SemaDecl.cpp revision 7f0a915eb546d353071be08c8adec155e5d9a0dc
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
216    if (!HasTrailingDot)
217      T = Context.getObjCInterfaceType(IDecl);
218  }
219
220  if (T.isNull()) {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return ParsedType();
224  }
225  return ParsedType::make(T);
226}
227
228/// isTagName() - This method is called *for error recovery purposes only*
229/// to determine if the specified name is a valid tag name ("struct foo").  If
230/// so, this returns the TST for the tag corresponding to it (TST_enum,
231/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
232/// where the user forgot to specify the tag.
233DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
234  // Do a tag name lookup in this scope.
235  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
236  LookupName(R, S, false);
237  R.suppressDiagnostics();
238  if (R.getResultKind() == LookupResult::Found)
239    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
240      switch (TD->getTagKind()) {
241      default:         return DeclSpec::TST_unspecified;
242      case TTK_Struct: return DeclSpec::TST_struct;
243      case TTK_Union:  return DeclSpec::TST_union;
244      case TTK_Class:  return DeclSpec::TST_class;
245      case TTK_Enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   CXXScopeSpec *SS,
256                                   ParsedType &SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = ParsedType();
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
266    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
267      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
268          !Result->isInvalidDecl()) {
269        // We found a similarly-named type or interface; suggest that.
270        if (!SS || !SS->isSet())
271          Diag(IILoc, diag::err_unknown_typename_suggest)
272            << &II << Lookup.getLookupName()
273            << FixItHint::CreateReplacement(SourceRange(IILoc),
274                                            Result->getNameAsString());
275        else if (DeclContext *DC = computeDeclContext(*SS, false))
276          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
277            << &II << DC << Lookup.getLookupName() << SS->getRange()
278            << FixItHint::CreateReplacement(SourceRange(IILoc),
279                                            Result->getNameAsString());
280        else
281          llvm_unreachable("could not have corrected a typo here");
282
283        Diag(Result->getLocation(), diag::note_previous_decl)
284          << Result->getDeclName();
285
286        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
287                                    false, false, ParsedType(),
288                                    /*NonTrivialTypeSourceInfo=*/true);
289        return true;
290      }
291    } else if (Lookup.empty()) {
292      // We corrected to a keyword.
293      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
294      Diag(IILoc, diag::err_unknown_typename_suggest)
295        << &II << Corrected;
296      return true;
297    }
298  }
299
300  if (getLangOptions().CPlusPlus) {
301    // See if II is a class template that the user forgot to pass arguments to.
302    UnqualifiedId Name;
303    Name.setIdentifier(&II, IILoc);
304    CXXScopeSpec EmptySS;
305    TemplateTy TemplateResult;
306    bool MemberOfUnknownSpecialization;
307    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
308                       Name, ParsedType(), true, TemplateResult,
309                       MemberOfUnknownSpecialization) == TNK_Type_template) {
310      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
311      Diag(IILoc, diag::err_template_missing_args) << TplName;
312      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
313        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
314          << TplDecl->getTemplateParameters()->getSourceRange();
315      }
316      return true;
317    }
318  }
319
320  // FIXME: Should we move the logic that tries to recover from a missing tag
321  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
322
323  if (!SS || (!SS->isSet() && !SS->isInvalid()))
324    Diag(IILoc, diag::err_unknown_typename) << &II;
325  else if (DeclContext *DC = computeDeclContext(*SS, false))
326    Diag(IILoc, diag::err_typename_nested_not_found)
327      << &II << DC << SS->getRange();
328  else if (isDependentScopeSpecifier(*SS)) {
329    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
330      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
331      << SourceRange(SS->getRange().getBegin(), IILoc)
332      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
333    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
334  } else {
335    assert(SS && SS->isInvalid() &&
336           "Invalid scope specifier has already been diagnosed");
337  }
338
339  return true;
340}
341
342// Determines the context to return to after temporarily entering a
343// context.  This depends in an unnecessarily complicated way on the
344// exact ordering of callbacks from the parser.
345DeclContext *Sema::getContainingDC(DeclContext *DC) {
346
347  // Functions defined inline within classes aren't parsed until we've
348  // finished parsing the top-level class, so the top-level class is
349  // the context we'll need to return to.
350  if (isa<FunctionDecl>(DC)) {
351    DC = DC->getLexicalParent();
352
353    // A function not defined within a class will always return to its
354    // lexical context.
355    if (!isa<CXXRecordDecl>(DC))
356      return DC;
357
358    // A C++ inline method/friend is parsed *after* the topmost class
359    // it was declared in is fully parsed ("complete");  the topmost
360    // class is the context we need to return to.
361    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
362      DC = RD;
363
364    // Return the declaration context of the topmost class the inline method is
365    // declared in.
366    return DC;
367  }
368
369  // ObjCMethodDecls are parsed (for some reason) outside the context
370  // of the class.
371  if (isa<ObjCMethodDecl>(DC))
372    return DC->getLexicalParent()->getLexicalParent();
373
374  return DC->getLexicalParent();
375}
376
377void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
378  assert(getContainingDC(DC) == CurContext &&
379      "The next DeclContext should be lexically contained in the current one.");
380  CurContext = DC;
381  S->setEntity(DC);
382}
383
384void Sema::PopDeclContext() {
385  assert(CurContext && "DeclContext imbalance!");
386
387  CurContext = getContainingDC(CurContext);
388  assert(CurContext && "Popped translation unit!");
389}
390
391/// EnterDeclaratorContext - Used when we must lookup names in the context
392/// of a declarator's nested name specifier.
393///
394void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
395  // C++0x [basic.lookup.unqual]p13:
396  //   A name used in the definition of a static data member of class
397  //   X (after the qualified-id of the static member) is looked up as
398  //   if the name was used in a member function of X.
399  // C++0x [basic.lookup.unqual]p14:
400  //   If a variable member of a namespace is defined outside of the
401  //   scope of its namespace then any name used in the definition of
402  //   the variable member (after the declarator-id) is looked up as
403  //   if the definition of the variable member occurred in its
404  //   namespace.
405  // Both of these imply that we should push a scope whose context
406  // is the semantic context of the declaration.  We can't use
407  // PushDeclContext here because that context is not necessarily
408  // lexically contained in the current context.  Fortunately,
409  // the containing scope should have the appropriate information.
410
411  assert(!S->getEntity() && "scope already has entity");
412
413#ifndef NDEBUG
414  Scope *Ancestor = S->getParent();
415  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
416  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
417#endif
418
419  CurContext = DC;
420  S->setEntity(DC);
421}
422
423void Sema::ExitDeclaratorContext(Scope *S) {
424  assert(S->getEntity() == CurContext && "Context imbalance!");
425
426  // Switch back to the lexical context.  The safety of this is
427  // enforced by an assert in EnterDeclaratorContext.
428  Scope *Ancestor = S->getParent();
429  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
430  CurContext = (DeclContext*) Ancestor->getEntity();
431
432  // We don't need to do anything with the scope, which is going to
433  // disappear.
434}
435
436/// \brief Determine whether we allow overloading of the function
437/// PrevDecl with another declaration.
438///
439/// This routine determines whether overloading is possible, not
440/// whether some new function is actually an overload. It will return
441/// true in C++ (where we can always provide overloads) or, as an
442/// extension, in C when the previous function is already an
443/// overloaded function declaration or has the "overloadable"
444/// attribute.
445static bool AllowOverloadingOfFunction(LookupResult &Previous,
446                                       ASTContext &Context) {
447  if (Context.getLangOptions().CPlusPlus)
448    return true;
449
450  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
451    return true;
452
453  return (Previous.getResultKind() == LookupResult::Found
454          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
455}
456
457/// Add this decl to the scope shadowed decl chains.
458void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
459  // Move up the scope chain until we find the nearest enclosing
460  // non-transparent context. The declaration will be introduced into this
461  // scope.
462  while (S->getEntity() &&
463         ((DeclContext *)S->getEntity())->isTransparentContext())
464    S = S->getParent();
465
466  // Add scoped declarations into their context, so that they can be
467  // found later. Declarations without a context won't be inserted
468  // into any context.
469  if (AddToContext)
470    CurContext->addDecl(D);
471
472  // Out-of-line definitions shouldn't be pushed into scope in C++.
473  // Out-of-line variable and function definitions shouldn't even in C.
474  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
475      D->isOutOfLine())
476    return;
477
478  // Template instantiations should also not be pushed into scope.
479  if (isa<FunctionDecl>(D) &&
480      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
481    return;
482
483  // If this replaces anything in the current scope,
484  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
485                               IEnd = IdResolver.end();
486  for (; I != IEnd; ++I) {
487    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
488      S->RemoveDecl(*I);
489      IdResolver.RemoveDecl(*I);
490
491      // Should only need to replace one decl.
492      break;
493    }
494  }
495
496  S->AddDecl(D);
497
498  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
499    // Implicitly-generated labels may end up getting generated in an order that
500    // isn't strictly lexical, which breaks name lookup. Be careful to insert
501    // the label at the appropriate place in the identifier chain.
502    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
503      DeclContext *IDC = (*I)->getLexicalDeclContext();
504      if (IDC == CurContext) {
505        if (!S->isDeclScope(*I))
506          continue;
507      } else if (IDC->Encloses(CurContext))
508        break;
509    }
510
511    IdResolver.InsertDeclAfter(I, D);
512  } else {
513    IdResolver.AddDecl(D);
514  }
515}
516
517bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
518                         bool ExplicitInstantiationOrSpecialization) {
519  return IdResolver.isDeclInScope(D, Ctx, Context, S,
520                                  ExplicitInstantiationOrSpecialization);
521}
522
523Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
524  DeclContext *TargetDC = DC->getPrimaryContext();
525  do {
526    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
527      if (ScopeDC->getPrimaryContext() == TargetDC)
528        return S;
529  } while ((S = S->getParent()));
530
531  return 0;
532}
533
534static bool isOutOfScopePreviousDeclaration(NamedDecl *,
535                                            DeclContext*,
536                                            ASTContext&);
537
538/// Filters out lookup results that don't fall within the given scope
539/// as determined by isDeclInScope.
540static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
541                                 DeclContext *Ctx, Scope *S,
542                                 bool ConsiderLinkage,
543                                 bool ExplicitInstantiationOrSpecialization) {
544  LookupResult::Filter F = R.makeFilter();
545  while (F.hasNext()) {
546    NamedDecl *D = F.next();
547
548    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
549      continue;
550
551    if (ConsiderLinkage &&
552        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
553      continue;
554
555    F.erase();
556  }
557
558  F.done();
559}
560
561static bool isUsingDecl(NamedDecl *D) {
562  return isa<UsingShadowDecl>(D) ||
563         isa<UnresolvedUsingTypenameDecl>(D) ||
564         isa<UnresolvedUsingValueDecl>(D);
565}
566
567/// Removes using shadow declarations from the lookup results.
568static void RemoveUsingDecls(LookupResult &R) {
569  LookupResult::Filter F = R.makeFilter();
570  while (F.hasNext())
571    if (isUsingDecl(F.next()))
572      F.erase();
573
574  F.done();
575}
576
577/// \brief Check for this common pattern:
578/// @code
579/// class S {
580///   S(const S&); // DO NOT IMPLEMENT
581///   void operator=(const S&); // DO NOT IMPLEMENT
582/// };
583/// @endcode
584static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
585  // FIXME: Should check for private access too but access is set after we get
586  // the decl here.
587  if (D->isThisDeclarationADefinition())
588    return false;
589
590  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
591    return CD->isCopyConstructor();
592  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
593    return Method->isCopyAssignmentOperator();
594  return false;
595}
596
597bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
598  assert(D);
599
600  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
601    return false;
602
603  // Ignore class templates.
604  if (D->getDeclContext()->isDependentContext() ||
605      D->getLexicalDeclContext()->isDependentContext())
606    return false;
607
608  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
609    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
610      return false;
611
612    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
613      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
614        return false;
615    } else {
616      // 'static inline' functions are used in headers; don't warn.
617      if (FD->getStorageClass() == SC_Static &&
618          FD->isInlineSpecified())
619        return false;
620    }
621
622    if (FD->isThisDeclarationADefinition() &&
623        Context.DeclMustBeEmitted(FD))
624      return false;
625
626  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
627    if (!VD->isFileVarDecl() ||
628        VD->getType().isConstant(Context) ||
629        Context.DeclMustBeEmitted(VD))
630      return false;
631
632    if (VD->isStaticDataMember() &&
633        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
634      return false;
635
636  } else {
637    return false;
638  }
639
640  // Only warn for unused decls internal to the translation unit.
641  if (D->getLinkage() == ExternalLinkage)
642    return false;
643
644  return true;
645}
646
647void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
648  if (!D)
649    return;
650
651  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
652    const FunctionDecl *First = FD->getFirstDeclaration();
653    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
654      return; // First should already be in the vector.
655  }
656
657  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
658    const VarDecl *First = VD->getFirstDeclaration();
659    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
660      return; // First should already be in the vector.
661  }
662
663   if (ShouldWarnIfUnusedFileScopedDecl(D))
664     UnusedFileScopedDecls.push_back(D);
665 }
666
667static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
668  if (D->isInvalidDecl())
669    return false;
670
671  if (D->isUsed() || D->hasAttr<UnusedAttr>())
672    return false;
673
674  if (isa<LabelDecl>(D))
675    return true;
676
677  // White-list anything that isn't a local variable.
678  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
679      !D->getDeclContext()->isFunctionOrMethod())
680    return false;
681
682  // Types of valid local variables should be complete, so this should succeed.
683  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
684
685    // White-list anything with an __attribute__((unused)) type.
686    QualType Ty = VD->getType();
687
688    // Only look at the outermost level of typedef.
689    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
690      if (TT->getDecl()->hasAttr<UnusedAttr>())
691        return false;
692    }
693
694    // If we failed to complete the type for some reason, or if the type is
695    // dependent, don't diagnose the variable.
696    if (Ty->isIncompleteType() || Ty->isDependentType())
697      return false;
698
699    if (const TagType *TT = Ty->getAs<TagType>()) {
700      const TagDecl *Tag = TT->getDecl();
701      if (Tag->hasAttr<UnusedAttr>())
702        return false;
703
704      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
705        // FIXME: Checking for the presence of a user-declared constructor
706        // isn't completely accurate; we'd prefer to check that the initializer
707        // has no side effects.
708        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
709          return false;
710      }
711    }
712
713    // TODO: __attribute__((unused)) templates?
714  }
715
716  return true;
717}
718
719/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
720/// unless they are marked attr(unused).
721void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
722  if (!ShouldDiagnoseUnusedDecl(D))
723    return;
724
725  unsigned DiagID;
726  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
727    DiagID = diag::warn_unused_exception_param;
728  else if (isa<LabelDecl>(D))
729    DiagID = diag::warn_unused_label;
730  else
731    DiagID = diag::warn_unused_variable;
732
733  Diag(D->getLocation(), DiagID) << D->getDeclName();
734}
735
736static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
737  // Verify that we have no forward references left.  If so, there was a goto
738  // or address of a label taken, but no definition of it.  Label fwd
739  // definitions are indicated with a null substmt.
740  if (L->getStmt() == 0)
741    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
742}
743
744void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
745  if (S->decl_empty()) return;
746  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
747         "Scope shouldn't contain decls!");
748
749  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
750       I != E; ++I) {
751    Decl *TmpD = (*I);
752    assert(TmpD && "This decl didn't get pushed??");
753
754    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
755    NamedDecl *D = cast<NamedDecl>(TmpD);
756
757    if (!D->getDeclName()) continue;
758
759    // Diagnose unused variables in this scope.
760    if (!S->hasErrorOccurred())
761      DiagnoseUnusedDecl(D);
762
763    // If this was a forward reference to a label, verify it was defined.
764    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
765      CheckPoppedLabel(LD, *this);
766
767    // Remove this name from our lexical scope.
768    IdResolver.RemoveDecl(D);
769  }
770}
771
772/// \brief Look for an Objective-C class in the translation unit.
773///
774/// \param Id The name of the Objective-C class we're looking for. If
775/// typo-correction fixes this name, the Id will be updated
776/// to the fixed name.
777///
778/// \param IdLoc The location of the name in the translation unit.
779///
780/// \param TypoCorrection If true, this routine will attempt typo correction
781/// if there is no class with the given name.
782///
783/// \returns The declaration of the named Objective-C class, or NULL if the
784/// class could not be found.
785ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
786                                              SourceLocation IdLoc,
787                                              bool TypoCorrection) {
788  // The third "scope" argument is 0 since we aren't enabling lazy built-in
789  // creation from this context.
790  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
791
792  if (!IDecl && TypoCorrection) {
793    // Perform typo correction at the given location, but only if we
794    // find an Objective-C class name.
795    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
796    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
797        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
798      Diag(IdLoc, diag::err_undef_interface_suggest)
799        << Id << IDecl->getDeclName()
800        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
801      Diag(IDecl->getLocation(), diag::note_previous_decl)
802        << IDecl->getDeclName();
803
804      Id = IDecl->getIdentifier();
805    }
806  }
807
808  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
809}
810
811/// getNonFieldDeclScope - Retrieves the innermost scope, starting
812/// from S, where a non-field would be declared. This routine copes
813/// with the difference between C and C++ scoping rules in structs and
814/// unions. For example, the following code is well-formed in C but
815/// ill-formed in C++:
816/// @code
817/// struct S6 {
818///   enum { BAR } e;
819/// };
820///
821/// void test_S6() {
822///   struct S6 a;
823///   a.e = BAR;
824/// }
825/// @endcode
826/// For the declaration of BAR, this routine will return a different
827/// scope. The scope S will be the scope of the unnamed enumeration
828/// within S6. In C++, this routine will return the scope associated
829/// with S6, because the enumeration's scope is a transparent
830/// context but structures can contain non-field names. In C, this
831/// routine will return the translation unit scope, since the
832/// enumeration's scope is a transparent context and structures cannot
833/// contain non-field names.
834Scope *Sema::getNonFieldDeclScope(Scope *S) {
835  while (((S->getFlags() & Scope::DeclScope) == 0) ||
836         (S->getEntity() &&
837          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
838         (S->isClassScope() && !getLangOptions().CPlusPlus))
839    S = S->getParent();
840  return S;
841}
842
843/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
844/// file scope.  lazily create a decl for it. ForRedeclaration is true
845/// if we're creating this built-in in anticipation of redeclaring the
846/// built-in.
847NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
848                                     Scope *S, bool ForRedeclaration,
849                                     SourceLocation Loc) {
850  Builtin::ID BID = (Builtin::ID)bid;
851
852  ASTContext::GetBuiltinTypeError Error;
853  QualType R = Context.GetBuiltinType(BID, Error);
854  switch (Error) {
855  case ASTContext::GE_None:
856    // Okay
857    break;
858
859  case ASTContext::GE_Missing_stdio:
860    if (ForRedeclaration)
861      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
862        << Context.BuiltinInfo.GetName(BID);
863    return 0;
864
865  case ASTContext::GE_Missing_setjmp:
866    if (ForRedeclaration)
867      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
868        << Context.BuiltinInfo.GetName(BID);
869    return 0;
870  }
871
872  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
873    Diag(Loc, diag::ext_implicit_lib_function_decl)
874      << Context.BuiltinInfo.GetName(BID)
875      << R;
876    if (Context.BuiltinInfo.getHeaderName(BID) &&
877        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
878          != Diagnostic::Ignored)
879      Diag(Loc, diag::note_please_include_header)
880        << Context.BuiltinInfo.getHeaderName(BID)
881        << Context.BuiltinInfo.GetName(BID);
882  }
883
884  FunctionDecl *New = FunctionDecl::Create(Context,
885                                           Context.getTranslationUnitDecl(),
886                                           Loc, Loc, II, R, /*TInfo=*/0,
887                                           SC_Extern,
888                                           SC_None, false,
889                                           /*hasPrototype=*/true);
890  New->setImplicit();
891
892  // Create Decl objects for each parameter, adding them to the
893  // FunctionDecl.
894  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
895    llvm::SmallVector<ParmVarDecl*, 16> Params;
896    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
897      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
898                                           SourceLocation(), 0,
899                                           FT->getArgType(i), /*TInfo=*/0,
900                                           SC_None, SC_None, 0));
901    New->setParams(Params.data(), Params.size());
902  }
903
904  AddKnownFunctionAttributes(New);
905
906  // TUScope is the translation-unit scope to insert this function into.
907  // FIXME: This is hideous. We need to teach PushOnScopeChains to
908  // relate Scopes to DeclContexts, and probably eliminate CurContext
909  // entirely, but we're not there yet.
910  DeclContext *SavedContext = CurContext;
911  CurContext = Context.getTranslationUnitDecl();
912  PushOnScopeChains(New, TUScope);
913  CurContext = SavedContext;
914  return New;
915}
916
917/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
918/// same name and scope as a previous declaration 'Old'.  Figure out
919/// how to resolve this situation, merging decls or emitting
920/// diagnostics as appropriate. If there was an error, set New to be invalid.
921///
922void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
923  // If the new decl is known invalid already, don't bother doing any
924  // merging checks.
925  if (New->isInvalidDecl()) return;
926
927  // Allow multiple definitions for ObjC built-in typedefs.
928  // FIXME: Verify the underlying types are equivalent!
929  if (getLangOptions().ObjC1) {
930    const IdentifierInfo *TypeID = New->getIdentifier();
931    switch (TypeID->getLength()) {
932    default: break;
933    case 2:
934      if (!TypeID->isStr("id"))
935        break;
936      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
937      // Install the built-in type for 'id', ignoring the current definition.
938      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
939      return;
940    case 5:
941      if (!TypeID->isStr("Class"))
942        break;
943      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
944      // Install the built-in type for 'Class', ignoring the current definition.
945      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
946      return;
947    case 3:
948      if (!TypeID->isStr("SEL"))
949        break;
950      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
951      // Install the built-in type for 'SEL', ignoring the current definition.
952      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
953      return;
954    case 8:
955      if (!TypeID->isStr("Protocol"))
956        break;
957      Context.setObjCProtoType(New->getUnderlyingType());
958      return;
959    }
960    // Fall through - the typedef name was not a builtin type.
961  }
962
963  // Verify the old decl was also a type.
964  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
965  if (!Old) {
966    Diag(New->getLocation(), diag::err_redefinition_different_kind)
967      << New->getDeclName();
968
969    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
970    if (OldD->getLocation().isValid())
971      Diag(OldD->getLocation(), diag::note_previous_definition);
972
973    return New->setInvalidDecl();
974  }
975
976  // If the old declaration is invalid, just give up here.
977  if (Old->isInvalidDecl())
978    return New->setInvalidDecl();
979
980  // Determine the "old" type we'll use for checking and diagnostics.
981  QualType OldType;
982  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
983    OldType = OldTypedef->getUnderlyingType();
984  else
985    OldType = Context.getTypeDeclType(Old);
986
987  // If the typedef types are not identical, reject them in all languages and
988  // with any extensions enabled.
989
990  if (OldType != New->getUnderlyingType() &&
991      Context.getCanonicalType(OldType) !=
992      Context.getCanonicalType(New->getUnderlyingType())) {
993    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
994      << New->getUnderlyingType() << OldType;
995    if (Old->getLocation().isValid())
996      Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999
1000  // The types match.  Link up the redeclaration chain if the old
1001  // declaration was a typedef.
1002  // FIXME: this is a potential source of wierdness if the type
1003  // spellings don't match exactly.
1004  if (isa<TypedefDecl>(Old))
1005    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1006
1007  if (getLangOptions().Microsoft)
1008    return;
1009
1010  if (getLangOptions().CPlusPlus) {
1011    // C++ [dcl.typedef]p2:
1012    //   In a given non-class scope, a typedef specifier can be used to
1013    //   redefine the name of any type declared in that scope to refer
1014    //   to the type to which it already refers.
1015    if (!isa<CXXRecordDecl>(CurContext))
1016      return;
1017
1018    // C++0x [dcl.typedef]p4:
1019    //   In a given class scope, a typedef specifier can be used to redefine
1020    //   any class-name declared in that scope that is not also a typedef-name
1021    //   to refer to the type to which it already refers.
1022    //
1023    // This wording came in via DR424, which was a correction to the
1024    // wording in DR56, which accidentally banned code like:
1025    //
1026    //   struct S {
1027    //     typedef struct A { } A;
1028    //   };
1029    //
1030    // in the C++03 standard. We implement the C++0x semantics, which
1031    // allow the above but disallow
1032    //
1033    //   struct S {
1034    //     typedef int I;
1035    //     typedef int I;
1036    //   };
1037    //
1038    // since that was the intent of DR56.
1039    if (!isa<TypedefDecl >(Old))
1040      return;
1041
1042    Diag(New->getLocation(), diag::err_redefinition)
1043      << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045    return New->setInvalidDecl();
1046  }
1047
1048  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1049  // is normally mapped to an error, but can be controlled with
1050  // -Wtypedef-redefinition.  If either the original or the redefinition is
1051  // in a system header, don't emit this for compatibility with GCC.
1052  if (getDiagnostics().getSuppressSystemWarnings() &&
1053      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1054       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1055    return;
1056
1057  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1058    << New->getDeclName();
1059  Diag(Old->getLocation(), diag::note_previous_definition);
1060  return;
1061}
1062
1063/// DeclhasAttr - returns true if decl Declaration already has the target
1064/// attribute.
1065static bool
1066DeclHasAttr(const Decl *D, const Attr *A) {
1067  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1068  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1069    if ((*i)->getKind() == A->getKind()) {
1070      // FIXME: Don't hardcode this check
1071      if (OA && isa<OwnershipAttr>(*i))
1072        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1073      return true;
1074    }
1075
1076  return false;
1077}
1078
1079/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1080static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1081                                ASTContext &C) {
1082  if (!oldDecl->hasAttrs())
1083    return;
1084
1085  bool foundAny = newDecl->hasAttrs();
1086
1087  // Ensure that any moving of objects within the allocated map is done before
1088  // we process them.
1089  if (!foundAny) newDecl->setAttrs(AttrVec());
1090
1091  for (specific_attr_iterator<InheritableAttr>
1092       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1093       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1094    if (!DeclHasAttr(newDecl, *i)) {
1095      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1096      newAttr->setInherited(true);
1097      newDecl->addAttr(newAttr);
1098      foundAny = true;
1099    }
1100  }
1101
1102  if (!foundAny) newDecl->dropAttrs();
1103}
1104
1105/// mergeParamDeclAttributes - Copy attributes from the old parameter
1106/// to the new one.
1107static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1108                                     const ParmVarDecl *oldDecl,
1109                                     ASTContext &C) {
1110  if (!oldDecl->hasAttrs())
1111    return;
1112
1113  bool foundAny = newDecl->hasAttrs();
1114
1115  // Ensure that any moving of objects within the allocated map is
1116  // done before we process them.
1117  if (!foundAny) newDecl->setAttrs(AttrVec());
1118
1119  for (specific_attr_iterator<InheritableParamAttr>
1120       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1121       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1122    if (!DeclHasAttr(newDecl, *i)) {
1123      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1124      newAttr->setInherited(true);
1125      newDecl->addAttr(newAttr);
1126      foundAny = true;
1127    }
1128  }
1129
1130  if (!foundAny) newDecl->dropAttrs();
1131}
1132
1133namespace {
1134
1135/// Used in MergeFunctionDecl to keep track of function parameters in
1136/// C.
1137struct GNUCompatibleParamWarning {
1138  ParmVarDecl *OldParm;
1139  ParmVarDecl *NewParm;
1140  QualType PromotedType;
1141};
1142
1143}
1144
1145/// getSpecialMember - get the special member enum for a method.
1146Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1147  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1148    if (Ctor->isCopyConstructor())
1149      return Sema::CXXCopyConstructor;
1150
1151    return Sema::CXXConstructor;
1152  }
1153
1154  if (isa<CXXDestructorDecl>(MD))
1155    return Sema::CXXDestructor;
1156
1157  assert(MD->isCopyAssignmentOperator() &&
1158         "Must have copy assignment operator");
1159  return Sema::CXXCopyAssignment;
1160}
1161
1162/// canRedefineFunction - checks if a function can be redefined. Currently,
1163/// only extern inline functions can be redefined, and even then only in
1164/// GNU89 mode.
1165static bool canRedefineFunction(const FunctionDecl *FD,
1166                                const LangOptions& LangOpts) {
1167  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1168          FD->isInlineSpecified() &&
1169          FD->getStorageClass() == SC_Extern);
1170}
1171
1172/// MergeFunctionDecl - We just parsed a function 'New' from
1173/// declarator D which has the same name and scope as a previous
1174/// declaration 'Old'.  Figure out how to resolve this situation,
1175/// merging decls or emitting diagnostics as appropriate.
1176///
1177/// In C++, New and Old must be declarations that are not
1178/// overloaded. Use IsOverload to determine whether New and Old are
1179/// overloaded, and to select the Old declaration that New should be
1180/// merged with.
1181///
1182/// Returns true if there was an error, false otherwise.
1183bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1184  // Verify the old decl was also a function.
1185  FunctionDecl *Old = 0;
1186  if (FunctionTemplateDecl *OldFunctionTemplate
1187        = dyn_cast<FunctionTemplateDecl>(OldD))
1188    Old = OldFunctionTemplate->getTemplatedDecl();
1189  else
1190    Old = dyn_cast<FunctionDecl>(OldD);
1191  if (!Old) {
1192    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1193      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1194      Diag(Shadow->getTargetDecl()->getLocation(),
1195           diag::note_using_decl_target);
1196      Diag(Shadow->getUsingDecl()->getLocation(),
1197           diag::note_using_decl) << 0;
1198      return true;
1199    }
1200
1201    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1202      << New->getDeclName();
1203    Diag(OldD->getLocation(), diag::note_previous_definition);
1204    return true;
1205  }
1206
1207  // Determine whether the previous declaration was a definition,
1208  // implicit declaration, or a declaration.
1209  diag::kind PrevDiag;
1210  if (Old->isThisDeclarationADefinition())
1211    PrevDiag = diag::note_previous_definition;
1212  else if (Old->isImplicit())
1213    PrevDiag = diag::note_previous_implicit_declaration;
1214  else
1215    PrevDiag = diag::note_previous_declaration;
1216
1217  QualType OldQType = Context.getCanonicalType(Old->getType());
1218  QualType NewQType = Context.getCanonicalType(New->getType());
1219
1220  // Don't complain about this if we're in GNU89 mode and the old function
1221  // is an extern inline function.
1222  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1223      New->getStorageClass() == SC_Static &&
1224      Old->getStorageClass() != SC_Static &&
1225      !canRedefineFunction(Old, getLangOptions())) {
1226    Diag(New->getLocation(), diag::err_static_non_static)
1227      << New;
1228    Diag(Old->getLocation(), PrevDiag);
1229    return true;
1230  }
1231
1232  // If a function is first declared with a calling convention, but is
1233  // later declared or defined without one, the second decl assumes the
1234  // calling convention of the first.
1235  //
1236  // For the new decl, we have to look at the NON-canonical type to tell the
1237  // difference between a function that really doesn't have a calling
1238  // convention and one that is declared cdecl. That's because in
1239  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1240  // because it is the default calling convention.
1241  //
1242  // Note also that we DO NOT return at this point, because we still have
1243  // other tests to run.
1244  const FunctionType *OldType = cast<FunctionType>(OldQType);
1245  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1246  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1247  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1248  bool RequiresAdjustment = false;
1249  if (OldTypeInfo.getCC() != CC_Default &&
1250      NewTypeInfo.getCC() == CC_Default) {
1251    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1252    RequiresAdjustment = true;
1253  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1254                                     NewTypeInfo.getCC())) {
1255    // Calling conventions really aren't compatible, so complain.
1256    Diag(New->getLocation(), diag::err_cconv_change)
1257      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1258      << (OldTypeInfo.getCC() == CC_Default)
1259      << (OldTypeInfo.getCC() == CC_Default ? "" :
1260          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1261    Diag(Old->getLocation(), diag::note_previous_declaration);
1262    return true;
1263  }
1264
1265  // FIXME: diagnose the other way around?
1266  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1267    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1268    RequiresAdjustment = true;
1269  }
1270
1271  // Merge regparm attribute.
