862  // Get the visibility (access control) for this ivar.
4863  ObjCIvarDecl::AccessControl ac =
4864    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4865                                        : ObjCIvarDecl::None;
4866  // Must set ivar's DeclContext to its enclosing interface.
4867  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4868  DeclContext *EnclosingContext;
4869  if (ObjCImplementationDecl *IMPDecl =
4870      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4871    // Case of ivar declared in an implementation. Context is that of its class.
4872    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4873    assert(IDecl && "No class- ActOnIvar");
4874    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4875  } else
4876    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4877  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4878
4879  // Construct the decl.
4880  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4881                                             EnclosingContext, Loc, II, T,
4882                                             DInfo, ac, (Expr *)BitfieldWidth);
4883
4884  if (II) {
4885    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4886    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4887        && !isa<TagDecl>(PrevDecl)) {
4888      Diag(Loc, diag::err_duplicate_member) << II;
4889      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4890      NewID->setInvalidDecl();
4891    }
4892  }
4893
4894  // Process attributes attached to the ivar.
4895  ProcessDeclAttributes(S, NewID, D);
4896
4897  if (D.isInvalidType())
4898    NewID->setInvalidDecl();
4899
4900  if (II) {
4901    // FIXME: When interfaces are DeclContexts, we'll need to add
4902    // these to the interface.
4903    S->AddDecl(DeclPtrTy::make(NewID));
4904    IdResolver.AddDecl(NewID);
4905  }
4906
4907  return DeclPtrTy::make(NewID);
4908}
4909
4910void Sema::ActOnFields(Scope* S,
4911                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4912                       DeclPtrTy *Fields, unsigned NumFields,
4913                       SourceLocation LBrac, SourceLocation RBrac,
4914                       AttributeList *Attr) {
4915  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4916  assert(EnclosingDecl && "missing record or interface decl");
4917
4918  // If the decl this is being inserted into is invalid, then it may be a
4919  // redeclaration or some other bogus case.  Don't try to add fields to it.
4920  if (EnclosingDecl->isInvalidDecl()) {
4921    // FIXME: Deallocate fields?
4922    return;
4923  }
4924
4925
4926  // Verify that all the fields are okay.
4927  unsigned NumNamedMembers = 0;
4928  llvm::SmallVector<FieldDecl*, 32> RecFields;
4929
4930  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4931  for (unsigned i = 0; i != NumFields; ++i) {
4932    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4933
4934    // Get the type for the field.
4935    Type *FDTy = FD->getType().getTypePtr();
4936
4937    if (!FD->isAnonymousStructOrUnion()) {
4938      // Remember all fields written by the user.
4939      RecFields.push_back(FD);
4940    }
4941
4942    // If the field is already invalid for some reason, don't emit more
4943    // diagnostics about it.
4944    if (FD->isInvalidDecl())
4945      continue;
4946
4947    // C99 6.7.2.1p2:
4948    //   A structure or union shall not contain a member with
4949    //   incomplete or function type (hence, a structure shall not
4950    //   contain an instance of itself, but may contain a pointer to
4951    //   an instance of itself), except that the last member of a
4952    //   structure with more than one named member may have incomplete
4953    //   array type; such a structure (and any union containing,
4954    //   possibly recursively, a member that is such a structure)
4955    //   shall not be a member of a structure or an element of an
4956    //   array.
4957    if (FDTy->isFunctionType()) {
4958      // Field declared as a function.
4959      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4960        << FD->getDeclName();
4961      FD->setInvalidDecl();
4962      EnclosingDecl->setInvalidDecl();
4963      continue;
4964    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4965               Record && Record->isStruct()) {
4966      // Flexible array member.
4967      if (NumNamedMembers < 1) {
4968        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4969          << FD->getDeclName();
4970        FD->setInvalidDecl();
4971        EnclosingDecl->setInvalidDecl();
4972        continue;
4973      }
4974      // Okay, we have a legal flexible array member at the end of the struct.
4975      if (Record)
4976        Record->setHasFlexibleArrayMember(true);
4977    } else if (!FDTy->isDependentType() &&
4978               RequireCompleteType(FD->getLocation(), FD->getType(),
4979                                   diag::err_field_incomplete)) {
4980      // Incomplete type
4981      FD->setInvalidDecl();
4982      EnclosingDecl->setInvalidDecl();
4983      continue;
4984    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4985      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4986        // If this is a member of a union, then entire union becomes "flexible".
4987        if (Record && Record->isUnion()) {
4988          Record->setHasFlexibleArrayMember(true);
4989        } else {
4990          // If this is a struct/class and this is not the last element, reject
4991          // it.  Note that GCC supports variable sized arrays in the middle of
4992          // structures.
