SemaDecl.cpp revision 9c4eb1f3438370355f51dc8c62f2ca4803e3338d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  if (OldTypeInfo.getCC() != CC_Default &&
1148      NewTypeInfo.getCC() == CC_Default) {
1149    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1150    New->setType(NewQType);
1151    NewQType = Context.getCanonicalType(NewQType);
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1166    NewQType = Context.getNoReturnType(NewQType);
1167    New->setType(NewQType);
1168    assert(NewQType.isCanonical());
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1173    if (NewType->getRegParmType()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  if (getLangOptions().CPlusPlus) {
1187    // (C++98 13.1p2):
1188    //   Certain function declarations cannot be overloaded:
1189    //     -- Function declarations that differ only in the return type
1190    //        cannot be overloaded.
1191    QualType OldReturnType
1192      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1193    QualType NewReturnType
1194      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1195    QualType ResQT;
1196    if (OldReturnType != NewReturnType) {
1197      if (NewReturnType->isObjCObjectPointerType()
1198          && OldReturnType->isObjCObjectPointerType())
1199        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1200      if (ResQT.isNull()) {
1201        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1202        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1203        return true;
1204      }
1205      else
1206        NewQType = ResQT;
1207    }
1208
1209    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1210    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1211    if (OldMethod && NewMethod) {
1212      // Preserve triviality.
1213      NewMethod->setTrivial(OldMethod->isTrivial());
1214
1215      bool isFriend = NewMethod->getFriendObjectKind();
1216
1217      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1218        //    -- Member function declarations with the same name and the
1219        //       same parameter types cannot be overloaded if any of them
1220        //       is a static member function declaration.
1221        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1222          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1223          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224          return true;
1225        }
1226
1227        // C++ [class.mem]p1:
1228        //   [...] A member shall not be declared twice in the
1229        //   member-specification, except that a nested class or member
1230        //   class template can be declared and then later defined.
1231        unsigned NewDiag;
1232        if (isa<CXXConstructorDecl>(OldMethod))
1233          NewDiag = diag::err_constructor_redeclared;
1234        else if (isa<CXXDestructorDecl>(NewMethod))
1235          NewDiag = diag::err_destructor_redeclared;
1236        else if (isa<CXXConversionDecl>(NewMethod))
1237          NewDiag = diag::err_conv_function_redeclared;
1238        else
1239          NewDiag = diag::err_member_redeclared;
1240
1241        Diag(New->getLocation(), NewDiag);
1242        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1243
1244      // Complain if this is an explicit declaration of a special
1245      // member that was initially declared implicitly.
1246      //
1247      // As an exception, it's okay to befriend such methods in order
1248      // to permit the implicit constructor/destructor/operator calls.
1249      } else if (OldMethod->isImplicit()) {
1250        if (isFriend) {
1251          NewMethod->setImplicit();
1252        } else {
1253          Diag(NewMethod->getLocation(),
1254               diag::err_definition_of_implicitly_declared_member)
1255            << New << getSpecialMember(OldMethod);
1256          return true;
1257        }
1258      }
1259    }
1260
1261    // (C++98 8.3.5p3):
1262    //   All declarations for a function shall agree exactly in both the
1263    //   return type and the parameter-type-list.
1264    // attributes should be ignored when comparing.
1265    if (Context.getNoReturnType(OldQType, false) ==
1266        Context.getNoReturnType(NewQType, false))
1267      return MergeCompatibleFunctionDecls(New, Old);
1268
1269    // Fall through for conflicting redeclarations and redefinitions.
1270  }
1271
1272  // C: Function types need to be compatible, not identical. This handles
1273  // duplicate function decls like "void f(int); void f(enum X);" properly.
1274  if (!getLangOptions().CPlusPlus &&
1275      Context.typesAreCompatible(OldQType, NewQType)) {
1276    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1277    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1278    const FunctionProtoType *OldProto = 0;
1279    if (isa<FunctionNoProtoType>(NewFuncType) &&
1280        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1281      // The old declaration provided a function prototype, but the
1282      // new declaration does not. Merge in the prototype.