1272  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1273    if (NewTypeInfo.getRegParm()) {
1274      Diag(New->getLocation(), diag::err_regparm_mismatch)
1275        << NewType->getRegParmType()
1276        << OldType->getRegParmType();
1277      Diag(Old->getLocation(), diag::note_previous_declaration);
1278      return true;
1279    }
1280
1281    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1282    RequiresAdjustment = true;
1283  }
1284
1285  if (RequiresAdjustment) {
1286    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1287    New->setType(QualType(NewType, 0));
1288    NewQType = Context.getCanonicalType(New->getType());
1289  }
1290
1291  if (getLangOptions().CPlusPlus) {
1292    // (C++98 13.1p2):
1293    //   Certain function declarations cannot be overloaded:
1294    //     -- Function declarations that differ only in the return type
1295    //        cannot be overloaded.
1296    QualType OldReturnType = OldType->getResultType();
1297    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1298    QualType ResQT;
1299    if (OldReturnType != NewReturnType) {
1300      if (NewReturnType->isObjCObjectPointerType()
1301          && OldReturnType->isObjCObjectPointerType())
1302        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1303      if (ResQT.isNull()) {
1304        if (New->isCXXClassMember() && New->isOutOfLine())
1305          Diag(New->getLocation(),
1306               diag::err_member_def_does_not_match_ret_type) << New;
1307        else
1308          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1309        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1310        return true;
1311      }
1312      else
1313        NewQType = ResQT;
1314    }
1315
1316    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1317    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1318    if (OldMethod && NewMethod) {
1319      // Preserve triviality.
1320      NewMethod->setTrivial(OldMethod->isTrivial());
1321
1322      bool isFriend = NewMethod->getFriendObjectKind();
1323
1324      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1325        //    -- Member function declarations with the same name and the
1326        //       same parameter types cannot be overloaded if any of them
1327        //       is a static member function declaration.
1328        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1329          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1330          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1331          return true;
1332        }
1333
1334        // C++ [class.mem]p1:
1335        //   [...] A member shall not be declared twice in the
1336        //   member-specification, except that a nested class or member
1337        //   class template can be declared and then later defined.
1338        unsigned NewDiag;
1339        if (isa<CXXConstructorDecl>(OldMethod))
1340          NewDiag = diag::err_constructor_redeclared;
1341        else if (isa<CXXDestructorDecl>(NewMethod))
1342          NewDiag = diag::err_destructor_redeclared;
1343        else if (isa<CXXConversionDecl>(NewMethod))
1344          NewDiag = diag::err_conv_function_redeclared;
1345        else
1346          NewDiag = diag::err_member_redeclared;
1347
1348        Diag(New->getLocation(), NewDiag);
1349        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1350
1351      // Complain if this is an explicit declaration of a special
1352      // member that was initially declared implicitly.
1353      //
1354      // As an exception, it's okay to befriend such methods in order
1355      // to permit the implicit constructor/destructor/operator calls.
1356      } else if (OldMethod->isImplicit()) {
1357        if (isFriend) {
1358          NewMethod->setImplicit();
1359        } else {
1360          Diag(NewMethod->getLocation(),
1361               diag::err_definition_of_implicitly_declared_member)
1362            << New << getSpecialMember(OldMethod);
1363          return true;
1364        }
1365      }
1366    }
1367
1368    // (C++98 8.3.5p3):
1369    //   All declarations for a function shall agree exactly in both the
1370    //   return type and the parameter-type-list.
1371    // We also want to respect all the extended bits except noreturn.
1372
1373    // noreturn should now match unless the old type info didn't have it.
1374    QualType OldQTypeForComparison = OldQType;
1375    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1376      assert(OldQType == QualType(OldType, 0));
1377      const FunctionType *OldTypeForComparison
1378        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1379      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1380      assert(OldQTypeForComparison.isCanonical());
1381    }
1382
1383    if (OldQTypeForComparison == NewQType)
1384      return MergeCompatibleFunctionDecls(New, Old);
1385
1386    // Fall through for conflicting redeclarations and redefinitions.
1387  }
1388
1389  // C: Function types need to be compatible, not identical. This handles
1390  // duplicate function decls like "void f(int); void f(enum X);" properly.
1391  if (!getLangOptions().CPlusPlus &&
1392      Context.typesAreCompatible(OldQType, NewQType)) {
1393    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1394    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1395    const FunctionProtoType *OldProto = 0;
1396    if (isa<FunctionNoProtoType>(NewFuncType) &&
1397        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1398      // The old declaration provided a function prototype, but the
1399      // new declaration does not. Merge in the prototype.
1400      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1401      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1402                                                 OldProto->arg_type_end());
1403      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1404                                         ParamTypes.data(), ParamTypes.size(),
1405                                         OldProto->getExtProtoInfo());
1406      New->setType(NewQType);
1407      New->setHasInheritedPrototype();
1408
1409      // Synthesize a parameter for each argument type.
1410      llvm::SmallVector<ParmVarDecl*, 16> Params;
1411      for (FunctionProtoType::arg_type_iterator
1412             ParamType = OldProto->arg_type_begin(),
1413             ParamEnd = OldProto->arg_type_end();
1414           ParamType != ParamEnd; ++ParamType) {
1415        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1416                                                 SourceLocation(),
1417                                                 SourceLocation(), 0,
1418                                                 *ParamType, /*TInfo=*/0,
1419                                                 SC_None, SC_None,
1420                                                 0);
1421        Param->setImplicit();
1422        Params.push_back(Param);
1423      }
1424
1425      New->setParams(Params.data(), Params.size());
1426    }
1427
1428    return MergeCompatibleFunctionDecls(New, Old);
1429  }
1430
1431  // GNU C permits a K&R definition to follow a prototype declaration
1432  // if the declared types of the parameters in the K&R definition
1433  // match the types in the prototype declaration, even when the
1434  // promoted types of the parameters from the K&R definition differ
1435  // from the types in the prototype. GCC then keeps the types from
1436  // the prototype.
1437  //
1438  // If a variadic prototype is followed by a non-variadic K&R definition,
1439  // the K&R definition becomes variadic.  This is sort of an edge case, but
1440  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1441  // C99 6.9.1p8.
1442  if (!getLangOptions().CPlusPlus &&
1443      Old->hasPrototype() && !New->hasPrototype() &&
1444      New->getType()->getAs<FunctionProtoType>() &&
1445      Old->getNumParams() == New->getNumParams()) {
1446    llvm::SmallVector<QualType, 16> ArgTypes;
1447    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1448    const FunctionProtoType *OldProto
1449      = Old->getType()->getAs<FunctionProtoType>();
1450    const FunctionProtoType *NewProto
1451      = New->getType()->getAs<FunctionProtoType>();
1452
1453    // Determine whether this is the GNU C extension.
1454    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1455                                               NewProto->getResultType());
1456    bool LooseCompatible = !MergedReturn.isNull();
1457    for (unsigned Idx = 0, End = Old->getNumParams();
1458         LooseCompatible && Idx != End; ++Idx) {
1459      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1460      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1461      if (Context.typesAreCompatible(OldParm->getType(),
1462                                     NewProto->getArgType(Idx))) {
1463        ArgTypes.push_back(NewParm->getType());
1464      } else if (Context.typesAreCompatible(OldParm->getType(),
1465                                            NewParm->getType(),
1466                                            /*CompareUnqualified=*/true)) {
1467        GNUCompatibleParamWarning Warn
1468          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1469        Warnings.push_back(Warn);
1470        ArgTypes.push_back(NewParm->getType());
1471      } else
1472        LooseCompatible = false;
1473    }
1474
1475    if (LooseCompatible) {
1476      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1477        Diag(Warnings[Warn].NewParm->getLocation(),
1478             diag::ext_param_promoted_not_compatible_with_prototype)
1479          << Warnings[Warn].PromotedType
1480          << Warnings[Warn].OldParm->getType();
1481        if (Warnings[Warn].OldParm->getLocation().isValid())
1482          Diag(Warnings[Warn].OldParm->getLocation(),
1483               diag::note_previous_declaration);
1484      }
1485
1486      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1487                                           ArgTypes.size(),
1488                                           OldProto->getExtProtoInfo()));
1489      return MergeCompatibleFunctionDecls(New, Old);
1490    }
1491
1492    // Fall through to diagnose conflicting types.
1493  }
1494
1495  // A function that has already been declared has been redeclared or defined
1496  // with a different type- show appropriate diagnostic
1497  if (unsigned BuiltinID = Old->getBuiltinID()) {
1498    // The user has declared a builtin function with an incompatible
1499    // signature.
1500    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1501      // The function the user is redeclaring is a library-defined
1502      // function like 'malloc' or 'printf'. Warn about the
1503      // redeclaration, then pretend that we don't know about this
1504      // library built-in.
1505      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1506      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1507        << Old << Old->getType();
1508      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1509      Old->setInvalidDecl();
1510      return false;
1511    }
1512
1513    PrevDiag = diag::note_previous_builtin_declaration;
1514  }
1515
1516  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1517  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1518  return true;
1519}
1520
1521/// \brief Completes the merge of two function declarations that are
1522/// known to be compatible.
1523///
1524/// This routine handles the merging of attributes and other
1525/// properties of function declarations form the old declaration to
1526/// the new declaration, once we know that New is in fact a
1527/// redeclaration of Old.
1528///
1529/// \returns false
1530bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1531  // Merge the attributes
1532  mergeDeclAttributes(New, Old, Context);
1533
1534  // Merge the storage class.
1535  if (Old->getStorageClass() != SC_Extern &&
1536      Old->getStorageClass() != SC_None)
1537    New->setStorageClass(Old->getStorageClass());
1538
1539  // Merge "pure" flag.
1540  if (Old->isPure())
1541    New->setPure();
1542
1543  // Merge the "deleted" flag.
1544  if (Old->isDeleted())
1545    New->setDeleted();
1546
1547  // Merge attributes from the parameters.  These can mismatch with K&R
1548  // declarations.
1549  if (New->getNumParams() == Old->getNumParams())
1550    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1551      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1552                               Context);
1553
1554  if (getLangOptions().CPlusPlus)
1555    return MergeCXXFunctionDecl(New, Old);
1556
1557  return false;
1558}
1559
1560void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1561                                const ObjCMethodDecl *oldMethod) {
1562  // Merge the attributes.
1563  mergeDeclAttributes(newMethod, oldMethod, Context);
1564
1565  // Merge attributes from the parameters.
1566  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1567         ni = newMethod->param_begin(), ne = newMethod->param_end();
1568       ni != ne; ++ni, ++oi)
1569    mergeParamDeclAttributes(*ni, *oi, Context);
1570}
1571
1572/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1573/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1574/// emitting diagnostics as appropriate.
1575///
1576/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1577/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1578/// check them before the initializer is attached.
1579///
1580void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1581  if (New->isInvalidDecl() || Old->isInvalidDecl())
1582    return;
1583
1584  QualType MergedT;
1585  if (getLangOptions().CPlusPlus) {
1586    AutoType *AT = New->getType()->getContainedAutoType();
1587    if (AT && !AT->isDeduced()) {
1588      // We don't know what the new type is until the initializer is attached.
1589      return;
1590    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1591      // These could still be something that needs exception specs checked.
1592      return MergeVarDeclExceptionSpecs(New, Old);
1593    }
1594    // C++ [basic.link]p10:
1595    //   [...] the types specified by all declarations referring to a given
1596    //   object or function shall be identical, except that declarations for an
1597    //   array object can specify array types that differ by the presence or
1598    //   absence of a major array bound (8.3.4).
1599    else if (Old->getType()->isIncompleteArrayType() &&
1600             New->getType()->isArrayType()) {
1601      CanQual<ArrayType> OldArray
1602        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1603      CanQual<ArrayType> NewArray
1604        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1605      if (OldArray->getElementType() == NewArray->getElementType())
1606        MergedT = New->getType();
1607    } else if (Old->getType()->isArrayType() &&
1608             New->getType()->isIncompleteArrayType()) {
1609      CanQual<ArrayType> OldArray
1610        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1611      CanQual<ArrayType> NewArray
1612        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1613      if (OldArray->getElementType() == NewArray->getElementType())
1614        MergedT = Old->getType();
1615    } else if (New->getType()->isObjCObjectPointerType()
1616               && Old->getType()->isObjCObjectPointerType()) {
1617        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1618                                                        Old->getType());
1619    }
1620  } else {
1621    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1622  }
1623  if (MergedT.isNull()) {
1624    Diag(New->getLocation(), diag::err_redefinition_different_type)
1625      << New->getDeclName();
1626    Diag(Old->getLocation(), diag::note_previous_definition);
1627    return New->setInvalidDecl();
1628  }
1629  New->setType(MergedT);
1630}
1631
1632/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1633/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1634/// situation, merging decls or emitting diagnostics as appropriate.
1635///
1636/// Tentative definition rules (C99 6.9.2p2) are checked by
1637/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1638/// definitions here, since the initializer hasn't been attached.
1639///
1640void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1641  // If the new decl is already invalid, don't do any other checking.
1642  if (New->isInvalidDecl())
1643    return;
1644
1645  // Verify the old decl was also a variable.
1646  VarDecl *Old = 0;
1647  if (!Previous.isSingleResult() ||
1648      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1649    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1650      << New->getDeclName();
1651    Diag(Previous.getRepresentativeDecl()->getLocation(),
1652         diag::note_previous_definition);
1653    return New->setInvalidDecl();
1654  }
1655
1656  // C++ [class.mem]p1:
1657  //   A member shall not be declared twice in the member-specification [...]
1658  //
1659  // Here, we need only consider static data members.
1660  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1661    Diag(New->getLocation(), diag::err_duplicate_member)
1662      << New->getIdentifier();
1663    Diag(Old->getLocation(), diag::note_previous_declaration);
1664    New->setInvalidDecl();
1665  }
1666
1667  mergeDeclAttributes(New, Old, Context);
1668
1669  // Merge the types.
1670  MergeVarDeclTypes(New, Old);
1671  if (New->isInvalidDecl())
1672    return;
1673
1674  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1675  if (New->getStorageClass() == SC_Static &&
1676      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1677    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1678    Diag(Old->getLocation(), diag::note_previous_definition);
1679    return New->setInvalidDecl();
1680  }
1681  // C99 6.2.2p4:
1682  //   For an identifier declared with the storage-class specifier
1683  //   extern in a scope in which a prior declaration of that
1684  //   identifier is visible,23) if the prior declaration specifies
1685  //   internal or external linkage, the linkage of the identifier at
1686  //   the later declaration is the same as the linkage specified at
1687  //   the prior declaration. If no prior declaration is visible, or
1688  //   if the prior declaration specifies no linkage, then the
1689  //   identifier has external linkage.
1690  if (New->hasExternalStorage() && Old->hasLinkage())
1691    /* Okay */;
1692  else if (New->getStorageClass() != SC_Static &&
1693           Old->getStorageClass() == SC_Static) {
1694    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1695    Diag(Old->getLocation(), diag::note_previous_definition);
1696    return New->setInvalidDecl();
1697  }
1698
1699  // Check if extern is followed by non-extern and vice-versa.
1700  if (New->hasExternalStorage() &&
1701      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1702    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1703    Diag(Old->getLocation(), diag::note_previous_definition);
1704    return New->setInvalidDecl();
1705  }
1706  if (Old->hasExternalStorage() &&
1707      !New->hasLinkage() && New->isLocalVarDecl()) {
1708    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1709    Diag(Old->getLocation(), diag::note_previous_definition);
1710    return New->setInvalidDecl();
1711  }
1712
1713  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1714
1715  // FIXME: The test for external storage here seems wrong? We still
1716  // need to check for mismatches.
1717  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1718      // Don't complain about out-of-line definitions of static members.
1719      !(Old->getLexicalDeclContext()->isRecord() &&
1720        !New->getLexicalDeclContext()->isRecord())) {
1721    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1722    Diag(Old->getLocation(), diag::note_previous_definition);
1723    return New->setInvalidDecl();
1724  }
1725
1726  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1727    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1728    Diag(Old->getLocation(), diag::note_previous_definition);
1729  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1730    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1731    Diag(Old->getLocation(), diag::note_previous_definition);
1732  }
1733
1734  // C++ doesn't have tentative definitions, so go right ahead and check here.
1735  const VarDecl *Def;
1736  if (getLangOptions().CPlusPlus &&
1737      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1738      (Def = Old->getDefinition())) {
1739    Diag(New->getLocation(), diag::err_redefinition)
1740      << New->getDeclName();
1741    Diag(Def->getLocation(), diag::note_previous_definition);
1742    New->setInvalidDecl();
1743    return;
1744  }
1745  // c99 6.2.2 P4.
1746  // For an identifier declared with the storage-class specifier extern in a
1747  // scope in which a prior declaration of that identifier is visible, if
1748  // the prior declaration specifies internal or external linkage, the linkage
1749  // of the identifier at the later declaration is the same as the linkage
1750  // specified at the prior declaration.
1751  // FIXME. revisit this code.
1752  if (New->hasExternalStorage() &&
1753      Old->getLinkage() == InternalLinkage &&
1754      New->getDeclContext() == Old->getDeclContext())
1755    New->setStorageClass(Old->getStorageClass());
1756
1757  // Keep a chain of previous declarations.
1758  New->setPreviousDeclaration(Old);
1759
1760  // Inherit access appropriately.
1761  New->setAccess(Old->getAccess());
1762}
1763
1764/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1765/// no declarator (e.g. "struct foo;") is parsed.
1766Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1767                                            DeclSpec &DS) {
1768  // FIXME: Error on inline/virtual/explicit
1769  // FIXME: Warn on useless __thread
1770  // FIXME: Warn on useless const/volatile
1771  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1772  // FIXME: Warn on useless attributes
1773  Decl *TagD = 0;
1774  TagDecl *Tag = 0;
1775  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1776      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1777      DS.getTypeSpecType() == DeclSpec::TST_union ||
1778      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1779    TagD = DS.getRepAsDecl();
1780
1781    if (!TagD) // We probably had an error
1782      return 0;
1783
1784    // Note that the above type specs guarantee that the
1785    // type rep is a Decl, whereas in many of the others
1786    // it's a Type.
1787    Tag = dyn_cast<TagDecl>(TagD);
1788  }
1789
1790  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1791    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1792    // or incomplete types shall not be restrict-qualified."
1793    if (TypeQuals & DeclSpec::TQ_restrict)
1794      Diag(DS.getRestrictSpecLoc(),
1795           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1796           << DS.getSourceRange();
1797  }
1798
1799  if (DS.isFriendSpecified()) {
1800    // If we're dealing with a decl but not a TagDecl, assume that
1801    // whatever routines created it handled the friendship aspect.
1802    if (TagD && !Tag)
1803      return 0;
1804    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1805  }
1806
1807  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1808    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1809
1810    if (!Record->getDeclName() && Record->isDefinition() &&
1811        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1812      if (getLangOptions().CPlusPlus ||
1813          Record->getDeclContext()->isRecord())
1814        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1815
1816      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1817        << DS.getSourceRange();
1818    }
1819  }
1820
1821  // Check for Microsoft C extension: anonymous struct.
1822  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1823      CurContext->isRecord() &&
1824      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1825    // Handle 2 kinds of anonymous struct:
1826    //   struct STRUCT;
1827    // and
1828    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1829    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1830    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1831        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1832         DS.getRepAsType().get()->isStructureType())) {
1833      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1834        << DS.getSourceRange();
1835      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1836    }
1837  }
1838
1839  if (getLangOptions().CPlusPlus &&
1840      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1841    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1842      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1843          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1844        Diag(Enum->getLocation(), diag::ext_no_declarators)
1845          << DS.getSourceRange();
1846
1847  if (!DS.isMissingDeclaratorOk() &&
1848      DS.getTypeSpecType() != DeclSpec::TST_error) {
1849    // Warn about typedefs of enums without names, since this is an
1850    // extension in both Microsoft and GNU.
1851    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1852        Tag && isa<EnumDecl>(Tag)) {
1853      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1854        << DS.getSourceRange();
1855      return Tag;
1856    }
1857
1858    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1859      << DS.getSourceRange();
1860  }
1861
1862  return TagD;
1863}
1864
1865/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1866/// builds a statement for it and returns it so it is evaluated.
1867StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1868  StmtResult R;
1869  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1870    Expr *Exp = DS.getRepAsExpr();
1871    QualType Ty = Exp->getType();
1872    if (Ty->isPointerType()) {
1873      do
1874        Ty = Ty->getAs<PointerType>()->getPointeeType();
1875      while (Ty->isPointerType());
1876    }
1877    if (Ty->isVariableArrayType()) {
1878      R = ActOnExprStmt(MakeFullExpr(Exp));
1879    }
1880  }
1881  return R;
1882}
1883
1884/// We are trying to inject an anonymous member into the given scope;
1885/// check if there's an existing declaration that can't be overloaded.
1886///
1887/// \return true if this is a forbidden redeclaration
1888static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1889                                         Scope *S,
1890                                         DeclContext *Owner,
1891                                         DeclarationName Name,
1892                                         SourceLocation NameLoc,
1893                                         unsigned diagnostic) {
1894  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1895                 Sema::ForRedeclaration);
1896  if (!SemaRef.LookupName(R, S)) return false;
1897
1898  if (R.getAsSingle<TagDecl>())
1899    return false;
1900
1901  // Pick a representative declaration.
1902  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1903  assert(PrevDecl && "Expected a non-null Decl");
1904
1905  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1906    return false;
1907
1908  SemaRef.Diag(NameLoc, diagnostic) << Name;
1909  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1910
1911  return true;
1912}
1913
1914/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1915/// anonymous struct or union AnonRecord into the owning context Owner
1916/// and scope S. This routine will be invoked just after we realize
1917/// that an unnamed union or struct is actually an anonymous union or
1918/// struct, e.g.,
1919///
1920/// @code
1921/// union {
1922///   int i;
1923///   float f;
1924/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1925///    // f into the surrounding scope.x
1926/// @endcode
1927///
1928/// This routine is recursive, injecting the names of nested anonymous
1929/// structs/unions into the owning context and scope as well.
1930static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1931                                                DeclContext *Owner,
1932                                                RecordDecl *AnonRecord,
1933                                                AccessSpecifier AS,
1934                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1935                                                      bool MSAnonStruct) {
1936  unsigned diagKind
1937    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1938                            : diag::err_anonymous_struct_member_redecl;
1939
1940  bool Invalid = false;
1941
1942  // Look every FieldDecl and IndirectFieldDecl with a name.
1943  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1944                               DEnd = AnonRecord->decls_end();
1945       D != DEnd; ++D) {
1946    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1947        cast<NamedDecl>(*D)->getDeclName()) {
1948      ValueDecl *VD = cast<ValueDecl>(*D);
1949      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1950                                       VD->getLocation(), diagKind)) {
1951        // C++ [class.union]p2:
1952        //   The names of the members of an anonymous union shall be
1953        //   distinct from the names of any other entity in the
1954        //   scope in which the anonymous union is declared.
1955        Invalid = true;
1956      } else {
1957        // C++ [class.union]p2:
1958        //   For the purpose of name lookup, after the anonymous union
1959        //   definition, the members of the anonymous union are
1960        //   considered to have been defined in the scope in which the
1961        //   anonymous union is declared.
1962        unsigned OldChainingSize = Chaining.size();
1963        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1964          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1965               PE = IF->chain_end(); PI != PE; ++PI)
1966            Chaining.push_back(*PI);
1967        else
1968          Chaining.push_back(VD);
1969
1970        assert(Chaining.size() >= 2);
1971        NamedDecl **NamedChain =
1972          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1973        for (unsigned i = 0; i < Chaining.size(); i++)
1974          NamedChain[i] = Chaining[i];
1975
1976        IndirectFieldDecl* IndirectField =
1977          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1978                                    VD->getIdentifier(), VD->getType(),
1979                                    NamedChain, Chaining.size());
1980
1981        IndirectField->setAccess(AS);
1982        IndirectField->setImplicit();
1983        SemaRef.PushOnScopeChains(IndirectField, S);
1984
1985        // That includes picking up the appropriate access specifier.
1986        if (AS != AS_none) IndirectField->setAccess(AS);
1987
1988        Chaining.resize(OldChainingSize);
1989      }
1990    }
1991  }
1992
1993  return Invalid;
1994}
1995
1996/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1997/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1998/// illegal input values are mapped to SC_None.
1999static StorageClass
2000StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2001  switch (StorageClassSpec) {
2002  case DeclSpec::SCS_unspecified:    return SC_None;
2003  case DeclSpec::SCS_extern:         return SC_Extern;
2004  case DeclSpec::SCS_static:         return SC_Static;
2005  case DeclSpec::SCS_auto:           return SC_Auto;
2006  case DeclSpec::SCS_register:       return SC_Register;
2007  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2008    // Illegal SCSs map to None: error reporting is up to the caller.
2009  case DeclSpec::SCS_mutable:        // Fall through.
2010  case DeclSpec::SCS_typedef:        return SC_None;
2011  }
2012  llvm_unreachable("unknown storage class specifier");
2013}
2014
2015/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2016/// a StorageClass. Any error reporting is up to the caller:
2017/// illegal input values are mapped to SC_None.
2018static StorageClass
2019StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2020  switch (StorageClassSpec) {
2021  case DeclSpec::SCS_unspecified:    return SC_None;
2022  case DeclSpec::SCS_extern:         return SC_Extern;
2023  case DeclSpec::SCS_static:         return SC_Static;
2024  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2025    // Illegal SCSs map to None: error reporting is up to the caller.
2026  case DeclSpec::SCS_auto:           // Fall through.
2027  case DeclSpec::SCS_mutable:        // Fall through.
2028  case DeclSpec::SCS_register:       // Fall through.
2029  case DeclSpec::SCS_typedef:        return SC_None;
2030  }
2031  llvm_unreachable("unknown storage class specifier");
2032}
2033
2034/// BuildAnonymousStructOrUnion - Handle the declaration of an
2035/// anonymous structure or union. Anonymous unions are a C++ feature
2036/// (C++ [class.union]) and a GNU C extension; anonymous structures
2037/// are a GNU C and GNU C++ extension.
2038Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2039                                             AccessSpecifier AS,
2040                                             RecordDecl *Record) {
2041  DeclContext *Owner = Record->getDeclContext();
2042
2043  // Diagnose whether this anonymous struct/union is an extension.
2044  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2045    Diag(Record->getLocation(), diag::ext_anonymous_union);
2046  else if (!Record->isUnion())
2047    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2048
2049  // C and C++ require different kinds of checks for anonymous
2050  // structs/unions.
2051  bool Invalid = false;
2052  if (getLangOptions().CPlusPlus) {
2053    const char* PrevSpec = 0;
2054    unsigned DiagID;
2055    // C++ [class.union]p3:
2056    //   Anonymous unions declared in a named namespace or in the
2057    //   global namespace shall be declared static.
2058    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2059        (isa<TranslationUnitDecl>(Owner) ||
2060         (isa<NamespaceDecl>(Owner) &&
2061          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2062      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2063      Invalid = true;
2064
2065      // Recover by adding 'static'.
2066      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2067                             PrevSpec, DiagID, getLangOptions());
2068    }
2069    // C++ [class.union]p3:
2070    //   A storage class is not allowed in a declaration of an
2071    //   anonymous union in a class scope.
2072    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2073             isa<RecordDecl>(Owner)) {
2074      Diag(DS.getStorageClassSpecLoc(),
2075           diag::err_anonymous_union_with_storage_spec);
2076      Invalid = true;
2077
2078      // Recover by removing the storage specifier.
2079      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2080                             PrevSpec, DiagID, getLangOptions());
2081    }
2082
2083    // C++ [class.union]p2:
2084    //   The member-specification of an anonymous union shall only
2085    //   define non-static data members. [Note: nested types and
2086    //   functions cannot be declared within an anonymous union. ]
2087    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2088                                 MemEnd = Record->decls_end();
2089         Mem != MemEnd; ++Mem) {
2090      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2091        // C++ [class.union]p3:
2092        //   An anonymous union shall not have private or protected
2093        //   members (clause 11).
2094        assert(FD->getAccess() != AS_none);
2095        if (FD->getAccess() != AS_public) {
2096          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2097            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2098          Invalid = true;
2099        }
2100
2101        if (CheckNontrivialField(FD))
2102          Invalid = true;
2103      } else if ((*Mem)->isImplicit()) {
2104        // Any implicit members are fine.
2105      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2106        // This is a type that showed up in an
2107        // elaborated-type-specifier inside the anonymous struct or
2108        // union, but which actually declares a type outside of the
2109        // anonymous struct or union. It's okay.
2110      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2111        if (!MemRecord->isAnonymousStructOrUnion() &&
2112            MemRecord->getDeclName()) {
2113          // Visual C++ allows type definition in anonymous struct or union.
2114          if (getLangOptions().Microsoft)
2115            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2116              << (int)Record->isUnion();
2117          else {
2118            // This is a nested type declaration.
2119            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2120              << (int)Record->isUnion();
2121            Invalid = true;
2122          }
2123        }
2124      } else if (isa<AccessSpecDecl>(*Mem)) {
2125        // Any access specifier is fine.
2126      } else {
2127        // We have something that isn't a non-static data
2128        // member. Complain about it.
2129        unsigned DK = diag::err_anonymous_record_bad_member;
2130        if (isa<TypeDecl>(*Mem))
2131          DK = diag::err_anonymous_record_with_type;
2132        else if (isa<FunctionDecl>(*Mem))
2133          DK = diag::err_anonymous_record_with_function;
2134        else if (isa<VarDecl>(*Mem))
2135          DK = diag::err_anonymous_record_with_static;
2136
2137        // Visual C++ allows type definition in anonymous struct or union.
2138        if (getLangOptions().Microsoft &&
2139            DK == diag::err_anonymous_record_with_type)
2140          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2141            << (int)Record->isUnion();
2142        else {
2143          Diag((*Mem)->getLocation(), DK)
2144              << (int)Record->isUnion();
2145          Invalid = true;
2146        }
2147      }
2148    }
2149  }
2150
2151  if (!Record->isUnion() && !Owner->isRecord()) {
2152    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2153      << (int)getLangOptions().CPlusPlus;
2154    Invalid = true;
2155  }
2156
2157  // Mock up a declarator.
2158  Declarator Dc(DS, Declarator::TypeNameContext);
2159  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2160  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2161
2162  // Create a declaration for this anonymous struct/union.
2163  NamedDecl *Anon = 0;
2164  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2165    Anon = FieldDecl::Create(Context, OwningClass,
2166                             DS.getSourceRange().getBegin(),
2167                             Record->getLocation(),
2168                             /*IdentifierInfo=*/0,
2169                             Context.getTypeDeclType(Record),
2170                             TInfo,
2171                             /*BitWidth=*/0, /*Mutable=*/false);
2172    Anon->setAccess(AS);
2173    if (getLangOptions().CPlusPlus)
2174      FieldCollector->Add(cast<FieldDecl>(Anon));
2175  } else {
2176    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2177    assert(SCSpec != DeclSpec::SCS_typedef &&
2178           "Parser allowed 'typedef' as storage class VarDecl.");
2179    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2180    if (SCSpec == DeclSpec::SCS_mutable) {
2181      // mutable can only appear on non-static class members, so it's always
2182      // an error here
2183      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2184      Invalid = true;
2185      SC = SC_None;
2186    }
2187    SCSpec = DS.getStorageClassSpecAsWritten();
2188    VarDecl::StorageClass SCAsWritten
2189      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2190
2191    Anon = VarDecl::Create(Context, Owner,
2192                           DS.getSourceRange().getBegin(),
2193                           Record->getLocation(), /*IdentifierInfo=*/0,
2194                           Context.getTypeDeclType(Record),
2195                           TInfo, SC, SCAsWritten);
2196  }
2197  Anon->setImplicit();
2198
2199  // Add the anonymous struct/union object to the current
2200  // context. We'll be referencing this object when we refer to one of
2201  // its members.
2202  Owner->addDecl(Anon);
2203
2204  // Inject the members of the anonymous struct/union into the owning
2205  // context and into the identifier resolver chain for name lookup
2206  // purposes.
