SemaDecl.cpp revision 96e05bc09070aaa7c18d3dd3ff13125a43532f69
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
31                               const CXXScopeSpec *SS) {
32  DeclContext *DC = 0;
33  if (SS) {
34    if (SS->isInvalid())
35      return 0;
36    DC = static_cast<DeclContext*>(SS->getScopeRep());
37  }
38  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
39
40  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
41                 isa<ObjCInterfaceDecl>(IIDecl) ||
42                 isa<TagDecl>(IIDecl) ||
43		 isa<TemplateTypeParmDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48DeclContext *Sema::getContainingDC(DeclContext *DC) {
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    // A C++ out-of-line method will return to the file declaration context.
51    if (MD->isOutOfLineDefinition())
52      return MD->getLexicalDeclContext();
53
54    // A C++ inline method is parsed *after* the topmost class it was declared in
55    // is fully parsed (it's "complete").
56    // The parsing of a C++ inline method happens at the declaration context of
57    // the topmost (non-nested) class it is lexically declared in.
58    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
59    DC = MD->getParent();
60    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
61      DC = RD;
62
63    // Return the declaration context of the topmost class the inline method is
64    // declared in.
65    return DC;
66  }
67
68  if (isa<ObjCMethodDecl>(DC))
69    return Context.getTranslationUnitDecl();
70
71  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
72    return SD->getLexicalDeclContext();
73
74  return DC->getLexicalParent();
75}
76
77void Sema::PushDeclContext(DeclContext *DC) {
78  assert(getContainingDC(DC) == CurContext &&
79       "The next DeclContext should be lexically contained in the current one.");
80  CurContext = DC;
81}
82
83void Sema::PopDeclContext() {
84  assert(CurContext && "DeclContext imbalance!");
85  CurContext = getContainingDC(CurContext);
86}
87
88/// Add this decl to the scope shadowed decl chains.
89void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
90  S->AddDecl(D);
91
92  // C++ [basic.scope]p4:
93  //   -- exactly one declaration shall declare a class name or
94  //   enumeration name that is not a typedef name and the other
95  //   declarations shall all refer to the same object or
96  //   enumerator, or all refer to functions and function templates;
97  //   in this case the class name or enumeration name is hidden.
98  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
99    // We are pushing the name of a tag (enum or class).
100    IdentifierResolver::iterator
101        I = IdResolver.begin(TD->getIdentifier(),
102                             TD->getDeclContext(), false/*LookInParentCtx*/);
103    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
104      // There is already a declaration with the same name in the same
105      // scope. It must be found before we find the new declaration,
106      // so swap the order on the shadowed declaration chain.
107
108      IdResolver.AddShadowedDecl(TD, *I);
109      return;
110    }
111  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
112    FunctionDecl *FD = cast<FunctionDecl>(D);
113    // We are pushing the name of a function, which might be an
114    // overloaded name.
115    IdentifierResolver::iterator
116        I = IdResolver.begin(FD->getDeclName(),
117                             FD->getDeclContext(), false/*LookInParentCtx*/);
118    if (I != IdResolver.end() &&
119        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
120        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
121      // There is already a declaration with the same name in the same
122      // scope. It must be a function or an overloaded function.
123      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
124      if (!Ovl) {
125        // We haven't yet overloaded this function. Take the existing
126        // FunctionDecl and put it into an OverloadedFunctionDecl.
127        Ovl = OverloadedFunctionDecl::Create(Context,
128                                             FD->getDeclContext(),
129                                             FD->getDeclName());
130        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
131
132        // Remove the name binding to the existing FunctionDecl...
133        IdResolver.RemoveDecl(*I);
134
135        // ... and put the OverloadedFunctionDecl in its place.
136        IdResolver.AddDecl(Ovl);
137      }
138
139      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
140      // to its list of overloads.
141      Ovl->addOverload(FD);
142
143      return;
144    }
145  }
146
147  IdResolver.AddDecl(D);
148}
149
150void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
151  if (S->decl_empty()) return;
152  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
153	 "Scope shouldn't contain decls!");
154
155  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
156       I != E; ++I) {
157    Decl *TmpD = static_cast<Decl*>(*I);
158    assert(TmpD && "This decl didn't get pushed??");
159
160    if (isa<CXXFieldDecl>(TmpD)) continue;
161
162    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
163    ScopedDecl *D = cast<ScopedDecl>(TmpD);
164
165    IdentifierInfo *II = D->getIdentifier();
166    if (!II) continue;
167
168    // We only want to remove the decls from the identifier decl chains for
169    // local scopes, when inside a function/method.
170    // However, we *always* remove template parameters, since they are
171    // purely lexically scoped (and can never be found by qualified
172    // name lookup).
173    if (S->getFnParent() != 0 || isa<TemplateTypeParmDecl>(D))
174      IdResolver.RemoveDecl(D);
175
176    // Chain this decl to the containing DeclContext.
177    D->setNext(CurContext->getDeclChain());
178    CurContext->setDeclChain(D);
179  }
180}
181
182/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
183/// return 0 if one not found.
184ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
185  // The third "scope" argument is 0 since we aren't enabling lazy built-in
186  // creation from this context.
187  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
188
189  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
190}
191
192/// LookupDecl - Look up the inner-most declaration in the specified
193/// namespace.
194Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
195                       const DeclContext *LookupCtx,
196                       bool enableLazyBuiltinCreation) {
197  if (!Name) return 0;
198  unsigned NS = NSI;
199  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
200    NS |= Decl::IDNS_Tag;
201
202  IdentifierResolver::iterator
203    I = LookupCtx ? IdResolver.begin(Name, LookupCtx, false/*LookInParentCtx*/)
204                  : IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/);
205  // Scan up the scope chain looking for a decl that matches this identifier
206  // that is in the appropriate namespace.  This search should not take long, as
207  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
208  for (; I != IdResolver.end(); ++I)
209    if ((*I)->getIdentifierNamespace() & NS)
210      return *I;
211
212  // If we didn't find a use of this identifier, and if the identifier
213  // corresponds to a compiler builtin, create the decl object for the builtin
214  // now, injecting it into translation unit scope, and return it.
215  if (NS & Decl::IDNS_Ordinary) {
216    IdentifierInfo *II = Name.getAsIdentifierInfo();
217    if (enableLazyBuiltinCreation && II &&
218        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
219      // If this is a builtin on this (or all) targets, create the decl.
220      if (unsigned BuiltinID = II->getBuiltinID())
221        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
222    }
223    if (getLangOptions().ObjC1 && II) {
224      // @interface and @compatibility_alias introduce typedef-like names.
225      // Unlike typedef's, they can only be introduced at file-scope (and are
226      // therefore not scoped decls). They can, however, be shadowed by
227      // other names in IDNS_Ordinary.
228      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
229      if (IDI != ObjCInterfaceDecls.end())
230        return IDI->second;
231      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
232      if (I != ObjCAliasDecls.end())
233        return I->second->getClassInterface();
234    }
235  }
236  return 0;
237}
238
239void Sema::InitBuiltinVaListType() {
240  if (!Context.getBuiltinVaListType().isNull())
241    return;
242
243  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
244  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
245  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
246  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
247}
248
249/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
250/// lazily create a decl for it.
251ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
252                                      Scope *S) {
253  Builtin::ID BID = (Builtin::ID)bid;
254
255  if (Context.BuiltinInfo.hasVAListUse(BID))
256    InitBuiltinVaListType();
257
258  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
259  FunctionDecl *New = FunctionDecl::Create(Context,
260                                           Context.getTranslationUnitDecl(),
261                                           SourceLocation(), II, R,
262                                           FunctionDecl::Extern, false, 0);
263
264  // Create Decl objects for each parameter, adding them to the
265  // FunctionDecl.
266  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
267    llvm::SmallVector<ParmVarDecl*, 16> Params;
268    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
269      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
270                                           FT->getArgType(i), VarDecl::None, 0,
271                                           0));
272    New->setParams(&Params[0], Params.size());
273  }
274
275
276
277  // TUScope is the translation-unit scope to insert this function into.
278  PushOnScopeChains(New, TUScope);
279  return New;
280}
281
282/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
283/// everything from the standard library is defined.
284NamespaceDecl *Sema::GetStdNamespace() {
285  if (!StdNamespace) {
286    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
287    DeclContext *Global = Context.getTranslationUnitDecl();
288    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
289                           0, Global, /*enableLazyBuiltinCreation=*/false);
290    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
291  }
292  return StdNamespace;
293}
294
295/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
296/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
297/// situation, merging decls or emitting diagnostics as appropriate.
298///
299TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
300  // Allow multiple definitions for ObjC built-in typedefs.
301  // FIXME: Verify the underlying types are equivalent!
302  if (getLangOptions().ObjC1) {
303    const IdentifierInfo *TypeID = New->getIdentifier();
304    switch (TypeID->getLength()) {
305    default: break;
306    case 2:
307      if (!TypeID->isStr("id"))
308        break;
309      Context.setObjCIdType(New);
310      return New;
311    case 5:
312      if (!TypeID->isStr("Class"))
313        break;
314      Context.setObjCClassType(New);
315      return New;
316    case 3:
317      if (!TypeID->isStr("SEL"))
318        break;
319      Context.setObjCSelType(New);
320      return New;
321    case 8:
322      if (!TypeID->isStr("Protocol"))
323        break;
324      Context.setObjCProtoType(New->getUnderlyingType());
325      return New;
326    }
327    // Fall through - the typedef name was not a builtin type.
328  }
329  // Verify the old decl was also a typedef.
330  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
331  if (!Old) {
332    Diag(New->getLocation(), diag::err_redefinition_different_kind)
333      << New->getDeclName();
334    Diag(OldD->getLocation(), diag::note_previous_definition);
335    return New;
336  }
337
338  // If the typedef types are not identical, reject them in all languages and
339  // with any extensions enabled.
340  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
341      Context.getCanonicalType(Old->getUnderlyingType()) !=
342      Context.getCanonicalType(New->getUnderlyingType())) {
343    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
344      << New->getUnderlyingType() << Old->getUnderlyingType();
345    Diag(Old->getLocation(), diag::note_previous_definition);
346    return Old;
347  }
348
349  if (getLangOptions().Microsoft) return New;
350
351  // C++ [dcl.typedef]p2:
352  //   In a given non-class scope, a typedef specifier can be used to
353  //   redefine the name of any type declared in that scope to refer
354  //   to the type to which it already refers.
355  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
356    return New;
357
358  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
359  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
360  // *either* declaration is in a system header. The code below implements
361  // this adhoc compatibility rule. FIXME: The following code will not
362  // work properly when compiling ".i" files (containing preprocessed output).
363  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
364    SourceManager &SrcMgr = Context.getSourceManager();
365    if (SrcMgr.isInSystemHeader(Old->getLocation()))
366      return New;
367    if (SrcMgr.isInSystemHeader(New->getLocation()))
368      return New;
369  }
370
371  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
372  Diag(Old->getLocation(), diag::note_previous_definition);
373  return New;
374}
375
376/// DeclhasAttr - returns true if decl Declaration already has the target
377/// attribute.
378static bool DeclHasAttr(const Decl *decl, const Attr *target) {
379  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
380    if (attr->getKind() == target->getKind())
381      return true;
382
383  return false;
384}
385
386/// MergeAttributes - append attributes from the Old decl to the New one.
387static void MergeAttributes(Decl *New, Decl *Old) {
388  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
389
390  while (attr) {
391     tmp = attr;
392     attr = attr->getNext();
393
394    if (!DeclHasAttr(New, tmp)) {
395       New->addAttr(tmp);
396    } else {
397       tmp->setNext(0);
398       delete(tmp);
399    }
400  }
401
402  Old->invalidateAttrs();
403}
404
405/// MergeFunctionDecl - We just parsed a function 'New' from
406/// declarator D which has the same name and scope as a previous
407/// declaration 'Old'.  Figure out how to resolve this situation,
408/// merging decls or emitting diagnostics as appropriate.
409/// Redeclaration will be set true if this New is a redeclaration OldD.
410///
411/// In C++, New and Old must be declarations that are not
412/// overloaded. Use IsOverload to determine whether New and Old are
413/// overloaded, and to select the Old declaration that New should be
414/// merged with.
415FunctionDecl *
416Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
417  assert(!isa<OverloadedFunctionDecl>(OldD) &&
418         "Cannot merge with an overloaded function declaration");
419
420  Redeclaration = false;
421  // Verify the old decl was also a function.
422  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
423  if (!Old) {
424    Diag(New->getLocation(), diag::err_redefinition_different_kind)
425      << New->getDeclName();
426    Diag(OldD->getLocation(), diag::note_previous_definition);
427    return New;
428  }
429
430  // Determine whether the previous declaration was a definition,
431  // implicit declaration, or a declaration.
432  diag::kind PrevDiag;
433  if (Old->isThisDeclarationADefinition())
434    PrevDiag = diag::note_previous_definition;
435  else if (Old->isImplicit())
436    PrevDiag = diag::note_previous_implicit_declaration;
437  else
438    PrevDiag = diag::note_previous_declaration;
439
440  QualType OldQType = Context.getCanonicalType(Old->getType());
441  QualType NewQType = Context.getCanonicalType(New->getType());
442
443  if (getLangOptions().CPlusPlus) {
444    // (C++98 13.1p2):
445    //   Certain function declarations cannot be overloaded:
446    //     -- Function declarations that differ only in the return type
447    //        cannot be overloaded.
