SemaDecl.cpp revision 9983d2d76c8107672b5907124266f482ba03823f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  // ObjCMethodDecls are parsed (for some reason) outside the context
347  // of the class.
348  if (isa<ObjCMethodDecl>(DC))
349    return DC->getLexicalParent()->getLexicalParent();
350
351  return DC->getLexicalParent();
352}
353
354void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
355  assert(getContainingDC(DC) == CurContext &&
356      "The next DeclContext should be lexically contained in the current one.");
357  CurContext = DC;
358  S->setEntity(DC);
359}
360
361void Sema::PopDeclContext() {
362  assert(CurContext && "DeclContext imbalance!");
363
364  CurContext = getContainingDC(CurContext);
365  assert(CurContext && "Popped translation unit!");
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    // If we failed to complete the type for some reason, or if the type is
548    // dependent, don't diagnose the variable.
549    if (Ty->isIncompleteType() || Ty->isDependentType())
550      return false;
551
552    if (const TagType *TT = Ty->getAs<TagType>()) {
553      const TagDecl *Tag = TT->getDecl();
554      if (Tag->hasAttr<UnusedAttr>())
555        return false;
556
557      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
558        // FIXME: Checking for the presence of a user-declared constructor
559        // isn't completely accurate; we'd prefer to check that the initializer
560        // has no side effects.
561        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
562          return false;
563      }
564    }
565
566    // TODO: __attribute__((unused)) templates?
567  }
568
569  return true;
570}
571
572void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
573  if (!ShouldDiagnoseUnusedDecl(D))
574    return;
575
576  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
577    Diag(D->getLocation(), diag::warn_unused_exception_param)
578    << D->getDeclName();
579  else
580    Diag(D->getLocation(), diag::warn_unused_variable)
581    << D->getDeclName();
582}
583
584void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
585  if (S->decl_empty()) return;
586  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
587         "Scope shouldn't contain decls!");
588
589  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
590       I != E; ++I) {
591    Decl *TmpD = (*I).getAs<Decl>();
592    assert(TmpD && "This decl didn't get pushed??");
593
594    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
595    NamedDecl *D = cast<NamedDecl>(TmpD);
596
597    if (!D->getDeclName()) continue;
598
599    // Diagnose unused variables in this scope.
600    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
601      DiagnoseUnusedDecl(D);
602
603    // Remove this name from our lexical scope.
604    IdResolver.RemoveDecl(D);
605  }
606}
607
608/// \brief Look for an Objective-C class in the translation unit.
609///
610/// \param Id The name of the Objective-C class we're looking for. If
611/// typo-correction fixes this name, the Id will be updated
612/// to the fixed name.
613///
614/// \param IdLoc The location of the name in the translation unit.
615///
616/// \param TypoCorrection If true, this routine will attempt typo correction
617/// if there is no class with the given name.
618///
619/// \returns The declaration of the named Objective-C class, or NULL if the
620/// class could not be found.
621ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
622                                              SourceLocation IdLoc,
623                                              bool TypoCorrection) {
624  // The third "scope" argument is 0 since we aren't enabling lazy built-in
625  // creation from this context.
626  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
627
628  if (!IDecl && TypoCorrection) {
629    // Perform typo correction at the given location, but only if we
630    // find an Objective-C class name.
631    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
632    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
633        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
634      Diag(IdLoc, diag::err_undef_interface_suggest)
635        << Id << IDecl->getDeclName()
636        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
637      Diag(IDecl->getLocation(), diag::note_previous_decl)
638        << IDecl->getDeclName();
639
640      Id = IDecl->getIdentifier();
641    }
642  }
643
644  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
645}
646
647/// getNonFieldDeclScope - Retrieves the innermost scope, starting
648/// from S, where a non-field would be declared. This routine copes
649/// with the difference between C and C++ scoping rules in structs and
650/// unions. For example, the following code is well-formed in C but
651/// ill-formed in C++:
652/// @code
653/// struct S6 {
654///   enum { BAR } e;
655/// };
656///
657/// void test_S6() {
658///   struct S6 a;
659///   a.e = BAR;
660/// }
661/// @endcode
662/// For the declaration of BAR, this routine will return a different
663/// scope. The scope S will be the scope of the unnamed enumeration
664/// within S6. In C++, this routine will return the scope associated
665/// with S6, because the enumeration's scope is a transparent
666/// context but structures can contain non-field names. In C, this
667/// routine will return the translation unit scope, since the
668/// enumeration's scope is a transparent context and structures cannot
669/// contain non-field names.
670Scope *Sema::getNonFieldDeclScope(Scope *S) {
671  while (((S->getFlags() & Scope::DeclScope) == 0) ||
672         (S->getEntity() &&
673          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
674         (S->isClassScope() && !getLangOptions().CPlusPlus))
675    S = S->getParent();
676  return S;
677}
678
679void Sema::InitBuiltinVaListType() {
680  if (!Context.getBuiltinVaListType().isNull())
681    return;
682
683  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
684  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
685                                       LookupOrdinaryName, ForRedeclaration);
686  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
687  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
688}
689
690/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
691/// file scope.  lazily create a decl for it. ForRedeclaration is true
692/// if we're creating this built-in in anticipation of redeclaring the
693/// built-in.
694NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
695                                     Scope *S, bool ForRedeclaration,
696                                     SourceLocation Loc) {
697  Builtin::ID BID = (Builtin::ID)bid;
698
699  if (Context.BuiltinInfo.hasVAListUse(BID))
700    InitBuiltinVaListType();
701
702  ASTContext::GetBuiltinTypeError Error;
703  QualType R = Context.GetBuiltinType(BID, Error);
704  switch (Error) {
705  case ASTContext::GE_None:
706    // Okay
707    break;
708
709  case ASTContext::GE_Missing_stdio:
710    if (ForRedeclaration)
711      Diag(Loc, diag::err_implicit_decl_requires_stdio)
712        << Context.BuiltinInfo.GetName(BID);
713    return 0;
714
715  case ASTContext::GE_Missing_setjmp:
716    if (ForRedeclaration)
717      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
718        << Context.BuiltinInfo.GetName(BID);
719    return 0;
720  }
721
722  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
723    Diag(Loc, diag::ext_implicit_lib_function_decl)
724      << Context.BuiltinInfo.GetName(BID)
725      << R;
726    if (Context.BuiltinInfo.getHeaderName(BID) &&
727        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
728          != Diagnostic::Ignored)
729      Diag(Loc, diag::note_please_include_header)
730        << Context.BuiltinInfo.getHeaderName(BID)
731        << Context.BuiltinInfo.GetName(BID);
732  }
733
734  FunctionDecl *New = FunctionDecl::Create(Context,
735                                           Context.getTranslationUnitDecl(),
736                                           Loc, II, R, /*TInfo=*/0,
737                                           FunctionDecl::Extern,
738                                           FunctionDecl::None, false,
739                                           /*hasPrototype=*/true);
740  New->setImplicit();
741
742  // Create Decl objects for each parameter, adding them to the
743  // FunctionDecl.
744  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
745    llvm::SmallVector<ParmVarDecl*, 16> Params;
746    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
747      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
748                                           FT->getArgType(i), /*TInfo=*/0,
749                                           VarDecl::None, VarDecl::None, 0));
750    New->setParams(Params.data(), Params.size());
751  }
752
753  AddKnownFunctionAttributes(New);
754
755  // TUScope is the translation-unit scope to insert this function into.
756  // FIXME: This is hideous. We need to teach PushOnScopeChains to
757  // relate Scopes to DeclContexts, and probably eliminate CurContext
758  // entirely, but we're not there yet.
759  DeclContext *SavedContext = CurContext;
760  CurContext = Context.getTranslationUnitDecl();
761  PushOnScopeChains(New, TUScope);
762  CurContext = SavedContext;
763  return New;
764}
765
766/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
767/// same name and scope as a previous declaration 'Old'.  Figure out
768/// how to resolve this situation, merging decls or emitting
769/// diagnostics as appropriate. If there was an error, set New to be invalid.
770///
771void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
772  // If the new decl is known invalid already, don't bother doing any
773  // merging checks.
774  if (New->isInvalidDecl()) return;
775
776  // Allow multiple definitions for ObjC built-in typedefs.
777  // FIXME: Verify the underlying types are equivalent!
778  if (getLangOptions().ObjC1) {
779    const IdentifierInfo *TypeID = New->getIdentifier();
780    switch (TypeID->getLength()) {
781    default: break;
782    case 2:
783      if (!TypeID->isStr("id"))
784        break;
785      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
786      // Install the built-in type for 'id', ignoring the current definition.
787      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
788      return;
789    case 5:
790      if (!TypeID->isStr("Class"))
791        break;
792      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
793      // Install the built-in type for 'Class', ignoring the current definition.
794      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
795      return;
796    case 3:
797      if (!TypeID->isStr("SEL"))
798        break;
799      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
800      // Install the built-in type for 'SEL', ignoring the current definition.
801      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
802      return;
803    case 8:
804      if (!TypeID->isStr("Protocol"))
805        break;
806      Context.setObjCProtoType(New->getUnderlyingType());
807      return;
808    }
809    // Fall through - the typedef name was not a builtin type.
810  }
811
812  // Verify the old decl was also a type.
813  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
814  if (!Old) {
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817
818    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
819    if (OldD->getLocation().isValid())
820      Diag(OldD->getLocation(), diag::note_previous_definition);
821
822    return New->setInvalidDecl();
823  }
824
825  // If the old declaration is invalid, just give up here.
826  if (Old->isInvalidDecl())
827    return New->setInvalidDecl();
828
829  // Determine the "old" type we'll use for checking and diagnostics.
830  QualType OldType;
831  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
832    OldType = OldTypedef->getUnderlyingType();
833  else
834    OldType = Context.getTypeDeclType(Old);
835
836  // If the typedef types are not identical, reject them in all languages and
837  // with any extensions enabled.
838
839  if (OldType != New->getUnderlyingType() &&
840      Context.getCanonicalType(OldType) !=
841      Context.getCanonicalType(New->getUnderlyingType())) {
842    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
843      << New->getUnderlyingType() << OldType;
844    if (Old->getLocation().isValid())
845      Diag(Old->getLocation(), diag::note_previous_definition);
846    return New->setInvalidDecl();
847  }
848
849  // The types match.  Link up the redeclaration chain if the old
850  // declaration was a typedef.
851  // FIXME: this is a potential source of wierdness if the type
852  // spellings don't match exactly.
853  if (isa<TypedefDecl>(Old))
854    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
855
856  if (getLangOptions().Microsoft)
857    return;
858
859  if (getLangOptions().CPlusPlus) {
860    // C++ [dcl.typedef]p2:
861    //   In a given non-class scope, a typedef specifier can be used to
862    //   redefine the name of any type declared in that scope to refer
863    //   to the type to which it already refers.
864    if (!isa<CXXRecordDecl>(CurContext))
865      return;
866
867    // C++0x [dcl.typedef]p4:
868    //   In a given class scope, a typedef specifier can be used to redefine
869    //   any class-name declared in that scope that is not also a typedef-name
870    //   to refer to the type to which it already refers.
871    //
872    // This wording came in via DR424, which was a correction to the
873    // wording in DR56, which accidentally banned code like:
874    //
875    //   struct S {
876    //     typedef struct A { } A;
877    //   };
878    //
879    // in the C++03 standard. We implement the C++0x semantics, which
880    // allow the above but disallow
881    //
882    //   struct S {
883    //     typedef int I;
884    //     typedef int I;
885    //   };
886    //
887    // since that was the intent of DR56.
888    if (!isa<TypedefDecl >(Old))
889      return;
890
891    Diag(New->getLocation(), diag::err_redefinition)
892      << New->getDeclName();
893    Diag(Old->getLocation(), diag::note_previous_definition);
894    return New->setInvalidDecl();
895  }
896
897  // If we have a redefinition of a typedef in C, emit a warning.  This warning
898  // is normally mapped to an error, but can be controlled with
899  // -Wtypedef-redefinition.  If either the original or the redefinition is
900  // in a system header, don't emit this for compatibility with GCC.
901  if (getDiagnostics().getSuppressSystemWarnings() &&
902      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
903       Context.getSourceManager().isInSystemHeader(New->getLocation())))
904    return;
905
906  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
907    << New->getDeclName();
908  Diag(Old->getLocation(), diag::note_previous_definition);
909  return;
910}
911
912/// DeclhasAttr - returns true if decl Declaration already has the target
913/// attribute.
914static bool
915DeclHasAttr(const Decl *decl, const Attr *target) {
916  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
917    if (attr->getKind() == target->getKind())
918      return true;
919
920  return false;
921}
922
923/// MergeAttributes - append attributes from the Old decl to the New one.
924static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
925  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
926    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
927      Attr *NewAttr = attr->clone(C);
928      NewAttr->setInherited(true);
929      New->addAttr(NewAttr);
930    }
931  }
932}
933
934namespace {
935
936/// Used in MergeFunctionDecl to keep track of function parameters in
937/// C.
938struct GNUCompatibleParamWarning {
939  ParmVarDecl *OldParm;
940  ParmVarDecl *NewParm;
941  QualType PromotedType;
942};
943
944}
945
946/// getSpecialMember - get the special member enum for a method.
947Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
948  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
949    if (Ctor->isCopyConstructor())
950      return Sema::CXXCopyConstructor;
951
952    return Sema::CXXConstructor;
953  }
954
955  if (isa<CXXDestructorDecl>(MD))
956    return Sema::CXXDestructor;
957
958  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
959  return Sema::CXXCopyAssignment;
960}
961
962/// canRedefineFunction - checks if a function can be redefined. Currently,
963/// only extern inline functions can be redefined, and even then only in
964/// GNU89 mode.
965static bool canRedefineFunction(const FunctionDecl *FD,
966                                const LangOptions& LangOpts) {
967  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
968          FD->isInlineSpecified() &&
969          FD->getStorageClass() == FunctionDecl::Extern);
970}
971
972/// MergeFunctionDecl - We just parsed a function 'New' from
973/// declarator D which has the same name and scope as a previous
974/// declaration 'Old'.  Figure out how to resolve this situation,
975/// merging decls or emitting diagnostics as appropriate.
976///
977/// In C++, New and Old must be declarations that are not
978/// overloaded. Use IsOverload to determine whether New and Old are
979/// overloaded, and to select the Old declaration that New should be
980/// merged with.
981///
982/// Returns true if there was an error, false otherwise.
983bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
984  // Verify the old decl was also a function.
985  FunctionDecl *Old = 0;
986  if (FunctionTemplateDecl *OldFunctionTemplate
987        = dyn_cast<FunctionTemplateDecl>(OldD))
988    Old = OldFunctionTemplate->getTemplatedDecl();
989  else
990    Old = dyn_cast<FunctionDecl>(OldD);
991  if (!Old) {
992    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
993      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
994      Diag(Shadow->getTargetDecl()->getLocation(),
995           diag::note_using_decl_target);
996      Diag(Shadow->getUsingDecl()->getLocation(),
997           diag::note_using_decl) << 0;
998      return true;
999    }
1000
1001    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1002      << New->getDeclName();
1003    Diag(OldD->getLocation(), diag::note_previous_definition);
1004    return true;
1005  }
1006
1007  // Determine whether the previous declaration was a definition,
1008  // implicit declaration, or a declaration.
1009  diag::kind PrevDiag;
1010  if (Old->isThisDeclarationADefinition())
1011    PrevDiag = diag::note_previous_definition;
1012  else if (Old->isImplicit())
1013    PrevDiag = diag::note_previous_implicit_declaration;
1014  else
1015    PrevDiag = diag::note_previous_declaration;
1016
1017  QualType OldQType = Context.getCanonicalType(Old->getType());
1018  QualType NewQType = Context.getCanonicalType(New->getType());
1019
1020  // Don't complain about this if we're in GNU89 mode and the old function
1021  // is an extern inline function.
1022  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1023      New->getStorageClass() == FunctionDecl::Static &&
1024      Old->getStorageClass() != FunctionDecl::Static &&
1025      !canRedefineFunction(Old, getLangOptions())) {
1026    Diag(New->getLocation(), diag::err_static_non_static)
1027      << New;
1028    Diag(Old->getLocation(), PrevDiag);
1029    return true;
1030  }
1031
1032  // If a function is first declared with a calling convention, but is
1033  // later declared or defined without one, the second decl assumes the
1034  // calling convention of the first.
1035  //
1036  // For the new decl, we have to look at the NON-canonical type to tell the
1037  // difference between a function that really doesn't have a calling
1038  // convention and one that is declared cdecl. That's because in
1039  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1040  // because it is the default calling convention.
1041  //
1042  // Note also that we DO NOT return at this point, because we still have
1043  // other tests to run.
1044  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1045  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1046  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1047  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1048  if (OldTypeInfo.getCC() != CC_Default &&
1049      NewTypeInfo.getCC() == CC_Default) {
1050    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1051    New->setType(NewQType);
1052    NewQType = Context.getCanonicalType(NewQType);
1053  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1054                                     NewTypeInfo.getCC())) {
1055    // Calling conventions really aren't compatible, so complain.
1056    Diag(New->getLocation(), diag::err_cconv_change)
1057      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1058      << (OldTypeInfo.getCC() == CC_Default)
1059      << (OldTypeInfo.getCC() == CC_Default ? "" :
1060          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1061    Diag(Old->getLocation(), diag::note_previous_declaration);
1062    return true;
1063  }
1064
1065  // FIXME: diagnose the other way around?
1066  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1067    NewQType = Context.getNoReturnType(NewQType);
1068    New->setType(NewQType);
1069    assert(NewQType.isCanonical());
1070  }
1071
1072  // Merge regparm attribute.
1073  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1074    if (NewType->getRegParmType()) {
1075      Diag(New->getLocation(), diag::err_regparm_mismatch)
1076        << NewType->getRegParmType()
1077        << OldType->getRegParmType();
1078      Diag(Old->getLocation(), diag::note_previous_declaration);
1079      return true;
1080    }
1081
1082    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1083    New->setType(NewQType);
1084    assert(NewQType.isCanonical());
1085  }
1086
1087  if (getLangOptions().CPlusPlus) {
1088    // (C++98 13.1p2):
1089    //   Certain function declarations cannot be overloaded:
1090    //     -- Function declarations that differ only in the return type
1091    //        cannot be overloaded.
1092    QualType OldReturnType
1093      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1094    QualType NewReturnType
1095      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1096    QualType ResQT;
1097    if (OldReturnType != NewReturnType) {
1098      if (NewReturnType->isObjCObjectPointerType()
1099          && OldReturnType->isObjCObjectPointerType())
1100        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1101      if (ResQT.isNull()) {
1102        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1103        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1104        return true;
1105      }
1106      else
1107        NewQType = ResQT;
1108    }
1109
1110    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1111    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1112    if (OldMethod && NewMethod) {
1113      // Preserve triviality.
1114      NewMethod->setTrivial(OldMethod->isTrivial());
1115
1116      bool isFriend = NewMethod->getFriendObjectKind();
1117
1118      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1119        //    -- Member function declarations with the same name and the
1120        //       same parameter types cannot be overloaded if any of them
1121        //       is a static member function declaration.
1122        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1123          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1124          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1125          return true;
1126        }
1127
1128        // C++ [class.mem]p1:
1129        //   [...] A member shall not be declared twice in the
1130        //   member-specification, except that a nested class or member
1131        //   class template can be declared and then later defined.
1132        unsigned NewDiag;
1133        if (isa<CXXConstructorDecl>(OldMethod))
1134          NewDiag = diag::err_constructor_redeclared;
1135        else if (isa<CXXDestructorDecl>(NewMethod))
1136          NewDiag = diag::err_destructor_redeclared;
1137        else if (isa<CXXConversionDecl>(NewMethod))
1138          NewDiag = diag::err_conv_function_redeclared;
1139        else
1140          NewDiag = diag::err_member_redeclared;
1141
1142        Diag(New->getLocation(), NewDiag);
1143        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1144
1145      // Complain if this is an explicit declaration of a special
1146      // member that was initially declared implicitly.
1147      //
1148      // As an exception, it's okay to befriend such methods in order
1149      // to permit the implicit constructor/destructor/operator calls.
1150      } else if (OldMethod->isImplicit()) {
1151        if (isFriend) {
1152          NewMethod->setImplicit();
1153        } else {
1154          Diag(NewMethod->getLocation(),
1155               diag::err_definition_of_implicitly_declared_member)
1156            << New << getSpecialMember(OldMethod);
1157          return true;
1158        }
1159      }
1160    }
1161
1162    // (C++98 8.3.5p3):
1163    //   All declarations for a function shall agree exactly in both the
1164    //   return type and the parameter-type-list.
1165    // attributes should be ignored when comparing.
1166    if (Context.getNoReturnType(OldQType, false) ==
1167        Context.getNoReturnType(NewQType, false))
1168      return MergeCompatibleFunctionDecls(New, Old);
1169
1170    // Fall through for conflicting redeclarations and redefinitions.
1171  }
1172
1173  // C: Function types need to be compatible, not identical. This handles
1174  // duplicate function decls like "void f(int); void f(enum X);" properly.
1175  if (!getLangOptions().CPlusPlus &&
1176      Context.typesAreCompatible(OldQType, NewQType)) {
1177    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1178    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1179    const FunctionProtoType *OldProto = 0;
1180    if (isa<FunctionNoProtoType>(NewFuncType) &&
1181        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1182      // The old declaration provided a function prototype, but the
1183      // new declaration does not. Merge in the prototype.
1184      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1185      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1186                                                 OldProto->arg_type_end());
1187      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1188                                         ParamTypes.data(), ParamTypes.size(),
1189                                         OldProto->isVariadic(),
1190                                         OldProto->getTypeQuals(),
1191                                         false, false, 0, 0,
1192                                         OldProto->getExtInfo());
1193      New->setType(NewQType);
1194      New->setHasInheritedPrototype();
1195
1196      // Synthesize a parameter for each argument type.
1197      llvm::SmallVector<ParmVarDecl*, 16> Params;
1198      for (FunctionProtoType::arg_type_iterator
1199             ParamType = OldProto->arg_type_begin(),
1200             ParamEnd = OldProto->arg_type_end();
1201           ParamType != ParamEnd; ++ParamType) {
1202        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1203                                                 SourceLocation(), 0,
1204                                                 *ParamType, /*TInfo=*/0,
1205                                                 VarDecl::None, VarDecl::None,
1206                                                 0);
1207        Param->setImplicit();
1208        Params.push_back(Param);
1209      }
1210
1211      New->setParams(Params.data(), Params.size());
1212    }
1213
1214    return MergeCompatibleFunctionDecls(New, Old);
1215  }
1216
1217  // GNU C permits a K&R definition to follow a prototype declaration
1218  // if the declared types of the parameters in the K&R definition
1219  // match the types in the prototype declaration, even when the
1220  // promoted types of the parameters from the K&R definition differ
1221  // from the types in the prototype. GCC then keeps the types from
1222  // the prototype.
1223  //
1224  // If a variadic prototype is followed by a non-variadic K&R definition,
1225  // the K&R definition becomes variadic.  This is sort of an edge case, but
1226  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1227  // C99 6.9.1p8.
1228  if (!getLangOptions().CPlusPlus &&
1229      Old->hasPrototype() && !New->hasPrototype() &&
1230      New->getType()->getAs<FunctionProtoType>() &&
1231      Old->getNumParams() == New->getNumParams()) {
1232    llvm::SmallVector<QualType, 16> ArgTypes;
1233    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1234    const FunctionProtoType *OldProto
1235      = Old->getType()->getAs<FunctionProtoType>();
1236    const FunctionProtoType *NewProto
1237      = New->getType()->getAs<FunctionProtoType>();
1238
1239    // Determine whether this is the GNU C extension.
1240    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1241                                               NewProto->getResultType());
1242    bool LooseCompatible = !MergedReturn.isNull();
1243    for (unsigned Idx = 0, End = Old->getNumParams();
1244         LooseCompatible && Idx != End; ++Idx) {
1245      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1246      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1247      if (Context.typesAreCompatible(OldParm->getType(),
1248                                     NewProto->getArgType(Idx))) {
1249        ArgTypes.push_back(NewParm->getType());
1250      } else if (Context.typesAreCompatible(OldParm->getType(),
1251                                            NewParm->getType(),
1252                                            /*CompareUnqualified=*/true)) {
1253        GNUCompatibleParamWarning Warn
1254          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1255        Warnings.push_back(Warn);
1256        ArgTypes.push_back(NewParm->getType());
1257      } else
1258        LooseCompatible = false;
1259    }
1260
1261    if (LooseCompatible) {
1262      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1263        Diag(Warnings[Warn].NewParm->getLocation(),
1264             diag::ext_param_promoted_not_compatible_with_prototype)
1265          << Warnings[Warn].PromotedType
1266          << Warnings[Warn].OldParm->getType();
1267        if (Warnings[Warn].OldParm->getLocation().isValid())
1268          Diag(Warnings[Warn].OldParm->getLocation(),
1269               diag::note_previous_declaration);
1270      }
1271
1272      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1273                                           ArgTypes.size(),
1274                                           OldProto->isVariadic(), 0,
1275                                           false, false, 0, 0,
1276                                           OldProto->getExtInfo()));
1277      return MergeCompatibleFunctionDecls(New, Old);
1278    }
1279
1280    // Fall through to diagnose conflicting types.
1281  }
1282
1283  // A function that has already been declared has been redeclared or defined
1284  // with a different type- show appropriate diagnostic
1285  if (unsigned BuiltinID = Old->getBuiltinID()) {
1286    // The user has declared a builtin function with an incompatible
1287    // signature.
1288    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1289      // The function the user is redeclaring is a library-defined
1290      // function like 'malloc' or 'printf'. Warn about the
1291      // redeclaration, then pretend that we don't know about this
1292      // library built-in.
1293      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1294      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1295        << Old << Old->getType();
1296      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1297      Old->setInvalidDecl();
1298      return false;
1299    }
1300
1301    PrevDiag = diag::note_previous_builtin_declaration;
1302  }
1303
1304  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1305  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1306  return true;
1307}
1308
1309/// \brief Completes the merge of two function declarations that are
1310/// known to be compatible.
1311///
1312/// This routine handles the merging of attributes and other
1313/// properties of function declarations form the old declaration to
1314/// the new declaration, once we know that New is in fact a
1315/// redeclaration of Old.