2207  llvm::SmallVector<NamedDecl*, 2> Chain;
2208  Chain.push_back(Anon);
2209
2210  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2211                                          Chain, false))
2212    Invalid = true;
2213
2214  // Mark this as an anonymous struct/union type. Note that we do not
2215  // do this until after we have already checked and injected the
2216  // members of this anonymous struct/union type, because otherwise
2217  // the members could be injected twice: once by DeclContext when it
2218  // builds its lookup table, and once by
2219  // InjectAnonymousStructOrUnionMembers.
2220  Record->setAnonymousStructOrUnion(true);
2221
2222  if (Invalid)
2223    Anon->setInvalidDecl();
2224
2225  return Anon;
2226}
2227
2228/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2229/// Microsoft C anonymous structure.
2230/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2231/// Example:
2232///
2233/// struct A { int a; };
2234/// struct B { struct A; int b; };
2235///
2236/// void foo() {
2237///   B var;
2238///   var.a = 3;
2239/// }
2240///
2241Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2242                                           RecordDecl *Record) {
2243
2244  // If there is no Record, get the record via the typedef.
2245  if (!Record)
2246    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2247
2248  // Mock up a declarator.
2249  Declarator Dc(DS, Declarator::TypeNameContext);
2250  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2251  assert(TInfo && "couldn't build declarator info for anonymous struct");
2252
2253  // Create a declaration for this anonymous struct.
2254  NamedDecl* Anon = FieldDecl::Create(Context,
2255                             cast<RecordDecl>(CurContext),
2256                             DS.getSourceRange().getBegin(),
2257                             DS.getSourceRange().getBegin(),
2258                             /*IdentifierInfo=*/0,
2259                             Context.getTypeDeclType(Record),
2260                             TInfo,
2261                             /*BitWidth=*/0, /*Mutable=*/false);
2262  Anon->setImplicit();
2263
2264  // Add the anonymous struct object to the current context.
2265  CurContext->addDecl(Anon);
2266
2267  // Inject the members of the anonymous struct into the current
2268  // context and into the identifier resolver chain for name lookup
2269  // purposes.
2270  llvm::SmallVector<NamedDecl*, 2> Chain;
2271  Chain.push_back(Anon);
2272
2273  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2274                                          Record->getDefinition(),
2275                                          AS_none, Chain, true))
2276    Anon->setInvalidDecl();
2277
2278  return Anon;
2279}
2280
2281/// GetNameForDeclarator - Determine the full declaration name for the
2282/// given Declarator.
2283DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2284  return GetNameFromUnqualifiedId(D.getName());
2285}
2286
2287/// \brief Retrieves the declaration name from a parsed unqualified-id.
2288DeclarationNameInfo
2289Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2290  DeclarationNameInfo NameInfo;
2291  NameInfo.setLoc(Name.StartLocation);
2292
2293  switch (Name.getKind()) {
2294
2295  case UnqualifiedId::IK_Identifier:
2296    NameInfo.setName(Name.Identifier);
2297    NameInfo.setLoc(Name.StartLocation);
2298    return NameInfo;
2299
2300  case UnqualifiedId::IK_OperatorFunctionId:
2301    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2302                                           Name.OperatorFunctionId.Operator));
2303    NameInfo.setLoc(Name.StartLocation);
2304    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2305      = Name.OperatorFunctionId.SymbolLocations[0];
2306    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2307      = Name.EndLocation.getRawEncoding();
2308    return NameInfo;
2309
2310  case UnqualifiedId::IK_LiteralOperatorId:
2311    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2312                                                           Name.Identifier));
2313    NameInfo.setLoc(Name.StartLocation);
2314    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2315    return NameInfo;
2316
2317  case UnqualifiedId::IK_ConversionFunctionId: {
2318    TypeSourceInfo *TInfo;
2319    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2320    if (Ty.isNull())
2321      return DeclarationNameInfo();
2322    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2323                                               Context.getCanonicalType(Ty)));
2324    NameInfo.setLoc(Name.StartLocation);
2325    NameInfo.setNamedTypeInfo(TInfo);
2326    return NameInfo;
2327  }
2328
2329  case UnqualifiedId::IK_ConstructorName: {
2330    TypeSourceInfo *TInfo;
2331    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2332    if (Ty.isNull())
2333      return DeclarationNameInfo();
2334    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2335                                              Context.getCanonicalType(Ty)));
2336    NameInfo.setLoc(Name.StartLocation);
2337    NameInfo.setNamedTypeInfo(TInfo);
2338    return NameInfo;
2339  }
2340
2341  case UnqualifiedId::IK_ConstructorTemplateId: {
2342    // In well-formed code, we can only have a constructor
2343    // template-id that refers to the current context, so go there
2344    // to find the actual type being constructed.
2345    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2346    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2347      return DeclarationNameInfo();
2348
2349    // Determine the type of the class being constructed.
2350    QualType CurClassType = Context.getTypeDeclType(CurClass);
2351
2352    // FIXME: Check two things: that the template-id names the same type as
2353    // CurClassType, and that the template-id does not occur when the name
2354    // was qualified.
2355
2356    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2357                                    Context.getCanonicalType(CurClassType)));
2358    NameInfo.setLoc(Name.StartLocation);
2359    // FIXME: should we retrieve TypeSourceInfo?
2360    NameInfo.setNamedTypeInfo(0);
2361    return NameInfo;
2362  }
2363
2364  case UnqualifiedId::IK_DestructorName: {
2365    TypeSourceInfo *TInfo;
2366    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2367    if (Ty.isNull())
2368      return DeclarationNameInfo();
2369    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2370                                              Context.getCanonicalType(Ty)));
2371    NameInfo.setLoc(Name.StartLocation);
2372    NameInfo.setNamedTypeInfo(TInfo);
2373    return NameInfo;
2374  }
2375
2376  case UnqualifiedId::IK_TemplateId: {
2377    TemplateName TName = Name.TemplateId->Template.get();
2378    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2379    return Context.getNameForTemplate(TName, TNameLoc);
2380  }
2381
2382  } // switch (Name.getKind())
2383
2384  assert(false && "Unknown name kind");
2385  return DeclarationNameInfo();
2386}
2387
2388/// isNearlyMatchingFunction - Determine whether the C++ functions
2389/// Declaration and Definition are "nearly" matching. This heuristic
2390/// is used to improve diagnostics in the case where an out-of-line
2391/// function definition doesn't match any declaration within
2392/// the class or namespace.
2393static bool isNearlyMatchingFunction(ASTContext &Context,
2394                                     FunctionDecl *Declaration,
2395                                     FunctionDecl *Definition) {
2396  if (Declaration->param_size() != Definition->param_size())
2397    return false;
2398  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2399    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2400    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2401
2402    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2403                                        DefParamTy.getNonReferenceType()))
2404      return false;
2405  }
2406
2407  return true;
2408}
2409
2410/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2411/// declarator needs to be rebuilt in the current instantiation.
2412/// Any bits of declarator which appear before the name are valid for
2413/// consideration here.  That's specifically the type in the decl spec
2414/// and the base type in any member-pointer chunks.
2415static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2416                                                    DeclarationName Name) {
2417  // The types we specifically need to rebuild are:
2418  //   - typenames, typeofs, and decltypes
2419  //   - types which will become injected class names
2420  // Of course, we also need to rebuild any type referencing such a
2421  // type.  It's safest to just say "dependent", but we call out a
2422  // few cases here.
2423
2424  DeclSpec &DS = D.getMutableDeclSpec();
2425  switch (DS.getTypeSpecType()) {
2426  case DeclSpec::TST_typename:
2427  case DeclSpec::TST_typeofType:
2428  case DeclSpec::TST_decltype: {
2429    // Grab the type from the parser.
2430    TypeSourceInfo *TSI = 0;
2431    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2432    if (T.isNull() || !T->isDependentType()) break;
2433
2434    // Make sure there's a type source info.  This isn't really much
2435    // of a waste; most dependent types should have type source info
2436    // attached already.
2437    if (!TSI)
2438      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2439
2440    // Rebuild the type in the current instantiation.
2441    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2442    if (!TSI) return true;
2443
2444    // Store the new type back in the decl spec.
2445    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2446    DS.UpdateTypeRep(LocType);
2447    break;
2448  }
2449
2450  case DeclSpec::TST_typeofExpr: {
2451    Expr *E = DS.getRepAsExpr();
2452    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2453    if (Result.isInvalid()) return true;
2454    DS.UpdateExprRep(Result.get());
2455    break;
2456  }
2457
2458  default:
2459    // Nothing to do for these decl specs.
2460    break;
2461  }
2462
2463  // It doesn't matter what order we do this in.
2464  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2465    DeclaratorChunk &Chunk = D.getTypeObject(I);
2466
2467    // The only type information in the declarator which can come
2468    // before the declaration name is the base type of a member
2469    // pointer.
2470    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2471      continue;
2472
2473    // Rebuild the scope specifier in-place.
2474    CXXScopeSpec &SS = Chunk.Mem.Scope();
2475    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2476      return true;
2477  }
2478
2479  return false;
2480}
2481
2482Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2483  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2484}
2485
2486Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2487                             MultiTemplateParamsArg TemplateParamLists,
2488                             bool IsFunctionDefinition) {
2489  // TODO: consider using NameInfo for diagnostic.
2490  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2491  DeclarationName Name = NameInfo.getName();
2492
2493  // All of these full declarators require an identifier.  If it doesn't have
2494  // one, the ParsedFreeStandingDeclSpec action should be used.
2495  if (!Name) {
2496    if (!D.isInvalidType())  // Reject this if we think it is valid.
2497      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2498           diag::err_declarator_need_ident)
2499        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2500    return 0;
2501  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2502    return 0;
2503
2504  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2505  // we find one that is.
2506  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2507         (S->getFlags() & Scope::TemplateParamScope) != 0)
2508    S = S->getParent();
2509
2510  DeclContext *DC = CurContext;
2511  if (D.getCXXScopeSpec().isInvalid())
2512    D.setInvalidType();
2513  else if (D.getCXXScopeSpec().isSet()) {
2514    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2515                                        UPPC_DeclarationQualifier))
2516      return 0;
2517
2518    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2519    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2520    if (!DC) {
2521      // If we could not compute the declaration context, it's because the
2522      // declaration context is dependent but does not refer to a class,
2523      // class template, or class template partial specialization. Complain
2524      // and return early, to avoid the coming semantic disaster.
2525      Diag(D.getIdentifierLoc(),
2526           diag::err_template_qualified_declarator_no_match)
2527        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2528        << D.getCXXScopeSpec().getRange();
2529      return 0;
2530    }
2531
2532    bool IsDependentContext = DC->isDependentContext();
2533
2534    if (!IsDependentContext &&
2535        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2536      return 0;
2537
2538    if (isa<CXXRecordDecl>(DC)) {
2539      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2540        Diag(D.getIdentifierLoc(),
2541             diag::err_member_def_undefined_record)
2542          << Name << DC << D.getCXXScopeSpec().getRange();
2543        D.setInvalidType();
2544      } else if (isa<CXXRecordDecl>(CurContext) &&
2545                 !D.getDeclSpec().isFriendSpecified()) {
2546        // The user provided a superfluous scope specifier inside a class
2547        // definition:
2548        //
2549        // class X {
2550        //   void X::f();
2551        // };
2552        if (CurContext->Equals(DC))
2553          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2554            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2555        else
2556          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2557            << Name << D.getCXXScopeSpec().getRange();
2558
2559        // Pretend that this qualifier was not here.
2560        D.getCXXScopeSpec().clear();
2561      }
2562    }
2563
2564    // Check whether we need to rebuild the type of the given
2565    // declaration in the current instantiation.
2566    if (EnteringContext && IsDependentContext &&
2567        TemplateParamLists.size() != 0) {
2568      ContextRAII SavedContext(*this, DC);
2569      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2570        D.setInvalidType();
2571    }
2572  }
2573
2574  // C++ [class.mem]p13:
2575  //   If T is the name of a class, then each of the following shall have a
2576  //   name different from T:
2577  //     - every static data member of class T;
2578  //     - every member function of class T
2579  //     - every member of class T that is itself a type;
2580  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2581    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2582      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2583        << Name;
2584
2585      // If this is a typedef, we'll end up spewing multiple diagnostics.
2586      // Just return early; it's safer.
2587      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2588        return 0;
2589    }
2590
2591  NamedDecl *New;
2592
2593  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2594  QualType R = TInfo->getType();
2595
2596  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2597                                      UPPC_DeclarationType))
2598    D.setInvalidType();
2599
2600  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2601                        ForRedeclaration);
2602
2603  // See if this is a redefinition of a variable in the same scope.
2604  if (!D.getCXXScopeSpec().isSet()) {
2605    bool IsLinkageLookup = false;
2606
2607    // If the declaration we're planning to build will be a function
2608    // or object with linkage, then look for another declaration with
2609    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2610    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2611      /* Do nothing*/;
2612    else if (R->isFunctionType()) {
2613      if (CurContext->isFunctionOrMethod() ||
2614          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2615        IsLinkageLookup = true;
2616    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2617      IsLinkageLookup = true;
2618    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2619             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2620      IsLinkageLookup = true;
2621
2622    if (IsLinkageLookup)
2623      Previous.clear(LookupRedeclarationWithLinkage);
2624
2625    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2626  } else { // Something like "int foo::x;"
2627    LookupQualifiedName(Previous, DC);
2628
2629    // Don't consider using declarations as previous declarations for
2630    // out-of-line members.
2631    RemoveUsingDecls(Previous);
2632
2633    // C++ 7.3.1.2p2:
2634    // Members (including explicit specializations of templates) of a named
2635    // namespace can also be defined outside that namespace by explicit
2636    // qualification of the name being defined, provided that the entity being
2637    // defined was already declared in the namespace and the definition appears
2638    // after the point of declaration in a namespace that encloses the
2639    // declarations namespace.
2640    //
2641    // Note that we only check the context at this point. We don't yet
2642    // have enough information to make sure that PrevDecl is actually
2643    // the declaration we want to match. For example, given:
2644    //
2645    //   class X {
2646    //     void f();
2647    //     void f(float);
2648    //   };
2649    //
2650    //   void X::f(int) { } // ill-formed
2651    //
2652    // In this case, PrevDecl will point to the overload set
2653    // containing the two f's declared in X, but neither of them
2654    // matches.
2655
2656    // First check whether we named the global scope.
2657    if (isa<TranslationUnitDecl>(DC)) {
2658      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2659        << Name << D.getCXXScopeSpec().getRange();
2660    } else {
2661      DeclContext *Cur = CurContext;
2662      while (isa<LinkageSpecDecl>(Cur))
2663        Cur = Cur->getParent();
2664      if (!Cur->Encloses(DC)) {
2665        // The qualifying scope doesn't enclose the original declaration.
2666        // Emit diagnostic based on current scope.
2667        SourceLocation L = D.getIdentifierLoc();
2668        SourceRange R = D.getCXXScopeSpec().getRange();
2669        if (isa<FunctionDecl>(Cur))
2670          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2671        else
2672          Diag(L, diag::err_invalid_declarator_scope)
2673            << Name << cast<NamedDecl>(DC) << R;
2674        D.setInvalidType();
2675      }
2676    }
2677  }
2678
2679  if (Previous.isSingleResult() &&
2680      Previous.getFoundDecl()->isTemplateParameter()) {
2681    // Maybe we will complain about the shadowed template parameter.
2682    if (!D.isInvalidType())
2683      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2684                                          Previous.getFoundDecl()))
2685        D.setInvalidType();
2686
2687    // Just pretend that we didn't see the previous declaration.
2688    Previous.clear();
2689  }
2690
2691  // In C++, the previous declaration we find might be a tag type
2692  // (class or enum). In this case, the new declaration will hide the
2693  // tag type. Note that this does does not apply if we're declaring a
2694  // typedef (C++ [dcl.typedef]p4).
2695  if (Previous.isSingleTagDecl() &&
2696      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2697    Previous.clear();
2698
2699  bool Redeclaration = false;
2700  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2701    if (TemplateParamLists.size()) {
2702      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2703      return 0;
2704    }
2705
2706    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2707  } else if (R->isFunctionType()) {
2708    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2709                                  move(TemplateParamLists),
2710                                  IsFunctionDefinition, Redeclaration);
2711  } else {
2712    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2713                                  move(TemplateParamLists),
2714                                  Redeclaration);
2715  }
2716
2717  if (New == 0)
2718    return 0;
2719
2720  // If this has an identifier and is not an invalid redeclaration or
2721  // function template specialization, add it to the scope stack.
2722  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2723    PushOnScopeChains(New, S);
2724
2725  return New;
2726}
2727
2728/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2729/// types into constant array types in certain situations which would otherwise
2730/// be errors (for GCC compatibility).
2731static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2732                                                    ASTContext &Context,
2733                                                    bool &SizeIsNegative,
2734                                                    llvm::APSInt &Oversized) {
2735  // This method tries to turn a variable array into a constant
2736  // array even when the size isn't an ICE.  This is necessary
2737  // for compatibility with code that depends on gcc's buggy
2738  // constant expression folding, like struct {char x[(int)(char*)2];}
2739  SizeIsNegative = false;
2740  Oversized = 0;
2741
2742  if (T->isDependentType())
2743    return QualType();
2744
2745  QualifierCollector Qs;
2746  const Type *Ty = Qs.strip(T);
2747
2748  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2749    QualType Pointee = PTy->getPointeeType();
2750    QualType FixedType =
2751        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2752                                            Oversized);
2753    if (FixedType.isNull()) return FixedType;
2754    FixedType = Context.getPointerType(FixedType);
2755    return Qs.apply(Context, FixedType);
2756  }
2757  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2758    QualType Inner = PTy->getInnerType();
2759    QualType FixedType =
2760        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2761                                            Oversized);
2762    if (FixedType.isNull()) return FixedType;
2763    FixedType = Context.getParenType(FixedType);
2764    return Qs.apply(Context, FixedType);
2765  }
2766
2767  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2768  if (!VLATy)
2769    return QualType();
2770  // FIXME: We should probably handle this case
2771  if (VLATy->getElementType()->isVariablyModifiedType())
2772    return QualType();
2773
2774  Expr::EvalResult EvalResult;
2775  if (!VLATy->getSizeExpr() ||
2776      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2777      !EvalResult.Val.isInt())
2778    return QualType();
2779
2780  // Check whether the array size is negative.
2781  llvm::APSInt &Res = EvalResult.Val.getInt();
2782  if (Res.isSigned() && Res.isNegative()) {
2783    SizeIsNegative = true;
2784    return QualType();
2785  }
2786
2787  // Check whether the array is too large to be addressed.
2788  unsigned ActiveSizeBits
2789    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2790                                              Res);
2791  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2792    Oversized = Res;
2793    return QualType();
2794  }
2795
2796  return Context.getConstantArrayType(VLATy->getElementType(),
2797                                      Res, ArrayType::Normal, 0);
2798}
2799
2800/// \brief Register the given locally-scoped external C declaration so
2801/// that it can be found later for redeclarations
2802void
2803Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2804                                       const LookupResult &Previous,
2805                                       Scope *S) {
2806  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2807         "Decl is not a locally-scoped decl!");
2808  // Note that we have a locally-scoped external with this name.
2809  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2810
2811  if (!Previous.isSingleResult())
2812    return;
2813
2814  NamedDecl *PrevDecl = Previous.getFoundDecl();
2815
2816  // If there was a previous declaration of this variable, it may be
2817  // in our identifier chain. Update the identifier chain with the new
2818  // declaration.
2819  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2820    // The previous declaration was found on the identifer resolver
2821    // chain, so remove it from its scope.
2822    while (S && !S->isDeclScope(PrevDecl))
2823      S = S->getParent();
2824
2825    if (S)
2826      S->RemoveDecl(PrevDecl);
2827  }
2828}
2829
2830/// \brief Diagnose function specifiers on a declaration of an identifier that
2831/// does not identify a function.
2832void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2833  // FIXME: We should probably indicate the identifier in question to avoid
2834  // confusion for constructs like "inline int a(), b;"
2835  if (D.getDeclSpec().isInlineSpecified())
2836    Diag(D.getDeclSpec().getInlineSpecLoc(),
2837         diag::err_inline_non_function);
2838
2839  if (D.getDeclSpec().isVirtualSpecified())
2840    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2841         diag::err_virtual_non_function);
2842
2843  if (D.getDeclSpec().isExplicitSpecified())
2844    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2845         diag::err_explicit_non_function);
2846}
2847
2848NamedDecl*
2849Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2850                             QualType R,  TypeSourceInfo *TInfo,
2851                             LookupResult &Previous, bool &Redeclaration) {
2852  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2853  if (D.getCXXScopeSpec().isSet()) {
2854    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2855      << D.getCXXScopeSpec().getRange();
2856    D.setInvalidType();
2857    // Pretend we didn't see the scope specifier.
2858    DC = CurContext;
2859    Previous.clear();
2860  }
2861
2862  if (getLangOptions().CPlusPlus) {
2863    // Check that there are no default arguments (C++ only).
2864    CheckExtraCXXDefaultArguments(D);
2865  }
2866
2867  DiagnoseFunctionSpecifiers(D);
2868
2869  if (D.getDeclSpec().isThreadSpecified())
2870    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2871
2872  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2873    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2874      << D.getName().getSourceRange();
2875    return 0;
2876  }
2877
2878  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2879  if (!NewTD) return 0;
2880
2881  // Handle attributes prior to checking for duplicates in MergeVarDecl
2882  ProcessDeclAttributes(S, NewTD, D);
2883
2884  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2885  // then it shall have block scope.
2886  // Note that variably modified types must be fixed before merging the decl so
2887  // that redeclarations will match.
2888  QualType T = NewTD->getUnderlyingType();
2889  if (T->isVariablyModifiedType()) {
2890    getCurFunction()->setHasBranchProtectedScope();
2891
2892    if (S->getFnParent() == 0) {
2893      bool SizeIsNegative;
2894      llvm::APSInt Oversized;
2895      QualType FixedTy =
2896          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2897                                              Oversized);
2898      if (!FixedTy.isNull()) {
2899        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2900        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2901      } else {
2902        if (SizeIsNegative)
2903          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2904        else if (T->isVariableArrayType())
2905          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2906        else if (Oversized.getBoolValue())
2907          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2908            << Oversized.toString(10);
2909        else
2910          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2911        NewTD->setInvalidDecl();
2912      }
2913    }
2914  }
2915
2916  // Merge the decl with the existing one if appropriate. If the decl is
2917  // in an outer scope, it isn't the same thing.
2918  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2919                       /*ExplicitInstantiationOrSpecialization=*/false);
2920  if (!Previous.empty()) {
2921    Redeclaration = true;
2922    MergeTypeDefDecl(NewTD, Previous);
2923  }
2924
2925  // If this is the C FILE type, notify the AST context.
2926  if (IdentifierInfo *II = NewTD->getIdentifier())
2927    if (!NewTD->isInvalidDecl() &&
2928        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2929      if (II->isStr("FILE"))
2930        Context.setFILEDecl(NewTD);
2931      else if (II->isStr("jmp_buf"))
2932        Context.setjmp_bufDecl(NewTD);
2933      else if (II->isStr("sigjmp_buf"))
2934        Context.setsigjmp_bufDecl(NewTD);
2935      else if (II->isStr("__builtin_va_list"))
2936        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2937    }
2938
2939  return NewTD;
2940}
2941
2942/// \brief Determines whether the given declaration is an out-of-scope
2943/// previous declaration.
2944///
2945/// This routine should be invoked when name lookup has found a
2946/// previous declaration (PrevDecl) that is not in the scope where a
2947/// new declaration by the same name is being introduced. If the new
2948/// declaration occurs in a local scope, previous declarations with
2949/// linkage may still be considered previous declarations (C99
2950/// 6.2.2p4-5, C++ [basic.link]p6).
2951///
2952/// \param PrevDecl the previous declaration found by name
2953/// lookup
2954///
2955/// \param DC the context in which the new declaration is being
2956/// declared.
2957///
2958/// \returns true if PrevDecl is an out-of-scope previous declaration
2959/// for a new delcaration with the same name.
2960static bool
2961isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2962                                ASTContext &Context) {
2963  if (!PrevDecl)
2964    return false;
2965
2966  if (!PrevDecl->hasLinkage())
2967    return false;
2968
2969  if (Context.getLangOptions().CPlusPlus) {
2970    // C++ [basic.link]p6:
2971    //   If there is a visible declaration of an entity with linkage
2972    //   having the same name and type, ignoring entities declared
2973    //   outside the innermost enclosing namespace scope, the block
2974    //   scope declaration declares that same entity and receives the
2975    //   linkage of the previous declaration.
2976    DeclContext *OuterContext = DC->getRedeclContext();
2977    if (!OuterContext->isFunctionOrMethod())
2978      // This rule only applies to block-scope declarations.
2979      return false;
2980
2981    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2982    if (PrevOuterContext->isRecord())
2983      // We found a member function: ignore it.
2984      return false;
2985
2986    // Find the innermost enclosing namespace for the new and
2987    // previous declarations.
2988    OuterContext = OuterContext->getEnclosingNamespaceContext();
2989    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2990
2991    // The previous declaration is in a different namespace, so it
2992    // isn't the same function.
2993    if (!OuterContext->Equals(PrevOuterContext))
2994      return false;
2995  }
2996
2997  return true;
2998}
2999
3000static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3001  CXXScopeSpec &SS = D.getCXXScopeSpec();
3002  if (!SS.isSet()) return;
3003  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3004}
3005
3006NamedDecl*
3007Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3008                              QualType R, TypeSourceInfo *TInfo,
3009                              LookupResult &Previous,
3010                              MultiTemplateParamsArg TemplateParamLists,
3011                              bool &Redeclaration) {
3012  DeclarationName Name = GetNameForDeclarator(D).getName();
3013
3014  // Check that there are no default arguments (C++ only).
3015  if (getLangOptions().CPlusPlus)
3016    CheckExtraCXXDefaultArguments(D);
3017
3018  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3019  assert(SCSpec != DeclSpec::SCS_typedef &&
3020         "Parser allowed 'typedef' as storage class VarDecl.");
3021  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3022  if (SCSpec == DeclSpec::SCS_mutable) {
3023    // mutable can only appear on non-static class members, so it's always
3024    // an error here
3025    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3026    D.setInvalidType();
3027    SC = SC_None;
3028  }
3029  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3030  VarDecl::StorageClass SCAsWritten
3031    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3032
3033  IdentifierInfo *II = Name.getAsIdentifierInfo();
3034  if (!II) {
3035    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3036      << Name.getAsString();
3037    return 0;
3038  }
3039
3040  DiagnoseFunctionSpecifiers(D);
3041
3042  if (!DC->isRecord() && S->getFnParent() == 0) {
3043    // C99 6.9p2: The storage-class specifiers auto and register shall not
3044    // appear in the declaration specifiers in an external declaration.
3045    if (SC == SC_Auto || SC == SC_Register) {
3046
3047      // If this is a register variable with an asm label specified, then this
3048      // is a GNU extension.
3049      if (SC == SC_Register && D.getAsmLabel())
3050        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3051      else
3052        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3053      D.setInvalidType();
3054    }
3055  }
3056
3057  bool isExplicitSpecialization = false;
3058  VarDecl *NewVD;
3059  if (!getLangOptions().CPlusPlus) {
3060    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3061                            D.getIdentifierLoc(), II,
3062                            R, TInfo, SC, SCAsWritten);
3063
3064    if (D.isInvalidType())
3065      NewVD->setInvalidDecl();
3066  } else {
3067    if (DC->isRecord() && !CurContext->isRecord()) {
3068      // This is an out-of-line definition of a static data member.
3069      if (SC == SC_Static) {
3070        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3071             diag::err_static_out_of_line)
3072          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3073      } else if (SC == SC_None)
3074        SC = SC_Static;
3075    }
3076    if (SC == SC_Static) {
3077      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3078        if (RD->isLocalClass())
3079          Diag(D.getIdentifierLoc(),
3080               diag::err_static_data_member_not_allowed_in_local_class)
3081            << Name << RD->getDeclName();
3082
3083        // C++ [class.union]p1: If a union contains a static data member,
3084        // the program is ill-formed.
3085        //
3086        // We also disallow static data members in anonymous structs.
3087        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3088          Diag(D.getIdentifierLoc(),
3089               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3090            << Name << RD->isUnion();
3091      }
3092    }
3093
3094    // Match up the template parameter lists with the scope specifier, then
3095    // determine whether we have a template or a template specialization.
3096    isExplicitSpecialization = false;
3097    bool Invalid = false;
3098    if (TemplateParameterList *TemplateParams
3099        = MatchTemplateParametersToScopeSpecifier(
3100                                                  D.getDeclSpec().getSourceRange().getBegin(),
3101                                                  D.getCXXScopeSpec(),
3102                                                  TemplateParamLists.get(),
3103                                                  TemplateParamLists.size(),
3104                                                  /*never a friend*/ false,
3105                                                  isExplicitSpecialization,
3106                                                  Invalid)) {
3107      if (TemplateParams->size() > 0) {
3108        // There is no such thing as a variable template.
3109        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3110          << II
3111          << SourceRange(TemplateParams->getTemplateLoc(),
3112                         TemplateParams->getRAngleLoc());
3113        return 0;
3114      } else {
3115        // There is an extraneous 'template<>' for this variable. Complain
3116        // about it, but allow the declaration of the variable.
3117        Diag(TemplateParams->getTemplateLoc(),
3118             diag::err_template_variable_noparams)
3119          << II
3120          << SourceRange(TemplateParams->getTemplateLoc(),
3121                         TemplateParams->getRAngleLoc());
3122        isExplicitSpecialization = true;
3123      }
3124    }
3125
3126    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3127                            D.getIdentifierLoc(), II,
3128                            R, TInfo, SC, SCAsWritten);
3129
3130    // If this decl has an auto type in need of deduction, make a note of the
3131    // Decl so we can diagnose uses of it in its own initializer.
3132    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3133        R->getContainedAutoType())
3134      ParsingInitForAutoVars.insert(NewVD);
3135
3136    if (D.isInvalidType() || Invalid)
3137      NewVD->setInvalidDecl();
3138
3139    SetNestedNameSpecifier(NewVD, D);
3140
3141    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3142      NewVD->setTemplateParameterListsInfo(Context,
3143                                           TemplateParamLists.size(),
3144                                           TemplateParamLists.release());
3145    }
3146  }
3147
3148  if (D.getDeclSpec().isThreadSpecified()) {
3149    if (NewVD->hasLocalStorage())
3150      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3151    else if (!Context.Target.isTLSSupported())
3152      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3153    else
3154      NewVD->setThreadSpecified(true);
3155  }
3156
3157  // Set the lexical context. If the declarator has a C++ scope specifier, the
3158  // lexical context will be different from the semantic context.
3159  NewVD->setLexicalDeclContext(CurContext);
3160
3161  // Handle attributes prior to checking for duplicates in MergeVarDecl
3162  ProcessDeclAttributes(S, NewVD, D);
3163
3164  // Handle GNU asm-label extension (encoded as an attribute).
3165  if (Expr *E = (Expr*)D.getAsmLabel()) {
3166    // The parser guarantees this is a string.
3167    StringLiteral *SE = cast<StringLiteral>(E);
3168    llvm::StringRef Label = SE->getString();
3169    if (S->getFnParent() != 0) {
3170      switch (SC) {
3171      case SC_None:
3172      case SC_Auto:
3173        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3174        break;
3175      case SC_Register:
3176        if (!Context.Target.isValidGCCRegisterName(Label))
3177          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3178        break;
3179      case SC_Static:
3180      case SC_Extern:
3181      case SC_PrivateExtern:
3182        break;
3183      }
3184    }
3185
3186    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3187                                                Context, Label));
3188  }
3189
3190  // Diagnose shadowed variables before filtering for scope.
3191  if (!D.getCXXScopeSpec().isSet())
3192    CheckShadow(S, NewVD, Previous);
3193
3194  // Don't consider existing declarations that are in a different
3195  // scope and are out-of-semantic-context declarations (if the new
3196  // declaration has linkage).
3197  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3198                       isExplicitSpecialization);
3199
3200  if (!getLangOptions().CPlusPlus)
3201    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3202  else {
3203    // Merge the decl with the existing one if appropriate.
3204    if (!Previous.empty()) {
3205      if (Previous.isSingleResult() &&
3206          isa<FieldDecl>(Previous.getFoundDecl()) &&
3207          D.getCXXScopeSpec().isSet()) {
3208        // The user tried to define a non-static data member
3209        // out-of-line (C++ [dcl.meaning]p1).