448    QualType OldReturnType
449      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
450    QualType NewReturnType
451      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
452    if (OldReturnType != NewReturnType) {
453      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
454      Diag(Old->getLocation(), PrevDiag);
455      return New;
456    }
457
458    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
459    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
460    if (OldMethod && NewMethod) {
461      //    -- Member function declarations with the same name and the
462      //       same parameter types cannot be overloaded if any of them
463      //       is a static member function declaration.
464      if (OldMethod->isStatic() || NewMethod->isStatic()) {
465        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
466        Diag(Old->getLocation(), PrevDiag);
467        return New;
468      }
469    }
470
471    // (C++98 8.3.5p3):
472    //   All declarations for a function shall agree exactly in both the
473    //   return type and the parameter-type-list.
474    if (OldQType == NewQType) {
475      // We have a redeclaration.
476      MergeAttributes(New, Old);
477      Redeclaration = true;
478      return MergeCXXFunctionDecl(New, Old);
479    }
480
481    // Fall through for conflicting redeclarations and redefinitions.
482  }
483
484  // C: Function types need to be compatible, not identical. This handles
485  // duplicate function decls like "void f(int); void f(enum X);" properly.
486  if (!getLangOptions().CPlusPlus &&
487      Context.typesAreCompatible(OldQType, NewQType)) {
488    MergeAttributes(New, Old);
489    Redeclaration = true;
490    return New;
491  }
492
493  // A function that has already been declared has been redeclared or defined
494  // with a different type- show appropriate diagnostic
495
496  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
497  // TODO: This is totally simplistic.  It should handle merging functions
498  // together etc, merging extern int X; int X; ...
499  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
500  Diag(Old->getLocation(), PrevDiag);
501  return New;
502}
503
504/// Predicate for C "tentative" external object definitions (C99 6.9.2).
505static bool isTentativeDefinition(VarDecl *VD) {
506  if (VD->isFileVarDecl())
507    return (!VD->getInit() &&
508            (VD->getStorageClass() == VarDecl::None ||
509             VD->getStorageClass() == VarDecl::Static));
510  return false;
511}
512
513/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
514/// when dealing with C "tentative" external object definitions (C99 6.9.2).
515void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
516  bool VDIsTentative = isTentativeDefinition(VD);
517  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
518
519  for (IdentifierResolver::iterator
520       I = IdResolver.begin(VD->getIdentifier(),
521                            VD->getDeclContext(), false/*LookInParentCtx*/),
522       E = IdResolver.end(); I != E; ++I) {
523    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
524      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
525
526      // Handle the following case:
527      //   int a[10];
528      //   int a[];   - the code below makes sure we set the correct type.
529      //   int a[11]; - this is an error, size isn't 10.
530      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
531          OldDecl->getType()->isConstantArrayType())
532        VD->setType(OldDecl->getType());
533
534      // Check for "tentative" definitions. We can't accomplish this in
535      // MergeVarDecl since the initializer hasn't been attached.
536      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
537        continue;
538
539      // Handle __private_extern__ just like extern.
540      if (OldDecl->getStorageClass() != VarDecl::Extern &&
541          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
542          VD->getStorageClass() != VarDecl::Extern &&
543          VD->getStorageClass() != VarDecl::PrivateExtern) {
544        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
545        Diag(OldDecl->getLocation(), diag::note_previous_definition);
546      }
547    }
548  }
549}
550
551/// MergeVarDecl - We just parsed a variable 'New' which has the same name
552/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
553/// situation, merging decls or emitting diagnostics as appropriate.
554///
555/// Tentative definition rules (C99 6.9.2p2) are checked by
556/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
557/// definitions here, since the initializer hasn't been attached.
558///
559VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
560  // Verify the old decl was also a variable.
561  VarDecl *Old = dyn_cast<VarDecl>(OldD);
562  if (!Old) {
563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
564      << New->getDeclName();
565    Diag(OldD->getLocation(), diag::note_previous_definition);
566    return New;
567  }
568
569  MergeAttributes(New, Old);
570
571  // Verify the types match.
572  QualType OldCType = Context.getCanonicalType(Old->getType());
573  QualType NewCType = Context.getCanonicalType(New->getType());
574  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
575    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
576    Diag(Old->getLocation(), diag::note_previous_definition);
577    return New;
578  }
579  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
580  if (New->getStorageClass() == VarDecl::Static &&
581      (Old->getStorageClass() == VarDecl::None ||
582       Old->getStorageClass() == VarDecl::Extern)) {
583    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
584    Diag(Old->getLocation(), diag::note_previous_definition);
585    return New;
586  }
587  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
588  if (New->getStorageClass() != VarDecl::Static &&
589      Old->getStorageClass() == VarDecl::Static) {
590    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
591    Diag(Old->getLocation(), diag::note_previous_definition);
592    return New;
593  }
594  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
595  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
596    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
597    Diag(Old->getLocation(), diag::note_previous_definition);
598  }
599  return New;
600}
601
602/// CheckParmsForFunctionDef - Check that the parameters of the given
603/// function are appropriate for the definition of a function. This
604/// takes care of any checks that cannot be performed on the
605/// declaration itself, e.g., that the types of each of the function
606/// parameters are complete.
607bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
608  bool HasInvalidParm = false;
609  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
610    ParmVarDecl *Param = FD->getParamDecl(p);
611
612    // C99 6.7.5.3p4: the parameters in a parameter type list in a
613    // function declarator that is part of a function definition of
614    // that function shall not have incomplete type.
615    if (Param->getType()->isIncompleteType() &&
616        !Param->isInvalidDecl()) {
617      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
618        << Param->getType();
619      Param->setInvalidDecl();
620      HasInvalidParm = true;
621    }
622  }
623
624  return HasInvalidParm;
625}
626
627/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
628/// no declarator (e.g. "struct foo;") is parsed.
629Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
630  // TODO: emit error on 'int;' or 'const enum foo;'.
631  // TODO: emit error on 'typedef int;'
632  // if (!DS.isMissingDeclaratorOk()) Diag(...);
633
634  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
635}
636
637bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
638  // Get the type before calling CheckSingleAssignmentConstraints(), since
639  // it can promote the expression.
640  QualType InitType = Init->getType();
641
642  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
643  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
644                                  InitType, Init, "initializing");
645}
646
647bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
648  const ArrayType *AT = Context.getAsArrayType(DeclT);
649
650  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
651    // C99 6.7.8p14. We have an array of character type with unknown size
652    // being initialized to a string literal.
653    llvm::APSInt ConstVal(32);
654    ConstVal = strLiteral->getByteLength() + 1;
655    // Return a new array type (C99 6.7.8p22).
656    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
657                                         ArrayType::Normal, 0);
658  } else {
659    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
660    // C99 6.7.8p14. We have an array of character type with known size.
661    // FIXME: Avoid truncation for 64-bit length strings.
662    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
663      Diag(strLiteral->getSourceRange().getBegin(),
664           diag::warn_initializer_string_for_char_array_too_long)
665        << strLiteral->getSourceRange();
666  }
667  // Set type from "char *" to "constant array of char".
668  strLiteral->setType(DeclT);
669  // For now, we always return false (meaning success).
670  return false;
671}
672
673StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
674  const ArrayType *AT = Context.getAsArrayType(DeclType);
675  if (AT && AT->getElementType()->isCharType()) {
676    return dyn_cast<StringLiteral>(Init);
677  }
678  return 0;
679}
680
681bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
682                                 SourceLocation InitLoc,
683                                 DeclarationName InitEntity) {
684  // C++ [dcl.init.ref]p1:
685  //   A variable declared to be a T&, that is "reference to type T"
686  //   (8.3.2), shall be initialized by an object, or function, of
687  //   type T or by an object that can be converted into a T.
688  if (DeclType->isReferenceType())
689    return CheckReferenceInit(Init, DeclType);
690
691  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
692  // of unknown size ("[]") or an object type that is not a variable array type.
693  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
694    return Diag(InitLoc,  diag::err_variable_object_no_init)
695      << VAT->getSizeExpr()->getSourceRange();
696
697  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
698  if (!InitList) {
699    // FIXME: Handle wide strings
700    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
701      return CheckStringLiteralInit(strLiteral, DeclType);
702
703    // C++ [dcl.init]p14:
704    //   -- If the destination type is a (possibly cv-qualified) class
705    //      type:
706    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
707      QualType DeclTypeC = Context.getCanonicalType(DeclType);
708      QualType InitTypeC = Context.getCanonicalType(Init->getType());
709
710      //   -- If the initialization is direct-initialization, or if it is
711      //      copy-initialization where the cv-unqualified version of the
712      //      source type is the same class as, or a derived class of, the
713      //      class of the destination, constructors are considered.
714      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
715          IsDerivedFrom(InitTypeC, DeclTypeC)) {
716        CXXConstructorDecl *Constructor
717          = PerformInitializationByConstructor(DeclType, &Init, 1,
718                                               InitLoc, Init->getSourceRange(),
719                                               InitEntity, IK_Copy);
720        return Constructor == 0;
721      }
722
723      //   -- Otherwise (i.e., for the remaining copy-initialization
724      //      cases), user-defined conversion sequences that can
725      //      convert from the source type to the destination type or
726      //      (when a conversion function is used) to a derived class
727      //      thereof are enumerated as described in 13.3.1.4, and the
728      //      best one is chosen through overload resolution
729      //      (13.3). If the conversion cannot be done or is
730      //      ambiguous, the initialization is ill-formed. The
731      //      function selected is called with the initializer
732      //      expression as its argument; if the function is a
733      //      constructor, the call initializes a temporary of the
734      //      destination type.
735      // FIXME: We're pretending to do copy elision here; return to
736      // this when we have ASTs for such things.
737      if (!PerformImplicitConversion(Init, DeclType))
738        return false;
739
740      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
741        << DeclType << InitEntity << "initializing"
742        << Init->getSourceRange();
743    }
744
745    // C99 6.7.8p16.
746    if (DeclType->isArrayType())
747      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
748        << Init->getSourceRange();
749
750    return CheckSingleInitializer(Init, DeclType);
751  } else if (getLangOptions().CPlusPlus) {
752    // C++ [dcl.init]p14:
753    //   [...] If the class is an aggregate (8.5.1), and the initializer
754    //   is a brace-enclosed list, see 8.5.1.
755    //
756    // Note: 8.5.1 is handled below; here, we diagnose the case where
757    // we have an initializer list and a destination type that is not
758    // an aggregate.
759    // FIXME: In C++0x, this is yet another form of initialization.
760    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
761      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
762      if (!ClassDecl->isAggregate())
763        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
764           << DeclType << Init->getSourceRange();
765    }
766  }
767
768  InitListChecker CheckInitList(this, InitList, DeclType);
769  return CheckInitList.HadError();
770}
771
772/// GetNameForDeclarator - Determine the full declaration name for the
773/// given Declarator.
774DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
775  switch (D.getKind()) {
776  case Declarator::DK_Abstract:
777    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
778    return DeclarationName();
779
780  case Declarator::DK_Normal:
781    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
782    return DeclarationName(D.getIdentifier());
783
784  case Declarator::DK_Constructor: {
785    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
786    Ty = Context.getCanonicalType(Ty);
787    return Context.DeclarationNames.getCXXConstructorName(Ty);
788  }
789
790  case Declarator::DK_Destructor: {
791    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
792    Ty = Context.getCanonicalType(Ty);
793    return Context.DeclarationNames.getCXXDestructorName(Ty);
794  }
795
796  case Declarator::DK_Conversion: {
797    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
798    Ty = Context.getCanonicalType(Ty);
799    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
800  }
801
802  case Declarator::DK_Operator:
803    assert(D.getIdentifier() == 0 && "operator names have no identifier");
804    return Context.DeclarationNames.getCXXOperatorName(
805                                                D.getOverloadedOperator());
806  }
807
808  assert(false && "Unknown name kind");
809  return DeclarationName();
810}
811
812Sema::DeclTy *
813Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
814  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
815  DeclarationName Name = GetNameForDeclarator(D);
816
817  // All of these full declarators require an identifier.  If it doesn't have
818  // one, the ParsedFreeStandingDeclSpec action should be used.
819  if (!Name) {
820    if (!D.getInvalidType())  // Reject this if we think it is valid.
821      Diag(D.getDeclSpec().getSourceRange().getBegin(),
822           diag::err_declarator_need_ident)
823        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
824    return 0;
825  }
826
827  // The scope passed in may not be a decl scope.  Zip up the scope tree until
828  // we find one that is.
829  while ((S->getFlags() & Scope::DeclScope) == 0)
830    S = S->getParent();
831
832  DeclContext *DC;
833  Decl *PrevDecl;
834  ScopedDecl *New;
835  bool InvalidDecl = false;
836
837  // See if this is a redefinition of a variable in the same scope.
838  if (!D.getCXXScopeSpec().isSet()) {
839    DC = CurContext;
840    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
841  } else { // Something like "int foo::x;"
842    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
843    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
844
845    // C++ 7.3.1.2p2:
846    // Members (including explicit specializations of templates) of a named
847    // namespace can also be defined outside that namespace by explicit
848    // qualification of the name being defined, provided that the entity being
849    // defined was already declared in the namespace and the definition appears
850    // after the point of declaration in a namespace that encloses the
851    // declarations namespace.
852    //
853    if (PrevDecl == 0) {
854      // No previous declaration in the qualifying scope.