4993          if (i != NumFields-1)
4994            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4995              << FD->getDeclName() << FD->getType();
4996          else {
4997            // We support flexible arrays at the end of structs in
4998            // other structs as an extension.
4999            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5000              << FD->getDeclName();
5001            if (Record)
5002              Record->setHasFlexibleArrayMember(true);
5003          }
5004        }
5005      }
5006      if (Record && FDTTy->getDecl()->hasObjectMember())
5007        Record->setHasObjectMember(true);
5008    } else if (FDTy->isObjCInterfaceType()) {
5009      /// A field cannot be an Objective-c object
5010      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5011      FD->setInvalidDecl();
5012      EnclosingDecl->setInvalidDecl();
5013      continue;
5014    } else if (getLangOptions().ObjC1 &&
5015               getLangOptions().getGCMode() != LangOptions::NonGC &&
5016               Record &&
5017               (FD->getType()->isObjCObjectPointerType() ||
5018                FD->getType().isObjCGCStrong()))
5019      Record->setHasObjectMember(true);
5020    // Keep track of the number of named members.
5021    if (FD->getIdentifier())
5022      ++NumNamedMembers;
5023  }
5024
5025  // Okay, we successfully defined 'Record'.
5026  if (Record) {
5027    Record->completeDefinition(Context);
5028  } else {
5029    ObjCIvarDecl **ClsFields =
5030      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5031    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5032      ID->setIVarList(ClsFields, RecFields.size(), Context);
5033      ID->setLocEnd(RBrac);
5034      // Add ivar's to class's DeclContext.
5035      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5036        ClsFields[i]->setLexicalDeclContext(ID);
5037        ID->addDecl(ClsFields[i]);
5038      }
5039      // Must enforce the rule that ivars in the base classes may not be
5040      // duplicates.
5041      if (ID->getSuperClass()) {
5042        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5043             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5044          ObjCIvarDecl* Ivar = (*IVI);
5045
5046          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5047            ObjCIvarDecl* prevIvar =
5048              ID->getSuperClass()->lookupInstanceVariable(II);
5049            if (prevIvar) {
5050              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5051              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5052            }
5053          }
5054        }
5055      }
5056    } else if (ObjCImplementationDecl *IMPDecl =
5057                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5058      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5059      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5060        // Ivar declared in @implementation never belongs to the implementation.
5061        // Only it is in implementation's lexical context.
5062        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5063      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5064    }
5065  }
5066
5067  if (Attr)
5068    ProcessDeclAttributeList(S, Record, Attr);
5069}
5070
5071EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5072                                          EnumConstantDecl *LastEnumConst,
5073                                          SourceLocation IdLoc,
5074                                          IdentifierInfo *Id,
5075                                          ExprArg val) {
5076  Expr *Val = (Expr *)val.get();
5077
5078  llvm::APSInt EnumVal(32);
5079  QualType EltTy;
5080  if (Val && !Val->isTypeDependent()) {
5081    // Make sure to promote the operand type to int.
5082    UsualUnaryConversions(Val);
5083    if (Val != val.get()) {
5084      val.release();
5085      val = Val;
5086    }
5087
5088    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5089    SourceLocation ExpLoc;
5090    if (!Val->isValueDependent() &&
5091        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5092      Val = 0;
5093    } else {
5094      EltTy = Val->getType();
5095    }
5096  }
5097
5098  if (!Val) {
5099    if (LastEnumConst) {
5100      // Assign the last value + 1.
5101      EnumVal = LastEnumConst->getInitVal();
5102      ++EnumVal;
5103
5104      // Check for overflow on increment.
5105      if (EnumVal < LastEnumConst->getInitVal())
5106        Diag(IdLoc, diag::warn_enum_value_overflow);
5107
5108      EltTy = LastEnumConst->getType();
5109    } else {
5110      // First value, set to zero.
5111      EltTy = Context.IntTy;
5112      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5113    }
5114  }
5115
5116  val.release();
5117  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5118                                  Val, EnumVal);
5119}
5120
5121
5122Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5123                                        DeclPtrTy lastEnumConst,
5124                                        SourceLocation IdLoc,
5125                                        IdentifierInfo *Id,
5126                                        SourceLocation EqualLoc, ExprTy *val) {
5127  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5128  EnumConstantDecl *LastEnumConst =
5129    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5130  Expr *Val = static_cast<Expr*>(val);
5131
5132  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5133  // we find one that is.
5134  S = getNonFieldDeclScope(S);
5135
5136  // Verify that there isn't already something declared with this name in this
5137  // scope.
5138  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5139  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5140    // Maybe we will complain about the shadowed template parameter.
5141    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5142    // Just pretend that we didn't see the previous declaration.
5143    PrevDecl = 0;
5144  }
5145
5146  if (PrevDecl) {
5147    // When in C++, we may get a TagDecl with the same name; in this case the
5148    // enum constant will 'hide' the tag.