1283      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1284      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1285                                                 OldProto->arg_type_end());
1286      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1287                                         ParamTypes.data(), ParamTypes.size(),
1288                                         OldProto->isVariadic(),
1289                                         OldProto->getTypeQuals(),
1290                                         false, false, 0, 0,
1291                                         OldProto->getExtInfo());
1292      New->setType(NewQType);
1293      New->setHasInheritedPrototype();
1294
1295      // Synthesize a parameter for each argument type.
1296      llvm::SmallVector<ParmVarDecl*, 16> Params;
1297      for (FunctionProtoType::arg_type_iterator
1298             ParamType = OldProto->arg_type_begin(),
1299             ParamEnd = OldProto->arg_type_end();
1300           ParamType != ParamEnd; ++ParamType) {
1301        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1302                                                 SourceLocation(), 0,
1303                                                 *ParamType, /*TInfo=*/0,
1304                                                 SC_None, SC_None,
1305                                                 0);
1306        Param->setImplicit();
1307        Params.push_back(Param);
1308      }
1309
1310      New->setParams(Params.data(), Params.size());
1311    }
1312
1313    return MergeCompatibleFunctionDecls(New, Old);
1314  }
1315
1316  // GNU C permits a K&R definition to follow a prototype declaration
1317  // if the declared types of the parameters in the K&R definition
1318  // match the types in the prototype declaration, even when the
1319  // promoted types of the parameters from the K&R definition differ
1320  // from the types in the prototype. GCC then keeps the types from
1321  // the prototype.
1322  //
1323  // If a variadic prototype is followed by a non-variadic K&R definition,
1324  // the K&R definition becomes variadic.  This is sort of an edge case, but
1325  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1326  // C99 6.9.1p8.
1327  if (!getLangOptions().CPlusPlus &&
1328      Old->hasPrototype() && !New->hasPrototype() &&
1329      New->getType()->getAs<FunctionProtoType>() &&
1330      Old->getNumParams() == New->getNumParams()) {
1331    llvm::SmallVector<QualType, 16> ArgTypes;
1332    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1333    const FunctionProtoType *OldProto
1334      = Old->getType()->getAs<FunctionProtoType>();
1335    const FunctionProtoType *NewProto
1336      = New->getType()->getAs<FunctionProtoType>();
1337
1338    // Determine whether this is the GNU C extension.
1339    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1340                                               NewProto->getResultType());
1341    bool LooseCompatible = !MergedReturn.isNull();
1342    for (unsigned Idx = 0, End = Old->getNumParams();
1343         LooseCompatible && Idx != End; ++Idx) {
1344      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1345      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1346      if (Context.typesAreCompatible(OldParm->getType(),
1347                                     NewProto->getArgType(Idx))) {
1348        ArgTypes.push_back(NewParm->getType());
1349      } else if (Context.typesAreCompatible(OldParm->getType(),
1350                                            NewParm->getType(),
1351                                            /*CompareUnqualified=*/true)) {
1352        GNUCompatibleParamWarning Warn
1353          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1354        Warnings.push_back(Warn);
1355        ArgTypes.push_back(NewParm->getType());
1356      } else
1357        LooseCompatible = false;
1358    }
1359
1360    if (LooseCompatible) {
1361      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1362        Diag(Warnings[Warn].NewParm->getLocation(),
1363             diag::ext_param_promoted_not_compatible_with_prototype)
1364          << Warnings[Warn].PromotedType
1365          << Warnings[Warn].OldParm->getType();
1366        if (Warnings[Warn].OldParm->getLocation().isValid())
1367          Diag(Warnings[Warn].OldParm->getLocation(),
1368               diag::note_previous_declaration);
1369      }
1370
1371      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1372                                           ArgTypes.size(),
1373                                           OldProto->isVariadic(), 0,
1374                                           false, false, 0, 0,
1375                                           OldProto->getExtInfo()));
1376      return MergeCompatibleFunctionDecls(New, Old);
1377    }
1378
1379    // Fall through to diagnose conflicting types.