855      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
856        << Name << D.getCXXScopeSpec().getRange();
857    } else if (!CurContext->Encloses(DC)) {
858      // The qualifying scope doesn't enclose the original declaration.
859      // Emit diagnostic based on current scope.
860      SourceLocation L = D.getIdentifierLoc();
861      SourceRange R = D.getCXXScopeSpec().getRange();
862      if (isa<FunctionDecl>(CurContext)) {
863        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
864      } else {
865        Diag(L, diag::err_invalid_declarator_scope)
866          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
867      }
868    }
869  }
870
871  if (PrevDecl && isTemplateParameterDecl(PrevDecl)) {
872    // Maybe we will complain about the shadowed template parameter.
873    InvalidDecl = InvalidDecl
874      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
875    // Just pretend that we didn't see the previous declaration.
876    PrevDecl = 0;
877  }
878
879  // In C++, the previous declaration we find might be a tag type
880  // (class or enum). In this case, the new declaration will hide the
881  // tag type.
882  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
883    PrevDecl = 0;
884
885  QualType R = GetTypeForDeclarator(D, S);
886  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
887
888  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
889    // Check that there are no default arguments (C++ only).
890    if (getLangOptions().CPlusPlus)
891      CheckExtraCXXDefaultArguments(D);
892
893    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
894    if (!NewTD) return 0;
895
896    // Handle attributes prior to checking for duplicates in MergeVarDecl
897    ProcessDeclAttributes(NewTD, D);
898    // Merge the decl with the existing one if appropriate. If the decl is
899    // in an outer scope, it isn't the same thing.
900    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
901      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
902      if (NewTD == 0) return 0;
903    }
904    New = NewTD;
905    if (S->getFnParent() == 0) {
906      // C99 6.7.7p2: If a typedef name specifies a variably modified type
907      // then it shall have block scope.
908      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
909        if (NewTD->getUnderlyingType()->isVariableArrayType())
910          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
911        else
912          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
913
914        InvalidDecl = true;
915      }
916    }
917  } else if (R.getTypePtr()->isFunctionType()) {
918    FunctionDecl::StorageClass SC = FunctionDecl::None;
919    switch (D.getDeclSpec().getStorageClassSpec()) {
920      default: assert(0 && "Unknown storage class!");
921      case DeclSpec::SCS_auto:
922      case DeclSpec::SCS_register:
923      case DeclSpec::SCS_mutable:
924        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
925        InvalidDecl = true;
926        break;
927      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
928      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
929      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
930      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
931    }
932
933    bool isInline = D.getDeclSpec().isInlineSpecified();
934    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
935    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
936
937    FunctionDecl *NewFD;
938    if (D.getKind() == Declarator::DK_Constructor) {
939      // This is a C++ constructor declaration.
940      assert(DC->isCXXRecord() &&
941             "Constructors can only be declared in a member context");
942
943      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
944
945      // Create the new declaration
946      NewFD = CXXConstructorDecl::Create(Context,
947                                         cast<CXXRecordDecl>(DC),
948                                         D.getIdentifierLoc(), Name, R,
949                                         isExplicit, isInline,
950                                         /*isImplicitlyDeclared=*/false);
951
952      if (isInvalidDecl)
953        NewFD->setInvalidDecl();
954    } else if (D.getKind() == Declarator::DK_Destructor) {
955      // This is a C++ destructor declaration.
956      if (DC->isCXXRecord()) {
957        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
958
959        NewFD = CXXDestructorDecl::Create(Context,
960                                          cast<CXXRecordDecl>(DC),
961                                          D.getIdentifierLoc(), Name, R,
962                                          isInline,
963                                          /*isImplicitlyDeclared=*/false);
964
965        if (isInvalidDecl)
966          NewFD->setInvalidDecl();
967      } else {
968        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
969        // Create a FunctionDecl to satisfy the function definition parsing
970        // code path.
971        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
972                                     Name, R, SC, isInline, LastDeclarator,
973                                     // FIXME: Move to DeclGroup...
974                                   D.getDeclSpec().getSourceRange().getBegin());
975        NewFD->setInvalidDecl();
976      }
977    } else if (D.getKind() == Declarator::DK_Conversion) {
978      if (!DC->isCXXRecord()) {
979        Diag(D.getIdentifierLoc(),
980             diag::err_conv_function_not_member);
981        return 0;
982      } else {
983        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
984
985        NewFD = CXXConversionDecl::Create(Context,
986                                          cast<CXXRecordDecl>(DC),
987                                          D.getIdentifierLoc(), Name, R,
988                                          isInline, isExplicit);
989
990        if (isInvalidDecl)
991          NewFD->setInvalidDecl();
992      }
993    } else if (DC->isCXXRecord()) {
994      // This is a C++ method declaration.
995      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
996                                    D.getIdentifierLoc(), Name, R,
997                                    (SC == FunctionDecl::Static), isInline,
998                                    LastDeclarator);
999    } else {
1000      NewFD = FunctionDecl::Create(Context, DC,
1001                                   D.getIdentifierLoc(),
1002                                   Name, R, SC, isInline, LastDeclarator,
1003                                   // FIXME: Move to DeclGroup...
1004                                   D.getDeclSpec().getSourceRange().getBegin());
1005    }
1006    // Handle attributes.
1007    ProcessDeclAttributes(NewFD, D);
1008
1009    // Handle GNU asm-label extension (encoded as an attribute).
1010    if (Expr *E = (Expr*) D.getAsmLabel()) {
1011      // The parser guarantees this is a string.
1012      StringLiteral *SE = cast<StringLiteral>(E);
1013      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1014                                                  SE->getByteLength())));
1015    }
1016
1017    // Copy the parameter declarations from the declarator D to
1018    // the function declaration NewFD, if they are available.
1019    if (D.getNumTypeObjects() > 0) {
1020      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1021
1022      // Create Decl objects for each parameter, adding them to the
1023      // FunctionDecl.
1024      llvm::SmallVector<ParmVarDecl*, 16> Params;
1025
1026      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1027      // function that takes no arguments, not a function that takes a
1028      // single void argument.
1029      // We let through "const void" here because Sema::GetTypeForDeclarator
1030      // already checks for that case.
1031      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1032          FTI.ArgInfo[0].Param &&
1033          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1034        // empty arg list, don't push any params.
1035        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1036
1037        // In C++, the empty parameter-type-list must be spelled "void"; a
1038        // typedef of void is not permitted.
1039        if (getLangOptions().CPlusPlus &&
1040            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1041          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1042        }
1043      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1044        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1045          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1046      }
1047
1048      NewFD->setParams(&Params[0], Params.size());
1049    } else if (R->getAsTypedefType()) {
1050      // When we're declaring a function with a typedef, as in the
1051      // following example, we'll need to synthesize (unnamed)
1052      // parameters for use in the declaration.
1053      //
1054      // @code
1055      // typedef void fn(int);
1056      // fn f;
1057      // @endcode
1058      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1059      if (!FT) {
1060        // This is a typedef of a function with no prototype, so we
1061        // don't need to do anything.
1062      } else if ((FT->getNumArgs() == 0) ||
1063          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1064           FT->getArgType(0)->isVoidType())) {
1065        // This is a zero-argument function. We don't need to do anything.
1066      } else {
1067        // Synthesize a parameter for each argument type.
1068        llvm::SmallVector<ParmVarDecl*, 16> Params;
1069        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1070             ArgType != FT->arg_type_end(); ++ArgType) {
1071          Params.push_back(ParmVarDecl::Create(Context, DC,
1072                                               SourceLocation(), 0,
1073                                               *ArgType, VarDecl::None,
1074                                               0, 0));
1075        }
1076
1077        NewFD->setParams(&Params[0], Params.size());
1078      }
1079    }
1080
1081    // C++ constructors and destructors are handled by separate
1082    // routines, since they don't require any declaration merging (C++
1083    // [class.mfct]p2) and they aren't ever pushed into scope, because
1084    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1085    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1086      return ActOnConstructorDeclarator(Constructor);
1087    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1088      return ActOnDestructorDeclarator(Destructor);
1089
1090    // Extra checking for conversion functions, including recording
1091    // the conversion function in its class.
1092    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1093      ActOnConversionDeclarator(Conversion);
1094
1095    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1096    if (NewFD->isOverloadedOperator() &&
1097        CheckOverloadedOperatorDeclaration(NewFD))
1098      NewFD->setInvalidDecl();
1099
1100    // Merge the decl with the existing one if appropriate. Since C functions
1101    // are in a flat namespace, make sure we consider decls in outer scopes.
1102    if (PrevDecl &&
1103        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1104      bool Redeclaration = false;
1105
1106      // If C++, determine whether NewFD is an overload of PrevDecl or
1107      // a declaration that requires merging. If it's an overload,
1108      // there's no more work to do here; we'll just add the new
1109      // function to the scope.
1110      OverloadedFunctionDecl::function_iterator MatchedDecl;
1111      if (!getLangOptions().CPlusPlus ||
1112          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1113        Decl *OldDecl = PrevDecl;
1114
1115        // If PrevDecl was an overloaded function, extract the
1116        // FunctionDecl that matched.
1117        if (isa<OverloadedFunctionDecl>(PrevDecl))
1118          OldDecl = *MatchedDecl;
1119
1120        // NewFD and PrevDecl represent declarations that need to be
1121        // merged.
1122        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1123
1124        if (NewFD == 0) return 0;
1125        if (Redeclaration) {
1126          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1127
1128          if (OldDecl == PrevDecl) {
1129            // Remove the name binding for the previous
1130            // declaration. We'll add the binding back later, but then
1131            // it will refer to the new declaration (which will
1132            // contain more information).
1133            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1134          } else {
1135            // We need to update the OverloadedFunctionDecl with the
1136            // latest declaration of this function, so that name
1137            // lookup will always refer to the latest declaration of
1138            // this function.
1139            *MatchedDecl = NewFD;
1140
1141            // Add the redeclaration to the current scope, since we'll
1142            // be skipping PushOnScopeChains.
1143            S->AddDecl(NewFD);
1144
1145            return NewFD;
1146          }
1147        }
1148      }
1149    }
1150    New = NewFD;
1151
1152    // In C++, check default arguments now that we have merged decls.
1153    if (getLangOptions().CPlusPlus)
1154      CheckCXXDefaultArguments(NewFD);
1155  } else {
1156    // Check that there are no default arguments (C++ only).
1157    if (getLangOptions().CPlusPlus)
1158      CheckExtraCXXDefaultArguments(D);
1159
1160    if (R.getTypePtr()->isObjCInterfaceType()) {
1161      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1162        << D.getIdentifier();
1163      InvalidDecl = true;
1164    }
1165
1166    VarDecl *NewVD;
1167    VarDecl::StorageClass SC;
1168    switch (D.getDeclSpec().getStorageClassSpec()) {
1169    default: assert(0 && "Unknown storage class!");
1170    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1171    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1172    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1173    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1174    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1175    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1176    case DeclSpec::SCS_mutable:
1177      // mutable can only appear on non-static class members, so it's always
1178      // an error here
1179      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1180      InvalidDecl = true;
1181      SC = VarDecl::None;
1182      break;
1183    }
1184
1185    IdentifierInfo *II = Name.getAsIdentifierInfo();
1186    if (!II) {
1187      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1188       << Name.getAsString();
1189      return 0;
1190    }
1191
1192    if (DC->isCXXRecord()) {
1193      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1194      // This is a static data member for a C++ class.
1195      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1196                                      D.getIdentifierLoc(), II,
1197                                      R, LastDeclarator);
1198    } else {
1199      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1200      if (S->getFnParent() == 0) {
1201        // C99 6.9p2: The storage-class specifiers auto and register shall not
1202        // appear in the declaration specifiers in an external declaration.
1203        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1204          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1205          InvalidDecl = true;
1206        }
1207      }
1208      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1209                              II, R, SC, LastDeclarator,
1210                              // FIXME: Move to DeclGroup...
1211                              D.getDeclSpec().getSourceRange().getBegin());
1212      NewVD->setThreadSpecified(ThreadSpecified);
1213    }
1214    // Handle attributes prior to checking for duplicates in MergeVarDecl
1215    ProcessDeclAttributes(NewVD, D);
1216
1217    // Handle GNU asm-label extension (encoded as an attribute).
1218    if (Expr *E = (Expr*) D.getAsmLabel()) {
1219      // The parser guarantees this is a string.
1220      StringLiteral *SE = cast<StringLiteral>(E);
1221      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1222                                                  SE->getByteLength())));
1223    }
1224
1225    // Emit an error if an address space was applied to decl with local storage.
1226    // This includes arrays of objects with address space qualifiers, but not
1227    // automatic variables that point to other address spaces.
1228    // ISO/IEC TR 18037 S5.1.2
1229    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1230      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1231      InvalidDecl = true;
1232    }
1233    // Merge the decl with the existing one if appropriate. If the decl is
1234    // in an outer scope, it isn't the same thing.
1235    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1236      NewVD = MergeVarDecl(NewVD, PrevDecl);
1237      if (NewVD == 0) return 0;
1238    }
1239    New = NewVD;
1240  }
1241
1242  // Set the lexical context. If the declarator has a C++ scope specifier, the
1243  // lexical context will be different from the semantic context.
1244  New->setLexicalDeclContext(CurContext);
1245
1246  // If this has an identifier, add it to the scope stack.
1247  if (Name)
1248    PushOnScopeChains(New, S);
1249  // If any semantic error occurred, mark the decl as invalid.