1316///
1317/// \returns false
1318bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1319  // Merge the attributes
1320  MergeAttributes(New, Old, Context);
1321
1322  // Merge the storage class.
1323  if (Old->getStorageClass() != FunctionDecl::Extern &&
1324      Old->getStorageClass() != FunctionDecl::None)
1325    New->setStorageClass(Old->getStorageClass());
1326
1327  // Merge "pure" flag.
1328  if (Old->isPure())
1329    New->setPure();
1330
1331  // Merge the "deleted" flag.
1332  if (Old->isDeleted())
1333    New->setDeleted();
1334
1335  if (getLangOptions().CPlusPlus)
1336    return MergeCXXFunctionDecl(New, Old);
1337
1338  return false;
1339}
1340
1341/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1342/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1343/// situation, merging decls or emitting diagnostics as appropriate.
1344///
1345/// Tentative definition rules (C99 6.9.2p2) are checked by
1346/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1347/// definitions here, since the initializer hasn't been attached.
1348///
1349void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1350  // If the new decl is already invalid, don't do any other checking.
1351  if (New->isInvalidDecl())
1352    return;
1353
1354  // Verify the old decl was also a variable.
1355  VarDecl *Old = 0;
1356  if (!Previous.isSingleResult() ||
1357      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1358    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1359      << New->getDeclName();
1360    Diag(Previous.getRepresentativeDecl()->getLocation(),
1361         diag::note_previous_definition);
1362    return New->setInvalidDecl();
1363  }
1364
1365  MergeAttributes(New, Old, Context);
1366
1367  // Merge the types
1368  QualType MergedT;
1369  if (getLangOptions().CPlusPlus) {
1370    if (Context.hasSameType(New->getType(), Old->getType()))
1371      MergedT = New->getType();
1372    // C++ [basic.link]p10:
1373    //   [...] the types specified by all declarations referring to a given
1374    //   object or function shall be identical, except that declarations for an
1375    //   array object can specify array types that differ by the presence or
1376    //   absence of a major array bound (8.3.4).
1377    else if (Old->getType()->isIncompleteArrayType() &&
1378             New->getType()->isArrayType()) {
1379      CanQual<ArrayType> OldArray
1380        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1381      CanQual<ArrayType> NewArray
1382        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1383      if (OldArray->getElementType() == NewArray->getElementType())
1384        MergedT = New->getType();
1385    } else if (Old->getType()->isArrayType() &&
1386             New->getType()->isIncompleteArrayType()) {
1387      CanQual<ArrayType> OldArray
1388        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1389      CanQual<ArrayType> NewArray
1390        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1391      if (OldArray->getElementType() == NewArray->getElementType())
1392        MergedT = Old->getType();
1393    } else if (New->getType()->isObjCObjectPointerType()
1394               && Old->getType()->isObjCObjectPointerType()) {
1395        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1396    }
1397  } else {
1398    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1399  }
1400  if (MergedT.isNull()) {
1401    Diag(New->getLocation(), diag::err_redefinition_different_type)
1402      << New->getDeclName();
1403    Diag(Old->getLocation(), diag::note_previous_definition);
1404    return New->setInvalidDecl();
1405  }
1406  New->setType(MergedT);
1407
1408  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1409  if (New->getStorageClass() == VarDecl::Static &&
1410      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1411    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1412    Diag(Old->getLocation(), diag::note_previous_definition);
1413    return New->setInvalidDecl();
1414  }
1415  // C99 6.2.2p4:
1416  //   For an identifier declared with the storage-class specifier
1417  //   extern in a scope in which a prior declaration of that
1418  //   identifier is visible,23) if the prior declaration specifies
1419  //   internal or external linkage, the linkage of the identifier at
1420  //   the later declaration is the same as the linkage specified at
1421  //   the prior declaration. If no prior declaration is visible, or
1422  //   if the prior declaration specifies no linkage, then the
1423  //   identifier has external linkage.
1424  if (New->hasExternalStorage() && Old->hasLinkage())
1425    /* Okay */;
1426  else if (New->getStorageClass() != VarDecl::Static &&
1427           Old->getStorageClass() == VarDecl::Static) {
1428    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1429    Diag(Old->getLocation(), diag::note_previous_definition);
1430    return New->setInvalidDecl();
1431  }
1432
1433  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1434
1435  // FIXME: The test for external storage here seems wrong? We still
1436  // need to check for mismatches.
1437  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1438      // Don't complain about out-of-line definitions of static members.
1439      !(Old->getLexicalDeclContext()->isRecord() &&
1440        !New->getLexicalDeclContext()->isRecord())) {
1441    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1442    Diag(Old->getLocation(), diag::note_previous_definition);
1443    return New->setInvalidDecl();
1444  }
1445
1446  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1447    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1448    Diag(Old->getLocation(), diag::note_previous_definition);
1449  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1450    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1451    Diag(Old->getLocation(), diag::note_previous_definition);
1452  }
1453
1454  // C++ doesn't have tentative definitions, so go right ahead and check here.
1455  const VarDecl *Def;
1456  if (getLangOptions().CPlusPlus &&
1457      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1458      (Def = Old->getDefinition())) {
1459    Diag(New->getLocation(), diag::err_redefinition)
1460      << New->getDeclName();
1461    Diag(Def->getLocation(), diag::note_previous_definition);
1462    New->setInvalidDecl();
1463    return;
1464  }
1465  // c99 6.2.2 P4.
1466  // For an identifier declared with the storage-class specifier extern in a
1467  // scope in which a prior declaration of that identifier is visible, if
1468  // the prior declaration specifies internal or external linkage, the linkage
1469  // of the identifier at the later declaration is the same as the linkage
1470  // specified at the prior declaration.
1471  // FIXME. revisit this code.
1472  if (New->hasExternalStorage() &&
1473      Old->getLinkage() == InternalLinkage &&
1474      New->getDeclContext() == Old->getDeclContext())
1475    New->setStorageClass(Old->getStorageClass());
1476
1477  // Keep a chain of previous declarations.
1478  New->setPreviousDeclaration(Old);
1479
1480  // Inherit access appropriately.
1481  New->setAccess(Old->getAccess());
1482}
1483
1484/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1485/// no declarator (e.g. "struct foo;") is parsed.
1486Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1487                                                 DeclSpec &DS) {
1488  // FIXME: Error on auto/register at file scope
1489  // FIXME: Error on inline/virtual/explicit
1490  // FIXME: Warn on useless __thread
1491  // FIXME: Warn on useless const/volatile
1492  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1493  // FIXME: Warn on useless attributes
1494  Decl *TagD = 0;
1495  TagDecl *Tag = 0;
1496  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1497      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1498      DS.getTypeSpecType() == DeclSpec::TST_union ||
1499      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1500    TagD = static_cast<Decl *>(DS.getTypeRep());
1501
1502    if (!TagD) // We probably had an error
1503      return DeclPtrTy();
1504
1505    // Note that the above type specs guarantee that the
1506    // type rep is a Decl, whereas in many of the others
1507    // it's a Type.
1508    Tag = dyn_cast<TagDecl>(TagD);
1509  }
1510
1511  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1512    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1513    // or incomplete types shall not be restrict-qualified."
1514    if (TypeQuals & DeclSpec::TQ_restrict)
1515      Diag(DS.getRestrictSpecLoc(),
1516           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1517           << DS.getSourceRange();
1518  }
1519
1520  if (DS.isFriendSpecified()) {
1521    // If we're dealing with a class template decl, assume that the
1522    // template routines are handling it.
1523    if (TagD && isa<ClassTemplateDecl>(TagD))
1524      return DeclPtrTy();
1525    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1526  }
1527
1528  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1529    // If there are attributes in the DeclSpec, apply them to the record.
1530    if (const AttributeList *AL = DS.getAttributes())
1531      ProcessDeclAttributeList(S, Record, AL);
1532
1533    if (!Record->getDeclName() && Record->isDefinition() &&
1534        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1535      if (getLangOptions().CPlusPlus ||
1536          Record->getDeclContext()->isRecord())
1537        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1538
1539      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1540        << DS.getSourceRange();
1541    }
1542
1543    // Microsoft allows unnamed struct/union fields. Don't complain
1544    // about them.
1545    // FIXME: Should we support Microsoft's extensions in this area?
1546    if (Record->getDeclName() && getLangOptions().Microsoft)
1547      return DeclPtrTy::make(Tag);
1548  }
1549
1550  if (getLangOptions().CPlusPlus &&
1551      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1552    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1553      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1554          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1555        Diag(Enum->getLocation(), diag::ext_no_declarators)
1556          << DS.getSourceRange();
1557
1558  if (!DS.isMissingDeclaratorOk() &&
1559      DS.getTypeSpecType() != DeclSpec::TST_error) {
1560    // Warn about typedefs of enums without names, since this is an
1561    // extension in both Microsoft and GNU.
1562    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1563        Tag && isa<EnumDecl>(Tag)) {
1564      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1565        << DS.getSourceRange();
1566      return DeclPtrTy::make(Tag);
1567    }
1568
1569    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1570      << DS.getSourceRange();
1571  }
1572
1573  return DeclPtrTy::make(TagD);
1574}
1575
1576/// We are trying to inject an anonymous member into the given scope;
1577/// check if there's an existing declaration that can't be overloaded.
1578///
1579/// \return true if this is a forbidden redeclaration
1580static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1581                                         Scope *S,
1582                                         DeclContext *Owner,
1583                                         DeclarationName Name,
1584                                         SourceLocation NameLoc,
1585                                         unsigned diagnostic) {
1586  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1587                 Sema::ForRedeclaration);
1588  if (!SemaRef.LookupName(R, S)) return false;
1589
1590  if (R.getAsSingle<TagDecl>())
1591    return false;
1592
1593  // Pick a representative declaration.
1594  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1595  if (PrevDecl && Owner->isRecord()) {
1596    RecordDecl *Record = cast<RecordDecl>(Owner);
1597    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1598      return false;
1599  }
1600
1601  SemaRef.Diag(NameLoc, diagnostic) << Name;
1602  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1603
1604  return true;
1605}
1606
1607/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1608/// anonymous struct or union AnonRecord into the owning context Owner
1609/// and scope S. This routine will be invoked just after we realize
1610/// that an unnamed union or struct is actually an anonymous union or
1611/// struct, e.g.,
1612///
1613/// @code
1614/// union {
1615///   int i;
1616///   float f;
1617/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1618///    // f into the surrounding scope.x
1619/// @endcode
1620///
1621/// This routine is recursive, injecting the names of nested anonymous
1622/// structs/unions into the owning context and scope as well.
1623static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1624                                                DeclContext *Owner,
1625                                                RecordDecl *AnonRecord,
1626                                                AccessSpecifier AS) {
1627  unsigned diagKind
1628    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1629                            : diag::err_anonymous_struct_member_redecl;
1630
1631  bool Invalid = false;
1632  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1633                               FEnd = AnonRecord->field_end();
1634       F != FEnd; ++F) {
1635    if ((*F)->getDeclName()) {
1636      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1637                                       (*F)->getLocation(), diagKind)) {
1638        // C++ [class.union]p2:
1639        //   The names of the members of an anonymous union shall be
1640        //   distinct from the names of any other entity in the
1641        //   scope in which the anonymous union is declared.
1642        Invalid = true;
1643      } else {
1644        // C++ [class.union]p2:
1645        //   For the purpose of name lookup, after the anonymous union
1646        //   definition, the members of the anonymous union are
1647        //   considered to have been defined in the scope in which the
1648        //   anonymous union is declared.
1649        Owner->makeDeclVisibleInContext(*F);
1650        S->AddDecl(Sema::DeclPtrTy::make(*F));
1651        SemaRef.IdResolver.AddDecl(*F);
1652
1653        // That includes picking up the appropriate access specifier.
1654        if (AS != AS_none) (*F)->setAccess(AS);
1655      }
1656    } else if (const RecordType *InnerRecordType
1657                 = (*F)->getType()->getAs<RecordType>()) {
1658      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1659      if (InnerRecord->isAnonymousStructOrUnion())
1660        Invalid = Invalid ||
1661          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1662                                              InnerRecord, AS);
1663    }
1664  }
1665
1666  return Invalid;
1667}
1668
1669/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1670/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1671/// illegal input values are mapped to VarDecl::None.
1672static VarDecl::StorageClass
1673StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1674  switch (StorageClassSpec) {
1675  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1676  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1677  case DeclSpec::SCS_static:         return VarDecl::Static;
1678  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1679  case DeclSpec::SCS_register:       return VarDecl::Register;
1680  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1681    // Illegal SCSs map to None: error reporting is up to the caller.
1682  case DeclSpec::SCS_mutable:        // Fall through.
1683  case DeclSpec::SCS_typedef:        return VarDecl::None;
1684  }
1685  llvm_unreachable("unknown storage class specifier");
1686}
1687
1688/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1689/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1690/// illegal input values are mapped to FunctionDecl::None.
1691static FunctionDecl::StorageClass
1692StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1693  switch (StorageClassSpec) {
1694  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1695  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1696  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1697  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1698    // Illegal SCSs map to None: error reporting is up to the caller.
1699  case DeclSpec::SCS_auto:           // Fall through.
1700  case DeclSpec::SCS_mutable:        // Fall through.
1701  case DeclSpec::SCS_register:       // Fall through.
1702  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1703  }
1704  llvm_unreachable("unknown storage class specifier");
1705}
1706
1707/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1708/// anonymous structure or union. Anonymous unions are a C++ feature
1709/// (C++ [class.union]) and a GNU C extension; anonymous structures
1710/// are a GNU C and GNU C++ extension.
1711Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1712                                                  AccessSpecifier AS,
1713                                                  RecordDecl *Record) {
1714  DeclContext *Owner = Record->getDeclContext();
1715
1716  // Diagnose whether this anonymous struct/union is an extension.
1717  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1718    Diag(Record->getLocation(), diag::ext_anonymous_union);
1719  else if (!Record->isUnion())
1720    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1721
1722  // C and C++ require different kinds of checks for anonymous
1723  // structs/unions.
1724  bool Invalid = false;
1725  if (getLangOptions().CPlusPlus) {
1726    const char* PrevSpec = 0;
1727    unsigned DiagID;
1728    // C++ [class.union]p3:
1729    //   Anonymous unions declared in a named namespace or in the
1730    //   global namespace shall be declared static.
1731    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1732        (isa<TranslationUnitDecl>(Owner) ||
1733         (isa<NamespaceDecl>(Owner) &&
1734          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1735      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1736      Invalid = true;
1737
1738      // Recover by adding 'static'.
1739      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1740                             PrevSpec, DiagID);
1741    }
1742    // C++ [class.union]p3:
1743    //   A storage class is not allowed in a declaration of an
1744    //   anonymous union in a class scope.
1745    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1746             isa<RecordDecl>(Owner)) {
1747      Diag(DS.getStorageClassSpecLoc(),
1748           diag::err_anonymous_union_with_storage_spec);
1749      Invalid = true;
1750
1751      // Recover by removing the storage specifier.
1752      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1753                             PrevSpec, DiagID);
1754    }
1755
1756    // C++ [class.union]p2:
1757    //   The member-specification of an anonymous union shall only
1758    //   define non-static data members. [Note: nested types and
1759    //   functions cannot be declared within an anonymous union. ]
1760    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1761                                 MemEnd = Record->decls_end();
1762         Mem != MemEnd; ++Mem) {
1763      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1764        // C++ [class.union]p3:
1765        //   An anonymous union shall not have private or protected
1766        //   members (clause 11).
1767        assert(FD->getAccess() != AS_none);
1768        if (FD->getAccess() != AS_public) {
1769          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1770            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1771          Invalid = true;
1772        }
1773      } else if ((*Mem)->isImplicit()) {
1774        // Any implicit members are fine.
1775      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1776        // This is a type that showed up in an
1777        // elaborated-type-specifier inside the anonymous struct or
1778        // union, but which actually declares a type outside of the
1779        // anonymous struct or union. It's okay.
1780      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1781        if (!MemRecord->isAnonymousStructOrUnion() &&
1782            MemRecord->getDeclName()) {
1783          // This is a nested type declaration.
1784          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1785            << (int)Record->isUnion();
1786          Invalid = true;
1787        }
1788      } else if (isa<AccessSpecDecl>(*Mem)) {
1789        // Any access specifier is fine.
1790      } else {
1791        // We have something that isn't a non-static data
1792        // member. Complain about it.
1793        unsigned DK = diag::err_anonymous_record_bad_member;
1794        if (isa<TypeDecl>(*Mem))
1795          DK = diag::err_anonymous_record_with_type;
1796        else if (isa<FunctionDecl>(*Mem))
1797          DK = diag::err_anonymous_record_with_function;
1798        else if (isa<VarDecl>(*Mem))
1799          DK = diag::err_anonymous_record_with_static;
1800        Diag((*Mem)->getLocation(), DK)
1801            << (int)Record->isUnion();
1802          Invalid = true;
1803      }
1804    }
1805  }
1806
1807  if (!Record->isUnion() && !Owner->isRecord()) {
1808    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1809      << (int)getLangOptions().CPlusPlus;
1810    Invalid = true;
1811  }
1812
1813  // Mock up a declarator.
1814  Declarator Dc(DS, Declarator::TypeNameContext);
1815  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1816  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1817
1818  // Create a declaration for this anonymous struct/union.
1819  NamedDecl *Anon = 0;
1820  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1821    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1822                             /*IdentifierInfo=*/0,
1823                             Context.getTypeDeclType(Record),
1824                             TInfo,
1825                             /*BitWidth=*/0, /*Mutable=*/false);
1826    Anon->setAccess(AS);
1827    if (getLangOptions().CPlusPlus) {
1828      FieldCollector->Add(cast<FieldDecl>(Anon));
1829      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1830        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1831    }
1832  } else {
1833    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1834    assert(SCSpec != DeclSpec::SCS_typedef &&
1835           "Parser allowed 'typedef' as storage class VarDecl.");
1836    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1837    if (SCSpec == DeclSpec::SCS_mutable) {
1838      // mutable can only appear on non-static class members, so it's always
1839      // an error here
1840      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1841      Invalid = true;
1842      SC = VarDecl::None;
1843    }
1844    SCSpec = DS.getStorageClassSpecAsWritten();
1845    VarDecl::StorageClass SCAsWritten
1846      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1847
1848    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1849                           /*IdentifierInfo=*/0,
1850                           Context.getTypeDeclType(Record),
1851                           TInfo, SC, SCAsWritten);
1852  }
1853  Anon->setImplicit();
1854
1855  // Add the anonymous struct/union object to the current
1856  // context. We'll be referencing this object when we refer to one of
1857  // its members.
1858  Owner->addDecl(Anon);
1859
1860  // Inject the members of the anonymous struct/union into the owning
1861  // context and into the identifier resolver chain for name lookup
1862  // purposes.
1863  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1864    Invalid = true;
1865
1866  // Mark this as an anonymous struct/union type. Note that we do not
1867  // do this until after we have already checked and injected the
1868  // members of this anonymous struct/union type, because otherwise
1869  // the members could be injected twice: once by DeclContext when it
1870  // builds its lookup table, and once by
1871  // InjectAnonymousStructOrUnionMembers.
1872  Record->setAnonymousStructOrUnion(true);
1873
1874  if (Invalid)
1875    Anon->setInvalidDecl();
1876
1877  return DeclPtrTy::make(Anon);
1878}
1879
1880
1881/// GetNameForDeclarator - Determine the full declaration name for the
1882/// given Declarator.
1883DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1884  return GetNameFromUnqualifiedId(D.getName());
1885}
1886
1887/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1888DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1889  switch (Name.getKind()) {
1890    case UnqualifiedId::IK_Identifier:
1891      return DeclarationName(Name.Identifier);
1892
1893    case UnqualifiedId::IK_OperatorFunctionId:
1894      return Context.DeclarationNames.getCXXOperatorName(
1895                                              Name.OperatorFunctionId.Operator);
1896
1897    case UnqualifiedId::IK_LiteralOperatorId:
1898      return Context.DeclarationNames.getCXXLiteralOperatorName(
1899                                                               Name.Identifier);
1900
1901    case UnqualifiedId::IK_ConversionFunctionId: {
1902      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1903      if (Ty.isNull())
1904        return DeclarationName();
1905
1906      return Context.DeclarationNames.getCXXConversionFunctionName(
1907                                                  Context.getCanonicalType(Ty));
1908    }
1909
1910    case UnqualifiedId::IK_ConstructorName: {
1911      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1912      if (Ty.isNull())
1913        return DeclarationName();
1914
1915      return Context.DeclarationNames.getCXXConstructorName(
1916                                                  Context.getCanonicalType(Ty));
1917    }
1918
1919    case UnqualifiedId::IK_ConstructorTemplateId: {
1920      // In well-formed code, we can only have a constructor
1921      // template-id that refers to the current context, so go there
1922      // to find the actual type being constructed.
1923      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1924      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1925        return DeclarationName();
1926
1927      // Determine the type of the class being constructed.
1928      QualType CurClassType = Context.getTypeDeclType(CurClass);
1929
1930      // FIXME: Check two things: that the template-id names the same type as
1931      // CurClassType, and that the template-id does not occur when the name
1932      // was qualified.
1933
1934      return Context.DeclarationNames.getCXXConstructorName(
1935                                       Context.getCanonicalType(CurClassType));
1936    }
1937
1938    case UnqualifiedId::IK_DestructorName: {
1939      QualType Ty = GetTypeFromParser(Name.DestructorName);
1940      if (Ty.isNull())
1941        return DeclarationName();
1942
1943      return Context.DeclarationNames.getCXXDestructorName(
1944                                                           Context.getCanonicalType(Ty));
1945    }
1946
1947    case UnqualifiedId::IK_TemplateId: {
1948      TemplateName TName
1949        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1950      return Context.getNameForTemplate(TName);
1951    }
1952  }
1953
1954  assert(false && "Unknown name kind");
1955  return DeclarationName();
1956}
1957
1958/// isNearlyMatchingFunction - Determine whether the C++ functions
1959/// Declaration and Definition are "nearly" matching. This heuristic
1960/// is used to improve diagnostics in the case where an out-of-line
1961/// function definition doesn't match any declaration within
1962/// the class or namespace.
1963static bool isNearlyMatchingFunction(ASTContext &Context,
1964                                     FunctionDecl *Declaration,
1965                                     FunctionDecl *Definition) {
1966  if (Declaration->param_size() != Definition->param_size())
1967    return false;
1968  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1969    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1970    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1971
1972    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1973                                        DefParamTy.getNonReferenceType()))
1974      return false;
1975  }
1976
1977  return true;
1978}
1979
1980/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1981/// declarator needs to be rebuilt in the current instantiation.
1982/// Any bits of declarator which appear before the name are valid for
1983/// consideration here.  That's specifically the type in the decl spec
1984/// and the base type in any member-pointer chunks.
1985static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1986                                                    DeclarationName Name) {
1987  // The types we specifically need to rebuild are:
1988  //   - typenames, typeofs, and decltypes
1989  //   - types which will become injected class names
1990  // Of course, we also need to rebuild any type referencing such a
1991  // type.  It's safest to just say "dependent", but we call out a
1992  // few cases here.
1993
1994  DeclSpec &DS = D.getMutableDeclSpec();
1995  switch (DS.getTypeSpecType()) {
1996  case DeclSpec::TST_typename:
1997  case DeclSpec::TST_typeofType:
1998  case DeclSpec::TST_typeofExpr:
1999  case DeclSpec::TST_decltype: {
2000    // Grab the type from the parser.
2001    TypeSourceInfo *TSI = 0;
2002    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2003    if (T.isNull() || !T->isDependentType()) break;
2004
2005    // Make sure there's a type source info.  This isn't really much
2006    // of a waste; most dependent types should have type source info
2007    // attached already.
2008    if (!TSI)
2009      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2010
2011    // Rebuild the type in the current instantiation.
2012    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2013    if (!TSI) return true;
2014
2015    // Store the new type back in the decl spec.
2016    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2017    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2018    break;
2019  }
2020
2021  default:
2022    // Nothing to do for these decl specs.
2023    break;
2024  }
2025
2026  // It doesn't matter what order we do this in.
2027  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2028    DeclaratorChunk &Chunk = D.getTypeObject(I);
2029
2030    // The only type information in the declarator which can come
2031    // before the declaration name is the base type of a member
2032    // pointer.
2033    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2034      continue;
2035
2036    // Rebuild the scope specifier in-place.
2037    CXXScopeSpec &SS = Chunk.Mem.Scope();
2038    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2039      return true;
2040  }
2041
2042  return false;
2043}
2044
2045Sema::DeclPtrTy
2046Sema::HandleDeclarator(Scope *S, Declarator &D,
2047                       MultiTemplateParamsArg TemplateParamLists,
2048                       bool IsFunctionDefinition) {
2049  DeclarationName Name = GetNameForDeclarator(D);
2050
2051  // All of these full declarators require an identifier.  If it doesn't have
2052  // one, the ParsedFreeStandingDeclSpec action should be used.
2053  if (!Name) {
2054    if (!D.isInvalidType())  // Reject this if we think it is valid.
2055      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2056           diag::err_declarator_need_ident)
2057        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2058    return DeclPtrTy();
2059  }
2060
2061  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2062  // we find one that is.
2063  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2064         (S->getFlags() & Scope::TemplateParamScope) != 0)
2065    S = S->getParent();
2066
2067  DeclContext *DC = CurContext;
2068  if (D.getCXXScopeSpec().isInvalid())
2069    D.setInvalidType();
2070  else if (D.getCXXScopeSpec().isSet()) {
2071    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2072    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2073    if (!DC) {
2074      // If we could not compute the declaration context, it's because the
2075      // declaration context is dependent but does not refer to a class,
2076      // class template, or class template partial specialization. Complain
2077      // and return early, to avoid the coming semantic disaster.
2078      Diag(D.getIdentifierLoc(),
2079           diag::err_template_qualified_declarator_no_match)
2080        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2081        << D.getCXXScopeSpec().getRange();
2082      return DeclPtrTy();
2083    }
2084
2085    bool IsDependentContext = DC->isDependentContext();
2086
2087    if (!IsDependentContext &&
2088        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2089      return DeclPtrTy();
2090
2091    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2092      Diag(D.getIdentifierLoc(),
2093           diag::err_member_def_undefined_record)
2094        << Name << DC << D.getCXXScopeSpec().getRange();
2095      D.setInvalidType();
2096    }
2097
2098    // Check whether we need to rebuild the type of the given
2099    // declaration in the current instantiation.