5149    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5150           "Received TagDecl when not in C++!");
5151    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5152      if (isa<EnumConstantDecl>(PrevDecl))
5153        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5154      else
5155        Diag(IdLoc, diag::err_redefinition) << Id;
5156      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5157      if (Val) Val->Destroy(Context);
5158      return DeclPtrTy();
5159    }
5160  }
5161
5162  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5163                                            IdLoc, Id, Owned(Val));
5164
5165  // Register this decl in the current scope stack.
5166  if (New)
5167    PushOnScopeChains(New, S);
5168
5169  return DeclPtrTy::make(New);
5170}
5171
5172void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5173                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5174                         DeclPtrTy *Elements, unsigned NumElements,
5175                         Scope *S, AttributeList *Attr) {
5176  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5177  QualType EnumType = Context.getTypeDeclType(Enum);
5178
5179  if (Attr)
5180    ProcessDeclAttributeList(S, Enum, Attr);
5181
5182  // TODO: If the result value doesn't fit in an int, it must be a long or long
5183  // long value.  ISO C does not support this, but GCC does as an extension,
5184  // emit a warning.
5185  unsigned IntWidth = Context.Target.getIntWidth();
5186  unsigned CharWidth = Context.Target.getCharWidth();
5187  unsigned ShortWidth = Context.Target.getShortWidth();
5188
5189  // Verify that all the values are okay, compute the size of the values, and
5190  // reverse the list.
5191  unsigned NumNegativeBits = 0;
5192  unsigned NumPositiveBits = 0;
5193
5194  // Keep track of whether all elements have type int.
5195  bool AllElementsInt = true;
5196
5197  for (unsigned i = 0; i != NumElements; ++i) {
5198    EnumConstantDecl *ECD =
5199      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5200    if (!ECD) continue;  // Already issued a diagnostic.
5201
5202    // If the enum value doesn't fit in an int, emit an extension warning.
5203    const llvm::APSInt &InitVal = ECD->getInitVal();
5204    assert(InitVal.getBitWidth() >= IntWidth &&
5205           "Should have promoted value to int");
5206    if (InitVal.getBitWidth() > IntWidth) {
5207      llvm::APSInt V(InitVal);
5208      V.trunc(IntWidth);
5209      V.extend(InitVal.getBitWidth());
5210      if (V != InitVal)
5211        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5212          << InitVal.toString(10);
5213    }
5214
5215    // Keep track of the size of positive and negative values.
5216    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5217      NumPositiveBits = std::max(NumPositiveBits,
5218                                 (unsigned)InitVal.getActiveBits());
5219    else
5220      NumNegativeBits = std::max(NumNegativeBits,
5221                                 (unsigned)InitVal.getMinSignedBits());
5222
5223    // Keep track of whether every enum element has type int (very commmon).
5224    if (AllElementsInt)
5225      AllElementsInt = ECD->getType() == Context.IntTy;
5226  }
5227
5228  // Figure out the type that should be used for this enum.
5229  // FIXME: Support -fshort-enums.
5230  QualType BestType;
5231  unsigned BestWidth;
5232
5233  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5234
5235  if (NumNegativeBits) {
5236    // If there is a negative value, figure out the smallest integer type (of
5237    // int/long/longlong) that fits.
5238    // If it's packed, check also if it fits a char or a short.
5239    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5240        BestType = Context.SignedCharTy;
5241        BestWidth = CharWidth;
5242    } else if (Packed && NumNegativeBits <= ShortWidth &&
5243               NumPositiveBits < ShortWidth) {
5244        BestType = Context.ShortTy;
5245        BestWidth = ShortWidth;
5246    }
5247    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5248      BestType = Context.IntTy;
5249      BestWidth = IntWidth;
5250    } else {
5251      BestWidth = Context.Target.getLongWidth();
5252
5253      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5254        BestType = Context.LongTy;
5255      else {
5256        BestWidth = Context.Target.getLongLongWidth();
5257
5258        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5259          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5260        BestType = Context.LongLongTy;
5261      }
5262    }
5263  } else {
5264    // If there is no negative value, figure out which of uint, ulong, ulonglong
5265    // fits.
5266    // If it's packed, check also if it fits a char or a short.
5267    if (Packed && NumPositiveBits <= CharWidth) {
5268        BestType = Context.UnsignedCharTy;
5269        BestWidth = CharWidth;
5270    } else if (Packed && NumPositiveBits <= ShortWidth) {
5271        BestType = Context.UnsignedShortTy;
5272        BestWidth = ShortWidth;
5273    }
5274    else if (NumPositiveBits <= IntWidth) {
5275      BestType = Context.UnsignedIntTy;
5276      BestWidth = IntWidth;
5277    } else if (NumPositiveBits <=
5278               (BestWidth = Context.Target.getLongWidth())) {
5279      BestType = Context.UnsignedLongTy;
5280    } else {
5281      BestWidth = Context.Target.getLongLongWidth();
5282      assert(NumPositiveBits <= BestWidth &&
5283             "How could an initializer get larger than ULL?");
5284      BestType = Context.UnsignedLongLongTy;
5285    }
5286  }
5287
5288  // Loop over all of the enumerator constants, changing their types to match
5289  // the type of the enum if needed.