3210        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3211          << D.getCXXScopeSpec().getRange();
3212        Previous.clear();
3213        NewVD->setInvalidDecl();
3214      }
3215    } else if (D.getCXXScopeSpec().isSet()) {
3216      // No previous declaration in the qualifying scope.
3217      Diag(D.getIdentifierLoc(), diag::err_no_member)
3218        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3219        << D.getCXXScopeSpec().getRange();
3220      NewVD->setInvalidDecl();
3221    }
3222
3223    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3224
3225    // This is an explicit specialization of a static data member. Check it.
3226    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3227        CheckMemberSpecialization(NewVD, Previous))
3228      NewVD->setInvalidDecl();
3229  }
3230
3231  // attributes declared post-definition are currently ignored
3232  // FIXME: This should be handled in attribute merging, not
3233  // here.
3234  if (Previous.isSingleResult()) {
3235    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3236    if (Def && (Def = Def->getDefinition()) &&
3237        Def != NewVD && D.hasAttributes()) {
3238      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3239      Diag(Def->getLocation(), diag::note_previous_definition);
3240    }
3241  }
3242
3243  // If this is a locally-scoped extern C variable, update the map of
3244  // such variables.
3245  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3246      !NewVD->isInvalidDecl())
3247    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3248
3249  // If there's a #pragma GCC visibility in scope, and this isn't a class
3250  // member, set the visibility of this variable.
3251  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3252    AddPushedVisibilityAttribute(NewVD);
3253
3254  MarkUnusedFileScopedDecl(NewVD);
3255
3256  return NewVD;
3257}
3258
3259/// \brief Diagnose variable or built-in function shadowing.  Implements
3260/// -Wshadow.
3261///
3262/// This method is called whenever a VarDecl is added to a "useful"
3263/// scope.
3264///
3265/// \param S the scope in which the shadowing name is being declared
3266/// \param R the lookup of the name
3267///
3268void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3269  // Return if warning is ignored.
3270  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3271        Diagnostic::Ignored)
3272    return;
3273
3274  // Don't diagnose declarations at file scope.
3275  DeclContext *NewDC = D->getDeclContext();
3276  if (NewDC->isFileContext())
3277    return;
3278
3279  // Only diagnose if we're shadowing an unambiguous field or variable.
3280  if (R.getResultKind() != LookupResult::Found)
3281    return;
3282
3283  NamedDecl* ShadowedDecl = R.getFoundDecl();
3284  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3285    return;
3286
3287  // Fields are not shadowed by variables in C++ static methods.
3288  if (isa<FieldDecl>(ShadowedDecl))
3289    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3290      if (MD->isStatic())
3291        return;
3292
3293  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3294    if (shadowedVar->isExternC()) {
3295      // Don't warn for this case:
3296      //
3297      // @code
3298      // extern int bob;
3299      // void f() {
3300      //   extern int bob;
3301      // }
3302      // @endcode
3303      if (D->isExternC())
3304        return;
3305
3306      // For shadowing external vars, make sure that we point to the global
3307      // declaration, not a locally scoped extern declaration.
3308      for (VarDecl::redecl_iterator
3309             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3310           I != E; ++I)
3311        if (I->isFileVarDecl()) {
3312          ShadowedDecl = *I;
3313          break;
3314        }
3315    }
3316
3317  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3318
3319  // Only warn about certain kinds of shadowing for class members.
3320  if (NewDC && NewDC->isRecord()) {
3321    // In particular, don't warn about shadowing non-class members.
3322    if (!OldDC->isRecord())
3323      return;
3324
3325    // TODO: should we warn about static data members shadowing
3326    // static data members from base classes?
3327
3328    // TODO: don't diagnose for inaccessible shadowed members.
3329    // This is hard to do perfectly because we might friend the
3330    // shadowing context, but that's just a false negative.
3331  }
3332
3333  // Determine what kind of declaration we're shadowing.
3334  unsigned Kind;
3335  if (isa<RecordDecl>(OldDC)) {
3336    if (isa<FieldDecl>(ShadowedDecl))
3337      Kind = 3; // field
3338    else
3339      Kind = 2; // static data member
3340  } else if (OldDC->isFileContext())
3341    Kind = 1; // global
3342  else
3343    Kind = 0; // local
3344
3345  DeclarationName Name = R.getLookupName();
3346
3347  // Emit warning and note.
3348  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3349  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3350}
3351
3352/// \brief Check -Wshadow without the advantage of a previous lookup.
3353void Sema::CheckShadow(Scope *S, VarDecl *D) {
3354  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3355        Diagnostic::Ignored)
3356    return;
3357
3358  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3359                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3360  LookupName(R, S);
3361  CheckShadow(S, D, R);
3362}
3363
3364/// \brief Perform semantic checking on a newly-created variable
3365/// declaration.
3366///
3367/// This routine performs all of the type-checking required for a
3368/// variable declaration once it has been built. It is used both to
3369/// check variables after they have been parsed and their declarators
3370/// have been translated into a declaration, and to check variables
3371/// that have been instantiated from a template.
3372///
3373/// Sets NewVD->isInvalidDecl() if an error was encountered.
3374void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3375                                    LookupResult &Previous,
3376                                    bool &Redeclaration) {
3377  // If the decl is already known invalid, don't check it.
3378  if (NewVD->isInvalidDecl())
3379    return;
3380
3381  QualType T = NewVD->getType();
3382
3383  if (T->isObjCObjectType()) {
3384    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3385    return NewVD->setInvalidDecl();
3386  }
3387
3388  // Emit an error if an address space was applied to decl with local storage.
3389  // This includes arrays of objects with address space qualifiers, but not
3390  // automatic variables that point to other address spaces.
3391  // ISO/IEC TR 18037 S5.1.2
3392  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3393    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3394    return NewVD->setInvalidDecl();
3395  }
3396
3397  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3398      && !NewVD->hasAttr<BlocksAttr>())
3399    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3400
3401  bool isVM = T->isVariablyModifiedType();
3402  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3403      NewVD->hasAttr<BlocksAttr>())
3404    getCurFunction()->setHasBranchProtectedScope();
3405
3406  if ((isVM && NewVD->hasLinkage()) ||
3407      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3408    bool SizeIsNegative;
3409    llvm::APSInt Oversized;
3410    QualType FixedTy =
3411        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3412                                            Oversized);
3413
3414    if (FixedTy.isNull() && T->isVariableArrayType()) {
3415      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3416      // FIXME: This won't give the correct result for
3417      // int a[10][n];
3418      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3419
3420      if (NewVD->isFileVarDecl())
3421        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3422        << SizeRange;
3423      else if (NewVD->getStorageClass() == SC_Static)
3424        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3425        << SizeRange;
3426      else
3427        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3428        << SizeRange;
3429      return NewVD->setInvalidDecl();
3430    }
3431
3432    if (FixedTy.isNull()) {
3433      if (NewVD->isFileVarDecl())
3434        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3435      else
3436        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3437      return NewVD->setInvalidDecl();
3438    }
3439
3440    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3441    NewVD->setType(FixedTy);
3442  }
3443
3444  if (Previous.empty() && NewVD->isExternC()) {
3445    // Since we did not find anything by this name and we're declaring
3446    // an extern "C" variable, look for a non-visible extern "C"
3447    // declaration with the same name.
3448    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3449      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3450    if (Pos != LocallyScopedExternalDecls.end())
3451      Previous.addDecl(Pos->second);
3452  }
3453
3454  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3455    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3456      << T;
3457    return NewVD->setInvalidDecl();
3458  }
3459
3460  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3461    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3462    return NewVD->setInvalidDecl();
3463  }
3464
3465  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3466    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3467    return NewVD->setInvalidDecl();
3468  }
3469
3470  // Function pointers and references cannot have qualified function type, only
3471  // function pointer-to-members can do that.
3472  QualType Pointee;
3473  unsigned PtrOrRef = 0;
3474  if (const PointerType *Ptr = T->getAs<PointerType>())
3475    Pointee = Ptr->getPointeeType();
3476  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3477    Pointee = Ref->getPointeeType();
3478    PtrOrRef = 1;
3479  }
3480  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3481      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3482    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3483        << PtrOrRef;
3484    return NewVD->setInvalidDecl();
3485  }
3486
3487  if (!Previous.empty()) {
3488    Redeclaration = true;
3489    MergeVarDecl(NewVD, Previous);
3490  }
3491}
3492
3493/// \brief Data used with FindOverriddenMethod
3494struct FindOverriddenMethodData {
3495  Sema *S;
3496  CXXMethodDecl *Method;
3497};
3498
3499/// \brief Member lookup function that determines whether a given C++
3500/// method overrides a method in a base class, to be used with
3501/// CXXRecordDecl::lookupInBases().
3502static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3503                                 CXXBasePath &Path,
3504                                 void *UserData) {
3505  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3506
3507  FindOverriddenMethodData *Data
3508    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3509
3510  DeclarationName Name = Data->Method->getDeclName();
3511
3512  // FIXME: Do we care about other names here too?
3513  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3514    // We really want to find the base class destructor here.
3515    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3516    CanQualType CT = Data->S->Context.getCanonicalType(T);
3517
3518    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3519  }
3520
3521  for (Path.Decls = BaseRecord->lookup(Name);
3522       Path.Decls.first != Path.Decls.second;
3523       ++Path.Decls.first) {
3524    NamedDecl *D = *Path.Decls.first;
3525    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3526      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3527        return true;
3528    }
3529  }
3530
3531  return false;
3532}
3533
3534/// AddOverriddenMethods - See if a method overrides any in the base classes,
3535/// and if so, check that it's a valid override and remember it.
3536bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3537  // Look for virtual methods in base classes that this method might override.
3538  CXXBasePaths Paths;
3539  FindOverriddenMethodData Data;
3540  Data.Method = MD;
3541  Data.S = this;
3542  bool AddedAny = false;
3543  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3544    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3545         E = Paths.found_decls_end(); I != E; ++I) {
3546      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3547        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3548            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3549            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3550          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3551          AddedAny = true;
3552        }
3553      }
3554    }
3555  }
3556
3557  return AddedAny;
3558}
3559
3560static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3561  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3562                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3563  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3564  assert(!Prev.isAmbiguous() &&
3565         "Cannot have an ambiguity in previous-declaration lookup");
3566  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3567       Func != FuncEnd; ++Func) {
3568    if (isa<FunctionDecl>(*Func) &&
3569        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3570      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3571  }
3572}
3573
3574NamedDecl*
3575Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3576                              QualType R, TypeSourceInfo *TInfo,
3577                              LookupResult &Previous,
3578                              MultiTemplateParamsArg TemplateParamLists,
3579                              bool IsFunctionDefinition, bool &Redeclaration) {
3580  assert(R.getTypePtr()->isFunctionType());
3581
3582  // TODO: consider using NameInfo for diagnostic.
3583  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3584  DeclarationName Name = NameInfo.getName();
3585  FunctionDecl::StorageClass SC = SC_None;
3586  switch (D.getDeclSpec().getStorageClassSpec()) {
3587  default: assert(0 && "Unknown storage class!");
3588  case DeclSpec::SCS_auto:
3589  case DeclSpec::SCS_register:
3590  case DeclSpec::SCS_mutable:
3591    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3592         diag::err_typecheck_sclass_func);
3593    D.setInvalidType();
3594    break;
3595  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3596  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3597  case DeclSpec::SCS_static: {
3598    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3599      // C99 6.7.1p5:
3600      //   The declaration of an identifier for a function that has
3601      //   block scope shall have no explicit storage-class specifier
3602      //   other than extern
3603      // See also (C++ [dcl.stc]p4).
3604      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3605           diag::err_static_block_func);
3606      SC = SC_None;
3607    } else
3608      SC = SC_Static;
3609    break;
3610  }
3611  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3612  }
3613
3614  if (D.getDeclSpec().isThreadSpecified())
3615    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3616
3617  // Do not allow returning a objc interface by-value.
3618  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3619    Diag(D.getIdentifierLoc(),
3620         diag::err_object_cannot_be_passed_returned_by_value) << 0
3621    << R->getAs<FunctionType>()->getResultType();
3622    D.setInvalidType();
3623  }
3624
3625  FunctionDecl *NewFD;
3626  bool isInline = D.getDeclSpec().isInlineSpecified();
3627  bool isFriend = false;
3628  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3629  FunctionDecl::StorageClass SCAsWritten
3630    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3631  FunctionTemplateDecl *FunctionTemplate = 0;
3632  bool isExplicitSpecialization = false;
3633  bool isFunctionTemplateSpecialization = false;
3634
3635  if (!getLangOptions().CPlusPlus) {
3636    // Determine whether the function was written with a
3637    // prototype. This true when:
3638    //   - there is a prototype in the declarator, or
3639    //   - the type R of the function is some kind of typedef or other reference
3640    //     to a type name (which eventually refers to a function type).
3641    bool HasPrototype =
3642    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3643    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3644
3645    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3646                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3647                                 HasPrototype);
3648    if (D.isInvalidType())
3649      NewFD->setInvalidDecl();
3650
3651    // Set the lexical context.
3652    NewFD->setLexicalDeclContext(CurContext);
3653    // Filter out previous declarations that don't match the scope.
3654    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3655                         /*ExplicitInstantiationOrSpecialization=*/false);
3656  } else {
3657    isFriend = D.getDeclSpec().isFriendSpecified();
3658    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3659    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3660    bool isVirtualOkay = false;
3661
3662    // Check that the return type is not an abstract class type.
3663    // For record types, this is done by the AbstractClassUsageDiagnoser once
3664    // the class has been completely parsed.
3665    if (!DC->isRecord() &&
3666      RequireNonAbstractType(D.getIdentifierLoc(),
3667                             R->getAs<FunctionType>()->getResultType(),
3668                             diag::err_abstract_type_in_decl,
3669                             AbstractReturnType))
3670      D.setInvalidType();
3671
3672
3673    if (isFriend) {
3674      // C++ [class.friend]p5
3675      //   A function can be defined in a friend declaration of a
3676      //   class . . . . Such a function is implicitly inline.
3677      isInline |= IsFunctionDefinition;
3678    }
3679
3680    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3681      // This is a C++ constructor declaration.
3682      assert(DC->isRecord() &&
3683             "Constructors can only be declared in a member context");
3684
3685      R = CheckConstructorDeclarator(D, R, SC);
3686
3687      // Create the new declaration
3688      NewFD = CXXConstructorDecl::Create(Context,
3689                                         cast<CXXRecordDecl>(DC),
3690                                         D.getSourceRange().getBegin(),
3691                                         NameInfo, R, TInfo,
3692                                         isExplicit, isInline,
3693                                         /*isImplicitlyDeclared=*/false);
3694    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3695      // This is a C++ destructor declaration.
3696      if (DC->isRecord()) {
3697        R = CheckDestructorDeclarator(D, R, SC);
3698
3699        NewFD = CXXDestructorDecl::Create(Context,
3700                                          cast<CXXRecordDecl>(DC),
3701                                          D.getSourceRange().getBegin(),
3702                                          NameInfo, R, TInfo,
3703                                          isInline,
3704                                          /*isImplicitlyDeclared=*/false);
3705        isVirtualOkay = true;
3706      } else {
3707        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3708
3709        // Create a FunctionDecl to satisfy the function definition parsing
3710        // code path.
3711        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3712                                     D.getIdentifierLoc(), Name, R, TInfo,
3713                                     SC, SCAsWritten, isInline,
3714                                     /*hasPrototype=*/true);
3715        D.setInvalidType();
3716      }
3717    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3718      if (!DC->isRecord()) {
3719        Diag(D.getIdentifierLoc(),
3720             diag::err_conv_function_not_member);
3721        return 0;
3722      }
3723
3724      CheckConversionDeclarator(D, R, SC);
3725      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3726                                        D.getSourceRange().getBegin(),
3727                                        NameInfo, R, TInfo,
3728                                        isInline, isExplicit,
3729                                        SourceLocation());
3730
3731      isVirtualOkay = true;
3732    } else if (DC->isRecord()) {
3733      // If the of the function is the same as the name of the record, then this
3734      // must be an invalid constructor that has a return type.
3735      // (The parser checks for a return type and makes the declarator a
3736      // constructor if it has no return type).
3737      // must have an invalid constructor that has a return type
3738      if (Name.getAsIdentifierInfo() &&
3739          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3740        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3741          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3742          << SourceRange(D.getIdentifierLoc());
3743        return 0;
3744      }
3745
3746      bool isStatic = SC == SC_Static;
3747
3748      // [class.free]p1:
3749      // Any allocation function for a class T is a static member
3750      // (even if not explicitly declared static).
3751      if (Name.getCXXOverloadedOperator() == OO_New ||
3752          Name.getCXXOverloadedOperator() == OO_Array_New)
3753        isStatic = true;
3754
3755      // [class.free]p6 Any deallocation function for a class X is a static member
3756      // (even if not explicitly declared static).
3757      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3758          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3759        isStatic = true;
3760
3761      // This is a C++ method declaration.
3762      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3763                                    D.getSourceRange().getBegin(),
3764                                    NameInfo, R, TInfo,
3765                                    isStatic, SCAsWritten, isInline,
3766                                    SourceLocation());
3767
3768      isVirtualOkay = !isStatic;
3769    } else {
3770      // Determine whether the function was written with a
3771      // prototype. This true when:
3772      //   - we're in C++ (where every function has a prototype),
3773      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3774                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3775                                   true/*HasPrototype*/);
3776    }
3777    SetNestedNameSpecifier(NewFD, D);
3778    isExplicitSpecialization = false;
3779    isFunctionTemplateSpecialization = false;
3780    if (D.isInvalidType())
3781      NewFD->setInvalidDecl();
3782
3783    // Set the lexical context. If the declarator has a C++
3784    // scope specifier, or is the object of a friend declaration, the
3785    // lexical context will be different from the semantic context.
3786    NewFD->setLexicalDeclContext(CurContext);
3787
3788    // Match up the template parameter lists with the scope specifier, then
3789    // determine whether we have a template or a template specialization.
3790    bool Invalid = false;
3791    if (TemplateParameterList *TemplateParams
3792          = MatchTemplateParametersToScopeSpecifier(
3793                                  D.getDeclSpec().getSourceRange().getBegin(),
3794                                  D.getCXXScopeSpec(),
3795                                  TemplateParamLists.get(),
3796                                  TemplateParamLists.size(),
3797                                  isFriend,
3798                                  isExplicitSpecialization,
3799                                  Invalid)) {
3800      if (TemplateParams->size() > 0) {
3801        // This is a function template
3802
3803        // Check that we can declare a template here.
3804        if (CheckTemplateDeclScope(S, TemplateParams))
3805          return 0;
3806
3807        // A destructor cannot be a template.
3808        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3809          Diag(NewFD->getLocation(), diag::err_destructor_template);
3810          return 0;
3811        }
3812
3813        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3814                                                        NewFD->getLocation(),
3815                                                        Name, TemplateParams,
3816                                                        NewFD);
3817        FunctionTemplate->setLexicalDeclContext(CurContext);
3818        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3819
3820        // For source fidelity, store the other template param lists.
3821        if (TemplateParamLists.size() > 1) {
3822          NewFD->setTemplateParameterListsInfo(Context,
3823                                               TemplateParamLists.size() - 1,
3824                                               TemplateParamLists.release());
3825        }
3826      } else {
3827        // This is a function template specialization.
3828        isFunctionTemplateSpecialization = true;
3829        // For source fidelity, store all the template param lists.
3830        NewFD->setTemplateParameterListsInfo(Context,
3831                                             TemplateParamLists.size(),
3832                                             TemplateParamLists.release());
3833
3834        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3835        if (isFriend) {
3836          // We want to remove the "template<>", found here.
3837          SourceRange RemoveRange = TemplateParams->getSourceRange();
3838
3839          // If we remove the template<> and the name is not a
3840          // template-id, we're actually silently creating a problem:
3841          // the friend declaration will refer to an untemplated decl,
3842          // and clearly the user wants a template specialization.  So
3843          // we need to insert '<>' after the name.
3844          SourceLocation InsertLoc;
3845          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3846            InsertLoc = D.getName().getSourceRange().getEnd();
3847            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3848          }
3849
3850          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3851            << Name << RemoveRange
3852            << FixItHint::CreateRemoval(RemoveRange)
3853            << FixItHint::CreateInsertion(InsertLoc, "<>");
3854        }
3855      }
3856    }
3857    else {
3858      // All template param lists were matched against the scope specifier:
3859      // this is NOT (an explicit specialization of) a template.
3860      if (TemplateParamLists.size() > 0)
3861        // For source fidelity, store all the template param lists.
3862        NewFD->setTemplateParameterListsInfo(Context,
3863                                             TemplateParamLists.size(),
3864                                             TemplateParamLists.release());
3865    }
3866
3867    if (Invalid) {
3868      NewFD->setInvalidDecl();
3869      if (FunctionTemplate)
3870        FunctionTemplate->setInvalidDecl();
3871    }
3872
3873    // C++ [dcl.fct.spec]p5:
3874    //   The virtual specifier shall only be used in declarations of
3875    //   nonstatic class member functions that appear within a
3876    //   member-specification of a class declaration; see 10.3.
3877    //
3878    if (isVirtual && !NewFD->isInvalidDecl()) {
3879      if (!isVirtualOkay) {
3880        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3881             diag::err_virtual_non_function);
3882      } else if (!CurContext->isRecord()) {
3883        // 'virtual' was specified outside of the class.
3884        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3885             diag::err_virtual_out_of_class)
3886          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3887      } else if (NewFD->getDescribedFunctionTemplate()) {
3888        // C++ [temp.mem]p3:
3889        //  A member function template shall not be virtual.
3890        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3891             diag::err_virtual_member_function_template)
3892          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3893      } else {
3894        // Okay: Add virtual to the method.
3895        NewFD->setVirtualAsWritten(true);
3896      }
3897    }
3898
3899    // C++ [dcl.fct.spec]p3:
3900    //  The inline specifier shall not appear on a block scope function declaration.
3901    if (isInline && !NewFD->isInvalidDecl()) {
3902      if (CurContext->isFunctionOrMethod()) {
3903        // 'inline' is not allowed on block scope function declaration.
3904        Diag(D.getDeclSpec().getInlineSpecLoc(),
3905             diag::err_inline_declaration_block_scope) << Name
3906          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3907      }
3908    }
3909
3910    // C++ [dcl.fct.spec]p6:
3911    //  The explicit specifier shall be used only in the declaration of a
3912    //  constructor or conversion function within its class definition; see 12.3.1
3913    //  and 12.3.2.
3914    if (isExplicit && !NewFD->isInvalidDecl()) {
3915      if (!CurContext->isRecord()) {
3916        // 'explicit' was specified outside of the class.
3917        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3918             diag::err_explicit_out_of_class)
3919          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3920      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3921                 !isa<CXXConversionDecl>(NewFD)) {
3922        // 'explicit' was specified on a function that wasn't a constructor
3923        // or conversion function.
3924        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3925             diag::err_explicit_non_ctor_or_conv_function)
3926          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3927      }
3928    }
3929
3930    // Filter out previous declarations that don't match the scope.
3931    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3932                         isExplicitSpecialization ||
3933                         isFunctionTemplateSpecialization);
3934
3935    if (isFriend) {
3936      // For now, claim that the objects have no previous declaration.
3937      if (FunctionTemplate) {
3938        FunctionTemplate->setObjectOfFriendDecl(false);
3939        FunctionTemplate->setAccess(AS_public);
3940      }
3941      NewFD->setObjectOfFriendDecl(false);
3942      NewFD->setAccess(AS_public);
3943    }
3944
3945    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3946      // A method is implicitly inline if it's defined in its class
3947      // definition.
3948      NewFD->setImplicitlyInline();
3949    }
3950
3951    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3952        !CurContext->isRecord()) {
3953      // C++ [class.static]p1:
3954      //   A data or function member of a class may be declared static
3955      //   in a class definition, in which case it is a static member of
3956      //   the class.
3957
3958      // Complain about the 'static' specifier if it's on an out-of-line
3959      // member function definition.
3960      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3961           diag::err_static_out_of_line)
3962        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3963    }
3964  }
3965
3966  // Handle GNU asm-label extension (encoded as an attribute).
3967  if (Expr *E = (Expr*) D.getAsmLabel()) {
3968    // The parser guarantees this is a string.
3969    StringLiteral *SE = cast<StringLiteral>(E);
3970    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3971                                                SE->getString()));
3972  }
3973
3974  // Copy the parameter declarations from the declarator D to the function
3975  // declaration NewFD, if they are available.  First scavenge them into Params.
3976  llvm::SmallVector<ParmVarDecl*, 16> Params;
3977  if (D.isFunctionDeclarator()) {
3978    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3979
3980    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3981    // function that takes no arguments, not a function that takes a
3982    // single void argument.
3983    // We let through "const void" here because Sema::GetTypeForDeclarator
3984    // already checks for that case.
3985    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3986        FTI.ArgInfo[0].Param &&
3987        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3988      // Empty arg list, don't push any params.
3989      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3990
3991      // In C++, the empty parameter-type-list must be spelled "void"; a
3992      // typedef of void is not permitted.
3993      if (getLangOptions().CPlusPlus &&
3994          Param->getType().getUnqualifiedType() != Context.VoidTy)
3995        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3996    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3997      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3998        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3999        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4000        Param->setDeclContext(NewFD);
4001        Params.push_back(Param);
4002
4003        if (Param->isInvalidDecl())
4004          NewFD->setInvalidDecl();
4005      }
4006    }
4007
4008  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4009    // When we're declaring a function with a typedef, typeof, etc as in the
4010    // following example, we'll need to synthesize (unnamed)
4011    // parameters for use in the declaration.
4012    //
4013    // @code
4014    // typedef void fn(int);
4015    // fn f;
4016    // @endcode
4017
4018    // Synthesize a parameter for each argument type.
4019    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4020         AE = FT->arg_type_end(); AI != AE; ++AI) {
4021      ParmVarDecl *Param =
4022        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4023      Params.push_back(Param);
4024    }
4025  } else {
4026    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4027           "Should not need args for typedef of non-prototype fn");
4028  }
4029  // Finally, we know we have the right number of parameters, install them.
4030  NewFD->setParams(Params.data(), Params.size());
4031
4032  // Process the non-inheritable attributes on this declaration.
4033  ProcessDeclAttributes(S, NewFD, D,
4034                        /*NonInheritable=*/true, /*Inheritable=*/false);
4035
4036  if (!getLangOptions().CPlusPlus) {
4037    // Perform semantic checking on the function declaration.
4038    bool isExplctSpecialization=false;
4039    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4040                             Redeclaration);
4041    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4042            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4043           "previous declaration set still overloaded");
4044  } else {
4045    // If the declarator is a template-id, translate the parser's template
4046    // argument list into our AST format.
4047    bool HasExplicitTemplateArgs = false;
4048    TemplateArgumentListInfo TemplateArgs;
4049    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4050      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4051      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4052      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4053      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4054                                         TemplateId->getTemplateArgs(),
4055                                         TemplateId->NumArgs);
4056      translateTemplateArguments(TemplateArgsPtr,
4057                                 TemplateArgs);
4058      TemplateArgsPtr.release();
4059
4060      HasExplicitTemplateArgs = true;
4061
4062      if (FunctionTemplate) {
4063        // Function template with explicit template arguments.
4064        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4065          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4066
4067        HasExplicitTemplateArgs = false;
4068      } else if (!isFunctionTemplateSpecialization &&
4069                 !D.getDeclSpec().isFriendSpecified()) {
4070        // We have encountered something that the user meant to be a
4071        // specialization (because it has explicitly-specified template
4072        // arguments) but that was not introduced with a "template<>" (or had
4073        // too few of them).
4074        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4075          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4076          << FixItHint::CreateInsertion(
4077                                        D.getDeclSpec().getSourceRange().getBegin(),
4078                                                  "template<> ");
4079        isFunctionTemplateSpecialization = true;
4080      } else {
4081        // "friend void foo<>(int);" is an implicit specialization decl.
4082        isFunctionTemplateSpecialization = true;
4083      }
4084    } else if (isFriend && isFunctionTemplateSpecialization) {
4085      // This combination is only possible in a recovery case;  the user
4086      // wrote something like:
4087      //   template <> friend void foo(int);
4088      // which we're recovering from as if the user had written:
4089      //   friend void foo<>(int);
4090      // Go ahead and fake up a template id.
4091      HasExplicitTemplateArgs = true;
4092        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4093      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4094    }
4095
4096    // If it's a friend (and only if it's a friend), it's possible
4097    // that either the specialized function type or the specialized
4098    // template is dependent, and therefore matching will fail.  In
4099    // this case, don't check the specialization yet.
4100    if (isFunctionTemplateSpecialization && isFriend &&
4101        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4102      assert(HasExplicitTemplateArgs &&
4103             "friend function specialization without template args");
4104      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4105                                                       Previous))
4106        NewFD->setInvalidDecl();
4107    } else if (isFunctionTemplateSpecialization) {
4108      if (CurContext->isDependentContext() && CurContext->isRecord()
4109          && !isFriend) {
4110        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4111          << NewFD->getDeclName();
4112        NewFD->setInvalidDecl();
4113        return 0;
4114      } else if (CheckFunctionTemplateSpecialization(NewFD,
4115                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4116                                                     Previous))
4117        NewFD->setInvalidDecl();
4118    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4119      if (CheckMemberSpecialization(NewFD, Previous))
4120          NewFD->setInvalidDecl();
4121    }
4122
4123    // Perform semantic checking on the function declaration.
4124    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4125                             Redeclaration);
4126
4127    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4128            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4129           "previous declaration set still overloaded");
4130
4131    NamedDecl *PrincipalDecl = (FunctionTemplate
4132                                ? cast<NamedDecl>(FunctionTemplate)
4133                                : NewFD);
4134
4135    if (isFriend && Redeclaration) {
4136      AccessSpecifier Access = AS_public;
4137      if (!NewFD->isInvalidDecl())
4138        Access = NewFD->getPreviousDeclaration()->getAccess();
4139
4140      NewFD->setAccess(Access);
4141      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4142
4143      PrincipalDecl->setObjectOfFriendDecl(true);
4144    }
4145
4146    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4147        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4148      PrincipalDecl->setNonMemberOperator();
4149
4150    // If we have a function template, check the template parameter
4151    // list. This will check and merge default template arguments.
4152    if (FunctionTemplate) {
4153      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4154      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4155                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4156                            D.getDeclSpec().isFriendSpecified()
4157                              ? (IsFunctionDefinition
4158                                   ? TPC_FriendFunctionTemplateDefinition
4159                                   : TPC_FriendFunctionTemplate)
4160                              : (D.getCXXScopeSpec().isSet() &&
4161                                 DC && DC->isRecord() &&
4162                                 DC->isDependentContext())
4163                                  ? TPC_ClassTemplateMember
4164                                  : TPC_FunctionTemplate);
4165    }
4166
4167    if (NewFD->isInvalidDecl()) {
4168      // Ignore all the rest of this.
4169    } else if (!Redeclaration) {
4170      // Fake up an access specifier if it's supposed to be a class member.
4171      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4172        NewFD->setAccess(AS_public);
4173
4174      // Qualified decls generally require a previous declaration.
4175      if (D.getCXXScopeSpec().isSet()) {
4176        // ...with the major exception of templated-scope or
4177        // dependent-scope friend declarations.
4178
4179        // TODO: we currently also suppress this check in dependent
4180        // contexts because (1) the parameter depth will be off when
4181        // matching friend templates and (2) we might actually be
4182        // selecting a friend based on a dependent factor.  But there
4183        // are situations where these conditions don't apply and we
4184        // can actually do this check immediately.
4185        if (isFriend &&
4186            (TemplateParamLists.size() ||
4187             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4188             CurContext->isDependentContext())) {
4189              // ignore these
4190            } else {
4191              // The user tried to provide an out-of-line definition for a
4192              // function that is a member of a class or namespace, but there
4193              // was no such member function declared (C++ [class.mfct]p2,
4194              // C++ [namespace.memdef]p2). For example:
4195              //
4196              // class X {
4197              //   void f() const;
4198              // };
4199              //
4200              // void X::f() { } // ill-formed
4201              //
4202              // Complain about this problem, and attempt to suggest close
4203              // matches (e.g., those that differ only in cv-qualifiers and
4204              // whether the parameter types are references).