2100    if (EnteringContext && IsDependentContext &&
2101        TemplateParamLists.size() != 0) {
2102      ContextRAII SavedContext(*this, DC);
2103      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2104        D.setInvalidType();
2105    }
2106  }
2107
2108  NamedDecl *New;
2109
2110  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2111  QualType R = TInfo->getType();
2112
2113  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2114                        ForRedeclaration);
2115
2116  // See if this is a redefinition of a variable in the same scope.
2117  if (!D.getCXXScopeSpec().isSet()) {
2118    bool IsLinkageLookup = false;
2119
2120    // If the declaration we're planning to build will be a function
2121    // or object with linkage, then look for another declaration with
2122    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2123    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2124      /* Do nothing*/;
2125    else if (R->isFunctionType()) {
2126      if (CurContext->isFunctionOrMethod() ||
2127          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2128        IsLinkageLookup = true;
2129    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2130      IsLinkageLookup = true;
2131    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2132             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2133      IsLinkageLookup = true;
2134
2135    if (IsLinkageLookup)
2136      Previous.clear(LookupRedeclarationWithLinkage);
2137
2138    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2139  } else { // Something like "int foo::x;"
2140    LookupQualifiedName(Previous, DC);
2141
2142    // Don't consider using declarations as previous declarations for
2143    // out-of-line members.
2144    RemoveUsingDecls(Previous);
2145
2146    // C++ 7.3.1.2p2:
2147    // Members (including explicit specializations of templates) of a named
2148    // namespace can also be defined outside that namespace by explicit
2149    // qualification of the name being defined, provided that the entity being
2150    // defined was already declared in the namespace and the definition appears
2151    // after the point of declaration in a namespace that encloses the
2152    // declarations namespace.
2153    //
2154    // Note that we only check the context at this point. We don't yet
2155    // have enough information to make sure that PrevDecl is actually
2156    // the declaration we want to match. For example, given:
2157    //
2158    //   class X {
2159    //     void f();
2160    //     void f(float);
2161    //   };
2162    //
2163    //   void X::f(int) { } // ill-formed
2164    //
2165    // In this case, PrevDecl will point to the overload set
2166    // containing the two f's declared in X, but neither of them
2167    // matches.
2168
2169    // First check whether we named the global scope.
2170    if (isa<TranslationUnitDecl>(DC)) {
2171      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2172        << Name << D.getCXXScopeSpec().getRange();
2173    } else {
2174      DeclContext *Cur = CurContext;
2175      while (isa<LinkageSpecDecl>(Cur))
2176        Cur = Cur->getParent();
2177      if (!Cur->Encloses(DC)) {
2178        // The qualifying scope doesn't enclose the original declaration.
2179        // Emit diagnostic based on current scope.
2180        SourceLocation L = D.getIdentifierLoc();
2181        SourceRange R = D.getCXXScopeSpec().getRange();
2182        if (isa<FunctionDecl>(Cur))
2183          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2184        else
2185          Diag(L, diag::err_invalid_declarator_scope)
2186            << Name << cast<NamedDecl>(DC) << R;
2187        D.setInvalidType();
2188      }
2189    }
2190  }
2191
2192  if (Previous.isSingleResult() &&
2193      Previous.getFoundDecl()->isTemplateParameter()) {
2194    // Maybe we will complain about the shadowed template parameter.
2195    if (!D.isInvalidType())
2196      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2197                                          Previous.getFoundDecl()))
2198        D.setInvalidType();
2199
2200    // Just pretend that we didn't see the previous declaration.
2201    Previous.clear();
2202  }
2203
2204  // In C++, the previous declaration we find might be a tag type
2205  // (class or enum). In this case, the new declaration will hide the
2206  // tag type. Note that this does does not apply if we're declaring a
2207  // typedef (C++ [dcl.typedef]p4).
2208  if (Previous.isSingleTagDecl() &&
2209      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2210    Previous.clear();
2211
2212  bool Redeclaration = false;
2213  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2214    if (TemplateParamLists.size()) {
2215      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2216      return DeclPtrTy();
2217    }
2218
2219    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2220  } else if (R->isFunctionType()) {
2221    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2222                                  move(TemplateParamLists),
2223                                  IsFunctionDefinition, Redeclaration);
2224  } else {
2225    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2226                                  move(TemplateParamLists),
2227                                  Redeclaration);
2228  }
2229
2230  if (New == 0)
2231    return DeclPtrTy();
2232
2233  // If this has an identifier and is not an invalid redeclaration or
2234  // function template specialization, add it to the scope stack.
2235  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2236    PushOnScopeChains(New, S);
2237
2238  return DeclPtrTy::make(New);
2239}
2240
2241/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2242/// types into constant array types in certain situations which would otherwise
2243/// be errors (for GCC compatibility).
2244static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2245                                                    ASTContext &Context,
2246                                                    bool &SizeIsNegative) {
2247  // This method tries to turn a variable array into a constant
2248  // array even when the size isn't an ICE.  This is necessary
2249  // for compatibility with code that depends on gcc's buggy
2250  // constant expression folding, like struct {char x[(int)(char*)2];}
2251  SizeIsNegative = false;
2252
2253  QualifierCollector Qs;
2254  const Type *Ty = Qs.strip(T);
2255
2256  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2257    QualType Pointee = PTy->getPointeeType();
2258    QualType FixedType =
2259        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2260    if (FixedType.isNull()) return FixedType;
2261    FixedType = Context.getPointerType(FixedType);
2262    return Qs.apply(FixedType);
2263  }
2264
2265  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2266  if (!VLATy)
2267    return QualType();
2268  // FIXME: We should probably handle this case
2269  if (VLATy->getElementType()->isVariablyModifiedType())
2270    return QualType();
2271
2272  Expr::EvalResult EvalResult;
2273  if (!VLATy->getSizeExpr() ||
2274      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2275      !EvalResult.Val.isInt())
2276    return QualType();
2277
2278  llvm::APSInt &Res = EvalResult.Val.getInt();
2279  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2280    // TODO: preserve the size expression in declarator info
2281    return Context.getConstantArrayType(VLATy->getElementType(),
2282                                        Res, ArrayType::Normal, 0);
2283  }
2284
2285  SizeIsNegative = true;
2286  return QualType();
2287}
2288
2289/// \brief Register the given locally-scoped external C declaration so
2290/// that it can be found later for redeclarations
2291void
2292Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2293                                       const LookupResult &Previous,
2294                                       Scope *S) {
2295  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2296         "Decl is not a locally-scoped decl!");
2297  // Note that we have a locally-scoped external with this name.
2298  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2299
2300  if (!Previous.isSingleResult())
2301    return;
2302
2303  NamedDecl *PrevDecl = Previous.getFoundDecl();
2304
2305  // If there was a previous declaration of this variable, it may be
2306  // in our identifier chain. Update the identifier chain with the new
2307  // declaration.
2308  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2309    // The previous declaration was found on the identifer resolver
2310    // chain, so remove it from its scope.
2311    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2312      S = S->getParent();
2313
2314    if (S)
2315      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2316  }
2317}
2318
2319/// \brief Diagnose function specifiers on a declaration of an identifier that
2320/// does not identify a function.
2321void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2322  // FIXME: We should probably indicate the identifier in question to avoid
2323  // confusion for constructs like "inline int a(), b;"
2324  if (D.getDeclSpec().isInlineSpecified())
2325    Diag(D.getDeclSpec().getInlineSpecLoc(),
2326         diag::err_inline_non_function);
2327
2328  if (D.getDeclSpec().isVirtualSpecified())
2329    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2330         diag::err_virtual_non_function);
2331
2332  if (D.getDeclSpec().isExplicitSpecified())
2333    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2334         diag::err_explicit_non_function);
2335}
2336
2337NamedDecl*
2338Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2339                             QualType R,  TypeSourceInfo *TInfo,
2340                             LookupResult &Previous, bool &Redeclaration) {
2341  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2342  if (D.getCXXScopeSpec().isSet()) {
2343    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2344      << D.getCXXScopeSpec().getRange();
2345    D.setInvalidType();
2346    // Pretend we didn't see the scope specifier.
2347    DC = CurContext;
2348    Previous.clear();
2349  }
2350
2351  if (getLangOptions().CPlusPlus) {
2352    // Check that there are no default arguments (C++ only).
2353    CheckExtraCXXDefaultArguments(D);
2354  }
2355
2356  DiagnoseFunctionSpecifiers(D);
2357
2358  if (D.getDeclSpec().isThreadSpecified())
2359    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2360
2361  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2362    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2363      << D.getName().getSourceRange();
2364    return 0;
2365  }
2366
2367  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2368  if (!NewTD) return 0;
2369
2370  // Handle attributes prior to checking for duplicates in MergeVarDecl
2371  ProcessDeclAttributes(S, NewTD, D);
2372
2373  // Merge the decl with the existing one if appropriate. If the decl is
2374  // in an outer scope, it isn't the same thing.
2375  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2376  if (!Previous.empty()) {
2377    Redeclaration = true;
2378    MergeTypeDefDecl(NewTD, Previous);
2379  }
2380
2381  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2382  // then it shall have block scope.
2383  QualType T = NewTD->getUnderlyingType();
2384  if (T->isVariablyModifiedType()) {
2385    setFunctionHasBranchProtectedScope();
2386
2387    if (S->getFnParent() == 0) {
2388      bool SizeIsNegative;
2389      QualType FixedTy =
2390          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2391      if (!FixedTy.isNull()) {
2392        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2393        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2394      } else {
2395        if (SizeIsNegative)
2396          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2397        else if (T->isVariableArrayType())
2398          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2399        else
2400          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2401        NewTD->setInvalidDecl();
2402      }
2403    }
2404  }
2405
2406  // If this is the C FILE type, notify the AST context.
2407  if (IdentifierInfo *II = NewTD->getIdentifier())
2408    if (!NewTD->isInvalidDecl() &&
2409        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2410      if (II->isStr("FILE"))
2411        Context.setFILEDecl(NewTD);
2412      else if (II->isStr("jmp_buf"))
2413        Context.setjmp_bufDecl(NewTD);
2414      else if (II->isStr("sigjmp_buf"))
2415        Context.setsigjmp_bufDecl(NewTD);
2416    }
2417
2418  return NewTD;
2419}
2420
2421/// \brief Determines whether the given declaration is an out-of-scope
2422/// previous declaration.
2423///
2424/// This routine should be invoked when name lookup has found a
2425/// previous declaration (PrevDecl) that is not in the scope where a
2426/// new declaration by the same name is being introduced. If the new
2427/// declaration occurs in a local scope, previous declarations with
2428/// linkage may still be considered previous declarations (C99
2429/// 6.2.2p4-5, C++ [basic.link]p6).
2430///
2431/// \param PrevDecl the previous declaration found by name
2432/// lookup
2433///
2434/// \param DC the context in which the new declaration is being
2435/// declared.
2436///
2437/// \returns true if PrevDecl is an out-of-scope previous declaration
2438/// for a new delcaration with the same name.
2439static bool
2440isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2441                                ASTContext &Context) {
2442  if (!PrevDecl)
2443    return 0;
2444
2445  if (!PrevDecl->hasLinkage())
2446    return false;
2447
2448  if (Context.getLangOptions().CPlusPlus) {
2449    // C++ [basic.link]p6:
2450    //   If there is a visible declaration of an entity with linkage
2451    //   having the same name and type, ignoring entities declared
2452    //   outside the innermost enclosing namespace scope, the block
2453    //   scope declaration declares that same entity and receives the
2454    //   linkage of the previous declaration.
2455    DeclContext *OuterContext = DC->getLookupContext();
2456    if (!OuterContext->isFunctionOrMethod())
2457      // This rule only applies to block-scope declarations.
2458      return false;
2459    else {
2460      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2461      if (PrevOuterContext->isRecord())
2462        // We found a member function: ignore it.
2463        return false;
2464      else {
2465        // Find the innermost enclosing namespace for the new and
2466        // previous declarations.
2467        while (!OuterContext->isFileContext())
2468          OuterContext = OuterContext->getParent();
2469        while (!PrevOuterContext->isFileContext())
2470          PrevOuterContext = PrevOuterContext->getParent();
2471
2472        // The previous declaration is in a different namespace, so it
2473        // isn't the same function.
2474        if (OuterContext->getPrimaryContext() !=
2475            PrevOuterContext->getPrimaryContext())
2476          return false;
2477      }
2478    }
2479  }
2480
2481  return true;
2482}
2483
2484static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2485  CXXScopeSpec &SS = D.getCXXScopeSpec();
2486  if (!SS.isSet()) return;
2487  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2488                       SS.getRange());
2489}
2490
2491NamedDecl*
2492Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2493                              QualType R, TypeSourceInfo *TInfo,
2494                              LookupResult &Previous,
2495                              MultiTemplateParamsArg TemplateParamLists,
2496                              bool &Redeclaration) {
2497  DeclarationName Name = GetNameForDeclarator(D);
2498
2499  // Check that there are no default arguments (C++ only).
2500  if (getLangOptions().CPlusPlus)
2501    CheckExtraCXXDefaultArguments(D);
2502
2503  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2504  assert(SCSpec != DeclSpec::SCS_typedef &&
2505         "Parser allowed 'typedef' as storage class VarDecl.");
2506  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2507  if (SCSpec == DeclSpec::SCS_mutable) {
2508    // mutable can only appear on non-static class members, so it's always
2509    // an error here
2510    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2511    D.setInvalidType();
2512    SC = VarDecl::None;
2513  }
2514  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2515  VarDecl::StorageClass SCAsWritten
2516    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2517
2518  IdentifierInfo *II = Name.getAsIdentifierInfo();
2519  if (!II) {
2520    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2521      << Name.getAsString();
2522    return 0;
2523  }
2524
2525  DiagnoseFunctionSpecifiers(D);
2526
2527  if (!DC->isRecord() && S->getFnParent() == 0) {
2528    // C99 6.9p2: The storage-class specifiers auto and register shall not
2529    // appear in the declaration specifiers in an external declaration.
2530    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2531
2532      // If this is a register variable with an asm label specified, then this
2533      // is a GNU extension.
2534      if (SC == VarDecl::Register && D.getAsmLabel())
2535        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2536      else
2537        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2538      D.setInvalidType();
2539    }
2540  }
2541  if (DC->isRecord() && !CurContext->isRecord()) {
2542    // This is an out-of-line definition of a static data member.
2543    if (SC == VarDecl::Static) {
2544      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2545           diag::err_static_out_of_line)
2546        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2547    } else if (SC == VarDecl::None)
2548      SC = VarDecl::Static;
2549  }
2550  if (SC == VarDecl::Static) {
2551    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2552      if (RD->isLocalClass())
2553        Diag(D.getIdentifierLoc(),
2554             diag::err_static_data_member_not_allowed_in_local_class)
2555          << Name << RD->getDeclName();
2556    }
2557  }
2558
2559  // Match up the template parameter lists with the scope specifier, then
2560  // determine whether we have a template or a template specialization.
2561  bool isExplicitSpecialization = false;
2562  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2563  bool Invalid = false;
2564  if (TemplateParameterList *TemplateParams
2565        = MatchTemplateParametersToScopeSpecifier(
2566                                  D.getDeclSpec().getSourceRange().getBegin(),
2567                                                  D.getCXXScopeSpec(),
2568                        (TemplateParameterList**)TemplateParamLists.get(),
2569                                                   TemplateParamLists.size(),
2570                                                  /*never a friend*/ false,
2571                                                  isExplicitSpecialization,
2572                                                  Invalid)) {
2573    // All but one template parameter lists have been matching.
2574    --NumMatchedTemplateParamLists;
2575
2576    if (TemplateParams->size() > 0) {
2577      // There is no such thing as a variable template.
2578      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2579        << II
2580        << SourceRange(TemplateParams->getTemplateLoc(),
2581                       TemplateParams->getRAngleLoc());
2582      return 0;
2583    } else {
2584      // There is an extraneous 'template<>' for this variable. Complain
2585      // about it, but allow the declaration of the variable.
2586      Diag(TemplateParams->getTemplateLoc(),
2587           diag::err_template_variable_noparams)
2588        << II
2589        << SourceRange(TemplateParams->getTemplateLoc(),
2590                       TemplateParams->getRAngleLoc());
2591
2592      isExplicitSpecialization = true;
2593    }
2594  }
2595
2596  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2597                                   II, R, TInfo, SC, SCAsWritten);
2598
2599  if (D.isInvalidType() || Invalid)
2600    NewVD->setInvalidDecl();
2601
2602  SetNestedNameSpecifier(NewVD, D);
2603
2604  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2605    NewVD->setTemplateParameterListsInfo(Context,
2606                                         NumMatchedTemplateParamLists,
2607                        (TemplateParameterList**)TemplateParamLists.release());
2608  }
2609
2610  if (D.getDeclSpec().isThreadSpecified()) {
2611    if (NewVD->hasLocalStorage())
2612      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2613    else if (!Context.Target.isTLSSupported())
2614      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2615    else
2616      NewVD->setThreadSpecified(true);
2617  }
2618
2619  // Set the lexical context. If the declarator has a C++ scope specifier, the
2620  // lexical context will be different from the semantic context.
2621  NewVD->setLexicalDeclContext(CurContext);
2622
2623  // Handle attributes prior to checking for duplicates in MergeVarDecl
2624  ProcessDeclAttributes(S, NewVD, D);
2625
2626  // Handle GNU asm-label extension (encoded as an attribute).
2627  if (Expr *E = (Expr*) D.getAsmLabel()) {
2628    // The parser guarantees this is a string.
2629    StringLiteral *SE = cast<StringLiteral>(E);
2630    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2631  }
2632
2633  // Diagnose shadowed variables before filtering for scope.
2634  if (!D.getCXXScopeSpec().isSet())
2635    CheckShadow(S, NewVD, Previous);
2636
2637  // Don't consider existing declarations that are in a different
2638  // scope and are out-of-semantic-context declarations (if the new
2639  // declaration has linkage).
2640  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2641
2642  // Merge the decl with the existing one if appropriate.
2643  if (!Previous.empty()) {
2644    if (Previous.isSingleResult() &&
2645        isa<FieldDecl>(Previous.getFoundDecl()) &&
2646        D.getCXXScopeSpec().isSet()) {
2647      // The user tried to define a non-static data member
2648      // out-of-line (C++ [dcl.meaning]p1).
2649      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2650        << D.getCXXScopeSpec().getRange();
2651      Previous.clear();
2652      NewVD->setInvalidDecl();
2653    }
2654  } else if (D.getCXXScopeSpec().isSet()) {
2655    // No previous declaration in the qualifying scope.
2656    Diag(D.getIdentifierLoc(), diag::err_no_member)
2657      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2658      << D.getCXXScopeSpec().getRange();
2659    NewVD->setInvalidDecl();
2660  }
2661
2662  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2663
2664  // This is an explicit specialization of a static data member. Check it.
2665  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2666      CheckMemberSpecialization(NewVD, Previous))
2667    NewVD->setInvalidDecl();
2668
2669  // attributes declared post-definition are currently ignored
2670  if (Previous.isSingleResult()) {
2671    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2672    if (Def && (Def = Def->getDefinition()) &&
2673        Def != NewVD && D.hasAttributes()) {
2674      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2675      Diag(Def->getLocation(), diag::note_previous_definition);
2676    }
2677  }
2678
2679  // If this is a locally-scoped extern C variable, update the map of
2680  // such variables.
2681  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2682      !NewVD->isInvalidDecl())
2683    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2684
2685  // If there's a #pragma GCC visibility in scope, and this isn't a class
2686  // member, set the visibility of this variable.
2687  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2688    AddPushedVisibilityAttribute(NewVD);
2689
2690  return NewVD;
2691}
2692
2693/// \brief Diagnose variable or built-in function shadowing.  Implements
2694/// -Wshadow.
2695///
2696/// This method is called whenever a VarDecl is added to a "useful"
2697/// scope.
2698///
2699/// \param S the scope in which the shadowing name is being declared
2700/// \param R the lookup of the name
2701///
2702void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2703  // Return if warning is ignored.
2704  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2705    return;
2706
2707  // Don't diagnose declarations at file scope.  The scope might not
2708  // have a DeclContext if (e.g.) we're parsing a function prototype.
2709  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2710  if (NewDC && NewDC->isFileContext())
2711    return;
2712
2713  // Only diagnose if we're shadowing an unambiguous field or variable.
2714  if (R.getResultKind() != LookupResult::Found)
2715    return;
2716
2717  NamedDecl* ShadowedDecl = R.getFoundDecl();
2718  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2719    return;
2720
2721  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2722
2723  // Only warn about certain kinds of shadowing for class members.
2724  if (NewDC && NewDC->isRecord()) {
2725    // In particular, don't warn about shadowing non-class members.
2726    if (!OldDC->isRecord())
2727      return;
2728
2729    // TODO: should we warn about static data members shadowing
2730    // static data members from base classes?
2731
2732    // TODO: don't diagnose for inaccessible shadowed members.
2733    // This is hard to do perfectly because we might friend the
2734    // shadowing context, but that's just a false negative.
2735  }
2736
2737  // Determine what kind of declaration we're shadowing.
2738  unsigned Kind;
2739  if (isa<RecordDecl>(OldDC)) {
2740    if (isa<FieldDecl>(ShadowedDecl))
2741      Kind = 3; // field
2742    else
2743      Kind = 2; // static data member
2744  } else if (OldDC->isFileContext())
2745    Kind = 1; // global
2746  else
2747    Kind = 0; // local
2748
2749  DeclarationName Name = R.getLookupName();
2750
2751  // Emit warning and note.
2752  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2753  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2754}
2755
2756/// \brief Check -Wshadow without the advantage of a previous lookup.
2757void Sema::CheckShadow(Scope *S, VarDecl *D) {
2758  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2759                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2760  LookupName(R, S);
2761  CheckShadow(S, D, R);
2762}
2763
2764/// \brief Perform semantic checking on a newly-created variable
2765/// declaration.
2766///
2767/// This routine performs all of the type-checking required for a
2768/// variable declaration once it has been built. It is used both to
2769/// check variables after they have been parsed and their declarators
2770/// have been translated into a declaration, and to check variables
2771/// that have been instantiated from a template.
2772///
2773/// Sets NewVD->isInvalidDecl() if an error was encountered.
2774void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2775                                    LookupResult &Previous,
2776                                    bool &Redeclaration) {
2777  // If the decl is already known invalid, don't check it.
2778  if (NewVD->isInvalidDecl())
2779    return;
2780
2781  QualType T = NewVD->getType();
2782
2783  if (T->isObjCObjectType()) {
2784    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2785    return NewVD->setInvalidDecl();
2786  }
2787
2788  // Emit an error if an address space was applied to decl with local storage.
2789  // This includes arrays of objects with address space qualifiers, but not
2790  // automatic variables that point to other address spaces.
2791  // ISO/IEC TR 18037 S5.1.2
2792  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2793    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2794    return NewVD->setInvalidDecl();
2795  }
2796
2797  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2798      && !NewVD->hasAttr<BlocksAttr>())
2799    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2800
2801  bool isVM = T->isVariablyModifiedType();
2802  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2803      NewVD->hasAttr<BlocksAttr>())
2804    setFunctionHasBranchProtectedScope();
2805
2806  if ((isVM && NewVD->hasLinkage()) ||
2807      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2808    bool SizeIsNegative;
2809    QualType FixedTy =
2810        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2811
2812    if (FixedTy.isNull() && T->isVariableArrayType()) {
2813      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2814      // FIXME: This won't give the correct result for
2815      // int a[10][n];
2816      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2817
2818      if (NewVD->isFileVarDecl())
2819        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2820        << SizeRange;
2821      else if (NewVD->getStorageClass() == VarDecl::Static)
2822        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2823        << SizeRange;
2824      else
2825        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2826        << SizeRange;
2827      return NewVD->setInvalidDecl();
2828    }
2829
2830    if (FixedTy.isNull()) {
2831      if (NewVD->isFileVarDecl())
2832        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2833      else
2834        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2835      return NewVD->setInvalidDecl();
2836    }
2837
2838    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2839    NewVD->setType(FixedTy);
2840  }
2841
2842  if (Previous.empty() && NewVD->isExternC()) {
2843    // Since we did not find anything by this name and we're declaring
2844    // an extern "C" variable, look for a non-visible extern "C"
2845    // declaration with the same name.
2846    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2847      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2848    if (Pos != LocallyScopedExternalDecls.end())
2849      Previous.addDecl(Pos->second);
2850  }
2851
2852  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2853    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2854      << T;
2855    return NewVD->setInvalidDecl();
2856  }
2857
2858  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2859    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2860    return NewVD->setInvalidDecl();
2861  }
2862
2863  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2864    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2865    return NewVD->setInvalidDecl();
2866  }
2867
2868  // Function pointers and references cannot have qualified function type, only
2869  // function pointer-to-members can do that.
2870  QualType Pointee;
2871  unsigned PtrOrRef = 0;
2872  if (const PointerType *Ptr = T->getAs<PointerType>())
2873    Pointee = Ptr->getPointeeType();
2874  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2875    Pointee = Ref->getPointeeType();
2876    PtrOrRef = 1;
2877  }
2878  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2879      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2880    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2881        << PtrOrRef;
2882    return NewVD->setInvalidDecl();
2883  }
2884
2885  if (!Previous.empty()) {
2886    Redeclaration = true;
2887    MergeVarDecl(NewVD, Previous);
2888  }
2889}
2890
2891/// \brief Data used with FindOverriddenMethod
2892struct FindOverriddenMethodData {
2893  Sema *S;
2894  CXXMethodDecl *Method;
2895};
2896
2897/// \brief Member lookup function that determines whether a given C++
2898/// method overrides a method in a base class, to be used with
2899/// CXXRecordDecl::lookupInBases().
2900static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2901                                 CXXBasePath &Path,
2902                                 void *UserData) {
2903  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2904
2905  FindOverriddenMethodData *Data
2906    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2907
2908  DeclarationName Name = Data->Method->getDeclName();
2909
2910  // FIXME: Do we care about other names here too?