1250  if (D.getInvalidType() || InvalidDecl)
1251    New->setInvalidDecl();
1252
1253  return New;
1254}
1255
1256void Sema::InitializerElementNotConstant(const Expr *Init) {
1257  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1258    << Init->getSourceRange();
1259}
1260
1261bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1262  switch (Init->getStmtClass()) {
1263  default:
1264    InitializerElementNotConstant(Init);
1265    return true;
1266  case Expr::ParenExprClass: {
1267    const ParenExpr* PE = cast<ParenExpr>(Init);
1268    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1269  }
1270  case Expr::CompoundLiteralExprClass:
1271    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1272  case Expr::DeclRefExprClass: {
1273    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1274    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1275      if (VD->hasGlobalStorage())
1276        return false;
1277      InitializerElementNotConstant(Init);
1278      return true;
1279    }
1280    if (isa<FunctionDecl>(D))
1281      return false;
1282    InitializerElementNotConstant(Init);
1283    return true;
1284  }
1285  case Expr::MemberExprClass: {
1286    const MemberExpr *M = cast<MemberExpr>(Init);
1287    if (M->isArrow())
1288      return CheckAddressConstantExpression(M->getBase());
1289    return CheckAddressConstantExpressionLValue(M->getBase());
1290  }
1291  case Expr::ArraySubscriptExprClass: {
1292    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1293    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1294    return CheckAddressConstantExpression(ASE->getBase()) ||
1295           CheckArithmeticConstantExpression(ASE->getIdx());
1296  }
1297  case Expr::StringLiteralClass:
1298  case Expr::PredefinedExprClass:
1299    return false;
1300  case Expr::UnaryOperatorClass: {
1301    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1302
1303    // C99 6.6p9
1304    if (Exp->getOpcode() == UnaryOperator::Deref)
1305      return CheckAddressConstantExpression(Exp->getSubExpr());
1306
1307    InitializerElementNotConstant(Init);
1308    return true;
1309  }
1310  }
1311}
1312
1313bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1314  switch (Init->getStmtClass()) {
1315  default:
1316    InitializerElementNotConstant(Init);
1317    return true;
1318  case Expr::ParenExprClass:
1319    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1320  case Expr::StringLiteralClass:
1321  case Expr::ObjCStringLiteralClass:
1322    return false;
1323  case Expr::CallExprClass:
1324  case Expr::CXXOperatorCallExprClass:
1325    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1326    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1327           Builtin::BI__builtin___CFStringMakeConstantString)
1328      return false;
1329
1330    InitializerElementNotConstant(Init);
1331    return true;
1332
1333  case Expr::UnaryOperatorClass: {
1334    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1335
1336    // C99 6.6p9
1337    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1338      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1339
1340    if (Exp->getOpcode() == UnaryOperator::Extension)
1341      return CheckAddressConstantExpression(Exp->getSubExpr());
1342
1343    InitializerElementNotConstant(Init);
1344    return true;
1345  }
1346  case Expr::BinaryOperatorClass: {
1347    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1348    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1349
1350    Expr *PExp = Exp->getLHS();
1351    Expr *IExp = Exp->getRHS();
1352    if (IExp->getType()->isPointerType())
1353      std::swap(PExp, IExp);
1354
1355    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1356    return CheckAddressConstantExpression(PExp) ||
1357           CheckArithmeticConstantExpression(IExp);
1358  }
1359  case Expr::ImplicitCastExprClass:
1360  case Expr::CStyleCastExprClass: {
1361    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1362    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1363      // Check for implicit promotion
1364      if (SubExpr->getType()->isFunctionType() ||
1365          SubExpr->getType()->isArrayType())
1366        return CheckAddressConstantExpressionLValue(SubExpr);
1367    }
1368
1369    // Check for pointer->pointer cast
1370    if (SubExpr->getType()->isPointerType())
1371      return CheckAddressConstantExpression(SubExpr);
1372
1373    if (SubExpr->getType()->isIntegralType()) {
1374      // Check for the special-case of a pointer->int->pointer cast;
1375      // this isn't standard, but some code requires it. See
1376      // PR2720 for an example.
1377      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1378        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1379          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1380          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1381          if (IntWidth >= PointerWidth) {
1382            return CheckAddressConstantExpression(SubCast->getSubExpr());
1383          }
1384        }
1385      }
1386    }
1387    if (SubExpr->getType()->isArithmeticType()) {
1388      return CheckArithmeticConstantExpression(SubExpr);
1389    }
1390
1391    InitializerElementNotConstant(Init);
1392    return true;
1393  }
1394  case Expr::ConditionalOperatorClass: {
1395    // FIXME: Should we pedwarn here?
1396    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1397    if (!Exp->getCond()->getType()->isArithmeticType()) {
1398      InitializerElementNotConstant(Init);
1399      return true;
1400    }
1401    if (CheckArithmeticConstantExpression(Exp->getCond()))
1402      return true;
1403    if (Exp->getLHS() &&
1404        CheckAddressConstantExpression(Exp->getLHS()))
1405      return true;
1406    return CheckAddressConstantExpression(Exp->getRHS());
1407  }
1408  case Expr::AddrLabelExprClass:
1409    return false;
1410  }
1411}
1412
1413static const Expr* FindExpressionBaseAddress(const Expr* E);
1414
1415static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1416  switch (E->getStmtClass()) {
1417  default:
1418    return E;
1419  case Expr::ParenExprClass: {
1420    const ParenExpr* PE = cast<ParenExpr>(E);
1421    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1422  }
1423  case Expr::MemberExprClass: {
1424    const MemberExpr *M = cast<MemberExpr>(E);
1425    if (M->isArrow())
1426      return FindExpressionBaseAddress(M->getBase());
1427    return FindExpressionBaseAddressLValue(M->getBase());
1428  }
1429  case Expr::ArraySubscriptExprClass: {
1430    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1431    return FindExpressionBaseAddress(ASE->getBase());
1432  }
1433  case Expr::UnaryOperatorClass: {
1434    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1435
1436    if (Exp->getOpcode() == UnaryOperator::Deref)
1437      return FindExpressionBaseAddress(Exp->getSubExpr());
1438
1439    return E;
1440  }
1441  }
1442}
1443
1444static const Expr* FindExpressionBaseAddress(const Expr* E) {
1445  switch (E->getStmtClass()) {
1446  default:
1447    return E;
1448  case Expr::ParenExprClass: {
1449    const ParenExpr* PE = cast<ParenExpr>(E);
1450    return FindExpressionBaseAddress(PE->getSubExpr());
1451  }
1452  case Expr::UnaryOperatorClass: {
1453    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1454
1455    // C99 6.6p9
1456    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1457      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1458
1459    if (Exp->getOpcode() == UnaryOperator::Extension)
1460      return FindExpressionBaseAddress(Exp->getSubExpr());
1461
1462    return E;
1463  }
1464  case Expr::BinaryOperatorClass: {
1465    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1466
1467    Expr *PExp = Exp->getLHS();
1468    Expr *IExp = Exp->getRHS();
1469    if (IExp->getType()->isPointerType())
1470      std::swap(PExp, IExp);
1471
1472    return FindExpressionBaseAddress(PExp);
1473  }
1474  case Expr::ImplicitCastExprClass: {
1475    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1476
1477    // Check for implicit promotion
1478    if (SubExpr->getType()->isFunctionType() ||
1479        SubExpr->getType()->isArrayType())
1480      return FindExpressionBaseAddressLValue(SubExpr);
1481
1482    // Check for pointer->pointer cast
1483    if (SubExpr->getType()->isPointerType())
1484      return FindExpressionBaseAddress(SubExpr);
1485
1486    // We assume that we have an arithmetic expression here;
1487    // if we don't, we'll figure it out later
1488    return 0;
1489  }
1490  case Expr::CStyleCastExprClass: {
1491    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1492
1493    // Check for pointer->pointer cast
1494    if (SubExpr->getType()->isPointerType())
1495      return FindExpressionBaseAddress(SubExpr);
1496
1497    // We assume that we have an arithmetic expression here;
1498    // if we don't, we'll figure it out later
1499    return 0;
1500  }
1501  }
1502}
1503
1504bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1505  switch (Init->getStmtClass()) {
1506  default:
1507    InitializerElementNotConstant(Init);
1508    return true;
1509  case Expr::ParenExprClass: {
1510    const ParenExpr* PE = cast<ParenExpr>(Init);
1511    return CheckArithmeticConstantExpression(PE->getSubExpr());
1512  }
1513  case Expr::FloatingLiteralClass:
1514  case Expr::IntegerLiteralClass:
1515  case Expr::CharacterLiteralClass:
1516  case Expr::ImaginaryLiteralClass:
1517  case Expr::TypesCompatibleExprClass:
1518  case Expr::CXXBoolLiteralExprClass:
1519    return false;
1520  case Expr::CallExprClass:
1521  case Expr::CXXOperatorCallExprClass: {
1522    const CallExpr *CE = cast<CallExpr>(Init);
1523
1524    // Allow any constant foldable calls to builtins.
1525    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1526      return false;
1527
1528    InitializerElementNotConstant(Init);
1529    return true;
1530  }
1531  case Expr::DeclRefExprClass: {
1532    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1533    if (isa<EnumConstantDecl>(D))
1534      return false;
1535    InitializerElementNotConstant(Init);
1536    return true;
1537  }
1538  case Expr::CompoundLiteralExprClass:
1539    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1540    // but vectors are allowed to be magic.
1541    if (Init->getType()->isVectorType())
1542      return false;
1543    InitializerElementNotConstant(Init);
1544    return true;
1545  case Expr::UnaryOperatorClass: {
1546    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1547
1548    switch (Exp->getOpcode()) {
1549    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1550    // See C99 6.6p3.
1551    default:
1552      InitializerElementNotConstant(Init);
1553      return true;
1554    case UnaryOperator::OffsetOf:
1555      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1556        return false;
1557      InitializerElementNotConstant(Init);
1558      return true;
1559    case UnaryOperator::Extension:
1560    case UnaryOperator::LNot:
1561    case UnaryOperator::Plus:
1562    case UnaryOperator::Minus:
1563    case UnaryOperator::Not:
1564      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1565    }
1566  }
1567  case Expr::SizeOfAlignOfExprClass: {
1568    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1569    // Special check for void types, which are allowed as an extension
1570    if (Exp->getTypeOfArgument()->isVoidType())
1571      return false;
1572    // alignof always evaluates to a constant.
1573    // FIXME: is sizeof(int[3.0]) a constant expression?
1574    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1575      InitializerElementNotConstant(Init);
1576      return true;
1577    }
1578    return false;
1579  }
1580  case Expr::BinaryOperatorClass: {
1581    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1582
1583    if (Exp->getLHS()->getType()->isArithmeticType() &&
1584        Exp->getRHS()->getType()->isArithmeticType()) {
1585      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1586             CheckArithmeticConstantExpression(Exp->getRHS());
1587    }
1588
1589    if (Exp->getLHS()->getType()->isPointerType() &&
1590        Exp->getRHS()->getType()->isPointerType()) {
1591      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1592      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1593
1594      // Only allow a null (constant integer) base; we could
1595      // allow some additional cases if necessary, but this
1596      // is sufficient to cover offsetof-like constructs.
1597      if (!LHSBase && !RHSBase) {
1598        return CheckAddressConstantExpression(Exp->getLHS()) ||
1599               CheckAddressConstantExpression(Exp->getRHS());
1600      }
1601    }
1602
1603    InitializerElementNotConstant(Init);
1604    return true;
1605  }
1606  case Expr::ImplicitCastExprClass:
1607  case Expr::CStyleCastExprClass: {
1608    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1609    if (SubExpr->getType()->isArithmeticType())
1610      return CheckArithmeticConstantExpression(SubExpr);
1611
1612    if (SubExpr->getType()->isPointerType()) {
1613      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1614      // If the pointer has a null base, this is an offsetof-like construct
1615      if (!Base)
1616        return CheckAddressConstantExpression(SubExpr);
1617    }
1618
1619    InitializerElementNotConstant(Init);
1620    return true;
1621  }
1622  case Expr::ConditionalOperatorClass: {
1623    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1624
1625    // If GNU extensions are disabled, we require all operands to be arithmetic
1626    // constant expressions.
1627    if (getLangOptions().NoExtensions) {
1628      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1629          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1630             CheckArithmeticConstantExpression(Exp->getRHS());
1631    }
1632
1633    // Otherwise, we have to emulate some of the behavior of fold here.
1634    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1635    // because it can constant fold things away.  To retain compatibility with
1636    // GCC code, we see if we can fold the condition to a constant (which we
1637    // should always be able to do in theory).  If so, we only require the
1638    // specified arm of the conditional to be a constant.  This is a horrible
1639    // hack, but is require by real world code that uses __builtin_constant_p.
1640    APValue Val;
1641    if (!Exp->getCond()->Evaluate(Val, Context)) {
1642      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1643      // won't be able to either.  Use it to emit the diagnostic though.
1644      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1645      assert(Res && "Evaluate couldn't evaluate this constant?");
1646      return Res;
1647    }
1648
1649    // Verify that the side following the condition is also a constant.
1650    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1651    if (Val.getInt() == 0)
1652      std::swap(TrueSide, FalseSide);
1653
1654    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1655      return true;
1656
1657    // Okay, the evaluated side evaluates to a constant, so we accept this.
1658    // Check to see if the other side is obviously not a constant.  If so,
1659    // emit a warning that this is a GNU extension.