4205              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4206              << Name << DC << D.getCXXScopeSpec().getRange();
4207              NewFD->setInvalidDecl();
4208
4209              DiagnoseInvalidRedeclaration(*this, NewFD);
4210            }
4211
4212        // Unqualified local friend declarations are required to resolve
4213        // to something.
4214        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4215          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4216          NewFD->setInvalidDecl();
4217          DiagnoseInvalidRedeclaration(*this, NewFD);
4218        }
4219
4220    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4221               !isFriend && !isFunctionTemplateSpecialization &&
4222               !isExplicitSpecialization) {
4223      // An out-of-line member function declaration must also be a
4224      // definition (C++ [dcl.meaning]p1).
4225      // Note that this is not the case for explicit specializations of
4226      // function templates or member functions of class templates, per
4227      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4228      // for compatibility with old SWIG code which likes to generate them.
4229      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4230        << D.getCXXScopeSpec().getRange();
4231    }
4232  }
4233
4234
4235  // Handle attributes. We need to have merged decls when handling attributes
4236  // (for example to check for conflicts, etc).
4237  // FIXME: This needs to happen before we merge declarations. Then,
4238  // let attribute merging cope with attribute conflicts.
4239  ProcessDeclAttributes(S, NewFD, D,
4240                        /*NonInheritable=*/false, /*Inheritable=*/true);
4241
4242  // attributes declared post-definition are currently ignored
4243  // FIXME: This should happen during attribute merging
4244  if (Redeclaration && Previous.isSingleResult()) {
4245    const FunctionDecl *Def;
4246    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4247    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4248      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4249      Diag(Def->getLocation(), diag::note_previous_definition);
4250    }
4251  }
4252
4253  AddKnownFunctionAttributes(NewFD);
4254
4255  if (NewFD->hasAttr<OverloadableAttr>() &&
4256      !NewFD->getType()->getAs<FunctionProtoType>()) {
4257    Diag(NewFD->getLocation(),
4258         diag::err_attribute_overloadable_no_prototype)
4259      << NewFD;
4260
4261    // Turn this into a variadic function with no parameters.
4262    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4263    FunctionProtoType::ExtProtoInfo EPI;
4264    EPI.Variadic = true;
4265    EPI.ExtInfo = FT->getExtInfo();
4266
4267    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4268    NewFD->setType(R);
4269  }
4270
4271  // If there's a #pragma GCC visibility in scope, and this isn't a class
4272  // member, set the visibility of this function.
4273  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4274    AddPushedVisibilityAttribute(NewFD);
4275
4276  // If this is a locally-scoped extern C function, update the
4277  // map of such names.
4278  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4279      && !NewFD->isInvalidDecl())
4280    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4281
4282  // Set this FunctionDecl's range up to the right paren.
4283  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4284
4285  if (getLangOptions().CPlusPlus) {
4286    if (FunctionTemplate) {
4287      if (NewFD->isInvalidDecl())
4288        FunctionTemplate->setInvalidDecl();
4289      return FunctionTemplate;
4290    }
4291  }
4292
4293  MarkUnusedFileScopedDecl(NewFD);
4294
4295  if (getLangOptions().CUDA)
4296    if (IdentifierInfo *II = NewFD->getIdentifier())
4297      if (!NewFD->isInvalidDecl() &&
4298          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4299        if (II->isStr("cudaConfigureCall")) {
4300          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4301            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4302
4303          Context.setcudaConfigureCallDecl(NewFD);
4304        }
4305      }
4306
4307  return NewFD;
4308}
4309
4310/// \brief Perform semantic checking of a new function declaration.
4311///
4312/// Performs semantic analysis of the new function declaration
4313/// NewFD. This routine performs all semantic checking that does not
4314/// require the actual declarator involved in the declaration, and is
4315/// used both for the declaration of functions as they are parsed
4316/// (called via ActOnDeclarator) and for the declaration of functions
4317/// that have been instantiated via C++ template instantiation (called
4318/// via InstantiateDecl).
4319///
4320/// \param IsExplicitSpecialiation whether this new function declaration is
4321/// an explicit specialization of the previous declaration.
4322///
4323/// This sets NewFD->isInvalidDecl() to true if there was an error.
4324void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4325                                    LookupResult &Previous,
4326                                    bool IsExplicitSpecialization,
4327                                    bool &Redeclaration) {
4328  // If NewFD is already known erroneous, don't do any of this checking.
4329  if (NewFD->isInvalidDecl()) {
4330    // If this is a class member, mark the class invalid immediately.
4331    // This avoids some consistency errors later.
4332    if (isa<CXXMethodDecl>(NewFD))
4333      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4334
4335    return;
4336  }
4337
4338  if (NewFD->getResultType()->isVariablyModifiedType()) {
4339    // Functions returning a variably modified type violate C99 6.7.5.2p2
4340    // because all functions have linkage.
4341    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4342    return NewFD->setInvalidDecl();
4343  }
4344
4345  if (NewFD->isMain())
4346    CheckMain(NewFD);
4347
4348  // Check for a previous declaration of this name.
4349  if (Previous.empty() && NewFD->isExternC()) {
4350    // Since we did not find anything by this name and we're declaring
4351    // an extern "C" function, look for a non-visible extern "C"
4352    // declaration with the same name.
4353    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4354      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4355    if (Pos != LocallyScopedExternalDecls.end())
4356      Previous.addDecl(Pos->second);
4357  }
4358
4359  // Merge or overload the declaration with an existing declaration of
4360  // the same name, if appropriate.
4361  if (!Previous.empty()) {
4362    // Determine whether NewFD is an overload of PrevDecl or
4363    // a declaration that requires merging. If it's an overload,
4364    // there's no more work to do here; we'll just add the new
4365    // function to the scope.
4366
4367    NamedDecl *OldDecl = 0;
4368    if (!AllowOverloadingOfFunction(Previous, Context)) {
4369      Redeclaration = true;
4370      OldDecl = Previous.getFoundDecl();
4371    } else {
4372      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4373                            /*NewIsUsingDecl*/ false)) {
4374      case Ovl_Match:
4375        Redeclaration = true;
4376        break;
4377
4378      case Ovl_NonFunction:
4379        Redeclaration = true;
4380        break;
4381
4382      case Ovl_Overload:
4383        Redeclaration = false;
4384        break;
4385      }
4386
4387      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4388        // If a function name is overloadable in C, then every function
4389        // with that name must be marked "overloadable".
4390        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4391          << Redeclaration << NewFD;
4392        NamedDecl *OverloadedDecl = 0;
4393        if (Redeclaration)
4394          OverloadedDecl = OldDecl;
4395        else if (!Previous.empty())
4396          OverloadedDecl = Previous.getRepresentativeDecl();
4397        if (OverloadedDecl)
4398          Diag(OverloadedDecl->getLocation(),
4399               diag::note_attribute_overloadable_prev_overload);
4400        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4401                                                        Context));
4402      }
4403    }
4404
4405    if (Redeclaration) {
4406      // NewFD and OldDecl represent declarations that need to be
4407      // merged.
4408      if (MergeFunctionDecl(NewFD, OldDecl))
4409        return NewFD->setInvalidDecl();
4410
4411      Previous.clear();
4412      Previous.addDecl(OldDecl);
4413
4414      if (FunctionTemplateDecl *OldTemplateDecl
4415                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4416        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4417        FunctionTemplateDecl *NewTemplateDecl
4418          = NewFD->getDescribedFunctionTemplate();
4419        assert(NewTemplateDecl && "Template/non-template mismatch");
4420        if (CXXMethodDecl *Method
4421              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4422          Method->setAccess(OldTemplateDecl->getAccess());
4423          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4424        }
4425
4426        // If this is an explicit specialization of a member that is a function
4427        // template, mark it as a member specialization.
4428        if (IsExplicitSpecialization &&
4429            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4430          NewTemplateDecl->setMemberSpecialization();
4431          assert(OldTemplateDecl->isMemberSpecialization());
4432        }
4433      } else {
4434        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4435          NewFD->setAccess(OldDecl->getAccess());
4436        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4437      }
4438    }
4439  }
4440
4441  // Semantic checking for this function declaration (in isolation).
4442  if (getLangOptions().CPlusPlus) {
4443    // C++-specific checks.
4444    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4445      CheckConstructor(Constructor);
4446    } else if (CXXDestructorDecl *Destructor =
4447                dyn_cast<CXXDestructorDecl>(NewFD)) {
4448      CXXRecordDecl *Record = Destructor->getParent();
4449      QualType ClassType = Context.getTypeDeclType(Record);
4450
4451      // FIXME: Shouldn't we be able to perform this check even when the class
4452      // type is dependent? Both gcc and edg can handle that.
4453      if (!ClassType->isDependentType()) {
4454        DeclarationName Name
4455          = Context.DeclarationNames.getCXXDestructorName(
4456                                        Context.getCanonicalType(ClassType));
4457        if (NewFD->getDeclName() != Name) {
4458          Diag(NewFD->getLocation(), diag::err_destructor_name);
4459          return NewFD->setInvalidDecl();
4460        }
4461      }
4462    } else if (CXXConversionDecl *Conversion
4463               = dyn_cast<CXXConversionDecl>(NewFD)) {
4464      ActOnConversionDeclarator(Conversion);
4465    }
4466
4467    // Find any virtual functions that this function overrides.
4468    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4469      if (!Method->isFunctionTemplateSpecialization() &&
4470          !Method->getDescribedFunctionTemplate()) {
4471        if (AddOverriddenMethods(Method->getParent(), Method)) {
4472          // If the function was marked as "static", we have a problem.
4473          if (NewFD->getStorageClass() == SC_Static) {
4474            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4475              << NewFD->getDeclName();
4476            for (CXXMethodDecl::method_iterator
4477                      Overridden = Method->begin_overridden_methods(),
4478                   OverriddenEnd = Method->end_overridden_methods();
4479                 Overridden != OverriddenEnd;
4480                 ++Overridden) {
4481              Diag((*Overridden)->getLocation(),
4482                   diag::note_overridden_virtual_function);
4483            }
4484          }
4485        }
4486      }
4487    }
4488
4489    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4490    if (NewFD->isOverloadedOperator() &&
4491        CheckOverloadedOperatorDeclaration(NewFD))
4492      return NewFD->setInvalidDecl();
4493
4494    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4495    if (NewFD->getLiteralIdentifier() &&
4496        CheckLiteralOperatorDeclaration(NewFD))
4497      return NewFD->setInvalidDecl();
4498
4499    // In C++, check default arguments now that we have merged decls. Unless
4500    // the lexical context is the class, because in this case this is done
4501    // during delayed parsing anyway.
4502    if (!CurContext->isRecord())
4503      CheckCXXDefaultArguments(NewFD);
4504
4505    // If this function declares a builtin function, check the type of this
4506    // declaration against the expected type for the builtin.
4507    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4508      ASTContext::GetBuiltinTypeError Error;
4509      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4510      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4511        // The type of this function differs from the type of the builtin,
4512        // so forget about the builtin entirely.
4513        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4514      }
4515    }
4516  }
4517}
4518
4519void Sema::CheckMain(FunctionDecl* FD) {
4520  // C++ [basic.start.main]p3:  A program that declares main to be inline
4521  //   or static is ill-formed.
4522  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4523  //   shall not appear in a declaration of main.
4524  // static main is not an error under C99, but we should warn about it.
4525  bool isInline = FD->isInlineSpecified();
4526  bool isStatic = FD->getStorageClass() == SC_Static;
4527  if (isInline || isStatic) {
4528    unsigned diagID = diag::warn_unusual_main_decl;
4529    if (isInline || getLangOptions().CPlusPlus)
4530      diagID = diag::err_unusual_main_decl;
4531
4532    int which = isStatic + (isInline << 1) - 1;
4533    Diag(FD->getLocation(), diagID) << which;
4534  }
4535
4536  QualType T = FD->getType();
4537  assert(T->isFunctionType() && "function decl is not of function type");
4538  const FunctionType* FT = T->getAs<FunctionType>();
4539
4540  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4541    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4542    FD->setInvalidDecl(true);
4543  }
4544
4545  // Treat protoless main() as nullary.
4546  if (isa<FunctionNoProtoType>(FT)) return;
4547
4548  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4549  unsigned nparams = FTP->getNumArgs();
4550  assert(FD->getNumParams() == nparams);
4551
4552  bool HasExtraParameters = (nparams > 3);
4553
4554  // Darwin passes an undocumented fourth argument of type char**.  If
4555  // other platforms start sprouting these, the logic below will start
4556  // getting shifty.
4557  if (nparams == 4 &&
4558      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4559    HasExtraParameters = false;
4560
4561  if (HasExtraParameters) {
4562    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4563    FD->setInvalidDecl(true);
4564    nparams = 3;
4565  }
4566
4567  // FIXME: a lot of the following diagnostics would be improved
4568  // if we had some location information about types.
4569
4570  QualType CharPP =
4571    Context.getPointerType(Context.getPointerType(Context.CharTy));
4572  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4573
4574  for (unsigned i = 0; i < nparams; ++i) {
4575    QualType AT = FTP->getArgType(i);
4576
4577    bool mismatch = true;
4578
4579    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4580      mismatch = false;
4581    else if (Expected[i] == CharPP) {
4582      // As an extension, the following forms are okay:
4583      //   char const **
4584      //   char const * const *
4585      //   char * const *
4586
4587      QualifierCollector qs;
4588      const PointerType* PT;
4589      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4590          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4591          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4592        qs.removeConst();
4593        mismatch = !qs.empty();
4594      }
4595    }
4596
4597    if (mismatch) {
4598      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4599      // TODO: suggest replacing given type with expected type
4600      FD->setInvalidDecl(true);
4601    }
4602  }
4603
4604  if (nparams == 1 && !FD->isInvalidDecl()) {
4605    Diag(FD->getLocation(), diag::warn_main_one_arg);
4606  }
4607
4608  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4609    Diag(FD->getLocation(), diag::err_main_template_decl);
4610    FD->setInvalidDecl();
4611  }
4612}
4613
4614bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4615  // FIXME: Need strict checking.  In C89, we need to check for
4616  // any assignment, increment, decrement, function-calls, or
4617  // commas outside of a sizeof.  In C99, it's the same list,
4618  // except that the aforementioned are allowed in unevaluated
4619  // expressions.  Everything else falls under the
4620  // "may accept other forms of constant expressions" exception.
4621  // (We never end up here for C++, so the constant expression
4622  // rules there don't matter.)
4623  if (Init->isConstantInitializer(Context, false))
4624    return false;
4625  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4626    << Init->getSourceRange();
4627  return true;
4628}
4629
4630/// AddInitializerToDecl - Adds the initializer Init to the
4631/// declaration dcl. If DirectInit is true, this is C++ direct
4632/// initialization rather than copy initialization.
4633void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4634                                bool DirectInit, bool TypeMayContainAuto) {
4635  // If there is no declaration, there was an error parsing it.  Just ignore
4636  // the initializer.
4637  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4638    return;
4639
4640  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4641    // With declarators parsed the way they are, the parser cannot
4642    // distinguish between a normal initializer and a pure-specifier.
4643    // Thus this grotesque test.
4644    IntegerLiteral *IL;
4645    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4646        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4647      CheckPureMethod(Method, Init->getSourceRange());
4648    else {
4649      Diag(Method->getLocation(), diag::err_member_function_initialization)
4650        << Method->getDeclName() << Init->getSourceRange();
4651      Method->setInvalidDecl();
4652    }
4653    return;
4654  }
4655
4656  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4657  if (!VDecl) {
4658    if (getLangOptions().CPlusPlus &&
4659        RealDecl->getLexicalDeclContext()->isRecord() &&
4660        isa<NamedDecl>(RealDecl))
4661      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4662    else
4663      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4664    RealDecl->setInvalidDecl();
4665    return;
4666  }
4667
4668  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4669  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4670    TypeSourceInfo *DeducedType = 0;
4671    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4672      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4673        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4674        << Init->getSourceRange();
4675    if (!DeducedType) {
4676      RealDecl->setInvalidDecl();
4677      return;
4678    }
4679    VDecl->setTypeSourceInfo(DeducedType);
4680    VDecl->setType(DeducedType->getType());
4681
4682    // If this is a redeclaration, check that the type we just deduced matches
4683    // the previously declared type.
4684    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4685      MergeVarDeclTypes(VDecl, Old);
4686  }
4687
4688
4689  // A definition must end up with a complete type, which means it must be
4690  // complete with the restriction that an array type might be completed by the
4691  // initializer; note that later code assumes this restriction.
4692  QualType BaseDeclType = VDecl->getType();
4693  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4694    BaseDeclType = Array->getElementType();
4695  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4696                          diag::err_typecheck_decl_incomplete_type)) {
4697    RealDecl->setInvalidDecl();
4698    return;
4699  }
4700
4701  // The variable can not have an abstract class type.
4702  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4703                             diag::err_abstract_type_in_decl,
4704                             AbstractVariableType))
4705    VDecl->setInvalidDecl();
4706
4707  const VarDecl *Def;
4708  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4709    Diag(VDecl->getLocation(), diag::err_redefinition)
4710      << VDecl->getDeclName();
4711    Diag(Def->getLocation(), diag::note_previous_definition);
4712    VDecl->setInvalidDecl();
4713    return;
4714  }
4715
4716  const VarDecl* PrevInit = 0;
4717  if (getLangOptions().CPlusPlus) {
4718    // C++ [class.static.data]p4
4719    //   If a static data member is of const integral or const
4720    //   enumeration type, its declaration in the class definition can
4721    //   specify a constant-initializer which shall be an integral
4722    //   constant expression (5.19). In that case, the member can appear
4723    //   in integral constant expressions. The member shall still be
4724    //   defined in a namespace scope if it is used in the program and the
4725    //   namespace scope definition shall not contain an initializer.
4726    //
4727    // We already performed a redefinition check above, but for static
4728    // data members we also need to check whether there was an in-class
4729    // declaration with an initializer.
4730    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4731      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4732      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4733      return;
4734    }
4735
4736    if (VDecl->hasLocalStorage())
4737      getCurFunction()->setHasBranchProtectedScope();
4738
4739    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4740      VDecl->setInvalidDecl();
4741      return;
4742    }
4743  }
4744
4745  // Capture the variable that is being initialized and the style of
4746  // initialization.
4747  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4748
4749  // FIXME: Poor source location information.
4750  InitializationKind Kind
4751    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4752                                                   Init->getLocStart(),
4753                                                   Init->getLocEnd())
4754                : InitializationKind::CreateCopy(VDecl->getLocation(),
4755                                                 Init->getLocStart());
4756
4757  // Get the decls type and save a reference for later, since
4758  // CheckInitializerTypes may change it.
4759  QualType DclT = VDecl->getType(), SavT = DclT;
4760  if (VDecl->isLocalVarDecl()) {
4761    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4762      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4763      VDecl->setInvalidDecl();
4764    } else if (!VDecl->isInvalidDecl()) {
4765      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4766      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4767                                                MultiExprArg(*this, &Init, 1),
4768                                                &DclT);
4769      if (Result.isInvalid()) {
4770        VDecl->setInvalidDecl();
4771        return;
4772      }
4773
4774      Init = Result.takeAs<Expr>();
4775
4776      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4777      // Don't check invalid declarations to avoid emitting useless diagnostics.
4778      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4779        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4780          CheckForConstantInitializer(Init, DclT);
4781      }
4782    }
4783  } else if (VDecl->isStaticDataMember() &&
4784             VDecl->getLexicalDeclContext()->isRecord()) {
4785    // This is an in-class initialization for a static data member, e.g.,
4786    //
4787    // struct S {
4788    //   static const int value = 17;
4789    // };
4790
4791    // Try to perform the initialization regardless.
4792    if (!VDecl->isInvalidDecl()) {
4793      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4794      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4795                                          MultiExprArg(*this, &Init, 1),
4796                                          &DclT);
4797      if (Result.isInvalid()) {
4798        VDecl->setInvalidDecl();
4799        return;
4800      }
4801
4802      Init = Result.takeAs<Expr>();
4803    }
4804
4805    // C++ [class.mem]p4:
4806    //   A member-declarator can contain a constant-initializer only
4807    //   if it declares a static member (9.4) of const integral or
4808    //   const enumeration type, see 9.4.2.
4809    QualType T = VDecl->getType();
4810
4811    // Do nothing on dependent types.
4812    if (T->isDependentType()) {
4813
4814    // Require constness.
4815    } else if (!T.isConstQualified()) {
4816      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4817        << Init->getSourceRange();
4818      VDecl->setInvalidDecl();
4819
4820    // We allow integer constant expressions in all cases.
4821    } else if (T->isIntegralOrEnumerationType()) {
4822      if (!Init->isValueDependent()) {
4823        // Check whether the expression is a constant expression.
4824        llvm::APSInt Value;
4825        SourceLocation Loc;
4826        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4827          Diag(Loc, diag::err_in_class_initializer_non_constant)
4828            << Init->getSourceRange();
4829          VDecl->setInvalidDecl();
4830        }
4831      }
4832
4833    // We allow floating-point constants as an extension in C++03, and
4834    // C++0x has far more complicated rules that we don't really
4835    // implement fully.
4836    } else {
4837      bool Allowed = false;
4838      if (getLangOptions().CPlusPlus0x) {
4839        Allowed = T->isLiteralType();
4840      } else if (T->isFloatingType()) { // also permits complex, which is ok
4841        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4842          << T << Init->getSourceRange();
4843        Allowed = true;
4844      }
4845
4846      if (!Allowed) {
4847        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4848          << T << Init->getSourceRange();
4849        VDecl->setInvalidDecl();
4850
4851      // TODO: there are probably expressions that pass here that shouldn't.
4852      } else if (!Init->isValueDependent() &&
4853                 !Init->isConstantInitializer(Context, false)) {
4854        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4855          << Init->getSourceRange();
4856        VDecl->setInvalidDecl();
4857      }
4858    }
4859  } else if (VDecl->isFileVarDecl()) {
4860    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4861        (!getLangOptions().CPlusPlus ||
4862         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4863      Diag(VDecl->getLocation(), diag::warn_extern_init);
4864    if (!VDecl->isInvalidDecl()) {
4865      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4866      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4867                                                MultiExprArg(*this, &Init, 1),
4868                                                &DclT);
4869      if (Result.isInvalid()) {
4870        VDecl->setInvalidDecl();
4871        return;
4872      }
4873
4874      Init = Result.takeAs<Expr>();
4875    }
4876
4877    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4878    // Don't check invalid declarations to avoid emitting useless diagnostics.
4879    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4880      // C99 6.7.8p4. All file scoped initializers need to be constant.
4881      CheckForConstantInitializer(Init, DclT);
4882    }
4883  }
4884  // If the type changed, it means we had an incomplete type that was
4885  // completed by the initializer. For example:
4886  //   int ary[] = { 1, 3, 5 };
4887  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4888  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4889    VDecl->setType(DclT);
4890    Init->setType(DclT);
4891  }
4892
4893
4894  // If this variable is a local declaration with record type, make sure it
4895  // doesn't have a flexible member initialization.  We only support this as a
4896  // global/static definition.
4897  if (VDecl->hasLocalStorage())
4898    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4899      if (RT->getDecl()->hasFlexibleArrayMember()) {
4900        // Check whether the initializer tries to initialize the flexible
4901        // array member itself to anything other than an empty initializer list.
4902        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4903          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4904                                         RT->getDecl()->field_end()) - 1;
4905          if (Index < ILE->getNumInits() &&
4906              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4907                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4908            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4909            VDecl->setInvalidDecl();
4910          }
4911        }
4912      }
4913
4914  // Check any implicit conversions within the expression.
4915  CheckImplicitConversions(Init, VDecl->getLocation());
4916
4917  Init = MaybeCreateExprWithCleanups(Init);
4918  // Attach the initializer to the decl.
4919  VDecl->setInit(Init);
4920
4921  CheckCompleteVariableDeclaration(VDecl);
4922}
4923
4924/// ActOnInitializerError - Given that there was an error parsing an
4925/// initializer for the given declaration, try to return to some form
4926/// of sanity.
4927void Sema::ActOnInitializerError(Decl *D) {
4928  // Our main concern here is re-establishing invariants like "a
4929  // variable's type is either dependent or complete".
4930  if (!D || D->isInvalidDecl()) return;
4931
4932  VarDecl *VD = dyn_cast<VarDecl>(D);
4933  if (!VD) return;
4934
4935  // Auto types are meaningless if we can't make sense of the initializer.
4936  if (ParsingInitForAutoVars.count(D)) {
4937    D->setInvalidDecl();
4938    return;
4939  }
4940
4941  QualType Ty = VD->getType();
4942  if (Ty->isDependentType()) return;
4943
4944  // Require a complete type.
4945  if (RequireCompleteType(VD->getLocation(),
4946                          Context.getBaseElementType(Ty),
4947                          diag::err_typecheck_decl_incomplete_type)) {
4948    VD->setInvalidDecl();
4949    return;
4950  }
4951
4952  // Require an abstract type.
4953  if (RequireNonAbstractType(VD->getLocation(), Ty,
4954                             diag::err_abstract_type_in_decl,
4955                             AbstractVariableType)) {
4956    VD->setInvalidDecl();
4957    return;
4958  }
4959
4960  // Don't bother complaining about constructors or destructors,
4961  // though.
4962}
4963
4964void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4965                                  bool TypeMayContainAuto) {
4966  // If there is no declaration, there was an error parsing it. Just ignore it.
4967  if (RealDecl == 0)
4968    return;
4969
4970  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4971    QualType Type = Var->getType();
4972
4973    // C++0x [dcl.spec.auto]p3
4974    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4975      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4976        << Var->getDeclName() << Type;
4977      Var->setInvalidDecl();
4978      return;
4979    }
4980
4981    switch (Var->isThisDeclarationADefinition()) {
4982    case VarDecl::Definition:
4983      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4984        break;
4985
4986      // We have an out-of-line definition of a static data member
4987      // that has an in-class initializer, so we type-check this like
4988      // a declaration.
4989      //
4990      // Fall through
4991
4992    case VarDecl::DeclarationOnly:
4993      // It's only a declaration.
4994
4995      // Block scope. C99 6.7p7: If an identifier for an object is
4996      // declared with no linkage (C99 6.2.2p6), the type for the
4997      // object shall be complete.
4998      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4999          !Var->getLinkage() && !Var->isInvalidDecl() &&
5000          RequireCompleteType(Var->getLocation(), Type,
5001                              diag::err_typecheck_decl_incomplete_type))
5002        Var->setInvalidDecl();
5003
5004      // Make sure that the type is not abstract.
5005      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5006          RequireNonAbstractType(Var->getLocation(), Type,
5007                                 diag::err_abstract_type_in_decl,
5008                                 AbstractVariableType))
5009        Var->setInvalidDecl();
5010      return;
5011
5012    case VarDecl::TentativeDefinition:
5013      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5014      // object that has file scope without an initializer, and without a
5015      // storage-class specifier or with the storage-class specifier "static",
5016      // constitutes a tentative definition. Note: A tentative definition with
5017      // external linkage is valid (C99 6.2.2p5).
5018      if (!Var->isInvalidDecl()) {
5019        if (const IncompleteArrayType *ArrayT
5020                                    = Context.getAsIncompleteArrayType(Type)) {
5021          if (RequireCompleteType(Var->getLocation(),
5022                                  ArrayT->getElementType(),
5023                                  diag::err_illegal_decl_array_incomplete_type))
5024            Var->setInvalidDecl();
5025        } else if (Var->getStorageClass() == SC_Static) {
5026          // C99 6.9.2p3: If the declaration of an identifier for an object is
5027          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5028          // declared type shall not be an incomplete type.
5029          // NOTE: code such as the following
5030          //     static struct s;
5031          //     struct s { int a; };
5032          // is accepted by gcc. Hence here we issue a warning instead of
5033          // an error and we do not invalidate the static declaration.
5034          // NOTE: to avoid multiple warnings, only check the first declaration.
5035          if (Var->getPreviousDeclaration() == 0)
5036            RequireCompleteType(Var->getLocation(), Type,
5037                                diag::ext_typecheck_decl_incomplete_type);
5038        }
5039      }
5040
5041      // Record the tentative definition; we're done.
5042      if (!Var->isInvalidDecl())
5043        TentativeDefinitions.push_back(Var);
5044      return;
5045    }
5046
5047    // Provide a specific diagnostic for uninitialized variable
5048    // definitions with incomplete array type.
5049    if (Type->isIncompleteArrayType()) {
5050      Diag(Var->getLocation(),
5051           diag::err_typecheck_incomplete_array_needs_initializer);
5052      Var->setInvalidDecl();
5053      return;
5054    }
5055
5056    // Provide a specific diagnostic for uninitialized variable
5057    // definitions with reference type.
5058    if (Type->isReferenceType()) {
5059      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5060        << Var->getDeclName()
5061        << SourceRange(Var->getLocation(), Var->getLocation());
5062      Var->setInvalidDecl();
5063      return;
5064    }
5065
5066    // Do not attempt to type-check the default initializer for a
5067    // variable with dependent type.
5068    if (Type->isDependentType())
5069      return;
5070
5071    if (Var->isInvalidDecl())
5072      return;
5073
5074    if (RequireCompleteType(Var->getLocation(),
5075                            Context.getBaseElementType(Type),
5076                            diag::err_typecheck_decl_incomplete_type)) {
5077      Var->setInvalidDecl();
5078      return;
5079    }
5080
5081    // The variable can not have an abstract class type.
5082    if (RequireNonAbstractType(Var->getLocation(), Type,
5083                               diag::err_abstract_type_in_decl,
5084                               AbstractVariableType)) {
5085      Var->setInvalidDecl();
5086      return;
5087    }
5088
5089    const RecordType *Record
5090      = Context.getBaseElementType(Type)->getAs<RecordType>();
5091    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5092        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5093      // C++03 [dcl.init]p9:
5094      //   If no initializer is specified for an object, and the
5095      //   object is of (possibly cv-qualified) non-POD class type (or
5096      //   array thereof), the object shall be default-initialized; if
5097      //   the object is of const-qualified type, the underlying class
5098      //   type shall have a user-declared default
5099      //   constructor. Otherwise, if no initializer is specified for
5100      //   a non- static object, the object and its subobjects, if
5101      //   any, have an indeterminate initial value); if the object
5102      //   or any of its subobjects are of const-qualified type, the
5103      //   program is ill-formed.
5104      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5105    } else {
5106      // Check for jumps past the implicit initializer.  C++0x
5107      // clarifies that this applies to a "variable with automatic
5108      // storage duration", not a "local variable".
5109      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5110        getCurFunction()->setHasBranchProtectedScope();
5111
5112      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5113      InitializationKind Kind
5114        = InitializationKind::CreateDefault(Var->getLocation());
5115
5116      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5117      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5118                                        MultiExprArg(*this, 0, 0));
5119      if (Init.isInvalid())
5120        Var->setInvalidDecl();
5121      else if (Init.get())
5122        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5123    }
5124
5125    CheckCompleteVariableDeclaration(Var);
5126  }
5127}
5128
5129void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5130  if (var->isInvalidDecl()) return;
5131
5132  // All the following checks are C++ only.
5133  if (!getLangOptions().CPlusPlus) return;
5134
5135  QualType baseType = Context.getBaseElementType(var->getType());
5136  if (baseType->isDependentType()) return;
5137
5138  // __block variables might require us to capture a copy-initializer.
5139  if (var->hasAttr<BlocksAttr>()) {
5140    // It's currently invalid to ever have a __block variable with an
5141    // array type; should we diagnose that here?
5142
5143    // Regardless, we don't want to ignore array nesting when
5144    // constructing this copy.
5145    QualType type = var->getType();
5146
5147    if (type->isStructureOrClassType()) {
5148      SourceLocation poi = var->getLocation();
5149      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5150      ExprResult result =
5151        PerformCopyInitialization(
5152                        InitializedEntity::InitializeBlock(poi, type, false),
5153                                  poi, Owned(varRef));
5154      if (!result.isInvalid()) {
5155        result = MaybeCreateExprWithCleanups(result);
5156        Expr *init = result.takeAs<Expr>();
5157        Context.setBlockVarCopyInits(var, init);
5158      }
5159    }
5160  }
5161
5162  // Check for global constructors.