2911  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2912    // We really want to find the base class destructor here.
2913    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2914    CanQualType CT = Data->S->Context.getCanonicalType(T);
2915
2916    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2917  }
2918
2919  for (Path.Decls = BaseRecord->lookup(Name);
2920       Path.Decls.first != Path.Decls.second;
2921       ++Path.Decls.first) {
2922    NamedDecl *D = *Path.Decls.first;
2923    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2924      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2925        return true;
2926    }
2927  }
2928
2929  return false;
2930}
2931
2932/// AddOverriddenMethods - See if a method overrides any in the base classes,
2933/// and if so, check that it's a valid override and remember it.
2934void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2935  // Look for virtual methods in base classes that this method might override.
2936  CXXBasePaths Paths;
2937  FindOverriddenMethodData Data;
2938  Data.Method = MD;
2939  Data.S = this;
2940  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2941    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2942         E = Paths.found_decls_end(); I != E; ++I) {
2943      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2944        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2945            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2946            !CheckOverridingFunctionAttributes(MD, OldMD))
2947          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2948      }
2949    }
2950  }
2951}
2952
2953NamedDecl*
2954Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2955                              QualType R, TypeSourceInfo *TInfo,
2956                              LookupResult &Previous,
2957                              MultiTemplateParamsArg TemplateParamLists,
2958                              bool IsFunctionDefinition, bool &Redeclaration) {
2959  assert(R.getTypePtr()->isFunctionType());
2960
2961  DeclarationName Name = GetNameForDeclarator(D);
2962  FunctionDecl::StorageClass SC = FunctionDecl::None;
2963  switch (D.getDeclSpec().getStorageClassSpec()) {
2964  default: assert(0 && "Unknown storage class!");
2965  case DeclSpec::SCS_auto:
2966  case DeclSpec::SCS_register:
2967  case DeclSpec::SCS_mutable:
2968    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2969         diag::err_typecheck_sclass_func);
2970    D.setInvalidType();
2971    break;
2972  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2973  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2974  case DeclSpec::SCS_static: {
2975    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2976      // C99 6.7.1p5:
2977      //   The declaration of an identifier for a function that has
2978      //   block scope shall have no explicit storage-class specifier
2979      //   other than extern
2980      // See also (C++ [dcl.stc]p4).
2981      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2982           diag::err_static_block_func);
2983      SC = FunctionDecl::None;
2984    } else
2985      SC = FunctionDecl::Static;
2986    break;
2987  }
2988  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2989  }
2990
2991  if (D.getDeclSpec().isThreadSpecified())
2992    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2993
2994  bool isFriend = D.getDeclSpec().isFriendSpecified();
2995  bool isInline = D.getDeclSpec().isInlineSpecified();
2996  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2997  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2998
2999  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3000  FunctionDecl::StorageClass SCAsWritten
3001    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3002
3003  // Check that the return type is not an abstract class type.
3004  // For record types, this is done by the AbstractClassUsageDiagnoser once
3005  // the class has been completely parsed.
3006  if (!DC->isRecord() &&
3007      RequireNonAbstractType(D.getIdentifierLoc(),
3008                             R->getAs<FunctionType>()->getResultType(),
3009                             diag::err_abstract_type_in_decl,
3010                             AbstractReturnType))
3011    D.setInvalidType();
3012
3013  // Do not allow returning a objc interface by-value.
3014  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3015    Diag(D.getIdentifierLoc(),
3016         diag::err_object_cannot_be_passed_returned_by_value) << 0
3017      << R->getAs<FunctionType>()->getResultType();
3018    D.setInvalidType();
3019  }
3020
3021  bool isVirtualOkay = false;
3022  FunctionDecl *NewFD;
3023
3024  if (isFriend) {
3025    // C++ [class.friend]p5
3026    //   A function can be defined in a friend declaration of a
3027    //   class . . . . Such a function is implicitly inline.
3028    isInline |= IsFunctionDefinition;
3029  }
3030
3031  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3032    // This is a C++ constructor declaration.
3033    assert(DC->isRecord() &&
3034           "Constructors can only be declared in a member context");
3035
3036    R = CheckConstructorDeclarator(D, R, SC);
3037
3038    // Create the new declaration
3039    NewFD = CXXConstructorDecl::Create(Context,
3040                                       cast<CXXRecordDecl>(DC),
3041                                       D.getIdentifierLoc(), Name, R, TInfo,
3042                                       isExplicit, isInline,
3043                                       /*isImplicitlyDeclared=*/false);
3044  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3045    // This is a C++ destructor declaration.
3046    if (DC->isRecord()) {
3047      R = CheckDestructorDeclarator(D, R, SC);
3048
3049      NewFD = CXXDestructorDecl::Create(Context,
3050                                        cast<CXXRecordDecl>(DC),
3051                                        D.getIdentifierLoc(), Name, R,
3052                                        isInline,
3053                                        /*isImplicitlyDeclared=*/false);
3054      NewFD->setTypeSourceInfo(TInfo);
3055
3056      isVirtualOkay = true;
3057    } else {
3058      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3059
3060      // Create a FunctionDecl to satisfy the function definition parsing
3061      // code path.
3062      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3063                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3064                                   /*hasPrototype=*/true);
3065      D.setInvalidType();
3066    }
3067  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3068    if (!DC->isRecord()) {
3069      Diag(D.getIdentifierLoc(),
3070           diag::err_conv_function_not_member);
3071      return 0;
3072    }
3073
3074    CheckConversionDeclarator(D, R, SC);
3075    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3076                                      D.getIdentifierLoc(), Name, R, TInfo,
3077                                      isInline, isExplicit);
3078
3079    isVirtualOkay = true;
3080  } else if (DC->isRecord()) {
3081    // If the of the function is the same as the name of the record, then this
3082    // must be an invalid constructor that has a return type.
3083    // (The parser checks for a return type and makes the declarator a
3084    // constructor if it has no return type).
3085    // must have an invalid constructor that has a return type
3086    if (Name.getAsIdentifierInfo() &&
3087        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3088      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3089        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3090        << SourceRange(D.getIdentifierLoc());
3091      return 0;
3092    }
3093
3094    bool isStatic = SC == FunctionDecl::Static;
3095
3096    // [class.free]p1:
3097    // Any allocation function for a class T is a static member
3098    // (even if not explicitly declared static).
3099    if (Name.getCXXOverloadedOperator() == OO_New ||
3100        Name.getCXXOverloadedOperator() == OO_Array_New)
3101      isStatic = true;
3102
3103    // [class.free]p6 Any deallocation function for a class X is a static member
3104    // (even if not explicitly declared static).
3105    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3106        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3107      isStatic = true;
3108
3109    // This is a C++ method declaration.
3110    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3111                                  D.getIdentifierLoc(), Name, R, TInfo,
3112                                  isStatic, SCAsWritten, isInline);
3113
3114    isVirtualOkay = !isStatic;
3115  } else {
3116    // Determine whether the function was written with a
3117    // prototype. This true when:
3118    //   - we're in C++ (where every function has a prototype),
3119    //   - there is a prototype in the declarator, or
3120    //   - the type R of the function is some kind of typedef or other reference
3121    //     to a type name (which eventually refers to a function type).
3122    bool HasPrototype =
3123       getLangOptions().CPlusPlus ||
3124       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3125       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3126
3127    NewFD = FunctionDecl::Create(Context, DC,
3128                                 D.getIdentifierLoc(),
3129                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3130                                 HasPrototype);
3131  }
3132
3133  if (D.isInvalidType())
3134    NewFD->setInvalidDecl();
3135
3136  SetNestedNameSpecifier(NewFD, D);
3137
3138  // Set the lexical context. If the declarator has a C++
3139  // scope specifier, or is the object of a friend declaration, the
3140  // lexical context will be different from the semantic context.
3141  NewFD->setLexicalDeclContext(CurContext);
3142
3143  // Match up the template parameter lists with the scope specifier, then
3144  // determine whether we have a template or a template specialization.
3145  FunctionTemplateDecl *FunctionTemplate = 0;
3146  bool isExplicitSpecialization = false;
3147  bool isFunctionTemplateSpecialization = false;
3148  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3149  bool Invalid = false;
3150  if (TemplateParameterList *TemplateParams
3151        = MatchTemplateParametersToScopeSpecifier(
3152                                  D.getDeclSpec().getSourceRange().getBegin(),
3153                                  D.getCXXScopeSpec(),
3154                           (TemplateParameterList**)TemplateParamLists.get(),
3155                                                  TemplateParamLists.size(),
3156                                                  isFriend,
3157                                                  isExplicitSpecialization,
3158                                                  Invalid)) {
3159    // All but one template parameter lists have been matching.
3160    --NumMatchedTemplateParamLists;
3161
3162    if (TemplateParams->size() > 0) {
3163      // This is a function template
3164
3165      // Check that we can declare a template here.
3166      if (CheckTemplateDeclScope(S, TemplateParams))
3167        return 0;
3168
3169      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3170                                                      NewFD->getLocation(),
3171                                                      Name, TemplateParams,
3172                                                      NewFD);
3173      FunctionTemplate->setLexicalDeclContext(CurContext);
3174      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3175    } else {
3176      // This is a function template specialization.
3177      isFunctionTemplateSpecialization = true;
3178
3179      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3180      if (isFriend && isFunctionTemplateSpecialization) {
3181        // We want to remove the "template<>", found here.
3182        SourceRange RemoveRange = TemplateParams->getSourceRange();
3183
3184        // If we remove the template<> and the name is not a
3185        // template-id, we're actually silently creating a problem:
3186        // the friend declaration will refer to an untemplated decl,
3187        // and clearly the user wants a template specialization.  So
3188        // we need to insert '<>' after the name.
3189        SourceLocation InsertLoc;
3190        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3191          InsertLoc = D.getName().getSourceRange().getEnd();
3192          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3193        }
3194
3195        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3196          << Name << RemoveRange
3197          << FixItHint::CreateRemoval(RemoveRange)
3198          << FixItHint::CreateInsertion(InsertLoc, "<>");
3199      }
3200    }
3201  }
3202
3203  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3204    NewFD->setTemplateParameterListsInfo(Context,
3205                                         NumMatchedTemplateParamLists,
3206                        (TemplateParameterList**)TemplateParamLists.release());
3207  }
3208
3209  if (Invalid) {
3210    NewFD->setInvalidDecl();
3211    if (FunctionTemplate)
3212      FunctionTemplate->setInvalidDecl();
3213  }
3214
3215  // C++ [dcl.fct.spec]p5:
3216  //   The virtual specifier shall only be used in declarations of
3217  //   nonstatic class member functions that appear within a
3218  //   member-specification of a class declaration; see 10.3.
3219  //
3220  if (isVirtual && !NewFD->isInvalidDecl()) {
3221    if (!isVirtualOkay) {
3222       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3223           diag::err_virtual_non_function);
3224    } else if (!CurContext->isRecord()) {
3225      // 'virtual' was specified outside of the class.
3226      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3227        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3228    } else {
3229      // Okay: Add virtual to the method.
3230      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3231      CurClass->setMethodAsVirtual(NewFD);
3232    }
3233  }
3234
3235  // C++ [dcl.fct.spec]p6:
3236  //  The explicit specifier shall be used only in the declaration of a
3237  //  constructor or conversion function within its class definition; see 12.3.1
3238  //  and 12.3.2.
3239  if (isExplicit && !NewFD->isInvalidDecl()) {
3240    if (!CurContext->isRecord()) {
3241      // 'explicit' was specified outside of the class.
3242      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3243           diag::err_explicit_out_of_class)
3244        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3245    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3246               !isa<CXXConversionDecl>(NewFD)) {
3247      // 'explicit' was specified on a function that wasn't a constructor
3248      // or conversion function.
3249      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3250           diag::err_explicit_non_ctor_or_conv_function)
3251        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3252    }
3253  }
3254
3255  // Filter out previous declarations that don't match the scope.
3256  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3257
3258  if (isFriend) {
3259    // DC is the namespace in which the function is being declared.
3260    assert((DC->isFileContext() || !Previous.empty()) &&
3261           "previously-undeclared friend function being created "
3262           "in a non-namespace context");
3263
3264    // For now, claim that the objects have no previous declaration.
3265    if (FunctionTemplate) {
3266      FunctionTemplate->setObjectOfFriendDecl(false);
3267      FunctionTemplate->setAccess(AS_public);
3268    }
3269    NewFD->setObjectOfFriendDecl(false);
3270    NewFD->setAccess(AS_public);
3271  }
3272
3273  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3274      !CurContext->isRecord()) {
3275    // C++ [class.static]p1:
3276    //   A data or function member of a class may be declared static
3277    //   in a class definition, in which case it is a static member of
3278    //   the class.
3279
3280    // Complain about the 'static' specifier if it's on an out-of-line
3281    // member function definition.
3282    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3283         diag::err_static_out_of_line)
3284      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3285  }
3286
3287  // Handle GNU asm-label extension (encoded as an attribute).
3288  if (Expr *E = (Expr*) D.getAsmLabel()) {
3289    // The parser guarantees this is a string.
3290    StringLiteral *SE = cast<StringLiteral>(E);
3291    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3292  }
3293
3294  // Copy the parameter declarations from the declarator D to the function
3295  // declaration NewFD, if they are available.  First scavenge them into Params.
3296  llvm::SmallVector<ParmVarDecl*, 16> Params;
3297  if (D.getNumTypeObjects() > 0) {
3298    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3299
3300    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3301    // function that takes no arguments, not a function that takes a
3302    // single void argument.
3303    // We let through "const void" here because Sema::GetTypeForDeclarator
3304    // already checks for that case.
3305    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3306        FTI.ArgInfo[0].Param &&
3307        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3308      // Empty arg list, don't push any params.
3309      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3310
3311      // In C++, the empty parameter-type-list must be spelled "void"; a
3312      // typedef of void is not permitted.
3313      if (getLangOptions().CPlusPlus &&
3314          Param->getType().getUnqualifiedType() != Context.VoidTy)
3315        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3316      // FIXME: Leaks decl?
3317    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3318      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3319        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3320        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3321        Param->setDeclContext(NewFD);
3322        Params.push_back(Param);
3323
3324        if (Param->isInvalidDecl())
3325          NewFD->setInvalidDecl();
3326      }
3327    }
3328
3329  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3330    // When we're declaring a function with a typedef, typeof, etc as in the
3331    // following example, we'll need to synthesize (unnamed)
3332    // parameters for use in the declaration.
3333    //
3334    // @code
3335    // typedef void fn(int);
3336    // fn f;
3337    // @endcode
3338
3339    // Synthesize a parameter for each argument type.
3340    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3341         AE = FT->arg_type_end(); AI != AE; ++AI) {
3342      ParmVarDecl *Param =
3343        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3344      Params.push_back(Param);
3345    }
3346  } else {
3347    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3348           "Should not need args for typedef of non-prototype fn");
3349  }
3350  // Finally, we know we have the right number of parameters, install them.
3351  NewFD->setParams(Params.data(), Params.size());
3352
3353  // If the declarator is a template-id, translate the parser's template
3354  // argument list into our AST format.
3355  bool HasExplicitTemplateArgs = false;
3356  TemplateArgumentListInfo TemplateArgs;
3357  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3358    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3359    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3360    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3361    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3362                                       TemplateId->getTemplateArgs(),
3363                                       TemplateId->NumArgs);
3364    translateTemplateArguments(TemplateArgsPtr,
3365                               TemplateArgs);
3366    TemplateArgsPtr.release();
3367
3368    HasExplicitTemplateArgs = true;
3369
3370    if (FunctionTemplate) {
3371      // FIXME: Diagnose function template with explicit template
3372      // arguments.
3373      HasExplicitTemplateArgs = false;
3374    } else if (!isFunctionTemplateSpecialization &&
3375               !D.getDeclSpec().isFriendSpecified()) {
3376      // We have encountered something that the user meant to be a
3377      // specialization (because it has explicitly-specified template
3378      // arguments) but that was not introduced with a "template<>" (or had
3379      // too few of them).
3380      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3381        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3382        << FixItHint::CreateInsertion(
3383                                   D.getDeclSpec().getSourceRange().getBegin(),
3384                                                 "template<> ");
3385      isFunctionTemplateSpecialization = true;
3386    } else {
3387      // "friend void foo<>(int);" is an implicit specialization decl.
3388      isFunctionTemplateSpecialization = true;
3389    }
3390  } else if (isFriend && isFunctionTemplateSpecialization) {
3391    // This combination is only possible in a recovery case;  the user
3392    // wrote something like:
3393    //   template <> friend void foo(int);
3394    // which we're recovering from as if the user had written:
3395    //   friend void foo<>(int);
3396    // Go ahead and fake up a template id.
3397    HasExplicitTemplateArgs = true;
3398    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3399    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3400  }
3401
3402  // If it's a friend (and only if it's a friend), it's possible
3403  // that either the specialized function type or the specialized
3404  // template is dependent, and therefore matching will fail.  In
3405  // this case, don't check the specialization yet.
3406  if (isFunctionTemplateSpecialization && isFriend &&
3407      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3408    assert(HasExplicitTemplateArgs &&
3409           "friend function specialization without template args");
3410    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3411                                                     Previous))
3412      NewFD->setInvalidDecl();
3413  } else if (isFunctionTemplateSpecialization) {
3414    if (CheckFunctionTemplateSpecialization(NewFD,
3415                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3416                                            Previous))
3417      NewFD->setInvalidDecl();
3418  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3419    if (CheckMemberSpecialization(NewFD, Previous))
3420      NewFD->setInvalidDecl();
3421  }
3422
3423  // Perform semantic checking on the function declaration.
3424  bool OverloadableAttrRequired = false; // FIXME: HACK!
3425  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3426                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3427
3428  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3429          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3430         "previous declaration set still overloaded");
3431
3432  NamedDecl *PrincipalDecl = (FunctionTemplate
3433                              ? cast<NamedDecl>(FunctionTemplate)
3434                              : NewFD);
3435
3436  if (isFriend && Redeclaration) {
3437    AccessSpecifier Access = AS_public;
3438    if (!NewFD->isInvalidDecl())
3439      Access = NewFD->getPreviousDeclaration()->getAccess();
3440
3441    NewFD->setAccess(Access);
3442    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3443
3444    PrincipalDecl->setObjectOfFriendDecl(true);
3445  }
3446
3447  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3448      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3449    PrincipalDecl->setNonMemberOperator();
3450
3451  // If we have a function template, check the template parameter
3452  // list. This will check and merge default template arguments.
3453  if (FunctionTemplate) {
3454    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3455    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3456                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3457             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3458                                                : TPC_FunctionTemplate);
3459  }
3460
3461  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3462    // Fake up an access specifier if it's supposed to be a class member.
3463    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3464      NewFD->setAccess(AS_public);
3465
3466    // An out-of-line member function declaration must also be a
3467    // definition (C++ [dcl.meaning]p1).
3468    // Note that this is not the case for explicit specializations of
3469    // function templates or member functions of class templates, per
3470    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3471    // for compatibility with old SWIG code which likes to generate them.
3472    if (!IsFunctionDefinition && !isFriend &&
3473        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3474      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3475        << D.getCXXScopeSpec().getRange();
3476    }
3477    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3478      // The user tried to provide an out-of-line definition for a
3479      // function that is a member of a class or namespace, but there
3480      // was no such member function declared (C++ [class.mfct]p2,
3481      // C++ [namespace.memdef]p2). For example:
3482      //
3483      // class X {
3484      //   void f() const;
3485      // };
3486      //
3487      // void X::f() { } // ill-formed
3488      //
3489      // Complain about this problem, and attempt to suggest close
3490      // matches (e.g., those that differ only in cv-qualifiers and
3491      // whether the parameter types are references).
3492      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3493        << Name << DC << D.getCXXScopeSpec().getRange();
3494      NewFD->setInvalidDecl();
3495
3496      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3497                        ForRedeclaration);
3498      LookupQualifiedName(Prev, DC);
3499      assert(!Prev.isAmbiguous() &&
3500             "Cannot have an ambiguity in previous-declaration lookup");
3501      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3502           Func != FuncEnd; ++Func) {
3503        if (isa<FunctionDecl>(*Func) &&
3504            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3505          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3506      }
3507    }
3508  }
3509
3510  // Handle attributes. We need to have merged decls when handling attributes
3511  // (for example to check for conflicts, etc).
3512  // FIXME: This needs to happen before we merge declarations. Then,
3513  // let attribute merging cope with attribute conflicts.
3514  ProcessDeclAttributes(S, NewFD, D);
3515
3516  // attributes declared post-definition are currently ignored
3517  if (Redeclaration && Previous.isSingleResult()) {
3518    const FunctionDecl *Def;
3519    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3520    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3521      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3522      Diag(Def->getLocation(), diag::note_previous_definition);
3523    }
3524  }
3525
3526  AddKnownFunctionAttributes(NewFD);
3527
3528  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3529    // If a function name is overloadable in C, then every function
3530    // with that name must be marked "overloadable".
3531    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3532      << Redeclaration << NewFD;
3533    if (!Previous.empty())
3534      Diag(Previous.getRepresentativeDecl()->getLocation(),
3535           diag::note_attribute_overloadable_prev_overload);
3536    NewFD->addAttr(::new (Context) OverloadableAttr());
3537  }
3538
3539  // If there's a #pragma GCC visibility in scope, and this isn't a class
3540  // member, set the visibility of this function.
3541  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3542    AddPushedVisibilityAttribute(NewFD);
3543
3544  // If this is a locally-scoped extern C function, update the
3545  // map of such names.
3546  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3547      && !NewFD->isInvalidDecl())
3548    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3549
3550  // Set this FunctionDecl's range up to the right paren.
3551  NewFD->setLocEnd(D.getSourceRange().getEnd());
3552
3553  if (FunctionTemplate && NewFD->isInvalidDecl())
3554    FunctionTemplate->setInvalidDecl();
3555
3556  if (FunctionTemplate)
3557    return FunctionTemplate;
3558
3559
3560  // Keep track of static, non-inlined function definitions that
3561  // have not been used. We will warn later.
3562  // FIXME: Also include static functions declared but not defined.
3563  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3564      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3565      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3566      && !NewFD->hasAttr<ConstructorAttr>()
3567      && !NewFD->hasAttr<DestructorAttr>())
3568    UnusedStaticFuncs.push_back(NewFD);
3569
3570  return NewFD;
3571}
3572
3573/// \brief Perform semantic checking of a new function declaration.
3574///
3575/// Performs semantic analysis of the new function declaration
3576/// NewFD. This routine performs all semantic checking that does not
3577/// require the actual declarator involved in the declaration, and is
3578/// used both for the declaration of functions as they are parsed
3579/// (called via ActOnDeclarator) and for the declaration of functions
3580/// that have been instantiated via C++ template instantiation (called
3581/// via InstantiateDecl).
3582///
3583/// \param IsExplicitSpecialiation whether this new function declaration is
3584/// an explicit specialization of the previous declaration.
3585///
3586/// This sets NewFD->isInvalidDecl() to true if there was an error.
3587void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3588                                    LookupResult &Previous,
3589                                    bool IsExplicitSpecialization,
3590                                    bool &Redeclaration,
3591                                    bool &OverloadableAttrRequired) {
3592  // If NewFD is already known erroneous, don't do any of this checking.
3593  if (NewFD->isInvalidDecl())
3594    return;
3595
3596  if (NewFD->getResultType()->isVariablyModifiedType()) {
3597    // Functions returning a variably modified type violate C99 6.7.5.2p2
3598    // because all functions have linkage.
3599    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3600    return NewFD->setInvalidDecl();
3601  }
3602
3603  if (NewFD->isMain())
3604    CheckMain(NewFD);
3605
3606  // Check for a previous declaration of this name.
3607  if (Previous.empty() && NewFD->isExternC()) {
3608    // Since we did not find anything by this name and we're declaring
3609    // an extern "C" function, look for a non-visible extern "C"
3610    // declaration with the same name.
3611    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3612      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3613    if (Pos != LocallyScopedExternalDecls.end())
3614      Previous.addDecl(Pos->second);
3615  }
3616
3617  // Merge or overload the declaration with an existing declaration of
3618  // the same name, if appropriate.
3619  if (!Previous.empty()) {
3620    // Determine whether NewFD is an overload of PrevDecl or
3621    // a declaration that requires merging. If it's an overload,
3622    // there's no more work to do here; we'll just add the new
3623    // function to the scope.
3624
3625    NamedDecl *OldDecl = 0;
3626    if (!AllowOverloadingOfFunction(Previous, Context)) {
3627      Redeclaration = true;
3628      OldDecl = Previous.getFoundDecl();
3629    } else {
3630      if (!getLangOptions().CPlusPlus) {
3631        OverloadableAttrRequired = true;
3632
3633        // Functions marked "overloadable" must have a prototype (that
3634        // we can't get through declaration merging).
3635        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3636          Diag(NewFD->getLocation(),
3637               diag::err_attribute_overloadable_no_prototype)
3638            << NewFD;
3639          Redeclaration = true;
3640
3641          // Turn this into a variadic function with no parameters.
3642          QualType R = Context.getFunctionType(
3643                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3644                     0, 0, true, 0, false, false, 0, 0,
3645                     FunctionType::ExtInfo());
3646          NewFD->setType(R);
3647          return NewFD->setInvalidDecl();
3648        }
3649      }
3650
3651      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3652                            /*NewIsUsingDecl*/ false)) {
3653      case Ovl_Match:
3654        Redeclaration = true;
3655        break;
3656
3657      case Ovl_NonFunction:
3658        Redeclaration = true;
3659        break;
3660
3661      case Ovl_Overload:
3662        Redeclaration = false;
3663        break;
3664      }
3665    }
3666
3667    if (Redeclaration) {
3668      // NewFD and OldDecl represent declarations that need to be
3669      // merged.
3670      if (MergeFunctionDecl(NewFD, OldDecl))
3671        return NewFD->setInvalidDecl();
3672
3673      Previous.clear();
3674      Previous.addDecl(OldDecl);
3675
3676      if (FunctionTemplateDecl *OldTemplateDecl
3677                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3678        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3679        FunctionTemplateDecl *NewTemplateDecl
3680          = NewFD->getDescribedFunctionTemplate();
3681        assert(NewTemplateDecl && "Template/non-template mismatch");
3682        if (CXXMethodDecl *Method
3683              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3684          Method->setAccess(OldTemplateDecl->getAccess());
3685          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3686        }
3687
3688        // If this is an explicit specialization of a member that is a function
3689        // template, mark it as a member specialization.