1380  }
1381
1382  // A function that has already been declared has been redeclared or defined
1383  // with a different type- show appropriate diagnostic
1384  if (unsigned BuiltinID = Old->getBuiltinID()) {
1385    // The user has declared a builtin function with an incompatible
1386    // signature.
1387    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1388      // The function the user is redeclaring is a library-defined
1389      // function like 'malloc' or 'printf'. Warn about the
1390      // redeclaration, then pretend that we don't know about this
1391      // library built-in.
1392      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1393      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1394        << Old << Old->getType();
1395      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1396      Old->setInvalidDecl();
1397      return false;
1398    }
1399
1400    PrevDiag = diag::note_previous_builtin_declaration;
1401  }
1402
1403  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1404  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1405  return true;
1406}
1407
1408/// \brief Completes the merge of two function declarations that are
1409/// known to be compatible.
1410///
1411/// This routine handles the merging of attributes and other
1412/// properties of function declarations form the old declaration to
1413/// the new declaration, once we know that New is in fact a
1414/// redeclaration of Old.
1415///
1416/// \returns false
1417bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1418  // Merge the attributes
1419  MergeDeclAttributes(New, Old, Context);
1420
1421  // Merge the storage class.
1422  if (Old->getStorageClass() != SC_Extern &&
1423      Old->getStorageClass() != SC_None)
1424    New->setStorageClass(Old->getStorageClass());
1425
1426  // Merge "pure" flag.
1427  if (Old->isPure())
1428    New->setPure();
1429
1430  // Merge the "deleted" flag.
1431  if (Old->isDeleted())
1432    New->setDeleted();
1433
1434  if (getLangOptions().CPlusPlus)
1435    return MergeCXXFunctionDecl(New, Old);
1436
1437  return false;
1438}
1439
1440/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1441/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1442/// situation, merging decls or emitting diagnostics as appropriate.
1443///
1444/// Tentative definition rules (C99 6.9.2p2) are checked by
1445/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1446/// definitions here, since the initializer hasn't been attached.
1447///
1448void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1449  // If the new decl is already invalid, don't do any other checking.
1450  if (New->isInvalidDecl())
1451    return;
1452
1453  // Verify the old decl was also a variable.
1454  VarDecl *Old = 0;
1455  if (!Previous.isSingleResult() ||
1456      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1457    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1458      << New->getDeclName();
1459    Diag(Previous.getRepresentativeDecl()->getLocation(),
1460         diag::note_previous_definition);
1461    return New->setInvalidDecl();
1462  }
1463
1464  // C++ [class.mem]p1:
1465  //   A member shall not be declared twice in the member-specification [...]
1466  //
1467  // Here, we need only consider static data members.
1468  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1469    Diag(New->getLocation(), diag::err_duplicate_member)
1470      << New->getIdentifier();
1471    Diag(Old->getLocation(), diag::note_previous_declaration);
1472    New->setInvalidDecl();
1473  }
1474
1475  MergeDeclAttributes(New, Old, Context);
1476
1477  // Merge the types
1478  QualType MergedT;
1479  if (getLangOptions().CPlusPlus) {
1480    if (Context.hasSameType(New->getType(), Old->getType()))
1481      MergedT = New->getType();
1482    // C++ [basic.link]p10:
1483    //   [...] the types specified by all declarations referring to a given
1484    //   object or function shall be identical, except that declarations for an
1485    //   array object can specify array types that differ by the presence or
1486    //   absence of a major array bound (8.3.4).