5290  for (unsigned i = 0; i != NumElements; ++i) {
5291    EnumConstantDecl *ECD =
5292      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5293    if (!ECD) continue;  // Already issued a diagnostic.
5294
5295    // Standard C says the enumerators have int type, but we allow, as an
5296    // extension, the enumerators to be larger than int size.  If each
5297    // enumerator value fits in an int, type it as an int, otherwise type it the
5298    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5299    // that X has type 'int', not 'unsigned'.
5300    if (ECD->getType() == Context.IntTy) {
5301      // Make sure the init value is signed.
5302      llvm::APSInt IV = ECD->getInitVal();
5303      IV.setIsSigned(true);
5304      ECD->setInitVal(IV);
5305
5306      if (getLangOptions().CPlusPlus)
5307        // C++ [dcl.enum]p4: Following the closing brace of an
5308        // enum-specifier, each enumerator has the type of its
5309        // enumeration.
5310        ECD->setType(EnumType);
5311      continue;  // Already int type.
5312    }
5313
5314    // Determine whether the value fits into an int.
5315    llvm::APSInt InitVal = ECD->getInitVal();
5316    bool FitsInInt;
5317    if (InitVal.isUnsigned() || !InitVal.isNegative())
5318      FitsInInt = InitVal.getActiveBits() < IntWidth;
5319    else
5320      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5321
5322    // If it fits into an integer type, force it.  Otherwise force it to match
5323    // the enum decl type.
5324    QualType NewTy;
5325    unsigned NewWidth;
5326    bool NewSign;
5327    if (FitsInInt) {
5328      NewTy = Context.IntTy;
5329      NewWidth = IntWidth;
5330      NewSign = true;
5331    } else if (ECD->getType() == BestType) {
5332      // Already the right type!
5333      if (getLangOptions().CPlusPlus)
5334        // C++ [dcl.enum]p4: Following the closing brace of an
5335        // enum-specifier, each enumerator has the type of its
5336        // enumeration.
5337        ECD->setType(EnumType);
5338      continue;
5339    } else {
5340      NewTy = BestType;
5341      NewWidth = BestWidth;
5342      NewSign = BestType->isSignedIntegerType();
5343    }
5344
5345    // Adjust the APSInt value.
5346    InitVal.extOrTrunc(NewWidth);
5347    InitVal.setIsSigned(NewSign);
5348    ECD->setInitVal(InitVal);
5349
5350    // Adjust the Expr initializer and type.
5351    if (ECD->getInitExpr())
5352      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5353                                                      CastExpr::CK_Unknown,
5354                                                      ECD->getInitExpr(),
5355                                                      /*isLvalue=*/false));
5356    if (getLangOptions().CPlusPlus)
5357      // C++ [dcl.enum]p4: Following the closing brace of an
5358      // enum-specifier, each enumerator has the type of its
5359      // enumeration.
5360      ECD->setType(EnumType);
5361    else
5362      ECD->setType(NewTy);
5363  }
5364
5365  Enum->completeDefinition(Context, BestType);
5366}
5367
5368Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5369                                            ExprArg expr) {
5370  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5371
5372  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5373                                                   Loc, AsmString);
5374  CurContext->addDecl(New);
5375  return DeclPtrTy::make(New);
5376}
5377
5378void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5379                             SourceLocation PragmaLoc,
5380                             SourceLocation NameLoc) {
5381  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5382
5383  if (PrevDecl) {
5384    PrevDecl->addAttr(::new (Context) WeakAttr());
5385  } else {
5386    (void)WeakUndeclaredIdentifiers.insert(
5387      std::pair<IdentifierInfo*,WeakInfo>
5388        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5389  }
5390}
5391
5392void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5393                                IdentifierInfo* AliasName,
5394                                SourceLocation PragmaLoc,
5395                                SourceLocation NameLoc,
5396                                SourceLocation AliasNameLoc) {
5397  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5398  WeakInfo W = WeakInfo(Name, NameLoc);
5399
5400  if (PrevDecl) {
5401    if (!PrevDecl->hasAttr<AliasAttr>())
5402      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5403        DeclApplyPragmaWeak(TUScope, ND, W);
5404  } else {
5405    (void)WeakUndeclaredIdentifiers.insert(
5406      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5407  }
5408}
5409