3690        if (IsExplicitSpecialization &&
3691            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3692          NewTemplateDecl->setMemberSpecialization();
3693          assert(OldTemplateDecl->isMemberSpecialization());
3694        }
3695      } else {
3696        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3697          NewFD->setAccess(OldDecl->getAccess());
3698        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3699      }
3700    }
3701  }
3702
3703  // Semantic checking for this function declaration (in isolation).
3704  if (getLangOptions().CPlusPlus) {
3705    // C++-specific checks.
3706    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3707      CheckConstructor(Constructor);
3708    } else if (CXXDestructorDecl *Destructor =
3709                dyn_cast<CXXDestructorDecl>(NewFD)) {
3710      CXXRecordDecl *Record = Destructor->getParent();
3711      QualType ClassType = Context.getTypeDeclType(Record);
3712
3713      // FIXME: Shouldn't we be able to perform this check even when the class
3714      // type is dependent? Both gcc and edg can handle that.
3715      if (!ClassType->isDependentType()) {
3716        DeclarationName Name
3717          = Context.DeclarationNames.getCXXDestructorName(
3718                                        Context.getCanonicalType(ClassType));
3719        if (NewFD->getDeclName() != Name) {
3720          Diag(NewFD->getLocation(), diag::err_destructor_name);
3721          return NewFD->setInvalidDecl();
3722        }
3723      }
3724
3725      Record->setUserDeclaredDestructor(true);
3726      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3727      // user-defined destructor.
3728      Record->setPOD(false);
3729
3730      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3731      // declared destructor.
3732      // FIXME: C++0x: don't do this for "= default" destructors
3733      Record->setHasTrivialDestructor(false);
3734    } else if (CXXConversionDecl *Conversion
3735               = dyn_cast<CXXConversionDecl>(NewFD)) {
3736      ActOnConversionDeclarator(Conversion);
3737    }
3738
3739    // Find any virtual functions that this function overrides.
3740    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3741      if (!Method->isFunctionTemplateSpecialization() &&
3742          !Method->getDescribedFunctionTemplate())
3743        AddOverriddenMethods(Method->getParent(), Method);
3744    }
3745
3746    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3747    if (NewFD->isOverloadedOperator() &&
3748        CheckOverloadedOperatorDeclaration(NewFD))
3749      return NewFD->setInvalidDecl();
3750
3751    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3752    if (NewFD->getLiteralIdentifier() &&
3753        CheckLiteralOperatorDeclaration(NewFD))
3754      return NewFD->setInvalidDecl();
3755
3756    // In C++, check default arguments now that we have merged decls. Unless
3757    // the lexical context is the class, because in this case this is done
3758    // during delayed parsing anyway.
3759    if (!CurContext->isRecord())
3760      CheckCXXDefaultArguments(NewFD);
3761  }
3762}
3763
3764void Sema::CheckMain(FunctionDecl* FD) {
3765  // C++ [basic.start.main]p3:  A program that declares main to be inline
3766  //   or static is ill-formed.
3767  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3768  //   shall not appear in a declaration of main.
3769  // static main is not an error under C99, but we should warn about it.
3770  bool isInline = FD->isInlineSpecified();
3771  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3772  if (isInline || isStatic) {
3773    unsigned diagID = diag::warn_unusual_main_decl;
3774    if (isInline || getLangOptions().CPlusPlus)
3775      diagID = diag::err_unusual_main_decl;
3776
3777    int which = isStatic + (isInline << 1) - 1;
3778    Diag(FD->getLocation(), diagID) << which;
3779  }
3780
3781  QualType T = FD->getType();
3782  assert(T->isFunctionType() && "function decl is not of function type");
3783  const FunctionType* FT = T->getAs<FunctionType>();
3784
3785  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3786    // TODO: add a replacement fixit to turn the return type into 'int'.
3787    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3788    FD->setInvalidDecl(true);
3789  }
3790
3791  // Treat protoless main() as nullary.
3792  if (isa<FunctionNoProtoType>(FT)) return;
3793
3794  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3795  unsigned nparams = FTP->getNumArgs();
3796  assert(FD->getNumParams() == nparams);
3797
3798  bool HasExtraParameters = (nparams > 3);
3799
3800  // Darwin passes an undocumented fourth argument of type char**.  If
3801  // other platforms start sprouting these, the logic below will start
3802  // getting shifty.
3803  if (nparams == 4 &&
3804      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3805    HasExtraParameters = false;
3806
3807  if (HasExtraParameters) {
3808    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3809    FD->setInvalidDecl(true);
3810    nparams = 3;
3811  }
3812
3813  // FIXME: a lot of the following diagnostics would be improved
3814  // if we had some location information about types.
3815
3816  QualType CharPP =
3817    Context.getPointerType(Context.getPointerType(Context.CharTy));
3818  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3819
3820  for (unsigned i = 0; i < nparams; ++i) {
3821    QualType AT = FTP->getArgType(i);
3822
3823    bool mismatch = true;
3824
3825    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3826      mismatch = false;
3827    else if (Expected[i] == CharPP) {
3828      // As an extension, the following forms are okay:
3829      //   char const **
3830      //   char const * const *
3831      //   char * const *
3832
3833      QualifierCollector qs;
3834      const PointerType* PT;
3835      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3836          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3837          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3838        qs.removeConst();
3839        mismatch = !qs.empty();
3840      }
3841    }
3842
3843    if (mismatch) {
3844      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3845      // TODO: suggest replacing given type with expected type
3846      FD->setInvalidDecl(true);
3847    }
3848  }
3849
3850  if (nparams == 1 && !FD->isInvalidDecl()) {
3851    Diag(FD->getLocation(), diag::warn_main_one_arg);
3852  }
3853}
3854
3855bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3856  // FIXME: Need strict checking.  In C89, we need to check for
3857  // any assignment, increment, decrement, function-calls, or
3858  // commas outside of a sizeof.  In C99, it's the same list,
3859  // except that the aforementioned are allowed in unevaluated
3860  // expressions.  Everything else falls under the
3861  // "may accept other forms of constant expressions" exception.
3862  // (We never end up here for C++, so the constant expression
3863  // rules there don't matter.)
3864  if (Init->isConstantInitializer(Context, false))
3865    return false;
3866  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3867    << Init->getSourceRange();
3868  return true;
3869}
3870
3871void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3872  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3873}
3874
3875/// AddInitializerToDecl - Adds the initializer Init to the
3876/// declaration dcl. If DirectInit is true, this is C++ direct
3877/// initialization rather than copy initialization.
3878void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3879  Decl *RealDecl = dcl.getAs<Decl>();
3880  // If there is no declaration, there was an error parsing it.  Just ignore
3881  // the initializer.
3882  if (RealDecl == 0)
3883    return;
3884
3885  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3886    // With declarators parsed the way they are, the parser cannot
3887    // distinguish between a normal initializer and a pure-specifier.
3888    // Thus this grotesque test.
3889    IntegerLiteral *IL;
3890    Expr *Init = static_cast<Expr *>(init.get());
3891    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3892        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3893      CheckPureMethod(Method, Init->getSourceRange());
3894    else {
3895      Diag(Method->getLocation(), diag::err_member_function_initialization)
3896        << Method->getDeclName() << Init->getSourceRange();
3897      Method->setInvalidDecl();
3898    }
3899    return;
3900  }
3901
3902  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3903  if (!VDecl) {
3904    if (getLangOptions().CPlusPlus &&
3905        RealDecl->getLexicalDeclContext()->isRecord() &&
3906        isa<NamedDecl>(RealDecl))
3907      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3908        << cast<NamedDecl>(RealDecl)->getDeclName();
3909    else
3910      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3911    RealDecl->setInvalidDecl();
3912    return;
3913  }
3914
3915  // A definition must end up with a complete type, which means it must be
3916  // complete with the restriction that an array type might be completed by the
3917  // initializer; note that later code assumes this restriction.
3918  QualType BaseDeclType = VDecl->getType();
3919  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3920    BaseDeclType = Array->getElementType();
3921  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3922                          diag::err_typecheck_decl_incomplete_type)) {
3923    RealDecl->setInvalidDecl();
3924    return;
3925  }
3926
3927  // The variable can not have an abstract class type.
3928  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3929                             diag::err_abstract_type_in_decl,
3930                             AbstractVariableType))
3931    VDecl->setInvalidDecl();
3932
3933  const VarDecl *Def;
3934  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3935    Diag(VDecl->getLocation(), diag::err_redefinition)
3936      << VDecl->getDeclName();
3937    Diag(Def->getLocation(), diag::note_previous_definition);
3938    VDecl->setInvalidDecl();
3939    return;
3940  }
3941
3942  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
3943    setFunctionHasBranchProtectedScope();
3944
3945  // Take ownership of the expression, now that we're sure we have somewhere
3946  // to put it.
3947  Expr *Init = init.takeAs<Expr>();
3948  assert(Init && "missing initializer");
3949
3950  // Capture the variable that is being initialized and the style of
3951  // initialization.
3952  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3953
3954  // FIXME: Poor source location information.
3955  InitializationKind Kind
3956    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3957                                                   Init->getLocStart(),
3958                                                   Init->getLocEnd())
3959                : InitializationKind::CreateCopy(VDecl->getLocation(),
3960                                                 Init->getLocStart());
3961
3962  // Get the decls type and save a reference for later, since
3963  // CheckInitializerTypes may change it.
3964  QualType DclT = VDecl->getType(), SavT = DclT;
3965  if (VDecl->isBlockVarDecl()) {
3966    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3967      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3968      VDecl->setInvalidDecl();
3969    } else if (!VDecl->isInvalidDecl()) {
3970      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3971      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3972                                          MultiExprArg(*this, (void**)&Init, 1),
3973                                                &DclT);
3974      if (Result.isInvalid()) {
3975        VDecl->setInvalidDecl();
3976        return;
3977      }
3978
3979      Init = Result.takeAs<Expr>();
3980
3981      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3982      // Don't check invalid declarations to avoid emitting useless diagnostics.
3983      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3984        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3985          CheckForConstantInitializer(Init, DclT);
3986      }
3987    }
3988  } else if (VDecl->isStaticDataMember() &&
3989             VDecl->getLexicalDeclContext()->isRecord()) {
3990    // This is an in-class initialization for a static data member, e.g.,
3991    //
3992    // struct S {
3993    //   static const int value = 17;
3994    // };
3995
3996    // Attach the initializer
3997    VDecl->setInit(Init);
3998
3999    // C++ [class.mem]p4:
4000    //   A member-declarator can contain a constant-initializer only
4001    //   if it declares a static member (9.4) of const integral or
4002    //   const enumeration type, see 9.4.2.
4003    QualType T = VDecl->getType();
4004    if (!T->isDependentType() &&
4005        (!Context.getCanonicalType(T).isConstQualified() ||
4006         !T->isIntegralOrEnumerationType())) {
4007      Diag(VDecl->getLocation(), diag::err_member_initialization)
4008        << VDecl->getDeclName() << Init->getSourceRange();
4009      VDecl->setInvalidDecl();
4010    } else {
4011      // C++ [class.static.data]p4:
4012      //   If a static data member is of const integral or const
4013      //   enumeration type, its declaration in the class definition
4014      //   can specify a constant-initializer which shall be an
4015      //   integral constant expression (5.19).
4016      if (!Init->isTypeDependent() &&
4017          !Init->getType()->isIntegralOrEnumerationType()) {
4018        // We have a non-dependent, non-integral or enumeration type.
4019        Diag(Init->getSourceRange().getBegin(),
4020             diag::err_in_class_initializer_non_integral_type)
4021          << Init->getType() << Init->getSourceRange();
4022        VDecl->setInvalidDecl();
4023      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4024        // Check whether the expression is a constant expression.
4025        llvm::APSInt Value;
4026        SourceLocation Loc;
4027        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4028          Diag(Loc, diag::err_in_class_initializer_non_constant)
4029            << Init->getSourceRange();
4030          VDecl->setInvalidDecl();
4031        } else if (!VDecl->getType()->isDependentType())
4032          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4033      }
4034    }
4035  } else if (VDecl->isFileVarDecl()) {
4036    if (VDecl->getStorageClass() == VarDecl::Extern &&
4037        (!getLangOptions().CPlusPlus ||
4038         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4039      Diag(VDecl->getLocation(), diag::warn_extern_init);
4040    if (!VDecl->isInvalidDecl()) {
4041      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4042      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4043                                          MultiExprArg(*this, (void**)&Init, 1),
4044                                                &DclT);
4045      if (Result.isInvalid()) {
4046        VDecl->setInvalidDecl();
4047        return;
4048      }
4049
4050      Init = Result.takeAs<Expr>();
4051    }
4052
4053    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4054    // Don't check invalid declarations to avoid emitting useless diagnostics.
4055    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4056      // C99 6.7.8p4. All file scoped initializers need to be constant.
4057      CheckForConstantInitializer(Init, DclT);
4058    }
4059  }
4060  // If the type changed, it means we had an incomplete type that was
4061  // completed by the initializer. For example:
4062  //   int ary[] = { 1, 3, 5 };
4063  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4064  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4065    VDecl->setType(DclT);
4066    Init->setType(DclT);
4067  }
4068
4069  Init = MaybeCreateCXXExprWithTemporaries(Init);
4070  // Attach the initializer to the decl.
4071  VDecl->setInit(Init);
4072
4073  if (getLangOptions().CPlusPlus) {
4074    if (!VDecl->isInvalidDecl() &&
4075        !VDecl->getDeclContext()->isDependentContext() &&
4076        VDecl->hasGlobalStorage() &&
4077        !Init->isConstantInitializer(Context,
4078                                     VDecl->getType()->isReferenceType()))
4079      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4080        << Init->getSourceRange();
4081
4082    // Make sure we mark the destructor as used if necessary.
4083    QualType InitType = VDecl->getType();
4084    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4085      InitType = Context.getBaseElementType(Array);
4086    if (const RecordType *Record = InitType->getAs<RecordType>())
4087      FinalizeVarWithDestructor(VDecl, Record);
4088  }
4089
4090  return;
4091}
4092
4093/// ActOnInitializerError - Given that there was an error parsing an
4094/// initializer for the given declaration, try to return to some form
4095/// of sanity.
4096void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4097  // Our main concern here is re-establishing invariants like "a
4098  // variable's type is either dependent or complete".
4099  Decl *D = dcl.getAs<Decl>();
4100  if (!D || D->isInvalidDecl()) return;
4101
4102  VarDecl *VD = dyn_cast<VarDecl>(D);
4103  if (!VD) return;
4104
4105  QualType Ty = VD->getType();
4106  if (Ty->isDependentType()) return;
4107
4108  // Require a complete type.
4109  if (RequireCompleteType(VD->getLocation(),
4110                          Context.getBaseElementType(Ty),
4111                          diag::err_typecheck_decl_incomplete_type)) {
4112    VD->setInvalidDecl();
4113    return;
4114  }
4115
4116  // Require an abstract type.
4117  if (RequireNonAbstractType(VD->getLocation(), Ty,
4118                             diag::err_abstract_type_in_decl,
4119                             AbstractVariableType)) {
4120    VD->setInvalidDecl();
4121    return;
4122  }
4123
4124  // Don't bother complaining about constructors or destructors,
4125  // though.
4126}
4127
4128void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4129                                  bool TypeContainsUndeducedAuto) {
4130  Decl *RealDecl = dcl.getAs<Decl>();
4131
4132  // If there is no declaration, there was an error parsing it. Just ignore it.
4133  if (RealDecl == 0)
4134    return;
4135
4136  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4137    QualType Type = Var->getType();
4138
4139    // C++0x [dcl.spec.auto]p3
4140    if (TypeContainsUndeducedAuto) {
4141      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4142        << Var->getDeclName() << Type;
4143      Var->setInvalidDecl();
4144      return;
4145    }
4146
4147    switch (Var->isThisDeclarationADefinition()) {
4148    case VarDecl::Definition:
4149      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4150        break;
4151
4152      // We have an out-of-line definition of a static data member
4153      // that has an in-class initializer, so we type-check this like
4154      // a declaration.
4155      //
4156      // Fall through
4157
4158    case VarDecl::DeclarationOnly:
4159      // It's only a declaration.
4160
4161      // Block scope. C99 6.7p7: If an identifier for an object is
4162      // declared with no linkage (C99 6.2.2p6), the type for the
4163      // object shall be complete.
4164      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4165          !Var->getLinkage() && !Var->isInvalidDecl() &&
4166          RequireCompleteType(Var->getLocation(), Type,
4167                              diag::err_typecheck_decl_incomplete_type))
4168        Var->setInvalidDecl();
4169
4170      // Make sure that the type is not abstract.
4171      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4172          RequireNonAbstractType(Var->getLocation(), Type,
4173                                 diag::err_abstract_type_in_decl,
4174                                 AbstractVariableType))
4175        Var->setInvalidDecl();
4176      return;
4177
4178    case VarDecl::TentativeDefinition:
4179      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4180      // object that has file scope without an initializer, and without a
4181      // storage-class specifier or with the storage-class specifier "static",
4182      // constitutes a tentative definition. Note: A tentative definition with
4183      // external linkage is valid (C99 6.2.2p5).
4184      if (!Var->isInvalidDecl()) {
4185        if (const IncompleteArrayType *ArrayT
4186                                    = Context.getAsIncompleteArrayType(Type)) {
4187          if (RequireCompleteType(Var->getLocation(),
4188                                  ArrayT->getElementType(),
4189                                  diag::err_illegal_decl_array_incomplete_type))
4190            Var->setInvalidDecl();
4191        } else if (Var->getStorageClass() == VarDecl::Static) {
4192          // C99 6.9.2p3: If the declaration of an identifier for an object is
4193          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4194          // declared type shall not be an incomplete type.
4195          // NOTE: code such as the following
4196          //     static struct s;
4197          //     struct s { int a; };
4198          // is accepted by gcc. Hence here we issue a warning instead of
4199          // an error and we do not invalidate the static declaration.
4200          // NOTE: to avoid multiple warnings, only check the first declaration.
4201          if (Var->getPreviousDeclaration() == 0)
4202            RequireCompleteType(Var->getLocation(), Type,
4203                                diag::ext_typecheck_decl_incomplete_type);
4204        }
4205      }
4206
4207      // Record the tentative definition; we're done.
4208      if (!Var->isInvalidDecl())
4209        TentativeDefinitions.push_back(Var);
4210      return;
4211    }
4212
4213    // Provide a specific diagnostic for uninitialized variable
4214    // definitions with incomplete array type.
4215    if (Type->isIncompleteArrayType()) {
4216      Diag(Var->getLocation(),
4217           diag::err_typecheck_incomplete_array_needs_initializer);
4218      Var->setInvalidDecl();
4219      return;
4220    }
4221
4222    // Provide a specific diagnostic for uninitialized variable
4223    // definitions with reference type.
4224    if (Type->isReferenceType()) {
4225      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4226        << Var->getDeclName()
4227        << SourceRange(Var->getLocation(), Var->getLocation());
4228      Var->setInvalidDecl();
4229      return;
4230    }
4231
4232    // Do not attempt to type-check the default initializer for a
4233    // variable with dependent type.
4234    if (Type->isDependentType())
4235      return;
4236
4237    if (Var->isInvalidDecl())
4238      return;
4239
4240    if (RequireCompleteType(Var->getLocation(),
4241                            Context.getBaseElementType(Type),
4242                            diag::err_typecheck_decl_incomplete_type)) {
4243      Var->setInvalidDecl();
4244      return;
4245    }
4246
4247    // The variable can not have an abstract class type.
4248    if (RequireNonAbstractType(Var->getLocation(), Type,
4249                               diag::err_abstract_type_in_decl,
4250                               AbstractVariableType)) {
4251      Var->setInvalidDecl();
4252      return;
4253    }
4254
4255    const RecordType *Record
4256      = Context.getBaseElementType(Type)->getAs<RecordType>();
4257    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4258        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4259      // C++03 [dcl.init]p9:
4260      //   If no initializer is specified for an object, and the
4261      //   object is of (possibly cv-qualified) non-POD class type (or
4262      //   array thereof), the object shall be default-initialized; if
4263      //   the object is of const-qualified type, the underlying class
4264      //   type shall have a user-declared default
4265      //   constructor. Otherwise, if no initializer is specified for
4266      //   a non- static object, the object and its subobjects, if
4267      //   any, have an indeterminate initial value); if the object
4268      //   or any of its subobjects are of const-qualified type, the
4269      //   program is ill-formed.
4270      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4271    } else {
4272      // Check for jumps past the implicit initializer.  C++0x
4273      // clarifies that this applies to a "variable with automatic
4274      // storage duration", not a "local variable".
4275      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4276        setFunctionHasBranchProtectedScope();
4277
4278      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4279      InitializationKind Kind
4280        = InitializationKind::CreateDefault(Var->getLocation());
4281
4282      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4283      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4284                                              MultiExprArg(*this, 0, 0));
4285      if (Init.isInvalid())
4286        Var->setInvalidDecl();
4287      else if (Init.get()) {
4288        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4289
4290        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4291            Var->hasGlobalStorage() &&
4292            !Var->getDeclContext()->isDependentContext() &&
4293            !Var->getInit()->isConstantInitializer(Context, false))
4294          Diag(Var->getLocation(), diag::warn_global_constructor);
4295      }
4296    }
4297
4298    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4299      FinalizeVarWithDestructor(Var, Record);
4300  }
4301}
4302
4303Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4304                                                   DeclPtrTy *Group,
4305                                                   unsigned NumDecls) {
4306  llvm::SmallVector<Decl*, 8> Decls;
4307
4308  if (DS.isTypeSpecOwned())
4309    Decls.push_back((Decl*)DS.getTypeRep());
4310
4311  for (unsigned i = 0; i != NumDecls; ++i)
4312    if (Decl *D = Group[i].getAs<Decl>())
4313      Decls.push_back(D);
4314
4315  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4316                                                   Decls.data(), Decls.size()));
4317}
4318
4319
4320/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4321/// to introduce parameters into function prototype scope.
4322Sema::DeclPtrTy
4323Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4324  const DeclSpec &DS = D.getDeclSpec();
4325
4326  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4327  VarDecl::StorageClass StorageClass = VarDecl::None;
4328  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4329  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4330    StorageClass = VarDecl::Register;
4331    StorageClassAsWritten = VarDecl::Register;
4332  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4333    Diag(DS.getStorageClassSpecLoc(),
4334         diag::err_invalid_storage_class_in_func_decl);
4335    D.getMutableDeclSpec().ClearStorageClassSpecs();
4336  }
4337
4338  if (D.getDeclSpec().isThreadSpecified())
4339    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4340
4341  DiagnoseFunctionSpecifiers(D);
4342
4343  // Check that there are no default arguments inside the type of this
4344  // parameter (C++ only).
4345  if (getLangOptions().CPlusPlus)
4346    CheckExtraCXXDefaultArguments(D);
4347
4348  TagDecl *OwnedDecl = 0;
4349  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4350  QualType parmDeclType = TInfo->getType();
4351
4352  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4353    // C++ [dcl.fct]p6:
4354    //   Types shall not be defined in return or parameter types.
4355    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4356      << Context.getTypeDeclType(OwnedDecl);
4357  }
4358
4359  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4360  IdentifierInfo *II = D.getIdentifier();
4361  if (II) {
4362    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4363                   ForRedeclaration);
4364    LookupName(R, S);
4365    if (R.isSingleResult()) {
4366      NamedDecl *PrevDecl = R.getFoundDecl();
4367      if (PrevDecl->isTemplateParameter()) {
4368        // Maybe we will complain about the shadowed template parameter.
4369        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4370        // Just pretend that we didn't see the previous declaration.
4371        PrevDecl = 0;
4372      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4373        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4374        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4375
4376        // Recover by removing the name
4377        II = 0;
4378        D.SetIdentifier(0, D.getIdentifierLoc());
4379        D.setInvalidType(true);
4380      }
4381    }
4382  }
4383
4384  // Temporarily put parameter variables in the translation unit, not
4385  // the enclosing context.  This prevents them from accidentally
4386  // looking like class members in C++.
4387  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4388                                    TInfo, parmDeclType, II,
4389                                    D.getIdentifierLoc(),
4390                                    StorageClass, StorageClassAsWritten);
4391
4392  if (D.isInvalidType())
4393    New->setInvalidDecl();
4394
4395  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4396  if (D.getCXXScopeSpec().isSet()) {
4397    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4398      << D.getCXXScopeSpec().getRange();
4399    New->setInvalidDecl();
4400  }
4401
4402  // Add the parameter declaration into this scope.
4403  S->AddDecl(DeclPtrTy::make(New));
4404  if (II)
4405    IdResolver.AddDecl(New);
4406
4407  ProcessDeclAttributes(S, New, D);
4408
4409  if (New->hasAttr<BlocksAttr>()) {
4410    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4411  }
4412  return DeclPtrTy::make(New);
4413}
4414
4415/// \brief Synthesizes a variable for a parameter arising from a
4416/// typedef.
4417ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4418                                              SourceLocation Loc,
4419                                              QualType T) {
4420  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4421                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4422                                           VarDecl::None, VarDecl::None, 0);
4423  Param->setImplicit();
4424  return Param;
4425}
4426
4427ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4428                                  TypeSourceInfo *TSInfo, QualType T,
4429                                  IdentifierInfo *Name,
4430                                  SourceLocation NameLoc,
4431                                  VarDecl::StorageClass StorageClass,
4432                                  VarDecl::StorageClass StorageClassAsWritten) {
4433  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4434                                         adjustParameterType(T), TSInfo,
4435                                         StorageClass, StorageClassAsWritten,
4436                                         0);
4437
4438  // Parameters can not be abstract class types.
4439  // For record types, this is done by the AbstractClassUsageDiagnoser once
4440  // the class has been completely parsed.
4441  if (!CurContext->isRecord() &&
4442      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4443                             AbstractParamType))
4444    New->setInvalidDecl();
4445
4446  // Parameter declarators cannot be interface types. All ObjC objects are
4447  // passed by reference.