1487    else if (Old->getType()->isIncompleteArrayType() &&
1488             New->getType()->isArrayType()) {
1489      CanQual<ArrayType> OldArray
1490        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1491      CanQual<ArrayType> NewArray
1492        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1493      if (OldArray->getElementType() == NewArray->getElementType())
1494        MergedT = New->getType();
1495    } else if (Old->getType()->isArrayType() &&
1496             New->getType()->isIncompleteArrayType()) {
1497      CanQual<ArrayType> OldArray
1498        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499      CanQual<ArrayType> NewArray
1500        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501      if (OldArray->getElementType() == NewArray->getElementType())
1502        MergedT = Old->getType();
1503    } else if (New->getType()->isObjCObjectPointerType()
1504               && Old->getType()->isObjCObjectPointerType()) {
1505        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1506    }
1507  } else {
1508    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1509  }
1510  if (MergedT.isNull()) {
1511    Diag(New->getLocation(), diag::err_redefinition_different_type)
1512      << New->getDeclName();
1513    Diag(Old->getLocation(), diag::note_previous_definition);
1514    return New->setInvalidDecl();
1515  }
1516  New->setType(MergedT);
1517
1518  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1519  if (New->getStorageClass() == SC_Static &&
1520      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1521    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1522    Diag(Old->getLocation(), diag::note_previous_definition);
1523    return New->setInvalidDecl();
1524  }
1525  // C99 6.2.2p4:
1526  //   For an identifier declared with the storage-class specifier
1527  //   extern in a scope in which a prior declaration of that
1528  //   identifier is visible,23) if the prior declaration specifies
1529  //   internal or external linkage, the linkage of the identifier at
1530  //   the later declaration is the same as the linkage specified at
1531  //   the prior declaration. If no prior declaration is visible, or
1532  //   if the prior declaration specifies no linkage, then the
1533  //   identifier has external linkage.
1534  if (New->hasExternalStorage() && Old->hasLinkage())
1535    /* Okay */;
1536  else if (New->getStorageClass() != SC_Static &&
1537           Old->getStorageClass() == SC_Static) {
1538    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1544
1545  // FIXME: The test for external storage here seems wrong? We still
1546  // need to check for mismatches.
1547  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1548      // Don't complain about out-of-line definitions of static members.
1549      !(Old->getLexicalDeclContext()->isRecord() &&
1550        !New->getLexicalDeclContext()->isRecord())) {
1551    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1552    Diag(Old->getLocation(), diag::note_previous_definition);
1553    return New->setInvalidDecl();
1554  }
1555
1556  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1557    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1558    Diag(Old->getLocation(), diag::note_previous_definition);
1559  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1560    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562  }
1563
1564  // C++ doesn't have tentative definitions, so go right ahead and check here.
1565  const VarDecl *Def;
1566  if (getLangOptions().CPlusPlus &&
1567      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1568      (Def = Old->getDefinition())) {
1569    Diag(New->getLocation(), diag::err_redefinition)
1570      << New->getDeclName();
1571    Diag(Def->getLocation(), diag::note_previous_definition);
1572    New->setInvalidDecl();
1573    return;
1574  }
1575  // c99 6.2.2 P4.
1576  // For an identifier declared with the storage-class specifier extern in a
1577  // scope in which a prior declaration of that identifier is visible, if
1578  // the prior declaration specifies internal or external linkage, the linkage
1579  // of the identifier at the later declaration is the same as the linkage
1580  // specified at the prior declaration.
1581  // FIXME. revisit this code.
1582  if (New->hasExternalStorage() &&
1583      Old->getLinkage() == InternalLinkage &&
1584      New->getDeclContext() == Old->getDeclContext())
1585    New->setStorageClass(Old->getStorageClass());
1586
1587  // Keep a chain of previous declarations.
1588  New->setPreviousDeclaration(Old);
1589
1590  // Inherit access appropriately.
1591  New->setAccess(Old->getAccess());
1592}
1593
1594/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1595/// no declarator (e.g. "struct foo;") is parsed.
1596Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1597                                            DeclSpec &DS) {
1598  // FIXME: Error on inline/virtual/explicit
1599  // FIXME: Warn on useless __thread
1600  // FIXME: Warn on useless const/volatile
1601  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1602  // FIXME: Warn on useless attributes
1603  Decl *TagD = 0;
1604  TagDecl *Tag = 0;
1605  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1606      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1607      DS.getTypeSpecType() == DeclSpec::TST_union ||
1608      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1609    TagD = DS.getRepAsDecl();
1610
1611    if (!TagD) // We probably had an error
1612      return 0;
1613
1614    // Note that the above type specs guarantee that the
1615    // type rep is a Decl, whereas in many of the others
1616    // it's a Type.
1617    Tag = dyn_cast<TagDecl>(TagD);
1618  }
1619
1620  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1621    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1622    // or incomplete types shall not be restrict-qualified."