5163  if (!var->getDeclContext()->isDependentContext() &&
5164      var->hasGlobalStorage() &&
5165      !var->isStaticLocal() &&
5166      var->getInit() &&
5167      !var->getInit()->isConstantInitializer(Context,
5168                                             baseType->isReferenceType()))
5169    Diag(var->getLocation(), diag::warn_global_constructor)
5170      << var->getInit()->getSourceRange();
5171
5172  // Require the destructor.
5173  if (const RecordType *recordType = baseType->getAs<RecordType>())
5174    FinalizeVarWithDestructor(var, recordType);
5175}
5176
5177/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5178/// any semantic actions necessary after any initializer has been attached.
5179void
5180Sema::FinalizeDeclaration(Decl *ThisDecl) {
5181  // Note that we are no longer parsing the initializer for this declaration.
5182  ParsingInitForAutoVars.erase(ThisDecl);
5183}
5184
5185Sema::DeclGroupPtrTy
5186Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5187                              Decl **Group, unsigned NumDecls) {
5188  llvm::SmallVector<Decl*, 8> Decls;
5189
5190  if (DS.isTypeSpecOwned())
5191    Decls.push_back(DS.getRepAsDecl());
5192
5193  for (unsigned i = 0; i != NumDecls; ++i)
5194    if (Decl *D = Group[i])
5195      Decls.push_back(D);
5196
5197  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5198                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5199}
5200
5201/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5202/// group, performing any necessary semantic checking.
5203Sema::DeclGroupPtrTy
5204Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5205                           bool TypeMayContainAuto) {
5206  // C++0x [dcl.spec.auto]p7:
5207  //   If the type deduced for the template parameter U is not the same in each
5208  //   deduction, the program is ill-formed.
5209  // FIXME: When initializer-list support is added, a distinction is needed
5210  // between the deduced type U and the deduced type which 'auto' stands for.
5211  //   auto a = 0, b = { 1, 2, 3 };
5212  // is legal because the deduced type U is 'int' in both cases.
5213  if (TypeMayContainAuto && NumDecls > 1) {
5214    QualType Deduced;
5215    CanQualType DeducedCanon;
5216    VarDecl *DeducedDecl = 0;
5217    for (unsigned i = 0; i != NumDecls; ++i) {
5218      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5219        AutoType *AT = D->getType()->getContainedAutoType();
5220        // Don't reissue diagnostics when instantiating a template.
5221        if (AT && D->isInvalidDecl())
5222          break;
5223        if (AT && AT->isDeduced()) {
5224          QualType U = AT->getDeducedType();
5225          CanQualType UCanon = Context.getCanonicalType(U);
5226          if (Deduced.isNull()) {
5227            Deduced = U;
5228            DeducedCanon = UCanon;
5229            DeducedDecl = D;
5230          } else if (DeducedCanon != UCanon) {
5231            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5232                 diag::err_auto_different_deductions)
5233              << Deduced << DeducedDecl->getDeclName()
5234              << U << D->getDeclName()
5235              << DeducedDecl->getInit()->getSourceRange()
5236              << D->getInit()->getSourceRange();
5237            D->setInvalidDecl();
5238            break;
5239          }
5240        }
5241      }
5242    }
5243  }
5244
5245  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5246}
5247
5248
5249/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5250/// to introduce parameters into function prototype scope.
5251Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5252  const DeclSpec &DS = D.getDeclSpec();
5253
5254  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5255  VarDecl::StorageClass StorageClass = SC_None;
5256  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5257  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5258    StorageClass = SC_Register;
5259    StorageClassAsWritten = SC_Register;
5260  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5261    Diag(DS.getStorageClassSpecLoc(),
5262         diag::err_invalid_storage_class_in_func_decl);
5263    D.getMutableDeclSpec().ClearStorageClassSpecs();
5264  }
5265
5266  if (D.getDeclSpec().isThreadSpecified())
5267    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5268
5269  DiagnoseFunctionSpecifiers(D);
5270
5271  TagDecl *OwnedDecl = 0;
5272  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5273  QualType parmDeclType = TInfo->getType();
5274
5275  if (getLangOptions().CPlusPlus) {
5276    // Check that there are no default arguments inside the type of this
5277    // parameter.
5278    CheckExtraCXXDefaultArguments(D);
5279
5280    if (OwnedDecl && OwnedDecl->isDefinition()) {
5281      // C++ [dcl.fct]p6:
5282      //   Types shall not be defined in return or parameter types.
5283      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5284        << Context.getTypeDeclType(OwnedDecl);
5285    }
5286
5287    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5288    if (D.getCXXScopeSpec().isSet()) {
5289      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5290        << D.getCXXScopeSpec().getRange();
5291      D.getCXXScopeSpec().clear();
5292    }
5293  }
5294
5295  // Ensure we have a valid name
5296  IdentifierInfo *II = 0;
5297  if (D.hasName()) {
5298    II = D.getIdentifier();
5299    if (!II) {
5300      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5301        << GetNameForDeclarator(D).getName().getAsString();
5302      D.setInvalidType(true);
5303    }
5304  }
5305
5306  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5307  if (II) {
5308    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5309                   ForRedeclaration);
5310    LookupName(R, S);
5311    if (R.isSingleResult()) {
5312      NamedDecl *PrevDecl = R.getFoundDecl();
5313      if (PrevDecl->isTemplateParameter()) {
5314        // Maybe we will complain about the shadowed template parameter.
5315        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5316        // Just pretend that we didn't see the previous declaration.
5317        PrevDecl = 0;
5318      } else if (S->isDeclScope(PrevDecl)) {
5319        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5320        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5321
5322        // Recover by removing the name
5323        II = 0;
5324        D.SetIdentifier(0, D.getIdentifierLoc());
5325        D.setInvalidType(true);
5326      }
5327    }
5328  }
5329
5330  // Temporarily put parameter variables in the translation unit, not
5331  // the enclosing context.  This prevents them from accidentally
5332  // looking like class members in C++.
5333  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5334                                    D.getSourceRange().getBegin(),
5335                                    D.getIdentifierLoc(), II,
5336                                    parmDeclType, TInfo,
5337                                    StorageClass, StorageClassAsWritten);
5338
5339  if (D.isInvalidType())
5340    New->setInvalidDecl();
5341
5342  // Add the parameter declaration into this scope.
5343  S->AddDecl(New);
5344  if (II)
5345    IdResolver.AddDecl(New);
5346
5347  ProcessDeclAttributes(S, New, D);
5348
5349  if (New->hasAttr<BlocksAttr>()) {
5350    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5351  }
5352  return New;
5353}
5354
5355/// \brief Synthesizes a variable for a parameter arising from a
5356/// typedef.
5357ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5358                                              SourceLocation Loc,
5359                                              QualType T) {
5360  /* FIXME: setting StartLoc == Loc.
5361     Would it be worth to modify callers so as to provide proper source
5362     location for the unnamed parameters, embedding the parameter's type? */
5363  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5364                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5365                                           SC_None, SC_None, 0);
5366  Param->setImplicit();
5367  return Param;
5368}
5369
5370void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5371                                    ParmVarDecl * const *ParamEnd) {
5372  // Don't diagnose unused-parameter errors in template instantiations; we
5373  // will already have done so in the template itself.
5374  if (!ActiveTemplateInstantiations.empty())
5375    return;
5376
5377  for (; Param != ParamEnd; ++Param) {
5378    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5379        !(*Param)->hasAttr<UnusedAttr>()) {
5380      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5381        << (*Param)->getDeclName();
5382    }
5383  }
5384}
5385
5386void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5387                                                  ParmVarDecl * const *ParamEnd,
5388                                                  QualType ReturnTy,
5389                                                  NamedDecl *D) {
5390  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5391    return;
5392
5393  // Warn if the return value is pass-by-value and larger than the specified
5394  // threshold.
5395  if (ReturnTy->isPODType()) {
5396    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5397    if (Size > LangOpts.NumLargeByValueCopy)
5398      Diag(D->getLocation(), diag::warn_return_value_size)
5399          << D->getDeclName() << Size;
5400  }
5401
5402  // Warn if any parameter is pass-by-value and larger than the specified
5403  // threshold.
5404  for (; Param != ParamEnd; ++Param) {
5405    QualType T = (*Param)->getType();
5406    if (!T->isPODType())
5407      continue;
5408    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5409    if (Size > LangOpts.NumLargeByValueCopy)
5410      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5411          << (*Param)->getDeclName() << Size;
5412  }
5413}
5414
5415ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5416                                  SourceLocation NameLoc, IdentifierInfo *Name,
5417                                  QualType T, TypeSourceInfo *TSInfo,
5418                                  VarDecl::StorageClass StorageClass,
5419                                  VarDecl::StorageClass StorageClassAsWritten) {
5420  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5421                                         adjustParameterType(T), TSInfo,
5422                                         StorageClass, StorageClassAsWritten,
5423                                         0);
5424
5425  // Parameters can not be abstract class types.
5426  // For record types, this is done by the AbstractClassUsageDiagnoser once
5427  // the class has been completely parsed.
5428  if (!CurContext->isRecord() &&
5429      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5430                             AbstractParamType))
5431    New->setInvalidDecl();
5432
5433  // Parameter declarators cannot be interface types. All ObjC objects are
5434  // passed by reference.
5435  if (T->isObjCObjectType()) {
5436    Diag(NameLoc,
5437         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5438    New->setInvalidDecl();
5439  }
5440
5441  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5442  // duration shall not be qualified by an address-space qualifier."
5443  // Since all parameters have automatic store duration, they can not have
5444  // an address space.
5445  if (T.getAddressSpace() != 0) {
5446    Diag(NameLoc, diag::err_arg_with_address_space);
5447    New->setInvalidDecl();
5448  }
5449
5450  return New;
5451}
5452
5453void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5454                                           SourceLocation LocAfterDecls) {
5455  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5456
5457  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5458  // for a K&R function.
5459  if (!FTI.hasPrototype) {
5460    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5461      --i;
5462      if (FTI.ArgInfo[i].Param == 0) {
5463        llvm::SmallString<256> Code;
5464        llvm::raw_svector_ostream(Code) << "  int "
5465                                        << FTI.ArgInfo[i].Ident->getName()
5466                                        << ";\n";
5467        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5468          << FTI.ArgInfo[i].Ident
5469          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5470
5471        // Implicitly declare the argument as type 'int' for lack of a better
5472        // type.
5473        DeclSpec DS;
5474        const char* PrevSpec; // unused
5475        unsigned DiagID; // unused
5476        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5477                           PrevSpec, DiagID);
5478        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5479        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5480        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5481      }
5482    }
5483  }
5484}
5485
5486Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5487                                         Declarator &D) {
5488  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5489  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5490  Scope *ParentScope = FnBodyScope->getParent();
5491
5492  Decl *DP = HandleDeclarator(ParentScope, D,
5493                              MultiTemplateParamsArg(*this),
5494                              /*IsFunctionDefinition=*/true);
5495  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5496}
5497
5498static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5499  // Don't warn about invalid declarations.
5500  if (FD->isInvalidDecl())
5501    return false;
5502
5503  // Or declarations that aren't global.
5504  if (!FD->isGlobal())
5505    return false;
5506
5507  // Don't warn about C++ member functions.
5508  if (isa<CXXMethodDecl>(FD))
5509    return false;
5510
5511  // Don't warn about 'main'.
5512  if (FD->isMain())
5513    return false;
5514
5515  // Don't warn about inline functions.
5516  if (FD->isInlineSpecified())
5517    return false;
5518
5519  // Don't warn about function templates.
5520  if (FD->getDescribedFunctionTemplate())
5521    return false;
5522
5523  // Don't warn about function template specializations.
5524  if (FD->isFunctionTemplateSpecialization())
5525    return false;
5526
5527  bool MissingPrototype = true;
5528  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5529       Prev; Prev = Prev->getPreviousDeclaration()) {
5530    // Ignore any declarations that occur in function or method
5531    // scope, because they aren't visible from the header.
5532    if (Prev->getDeclContext()->isFunctionOrMethod())
5533      continue;
5534
5535    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5536    break;
5537  }
5538
5539  return MissingPrototype;
5540}
5541
5542Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5543  // Clear the last template instantiation error context.
5544  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5545
5546  if (!D)
5547    return D;
5548  FunctionDecl *FD = 0;
5549
5550  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5551    FD = FunTmpl->getTemplatedDecl();
5552  else
5553    FD = cast<FunctionDecl>(D);
5554
5555  // Enter a new function scope
5556  PushFunctionScope();
5557
5558  // See if this is a redefinition.
5559  // But don't complain if we're in GNU89 mode and the previous definition
5560  // was an extern inline function.
5561  const FunctionDecl *Definition;
5562  if (FD->hasBody(Definition) &&
5563      !canRedefineFunction(Definition, getLangOptions())) {
5564    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5565        Definition->getStorageClass() == SC_Extern)
5566      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5567        << FD->getDeclName() << getLangOptions().CPlusPlus;
5568    else
5569      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5570    Diag(Definition->getLocation(), diag::note_previous_definition);
5571  }
5572
5573  // Builtin functions cannot be defined.
5574  if (unsigned BuiltinID = FD->getBuiltinID()) {
5575    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5576      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5577      FD->setInvalidDecl();
5578    }
5579  }
5580
5581  // The return type of a function definition must be complete
5582  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5583  QualType ResultType = FD->getResultType();
5584  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5585      !FD->isInvalidDecl() &&
5586      RequireCompleteType(FD->getLocation(), ResultType,
5587                          diag::err_func_def_incomplete_result))
5588    FD->setInvalidDecl();
5589
5590  // GNU warning -Wmissing-prototypes:
5591  //   Warn if a global function is defined without a previous
5592  //   prototype declaration. This warning is issued even if the
5593  //   definition itself provides a prototype. The aim is to detect
5594  //   global functions that fail to be declared in header files.
5595  if (ShouldWarnAboutMissingPrototype(FD))
5596    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5597
5598  if (FnBodyScope)
5599    PushDeclContext(FnBodyScope, FD);
5600
5601  // Check the validity of our function parameters
5602  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5603                           /*CheckParameterNames=*/true);
5604
5605  // Introduce our parameters into the function scope
5606  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5607    ParmVarDecl *Param = FD->getParamDecl(p);
5608    Param->setOwningFunction(FD);
5609
5610    // If this has an identifier, add it to the scope stack.
5611    if (Param->getIdentifier() && FnBodyScope) {
5612      CheckShadow(FnBodyScope, Param);
5613
5614      PushOnScopeChains(Param, FnBodyScope);
5615    }
5616  }
5617
5618  // Checking attributes of current function definition
5619  // dllimport attribute.
5620  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5621  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5622    // dllimport attribute cannot be directly applied to definition.
5623    if (!DA->isInherited()) {
5624      Diag(FD->getLocation(),
5625           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5626        << "dllimport";
5627      FD->setInvalidDecl();
5628      return FD;
5629    }
5630
5631    // Visual C++ appears to not think this is an issue, so only issue
5632    // a warning when Microsoft extensions are disabled.
5633    if (!LangOpts.Microsoft) {
5634      // If a symbol previously declared dllimport is later defined, the
5635      // attribute is ignored in subsequent references, and a warning is
5636      // emitted.
5637      Diag(FD->getLocation(),
5638           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5639        << FD->getName() << "dllimport";
5640    }
5641  }
5642  return FD;
5643}
5644
5645/// \brief Given the set of return statements within a function body,
5646/// compute the variables that are subject to the named return value
5647/// optimization.
5648///
5649/// Each of the variables that is subject to the named return value
5650/// optimization will be marked as NRVO variables in the AST, and any
5651/// return statement that has a marked NRVO variable as its NRVO candidate can
5652/// use the named return value optimization.
5653///
5654/// This function applies a very simplistic algorithm for NRVO: if every return
5655/// statement in the function has the same NRVO candidate, that candidate is
5656/// the NRVO variable.
5657///
5658/// FIXME: Employ a smarter algorithm that accounts for multiple return
5659/// statements and the lifetimes of the NRVO candidates. We should be able to
5660/// find a maximal set of NRVO variables.
5661static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5662  ReturnStmt **Returns = Scope->Returns.data();
5663
5664  const VarDecl *NRVOCandidate = 0;
5665  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5666    if (!Returns[I]->getNRVOCandidate())
5667      return;
5668
5669    if (!NRVOCandidate)
5670      NRVOCandidate = Returns[I]->getNRVOCandidate();
5671    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5672      return;
5673  }
5674
5675  if (NRVOCandidate)
5676    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5677}
5678
5679Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5680  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5681}
5682
5683Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5684                                    bool IsInstantiation) {
5685  FunctionDecl *FD = 0;
5686  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5687  if (FunTmpl)
5688    FD = FunTmpl->getTemplatedDecl();
5689  else
5690    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5691
5692  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5693  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5694
5695  if (FD) {
5696    FD->setBody(Body);
5697    if (FD->isMain()) {
5698      // C and C++ allow for main to automagically return 0.
5699      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5700      FD->setHasImplicitReturnZero(true);
5701      WP.disableCheckFallThrough();
5702    }
5703
5704    if (!FD->isInvalidDecl()) {
5705      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5706      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5707                                             FD->getResultType(), FD);
5708
5709      // If this is a constructor, we need a vtable.
5710      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5711        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5712
5713      ComputeNRVO(Body, getCurFunction());
5714    }
5715
5716    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5717  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5718    assert(MD == getCurMethodDecl() && "Method parsing confused");
5719    MD->setBody(Body);
5720    if (Body)
5721      MD->setEndLoc(Body->getLocEnd());
5722    if (!MD->isInvalidDecl()) {
5723      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5724      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5725                                             MD->getResultType(), MD);
5726    }
5727  } else {
5728    return 0;
5729  }
5730
5731  // Verify and clean out per-function state.
5732  if (Body) {
5733    // C++ constructors that have function-try-blocks can't have return
5734    // statements in the handlers of that block. (C++ [except.handle]p14)
5735    // Verify this.
5736    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5737      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5738
5739    // Verify that that gotos and switch cases don't jump into scopes illegally.
5740    // Verify that that gotos and switch cases don't jump into scopes illegally.
5741    if (getCurFunction()->NeedsScopeChecking() &&
5742        !dcl->isInvalidDecl() &&
5743        !hasAnyErrorsInThisFunction())
5744      DiagnoseInvalidJumps(Body);
5745
5746    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5747      if (!Destructor->getParent()->isDependentType())
5748        CheckDestructor(Destructor);
5749
5750      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5751                                             Destructor->getParent());
5752    }
5753
5754    // If any errors have occurred, clear out any temporaries that may have
5755    // been leftover. This ensures that these temporaries won't be picked up for
5756    // deletion in some later function.
5757    if (PP.getDiagnostics().hasErrorOccurred() ||
5758        PP.getDiagnostics().getSuppressAllDiagnostics())
5759      ExprTemporaries.clear();
5760    else if (!isa<FunctionTemplateDecl>(dcl)) {
5761      // Since the body is valid, issue any analysis-based warnings that are
5762      // enabled.
5763      ActivePolicy = &WP;
5764    }
5765
5766    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5767  }
5768
5769  if (!IsInstantiation)
5770    PopDeclContext();
5771
5772  PopFunctionOrBlockScope(ActivePolicy, dcl);
5773
5774  // If any errors have occurred, clear out any temporaries that may have
5775  // been leftover. This ensures that these temporaries won't be picked up for
5776  // deletion in some later function.
5777  if (getDiagnostics().hasErrorOccurred())
5778    ExprTemporaries.clear();
5779
5780  return dcl;
5781}
5782
5783/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5784/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5785NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5786                                          IdentifierInfo &II, Scope *S) {
5787  // Before we produce a declaration for an implicitly defined
5788  // function, see whether there was a locally-scoped declaration of
5789  // this name as a function or variable. If so, use that
5790  // (non-visible) declaration, and complain about it.
5791  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5792    = LocallyScopedExternalDecls.find(&II);
5793  if (Pos != LocallyScopedExternalDecls.end()) {
5794    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5795    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5796    return Pos->second;
5797  }
5798
5799  // Extension in C99.  Legal in C90, but warn about it.
5800  if (II.getName().startswith("__builtin_"))
5801    Diag(Loc, diag::warn_builtin_unknown) << &II;
5802  else if (getLangOptions().C99)
5803    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5804  else
5805    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5806
5807  // Set a Declarator for the implicit definition: int foo();
5808  const char *Dummy;
5809  DeclSpec DS;
5810  unsigned DiagID;
5811  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5812  (void)Error; // Silence warning.
5813  assert(!Error && "Error setting up implicit decl!");
5814  Declarator D(DS, Declarator::BlockContext);
5815  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5816                                             false, false, SourceLocation(), 0,
5817                                             0, 0, true, SourceLocation(),
5818                                             EST_None, SourceLocation(),
5819                                             0, 0, 0, 0, Loc, Loc, D),
5820                SourceLocation());
5821  D.SetIdentifier(&II, Loc);
5822
5823  // Insert this function into translation-unit scope.
5824
5825  DeclContext *PrevDC = CurContext;
5826  CurContext = Context.getTranslationUnitDecl();
5827
5828  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5829  FD->setImplicit();
5830
5831  CurContext = PrevDC;
5832
5833  AddKnownFunctionAttributes(FD);
5834
5835  return FD;
5836}
5837
5838/// \brief Adds any function attributes that we know a priori based on
5839/// the declaration of this function.
5840///
5841/// These attributes can apply both to implicitly-declared builtins
5842/// (like __builtin___printf_chk) or to library-declared functions
5843/// like NSLog or printf.
5844void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5845  if (FD->isInvalidDecl())
5846    return;
5847
5848  // If this is a built-in function, map its builtin attributes to
5849  // actual attributes.
5850  if (unsigned BuiltinID = FD->getBuiltinID()) {
5851    // Handle printf-formatting attributes.
5852    unsigned FormatIdx;
5853    bool HasVAListArg;
5854    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5855      if (!FD->getAttr<FormatAttr>())
5856        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5857                                                "printf", FormatIdx+1,
5858                                               HasVAListArg ? 0 : FormatIdx+2));
5859    }
5860    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5861                                             HasVAListArg)) {
5862     if (!FD->getAttr<FormatAttr>())
5863       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5864                                              "scanf", FormatIdx+1,
5865                                              HasVAListArg ? 0 : FormatIdx+2));
5866    }
5867
5868    // Mark const if we don't care about errno and that is the only
5869    // thing preventing the function from being const. This allows
5870    // IRgen to use LLVM intrinsics for such functions.
5871    if (!getLangOptions().MathErrno &&
5872        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5873      if (!FD->getAttr<ConstAttr>())
5874        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5875    }
5876
5877    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5878      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5879    if (Context.BuiltinInfo.isConst(BuiltinID))
5880      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5881  }
5882
5883  IdentifierInfo *Name = FD->getIdentifier();
5884  if (!Name)
5885    return;
5886  if ((!getLangOptions().CPlusPlus &&
5887       FD->getDeclContext()->isTranslationUnit()) ||
5888      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5889       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5890       LinkageSpecDecl::lang_c)) {
5891    // Okay: this could be a libc/libm/Objective-C function we know
5892    // about.
5893  } else
5894    return;
5895
5896  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5897    // FIXME: NSLog and NSLogv should be target specific
5898    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5899      // FIXME: We known better than our headers.
5900      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5901    } else
5902      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5903                                             "printf", 1,
5904                                             Name->isStr("NSLogv") ? 0 : 2));
5905  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5906    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5907    // target-specific builtins, perhaps?
5908    if (!FD->getAttr<FormatAttr>())
5909      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5910                                             "printf", 2,
5911                                             Name->isStr("vasprintf") ? 0 : 3));
5912  }
5913}
5914
5915TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5916                                    TypeSourceInfo *TInfo) {
5917  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5918  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5919
5920  if (!TInfo) {
5921    assert(D.isInvalidType() && "no declarator info for valid type");
5922    TInfo = Context.getTrivialTypeSourceInfo(T);
5923  }
5924
5925  // Scope manipulation handled by caller.
5926  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5927                                           D.getSourceRange().getBegin(),
5928                                           D.getIdentifierLoc(),
5929                                           D.getIdentifier(),
5930                                           TInfo);
5931
5932  // Bail out immediately if we have an invalid declaration.
5933  if (D.isInvalidType()) {
5934    NewTD->setInvalidDecl();
5935    return NewTD;
5936  }
5937
5938  // C++ [dcl.typedef]p8:
5939  //   If the typedef declaration defines an unnamed class (or
5940  //   enum), the first typedef-name declared by the declaration
5941  //   to be that class type (or enum type) is used to denote the
5942  //   class type (or enum type) for linkage purposes only.
5943  // We need to check whether the type was declared in the declaration.
5944  switch (D.getDeclSpec().getTypeSpecType()) {
5945  case TST_enum:
5946  case TST_struct:
5947  case TST_union:
5948  case TST_class: {
5949    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5950
5951    // Do nothing if the tag is not anonymous or already has an
5952    // associated typedef (from an earlier typedef in this decl group).
5953    if (tagFromDeclSpec->getIdentifier()) break;
5954    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5955
5956    // A well-formed anonymous tag must always be a TUK_Definition.
5957    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5958
5959    // The type must match the tag exactly;  no qualifiers allowed.
5960    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5961      break;
5962
5963    // Otherwise, set this is the anon-decl typedef for the tag.
5964    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5965    break;
5966  }
5967
5968  default:
5969    break;
5970  }
5971
5972  return NewTD;
5973}
5974
5975
5976/// \brief Determine whether a tag with a given kind is acceptable
5977/// as a redeclaration of the given tag declaration.
5978///
5979/// \returns true if the new tag kind is acceptable, false otherwise.
5980bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5981                                        TagTypeKind NewTag,
5982                                        SourceLocation NewTagLoc,
5983                                        const IdentifierInfo &Name) {
5984  // C++ [dcl.type.elab]p3:
5985  //   The class-key or enum keyword present in the
5986  //   elaborated-type-specifier shall agree in kind with the
5987  //   declaration to which the name in the elaborated-type-specifier
5988  //   refers. This rule also applies to the form of
5989  //   elaborated-type-specifier that declares a class-name or
5990  //   friend class since it can be construed as referring to the
5991  //   definition of the class. Thus, in any
5992  //   elaborated-type-specifier, the enum keyword shall be used to
5993  //   refer to an enumeration (7.2), the union class-key shall be
5994  //   used to refer to a union (clause 9), and either the class or
5995  //   struct class-key shall be used to refer to a class (clause 9)
5996  //   declared using the class or struct class-key.
5997  TagTypeKind OldTag = Previous->getTagKind();
5998  if (OldTag == NewTag)
5999    return true;
6000
6001  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6002      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6003    // Warn about the struct/class tag mismatch.
6004    bool isTemplate = false;
6005    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6006      isTemplate = Record->getDescribedClassTemplate();
6007
6008    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6009      << (NewTag == TTK_Class)
6010      << isTemplate << &Name
6011      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6012                              OldTag == TTK_Class? "class" : "struct");
6013    Diag(Previous->getLocation(), diag::note_previous_use);
6014    return true;
6015  }
6016  return false;
6017}
6018
6019/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6020/// former case, Name will be non-null.  In the later case, Name will be null.
6021/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6022/// reference/declaration/definition of a tag.
6023Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6024                     SourceLocation KWLoc, CXXScopeSpec &SS,
6025                     IdentifierInfo *Name, SourceLocation NameLoc,
6026                     AttributeList *Attr, AccessSpecifier AS,
6027                     MultiTemplateParamsArg TemplateParameterLists,
6028                     bool &OwnedDecl, bool &IsDependent,
6029                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6030                     TypeResult UnderlyingType) {
6031  // If this is not a definition, it must have a name.
6032  assert((Name != 0 || TUK == TUK_Definition) &&
6033         "Nameless record must be a definition!");
6034  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6035
6036  OwnedDecl = false;
6037  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6038
6039  // FIXME: Check explicit specializations more carefully.
6040  bool isExplicitSpecialization = false;
6041  bool Invalid = false;
6042
6043  // We only need to do this matching if we have template parameters
6044  // or a scope specifier, which also conveniently avoids this work
6045  // for non-C++ cases.
6046  if (TemplateParameterLists.size() > 0 ||
6047      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6048    if (TemplateParameterList *TemplateParams
6049          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6050                                                TemplateParameterLists.get(),
6051                                                TemplateParameterLists.size(),
6052                                                    TUK == TUK_Friend,
6053                                                    isExplicitSpecialization,
6054                                                    Invalid)) {
6055      if (TemplateParams->size() > 0) {
6056        // This is a declaration or definition of a class template (which may
6057        // be a member of another template).
6058
6059        if (Invalid)
6060          return 0;
6061
6062        OwnedDecl = false;
6063        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6064                                               SS, Name, NameLoc, Attr,
6065                                               TemplateParams, AS,
6066                                           TemplateParameterLists.size() - 1,
6067                 (TemplateParameterList**) TemplateParameterLists.release());
6068        return Result.get();
6069      } else {
6070        // The "template<>" header is extraneous.
6071        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6072          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6073        isExplicitSpecialization = true;
6074      }
6075    }
6076  }
6077
6078  // Figure out the underlying type if this a enum declaration. We need to do
6079  // this early, because it's needed to detect if this is an incompatible
6080  // redeclaration.
6081  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6082
6083  if (Kind == TTK_Enum) {
6084    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6085      // No underlying type explicitly specified, or we failed to parse the
6086      // type, default to int.
6087      EnumUnderlying = Context.IntTy.getTypePtr();
6088    else if (UnderlyingType.get()) {
6089      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6090      // integral type; any cv-qualification is ignored.
6091      TypeSourceInfo *TI = 0;
6092      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6093      EnumUnderlying = TI;
6094
6095      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6096
6097      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6098        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6099          << T;
6100        // Recover by falling back to int.
6101        EnumUnderlying = Context.IntTy.getTypePtr();
6102      }
6103
6104      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6105                                          UPPC_FixedUnderlyingType))
6106        EnumUnderlying = Context.IntTy.getTypePtr();
6107
6108    } else if (getLangOptions().Microsoft)
6109      // Microsoft enums are always of int type.
6110      EnumUnderlying = Context.IntTy.getTypePtr();
6111  }
6112
6113  DeclContext *SearchDC = CurContext;
6114  DeclContext *DC = CurContext;
6115  bool isStdBadAlloc = false;
6116
6117  RedeclarationKind Redecl = ForRedeclaration;
6118  if (TUK == TUK_Friend || TUK == TUK_Reference)
6119    Redecl = NotForRedeclaration;
6120
6121  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6122
6123  if (Name && SS.isNotEmpty()) {
6124    // We have a nested-name tag ('struct foo::bar').
6125
6126    // Check for invalid 'foo::'.
6127    if (SS.isInvalid()) {
6128      Name = 0;
6129      goto CreateNewDecl;
6130    }
6131
6132    // If this is a friend or a reference to a class in a dependent
6133    // context, don't try to make a decl for it.
6134    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6135      DC = computeDeclContext(SS, false);
6136      if (!DC) {
6137        IsDependent = true;
6138        return 0;
6139      }
6140    } else {
6141      DC = computeDeclContext(SS, true);
6142      if (!DC) {
6143        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6144          << SS.getRange();
6145        return 0;
6146      }
6147    }
6148
6149    if (RequireCompleteDeclContext(SS, DC))
6150      return 0;
6151
6152    SearchDC = DC;
6153    // Look-up name inside 'foo::'.
6154    LookupQualifiedName(Previous, DC);
6155
6156    if (Previous.isAmbiguous())
6157      return 0;
6158
6159    if (Previous.empty()) {
6160      // Name lookup did not find anything. However, if the
6161      // nested-name-specifier refers to the current instantiation,
6162      // and that current instantiation has any dependent base
6163      // classes, we might find something at instantiation time: treat
6164      // this as a dependent elaborated-type-specifier.
6165      // But this only makes any sense for reference-like lookups.
6166      if (Previous.wasNotFoundInCurrentInstantiation() &&
6167          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6168        IsDependent = true;
6169        return 0;
6170      }
6171
6172      // A tag 'foo::bar' must already exist.