4448  if (T->isObjCObjectType()) {
4449    Diag(NameLoc,
4450         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4451    New->setInvalidDecl();
4452  }
4453
4454  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4455  // duration shall not be qualified by an address-space qualifier."
4456  // Since all parameters have automatic store duration, they can not have
4457  // an address space.
4458  if (T.getAddressSpace() != 0) {
4459    Diag(NameLoc, diag::err_arg_with_address_space);
4460    New->setInvalidDecl();
4461  }
4462
4463  return New;
4464}
4465
4466void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4467                                           SourceLocation LocAfterDecls) {
4468  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4469         "Not a function declarator!");
4470  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4471
4472  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4473  // for a K&R function.
4474  if (!FTI.hasPrototype) {
4475    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4476      --i;
4477      if (FTI.ArgInfo[i].Param == 0) {
4478        llvm::SmallString<256> Code;
4479        llvm::raw_svector_ostream(Code) << "  int "
4480                                        << FTI.ArgInfo[i].Ident->getName()
4481                                        << ";\n";
4482        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4483          << FTI.ArgInfo[i].Ident
4484          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4485
4486        // Implicitly declare the argument as type 'int' for lack of a better
4487        // type.
4488        DeclSpec DS;
4489        const char* PrevSpec; // unused
4490        unsigned DiagID; // unused
4491        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4492                           PrevSpec, DiagID);
4493        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4494        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4495        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4496      }
4497    }
4498  }
4499}
4500
4501Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4502                                              Declarator &D) {
4503  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4504  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4505         "Not a function declarator!");
4506  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4507
4508  if (FTI.hasPrototype) {
4509    // FIXME: Diagnose arguments without names in C.
4510  }
4511
4512  Scope *ParentScope = FnBodyScope->getParent();
4513
4514  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4515                                  MultiTemplateParamsArg(*this),
4516                                  /*IsFunctionDefinition=*/true);
4517  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4518}
4519
4520static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4521  // Don't warn about invalid declarations.
4522  if (FD->isInvalidDecl())
4523    return false;
4524
4525  // Or declarations that aren't global.
4526  if (!FD->isGlobal())
4527    return false;
4528
4529  // Don't warn about C++ member functions.
4530  if (isa<CXXMethodDecl>(FD))
4531    return false;
4532
4533  // Don't warn about 'main'.
4534  if (FD->isMain())
4535    return false;
4536
4537  // Don't warn about inline functions.
4538  if (FD->isInlineSpecified())
4539    return false;
4540
4541  // Don't warn about function templates.
4542  if (FD->getDescribedFunctionTemplate())
4543    return false;
4544
4545  // Don't warn about function template specializations.
4546  if (FD->isFunctionTemplateSpecialization())
4547    return false;
4548
4549  bool MissingPrototype = true;
4550  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4551       Prev; Prev = Prev->getPreviousDeclaration()) {
4552    // Ignore any declarations that occur in function or method
4553    // scope, because they aren't visible from the header.
4554    if (Prev->getDeclContext()->isFunctionOrMethod())
4555      continue;
4556
4557    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4558    break;
4559  }
4560
4561  return MissingPrototype;
4562}
4563
4564Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4565  // Clear the last template instantiation error context.
4566  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4567
4568  if (!D)
4569    return D;
4570  FunctionDecl *FD = 0;
4571
4572  if (FunctionTemplateDecl *FunTmpl
4573        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4574    FD = FunTmpl->getTemplatedDecl();
4575  else
4576    FD = cast<FunctionDecl>(D.getAs<Decl>());
4577
4578  // Enter a new function scope
4579  PushFunctionScope();
4580
4581  // See if this is a redefinition.
4582  // But don't complain if we're in GNU89 mode and the previous definition
4583  // was an extern inline function.
4584  const FunctionDecl *Definition;
4585  if (FD->hasBody(Definition) &&
4586      !canRedefineFunction(Definition, getLangOptions())) {
4587    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4588    Diag(Definition->getLocation(), diag::note_previous_definition);
4589  }
4590
4591  // Builtin functions cannot be defined.
4592  if (unsigned BuiltinID = FD->getBuiltinID()) {
4593    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4594      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4595      FD->setInvalidDecl();
4596    }
4597  }
4598
4599  // The return type of a function definition must be complete
4600  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4601  QualType ResultType = FD->getResultType();
4602  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4603      !FD->isInvalidDecl() &&
4604      RequireCompleteType(FD->getLocation(), ResultType,
4605                          diag::err_func_def_incomplete_result))
4606    FD->setInvalidDecl();
4607
4608  // GNU warning -Wmissing-prototypes:
4609  //   Warn if a global function is defined without a previous
4610  //   prototype declaration. This warning is issued even if the
4611  //   definition itself provides a prototype. The aim is to detect
4612  //   global functions that fail to be declared in header files.
4613  if (ShouldWarnAboutMissingPrototype(FD))
4614    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4615
4616  if (FnBodyScope)
4617    PushDeclContext(FnBodyScope, FD);
4618
4619  // Check the validity of our function parameters
4620  CheckParmsForFunctionDef(FD);
4621
4622  bool ShouldCheckShadow =
4623    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4624
4625  // Introduce our parameters into the function scope
4626  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4627    ParmVarDecl *Param = FD->getParamDecl(p);
4628    Param->setOwningFunction(FD);
4629
4630    // If this has an identifier, add it to the scope stack.
4631    if (Param->getIdentifier() && FnBodyScope) {
4632      if (ShouldCheckShadow)
4633        CheckShadow(FnBodyScope, Param);
4634
4635      PushOnScopeChains(Param, FnBodyScope);
4636    }
4637  }
4638
4639  // Checking attributes of current function definition
4640  // dllimport attribute.
4641  if (FD->getAttr<DLLImportAttr>() &&
4642      (!FD->getAttr<DLLExportAttr>())) {
4643    // dllimport attribute cannot be applied to definition.
4644    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4645      Diag(FD->getLocation(),
4646           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4647        << "dllimport";
4648      FD->setInvalidDecl();
4649      return DeclPtrTy::make(FD);
4650    }
4651
4652    // Visual C++ appears to not think this is an issue, so only issue
4653    // a warning when Microsoft extensions are disabled.
4654    if (!LangOpts.Microsoft) {
4655      // If a symbol previously declared dllimport is later defined, the
4656      // attribute is ignored in subsequent references, and a warning is
4657      // emitted.
4658      Diag(FD->getLocation(),
4659           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4660        << FD->getNameAsCString() << "dllimport";
4661    }
4662  }
4663  return DeclPtrTy::make(FD);
4664}
4665
4666/// \brief Given the set of return statements within a function body,
4667/// compute the variables that are subject to the named return value
4668/// optimization.
4669///
4670/// Each of the variables that is subject to the named return value
4671/// optimization will be marked as NRVO variables in the AST, and any
4672/// return statement that has a marked NRVO variable as its NRVO candidate can
4673/// use the named return value optimization.
4674///
4675/// This function applies a very simplistic algorithm for NRVO: if every return
4676/// statement in the function has the same NRVO candidate, that candidate is
4677/// the NRVO variable.
4678///
4679/// FIXME: Employ a smarter algorithm that accounts for multiple return
4680/// statements and the lifetimes of the NRVO candidates. We should be able to
4681/// find a maximal set of NRVO variables.
4682static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4683  const VarDecl *NRVOCandidate = 0;
4684  for (unsigned I = 0; I != NumReturns; ++I) {
4685    if (!Returns[I]->getNRVOCandidate())
4686      return;
4687
4688    if (!NRVOCandidate)
4689      NRVOCandidate = Returns[I]->getNRVOCandidate();
4690    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4691      return;
4692  }
4693
4694  if (NRVOCandidate)
4695    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4696}
4697
4698Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4699  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4700}
4701
4702Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4703                                              bool IsInstantiation) {
4704  Decl *dcl = D.getAs<Decl>();
4705  Stmt *Body = BodyArg.takeAs<Stmt>();
4706
4707  FunctionDecl *FD = 0;
4708  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4709  if (FunTmpl)
4710    FD = FunTmpl->getTemplatedDecl();
4711  else
4712    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4713
4714  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4715
4716  if (FD) {
4717    FD->setBody(Body);
4718    if (FD->isMain()) {
4719      // C and C++ allow for main to automagically return 0.
4720      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4721      FD->setHasImplicitReturnZero(true);
4722      WP.disableCheckFallThrough();
4723    }
4724
4725    if (!FD->isInvalidDecl()) {
4726      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4727
4728      // If this is a constructor, we need a vtable.
4729      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4730        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4731
4732      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4733                  FunctionScopes.back()->Returns.size());
4734    }
4735
4736    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4737  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4738    assert(MD == getCurMethodDecl() && "Method parsing confused");
4739    MD->setBody(Body);
4740    MD->setEndLoc(Body->getLocEnd());
4741    if (!MD->isInvalidDecl())
4742      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4743  } else {
4744    return DeclPtrTy();
4745  }
4746
4747  // Verify and clean out per-function state.
4748
4749  // Check goto/label use.
4750  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4751       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4752    LabelStmt *L = I->second;
4753
4754    // Verify that we have no forward references left.  If so, there was a goto
4755    // or address of a label taken, but no definition of it.  Label fwd
4756    // definitions are indicated with a null substmt.
4757    if (L->getSubStmt() != 0)
4758      continue;
4759
4760    // Emit error.
4761    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4762
4763    // At this point, we have gotos that use the bogus label.  Stitch it into
4764    // the function body so that they aren't leaked and that the AST is well
4765    // formed.
4766    if (Body == 0) {
4767      // The whole function wasn't parsed correctly.
4768      continue;
4769    }
4770
4771    // Otherwise, the body is valid: we want to stitch the label decl into the
4772    // function somewhere so that it is properly owned and so that the goto
4773    // has a valid target.  Do this by creating a new compound stmt with the
4774    // label in it.
4775
4776    // Give the label a sub-statement.
4777    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4778
4779    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4780                               cast<CXXTryStmt>(Body)->getTryBlock() :
4781                               cast<CompoundStmt>(Body);
4782    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4783                                          Compound->body_end());
4784    Elements.push_back(L);
4785    Compound->setStmts(Context, Elements.data(), Elements.size());
4786  }
4787
4788  if (Body) {
4789    // C++ constructors that have function-try-blocks can't have return
4790    // statements in the handlers of that block. (C++ [except.handle]p14)
4791    // Verify this.
4792    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4793      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4794
4795    // Verify that that gotos and switch cases don't jump into scopes illegally.
4796    // Verify that that gotos and switch cases don't jump into scopes illegally.
4797    if (FunctionNeedsScopeChecking() &&
4798        !dcl->isInvalidDecl() &&
4799        !hasAnyErrorsInThisFunction())
4800      DiagnoseInvalidJumps(Body);
4801
4802    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4803      if (!Destructor->getParent()->isDependentType())
4804        CheckDestructor(Destructor);
4805
4806      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4807                                             Destructor->getParent());
4808    }
4809
4810    // If any errors have occurred, clear out any temporaries that may have
4811    // been leftover. This ensures that these temporaries won't be picked up for
4812    // deletion in some later function.
4813    if (PP.getDiagnostics().hasErrorOccurred())
4814      ExprTemporaries.clear();
4815    else if (!isa<FunctionTemplateDecl>(dcl)) {
4816      // Since the body is valid, issue any analysis-based warnings that are
4817      // enabled.
4818      QualType ResultType;
4819      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4820        ResultType = FD->getResultType();
4821      }
4822      else {
4823        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4824        ResultType = MD->getResultType();
4825      }
4826      AnalysisWarnings.IssueWarnings(WP, dcl);
4827    }
4828
4829    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4830  }
4831
4832  if (!IsInstantiation)
4833    PopDeclContext();
4834
4835  PopFunctionOrBlockScope();
4836
4837  // If any errors have occurred, clear out any temporaries that may have
4838  // been leftover. This ensures that these temporaries won't be picked up for
4839  // deletion in some later function.
4840  if (getDiagnostics().hasErrorOccurred())
4841    ExprTemporaries.clear();
4842
4843  return D;
4844}
4845
4846/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4847/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4848NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4849                                          IdentifierInfo &II, Scope *S) {
4850  // Before we produce a declaration for an implicitly defined
4851  // function, see whether there was a locally-scoped declaration of
4852  // this name as a function or variable. If so, use that
4853  // (non-visible) declaration, and complain about it.
4854  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4855    = LocallyScopedExternalDecls.find(&II);
4856  if (Pos != LocallyScopedExternalDecls.end()) {
4857    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4858    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4859    return Pos->second;
4860  }
4861
4862  // Extension in C99.  Legal in C90, but warn about it.
4863  if (II.getName().startswith("__builtin_"))
4864    Diag(Loc, diag::warn_builtin_unknown) << &II;
4865  else if (getLangOptions().C99)
4866    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4867  else
4868    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4869
4870  // Set a Declarator for the implicit definition: int foo();
4871  const char *Dummy;
4872  DeclSpec DS;
4873  unsigned DiagID;
4874  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4875  Error = Error; // Silence warning.
4876  assert(!Error && "Error setting up implicit decl!");
4877  Declarator D(DS, Declarator::BlockContext);
4878  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4879                                             0, 0, false, SourceLocation(),
4880                                             false, 0,0,0, Loc, Loc, D),
4881                SourceLocation());
4882  D.SetIdentifier(&II, Loc);
4883
4884  // Insert this function into translation-unit scope.
4885
4886  DeclContext *PrevDC = CurContext;
4887  CurContext = Context.getTranslationUnitDecl();
4888
4889  FunctionDecl *FD =
4890 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4891  FD->setImplicit();
4892
4893  CurContext = PrevDC;
4894
4895  AddKnownFunctionAttributes(FD);
4896
4897  return FD;
4898}
4899
4900/// \brief Adds any function attributes that we know a priori based on
4901/// the declaration of this function.
4902///
4903/// These attributes can apply both to implicitly-declared builtins
4904/// (like __builtin___printf_chk) or to library-declared functions
4905/// like NSLog or printf.
4906void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4907  if (FD->isInvalidDecl())
4908    return;
4909
4910  // If this is a built-in function, map its builtin attributes to
4911  // actual attributes.
4912  if (unsigned BuiltinID = FD->getBuiltinID()) {
4913    // Handle printf-formatting attributes.
4914    unsigned FormatIdx;
4915    bool HasVAListArg;
4916    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4917      if (!FD->getAttr<FormatAttr>())
4918        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4919                                               HasVAListArg ? 0 : FormatIdx+2));
4920    }
4921    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
4922                                             HasVAListArg)) {
4923     if (!FD->getAttr<FormatAttr>())
4924       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
4925                                              HasVAListArg ? 0 : FormatIdx+2));
4926    }
4927
4928    // Mark const if we don't care about errno and that is the only
4929    // thing preventing the function from being const. This allows
4930    // IRgen to use LLVM intrinsics for such functions.
4931    if (!getLangOptions().MathErrno &&
4932        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4933      if (!FD->getAttr<ConstAttr>())
4934        FD->addAttr(::new (Context) ConstAttr());
4935    }
4936
4937    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4938      FD->setType(Context.getNoReturnType(FD->getType()));
4939    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4940      FD->addAttr(::new (Context) NoThrowAttr());
4941    if (Context.BuiltinInfo.isConst(BuiltinID))
4942      FD->addAttr(::new (Context) ConstAttr());
4943  }
4944
4945  IdentifierInfo *Name = FD->getIdentifier();
4946  if (!Name)
4947    return;
4948  if ((!getLangOptions().CPlusPlus &&
4949       FD->getDeclContext()->isTranslationUnit()) ||
4950      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4951       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4952       LinkageSpecDecl::lang_c)) {
4953    // Okay: this could be a libc/libm/Objective-C function we know
4954    // about.
4955  } else
4956    return;
4957
4958  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4959    // FIXME: NSLog and NSLogv should be target specific
4960    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4961      // FIXME: We known better than our headers.
4962      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4963    } else
4964      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4965                                             Name->isStr("NSLogv") ? 0 : 2));
4966  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4967    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4968    // target-specific builtins, perhaps?
4969    if (!FD->getAttr<FormatAttr>())
4970      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4971                                             Name->isStr("vasprintf") ? 0 : 3));
4972  }
4973}
4974
4975TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4976                                    TypeSourceInfo *TInfo) {
4977  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4978  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4979
4980  if (!TInfo) {
4981    assert(D.isInvalidType() && "no declarator info for valid type");
4982    TInfo = Context.getTrivialTypeSourceInfo(T);
4983  }
4984
4985  // Scope manipulation handled by caller.
4986  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4987                                           D.getIdentifierLoc(),
4988                                           D.getIdentifier(),
4989                                           TInfo);
4990
4991  if (const TagType *TT = T->getAs<TagType>()) {
4992    TagDecl *TD = TT->getDecl();
4993
4994    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4995    // keep track of the TypedefDecl.
4996    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4997      TD->setTypedefForAnonDecl(NewTD);
4998  }
4999
5000  if (D.isInvalidType())
5001    NewTD->setInvalidDecl();
5002  return NewTD;
5003}
5004
5005
5006/// \brief Determine whether a tag with a given kind is acceptable
5007/// as a redeclaration of the given tag declaration.
5008///
5009/// \returns true if the new tag kind is acceptable, false otherwise.
5010bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5011                                        TagTypeKind NewTag,
5012                                        SourceLocation NewTagLoc,
5013                                        const IdentifierInfo &Name) {
5014  // C++ [dcl.type.elab]p3:
5015  //   The class-key or enum keyword present in the
5016  //   elaborated-type-specifier shall agree in kind with the
5017  //   declaration to which the name in the elaborated-type-specifier
5018  //   refers. This rule also applies to the form of
5019  //   elaborated-type-specifier that declares a class-name or
5020  //   friend class since it can be construed as referring to the
5021  //   definition of the class. Thus, in any
5022  //   elaborated-type-specifier, the enum keyword shall be used to
5023  //   refer to an enumeration (7.2), the union class-key shall be
5024  //   used to refer to a union (clause 9), and either the class or
5025  //   struct class-key shall be used to refer to a class (clause 9)
5026  //   declared using the class or struct class-key.
5027  TagTypeKind OldTag = Previous->getTagKind();
5028  if (OldTag == NewTag)
5029    return true;
5030
5031  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5032      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5033    // Warn about the struct/class tag mismatch.
5034    bool isTemplate = false;
5035    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5036      isTemplate = Record->getDescribedClassTemplate();
5037
5038    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5039      << (NewTag == TTK_Class)
5040      << isTemplate << &Name
5041      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5042                              OldTag == TTK_Class? "class" : "struct");
5043    Diag(Previous->getLocation(), diag::note_previous_use);
5044    return true;
5045  }
5046  return false;
5047}
5048
5049/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5050/// former case, Name will be non-null.  In the later case, Name will be null.
5051/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5052/// reference/declaration/definition of a tag.
5053Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5054                               SourceLocation KWLoc, CXXScopeSpec &SS,
5055                               IdentifierInfo *Name, SourceLocation NameLoc,
5056                               AttributeList *Attr, AccessSpecifier AS,
5057                               MultiTemplateParamsArg TemplateParameterLists,
5058                               bool &OwnedDecl, bool &IsDependent) {
5059  // If this is not a definition, it must have a name.
5060  assert((Name != 0 || TUK == TUK_Definition) &&
5061         "Nameless record must be a definition!");
5062
5063  OwnedDecl = false;
5064  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5065
5066  // FIXME: Check explicit specializations more carefully.
5067  bool isExplicitSpecialization = false;
5068  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5069  bool Invalid = false;
5070  if (TUK != TUK_Reference) {
5071    if (TemplateParameterList *TemplateParams
5072          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5073                        (TemplateParameterList**)TemplateParameterLists.get(),
5074                                              TemplateParameterLists.size(),
5075                                                    TUK == TUK_Friend,
5076                                                    isExplicitSpecialization,
5077                                                    Invalid)) {
5078      // All but one template parameter lists have been matching.
5079      --NumMatchedTemplateParamLists;
5080
5081      if (TemplateParams->size() > 0) {
5082        // This is a declaration or definition of a class template (which may
5083        // be a member of another template).
5084        if (Invalid)
5085          return DeclPtrTy();
5086
5087        OwnedDecl = false;
5088        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5089                                               SS, Name, NameLoc, Attr,
5090                                               TemplateParams,
5091                                               AS);
5092        TemplateParameterLists.release();
5093        return Result.get();
5094      } else {
5095        // The "template<>" header is extraneous.
5096        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5097          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5098        isExplicitSpecialization = true;
5099      }
5100    }
5101  }
5102
5103  DeclContext *SearchDC = CurContext;
5104  DeclContext *DC = CurContext;
5105  bool isStdBadAlloc = false;
5106
5107  RedeclarationKind Redecl = ForRedeclaration;
5108  if (TUK == TUK_Friend || TUK == TUK_Reference)
5109    Redecl = NotForRedeclaration;
5110
5111  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5112
5113  if (Name && SS.isNotEmpty()) {
5114    // We have a nested-name tag ('struct foo::bar').
5115
5116    // Check for invalid 'foo::'.
5117    if (SS.isInvalid()) {
5118      Name = 0;
5119      goto CreateNewDecl;
5120    }
5121
5122    // If this is a friend or a reference to a class in a dependent
5123    // context, don't try to make a decl for it.
5124    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5125      DC = computeDeclContext(SS, false);
5126      if (!DC) {
5127        IsDependent = true;
5128        return DeclPtrTy();
5129      }
5130    } else {
5131      DC = computeDeclContext(SS, true);
5132      if (!DC) {
5133        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5134          << SS.getRange();
5135        return DeclPtrTy();
5136      }
5137    }
5138
5139    if (RequireCompleteDeclContext(SS, DC))
5140      return DeclPtrTy::make((Decl *)0);
5141
5142    SearchDC = DC;
5143    // Look-up name inside 'foo::'.
5144    LookupQualifiedName(Previous, DC);
5145
5146    if (Previous.isAmbiguous())
5147      return DeclPtrTy();
5148
5149    if (Previous.empty()) {
5150      // Name lookup did not find anything. However, if the
5151      // nested-name-specifier refers to the current instantiation,
5152      // and that current instantiation has any dependent base
5153      // classes, we might find something at instantiation time: treat
5154      // this as a dependent elaborated-type-specifier.
5155      if (Previous.wasNotFoundInCurrentInstantiation()) {
5156        IsDependent = true;
5157        return DeclPtrTy();
5158      }
5159
5160      // A tag 'foo::bar' must already exist.
5161      Diag(NameLoc, diag::err_not_tag_in_scope)
5162        << Kind << Name << DC << SS.getRange();
5163      Name = 0;
5164      Invalid = true;
5165      goto CreateNewDecl;
5166    }
5167  } else if (Name) {
5168    // If this is a named struct, check to see if there was a previous forward
5169    // declaration or definition.
5170    // FIXME: We're looking into outer scopes here, even when we
5171    // shouldn't be. Doing so can result in ambiguities that we
5172    // shouldn't be diagnosing.
5173    LookupName(Previous, S);
5174
5175    // Note:  there used to be some attempt at recovery here.
5176    if (Previous.isAmbiguous())
5177      return DeclPtrTy();
5178
5179    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5180      // FIXME: This makes sure that we ignore the contexts associated
5181      // with C structs, unions, and enums when looking for a matching
5182      // tag declaration or definition. See the similar lookup tweak
5183      // in Sema::LookupName; is there a better way to deal with this?
5184      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5185        SearchDC = SearchDC->getParent();
5186    }
5187  }
5188
5189  if (Previous.isSingleResult() &&
5190      Previous.getFoundDecl()->isTemplateParameter()) {
5191    // Maybe we will complain about the shadowed template parameter.
5192    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5193    // Just pretend that we didn't see the previous declaration.
5194    Previous.clear();
5195  }
5196
5197  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5198      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5199    // This is a declaration of or a reference to "std::bad_alloc".
5200    isStdBadAlloc = true;
5201
5202    if (Previous.empty() && StdBadAlloc) {
5203      // std::bad_alloc has been implicitly declared (but made invisible to
5204      // name lookup). Fill in this implicit declaration as the previous
5205      // declaration, so that the declarations get chained appropriately.
5206      Previous.addDecl(getStdBadAlloc());
5207    }
5208  }
5209
5210  // If we didn't find a previous declaration, and this is a reference
5211  // (or friend reference), move to the correct scope.  In C++, we
5212  // also need to do a redeclaration lookup there, just in case
5213  // there's a shadow friend decl.
5214  if (Name && Previous.empty() &&
5215      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5216    if (Invalid) goto CreateNewDecl;
5217    assert(SS.isEmpty());
5218
5219    if (TUK == TUK_Reference) {
5220      // C++ [basic.scope.pdecl]p5:
5221      //   -- for an elaborated-type-specifier of the form
5222      //
5223      //          class-key identifier
5224      //
5225      //      if the elaborated-type-specifier is used in the
5226      //      decl-specifier-seq or parameter-declaration-clause of a
5227      //      function defined in namespace scope, the identifier is
5228      //      declared as a class-name in the namespace that contains
5229      //      the declaration; otherwise, except as a friend
5230      //      declaration, the identifier is declared in the smallest
5231      //      non-class, non-function-prototype scope that contains the
5232      //      declaration.
5233      //
5234      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5235      // C structs and unions.
5236      //
5237      // It is an error in C++ to declare (rather than define) an enum
5238      // type, including via an elaborated type specifier.  We'll
5239      // diagnose that later; for now, declare the enum in the same
5240      // scope as we would have picked for any other tag type.
5241      //
5242      // GNU C also supports this behavior as part of its incomplete
5243      // enum types extension, while GNU C++ does not.
5244      //
5245      // Find the context where we'll be declaring the tag.
5246      // FIXME: We would like to maintain the current DeclContext as the
5247      // lexical context,
5248      while (SearchDC->isRecord())
5249        SearchDC = SearchDC->getParent();
5250
5251      // Find the scope where we'll be declaring the tag.
5252      while (S->isClassScope() ||
5253             (getLangOptions().CPlusPlus &&
5254              S->isFunctionPrototypeScope()) ||
5255             ((S->getFlags() & Scope::DeclScope) == 0) ||
5256             (S->getEntity() &&
5257              ((DeclContext *)S->getEntity())->isTransparentContext()))
5258        S = S->getParent();
5259    } else {
5260      assert(TUK == TUK_Friend);
5261      // C++ [namespace.memdef]p3:
5262      //   If a friend declaration in a non-local class first declares a
5263      //   class or function, the friend class or function is a member of
5264      //   the innermost enclosing namespace.