1660    if (FalseSide && !FalseSide->isEvaluatable(Context))
1661      Diag(Init->getExprLoc(),
1662           diag::ext_typecheck_expression_not_constant_but_accepted)
1663        << FalseSide->getSourceRange();
1664    return false;
1665  }
1666  }
1667}
1668
1669bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1670  Expr::EvalResult Result;
1671
1672  Init = Init->IgnoreParens();
1673
1674  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1675    return false;
1676
1677  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1678  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1679    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1680
1681  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1682    return CheckForConstantInitializer(e->getInitializer(), DclT);
1683
1684  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1685    unsigned numInits = Exp->getNumInits();
1686    for (unsigned i = 0; i < numInits; i++) {
1687      // FIXME: Need to get the type of the declaration for C++,
1688      // because it could be a reference?
1689      if (CheckForConstantInitializer(Exp->getInit(i),
1690                                      Exp->getInit(i)->getType()))
1691        return true;
1692    }
1693    return false;
1694  }
1695
1696  // FIXME: We can probably remove some of this code below, now that
1697  // Expr::Evaluate is doing the heavy lifting for scalars.
1698
1699  if (Init->isNullPointerConstant(Context))
1700    return false;
1701  if (Init->getType()->isArithmeticType()) {
1702    QualType InitTy = Context.getCanonicalType(Init->getType())
1703                             .getUnqualifiedType();
1704    if (InitTy == Context.BoolTy) {
1705      // Special handling for pointers implicitly cast to bool;
1706      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1707      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1708        Expr* SubE = ICE->getSubExpr();
1709        if (SubE->getType()->isPointerType() ||
1710            SubE->getType()->isArrayType() ||
1711            SubE->getType()->isFunctionType()) {
1712          return CheckAddressConstantExpression(Init);
1713        }
1714      }
1715    } else if (InitTy->isIntegralType()) {
1716      Expr* SubE = 0;
1717      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1718        SubE = CE->getSubExpr();
1719      // Special check for pointer cast to int; we allow as an extension
1720      // an address constant cast to an integer if the integer
1721      // is of an appropriate width (this sort of code is apparently used
1722      // in some places).
1723      // FIXME: Add pedwarn?
1724      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1725      if (SubE && (SubE->getType()->isPointerType() ||
1726                   SubE->getType()->isArrayType() ||
1727                   SubE->getType()->isFunctionType())) {
1728        unsigned IntWidth = Context.getTypeSize(Init->getType());
1729        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1730        if (IntWidth >= PointerWidth)
1731          return CheckAddressConstantExpression(Init);
1732      }
1733    }
1734
1735    return CheckArithmeticConstantExpression(Init);
1736  }
1737
1738  if (Init->getType()->isPointerType())
1739    return CheckAddressConstantExpression(Init);
1740
1741  // An array type at the top level that isn't an init-list must
1742  // be a string literal
1743  if (Init->getType()->isArrayType())
1744    return false;
1745
1746  if (Init->getType()->isFunctionType())
1747    return false;
1748
1749  // Allow block exprs at top level.
1750  if (Init->getType()->isBlockPointerType())
1751    return false;
1752
1753  InitializerElementNotConstant(Init);
1754  return true;
1755}
1756
1757void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1758  Decl *RealDecl = static_cast<Decl *>(dcl);
1759  Expr *Init = static_cast<Expr *>(init);
1760  assert(Init && "missing initializer");
1761
1762  // If there is no declaration, there was an error parsing it.  Just ignore
1763  // the initializer.
1764  if (RealDecl == 0) {
1765    delete Init;
1766    return;
1767  }
1768
1769  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1770  if (!VDecl) {
1771    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1772         diag::err_illegal_initializer);
1773    RealDecl->setInvalidDecl();
1774    return;
1775  }
1776  // Get the decls type and save a reference for later, since
1777  // CheckInitializerTypes may change it.
1778  QualType DclT = VDecl->getType(), SavT = DclT;
1779  if (VDecl->isBlockVarDecl()) {
1780    VarDecl::StorageClass SC = VDecl->getStorageClass();
1781    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1782      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1783      VDecl->setInvalidDecl();
1784    } else if (!VDecl->isInvalidDecl()) {
1785      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1786                                VDecl->getDeclName()))
1787        VDecl->setInvalidDecl();
1788
1789      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1790      if (!getLangOptions().CPlusPlus) {
1791        if (SC == VarDecl::Static) // C99 6.7.8p4.
1792          CheckForConstantInitializer(Init, DclT);
1793      }
1794    }
1795  } else if (VDecl->isFileVarDecl()) {
1796    if (VDecl->getStorageClass() == VarDecl::Extern)
1797      Diag(VDecl->getLocation(), diag::warn_extern_init);
1798    if (!VDecl->isInvalidDecl())
1799      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1800                                VDecl->getDeclName()))
1801        VDecl->setInvalidDecl();
1802
1803    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1804    if (!getLangOptions().CPlusPlus) {
1805      // C99 6.7.8p4. All file scoped initializers need to be constant.
1806      CheckForConstantInitializer(Init, DclT);
1807    }
1808  }
1809  // If the type changed, it means we had an incomplete type that was
1810  // completed by the initializer. For example:
1811  //   int ary[] = { 1, 3, 5 };
1812  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1813  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1814    VDecl->setType(DclT);
1815    Init->setType(DclT);
1816  }
1817
1818  // Attach the initializer to the decl.
1819  VDecl->setInit(Init);
1820  return;
1821}
1822
1823void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1824  Decl *RealDecl = static_cast<Decl *>(dcl);
1825
1826  // If there is no declaration, there was an error parsing it. Just ignore it.
1827  if (RealDecl == 0)
1828    return;
1829
1830  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1831    QualType Type = Var->getType();
1832    // C++ [dcl.init.ref]p3:
1833    //   The initializer can be omitted for a reference only in a
1834    //   parameter declaration (8.3.5), in the declaration of a
1835    //   function return type, in the declaration of a class member
1836    //   within its class declaration (9.2), and where the extern
1837    //   specifier is explicitly used.
1838    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1839      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
1840        << Var->getDeclName()
1841        << SourceRange(Var->getLocation(), Var->getLocation());
1842      Var->setInvalidDecl();
1843      return;
1844    }
1845
1846    // C++ [dcl.init]p9:
1847    //
1848    //   If no initializer is specified for an object, and the object
1849    //   is of (possibly cv-qualified) non-POD class type (or array
1850    //   thereof), the object shall be default-initialized; if the
1851    //   object is of const-qualified type, the underlying class type
1852    //   shall have a user-declared default constructor.
1853    if (getLangOptions().CPlusPlus) {
1854      QualType InitType = Type;
1855      if (const ArrayType *Array = Context.getAsArrayType(Type))
1856        InitType = Array->getElementType();
1857      if (InitType->isRecordType()) {
1858        const CXXConstructorDecl *Constructor
1859          = PerformInitializationByConstructor(InitType, 0, 0,
1860                                               Var->getLocation(),
1861                                               SourceRange(Var->getLocation(),
1862                                                           Var->getLocation()),
1863                                               Var->getDeclName(),
1864                                               IK_Default);
1865        if (!Constructor)
1866          Var->setInvalidDecl();
1867      }
1868    }
1869
1870#if 0
1871    // FIXME: Temporarily disabled because we are not properly parsing
1872    // linkage specifications on declarations, e.g.,
1873    //
1874    //   extern "C" const CGPoint CGPointerZero;
1875    //
1876    // C++ [dcl.init]p9:
1877    //
1878    //     If no initializer is specified for an object, and the
1879    //     object is of (possibly cv-qualified) non-POD class type (or
1880    //     array thereof), the object shall be default-initialized; if
1881    //     the object is of const-qualified type, the underlying class
1882    //     type shall have a user-declared default
1883    //     constructor. Otherwise, if no initializer is specified for
1884    //     an object, the object and its subobjects, if any, have an
1885    //     indeterminate initial value; if the object or any of its
1886    //     subobjects are of const-qualified type, the program is
1887    //     ill-formed.
1888    //
1889    // This isn't technically an error in C, so we don't diagnose it.
1890    //
1891    // FIXME: Actually perform the POD/user-defined default
1892    // constructor check.
1893    if (getLangOptions().CPlusPlus &&
1894        Context.getCanonicalType(Type).isConstQualified() &&
1895        Var->getStorageClass() != VarDecl::Extern)
1896      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
1897        << Var->getName()
1898        << SourceRange(Var->getLocation(), Var->getLocation());
1899#endif
1900  }
1901}
1902
1903/// The declarators are chained together backwards, reverse the list.
1904Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1905  // Often we have single declarators, handle them quickly.
1906  Decl *GroupDecl = static_cast<Decl*>(group);
1907  if (GroupDecl == 0)
1908    return 0;
1909
1910  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1911  ScopedDecl *NewGroup = 0;
1912  if (Group->getNextDeclarator() == 0)
1913    NewGroup = Group;
1914  else { // reverse the list.
1915    while (Group) {
1916      ScopedDecl *Next = Group->getNextDeclarator();
1917      Group->setNextDeclarator(NewGroup);
1918      NewGroup = Group;
1919      Group = Next;
1920    }
1921  }
1922  // Perform semantic analysis that depends on having fully processed both
1923  // the declarator and initializer.
1924  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1925    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1926    if (!IDecl)
1927      continue;
1928    QualType T = IDecl->getType();
1929
1930    if (T->isVariableArrayType()) {
1931      if (IDecl->isFileVarDecl()) {
1932        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope);
1933        IDecl->setInvalidDecl();
1934      } else {
1935        // C99 6.7.5.2p2: If an identifier is declared to be an object with
1936        // static storage duration, it shall not have a variable length array.
1937        if (IDecl->getStorageClass() == VarDecl::Static) {
1938          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage);
1939          IDecl->setInvalidDecl();
1940        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
1941          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage);
1942          IDecl->setInvalidDecl();
1943        }
1944      }
1945    } else if (T->isVariablyModifiedType()) {
1946      if (IDecl->isFileVarDecl()) {
1947        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
1948        IDecl->setInvalidDecl();
1949      } else {
1950        if (IDecl->getStorageClass() == VarDecl::Extern) {
1951          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
1952          IDecl->setInvalidDecl();
1953        }
1954      }
1955    }
1956
1957    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1958    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1959    if (IDecl->isBlockVarDecl() &&
1960        IDecl->getStorageClass() != VarDecl::Extern) {
1961      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1962        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
1963        IDecl->setInvalidDecl();
1964      }
1965    }
1966    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1967    // object that has file scope without an initializer, and without a
1968    // storage-class specifier or with the storage-class specifier "static",
1969    // constitutes a tentative definition. Note: A tentative definition with
1970    // external linkage is valid (C99 6.2.2p5).
1971    if (isTentativeDefinition(IDecl)) {
1972      if (T->isIncompleteArrayType()) {
1973        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1974        // array to be completed. Don't issue a diagnostic.
1975      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1976        // C99 6.9.2p3: If the declaration of an identifier for an object is
1977        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1978        // declared type shall not be an incomplete type.
1979        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
1980        IDecl->setInvalidDecl();
1981      }
1982    }
1983    if (IDecl->isFileVarDecl())
1984      CheckForFileScopedRedefinitions(S, IDecl);
1985  }
1986  return NewGroup;
1987}
1988
1989/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1990/// to introduce parameters into function prototype scope.
1991Sema::DeclTy *
1992Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1993  // FIXME: disallow CXXScopeSpec for param declarators.
1994  const DeclSpec &DS = D.getDeclSpec();
1995
1996  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1997  VarDecl::StorageClass StorageClass = VarDecl::None;
1998  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1999    StorageClass = VarDecl::Register;
2000  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2001    Diag(DS.getStorageClassSpecLoc(),
2002         diag::err_invalid_storage_class_in_func_decl);
2003    D.getMutableDeclSpec().ClearStorageClassSpecs();
2004  }
2005  if (DS.isThreadSpecified()) {
2006    Diag(DS.getThreadSpecLoc(),
2007         diag::err_invalid_storage_class_in_func_decl);
2008    D.getMutableDeclSpec().ClearStorageClassSpecs();
2009  }
2010
2011  // Check that there are no default arguments inside the type of this
2012  // parameter (C++ only).
2013  if (getLangOptions().CPlusPlus)
2014    CheckExtraCXXDefaultArguments(D);
2015
2016  // In this context, we *do not* check D.getInvalidType(). If the declarator
2017  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2018  // though it will not reflect the user specified type.
2019  QualType parmDeclType = GetTypeForDeclarator(D, S);
2020
2021  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2022
2023  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2024  // Can this happen for params?  We already checked that they don't conflict
2025  // among each other.  Here they can only shadow globals, which is ok.
2026  IdentifierInfo *II = D.getIdentifier();
2027  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2028    if (isTemplateParameterDecl(PrevDecl)) {
2029      // Maybe we will complain about the shadowed template parameter.
2030      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2031      // Just pretend that we didn't see the previous declaration.
2032      PrevDecl = 0;
2033    } else if (S->isDeclScope(PrevDecl)) {
2034      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2035
2036      // Recover by removing the name
2037      II = 0;
2038      D.SetIdentifier(0, D.getIdentifierLoc());
2039    }
2040  }
2041
2042  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2043  // Doing the promotion here has a win and a loss. The win is the type for
2044  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2045  // code generator). The loss is the orginal type isn't preserved. For example:
2046  //
2047  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2048  //    int blockvardecl[5];
2049  //    sizeof(parmvardecl);  // size == 4
2050  //    sizeof(blockvardecl); // size == 20
2051  // }
2052  //
2053  // For expressions, all implicit conversions are captured using the
2054  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2055  //
2056  // FIXME: If a source translation tool needs to see the original type, then
2057  // we need to consider storing both types (in ParmVarDecl)...