6173      Diag(NameLoc, diag::err_not_tag_in_scope)
6174        << Kind << Name << DC << SS.getRange();
6175      Name = 0;
6176      Invalid = true;
6177      goto CreateNewDecl;
6178    }
6179  } else if (Name) {
6180    // If this is a named struct, check to see if there was a previous forward
6181    // declaration or definition.
6182    // FIXME: We're looking into outer scopes here, even when we
6183    // shouldn't be. Doing so can result in ambiguities that we
6184    // shouldn't be diagnosing.
6185    LookupName(Previous, S);
6186
6187    // Note:  there used to be some attempt at recovery here.
6188    if (Previous.isAmbiguous())
6189      return 0;
6190
6191    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6192      // FIXME: This makes sure that we ignore the contexts associated
6193      // with C structs, unions, and enums when looking for a matching
6194      // tag declaration or definition. See the similar lookup tweak
6195      // in Sema::LookupName; is there a better way to deal with this?
6196      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6197        SearchDC = SearchDC->getParent();
6198    }
6199  } else if (S->isFunctionPrototypeScope()) {
6200    // If this is an enum declaration in function prototype scope, set its
6201    // initial context to the translation unit.
6202    SearchDC = Context.getTranslationUnitDecl();
6203  }
6204
6205  if (Previous.isSingleResult() &&
6206      Previous.getFoundDecl()->isTemplateParameter()) {
6207    // Maybe we will complain about the shadowed template parameter.
6208    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6209    // Just pretend that we didn't see the previous declaration.
6210    Previous.clear();
6211  }
6212
6213  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6214      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6215    // This is a declaration of or a reference to "std::bad_alloc".
6216    isStdBadAlloc = true;
6217
6218    if (Previous.empty() && StdBadAlloc) {
6219      // std::bad_alloc has been implicitly declared (but made invisible to
6220      // name lookup). Fill in this implicit declaration as the previous
6221      // declaration, so that the declarations get chained appropriately.
6222      Previous.addDecl(getStdBadAlloc());
6223    }
6224  }
6225
6226  // If we didn't find a previous declaration, and this is a reference
6227  // (or friend reference), move to the correct scope.  In C++, we
6228  // also need to do a redeclaration lookup there, just in case
6229  // there's a shadow friend decl.
6230  if (Name && Previous.empty() &&
6231      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6232    if (Invalid) goto CreateNewDecl;
6233    assert(SS.isEmpty());
6234
6235    if (TUK == TUK_Reference) {
6236      // C++ [basic.scope.pdecl]p5:
6237      //   -- for an elaborated-type-specifier of the form
6238      //
6239      //          class-key identifier
6240      //
6241      //      if the elaborated-type-specifier is used in the
6242      //      decl-specifier-seq or parameter-declaration-clause of a
6243      //      function defined in namespace scope, the identifier is
6244      //      declared as a class-name in the namespace that contains
6245      //      the declaration; otherwise, except as a friend
6246      //      declaration, the identifier is declared in the smallest
6247      //      non-class, non-function-prototype scope that contains the
6248      //      declaration.
6249      //
6250      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6251      // C structs and unions.
6252      //
6253      // It is an error in C++ to declare (rather than define) an enum
6254      // type, including via an elaborated type specifier.  We'll
6255      // diagnose that later; for now, declare the enum in the same
6256      // scope as we would have picked for any other tag type.
6257      //
6258      // GNU C also supports this behavior as part of its incomplete
6259      // enum types extension, while GNU C++ does not.
6260      //
6261      // Find the context where we'll be declaring the tag.
6262      // FIXME: We would like to maintain the current DeclContext as the
6263      // lexical context,
6264      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6265        SearchDC = SearchDC->getParent();
6266
6267      // Find the scope where we'll be declaring the tag.
6268      while (S->isClassScope() ||
6269             (getLangOptions().CPlusPlus &&
6270              S->isFunctionPrototypeScope()) ||
6271             ((S->getFlags() & Scope::DeclScope) == 0) ||
6272             (S->getEntity() &&
6273              ((DeclContext *)S->getEntity())->isTransparentContext()))
6274        S = S->getParent();
6275    } else {
6276      assert(TUK == TUK_Friend);
6277      // C++ [namespace.memdef]p3:
6278      //   If a friend declaration in a non-local class first declares a
6279      //   class or function, the friend class or function is a member of
6280      //   the innermost enclosing namespace.
6281      SearchDC = SearchDC->getEnclosingNamespaceContext();
6282    }
6283
6284    // In C++, we need to do a redeclaration lookup to properly
6285    // diagnose some problems.
6286    if (getLangOptions().CPlusPlus) {
6287      Previous.setRedeclarationKind(ForRedeclaration);
6288      LookupQualifiedName(Previous, SearchDC);
6289    }
6290  }
6291
6292  if (!Previous.empty()) {
6293    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6294
6295    // It's okay to have a tag decl in the same scope as a typedef
6296    // which hides a tag decl in the same scope.  Finding this
6297    // insanity with a redeclaration lookup can only actually happen
6298    // in C++.
6299    //
6300    // This is also okay for elaborated-type-specifiers, which is
6301    // technically forbidden by the current standard but which is
6302    // okay according to the likely resolution of an open issue;
6303    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6304    if (getLangOptions().CPlusPlus) {
6305      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6306        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6307          TagDecl *Tag = TT->getDecl();
6308          if (Tag->getDeclName() == Name &&
6309              Tag->getDeclContext()->getRedeclContext()
6310                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6311            PrevDecl = Tag;
6312            Previous.clear();
6313            Previous.addDecl(Tag);
6314            Previous.resolveKind();
6315          }
6316        }
6317      }
6318    }
6319
6320    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6321      // If this is a use of a previous tag, or if the tag is already declared
6322      // in the same scope (so that the definition/declaration completes or
6323      // rementions the tag), reuse the decl.
6324      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6325          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6326        // Make sure that this wasn't declared as an enum and now used as a
6327        // struct or something similar.
6328        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6329          bool SafeToContinue
6330            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6331               Kind != TTK_Enum);
6332          if (SafeToContinue)
6333            Diag(KWLoc, diag::err_use_with_wrong_tag)
6334              << Name
6335              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6336                                              PrevTagDecl->getKindName());
6337          else
6338            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6339          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6340
6341          if (SafeToContinue)
6342            Kind = PrevTagDecl->getTagKind();
6343          else {
6344            // Recover by making this an anonymous redefinition.
6345            Name = 0;
6346            Previous.clear();
6347            Invalid = true;
6348          }
6349        }
6350
6351        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6352          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6353
6354          // All conflicts with previous declarations are recovered by
6355          // returning the previous declaration.
6356          if (ScopedEnum != PrevEnum->isScoped()) {
6357            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6358              << PrevEnum->isScoped();
6359            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6360            return PrevTagDecl;
6361          }
6362          else if (EnumUnderlying && PrevEnum->isFixed()) {
6363            QualType T;
6364            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6365                T = TI->getType();
6366            else
6367                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6368
6369            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6370              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6371                   diag::err_enum_redeclare_type_mismatch)
6372                << T
6373                << PrevEnum->getIntegerType();
6374              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6375              return PrevTagDecl;
6376            }
6377          }
6378          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6379            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6380              << PrevEnum->isFixed();
6381            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6382            return PrevTagDecl;
6383          }
6384        }
6385
6386        if (!Invalid) {
6387          // If this is a use, just return the declaration we found.
6388
6389          // FIXME: In the future, return a variant or some other clue
6390          // for the consumer of this Decl to know it doesn't own it.
6391          // For our current ASTs this shouldn't be a problem, but will
6392          // need to be changed with DeclGroups.
6393          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6394              TUK == TUK_Friend)
6395            return PrevTagDecl;
6396
6397          // Diagnose attempts to redefine a tag.
6398          if (TUK == TUK_Definition) {
6399            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6400              // If we're defining a specialization and the previous definition
6401              // is from an implicit instantiation, don't emit an error
6402              // here; we'll catch this in the general case below.
6403              if (!isExplicitSpecialization ||
6404                  !isa<CXXRecordDecl>(Def) ||
6405                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6406                                               == TSK_ExplicitSpecialization) {
6407                Diag(NameLoc, diag::err_redefinition) << Name;
6408                Diag(Def->getLocation(), diag::note_previous_definition);
6409                // If this is a redefinition, recover by making this
6410                // struct be anonymous, which will make any later
6411                // references get the previous definition.
6412                Name = 0;
6413                Previous.clear();
6414                Invalid = true;
6415              }
6416            } else {
6417              // If the type is currently being defined, complain
6418              // about a nested redefinition.
6419              const TagType *Tag
6420                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6421              if (Tag->isBeingDefined()) {
6422                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6423                Diag(PrevTagDecl->getLocation(),
6424                     diag::note_previous_definition);
6425                Name = 0;
6426                Previous.clear();
6427                Invalid = true;
6428              }
6429            }
6430
6431            // Okay, this is definition of a previously declared or referenced
6432            // tag PrevDecl. We're going to create a new Decl for it.
6433          }
6434        }
6435        // If we get here we have (another) forward declaration or we
6436        // have a definition.  Just create a new decl.
6437
6438      } else {
6439        // If we get here, this is a definition of a new tag type in a nested
6440        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6441        // new decl/type.  We set PrevDecl to NULL so that the entities
6442        // have distinct types.
6443        Previous.clear();
6444      }
6445      // If we get here, we're going to create a new Decl. If PrevDecl
6446      // is non-NULL, it's a definition of the tag declared by
6447      // PrevDecl. If it's NULL, we have a new definition.
6448
6449
6450    // Otherwise, PrevDecl is not a tag, but was found with tag
6451    // lookup.  This is only actually possible in C++, where a few
6452    // things like templates still live in the tag namespace.
6453    } else {
6454      assert(getLangOptions().CPlusPlus);
6455
6456      // Use a better diagnostic if an elaborated-type-specifier
6457      // found the wrong kind of type on the first
6458      // (non-redeclaration) lookup.
6459      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6460          !Previous.isForRedeclaration()) {
6461        unsigned Kind = 0;
6462        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6463        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6464        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6465        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6466        Invalid = true;
6467
6468      // Otherwise, only diagnose if the declaration is in scope.
6469      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6470                                isExplicitSpecialization)) {
6471        // do nothing
6472
6473      // Diagnose implicit declarations introduced by elaborated types.
6474      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6475        unsigned Kind = 0;
6476        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6477        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6478        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6479        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6480        Invalid = true;
6481
6482      // Otherwise it's a declaration.  Call out a particularly common
6483      // case here.
6484      } else if (isa<TypedefDecl>(PrevDecl)) {
6485        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6486          << Name
6487          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6488        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6489        Invalid = true;
6490
6491      // Otherwise, diagnose.
6492      } else {
6493        // The tag name clashes with something else in the target scope,
6494        // issue an error and recover by making this tag be anonymous.
6495        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6496        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6497        Name = 0;
6498        Invalid = true;
6499      }
6500
6501      // The existing declaration isn't relevant to us; we're in a
6502      // new scope, so clear out the previous declaration.
6503      Previous.clear();
6504    }
6505  }
6506
6507CreateNewDecl:
6508
6509  TagDecl *PrevDecl = 0;
6510  if (Previous.isSingleResult())
6511    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6512
6513  // If there is an identifier, use the location of the identifier as the
6514  // location of the decl, otherwise use the location of the struct/union
6515  // keyword.
6516  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6517
6518  // Otherwise, create a new declaration. If there is a previous
6519  // declaration of the same entity, the two will be linked via
6520  // PrevDecl.
6521  TagDecl *New;
6522
6523  bool IsForwardReference = false;
6524  if (Kind == TTK_Enum) {
6525    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6526    // enum X { A, B, C } D;    D should chain to X.
6527    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6528                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6529                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6530    // If this is an undefined enum, warn.
6531    if (TUK != TUK_Definition && !Invalid) {
6532      TagDecl *Def;
6533      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6534        // C++0x: 7.2p2: opaque-enum-declaration.
6535        // Conflicts are diagnosed above. Do nothing.
6536      }
6537      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6538        Diag(Loc, diag::ext_forward_ref_enum_def)
6539          << New;
6540        Diag(Def->getLocation(), diag::note_previous_definition);
6541      } else {
6542        unsigned DiagID = diag::ext_forward_ref_enum;
6543        if (getLangOptions().Microsoft)
6544          DiagID = diag::ext_ms_forward_ref_enum;
6545        else if (getLangOptions().CPlusPlus)
6546          DiagID = diag::err_forward_ref_enum;
6547        Diag(Loc, DiagID);
6548
6549        // If this is a forward-declared reference to an enumeration, make a
6550        // note of it; we won't actually be introducing the declaration into
6551        // the declaration context.
6552        if (TUK == TUK_Reference)
6553          IsForwardReference = true;
6554      }
6555    }
6556
6557    if (EnumUnderlying) {
6558      EnumDecl *ED = cast<EnumDecl>(New);
6559      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6560        ED->setIntegerTypeSourceInfo(TI);
6561      else
6562        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6563      ED->setPromotionType(ED->getIntegerType());
6564    }
6565
6566  } else {
6567    // struct/union/class
6568
6569    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6570    // struct X { int A; } D;    D should chain to X.
6571    if (getLangOptions().CPlusPlus) {
6572      // FIXME: Look for a way to use RecordDecl for simple structs.
6573      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6574                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6575
6576      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6577        StdBadAlloc = cast<CXXRecordDecl>(New);
6578    } else
6579      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6580                               cast_or_null<RecordDecl>(PrevDecl));
6581  }
6582
6583  // Maybe add qualifier info.
6584  if (SS.isNotEmpty()) {
6585    if (SS.isSet()) {
6586      New->setQualifierInfo(SS.getWithLocInContext(Context));
6587      if (TemplateParameterLists.size() > 0) {
6588        New->setTemplateParameterListsInfo(Context,
6589                                           TemplateParameterLists.size(),
6590                    (TemplateParameterList**) TemplateParameterLists.release());
6591      }
6592    }
6593    else
6594      Invalid = true;
6595  }
6596
6597  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6598    // Add alignment attributes if necessary; these attributes are checked when
6599    // the ASTContext lays out the structure.
6600    //
6601    // It is important for implementing the correct semantics that this
6602    // happen here (in act on tag decl). The #pragma pack stack is
6603    // maintained as a result of parser callbacks which can occur at
6604    // many points during the parsing of a struct declaration (because
6605    // the #pragma tokens are effectively skipped over during the
6606    // parsing of the struct).
6607    AddAlignmentAttributesForRecord(RD);
6608  }
6609
6610  // If this is a specialization of a member class (of a class template),
6611  // check the specialization.
6612  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6613    Invalid = true;
6614
6615  if (Invalid)
6616    New->setInvalidDecl();
6617
6618  if (Attr)
6619    ProcessDeclAttributeList(S, New, Attr);
6620
6621  // If we're declaring or defining a tag in function prototype scope
6622  // in C, note that this type can only be used within the function.
6623  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6624    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6625
6626  // Set the lexical context. If the tag has a C++ scope specifier, the
6627  // lexical context will be different from the semantic context.
6628  New->setLexicalDeclContext(CurContext);
6629
6630  // Mark this as a friend decl if applicable.
6631  if (TUK == TUK_Friend)
6632    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6633
6634  // Set the access specifier.
6635  if (!Invalid && SearchDC->isRecord())
6636    SetMemberAccessSpecifier(New, PrevDecl, AS);
6637
6638  if (TUK == TUK_Definition)
6639    New->startDefinition();
6640
6641  // If this has an identifier, add it to the scope stack.
6642  if (TUK == TUK_Friend) {
6643    // We might be replacing an existing declaration in the lookup tables;
6644    // if so, borrow its access specifier.
6645    if (PrevDecl)
6646      New->setAccess(PrevDecl->getAccess());
6647
6648    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6649    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6650    if (Name) // can be null along some error paths
6651      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6652        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6653  } else if (Name) {
6654    S = getNonFieldDeclScope(S);
6655    PushOnScopeChains(New, S, !IsForwardReference);
6656    if (IsForwardReference)
6657      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6658
6659  } else {
6660    CurContext->addDecl(New);
6661  }
6662
6663  // If this is the C FILE type, notify the AST context.
6664  if (IdentifierInfo *II = New->getIdentifier())
6665    if (!New->isInvalidDecl() &&
6666        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6667        II->isStr("FILE"))
6668      Context.setFILEDecl(New);
6669
6670  OwnedDecl = true;
6671  return New;
6672}
6673
6674void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6675  AdjustDeclIfTemplate(TagD);
6676  TagDecl *Tag = cast<TagDecl>(TagD);
6677
6678  // Enter the tag context.
6679  PushDeclContext(S, Tag);
6680}
6681
6682void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6683                                           ClassVirtSpecifiers &CVS,
6684                                           SourceLocation LBraceLoc) {
6685  AdjustDeclIfTemplate(TagD);
6686  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6687
6688  FieldCollector->StartClass();
6689
6690  if (!Record->getIdentifier())
6691    return;
6692
6693  if (CVS.isFinalSpecified())
6694    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6695  if (CVS.isExplicitSpecified())
6696    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6697
6698  // C++ [class]p2:
6699  //   [...] The class-name is also inserted into the scope of the
6700  //   class itself; this is known as the injected-class-name. For
6701  //   purposes of access checking, the injected-class-name is treated
6702  //   as if it were a public member name.
6703  CXXRecordDecl *InjectedClassName
6704    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6705                            Record->getLocStart(), Record->getLocation(),
6706                            Record->getIdentifier(),
6707                            /*PrevDecl=*/0,
6708                            /*DelayTypeCreation=*/true);
6709  Context.getTypeDeclType(InjectedClassName, Record);
6710  InjectedClassName->setImplicit();
6711  InjectedClassName->setAccess(AS_public);
6712  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6713      InjectedClassName->setDescribedClassTemplate(Template);
6714  PushOnScopeChains(InjectedClassName, S);
6715  assert(InjectedClassName->isInjectedClassName() &&
6716         "Broken injected-class-name");
6717}
6718
6719void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6720                                    SourceLocation RBraceLoc) {
6721  AdjustDeclIfTemplate(TagD);
6722  TagDecl *Tag = cast<TagDecl>(TagD);
6723  Tag->setRBraceLoc(RBraceLoc);
6724
6725  if (isa<CXXRecordDecl>(Tag))
6726    FieldCollector->FinishClass();
6727
6728  // Exit this scope of this tag's definition.
6729  PopDeclContext();
6730
6731  // Notify the consumer that we've defined a tag.
6732  Consumer.HandleTagDeclDefinition(Tag);
6733}
6734
6735void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6736  AdjustDeclIfTemplate(TagD);
6737  TagDecl *Tag = cast<TagDecl>(TagD);
6738  Tag->setInvalidDecl();
6739
6740  // We're undoing ActOnTagStartDefinition here, not
6741  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6742  // the FieldCollector.
6743
6744  PopDeclContext();
6745}
6746
6747// Note that FieldName may be null for anonymous bitfields.
6748bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6749                          QualType FieldTy, const Expr *BitWidth,
6750                          bool *ZeroWidth) {
6751  // Default to true; that shouldn't confuse checks for emptiness
6752  if (ZeroWidth)
6753    *ZeroWidth = true;
6754
6755  // C99 6.7.2.1p4 - verify the field type.
6756  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6757  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6758    // Handle incomplete types with specific error.
6759    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6760      return true;
6761    if (FieldName)
6762      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6763        << FieldName << FieldTy << BitWidth->getSourceRange();
6764    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6765      << FieldTy << BitWidth->getSourceRange();
6766  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6767                                             UPPC_BitFieldWidth))
6768    return true;
6769
6770  // If the bit-width is type- or value-dependent, don't try to check
6771  // it now.
6772  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6773    return false;
6774
6775  llvm::APSInt Value;
6776  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6777    return true;
6778
6779  if (Value != 0 && ZeroWidth)
6780    *ZeroWidth = false;
6781
6782  // Zero-width bitfield is ok for anonymous field.
6783  if (Value == 0 && FieldName)
6784    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6785
6786  if (Value.isSigned() && Value.isNegative()) {
6787    if (FieldName)
6788      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6789               << FieldName << Value.toString(10);
6790    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6791      << Value.toString(10);
6792  }
6793
6794  if (!FieldTy->isDependentType()) {
6795    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6796    if (Value.getZExtValue() > TypeSize) {
6797      if (!getLangOptions().CPlusPlus) {
6798        if (FieldName)
6799          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6800            << FieldName << (unsigned)Value.getZExtValue()
6801            << (unsigned)TypeSize;
6802
6803        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6804          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6805      }
6806
6807      if (FieldName)
6808        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6809          << FieldName << (unsigned)Value.getZExtValue()
6810          << (unsigned)TypeSize;
6811      else
6812        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6813          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6814    }
6815  }
6816
6817  return false;
6818}
6819
6820/// ActOnField - Each field of a struct/union/class is passed into this in order
6821/// to create a FieldDecl object for it.
6822Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6823                                 SourceLocation DeclStart,
6824                                 Declarator &D, ExprTy *BitfieldWidth) {
6825  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6826                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6827                               AS_public);
6828  return Res;
6829}
6830
6831/// HandleField - Analyze a field of a C struct or a C++ data member.
6832///
6833FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6834                             SourceLocation DeclStart,
6835                             Declarator &D, Expr *BitWidth,
6836                             AccessSpecifier AS) {
6837  IdentifierInfo *II = D.getIdentifier();
6838  SourceLocation Loc = DeclStart;
6839  if (II) Loc = D.getIdentifierLoc();
6840
6841  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6842  QualType T = TInfo->getType();
6843  if (getLangOptions().CPlusPlus) {
6844    CheckExtraCXXDefaultArguments(D);
6845
6846    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6847                                        UPPC_DataMemberType)) {
6848      D.setInvalidType();
6849      T = Context.IntTy;
6850      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6851    }
6852  }
6853
6854  DiagnoseFunctionSpecifiers(D);
6855
6856  if (D.getDeclSpec().isThreadSpecified())
6857    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6858
6859  // Check to see if this name was declared as a member previously
6860  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6861  LookupName(Previous, S);
6862  assert((Previous.empty() || Previous.isOverloadedResult() ||
6863          Previous.isSingleResult())
6864    && "Lookup of member name should be either overloaded, single or null");
6865
6866  // If the name is overloaded then get any declaration else get the single result
6867  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6868    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6869
6870  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6871    // Maybe we will complain about the shadowed template parameter.
6872    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6873    // Just pretend that we didn't see the previous declaration.
6874    PrevDecl = 0;
6875  }
6876
6877  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6878    PrevDecl = 0;
6879
6880  bool Mutable
6881    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6882  SourceLocation TSSL = D.getSourceRange().getBegin();
6883  FieldDecl *NewFD
6884    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6885                     AS, PrevDecl, &D);
6886
6887  if (NewFD->isInvalidDecl())
6888    Record->setInvalidDecl();
6889
6890  if (NewFD->isInvalidDecl() && PrevDecl) {
6891    // Don't introduce NewFD into scope; there's already something
6892    // with the same name in the same scope.
6893  } else if (II) {
6894    PushOnScopeChains(NewFD, S);
6895  } else
6896    Record->addDecl(NewFD);
6897
6898  return NewFD;
6899}
6900
6901/// \brief Build a new FieldDecl and check its well-formedness.
6902///
6903/// This routine builds a new FieldDecl given the fields name, type,
6904/// record, etc. \p PrevDecl should refer to any previous declaration
6905/// with the same name and in the same scope as the field to be
6906/// created.
6907///
6908/// \returns a new FieldDecl.
6909///
6910/// \todo The Declarator argument is a hack. It will be removed once
6911FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6912                                TypeSourceInfo *TInfo,
6913                                RecordDecl *Record, SourceLocation Loc,
6914                                bool Mutable, Expr *BitWidth,
6915                                SourceLocation TSSL,
6916                                AccessSpecifier AS, NamedDecl *PrevDecl,
6917                                Declarator *D) {
6918  IdentifierInfo *II = Name.getAsIdentifierInfo();
6919  bool InvalidDecl = false;
6920  if (D) InvalidDecl = D->isInvalidType();
6921
6922  // If we receive a broken type, recover by assuming 'int' and
6923  // marking this declaration as invalid.
6924  if (T.isNull()) {
6925    InvalidDecl = true;
6926    T = Context.IntTy;
6927  }
6928
6929  QualType EltTy = Context.getBaseElementType(T);
6930  if (!EltTy->isDependentType() &&
6931      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6932    // Fields of incomplete type force their record to be invalid.
6933    Record->setInvalidDecl();
6934    InvalidDecl = true;
6935  }
6936
6937  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6938  // than a variably modified type.
6939  if (!InvalidDecl && T->isVariablyModifiedType()) {
6940    bool SizeIsNegative;
6941    llvm::APSInt Oversized;
6942    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6943                                                           SizeIsNegative,
6944                                                           Oversized);
6945    if (!FixedTy.isNull()) {
6946      Diag(Loc, diag::warn_illegal_constant_array_size);
6947      T = FixedTy;
6948    } else {
6949      if (SizeIsNegative)
6950        Diag(Loc, diag::err_typecheck_negative_array_size);
6951      else if (Oversized.getBoolValue())
6952        Diag(Loc, diag::err_array_too_large)
6953          << Oversized.toString(10);
6954      else
6955        Diag(Loc, diag::err_typecheck_field_variable_size);
6956      InvalidDecl = true;
6957    }
6958  }
6959
6960  // Fields can not have abstract class types
6961  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6962                                             diag::err_abstract_type_in_decl,
6963                                             AbstractFieldType))
6964    InvalidDecl = true;
6965
6966  bool ZeroWidth = false;
6967  // If this is declared as a bit-field, check the bit-field.
6968  if (!InvalidDecl && BitWidth &&
6969      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6970    InvalidDecl = true;
6971    BitWidth = 0;
6972    ZeroWidth = false;
6973  }
6974
6975  // Check that 'mutable' is consistent with the type of the declaration.
6976  if (!InvalidDecl && Mutable) {
6977    unsigned DiagID = 0;
6978    if (T->isReferenceType())
6979      DiagID = diag::err_mutable_reference;
6980    else if (T.isConstQualified())
6981      DiagID = diag::err_mutable_const;
6982
6983    if (DiagID) {
6984      SourceLocation ErrLoc = Loc;
6985      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6986        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6987      Diag(ErrLoc, DiagID);
6988      Mutable = false;
6989      InvalidDecl = true;
6990    }
6991  }
6992
6993  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
6994                                       BitWidth, Mutable);
6995  if (InvalidDecl)
6996    NewFD->setInvalidDecl();
6997
6998  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6999    Diag(Loc, diag::err_duplicate_member) << II;
7000    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7001    NewFD->setInvalidDecl();
7002  }
7003
7004  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7005    if (Record->isUnion()) {
7006      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7007        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7008        if (RDecl->getDefinition()) {
7009          // C++ [class.union]p1: An object of a class with a non-trivial
7010          // constructor, a non-trivial copy constructor, a non-trivial
7011          // destructor, or a non-trivial copy assignment operator
7012          // cannot be a member of a union, nor can an array of such
7013          // objects.
7014          // TODO: C++0x alters this restriction significantly.
7015          if (CheckNontrivialField(NewFD))
7016            NewFD->setInvalidDecl();
7017        }
7018      }
7019
7020      // C++ [class.union]p1: If a union contains a member of reference type,
7021      // the program is ill-formed.
7022      if (EltTy->isReferenceType()) {
7023        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7024          << NewFD->getDeclName() << EltTy;
7025        NewFD->setInvalidDecl();
7026      }
7027    }
7028  }
7029
7030  // FIXME: We need to pass in the attributes given an AST
7031  // representation, not a parser representation.
7032  if (D)
7033    // FIXME: What to pass instead of TUScope?
7034    ProcessDeclAttributes(TUScope, NewFD, *D);
7035
7036  if (T.isObjCGCWeak())
7037    Diag(Loc, diag::warn_attribute_weak_on_field);
7038
7039  NewFD->setAccess(AS);
7040  return NewFD;
7041}
7042
7043bool Sema::CheckNontrivialField(FieldDecl *FD) {
7044  assert(FD);
7045  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7046
7047  if (FD->isInvalidDecl())
7048    return true;
7049
7050  QualType EltTy = Context.getBaseElementType(FD->getType());
7051  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7052    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7053    if (RDecl->getDefinition()) {
7054      // We check for copy constructors before constructors
7055      // because otherwise we'll never get complaints about
7056      // copy constructors.
7057
7058      CXXSpecialMember member = CXXInvalid;
7059      if (!RDecl->hasTrivialCopyConstructor())
7060        member = CXXCopyConstructor;
7061      else if (!RDecl->hasTrivialConstructor())
7062        member = CXXConstructor;
7063      else if (!RDecl->hasTrivialCopyAssignment())
7064        member = CXXCopyAssignment;
7065      else if (!RDecl->hasTrivialDestructor())
7066        member = CXXDestructor;
7067
7068      if (member != CXXInvalid) {
7069        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7070              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7071        DiagnoseNontrivial(RT, member);
7072        return true;
7073      }
7074    }
7075  }
7076
7077  return false;
7078}
7079
7080/// DiagnoseNontrivial - Given that a class has a non-trivial
7081/// special member, figure out why.
7082void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7083  QualType QT(T, 0U);
7084  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7085
7086  // Check whether the member was user-declared.
7087  switch (member) {
7088  case CXXInvalid:
7089    break;
7090
7091  case CXXConstructor:
7092    if (RD->hasUserDeclaredConstructor()) {
7093      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7094      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7095        const FunctionDecl *body = 0;
7096        ci->hasBody(body);
7097        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7098          SourceLocation CtorLoc = ci->getLocation();
7099          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7100          return;
7101        }
7102      }
7103
7104      assert(0 && "found no user-declared constructors");
7105      return;
7106    }
7107    break;
7108
7109  case CXXCopyConstructor:
7110    if (RD->hasUserDeclaredCopyConstructor()) {
7111      SourceLocation CtorLoc =
7112        RD->getCopyConstructor(Context, 0)->getLocation();
7113      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7114      return;
7115    }
7116    break;
7117
7118  case CXXCopyAssignment:
7119    if (RD->hasUserDeclaredCopyAssignment()) {
7120      // FIXME: this should use the location of the copy
7121      // assignment, not the type.
7122      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7123      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7124      return;
7125    }
7126    break;
7127
7128  case CXXDestructor:
7129    if (RD->hasUserDeclaredDestructor()) {
7130      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7131      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7132      return;
7133    }
7134    break;
7135  }
7136
7137  typedef CXXRecordDecl::base_class_iterator base_iter;
7138
7139  // Virtual bases and members inhibit trivial copying/construction,
7140  // but not trivial destruction.
7141  if (member != CXXDestructor) {
7142    // Check for virtual bases.  vbases includes indirect virtual bases,
7143    // so we just iterate through the direct bases.
7144    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7145      if (bi->isVirtual()) {
7146        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7147        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7148        return;
7149      }
7150
7151    // Check for virtual methods.
7152    typedef CXXRecordDecl::method_iterator meth_iter;
7153    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7154         ++mi) {
7155      if (mi->isVirtual()) {
7156        SourceLocation MLoc = mi->getSourceRange().getBegin();
7157        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7158        return;
7159      }
7160    }
7161  }
7162
7163  bool (CXXRecordDecl::*hasTrivial)() const;
7164  switch (member) {
7165  case CXXConstructor:
7166    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7167  case CXXCopyConstructor:
7168    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7169  case CXXCopyAssignment:
7170    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7171  case CXXDestructor:
7172    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7173  default:
7174    assert(0 && "unexpected special member"); return;
7175  }
7176
7177  // Check for nontrivial bases (and recurse).
7178  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7179    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7180    assert(BaseRT && "Don't know how to handle dependent bases");
7181    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7182    if (!(BaseRecTy->*hasTrivial)()) {
7183      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7184      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7185      DiagnoseNontrivial(BaseRT, member);
7186      return;
7187    }
7188  }
7189
7190  // Check for nontrivial members (and recurse).
7191  typedef RecordDecl::field_iterator field_iter;
7192  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7193       ++fi) {
7194    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7195    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7196      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7197
7198      if (!(EltRD->*hasTrivial)()) {
7199        SourceLocation FLoc = (*fi)->getLocation();
7200        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7201        DiagnoseNontrivial(EltRT, member);
7202        return;
7203      }
7204    }
7205  }
7206
7207  assert(0 && "found no explanation for non-trivial member");
7208}
7209
7210/// TranslateIvarVisibility - Translate visibility from a token ID to an
7211///  AST enum value.