5265      SearchDC = SearchDC->getEnclosingNamespaceContext();
5266    }
5267
5268    // In C++, we need to do a redeclaration lookup to properly
5269    // diagnose some problems.
5270    if (getLangOptions().CPlusPlus) {
5271      Previous.setRedeclarationKind(ForRedeclaration);
5272      LookupQualifiedName(Previous, SearchDC);
5273    }
5274  }
5275
5276  if (!Previous.empty()) {
5277    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5278
5279    // It's okay to have a tag decl in the same scope as a typedef
5280    // which hides a tag decl in the same scope.  Finding this
5281    // insanity with a redeclaration lookup can only actually happen
5282    // in C++.
5283    //
5284    // This is also okay for elaborated-type-specifiers, which is
5285    // technically forbidden by the current standard but which is
5286    // okay according to the likely resolution of an open issue;
5287    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5288    if (getLangOptions().CPlusPlus) {
5289      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5290        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5291          TagDecl *Tag = TT->getDecl();
5292          if (Tag->getDeclName() == Name &&
5293              Tag->getDeclContext()->getLookupContext()
5294                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5295            PrevDecl = Tag;
5296            Previous.clear();
5297            Previous.addDecl(Tag);
5298          }
5299        }
5300      }
5301    }
5302
5303    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5304      // If this is a use of a previous tag, or if the tag is already declared
5305      // in the same scope (so that the definition/declaration completes or
5306      // rementions the tag), reuse the decl.
5307      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5308          isDeclInScope(PrevDecl, SearchDC, S)) {
5309        // Make sure that this wasn't declared as an enum and now used as a
5310        // struct or something similar.
5311        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5312          bool SafeToContinue
5313            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5314               Kind != TTK_Enum);
5315          if (SafeToContinue)
5316            Diag(KWLoc, diag::err_use_with_wrong_tag)
5317              << Name
5318              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5319                                              PrevTagDecl->getKindName());
5320          else
5321            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5322          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5323
5324          if (SafeToContinue)
5325            Kind = PrevTagDecl->getTagKind();
5326          else {
5327            // Recover by making this an anonymous redefinition.
5328            Name = 0;
5329            Previous.clear();
5330            Invalid = true;
5331          }
5332        }
5333
5334        if (!Invalid) {
5335          // If this is a use, just return the declaration we found.
5336
5337          // FIXME: In the future, return a variant or some other clue
5338          // for the consumer of this Decl to know it doesn't own it.
5339          // For our current ASTs this shouldn't be a problem, but will
5340          // need to be changed with DeclGroups.
5341          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5342              TUK == TUK_Friend)
5343            return DeclPtrTy::make(PrevTagDecl);
5344
5345          // Diagnose attempts to redefine a tag.
5346          if (TUK == TUK_Definition) {
5347            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5348              // If we're defining a specialization and the previous definition
5349              // is from an implicit instantiation, don't emit an error
5350              // here; we'll catch this in the general case below.
5351              if (!isExplicitSpecialization ||
5352                  !isa<CXXRecordDecl>(Def) ||
5353                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5354                                               == TSK_ExplicitSpecialization) {
5355                Diag(NameLoc, diag::err_redefinition) << Name;
5356                Diag(Def->getLocation(), diag::note_previous_definition);
5357                // If this is a redefinition, recover by making this
5358                // struct be anonymous, which will make any later
5359                // references get the previous definition.
5360                Name = 0;
5361                Previous.clear();
5362                Invalid = true;
5363              }
5364            } else {
5365              // If the type is currently being defined, complain
5366              // about a nested redefinition.
5367              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5368              if (Tag->isBeingDefined()) {
5369                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5370                Diag(PrevTagDecl->getLocation(),
5371                     diag::note_previous_definition);
5372                Name = 0;
5373                Previous.clear();
5374                Invalid = true;
5375              }
5376            }
5377
5378            // Okay, this is definition of a previously declared or referenced
5379            // tag PrevDecl. We're going to create a new Decl for it.
5380          }
5381        }
5382        // If we get here we have (another) forward declaration or we
5383        // have a definition.  Just create a new decl.
5384
5385      } else {
5386        // If we get here, this is a definition of a new tag type in a nested
5387        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5388        // new decl/type.  We set PrevDecl to NULL so that the entities
5389        // have distinct types.
5390        Previous.clear();
5391      }
5392      // If we get here, we're going to create a new Decl. If PrevDecl
5393      // is non-NULL, it's a definition of the tag declared by
5394      // PrevDecl. If it's NULL, we have a new definition.
5395
5396
5397    // Otherwise, PrevDecl is not a tag, but was found with tag
5398    // lookup.  This is only actually possible in C++, where a few
5399    // things like templates still live in the tag namespace.
5400    } else {
5401      assert(getLangOptions().CPlusPlus);
5402
5403      // Use a better diagnostic if an elaborated-type-specifier
5404      // found the wrong kind of type on the first
5405      // (non-redeclaration) lookup.
5406      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5407          !Previous.isForRedeclaration()) {
5408        unsigned Kind = 0;
5409        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5410        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5411        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5412        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5413        Invalid = true;
5414
5415      // Otherwise, only diagnose if the declaration is in scope.
5416      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5417        // do nothing
5418
5419      // Diagnose implicit declarations introduced by elaborated types.
5420      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5421        unsigned Kind = 0;
5422        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5423        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5424        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5425        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5426        Invalid = true;
5427
5428      // Otherwise it's a declaration.  Call out a particularly common
5429      // case here.
5430      } else if (isa<TypedefDecl>(PrevDecl)) {
5431        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5432          << Name
5433          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5434        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5435        Invalid = true;
5436
5437      // Otherwise, diagnose.
5438      } else {
5439        // The tag name clashes with something else in the target scope,
5440        // issue an error and recover by making this tag be anonymous.
5441        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5442        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5443        Name = 0;
5444        Invalid = true;
5445      }
5446
5447      // The existing declaration isn't relevant to us; we're in a
5448      // new scope, so clear out the previous declaration.
5449      Previous.clear();
5450    }
5451  }
5452
5453CreateNewDecl:
5454
5455  TagDecl *PrevDecl = 0;
5456  if (Previous.isSingleResult())
5457    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5458
5459  // If there is an identifier, use the location of the identifier as the
5460  // location of the decl, otherwise use the location of the struct/union
5461  // keyword.
5462  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5463
5464  // Otherwise, create a new declaration. If there is a previous
5465  // declaration of the same entity, the two will be linked via
5466  // PrevDecl.
5467  TagDecl *New;
5468
5469  if (Kind == TTK_Enum) {
5470    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5471    // enum X { A, B, C } D;    D should chain to X.
5472    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5473                           cast_or_null<EnumDecl>(PrevDecl));
5474    // If this is an undefined enum, warn.
5475    if (TUK != TUK_Definition && !Invalid) {
5476      TagDecl *Def;
5477      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5478        Diag(Loc, diag::ext_forward_ref_enum_def)
5479          << New;
5480        Diag(Def->getLocation(), diag::note_previous_definition);
5481      } else {
5482        Diag(Loc,
5483             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5484                                       : diag::ext_forward_ref_enum);
5485      }
5486    }
5487  } else {
5488    // struct/union/class
5489
5490    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5491    // struct X { int A; } D;    D should chain to X.
5492    if (getLangOptions().CPlusPlus) {
5493      // FIXME: Look for a way to use RecordDecl for simple structs.
5494      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5495                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5496
5497      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5498        StdBadAlloc = cast<CXXRecordDecl>(New);
5499    } else
5500      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5501                               cast_or_null<RecordDecl>(PrevDecl));
5502  }
5503
5504  // Maybe add qualifier info.
5505  if (SS.isNotEmpty()) {
5506    if (SS.isSet()) {
5507      NestedNameSpecifier *NNS
5508        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5509      New->setQualifierInfo(NNS, SS.getRange());
5510      if (NumMatchedTemplateParamLists > 0) {
5511        New->setTemplateParameterListsInfo(Context,
5512                                           NumMatchedTemplateParamLists,
5513                    (TemplateParameterList**) TemplateParameterLists.release());
5514      }
5515    }
5516    else
5517      Invalid = true;
5518  }
5519
5520  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5521    // Add alignment attributes if necessary; these attributes are checked when
5522    // the ASTContext lays out the structure.
5523    //
5524    // It is important for implementing the correct semantics that this
5525    // happen here (in act on tag decl). The #pragma pack stack is
5526    // maintained as a result of parser callbacks which can occur at
5527    // many points during the parsing of a struct declaration (because
5528    // the #pragma tokens are effectively skipped over during the
5529    // parsing of the struct).
5530    AddAlignmentAttributesForRecord(RD);
5531  }
5532
5533  // If this is a specialization of a member class (of a class template),
5534  // check the specialization.
5535  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5536    Invalid = true;
5537
5538  if (Invalid)
5539    New->setInvalidDecl();
5540
5541  if (Attr)
5542    ProcessDeclAttributeList(S, New, Attr);
5543
5544  // If we're declaring or defining a tag in function prototype scope
5545  // in C, note that this type can only be used within the function.
5546  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5547    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5548
5549  // Set the lexical context. If the tag has a C++ scope specifier, the
5550  // lexical context will be different from the semantic context.
5551  New->setLexicalDeclContext(CurContext);
5552
5553  // Mark this as a friend decl if applicable.
5554  if (TUK == TUK_Friend)
5555    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5556
5557  // Set the access specifier.
5558  if (!Invalid && SearchDC->isRecord())
5559    SetMemberAccessSpecifier(New, PrevDecl, AS);
5560
5561  if (TUK == TUK_Definition)
5562    New->startDefinition();
5563
5564  // If this has an identifier, add it to the scope stack.
5565  if (TUK == TUK_Friend) {
5566    // We might be replacing an existing declaration in the lookup tables;
5567    // if so, borrow its access specifier.
5568    if (PrevDecl)
5569      New->setAccess(PrevDecl->getAccess());
5570
5571    DeclContext *DC = New->getDeclContext()->getLookupContext();
5572    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5573    if (Name) // can be null along some error paths
5574      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5575        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5576  } else if (Name) {
5577    S = getNonFieldDeclScope(S);
5578    PushOnScopeChains(New, S);
5579  } else {
5580    CurContext->addDecl(New);
5581  }
5582
5583  // If this is the C FILE type, notify the AST context.
5584  if (IdentifierInfo *II = New->getIdentifier())
5585    if (!New->isInvalidDecl() &&
5586        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5587        II->isStr("FILE"))
5588      Context.setFILEDecl(New);
5589
5590  OwnedDecl = true;
5591  return DeclPtrTy::make(New);
5592}
5593
5594void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5595  AdjustDeclIfTemplate(TagD);
5596  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5597
5598  // Enter the tag context.
5599  PushDeclContext(S, Tag);
5600}
5601
5602void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5603                                           SourceLocation LBraceLoc) {
5604  AdjustDeclIfTemplate(TagD);
5605  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5606
5607  FieldCollector->StartClass();
5608
5609  if (!Record->getIdentifier())
5610    return;
5611
5612  // C++ [class]p2:
5613  //   [...] The class-name is also inserted into the scope of the
5614  //   class itself; this is known as the injected-class-name. For
5615  //   purposes of access checking, the injected-class-name is treated
5616  //   as if it were a public member name.
5617  CXXRecordDecl *InjectedClassName
5618    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5619                            CurContext, Record->getLocation(),
5620                            Record->getIdentifier(),
5621                            Record->getTagKeywordLoc(),
5622                            Record);
5623  InjectedClassName->setImplicit();
5624  InjectedClassName->setAccess(AS_public);
5625  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5626      InjectedClassName->setDescribedClassTemplate(Template);
5627  PushOnScopeChains(InjectedClassName, S);
5628  assert(InjectedClassName->isInjectedClassName() &&
5629         "Broken injected-class-name");
5630}
5631
5632void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5633                                    SourceLocation RBraceLoc) {
5634  AdjustDeclIfTemplate(TagD);
5635  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5636  Tag->setRBraceLoc(RBraceLoc);
5637
5638  if (isa<CXXRecordDecl>(Tag))
5639    FieldCollector->FinishClass();
5640
5641  // Exit this scope of this tag's definition.
5642  PopDeclContext();
5643
5644  // Notify the consumer that we've defined a tag.
5645  Consumer.HandleTagDeclDefinition(Tag);
5646}
5647
5648void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5649  AdjustDeclIfTemplate(TagD);
5650  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5651  Tag->setInvalidDecl();
5652
5653  // We're undoing ActOnTagStartDefinition here, not
5654  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5655  // the FieldCollector.
5656
5657  PopDeclContext();
5658}
5659
5660// Note that FieldName may be null for anonymous bitfields.
5661bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5662                          QualType FieldTy, const Expr *BitWidth,
5663                          bool *ZeroWidth) {
5664  // Default to true; that shouldn't confuse checks for emptiness
5665  if (ZeroWidth)
5666    *ZeroWidth = true;
5667
5668  // C99 6.7.2.1p4 - verify the field type.
5669  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5670  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5671    // Handle incomplete types with specific error.
5672    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5673      return true;
5674    if (FieldName)
5675      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5676        << FieldName << FieldTy << BitWidth->getSourceRange();
5677    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5678      << FieldTy << BitWidth->getSourceRange();
5679  }
5680
5681  // If the bit-width is type- or value-dependent, don't try to check
5682  // it now.
5683  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5684    return false;
5685
5686  llvm::APSInt Value;
5687  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5688    return true;
5689
5690  if (Value != 0 && ZeroWidth)
5691    *ZeroWidth = false;
5692
5693  // Zero-width bitfield is ok for anonymous field.
5694  if (Value == 0 && FieldName)
5695    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5696
5697  if (Value.isSigned() && Value.isNegative()) {
5698    if (FieldName)
5699      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5700               << FieldName << Value.toString(10);
5701    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5702      << Value.toString(10);
5703  }
5704
5705  if (!FieldTy->isDependentType()) {
5706    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5707    if (Value.getZExtValue() > TypeSize) {
5708      if (!getLangOptions().CPlusPlus) {
5709        if (FieldName)
5710          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5711            << FieldName << (unsigned)Value.getZExtValue()
5712            << (unsigned)TypeSize;
5713
5714        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5715          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5716      }
5717
5718      if (FieldName)
5719        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5720          << FieldName << (unsigned)Value.getZExtValue()
5721          << (unsigned)TypeSize;
5722      else
5723        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5724          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5725    }
5726  }
5727
5728  return false;
5729}
5730
5731/// ActOnField - Each field of a struct/union/class is passed into this in order
5732/// to create a FieldDecl object for it.
5733Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5734                                 SourceLocation DeclStart,
5735                                 Declarator &D, ExprTy *BitfieldWidth) {
5736  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5737                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5738                               AS_public);
5739  return DeclPtrTy::make(Res);
5740}
5741
5742/// HandleField - Analyze a field of a C struct or a C++ data member.
5743///
5744FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5745                             SourceLocation DeclStart,
5746                             Declarator &D, Expr *BitWidth,
5747                             AccessSpecifier AS) {
5748  IdentifierInfo *II = D.getIdentifier();
5749  SourceLocation Loc = DeclStart;
5750  if (II) Loc = D.getIdentifierLoc();
5751
5752  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5753  QualType T = TInfo->getType();
5754  if (getLangOptions().CPlusPlus)
5755    CheckExtraCXXDefaultArguments(D);
5756
5757  DiagnoseFunctionSpecifiers(D);
5758
5759  if (D.getDeclSpec().isThreadSpecified())
5760    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5761
5762  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5763                                         ForRedeclaration);
5764
5765  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5766    // Maybe we will complain about the shadowed template parameter.
5767    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5768    // Just pretend that we didn't see the previous declaration.
5769    PrevDecl = 0;
5770  }
5771
5772  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5773    PrevDecl = 0;
5774
5775  bool Mutable
5776    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5777  SourceLocation TSSL = D.getSourceRange().getBegin();
5778  FieldDecl *NewFD
5779    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5780                     AS, PrevDecl, &D);
5781
5782  if (NewFD->isInvalidDecl())
5783    Record->setInvalidDecl();
5784
5785  if (NewFD->isInvalidDecl() && PrevDecl) {
5786    // Don't introduce NewFD into scope; there's already something
5787    // with the same name in the same scope.
5788  } else if (II) {
5789    PushOnScopeChains(NewFD, S);
5790  } else
5791    Record->addDecl(NewFD);
5792
5793  return NewFD;
5794}
5795
5796/// \brief Build a new FieldDecl and check its well-formedness.
5797///
5798/// This routine builds a new FieldDecl given the fields name, type,
5799/// record, etc. \p PrevDecl should refer to any previous declaration
5800/// with the same name and in the same scope as the field to be
5801/// created.
5802///
5803/// \returns a new FieldDecl.
5804///
5805/// \todo The Declarator argument is a hack. It will be removed once
5806FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5807                                TypeSourceInfo *TInfo,
5808                                RecordDecl *Record, SourceLocation Loc,
5809                                bool Mutable, Expr *BitWidth,
5810                                SourceLocation TSSL,
5811                                AccessSpecifier AS, NamedDecl *PrevDecl,
5812                                Declarator *D) {
5813  IdentifierInfo *II = Name.getAsIdentifierInfo();
5814  bool InvalidDecl = false;
5815  if (D) InvalidDecl = D->isInvalidType();
5816
5817  // If we receive a broken type, recover by assuming 'int' and
5818  // marking this declaration as invalid.
5819  if (T.isNull()) {
5820    InvalidDecl = true;
5821    T = Context.IntTy;
5822  }
5823
5824  QualType EltTy = Context.getBaseElementType(T);
5825  if (!EltTy->isDependentType() &&
5826      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5827    InvalidDecl = true;
5828
5829  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5830  // than a variably modified type.
5831  if (!InvalidDecl && T->isVariablyModifiedType()) {
5832    bool SizeIsNegative;
5833    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5834                                                           SizeIsNegative);
5835    if (!FixedTy.isNull()) {
5836      Diag(Loc, diag::warn_illegal_constant_array_size);
5837      T = FixedTy;
5838    } else {
5839      if (SizeIsNegative)
5840        Diag(Loc, diag::err_typecheck_negative_array_size);
5841      else
5842        Diag(Loc, diag::err_typecheck_field_variable_size);
5843      InvalidDecl = true;
5844    }
5845  }
5846
5847  // Fields can not have abstract class types
5848  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5849                                             diag::err_abstract_type_in_decl,
5850                                             AbstractFieldType))
5851    InvalidDecl = true;
5852
5853  bool ZeroWidth = false;
5854  // If this is declared as a bit-field, check the bit-field.
5855  if (!InvalidDecl && BitWidth &&
5856      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5857    InvalidDecl = true;
5858    DeleteExpr(BitWidth);
5859    BitWidth = 0;
5860    ZeroWidth = false;
5861  }
5862
5863  // Check that 'mutable' is consistent with the type of the declaration.
5864  if (!InvalidDecl && Mutable) {
5865    unsigned DiagID = 0;
5866    if (T->isReferenceType())
5867      DiagID = diag::err_mutable_reference;
5868    else if (T.isConstQualified())
5869      DiagID = diag::err_mutable_const;
5870
5871    if (DiagID) {
5872      SourceLocation ErrLoc = Loc;
5873      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5874        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5875      Diag(ErrLoc, DiagID);
5876      Mutable = false;
5877      InvalidDecl = true;
5878    }
5879  }
5880
5881  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5882                                       BitWidth, Mutable);
5883  if (InvalidDecl)
5884    NewFD->setInvalidDecl();
5885
5886  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5887    Diag(Loc, diag::err_duplicate_member) << II;
5888    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5889    NewFD->setInvalidDecl();
5890  }
5891
5892  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5893    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5894
5895    if (!T->isPODType())
5896      CXXRecord->setPOD(false);
5897    if (!ZeroWidth)
5898      CXXRecord->setEmpty(false);
5899
5900    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5901      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5902      if (RDecl->getDefinition()) {
5903        if (!RDecl->hasTrivialConstructor())
5904          CXXRecord->setHasTrivialConstructor(false);
5905        if (!RDecl->hasTrivialCopyConstructor())
5906          CXXRecord->setHasTrivialCopyConstructor(false);
5907        if (!RDecl->hasTrivialCopyAssignment())
5908          CXXRecord->setHasTrivialCopyAssignment(false);
5909        if (!RDecl->hasTrivialDestructor())
5910          CXXRecord->setHasTrivialDestructor(false);
5911
5912        // C++ 9.5p1: An object of a class with a non-trivial
5913        // constructor, a non-trivial copy constructor, a non-trivial
5914        // destructor, or a non-trivial copy assignment operator
5915        // cannot be a member of a union, nor can an array of such
5916        // objects.
5917        // TODO: C++0x alters this restriction significantly.
5918        if (Record->isUnion()) {
5919          // We check for copy constructors before constructors
5920          // because otherwise we'll never get complaints about
5921          // copy constructors.
5922
5923          CXXSpecialMember member = CXXInvalid;
5924          if (!RDecl->hasTrivialCopyConstructor())
5925            member = CXXCopyConstructor;
5926          else if (!RDecl->hasTrivialConstructor())
5927            member = CXXConstructor;
5928          else if (!RDecl->hasTrivialCopyAssignment())
5929            member = CXXCopyAssignment;
5930          else if (!RDecl->hasTrivialDestructor())
5931            member = CXXDestructor;
5932
5933          if (member != CXXInvalid) {
5934            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5935            DiagnoseNontrivial(RT, member);
5936            NewFD->setInvalidDecl();
5937          }
5938        }
5939      }
5940    }
5941  }
5942
5943  // FIXME: We need to pass in the attributes given an AST
5944  // representation, not a parser representation.
5945  if (D)
5946    // FIXME: What to pass instead of TUScope?
5947    ProcessDeclAttributes(TUScope, NewFD, *D);
5948
5949  if (T.isObjCGCWeak())
5950    Diag(Loc, diag::warn_attribute_weak_on_field);
5951
5952  NewFD->setAccess(AS);
5953
5954  // C++ [dcl.init.aggr]p1:
5955  //   An aggregate is an array or a class (clause 9) with [...] no
5956  //   private or protected non-static data members (clause 11).
5957  // A POD must be an aggregate.
5958  if (getLangOptions().CPlusPlus &&
5959      (AS == AS_private || AS == AS_protected)) {
5960    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5961    CXXRecord->setAggregate(false);
5962    CXXRecord->setPOD(false);
5963  }
5964
5965  return NewFD;
5966}
5967
5968/// DiagnoseNontrivial - Given that a class has a non-trivial
5969/// special member, figure out why.
5970void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5971  QualType QT(T, 0U);
5972  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5973
5974  // Check whether the member was user-declared.
5975  switch (member) {
5976  case CXXInvalid:
5977    break;
5978
5979  case CXXConstructor:
5980    if (RD->hasUserDeclaredConstructor()) {
5981      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5982      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5983        const FunctionDecl *body = 0;
5984        ci->hasBody(body);
5985        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5986          SourceLocation CtorLoc = ci->getLocation();
5987          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5988          return;
5989        }
5990      }
5991
5992      assert(0 && "found no user-declared constructors");
5993      return;
5994    }
5995    break;
5996
5997  case CXXCopyConstructor:
5998    if (RD->hasUserDeclaredCopyConstructor()) {
5999      SourceLocation CtorLoc =
6000        RD->getCopyConstructor(Context, 0)->getLocation();
6001      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6002      return;
6003    }
6004    break;
6005
6006  case CXXCopyAssignment:
6007    if (RD->hasUserDeclaredCopyAssignment()) {
6008      // FIXME: this should use the location of the copy
6009      // assignment, not the type.
6010      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6011      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6012      return;
6013    }
6014    break;
6015
6016  case CXXDestructor:
6017    if (RD->hasUserDeclaredDestructor()) {
6018      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6019      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6020      return;
6021    }
6022    break;
6023  }
6024
6025  typedef CXXRecordDecl::base_class_iterator base_iter;
6026
6027  // Virtual bases and members inhibit trivial copying/construction,
6028  // but not trivial destruction.
6029  if (member != CXXDestructor) {
6030    // Check for virtual bases.  vbases includes indirect virtual bases,
6031    // so we just iterate through the direct bases.
6032    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6033      if (bi->isVirtual()) {
6034        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6035        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6036        return;
6037      }
6038
6039    // Check for virtual methods.
6040    typedef CXXRecordDecl::method_iterator meth_iter;
6041    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6042         ++mi) {
6043      if (mi->isVirtual()) {
6044        SourceLocation MLoc = mi->getSourceRange().getBegin();
6045        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6046        return;
6047      }
6048    }
6049  }
6050
6051  bool (CXXRecordDecl::*hasTrivial)() const;
6052  switch (member) {
6053  case CXXConstructor:
6054    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6055  case CXXCopyConstructor:
6056    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6057  case CXXCopyAssignment:
6058    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6059  case CXXDestructor:
6060    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6061  default:
6062    assert(0 && "unexpected special member"); return;
6063  }
6064
6065  // Check for nontrivial bases (and recurse).
6066  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6067    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6068    assert(BaseRT && "Don't know how to handle dependent bases");
6069    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6070    if (!(BaseRecTy->*hasTrivial)()) {
6071      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6072      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6073      DiagnoseNontrivial(BaseRT, member);
6074      return;
6075    }
6076  }
6077
6078  // Check for nontrivial members (and recurse).
6079  typedef RecordDecl::field_iterator field_iter;
6080  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6081       ++fi) {
6082    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6083    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6084      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6085
6086      if (!(EltRD->*hasTrivial)()) {
6087        SourceLocation FLoc = (*fi)->getLocation();
6088        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6089        DiagnoseNontrivial(EltRT, member);
6090        return;
6091      }
6092    }
6093  }
6094
6095  assert(0 && "found no explanation for non-trivial member");
6096}
6097
6098/// TranslateIvarVisibility - Translate visibility from a token ID to an
6099///  AST enum value.