2058  //
2059  if (parmDeclType->isArrayType()) {
2060    // int x[restrict 4] ->  int *restrict
2061    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2062  } else if (parmDeclType->isFunctionType())
2063    parmDeclType = Context.getPointerType(parmDeclType);
2064
2065  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2066                                         D.getIdentifierLoc(), II,
2067                                         parmDeclType, StorageClass,
2068                                         0, 0);
2069
2070  if (D.getInvalidType())
2071    New->setInvalidDecl();
2072
2073  if (II)
2074    PushOnScopeChains(New, S);
2075
2076  ProcessDeclAttributes(New, D);
2077  return New;
2078
2079}
2080
2081Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2082  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2083  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2084         "Not a function declarator!");
2085  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2086
2087  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2088  // for a K&R function.
2089  if (!FTI.hasPrototype) {
2090    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2091      if (FTI.ArgInfo[i].Param == 0) {
2092        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2093          << FTI.ArgInfo[i].Ident;
2094        // Implicitly declare the argument as type 'int' for lack of a better
2095        // type.
2096        DeclSpec DS;
2097        const char* PrevSpec; // unused
2098        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2099                           PrevSpec);
2100        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2101        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2102        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2103      }
2104    }
2105  } else {
2106    // FIXME: Diagnose arguments without names in C.
2107  }
2108
2109  Scope *GlobalScope = FnBodyScope->getParent();
2110
2111  return ActOnStartOfFunctionDef(FnBodyScope,
2112                                 ActOnDeclarator(GlobalScope, D, 0));
2113}
2114
2115Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2116  Decl *decl = static_cast<Decl*>(D);
2117  FunctionDecl *FD = cast<FunctionDecl>(decl);
2118
2119  // See if this is a redefinition.
2120  const FunctionDecl *Definition;
2121  if (FD->getBody(Definition)) {
2122    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2123    Diag(Definition->getLocation(), diag::note_previous_definition);
2124  }
2125
2126  PushDeclContext(FD);
2127
2128  // Check the validity of our function parameters
2129  CheckParmsForFunctionDef(FD);
2130
2131  // Introduce our parameters into the function scope
2132  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2133    ParmVarDecl *Param = FD->getParamDecl(p);
2134    // If this has an identifier, add it to the scope stack.
2135    if (Param->getIdentifier())
2136      PushOnScopeChains(Param, FnBodyScope);
2137  }
2138
2139  return FD;
2140}
2141
2142Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2143  Decl *dcl = static_cast<Decl *>(D);
2144  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2145    FD->setBody((Stmt*)Body);
2146    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2147  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2148    MD->setBody((Stmt*)Body);
2149  } else
2150    return 0;
2151  PopDeclContext();
2152  // Verify and clean out per-function state.
2153
2154  // Check goto/label use.
2155  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2156       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2157    // Verify that we have no forward references left.  If so, there was a goto
2158    // or address of a label taken, but no definition of it.  Label fwd
2159    // definitions are indicated with a null substmt.
2160    if (I->second->getSubStmt() == 0) {
2161      LabelStmt *L = I->second;
2162      // Emit error.
2163      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2164
2165      // At this point, we have gotos that use the bogus label.  Stitch it into
2166      // the function body so that they aren't leaked and that the AST is well
2167      // formed.
2168      if (Body) {
2169        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2170        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2171      } else {
2172        // The whole function wasn't parsed correctly, just delete this.
2173        delete L;
2174      }
2175    }
2176  }
2177  LabelMap.clear();
2178
2179  return D;
2180}
2181
2182/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2183/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2184ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2185                                           IdentifierInfo &II, Scope *S) {
2186  // Extension in C99.  Legal in C90, but warn about it.
2187  if (getLangOptions().C99)
2188    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2189  else
2190    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2191
2192  // FIXME: handle stuff like:
2193  // void foo() { extern float X(); }
2194  // void bar() { X(); }  <-- implicit decl for X in another scope.
2195
2196  // Set a Declarator for the implicit definition: int foo();
2197  const char *Dummy;
2198  DeclSpec DS;
2199  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2200  Error = Error; // Silence warning.
2201  assert(!Error && "Error setting up implicit decl!");
2202  Declarator D(DS, Declarator::BlockContext);
2203  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2204  D.SetIdentifier(&II, Loc);
2205
2206  // Insert this function into translation-unit scope.
2207
2208  DeclContext *PrevDC = CurContext;
2209  CurContext = Context.getTranslationUnitDecl();
2210
2211  FunctionDecl *FD =
2212    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2213  FD->setImplicit();
2214
2215  CurContext = PrevDC;
2216
2217  return FD;
2218}
2219
2220
2221TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2222                                    ScopedDecl *LastDeclarator) {
2223  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2224  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2225
2226  // Scope manipulation handled by caller.
2227  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2228                                           D.getIdentifierLoc(),
2229                                           D.getIdentifier(),
2230                                           T, LastDeclarator);
2231  if (D.getInvalidType())
2232    NewTD->setInvalidDecl();
2233  return NewTD;
2234}
2235
2236/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2237/// former case, Name will be non-null.  In the later case, Name will be null.
2238/// TagType indicates what kind of tag this is. TK indicates whether this is a
2239/// reference/declaration/definition of a tag.
2240Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2241                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2242                             IdentifierInfo *Name, SourceLocation NameLoc,
2243                             AttributeList *Attr) {
2244  // If this is a use of an existing tag, it must have a name.
2245  assert((Name != 0 || TK == TK_Definition) &&
2246         "Nameless record must be a definition!");
2247
2248  TagDecl::TagKind Kind;
2249  switch (TagType) {
2250  default: assert(0 && "Unknown tag type!");
2251  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2252  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2253  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2254  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2255  }
2256
2257  // Two code paths: a new one for structs/unions/classes where we create
2258  //   separate decls for forward declarations, and an old (eventually to
2259  //   be removed) code path for enums.
2260  if (Kind != TagDecl::TK_enum)
2261    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2262
2263  DeclContext *DC = CurContext;
2264  ScopedDecl *PrevDecl = 0;
2265
2266  if (Name && SS.isNotEmpty()) {
2267    // We have a nested-name tag ('struct foo::bar').
2268
2269    // Check for invalid 'foo::'.
2270    if (SS.isInvalid()) {
2271      Name = 0;
2272      goto CreateNewDecl;
2273    }
2274
2275    DC = static_cast<DeclContext*>(SS.getScopeRep());
2276    // Look-up name inside 'foo::'.
2277    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2278
2279    // A tag 'foo::bar' must already exist.
2280    if (PrevDecl == 0) {
2281      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2282      Name = 0;
2283      goto CreateNewDecl;
2284    }
2285  } else {
2286    // If this is a named struct, check to see if there was a previous forward
2287    // declaration or definition.
2288    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2289    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2290  }
2291
2292  if (PrevDecl && isTemplateParameterDecl(PrevDecl)) {
2293    // Maybe we will complain about the shadowed template parameter.
2294    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2295    // Just pretend that we didn't see the previous declaration.
2296    PrevDecl = 0;
2297  }
2298
2299  if (PrevDecl) {
2300    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2301            "unexpected Decl type");
2302    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2303      // If this is a use of a previous tag, or if the tag is already declared
2304      // in the same scope (so that the definition/declaration completes or
2305      // rementions the tag), reuse the decl.
2306      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2307        // Make sure that this wasn't declared as an enum and now used as a
2308        // struct or something similar.
2309        if (PrevTagDecl->getTagKind() != Kind) {
2310          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2311          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2312          // Recover by making this an anonymous redefinition.
2313          Name = 0;
2314          PrevDecl = 0;
2315        } else {
2316          // If this is a use or a forward declaration, we're good.
2317          if (TK != TK_Definition)
2318            return PrevDecl;
2319
2320          // Diagnose attempts to redefine a tag.
2321          if (PrevTagDecl->isDefinition()) {
2322            Diag(NameLoc, diag::err_redefinition) << Name;
2323            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2324            // If this is a redefinition, recover by making this struct be
2325            // anonymous, which will make any later references get the previous
2326            // definition.
2327            Name = 0;
2328          } else {
2329            // Okay, this is definition of a previously declared or referenced
2330            // tag. Move the location of the decl to be the definition site.
2331            PrevDecl->setLocation(NameLoc);
2332            return PrevDecl;
2333          }
2334        }
2335      }
2336      // If we get here, this is a definition of a new struct type in a nested
2337      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2338      // type.
2339    } else {
2340      // PrevDecl is a namespace.
2341      if (isDeclInScope(PrevDecl, DC, S)) {
2342        // The tag name clashes with a namespace name, issue an error and
2343        // recover by making this tag be anonymous.
2344        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2345        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2346        Name = 0;
2347      }
2348    }
2349  }
2350
2351  CreateNewDecl:
2352
2353  // If there is an identifier, use the location of the identifier as the
2354  // location of the decl, otherwise use the location of the struct/union
2355  // keyword.
2356  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2357
2358  // Otherwise, if this is the first time we've seen this tag, create the decl.
2359  TagDecl *New;
2360  if (Kind == TagDecl::TK_enum) {
2361    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2362    // enum X { A, B, C } D;    D should chain to X.
2363    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2364    // If this is an undefined enum, warn.
2365    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2366  } else {
2367    // struct/union/class
2368
2369    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2370    // struct X { int A; } D;    D should chain to X.
2371    if (getLangOptions().CPlusPlus)
2372      // FIXME: Look for a way to use RecordDecl for simple structs.
2373      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2374    else
2375      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2376  }
2377
2378  // If this has an identifier, add it to the scope stack.
2379  if (Name) {
2380    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2381    // we find one that is.
2382    while ((S->getFlags() & Scope::DeclScope) == 0)
2383      S = S->getParent();
2384
2385    // Add it to the decl chain.
2386    PushOnScopeChains(New, S);
2387  }
2388
2389  if (Attr)
2390    ProcessDeclAttributeList(New, Attr);
2391
2392  // Set the lexical context. If the tag has a C++ scope specifier, the
2393  // lexical context will be different from the semantic context.
2394  New->setLexicalDeclContext(CurContext);
2395
2396  return New;
2397}
2398
2399/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2400///  the logic for enums, we create separate decls for forward declarations.
2401///  This is called by ActOnTag, but eventually will replace its logic.
2402Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2403                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2404                             IdentifierInfo *Name, SourceLocation NameLoc,
2405                             AttributeList *Attr) {
2406  DeclContext *DC = CurContext;
2407  ScopedDecl *PrevDecl = 0;
2408
2409  if (Name && SS.isNotEmpty()) {
2410    // We have a nested-name tag ('struct foo::bar').
2411
2412    // Check for invalid 'foo::'.
2413    if (SS.isInvalid()) {
2414      Name = 0;
2415      goto CreateNewDecl;
2416    }
2417
2418    DC = static_cast<DeclContext*>(SS.getScopeRep());
2419    // Look-up name inside 'foo::'.
2420    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2421
2422    // A tag 'foo::bar' must already exist.
2423    if (PrevDecl == 0) {
2424      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2425      Name = 0;
2426      goto CreateNewDecl;
2427    }
2428  } else {
2429    // If this is a named struct, check to see if there was a previous forward
2430    // declaration or definition.
2431    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2432    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2433  }
2434
2435  if (PrevDecl && isTemplateParameterDecl(PrevDecl)) {
2436    // Maybe we will complain about the shadowed template parameter.
2437    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2438    // Just pretend that we didn't see the previous declaration.
2439    PrevDecl = 0;
2440  }
2441
2442  if (PrevDecl) {
2443    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2444           "unexpected Decl type");
2445
2446    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2447      // If this is a use of a previous tag, or if the tag is already declared
2448      // in the same scope (so that the definition/declaration completes or
2449      // rementions the tag), reuse the decl.
2450      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2451        // Make sure that this wasn't declared as an enum and now used as a
2452        // struct or something similar.
2453        if (PrevTagDecl->getTagKind() != Kind) {
2454          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2455          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2456          // Recover by making this an anonymous redefinition.
2457          Name = 0;
2458          PrevDecl = 0;
2459        } else {
2460          // If this is a use, return the original decl.
2461
2462          // FIXME: In the future, return a variant or some other clue
2463          //  for the consumer of this Decl to know it doesn't own it.
2464          //  For our current ASTs this shouldn't be a problem, but will
2465          //  need to be changed with DeclGroups.
2466          if (TK == TK_Reference)
2467            return PrevDecl;
2468
2469          // The new decl is a definition?
2470          if (TK == TK_Definition) {
2471            // Diagnose attempts to redefine a tag.
2472            if (RecordDecl* DefRecord =
2473                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2474              Diag(NameLoc, diag::err_redefinition) << Name;
2475              Diag(DefRecord->getLocation(), diag::note_previous_definition);
2476              // If this is a redefinition, recover by making this struct be
2477              // anonymous, which will make any later references get the previous
2478              // definition.
2479              Name = 0;
2480              PrevDecl = 0;
2481            }
2482            // Okay, this is definition of a previously declared or referenced
2483            // tag.  We're going to create a new Decl.