7212static ObjCIvarDecl::AccessControl
7213TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7214  switch (ivarVisibility) {
7215  default: assert(0 && "Unknown visitibility kind");
7216  case tok::objc_private: return ObjCIvarDecl::Private;
7217  case tok::objc_public: return ObjCIvarDecl::Public;
7218  case tok::objc_protected: return ObjCIvarDecl::Protected;
7219  case tok::objc_package: return ObjCIvarDecl::Package;
7220  }
7221}
7222
7223/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7224/// in order to create an IvarDecl object for it.
7225Decl *Sema::ActOnIvar(Scope *S,
7226                                SourceLocation DeclStart,
7227                                Decl *IntfDecl,
7228                                Declarator &D, ExprTy *BitfieldWidth,
7229                                tok::ObjCKeywordKind Visibility) {
7230
7231  IdentifierInfo *II = D.getIdentifier();
7232  Expr *BitWidth = (Expr*)BitfieldWidth;
7233  SourceLocation Loc = DeclStart;
7234  if (II) Loc = D.getIdentifierLoc();
7235
7236  // FIXME: Unnamed fields can be handled in various different ways, for
7237  // example, unnamed unions inject all members into the struct namespace!
7238
7239  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7240  QualType T = TInfo->getType();
7241
7242  if (BitWidth) {
7243    // 6.7.2.1p3, 6.7.2.1p4
7244    if (VerifyBitField(Loc, II, T, BitWidth)) {
7245      D.setInvalidType();
7246      BitWidth = 0;
7247    }
7248  } else {
7249    // Not a bitfield.
7250
7251    // validate II.
7252
7253  }
7254  if (T->isReferenceType()) {
7255    Diag(Loc, diag::err_ivar_reference_type);
7256    D.setInvalidType();
7257  }
7258  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7259  // than a variably modified type.
7260  else if (T->isVariablyModifiedType()) {
7261    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7262    D.setInvalidType();
7263  }
7264
7265  // Get the visibility (access control) for this ivar.
7266  ObjCIvarDecl::AccessControl ac =
7267    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7268                                        : ObjCIvarDecl::None;
7269  // Must set ivar's DeclContext to its enclosing interface.
7270  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7271  ObjCContainerDecl *EnclosingContext;
7272  if (ObjCImplementationDecl *IMPDecl =
7273      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7274    if (!LangOpts.ObjCNonFragileABI2) {
7275    // Case of ivar declared in an implementation. Context is that of its class.
7276      EnclosingContext = IMPDecl->getClassInterface();
7277      assert(EnclosingContext && "Implementation has no class interface!");
7278    }
7279    else
7280      EnclosingContext = EnclosingDecl;
7281  } else {
7282    if (ObjCCategoryDecl *CDecl =
7283        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7284      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7285        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7286        return 0;
7287      }
7288    }
7289    EnclosingContext = EnclosingDecl;
7290  }
7291
7292  // Construct the decl.
7293  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7294                                             DeclStart, Loc, II, T,
7295                                             TInfo, ac, (Expr *)BitfieldWidth);
7296
7297  if (II) {
7298    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7299                                           ForRedeclaration);
7300    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7301        && !isa<TagDecl>(PrevDecl)) {
7302      Diag(Loc, diag::err_duplicate_member) << II;
7303      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7304      NewID->setInvalidDecl();
7305    }
7306  }
7307
7308  // Process attributes attached to the ivar.
7309  ProcessDeclAttributes(S, NewID, D);
7310
7311  if (D.isInvalidType())
7312    NewID->setInvalidDecl();
7313
7314  if (II) {
7315    // FIXME: When interfaces are DeclContexts, we'll need to add
7316    // these to the interface.
7317    S->AddDecl(NewID);
7318    IdResolver.AddDecl(NewID);
7319  }
7320
7321  return NewID;
7322}
7323
7324/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7325/// class and class extensions. For every class @interface and class
7326/// extension @interface, if the last ivar is a bitfield of any type,
7327/// then add an implicit `char :0` ivar to the end of that interface.
7328void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7329                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7330  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7331    return;
7332
7333  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7334  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7335
7336  if (!Ivar->isBitField())
7337    return;
7338  uint64_t BitFieldSize =
7339    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7340  if (BitFieldSize == 0)
7341    return;
7342  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7343  if (!ID) {
7344    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7345      if (!CD->IsClassExtension())
7346        return;
7347    }
7348    // No need to add this to end of @implementation.
7349    else
7350      return;
7351  }
7352  // All conditions are met. Add a new bitfield to the tail end of ivars.
7353  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7354  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7355
7356  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7357                              DeclLoc, DeclLoc, 0,
7358                              Context.CharTy,
7359                              Context.CreateTypeSourceInfo(Context.CharTy),
7360                              ObjCIvarDecl::Private, BW,
7361                              true);
7362  AllIvarDecls.push_back(Ivar);
7363}
7364
7365void Sema::ActOnFields(Scope* S,
7366                       SourceLocation RecLoc, Decl *EnclosingDecl,
7367                       Decl **Fields, unsigned NumFields,
7368                       SourceLocation LBrac, SourceLocation RBrac,
7369                       AttributeList *Attr) {
7370  assert(EnclosingDecl && "missing record or interface decl");
7371
7372  // If the decl this is being inserted into is invalid, then it may be a
7373  // redeclaration or some other bogus case.  Don't try to add fields to it.
7374  if (EnclosingDecl->isInvalidDecl()) {
7375    // FIXME: Deallocate fields?
7376    return;
7377  }
7378
7379
7380  // Verify that all the fields are okay.
7381  unsigned NumNamedMembers = 0;
7382  llvm::SmallVector<FieldDecl*, 32> RecFields;
7383
7384  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7385  for (unsigned i = 0; i != NumFields; ++i) {
7386    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7387
7388    // Get the type for the field.
7389    const Type *FDTy = FD->getType().getTypePtr();
7390
7391    if (!FD->isAnonymousStructOrUnion()) {
7392      // Remember all fields written by the user.
7393      RecFields.push_back(FD);
7394    }
7395
7396    // If the field is already invalid for some reason, don't emit more
7397    // diagnostics about it.
7398    if (FD->isInvalidDecl()) {
7399      EnclosingDecl->setInvalidDecl();
7400      continue;
7401    }
7402
7403    // C99 6.7.2.1p2:
7404    //   A structure or union shall not contain a member with
7405    //   incomplete or function type (hence, a structure shall not
7406    //   contain an instance of itself, but may contain a pointer to
7407    //   an instance of itself), except that the last member of a
7408    //   structure with more than one named member may have incomplete
7409    //   array type; such a structure (and any union containing,
7410    //   possibly recursively, a member that is such a structure)
7411    //   shall not be a member of a structure or an element of an
7412    //   array.
7413    if (FDTy->isFunctionType()) {
7414      // Field declared as a function.
7415      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7416        << FD->getDeclName();
7417      FD->setInvalidDecl();
7418      EnclosingDecl->setInvalidDecl();
7419      continue;
7420    } else if (FDTy->isIncompleteArrayType() && Record &&
7421               ((i == NumFields - 1 && !Record->isUnion()) ||
7422                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7423                 (i == NumFields - 1 || Record->isUnion())))) {
7424      // Flexible array member.
7425      // Microsoft and g++ is more permissive regarding flexible array.
7426      // It will accept flexible array in union and also
7427      // as the sole element of a struct/class.
7428      if (getLangOptions().Microsoft) {
7429        if (Record->isUnion())
7430          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7431            << FD->getDeclName();
7432        else if (NumFields == 1)
7433          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7434            << FD->getDeclName() << Record->getTagKind();
7435      } else if (getLangOptions().CPlusPlus) {
7436        if (Record->isUnion())
7437          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7438            << FD->getDeclName();
7439        else if (NumFields == 1)
7440          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7441            << FD->getDeclName() << Record->getTagKind();
7442      } else if (NumNamedMembers < 1) {
7443        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7444          << FD->getDeclName();
7445        FD->setInvalidDecl();
7446        EnclosingDecl->setInvalidDecl();
7447        continue;
7448      }
7449      if (!FD->getType()->isDependentType() &&
7450          !Context.getBaseElementType(FD->getType())->isPODType()) {
7451        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7452          << FD->getDeclName() << FD->getType();
7453        FD->setInvalidDecl();
7454        EnclosingDecl->setInvalidDecl();
7455        continue;
7456      }
7457      // Okay, we have a legal flexible array member at the end of the struct.
7458      if (Record)
7459        Record->setHasFlexibleArrayMember(true);
7460    } else if (!FDTy->isDependentType() &&
7461               RequireCompleteType(FD->getLocation(), FD->getType(),
7462                                   diag::err_field_incomplete)) {
7463      // Incomplete type
7464      FD->setInvalidDecl();
7465      EnclosingDecl->setInvalidDecl();
7466      continue;
7467    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7468      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7469        // If this is a member of a union, then entire union becomes "flexible".
7470        if (Record && Record->isUnion()) {
7471          Record->setHasFlexibleArrayMember(true);
7472        } else {
7473          // If this is a struct/class and this is not the last element, reject
7474          // it.  Note that GCC supports variable sized arrays in the middle of
7475          // structures.
7476          if (i != NumFields-1)
7477            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7478              << FD->getDeclName() << FD->getType();
7479          else {
7480            // We support flexible arrays at the end of structs in
7481            // other structs as an extension.
7482            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7483              << FD->getDeclName();
7484            if (Record)
7485              Record->setHasFlexibleArrayMember(true);
7486          }
7487        }
7488      }
7489      if (Record && FDTTy->getDecl()->hasObjectMember())
7490        Record->setHasObjectMember(true);
7491    } else if (FDTy->isObjCObjectType()) {
7492      /// A field cannot be an Objective-c object
7493      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7494      FD->setInvalidDecl();
7495      EnclosingDecl->setInvalidDecl();
7496      continue;
7497    } else if (getLangOptions().ObjC1 &&
7498               getLangOptions().getGCMode() != LangOptions::NonGC &&
7499               Record &&
7500               (FD->getType()->isObjCObjectPointerType() ||
7501                FD->getType().isObjCGCStrong()))
7502      Record->setHasObjectMember(true);
7503    else if (Context.getAsArrayType(FD->getType())) {
7504      QualType BaseType = Context.getBaseElementType(FD->getType());
7505      if (Record && BaseType->isRecordType() &&
7506          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7507        Record->setHasObjectMember(true);
7508    }
7509    // Keep track of the number of named members.
7510    if (FD->getIdentifier())
7511      ++NumNamedMembers;
7512  }
7513
7514  // Okay, we successfully defined 'Record'.
7515  if (Record) {
7516    bool Completed = false;
7517    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7518      if (!CXXRecord->isInvalidDecl()) {
7519        // Set access bits correctly on the directly-declared conversions.
7520        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7521        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7522             I != E; ++I)
7523          Convs->setAccess(I, (*I)->getAccess());
7524
7525        if (!CXXRecord->isDependentType()) {
7526          // Add any implicitly-declared members to this class.
7527          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7528
7529          // If we have virtual base classes, we may end up finding multiple
7530          // final overriders for a given virtual function. Check for this
7531          // problem now.
7532          if (CXXRecord->getNumVBases()) {
7533            CXXFinalOverriderMap FinalOverriders;
7534            CXXRecord->getFinalOverriders(FinalOverriders);
7535
7536            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7537                                             MEnd = FinalOverriders.end();
7538                 M != MEnd; ++M) {
7539              for (OverridingMethods::iterator SO = M->second.begin(),
7540                                            SOEnd = M->second.end();
7541                   SO != SOEnd; ++SO) {
7542                assert(SO->second.size() > 0 &&
7543                       "Virtual function without overridding functions?");
7544                if (SO->second.size() == 1)
7545                  continue;
7546
7547                // C++ [class.virtual]p2:
7548                //   In a derived class, if a virtual member function of a base
7549                //   class subobject has more than one final overrider the
7550                //   program is ill-formed.
7551                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7552                  << (NamedDecl *)M->first << Record;
7553                Diag(M->first->getLocation(),
7554                     diag::note_overridden_virtual_function);
7555                for (OverridingMethods::overriding_iterator
7556                          OM = SO->second.begin(),
7557                       OMEnd = SO->second.end();
7558                     OM != OMEnd; ++OM)
7559                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7560                    << (NamedDecl *)M->first << OM->Method->getParent();
7561
7562                Record->setInvalidDecl();
7563              }
7564            }
7565            CXXRecord->completeDefinition(&FinalOverriders);
7566            Completed = true;
7567          }
7568        }
7569      }
7570    }
7571
7572    if (!Completed)
7573      Record->completeDefinition();
7574  } else {
7575    ObjCIvarDecl **ClsFields =
7576      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7577    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7578      ID->setLocEnd(RBrac);
7579      // Add ivar's to class's DeclContext.
7580      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7581        ClsFields[i]->setLexicalDeclContext(ID);
7582        ID->addDecl(ClsFields[i]);
7583      }
7584      // Must enforce the rule that ivars in the base classes may not be
7585      // duplicates.
7586      if (ID->getSuperClass())
7587        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7588    } else if (ObjCImplementationDecl *IMPDecl =
7589                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7590      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7591      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7592        // Ivar declared in @implementation never belongs to the implementation.
7593        // Only it is in implementation's lexical context.
7594        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7595      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7596    } else if (ObjCCategoryDecl *CDecl =
7597                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7598      // case of ivars in class extension; all other cases have been
7599      // reported as errors elsewhere.
7600      // FIXME. Class extension does not have a LocEnd field.
7601      // CDecl->setLocEnd(RBrac);
7602      // Add ivar's to class extension's DeclContext.
7603      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7604        ClsFields[i]->setLexicalDeclContext(CDecl);
7605        CDecl->addDecl(ClsFields[i]);
7606      }
7607    }
7608  }
7609
7610  if (Attr)
7611    ProcessDeclAttributeList(S, Record, Attr);
7612
7613  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7614  // set the visibility of this record.
7615  if (Record && !Record->getDeclContext()->isRecord())
7616    AddPushedVisibilityAttribute(Record);
7617}
7618
7619/// \brief Determine whether the given integral value is representable within
7620/// the given type T.
7621static bool isRepresentableIntegerValue(ASTContext &Context,
7622                                        llvm::APSInt &Value,
7623                                        QualType T) {
7624  assert(T->isIntegralType(Context) && "Integral type required!");
7625  unsigned BitWidth = Context.getIntWidth(T);
7626
7627  if (Value.isUnsigned() || Value.isNonNegative()) {
7628    if (T->isSignedIntegerType())
7629      --BitWidth;
7630    return Value.getActiveBits() <= BitWidth;
7631  }
7632  return Value.getMinSignedBits() <= BitWidth;
7633}
7634
7635// \brief Given an integral type, return the next larger integral type
7636// (or a NULL type of no such type exists).
7637static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7638  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7639  // enum checking below.
7640  assert(T->isIntegralType(Context) && "Integral type required!");
7641  const unsigned NumTypes = 4;
7642  QualType SignedIntegralTypes[NumTypes] = {
7643    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7644  };
7645  QualType UnsignedIntegralTypes[NumTypes] = {
7646    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7647    Context.UnsignedLongLongTy
7648  };
7649
7650  unsigned BitWidth = Context.getTypeSize(T);
7651  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7652                                            : UnsignedIntegralTypes;
7653  for (unsigned I = 0; I != NumTypes; ++I)
7654    if (Context.getTypeSize(Types[I]) > BitWidth)
7655      return Types[I];
7656
7657  return QualType();
7658}
7659
7660EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7661                                          EnumConstantDecl *LastEnumConst,
7662                                          SourceLocation IdLoc,
7663                                          IdentifierInfo *Id,
7664                                          Expr *Val) {
7665  unsigned IntWidth = Context.Target.getIntWidth();
7666  llvm::APSInt EnumVal(IntWidth);
7667  QualType EltTy;
7668
7669  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7670    Val = 0;
7671
7672  if (Val) {
7673    if (Enum->isDependentType() || Val->isTypeDependent())
7674      EltTy = Context.DependentTy;
7675    else {
7676      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7677      SourceLocation ExpLoc;
7678      if (!Val->isValueDependent() &&
7679          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7680        Val = 0;
7681      } else {
7682        if (!getLangOptions().CPlusPlus) {
7683          // C99 6.7.2.2p2:
7684          //   The expression that defines the value of an enumeration constant
7685          //   shall be an integer constant expression that has a value
7686          //   representable as an int.
7687
7688          // Complain if the value is not representable in an int.
7689          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7690            Diag(IdLoc, diag::ext_enum_value_not_int)
7691              << EnumVal.toString(10) << Val->getSourceRange()
7692              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7693          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7694            // Force the type of the expression to 'int'.
7695            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7696          }
7697        }
7698
7699        if (Enum->isFixed()) {
7700          EltTy = Enum->getIntegerType();
7701
7702          // C++0x [dcl.enum]p5:
7703          //   ... if the initializing value of an enumerator cannot be
7704          //   represented by the underlying type, the program is ill-formed.
7705          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7706            if (getLangOptions().Microsoft) {
7707              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7708              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7709            } else
7710              Diag(IdLoc, diag::err_enumerator_too_large)
7711                << EltTy;
7712          } else
7713            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7714        }
7715        else {
7716          // C++0x [dcl.enum]p5:
7717          //   If the underlying type is not fixed, the type of each enumerator
7718          //   is the type of its initializing value:
7719          //     - If an initializer is specified for an enumerator, the
7720          //       initializing value has the same type as the expression.
7721          EltTy = Val->getType();
7722        }
7723      }
7724    }
7725  }
7726
7727  if (!Val) {
7728    if (Enum->isDependentType())
7729      EltTy = Context.DependentTy;
7730    else if (!LastEnumConst) {
7731      // C++0x [dcl.enum]p5:
7732      //   If the underlying type is not fixed, the type of each enumerator
7733      //   is the type of its initializing value:
7734      //     - If no initializer is specified for the first enumerator, the
7735      //       initializing value has an unspecified integral type.
7736      //
7737      // GCC uses 'int' for its unspecified integral type, as does
7738      // C99 6.7.2.2p3.
7739      if (Enum->isFixed()) {
7740        EltTy = Enum->getIntegerType();
7741      }
7742      else {
7743        EltTy = Context.IntTy;
7744      }
7745    } else {
7746      // Assign the last value + 1.
7747      EnumVal = LastEnumConst->getInitVal();
7748      ++EnumVal;
7749      EltTy = LastEnumConst->getType();
7750
7751      // Check for overflow on increment.
7752      if (EnumVal < LastEnumConst->getInitVal()) {
7753        // C++0x [dcl.enum]p5:
7754        //   If the underlying type is not fixed, the type of each enumerator
7755        //   is the type of its initializing value:
7756        //
7757        //     - Otherwise the type of the initializing value is the same as
7758        //       the type of the initializing value of the preceding enumerator
7759        //       unless the incremented value is not representable in that type,
7760        //       in which case the type is an unspecified integral type
7761        //       sufficient to contain the incremented value. If no such type
7762        //       exists, the program is ill-formed.
7763        QualType T = getNextLargerIntegralType(Context, EltTy);
7764        if (T.isNull() || Enum->isFixed()) {
7765          // There is no integral type larger enough to represent this
7766          // value. Complain, then allow the value to wrap around.
7767          EnumVal = LastEnumConst->getInitVal();
7768          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7769          ++EnumVal;
7770          if (Enum->isFixed())
7771            // When the underlying type is fixed, this is ill-formed.
7772            Diag(IdLoc, diag::err_enumerator_wrapped)
7773              << EnumVal.toString(10)
7774              << EltTy;
7775          else
7776            Diag(IdLoc, diag::warn_enumerator_too_large)
7777              << EnumVal.toString(10);
7778        } else {
7779          EltTy = T;
7780        }
7781
7782        // Retrieve the last enumerator's value, extent that type to the
7783        // type that is supposed to be large enough to represent the incremented
7784        // value, then increment.
7785        EnumVal = LastEnumConst->getInitVal();
7786        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7787        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7788        ++EnumVal;
7789
7790        // If we're not in C++, diagnose the overflow of enumerator values,
7791        // which in C99 means that the enumerator value is not representable in
7792        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7793        // permits enumerator values that are representable in some larger
7794        // integral type.
7795        if (!getLangOptions().CPlusPlus && !T.isNull())
7796          Diag(IdLoc, diag::warn_enum_value_overflow);
7797      } else if (!getLangOptions().CPlusPlus &&
7798                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7799        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7800        Diag(IdLoc, diag::ext_enum_value_not_int)
7801          << EnumVal.toString(10) << 1;
7802      }
7803    }
7804  }
7805
7806  if (!EltTy->isDependentType()) {
7807    // Make the enumerator value match the signedness and size of the
7808    // enumerator's type.
7809    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7810    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7811  }
7812
7813  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7814                                  Val, EnumVal);
7815}
7816
7817
7818Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7819                              SourceLocation IdLoc, IdentifierInfo *Id,
7820                              AttributeList *Attr,
7821                              SourceLocation EqualLoc, ExprTy *val) {
7822  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7823  EnumConstantDecl *LastEnumConst =
7824    cast_or_null<EnumConstantDecl>(lastEnumConst);
7825  Expr *Val = static_cast<Expr*>(val);
7826
7827  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7828  // we find one that is.
7829  S = getNonFieldDeclScope(S);
7830
7831  // Verify that there isn't already something declared with this name in this
7832  // scope.
7833  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7834                                         ForRedeclaration);
7835  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7836    // Maybe we will complain about the shadowed template parameter.
7837    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7838    // Just pretend that we didn't see the previous declaration.
7839    PrevDecl = 0;
7840  }
7841
7842  if (PrevDecl) {
7843    // When in C++, we may get a TagDecl with the same name; in this case the
7844    // enum constant will 'hide' the tag.
7845    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7846           "Received TagDecl when not in C++!");
7847    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7848      if (isa<EnumConstantDecl>(PrevDecl))
7849        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7850      else
7851        Diag(IdLoc, diag::err_redefinition) << Id;
7852      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7853      return 0;
7854    }
7855  }
7856
7857  // C++ [class.mem]p13:
7858  //   If T is the name of a class, then each of the following shall have a
7859  //   name different from T:
7860  //     - every enumerator of every member of class T that is an enumerated
7861  //       type
7862  if (CXXRecordDecl *Record
7863                      = dyn_cast<CXXRecordDecl>(
7864                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7865    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7866      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7867
7868  EnumConstantDecl *New =
7869    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7870
7871  if (New) {
7872    // Process attributes.
7873    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7874
7875    // Register this decl in the current scope stack.
7876    New->setAccess(TheEnumDecl->getAccess());
7877    PushOnScopeChains(New, S);
7878  }
7879
7880  return New;
7881}
7882
7883void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7884                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7885                         Decl **Elements, unsigned NumElements,
7886                         Scope *S, AttributeList *Attr) {
7887  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7888  QualType EnumType = Context.getTypeDeclType(Enum);
7889
7890  if (Attr)
7891    ProcessDeclAttributeList(S, Enum, Attr);
7892
7893  if (Enum->isDependentType()) {
7894    for (unsigned i = 0; i != NumElements; ++i) {
7895      EnumConstantDecl *ECD =
7896        cast_or_null<EnumConstantDecl>(Elements[i]);
7897      if (!ECD) continue;
7898
7899      ECD->setType(EnumType);
7900    }
7901
7902    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7903    return;
7904  }
7905
7906  // TODO: If the result value doesn't fit in an int, it must be a long or long
7907  // long value.  ISO C does not support this, but GCC does as an extension,
7908  // emit a warning.
7909  unsigned IntWidth = Context.Target.getIntWidth();
7910  unsigned CharWidth = Context.Target.getCharWidth();
7911  unsigned ShortWidth = Context.Target.getShortWidth();
7912
7913  // Verify that all the values are okay, compute the size of the values, and
7914  // reverse the list.
7915  unsigned NumNegativeBits = 0;
7916  unsigned NumPositiveBits = 0;
7917
7918  // Keep track of whether all elements have type int.
7919  bool AllElementsInt = true;
7920
7921  for (unsigned i = 0; i != NumElements; ++i) {
7922    EnumConstantDecl *ECD =
7923      cast_or_null<EnumConstantDecl>(Elements[i]);
7924    if (!ECD) continue;  // Already issued a diagnostic.
7925
7926    const llvm::APSInt &InitVal = ECD->getInitVal();
7927
7928    // Keep track of the size of positive and negative values.
7929    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7930      NumPositiveBits = std::max(NumPositiveBits,
7931                                 (unsigned)InitVal.getActiveBits());
7932    else
7933      NumNegativeBits = std::max(NumNegativeBits,
7934                                 (unsigned)InitVal.getMinSignedBits());
7935
7936    // Keep track of whether every enum element has type int (very commmon).
7937    if (AllElementsInt)
7938      AllElementsInt = ECD->getType() == Context.IntTy;
7939  }
7940
7941  // Figure out the type that should be used for this enum.
7942  QualType BestType;
7943  unsigned BestWidth;
7944
7945  // C++0x N3000 [conv.prom]p3:
7946  //   An rvalue of an unscoped enumeration type whose underlying
7947  //   type is not fixed can be converted to an rvalue of the first
7948  //   of the following types that can represent all the values of
7949  //   the enumeration: int, unsigned int, long int, unsigned long
7950  //   int, long long int, or unsigned long long int.
7951  // C99 6.4.4.3p2:
7952  //   An identifier declared as an enumeration constant has type int.
7953  // The C99 rule is modified by a gcc extension
7954  QualType BestPromotionType;
7955
7956  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7957  // -fshort-enums is the equivalent to specifying the packed attribute on all
7958  // enum definitions.
7959  if (LangOpts.ShortEnums)
7960    Packed = true;
7961
7962  if (Enum->isFixed()) {
7963    BestType = BestPromotionType = Enum->getIntegerType();
7964    // We don't need to set BestWidth, because BestType is going to be the type
7965    // of the enumerators, but we do anyway because otherwise some compilers
7966    // warn that it might be used uninitialized.
7967    BestWidth = CharWidth;
7968  }
7969  else if (NumNegativeBits) {
7970    // If there is a negative value, figure out the smallest integer type (of
7971    // int/long/longlong) that fits.
7972    // If it's packed, check also if it fits a char or a short.
7973    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7974      BestType = Context.SignedCharTy;
7975      BestWidth = CharWidth;
7976    } else if (Packed && NumNegativeBits <= ShortWidth &&
7977               NumPositiveBits < ShortWidth) {
7978      BestType = Context.ShortTy;
7979      BestWidth = ShortWidth;
7980    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7981      BestType = Context.IntTy;
7982      BestWidth = IntWidth;
7983    } else {
7984      BestWidth = Context.Target.getLongWidth();
7985
7986      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7987        BestType = Context.LongTy;
7988      } else {
7989        BestWidth = Context.Target.getLongLongWidth();
7990
7991        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7992          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7993        BestType = Context.LongLongTy;
7994      }
7995    }
7996    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7997  } else {
7998    // If there is no negative value, figure out the smallest type that fits
7999    // all of the enumerator values.
8000    // If it's packed, check also if it fits a char or a short.
8001    if (Packed && NumPositiveBits <= CharWidth) {
8002      BestType = Context.UnsignedCharTy;
8003      BestPromotionType = Context.IntTy;
8004      BestWidth = CharWidth;
8005    } else if (Packed && NumPositiveBits <= ShortWidth) {
8006      BestType = Context.UnsignedShortTy;
8007      BestPromotionType = Context.IntTy;
8008      BestWidth = ShortWidth;
8009    } else if (NumPositiveBits <= IntWidth) {
8010      BestType = Context.UnsignedIntTy;
8011      BestWidth = IntWidth;
8012      BestPromotionType
8013        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8014                           ? Context.UnsignedIntTy : Context.IntTy;
8015    } else if (NumPositiveBits <=
8016               (BestWidth = Context.Target.getLongWidth())) {
8017      BestType = Context.UnsignedLongTy;
8018      BestPromotionType
8019        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8020                           ? Context.UnsignedLongTy : Context.LongTy;
8021    } else {
8022      BestWidth = Context.Target.getLongLongWidth();
8023      assert(NumPositiveBits <= BestWidth &&
8024             "How could an initializer get larger than ULL?");
8025      BestType = Context.UnsignedLongLongTy;
8026      BestPromotionType
8027        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8028                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8029    }
8030  }
8031
8032  // Loop over all of the enumerator constants, changing their types to match
8033  // the type of the enum if needed.
8034  for (unsigned i = 0; i != NumElements; ++i) {
8035    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8036    if (!ECD) continue;  // Already issued a diagnostic.
8037
8038    // Standard C says the enumerators have int type, but we allow, as an
8039    // extension, the enumerators to be larger than int size.  If each
8040    // enumerator value fits in an int, type it as an int, otherwise type it the
8041    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8042    // that X has type 'int', not 'unsigned'.
8043
8044    // Determine whether the value fits into an int.
8045    llvm::APSInt InitVal = ECD->getInitVal();
8046
8047    // If it fits into an integer type, force it.  Otherwise force it to match
8048    // the enum decl type.
8049    QualType NewTy;
8050    unsigned NewWidth;
8051    bool NewSign;
8052    if (!getLangOptions().CPlusPlus &&
8053        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8054      NewTy = Context.IntTy;
8055      NewWidth = IntWidth;
8056      NewSign = true;
8057    } else if (ECD->getType() == BestType) {
8058      // Already the right type!
8059      if (getLangOptions().CPlusPlus)
8060        // C++ [dcl.enum]p4: Following the closing brace of an
8061        // enum-specifier, each enumerator has the type of its
8062        // enumeration.
8063        ECD->setType(EnumType);
8064      continue;
8065    } else {
8066      NewTy = BestType;
8067      NewWidth = BestWidth;
8068      NewSign = BestType->isSignedIntegerType();
8069    }
8070
8071    // Adjust the APSInt value.
8072    InitVal = InitVal.extOrTrunc(NewWidth);
8073    InitVal.setIsSigned(NewSign);
8074    ECD->setInitVal(InitVal);
8075
8076    // Adjust the Expr initializer and type.
8077    if (ECD->getInitExpr() &&
8078	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8079      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8080                                                CK_IntegralCast,
8081                                                ECD->getInitExpr(),
8082                                                /*base paths*/ 0,
8083                                                VK_RValue));
8084    if (getLangOptions().CPlusPlus)
8085      // C++ [dcl.enum]p4: Following the closing brace of an
8086      // enum-specifier, each enumerator has the type of its
8087      // enumeration.
8088      ECD->setType(EnumType);
8089    else
8090      ECD->setType(NewTy);
8091  }
8092
8093  Enum->completeDefinition(BestType, BestPromotionType,
8094                           NumPositiveBits, NumNegativeBits);
8095}
8096
8097Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8098                                  SourceLocation StartLoc,
8099                                  SourceLocation EndLoc) {
8100  StringLiteral *AsmString = cast<StringLiteral>(expr);
8101
8102  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8103                                                   AsmString, StartLoc,
8104                                                   EndLoc);
8105  CurContext->addDecl(New);
8106  return New;
8107}
8108
8109void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8110                             SourceLocation PragmaLoc,
8111                             SourceLocation NameLoc) {
8112  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8113
8114  if (PrevDecl) {
8115    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8116  } else {
8117    (void)WeakUndeclaredIdentifiers.insert(
8118      std::pair<IdentifierInfo*,WeakInfo>
8119        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8120  }
8121}
8122
8123void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8124                                IdentifierInfo* AliasName,
8125                                SourceLocation PragmaLoc,
8126                                SourceLocation NameLoc,
8127                                SourceLocation AliasNameLoc) {
8128  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8129                                    LookupOrdinaryName);
8130  WeakInfo W = WeakInfo(Name, NameLoc);
8131
8132  if (PrevDecl) {
8133    if (!PrevDecl->hasAttr<AliasAttr>())
8134      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8135        DeclApplyPragmaWeak(TUScope, ND, W);
8136  } else {
8137    (void)WeakUndeclaredIdentifiers.insert(
8138      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8139  }
8140}
8141