6100static ObjCIvarDecl::AccessControl
6101TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6102  switch (ivarVisibility) {
6103  default: assert(0 && "Unknown visitibility kind");
6104  case tok::objc_private: return ObjCIvarDecl::Private;
6105  case tok::objc_public: return ObjCIvarDecl::Public;
6106  case tok::objc_protected: return ObjCIvarDecl::Protected;
6107  case tok::objc_package: return ObjCIvarDecl::Package;
6108  }
6109}
6110
6111/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6112/// in order to create an IvarDecl object for it.
6113Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6114                                SourceLocation DeclStart,
6115                                DeclPtrTy IntfDecl,
6116                                Declarator &D, ExprTy *BitfieldWidth,
6117                                tok::ObjCKeywordKind Visibility) {
6118
6119  IdentifierInfo *II = D.getIdentifier();
6120  Expr *BitWidth = (Expr*)BitfieldWidth;
6121  SourceLocation Loc = DeclStart;
6122  if (II) Loc = D.getIdentifierLoc();
6123
6124  // FIXME: Unnamed fields can be handled in various different ways, for
6125  // example, unnamed unions inject all members into the struct namespace!
6126
6127  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6128  QualType T = TInfo->getType();
6129
6130  if (BitWidth) {
6131    // 6.7.2.1p3, 6.7.2.1p4
6132    if (VerifyBitField(Loc, II, T, BitWidth)) {
6133      D.setInvalidType();
6134      DeleteExpr(BitWidth);
6135      BitWidth = 0;
6136    }
6137  } else {
6138    // Not a bitfield.
6139
6140    // validate II.
6141
6142  }
6143  if (T->isReferenceType()) {
6144    Diag(Loc, diag::err_ivar_reference_type);
6145    D.setInvalidType();
6146  }
6147  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6148  // than a variably modified type.
6149  else if (T->isVariablyModifiedType()) {
6150    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6151    D.setInvalidType();
6152  }
6153
6154  // Get the visibility (access control) for this ivar.
6155  ObjCIvarDecl::AccessControl ac =
6156    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6157                                        : ObjCIvarDecl::None;
6158  // Must set ivar's DeclContext to its enclosing interface.
6159  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6160  ObjCContainerDecl *EnclosingContext;
6161  if (ObjCImplementationDecl *IMPDecl =
6162      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6163    // Case of ivar declared in an implementation. Context is that of its class.
6164    EnclosingContext = IMPDecl->getClassInterface();
6165    assert(EnclosingContext && "Implementation has no class interface!");
6166  } else {
6167    if (ObjCCategoryDecl *CDecl =
6168        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6169      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6170        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6171        return DeclPtrTy();
6172      }
6173    }
6174    EnclosingContext = EnclosingDecl;
6175  }
6176
6177  // Construct the decl.
6178  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6179                                             EnclosingContext, Loc, II, T,
6180                                             TInfo, ac, (Expr *)BitfieldWidth);
6181
6182  if (II) {
6183    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6184                                           ForRedeclaration);
6185    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6186        && !isa<TagDecl>(PrevDecl)) {
6187      Diag(Loc, diag::err_duplicate_member) << II;
6188      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6189      NewID->setInvalidDecl();
6190    }
6191  }
6192
6193  // Process attributes attached to the ivar.
6194  ProcessDeclAttributes(S, NewID, D);
6195
6196  if (D.isInvalidType())
6197    NewID->setInvalidDecl();
6198
6199  if (II) {
6200    // FIXME: When interfaces are DeclContexts, we'll need to add
6201    // these to the interface.
6202    S->AddDecl(DeclPtrTy::make(NewID));
6203    IdResolver.AddDecl(NewID);
6204  }
6205
6206  return DeclPtrTy::make(NewID);
6207}
6208
6209void Sema::ActOnFields(Scope* S,
6210                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6211                       DeclPtrTy *Fields, unsigned NumFields,
6212                       SourceLocation LBrac, SourceLocation RBrac,
6213                       AttributeList *Attr) {
6214  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6215  assert(EnclosingDecl && "missing record or interface decl");
6216
6217  // If the decl this is being inserted into is invalid, then it may be a
6218  // redeclaration or some other bogus case.  Don't try to add fields to it.
6219  if (EnclosingDecl->isInvalidDecl()) {
6220    // FIXME: Deallocate fields?
6221    return;
6222  }
6223
6224
6225  // Verify that all the fields are okay.
6226  unsigned NumNamedMembers = 0;
6227  llvm::SmallVector<FieldDecl*, 32> RecFields;
6228
6229  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6230  for (unsigned i = 0; i != NumFields; ++i) {
6231    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6232
6233    // Get the type for the field.
6234    Type *FDTy = FD->getType().getTypePtr();
6235
6236    if (!FD->isAnonymousStructOrUnion()) {
6237      // Remember all fields written by the user.
6238      RecFields.push_back(FD);
6239    }
6240
6241    // If the field is already invalid for some reason, don't emit more
6242    // diagnostics about it.
6243    if (FD->isInvalidDecl()) {
6244      EnclosingDecl->setInvalidDecl();
6245      continue;
6246    }
6247
6248    // C99 6.7.2.1p2:
6249    //   A structure or union shall not contain a member with
6250    //   incomplete or function type (hence, a structure shall not
6251    //   contain an instance of itself, but may contain a pointer to
6252    //   an instance of itself), except that the last member of a
6253    //   structure with more than one named member may have incomplete
6254    //   array type; such a structure (and any union containing,
6255    //   possibly recursively, a member that is such a structure)
6256    //   shall not be a member of a structure or an element of an
6257    //   array.
6258    if (FDTy->isFunctionType()) {
6259      // Field declared as a function.
6260      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6261        << FD->getDeclName();
6262      FD->setInvalidDecl();
6263      EnclosingDecl->setInvalidDecl();
6264      continue;
6265    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6266               Record && Record->isStruct()) {
6267      // Flexible array member.
6268      if (NumNamedMembers < 1) {
6269        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6270          << FD->getDeclName();
6271        FD->setInvalidDecl();
6272        EnclosingDecl->setInvalidDecl();
6273        continue;
6274      }
6275      if (!FD->getType()->isDependentType() &&
6276          !Context.getBaseElementType(FD->getType())->isPODType()) {
6277        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6278          << FD->getDeclName() << FD->getType();
6279        FD->setInvalidDecl();
6280        EnclosingDecl->setInvalidDecl();
6281        continue;
6282      }
6283
6284      // Okay, we have a legal flexible array member at the end of the struct.
6285      if (Record)
6286        Record->setHasFlexibleArrayMember(true);
6287    } else if (!FDTy->isDependentType() &&
6288               RequireCompleteType(FD->getLocation(), FD->getType(),
6289                                   diag::err_field_incomplete)) {
6290      // Incomplete type
6291      FD->setInvalidDecl();
6292      EnclosingDecl->setInvalidDecl();
6293      continue;
6294    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6295      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6296        // If this is a member of a union, then entire union becomes "flexible".
6297        if (Record && Record->isUnion()) {
6298          Record->setHasFlexibleArrayMember(true);
6299        } else {
6300          // If this is a struct/class and this is not the last element, reject
6301          // it.  Note that GCC supports variable sized arrays in the middle of
6302          // structures.
6303          if (i != NumFields-1)
6304            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6305              << FD->getDeclName() << FD->getType();
6306          else {
6307            // We support flexible arrays at the end of structs in
6308            // other structs as an extension.
6309            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6310              << FD->getDeclName();
6311            if (Record)
6312              Record->setHasFlexibleArrayMember(true);
6313          }
6314        }
6315      }
6316      if (Record && FDTTy->getDecl()->hasObjectMember())
6317        Record->setHasObjectMember(true);
6318    } else if (FDTy->isObjCObjectType()) {
6319      /// A field cannot be an Objective-c object
6320      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6321      FD->setInvalidDecl();
6322      EnclosingDecl->setInvalidDecl();
6323      continue;
6324    } else if (getLangOptions().ObjC1 &&
6325               getLangOptions().getGCMode() != LangOptions::NonGC &&
6326               Record &&
6327               (FD->getType()->isObjCObjectPointerType() ||
6328                FD->getType().isObjCGCStrong()))
6329      Record->setHasObjectMember(true);
6330    else if (Context.getAsArrayType(FD->getType())) {
6331      QualType BaseType = Context.getBaseElementType(FD->getType());
6332      if (Record && BaseType->isRecordType() &&
6333          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6334        Record->setHasObjectMember(true);
6335    }
6336    // Keep track of the number of named members.
6337    if (FD->getIdentifier())
6338      ++NumNamedMembers;
6339  }
6340
6341  // Okay, we successfully defined 'Record'.
6342  if (Record) {
6343    Record->completeDefinition();
6344  } else {
6345    ObjCIvarDecl **ClsFields =
6346      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6347    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6348      ID->setLocEnd(RBrac);
6349      // Add ivar's to class's DeclContext.
6350      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6351        ClsFields[i]->setLexicalDeclContext(ID);
6352        ID->addDecl(ClsFields[i]);
6353      }
6354      // Must enforce the rule that ivars in the base classes may not be
6355      // duplicates.
6356      if (ID->getSuperClass())
6357        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6358    } else if (ObjCImplementationDecl *IMPDecl =
6359                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6360      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6361      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6362        // Ivar declared in @implementation never belongs to the implementation.
6363        // Only it is in implementation's lexical context.
6364        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6365      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6366    } else if (ObjCCategoryDecl *CDecl =
6367                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6368      // case of ivars in class extension; all other cases have been
6369      // reported as errors elsewhere.
6370      // FIXME. Class extension does not have a LocEnd field.
6371      // CDecl->setLocEnd(RBrac);
6372      // Add ivar's to class extension's DeclContext.
6373      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6374        ClsFields[i]->setLexicalDeclContext(CDecl);
6375        CDecl->addDecl(ClsFields[i]);
6376      }
6377    }
6378  }
6379
6380  if (Attr)
6381    ProcessDeclAttributeList(S, Record, Attr);
6382
6383  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6384  // set the visibility of this record.
6385  if (Record && !Record->getDeclContext()->isRecord())
6386    AddPushedVisibilityAttribute(Record);
6387}
6388
6389/// \brief Determine whether the given integral value is representable within
6390/// the given type T.
6391static bool isRepresentableIntegerValue(ASTContext &Context,
6392                                        llvm::APSInt &Value,
6393                                        QualType T) {
6394  assert(T->isIntegralType(Context) && "Integral type required!");
6395  unsigned BitWidth = Context.getIntWidth(T);
6396
6397  if (Value.isUnsigned() || Value.isNonNegative())
6398    return Value.getActiveBits() < BitWidth;
6399
6400  return Value.getMinSignedBits() <= BitWidth;
6401}
6402
6403// \brief Given an integral type, return the next larger integral type
6404// (or a NULL type of no such type exists).
6405static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6406  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6407  // enum checking below.
6408  assert(T->isIntegralType(Context) && "Integral type required!");
6409  const unsigned NumTypes = 4;
6410  QualType SignedIntegralTypes[NumTypes] = {
6411    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6412  };
6413  QualType UnsignedIntegralTypes[NumTypes] = {
6414    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6415    Context.UnsignedLongLongTy
6416  };
6417
6418  unsigned BitWidth = Context.getTypeSize(T);
6419  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6420                                            : UnsignedIntegralTypes;
6421  for (unsigned I = 0; I != NumTypes; ++I)
6422    if (Context.getTypeSize(Types[I]) > BitWidth)
6423      return Types[I];
6424
6425  return QualType();
6426}
6427
6428EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6429                                          EnumConstantDecl *LastEnumConst,
6430                                          SourceLocation IdLoc,
6431                                          IdentifierInfo *Id,
6432                                          ExprArg val) {
6433  Expr *Val = (Expr *)val.get();
6434
6435  unsigned IntWidth = Context.Target.getIntWidth();
6436  llvm::APSInt EnumVal(IntWidth);
6437  QualType EltTy;
6438  if (Val) {
6439    if (Enum->isDependentType() || Val->isTypeDependent())
6440      EltTy = Context.DependentTy;
6441    else {
6442      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6443      SourceLocation ExpLoc;
6444      if (!Val->isValueDependent() &&
6445          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6446        Val = 0;
6447      } else {
6448        if (!getLangOptions().CPlusPlus) {
6449          // C99 6.7.2.2p2:
6450          //   The expression that defines the value of an enumeration constant
6451          //   shall be an integer constant expression that has a value
6452          //   representable as an int.
6453
6454          // Complain if the value is not representable in an int.
6455          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6456            Diag(IdLoc, diag::ext_enum_value_not_int)
6457              << EnumVal.toString(10) << Val->getSourceRange()
6458              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6459          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6460            // Force the type of the expression to 'int'.
6461            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6462
6463            if (Val != val.get()) {
6464              val.release();
6465              val = Val;
6466            }
6467          }
6468        }
6469
6470        // C++0x [dcl.enum]p5:
6471        //   If the underlying type is not fixed, the type of each enumerator
6472        //   is the type of its initializing value:
6473        //     - If an initializer is specified for an enumerator, the
6474        //       initializing value has the same type as the expression.
6475        EltTy = Val->getType();
6476      }
6477    }
6478  }
6479
6480  if (!Val) {
6481    if (Enum->isDependentType())
6482      EltTy = Context.DependentTy;
6483    else if (!LastEnumConst) {
6484      // C++0x [dcl.enum]p5:
6485      //   If the underlying type is not fixed, the type of each enumerator
6486      //   is the type of its initializing value:
6487      //     - If no initializer is specified for the first enumerator, the
6488      //       initializing value has an unspecified integral type.
6489      //
6490      // GCC uses 'int' for its unspecified integral type, as does
6491      // C99 6.7.2.2p3.
6492      EltTy = Context.IntTy;
6493    } else {
6494      // Assign the last value + 1.
6495      EnumVal = LastEnumConst->getInitVal();
6496      ++EnumVal;
6497      EltTy = LastEnumConst->getType();
6498
6499      // Check for overflow on increment.
6500      if (EnumVal < LastEnumConst->getInitVal()) {
6501        // C++0x [dcl.enum]p5:
6502        //   If the underlying type is not fixed, the type of each enumerator
6503        //   is the type of its initializing value:
6504        //
6505        //     - Otherwise the type of the initializing value is the same as
6506        //       the type of the initializing value of the preceding enumerator
6507        //       unless the incremented value is not representable in that type,
6508        //       in which case the type is an unspecified integral type
6509        //       sufficient to contain the incremented value. If no such type
6510        //       exists, the program is ill-formed.
6511        QualType T = getNextLargerIntegralType(Context, EltTy);
6512        if (T.isNull()) {
6513          // There is no integral type larger enough to represent this
6514          // value. Complain, then allow the value to wrap around.
6515          EnumVal = LastEnumConst->getInitVal();
6516          EnumVal.zext(EnumVal.getBitWidth() * 2);
6517          Diag(IdLoc, diag::warn_enumerator_too_large)
6518            << EnumVal.toString(10);
6519        } else {
6520          EltTy = T;
6521        }
6522
6523        // Retrieve the last enumerator's value, extent that type to the
6524        // type that is supposed to be large enough to represent the incremented
6525        // value, then increment.
6526        EnumVal = LastEnumConst->getInitVal();
6527        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6528        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6529        ++EnumVal;
6530
6531        // If we're not in C++, diagnose the overflow of enumerator values,
6532        // which in C99 means that the enumerator value is not representable in
6533        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6534        // permits enumerator values that are representable in some larger
6535        // integral type.
6536        if (!getLangOptions().CPlusPlus && !T.isNull())
6537          Diag(IdLoc, diag::warn_enum_value_overflow);
6538      } else if (!getLangOptions().CPlusPlus &&
6539                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6540        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6541        Diag(IdLoc, diag::ext_enum_value_not_int)
6542          << EnumVal.toString(10) << 1;
6543      }
6544    }
6545  }
6546
6547  if (!EltTy->isDependentType()) {
6548    // Make the enumerator value match the signedness and size of the
6549    // enumerator's type.
6550    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6551    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6552  }
6553
6554  val.release();
6555  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6556                                  Val, EnumVal);
6557}
6558
6559
6560Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6561                                        DeclPtrTy lastEnumConst,
6562                                        SourceLocation IdLoc,
6563                                        IdentifierInfo *Id,
6564                                        SourceLocation EqualLoc, ExprTy *val) {
6565  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6566  EnumConstantDecl *LastEnumConst =
6567    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6568  Expr *Val = static_cast<Expr*>(val);
6569
6570  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6571  // we find one that is.
6572  S = getNonFieldDeclScope(S);
6573
6574  // Verify that there isn't already something declared with this name in this
6575  // scope.
6576  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6577                                         ForRedeclaration);
6578  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6579    // Maybe we will complain about the shadowed template parameter.
6580    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6581    // Just pretend that we didn't see the previous declaration.
6582    PrevDecl = 0;
6583  }
6584
6585  if (PrevDecl) {
6586    // When in C++, we may get a TagDecl with the same name; in this case the
6587    // enum constant will 'hide' the tag.
6588    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6589           "Received TagDecl when not in C++!");
6590    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6591      if (isa<EnumConstantDecl>(PrevDecl))
6592        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6593      else
6594        Diag(IdLoc, diag::err_redefinition) << Id;
6595      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6596      return DeclPtrTy();
6597    }
6598  }
6599
6600  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6601                                            IdLoc, Id, Owned(Val));
6602
6603  // Register this decl in the current scope stack.
6604  if (New) {
6605    New->setAccess(TheEnumDecl->getAccess());
6606    PushOnScopeChains(New, S);
6607  }
6608
6609  return DeclPtrTy::make(New);
6610}
6611
6612void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6613                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6614                         DeclPtrTy *Elements, unsigned NumElements,
6615                         Scope *S, AttributeList *Attr) {
6616  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6617  QualType EnumType = Context.getTypeDeclType(Enum);
6618
6619  if (Attr)
6620    ProcessDeclAttributeList(S, Enum, Attr);
6621
6622  if (Enum->isDependentType()) {
6623    for (unsigned i = 0; i != NumElements; ++i) {
6624      EnumConstantDecl *ECD =
6625        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6626      if (!ECD) continue;
6627
6628      ECD->setType(EnumType);
6629    }
6630
6631    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6632    return;
6633  }
6634
6635  // TODO: If the result value doesn't fit in an int, it must be a long or long
6636  // long value.  ISO C does not support this, but GCC does as an extension,
6637  // emit a warning.
6638  unsigned IntWidth = Context.Target.getIntWidth();
6639  unsigned CharWidth = Context.Target.getCharWidth();
6640  unsigned ShortWidth = Context.Target.getShortWidth();
6641
6642  // Verify that all the values are okay, compute the size of the values, and
6643  // reverse the list.
6644  unsigned NumNegativeBits = 0;
6645  unsigned NumPositiveBits = 0;
6646
6647  // Keep track of whether all elements have type int.
6648  bool AllElementsInt = true;
6649
6650  for (unsigned i = 0; i != NumElements; ++i) {
6651    EnumConstantDecl *ECD =
6652      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6653    if (!ECD) continue;  // Already issued a diagnostic.
6654
6655    const llvm::APSInt &InitVal = ECD->getInitVal();
6656
6657    // Keep track of the size of positive and negative values.
6658    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6659      NumPositiveBits = std::max(NumPositiveBits,
6660                                 (unsigned)InitVal.getActiveBits());
6661    else
6662      NumNegativeBits = std::max(NumNegativeBits,
6663                                 (unsigned)InitVal.getMinSignedBits());
6664
6665    // Keep track of whether every enum element has type int (very commmon).
6666    if (AllElementsInt)
6667      AllElementsInt = ECD->getType() == Context.IntTy;
6668  }
6669
6670  // Figure out the type that should be used for this enum.
6671  // FIXME: Support -fshort-enums.
6672  QualType BestType;
6673  unsigned BestWidth;
6674
6675  // C++0x N3000 [conv.prom]p3:
6676  //   An rvalue of an unscoped enumeration type whose underlying
6677  //   type is not fixed can be converted to an rvalue of the first
6678  //   of the following types that can represent all the values of
6679  //   the enumeration: int, unsigned int, long int, unsigned long
6680  //   int, long long int, or unsigned long long int.
6681  // C99 6.4.4.3p2:
6682  //   An identifier declared as an enumeration constant has type int.
6683  // The C99 rule is modified by a gcc extension
6684  QualType BestPromotionType;
6685
6686  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6687
6688  if (NumNegativeBits) {
6689    // If there is a negative value, figure out the smallest integer type (of
6690    // int/long/longlong) that fits.
6691    // If it's packed, check also if it fits a char or a short.
6692    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6693      BestType = Context.SignedCharTy;
6694      BestWidth = CharWidth;
6695    } else if (Packed && NumNegativeBits <= ShortWidth &&
6696               NumPositiveBits < ShortWidth) {
6697      BestType = Context.ShortTy;
6698      BestWidth = ShortWidth;
6699    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6700      BestType = Context.IntTy;
6701      BestWidth = IntWidth;
6702    } else {
6703      BestWidth = Context.Target.getLongWidth();
6704
6705      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6706        BestType = Context.LongTy;
6707      } else {
6708        BestWidth = Context.Target.getLongLongWidth();
6709
6710        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6711          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6712        BestType = Context.LongLongTy;
6713      }
6714    }
6715    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6716  } else {
6717    // If there is no negative value, figure out the smallest type that fits
6718    // all of the enumerator values.
6719    // If it's packed, check also if it fits a char or a short.
6720    if (Packed && NumPositiveBits <= CharWidth) {
6721      BestType = Context.UnsignedCharTy;
6722      BestPromotionType = Context.IntTy;
6723      BestWidth = CharWidth;
6724    } else if (Packed && NumPositiveBits <= ShortWidth) {
6725      BestType = Context.UnsignedShortTy;
6726      BestPromotionType = Context.IntTy;
6727      BestWidth = ShortWidth;
6728    } else if (NumPositiveBits <= IntWidth) {
6729      BestType = Context.UnsignedIntTy;
6730      BestWidth = IntWidth;
6731      BestPromotionType
6732        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6733                           ? Context.UnsignedIntTy : Context.IntTy;
6734    } else if (NumPositiveBits <=
6735               (BestWidth = Context.Target.getLongWidth())) {
6736      BestType = Context.UnsignedLongTy;
6737      BestPromotionType
6738        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6739                           ? Context.UnsignedLongTy : Context.LongTy;
6740    } else {
6741      BestWidth = Context.Target.getLongLongWidth();
6742      assert(NumPositiveBits <= BestWidth &&
6743             "How could an initializer get larger than ULL?");
6744      BestType = Context.UnsignedLongLongTy;
6745      BestPromotionType
6746        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6747                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6748    }
6749  }
6750
6751  // Loop over all of the enumerator constants, changing their types to match
6752  // the type of the enum if needed.
6753  for (unsigned i = 0; i != NumElements; ++i) {
6754    EnumConstantDecl *ECD =
6755      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6756    if (!ECD) continue;  // Already issued a diagnostic.
6757
6758    // Standard C says the enumerators have int type, but we allow, as an
6759    // extension, the enumerators to be larger than int size.  If each
6760    // enumerator value fits in an int, type it as an int, otherwise type it the
6761    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6762    // that X has type 'int', not 'unsigned'.
6763
6764    // Determine whether the value fits into an int.
6765    llvm::APSInt InitVal = ECD->getInitVal();
6766
6767    // If it fits into an integer type, force it.  Otherwise force it to match
6768    // the enum decl type.
6769    QualType NewTy;
6770    unsigned NewWidth;
6771    bool NewSign;
6772    if (!getLangOptions().CPlusPlus &&
6773        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6774      NewTy = Context.IntTy;
6775      NewWidth = IntWidth;
6776      NewSign = true;
6777    } else if (ECD->getType() == BestType) {
6778      // Already the right type!
6779      if (getLangOptions().CPlusPlus)
6780        // C++ [dcl.enum]p4: Following the closing brace of an
6781        // enum-specifier, each enumerator has the type of its
6782        // enumeration.
6783        ECD->setType(EnumType);
6784      continue;
6785    } else {
6786      NewTy = BestType;
6787      NewWidth = BestWidth;
6788      NewSign = BestType->isSignedIntegerType();
6789    }
6790
6791    // Adjust the APSInt value.
6792    InitVal.extOrTrunc(NewWidth);
6793    InitVal.setIsSigned(NewSign);
6794    ECD->setInitVal(InitVal);
6795
6796    // Adjust the Expr initializer and type.
6797    if (ECD->getInitExpr())
6798      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6799                                                      CastExpr::CK_IntegralCast,
6800                                                      ECD->getInitExpr(),
6801                                                      CXXBaseSpecifierArray(),
6802                                                     ImplicitCastExpr::RValue));
6803    if (getLangOptions().CPlusPlus)
6804      // C++ [dcl.enum]p4: Following the closing brace of an
6805      // enum-specifier, each enumerator has the type of its
6806      // enumeration.
6807      ECD->setType(EnumType);
6808    else
6809      ECD->setType(NewTy);
6810  }
6811
6812  Enum->completeDefinition(BestType, BestPromotionType,
6813                           NumPositiveBits, NumNegativeBits);
6814}
6815
6816Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6817                                            ExprArg expr) {
6818  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6819
6820  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6821                                                   Loc, AsmString);
6822  CurContext->addDecl(New);
6823  return DeclPtrTy::make(New);
6824}
6825
6826void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6827                             SourceLocation PragmaLoc,
6828                             SourceLocation NameLoc) {
6829  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6830
6831  if (PrevDecl) {
6832    PrevDecl->addAttr(::new (Context) WeakAttr());
6833  } else {
6834    (void)WeakUndeclaredIdentifiers.insert(
6835      std::pair<IdentifierInfo*,WeakInfo>
6836        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6837  }
6838}
6839
6840void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6841                                IdentifierInfo* AliasName,
6842                                SourceLocation PragmaLoc,
6843                                SourceLocation NameLoc,
6844                                SourceLocation AliasNameLoc) {
6845  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6846                                    LookupOrdinaryName);
6847  WeakInfo W = WeakInfo(Name, NameLoc);
6848
6849  if (PrevDecl) {
6850    if (!PrevDecl->hasAttr<AliasAttr>())
6851      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6852        DeclApplyPragmaWeak(TUScope, ND, W);
6853  } else {
6854    (void)WeakUndeclaredIdentifiers.insert(
6855      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6856  }
6857}
6858