2484          }
2485        }
2486        // If we get here we have (another) forward declaration.  Just create
2487        // a new decl.
2488      }
2489      else {
2490        // If we get here, this is a definition of a new struct type in a nested
2491        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2492        // new decl/type.  We set PrevDecl to NULL so that the Records
2493        // have distinct types.
2494        PrevDecl = 0;
2495      }
2496    } else {
2497      // PrevDecl is a namespace.
2498      if (isDeclInScope(PrevDecl, DC, S)) {
2499        // The tag name clashes with a namespace name, issue an error and
2500        // recover by making this tag be anonymous.
2501        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2502        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2503        Name = 0;
2504      }
2505    }
2506  }
2507
2508  CreateNewDecl:
2509
2510  // If there is an identifier, use the location of the identifier as the
2511  // location of the decl, otherwise use the location of the struct/union
2512  // keyword.
2513  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2514
2515  // Otherwise, if this is the first time we've seen this tag, create the decl.
2516  TagDecl *New;
2517
2518  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2519  // struct X { int A; } D;    D should chain to X.
2520  if (getLangOptions().CPlusPlus)
2521    // FIXME: Look for a way to use RecordDecl for simple structs.
2522    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2523                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2524  else
2525    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2526                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2527
2528  // If this has an identifier, add it to the scope stack.
2529  if ((TK == TK_Definition || !PrevDecl) && Name) {
2530    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2531    // we find one that is.
2532    while ((S->getFlags() & Scope::DeclScope) == 0)
2533      S = S->getParent();
2534
2535    // Add it to the decl chain.
2536    PushOnScopeChains(New, S);
2537  }
2538
2539  // Handle #pragma pack: if the #pragma pack stack has non-default
2540  // alignment, make up a packed attribute for this decl. These
2541  // attributes are checked when the ASTContext lays out the
2542  // structure.
2543  //
2544  // It is important for implementing the correct semantics that this
2545  // happen here (in act on tag decl). The #pragma pack stack is
2546  // maintained as a result of parser callbacks which can occur at
2547  // many points during the parsing of a struct declaration (because
2548  // the #pragma tokens are effectively skipped over during the
2549  // parsing of the struct).
2550  if (unsigned Alignment = PackContext.getAlignment())
2551    New->addAttr(new PackedAttr(Alignment * 8));
2552
2553  if (Attr)
2554    ProcessDeclAttributeList(New, Attr);
2555
2556  // Set the lexical context. If the tag has a C++ scope specifier, the
2557  // lexical context will be different from the semantic context.
2558  New->setLexicalDeclContext(CurContext);
2559
2560  return New;
2561}
2562
2563
2564/// Collect the instance variables declared in an Objective-C object.  Used in
2565/// the creation of structures from objects using the @defs directive.
2566static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2567                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2568  if (Class->getSuperClass())
2569    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2570
2571  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2572  for (ObjCInterfaceDecl::ivar_iterator
2573        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2574
2575    ObjCIvarDecl* ID = *I;
2576    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2577                                                ID->getIdentifier(),
2578                                                ID->getType(),
2579                                                ID->getBitWidth()));
2580  }
2581}
2582
2583/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2584/// instance variables of ClassName into Decls.
2585void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2586                     IdentifierInfo *ClassName,
2587                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2588  // Check that ClassName is a valid class
2589  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2590  if (!Class) {
2591    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2592    return;
2593  }
2594  // Collect the instance variables
2595  CollectIvars(Class, Context, Decls);
2596}
2597
2598/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2599/// types into constant array types in certain situations which would otherwise
2600/// be errors (for GCC compatibility).
2601static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2602                                                    ASTContext &Context) {
2603  // This method tries to turn a variable array into a constant
2604  // array even when the size isn't an ICE.  This is necessary
2605  // for compatibility with code that depends on gcc's buggy
2606  // constant expression folding, like struct {char x[(int)(char*)2];}
2607  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2608  if (!VLATy) return QualType();
2609
2610  APValue Result;
2611  if (!VLATy->getSizeExpr() ||
2612      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2613    return QualType();
2614
2615  assert(Result.isInt() && "Size expressions must be integers!");
2616  llvm::APSInt &Res = Result.getInt();
2617  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2618    return Context.getConstantArrayType(VLATy->getElementType(),
2619                                        Res, ArrayType::Normal, 0);
2620  return QualType();
2621}
2622
2623bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2624                          QualType FieldTy, const Expr *BitWidth)
2625{
2626  // FIXME: 6.7.2.1p4 - verify the field type.
2627
2628  llvm::APSInt Value;
2629  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2630    return true;
2631
2632  if (Value.isNegative()) {
2633    Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2634    return true;
2635  }
2636
2637  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2638  // FIXME: We won't need the 0 size once we check that the field type is valid.
2639  if (TypeSize && Value.getZExtValue() > TypeSize) {
2640    Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) <<
2641         FieldName << (unsigned)TypeSize;
2642    return true;
2643  }
2644
2645  return false;
2646}
2647
2648/// ActOnField - Each field of a struct/union/class is passed into this in order
2649/// to create a FieldDecl object for it.
2650Sema::DeclTy *Sema::ActOnField(Scope *S,
2651                               SourceLocation DeclStart,
2652                               Declarator &D, ExprTy *BitfieldWidth) {
2653  IdentifierInfo *II = D.getIdentifier();
2654  Expr *BitWidth = (Expr*)BitfieldWidth;
2655  SourceLocation Loc = DeclStart;
2656  if (II) Loc = D.getIdentifierLoc();
2657
2658  // FIXME: Unnamed fields can be handled in various different ways, for
2659  // example, unnamed unions inject all members into the struct namespace!
2660
2661  QualType T = GetTypeForDeclarator(D, S);
2662  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2663  bool InvalidDecl = false;
2664
2665  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2666  // than a variably modified type.
2667  if (T->isVariablyModifiedType()) {
2668    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2669    if (!FixedTy.isNull()) {
2670      Diag(Loc, diag::warn_illegal_constant_array_size);
2671      T = FixedTy;
2672    } else {
2673      Diag(Loc, diag::err_typecheck_field_variable_size);
2674      T = Context.IntTy;
2675      InvalidDecl = true;
2676    }
2677  }
2678
2679  if (BitWidth) {
2680    if (VerifyBitField(Loc, II, T, BitWidth))
2681      InvalidDecl = true;
2682  } else {
2683    // Not a bitfield.
2684
2685    // validate II.
2686
2687  }
2688
2689  // FIXME: Chain fielddecls together.
2690  FieldDecl *NewFD;
2691
2692  if (getLangOptions().CPlusPlus) {
2693    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2694    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2695                                 Loc, II, T,
2696                                 D.getDeclSpec().getStorageClassSpec() ==
2697                                   DeclSpec::SCS_mutable, BitWidth);
2698    if (II)
2699      PushOnScopeChains(NewFD, S);
2700  }
2701  else
2702    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2703
2704  ProcessDeclAttributes(NewFD, D);
2705
2706  if (D.getInvalidType() || InvalidDecl)
2707    NewFD->setInvalidDecl();
2708  return NewFD;
2709}
2710
2711/// TranslateIvarVisibility - Translate visibility from a token ID to an
2712///  AST enum value.
2713static ObjCIvarDecl::AccessControl
2714TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2715  switch (ivarVisibility) {
2716  default: assert(0 && "Unknown visitibility kind");
2717  case tok::objc_private: return ObjCIvarDecl::Private;
2718  case tok::objc_public: return ObjCIvarDecl::Public;
2719  case tok::objc_protected: return ObjCIvarDecl::Protected;
2720  case tok::objc_package: return ObjCIvarDecl::Package;
2721  }
2722}
2723
2724/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2725/// in order to create an IvarDecl object for it.
2726Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2727                              SourceLocation DeclStart,
2728                              Declarator &D, ExprTy *BitfieldWidth,
2729                              tok::ObjCKeywordKind Visibility) {
2730  IdentifierInfo *II = D.getIdentifier();
2731  Expr *BitWidth = (Expr*)BitfieldWidth;
2732  SourceLocation Loc = DeclStart;
2733  if (II) Loc = D.getIdentifierLoc();
2734
2735  // FIXME: Unnamed fields can be handled in various different ways, for
2736  // example, unnamed unions inject all members into the struct namespace!
2737
2738  QualType T = GetTypeForDeclarator(D, S);
2739  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2740  bool InvalidDecl = false;
2741
2742  if (BitWidth) {
2743    // TODO: Validate.
2744    //printf("WARNING: BITFIELDS IGNORED!\n");
2745
2746    // 6.7.2.1p3
2747    // 6.7.2.1p4
2748
2749  } else {
2750    // Not a bitfield.
2751
2752    // validate II.
2753
2754  }
2755
2756  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2757  // than a variably modified type.
2758  if (T->isVariablyModifiedType()) {
2759    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2760    InvalidDecl = true;
2761  }
2762
2763  // Get the visibility (access control) for this ivar.
2764  ObjCIvarDecl::AccessControl ac =
2765    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2766                                        : ObjCIvarDecl::None;
2767
2768  // Construct the decl.
2769  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2770                                             (Expr *)BitfieldWidth);
2771
2772  // Process attributes attached to the ivar.
2773  ProcessDeclAttributes(NewID, D);
2774
2775  if (D.getInvalidType() || InvalidDecl)
2776    NewID->setInvalidDecl();
2777
2778  return NewID;
2779}
2780
2781void Sema::ActOnFields(Scope* S,
2782                       SourceLocation RecLoc, DeclTy *RecDecl,
2783                       DeclTy **Fields, unsigned NumFields,
2784                       SourceLocation LBrac, SourceLocation RBrac,
2785                       AttributeList *Attr) {
2786  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2787  assert(EnclosingDecl && "missing record or interface decl");
2788  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2789
2790  if (Record)
2791    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2792      // Diagnose code like:
2793      //     struct S { struct S {} X; };
2794      // We discover this when we complete the outer S.  Reject and ignore the
2795      // outer S.
2796      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2797        << DefRecord->getDeclName();
2798      Diag(RecLoc, diag::note_previous_definition);
2799      Record->setInvalidDecl();
2800      return;
2801    }
2802
2803  // Verify that all the fields are okay.
2804  unsigned NumNamedMembers = 0;
2805  llvm::SmallVector<FieldDecl*, 32> RecFields;
2806  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2807
2808  for (unsigned i = 0; i != NumFields; ++i) {
2809
2810    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2811    assert(FD && "missing field decl");
2812
2813    // Remember all fields.
2814    RecFields.push_back(FD);
2815
2816    // Get the type for the field.
2817    Type *FDTy = FD->getType().getTypePtr();
2818
2819    // C99 6.7.2.1p2 - A field may not be a function type.
2820    if (FDTy->isFunctionType()) {
2821      Diag(FD->getLocation(), diag::err_field_declared_as_function)
2822        << FD->getDeclName();
2823      FD->setInvalidDecl();
2824      EnclosingDecl->setInvalidDecl();
2825      continue;
2826    }
2827    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2828    if (FDTy->isIncompleteType()) {
2829      if (!Record) {  // Incomplete ivar type is always an error.
2830        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2831        FD->setInvalidDecl();
2832        EnclosingDecl->setInvalidDecl();
2833        continue;
2834      }
2835      if (i != NumFields-1 ||                   // ... that the last member ...
2836          !Record->isStruct() ||  // ... of a structure ...
2837          !FDTy->isArrayType()) {         //... may have incomplete array type.
2838        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2839        FD->setInvalidDecl();
2840        EnclosingDecl->setInvalidDecl();
2841        continue;
2842      }
2843      if (NumNamedMembers < 1) {  //... must have more than named member ...
2844        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
2845          << FD->getDeclName();
2846        FD->setInvalidDecl();
2847        EnclosingDecl->setInvalidDecl();
2848        continue;
2849      }
2850      // Okay, we have a legal flexible array member at the end of the struct.
2851      if (Record)
2852        Record->setHasFlexibleArrayMember(true);
2853    }
2854    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2855    /// field of another structure or the element of an array.
2856    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2857      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2858        // If this is a member of a union, then entire union becomes "flexible".
2859        if (Record && Record->isUnion()) {
2860          Record->setHasFlexibleArrayMember(true);
2861        } else {
2862          // If this is a struct/class and this is not the last element, reject
2863          // it.  Note that GCC supports variable sized arrays in the middle of
2864          // structures.
2865          if (i != NumFields-1) {
2866            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
2867              << FD->getDeclName();
2868            FD->setInvalidDecl();
2869            EnclosingDecl->setInvalidDecl();
2870            continue;
2871          }
2872          // We support flexible arrays at the end of structs in other structs
2873          // as an extension.
2874          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
2875            << FD->getDeclName();
2876          if (Record)
2877            Record->setHasFlexibleArrayMember(true);
2878        }
2879      }
2880    }
2881    /// A field cannot be an Objective-c object
2882    if (FDTy->isObjCInterfaceType()) {
2883      Diag(FD->getLocation(), diag::err_statically_allocated_object)
2884        << FD->getDeclName();
2885      FD->setInvalidDecl();
2886      EnclosingDecl->setInvalidDecl();
2887      continue;
2888    }
2889    // Keep track of the number of named members.
2890    if (IdentifierInfo *II = FD->getIdentifier()) {
2891      // Detect duplicate member names.
2892      if (!FieldIDs.insert(II)) {
2893        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
2894        // Find the previous decl.
2895        SourceLocation PrevLoc;
2896        for (unsigned i = 0; ; ++i) {
2897          assert(i != RecFields.size() && "Didn't find previous def!");
2898          if (RecFields[i]->getIdentifier() == II) {
2899            PrevLoc = RecFields[i]->getLocation();
2900            break;
2901          }
2902        }
2903        Diag(PrevLoc, diag::note_previous_definition);
2904        FD->setInvalidDecl();
2905        EnclosingDecl->setInvalidDecl();
2906        continue;
2907      }
2908      ++NumNamedMembers;
2909    }
2910  }
2911
2912  // Okay, we successfully defined 'Record'.
2913  if (Record) {
2914    Record->defineBody(Context, &RecFields[0], RecFields.size());
2915    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2916    // Sema::ActOnFinishCXXClassDef.
2917    if (!isa<CXXRecordDecl>(Record))
2918      Consumer.HandleTagDeclDefinition(Record);
2919  } else {
2920    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2921    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2922      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2923    else if (ObjCImplementationDecl *IMPDecl =
2924               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2925      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2926      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2927      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2928    }
2929  }
2930
2931  if (Attr)
2932    ProcessDeclAttributeList(Record, Attr);
2933}
2934
2935Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2936                                      DeclTy *lastEnumConst,
2937                                      SourceLocation IdLoc, IdentifierInfo *Id,
2938                                      SourceLocation EqualLoc, ExprTy *val) {
2939  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2940  EnumConstantDecl *LastEnumConst =
2941    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2942  Expr *Val = static_cast<Expr*>(val);
2943
2944  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2945  // we find one that is.
2946  while ((S->getFlags() & Scope::DeclScope) == 0)
2947    S = S->getParent();
2948
2949  // Verify that there isn't already something declared with this name in this
2950  // scope.
2951  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
2952  if (PrevDecl && isTemplateParameterDecl(PrevDecl)) {
2953    // Maybe we will complain about the shadowed template parameter.
2954    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
2955    // Just pretend that we didn't see the previous declaration.
2956    PrevDecl = 0;
2957  }
2958
2959  if (PrevDecl) {
2960    // When in C++, we may get a TagDecl with the same name; in this case the
2961    // enum constant will 'hide' the tag.
2962    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2963           "Received TagDecl when not in C++!");
2964    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2965      if (isa<EnumConstantDecl>(PrevDecl))
2966        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
2967      else
2968        Diag(IdLoc, diag::err_redefinition) << Id;
2969      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2970      delete Val;
2971      return 0;
2972    }
2973  }
2974
2975  llvm::APSInt EnumVal(32);
2976  QualType EltTy;
2977  if (Val) {
2978    // Make sure to promote the operand type to int.
2979    UsualUnaryConversions(Val);
2980
2981    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2982    SourceLocation ExpLoc;
2983    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
2984      delete Val;
2985      Val = 0;  // Just forget about it.
2986    } else {
2987      EltTy = Val->getType();
2988    }
2989  }
2990
2991  if (!Val) {
2992    if (LastEnumConst) {
2993      // Assign the last value + 1.
2994      EnumVal = LastEnumConst->getInitVal();
2995      ++EnumVal;
2996
2997      // Check for overflow on increment.
2998      if (EnumVal < LastEnumConst->getInitVal())
2999        Diag(IdLoc, diag::warn_enum_value_overflow);
3000
3001      EltTy = LastEnumConst->getType();
3002    } else {
3003      // First value, set to zero.
3004      EltTy = Context.IntTy;
3005      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3006    }
3007  }
3008
3009  EnumConstantDecl *New =
3010    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3011                             Val, EnumVal,
3012                             LastEnumConst);
3013
3014  // Register this decl in the current scope stack.
3015  PushOnScopeChains(New, S);
3016  return New;
3017}
3018
3019// FIXME: For consistency with ActOnFields(), we should have the parser
3020// pass in the source location for the left/right braces.
3021void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3022                         DeclTy **Elements, unsigned NumElements) {
3023  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3024
3025  if (Enum && Enum->isDefinition()) {
3026    // Diagnose code like:
3027    //   enum e0 {
3028    //     E0 = sizeof(enum e0 { E1 })
3029    //   };
3030    Diag(Enum->getLocation(), diag::err_nested_redefinition)
3031      << Enum->getDeclName();
3032    Diag(EnumLoc, diag::note_previous_definition);
3033    Enum->setInvalidDecl();
3034    return;
3035  }
3036  // TODO: If the result value doesn't fit in an int, it must be a long or long
3037  // long value.  ISO C does not support this, but GCC does as an extension,
3038  // emit a warning.
3039  unsigned IntWidth = Context.Target.getIntWidth();
3040
3041  // Verify that all the values are okay, compute the size of the values, and
3042  // reverse the list.
3043  unsigned NumNegativeBits = 0;
3044  unsigned NumPositiveBits = 0;
3045
3046  // Keep track of whether all elements have type int.
3047  bool AllElementsInt = true;
3048
3049  EnumConstantDecl *EltList = 0;
3050  for (unsigned i = 0; i != NumElements; ++i) {
3051    EnumConstantDecl *ECD =
3052      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3053    if (!ECD) continue;  // Already issued a diagnostic.
3054
3055    // If the enum value doesn't fit in an int, emit an extension warning.
3056    const llvm::APSInt &InitVal = ECD->getInitVal();
3057    assert(InitVal.getBitWidth() >= IntWidth &&
3058           "Should have promoted value to int");
3059    if (InitVal.getBitWidth() > IntWidth) {
3060      llvm::APSInt V(InitVal);
3061      V.trunc(IntWidth);
3062      V.extend(InitVal.getBitWidth());
3063      if (V != InitVal)
3064        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3065          << InitVal.toString(10);
3066    }
3067
3068    // Keep track of the size of positive and negative values.
3069    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3070      NumPositiveBits = std::max(NumPositiveBits,
3071                                 (unsigned)InitVal.getActiveBits());
3072    else
3073      NumNegativeBits = std::max(NumNegativeBits,
3074                                 (unsigned)InitVal.getMinSignedBits());
3075
3076    // Keep track of whether every enum element has type int (very commmon).
3077    if (AllElementsInt)
3078      AllElementsInt = ECD->getType() == Context.IntTy;
3079
3080    ECD->setNextDeclarator(EltList);
3081    EltList = ECD;
3082  }
3083
3084  // Figure out the type that should be used for this enum.
3085  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3086  QualType BestType;
3087  unsigned BestWidth;
3088
3089  if (NumNegativeBits) {
3090    // If there is a negative value, figure out the smallest integer type (of
3091    // int/long/longlong) that fits.
3092    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3093      BestType = Context.IntTy;
3094      BestWidth = IntWidth;
3095    } else {
3096      BestWidth = Context.Target.getLongWidth();
3097
3098      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3099        BestType = Context.LongTy;
3100      else {
3101        BestWidth = Context.Target.getLongLongWidth();
3102
3103        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3104          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3105        BestType = Context.LongLongTy;
3106      }
3107    }
3108  } else {
3109    // If there is no negative value, figure out which of uint, ulong, ulonglong
3110    // fits.
3111    if (NumPositiveBits <= IntWidth) {
3112      BestType = Context.UnsignedIntTy;
3113      BestWidth = IntWidth;
3114    } else if (NumPositiveBits <=
3115               (BestWidth = Context.Target.getLongWidth())) {
3116      BestType = Context.UnsignedLongTy;
3117    } else {
3118      BestWidth = Context.Target.getLongLongWidth();
3119      assert(NumPositiveBits <= BestWidth &&
3120             "How could an initializer get larger than ULL?");
3121      BestType = Context.UnsignedLongLongTy;
3122    }
3123  }
3124
3125  // Loop over all of the enumerator constants, changing their types to match
3126  // the type of the enum if needed.
3127  for (unsigned i = 0; i != NumElements; ++i) {
3128    EnumConstantDecl *ECD =
3129      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3130    if (!ECD) continue;  // Already issued a diagnostic.
3131
3132    // Standard C says the enumerators have int type, but we allow, as an
3133    // extension, the enumerators to be larger than int size.  If each
3134    // enumerator value fits in an int, type it as an int, otherwise type it the
3135    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3136    // that X has type 'int', not 'unsigned'.
3137    if (ECD->getType() == Context.IntTy) {
3138      // Make sure the init value is signed.
3139      llvm::APSInt IV = ECD->getInitVal();
3140      IV.setIsSigned(true);
3141      ECD->setInitVal(IV);
3142      continue;  // Already int type.
3143    }
3144
3145    // Determine whether the value fits into an int.
3146    llvm::APSInt InitVal = ECD->getInitVal();
3147    bool FitsInInt;
3148    if (InitVal.isUnsigned() || !InitVal.isNegative())
3149      FitsInInt = InitVal.getActiveBits() < IntWidth;
3150    else
3151      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3152
3153    // If it fits into an integer type, force it.  Otherwise force it to match
3154    // the enum decl type.
3155    QualType NewTy;
3156    unsigned NewWidth;
3157    bool NewSign;
3158    if (FitsInInt) {
3159      NewTy = Context.IntTy;
3160      NewWidth = IntWidth;
3161      NewSign = true;
3162    } else if (ECD->getType() == BestType) {
3163      // Already the right type!
3164      continue;
3165    } else {
3166      NewTy = BestType;
3167      NewWidth = BestWidth;
3168      NewSign = BestType->isSignedIntegerType();
3169    }
3170
3171    // Adjust the APSInt value.
3172    InitVal.extOrTrunc(NewWidth);
3173    InitVal.setIsSigned(NewSign);
3174    ECD->setInitVal(InitVal);
3175
3176    // Adjust the Expr initializer and type.
3177    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3178                                          /*isLvalue=*/false));
3179    ECD->setType(NewTy);
3180  }
3181
3182  Enum->defineElements(EltList, BestType);
3183  Consumer.HandleTagDeclDefinition(Enum);
3184}
3185
3186Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3187                                          ExprTy *expr) {
3188  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3189
3190  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3191}
3192
3193Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3194                                     SourceLocation LBrace,
3195                                     SourceLocation RBrace,
3196                                     const char *Lang,
3197                                     unsigned StrSize,
3198                                     DeclTy *D) {
3199  LinkageSpecDecl::LanguageIDs Language;
3200  Decl *dcl = static_cast<Decl *>(D);
3201  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3202    Language = LinkageSpecDecl::lang_c;
3203  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3204    Language = LinkageSpecDecl::lang_cxx;
3205  else {
3206    Diag(Loc, diag::err_bad_language);
3207    return 0;
3208  }
3209
3210  // FIXME: Add all the various semantics of linkage specifications
3211  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3212}
3213
3214void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3215                           ExprTy *alignment, SourceLocation PragmaLoc,
3216                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3217  Expr *Alignment = static_cast<Expr *>(alignment);
3218
3219  // If specified then alignment must be a "small" power of two.
3220  unsigned AlignmentVal = 0;
3221  if (Alignment) {
3222    llvm::APSInt Val;
3223    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3224        !Val.isPowerOf2() ||
3225        Val.getZExtValue() > 16) {
3226      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3227      delete Alignment;
3228      return; // Ignore
3229    }
3230
3231    AlignmentVal = (unsigned) Val.getZExtValue();
3232  }
3233
3234  switch (Kind) {
3235  case Action::PPK_Default: // pack([n])
3236    PackContext.setAlignment(AlignmentVal);
3237    break;
3238
3239  case Action::PPK_Show: // pack(show)
3240    // Show the current alignment, making sure to show the right value
3241    // for the default.
3242    AlignmentVal = PackContext.getAlignment();
3243    // FIXME: This should come from the target.
3244    if (AlignmentVal == 0)
3245      AlignmentVal = 8;
3246    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3247    break;
3248
3249  case Action::PPK_Push: // pack(push [, id] [, [n])
3250    PackContext.push(Name);
3251    // Set the new alignment if specified.
3252    if (Alignment)
3253      PackContext.setAlignment(AlignmentVal);
3254    break;
3255
3256  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3257    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3258    // "#pragma pack(pop, identifier, n) is undefined"
3259    if (Alignment && Name)
3260      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3261
3262    // Do the pop.
3263    if (!PackContext.pop(Name)) {
3264      // If a name was specified then failure indicates the name
3265      // wasn't found. Otherwise failure indicates the stack was
3266      // empty.
3267      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3268        << (Name ? "no record matching name" : "stack empty");
3269
3270      // FIXME: Warn about popping named records as MSVC does.
3271    } else {
3272      // Pop succeeded, set the new alignment if specified.
3273      if (Alignment)
3274        PackContext.setAlignment(AlignmentVal);
3275    }
3276    break;
3277
3278  default:
3279    assert(0 && "Invalid #pragma pack kind.");
3280  }
3281}
3282
3283bool PragmaPackStack::pop(IdentifierInfo *Name) {
3284  if (Stack.empty())
3285    return false;
3286
3287  // If name is empty just pop top.
3288  if (!Name) {
3289    Alignment = Stack.back().first;
3290    Stack.pop_back();
3291    return true;
3292  }
3293
3294  // Otherwise, find the named record.
3295  for (unsigned i = Stack.size(); i != 0; ) {
3296    --i;
3297    if (Stack[i].second == Name) {
3298      // Found it, pop up to and including this record.
3299      Alignment = Stack[i].first;
3300      Stack.erase(Stack.begin() + i, Stack.end());
3301      return true;
3302    }
3303  }
3304
3305  return false;
3306}
3307