1623    if (TypeQuals & DeclSpec::TQ_restrict)
1624      Diag(DS.getRestrictSpecLoc(),
1625           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1626           << DS.getSourceRange();
1627  }
1628
1629  if (DS.isFriendSpecified()) {
1630    // If we're dealing with a decl but not a TagDecl, assume that
1631    // whatever routines created it handled the friendship aspect.
1632    if (TagD && !Tag)
1633      return 0;
1634    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1635  }
1636
1637  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1638    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1639
1640    if (!Record->getDeclName() && Record->isDefinition() &&
1641        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1642      if (getLangOptions().CPlusPlus ||
1643          Record->getDeclContext()->isRecord())
1644        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1645
1646      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1647        << DS.getSourceRange();
1648    }
1649
1650    // Microsoft allows unnamed struct/union fields. Don't complain
1651    // about them.
1652    // FIXME: Should we support Microsoft's extensions in this area?
1653    if (Record->getDeclName() && getLangOptions().Microsoft)
1654      return Tag;
1655  }
1656
1657  if (getLangOptions().CPlusPlus &&
1658      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1659    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1660      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1661          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1662        Diag(Enum->getLocation(), diag::ext_no_declarators)
1663          << DS.getSourceRange();
1664
1665  if (!DS.isMissingDeclaratorOk() &&
1666      DS.getTypeSpecType() != DeclSpec::TST_error) {
1667    // Warn about typedefs of enums without names, since this is an
1668    // extension in both Microsoft and GNU.
1669    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1670        Tag && isa<EnumDecl>(Tag)) {
1671      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1672        << DS.getSourceRange();
1673      return Tag;
1674    }
1675
1676    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1677      << DS.getSourceRange();
1678  }
1679
1680  return TagD;
1681}
1682
1683/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1684/// builds a statement for it and returns it so it is evaluated.
1685StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1686  StmtResult R;
1687  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1688    Expr *Exp = DS.getRepAsExpr();
1689    QualType Ty = Exp->getType();
1690    if (Ty->isPointerType()) {
1691      do
1692        Ty = Ty->getAs<PointerType>()->getPointeeType();
1693      while (Ty->isPointerType());
1694    }
1695    if (Ty->isVariableArrayType()) {
1696      R = ActOnExprStmt(MakeFullExpr(Exp));
1697    }
1698  }
1699  return R;
1700}
1701
1702/// We are trying to inject an anonymous member into the given scope;
1703/// check if there's an existing declaration that can't be overloaded.
1704///
1705/// \return true if this is a forbidden redeclaration
1706static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1707                                         Scope *S,
1708                                         DeclContext *Owner,
1709                                         DeclarationName Name,
1710                                         SourceLocation NameLoc,
1711                                         unsigned diagnostic) {
1712  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1713                 Sema::ForRedeclaration);
1714  if (!SemaRef.LookupName(R, S)) return false;
1715
1716  if (R.getAsSingle<TagDecl>())
1717    return false;
1718
1719  // Pick a representative declaration.
1720  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1721  assert(PrevDecl && "Expected a non-null Decl");
1722
1723  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1724    return false;
1725
1726  SemaRef.Diag(NameLoc, diagnostic) << Name;
1727  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1728
1729  return true;
1730}
1731
1732/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1733/// anonymous struct or union AnonRecord into the owning context Owner
1734/// and scope S. This routine will be invoked just after we realize
1735/// that an unnamed union or struct is actually an anonymous union or
1736/// struct, e.g.,
1737///
1738/// @code
1739/// union {
1740///   int i;
1741///   float f;
1742/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1743///    // f into the surrounding scope.x
1744/// @endcode
1745///
1746/// This routine is recursive, injecting the names of nested anonymous
1747/// structs/unions into the owning context and scope as well.
1748static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1749                                                DeclContext *Owner,
1750                                                RecordDecl *AnonRecord,
1751                                                AccessSpecifier AS) {
1752  unsigned diagKind
1753    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1754                            : diag::err_anonymous_struct_member_redecl;
1755
1756  bool Invalid = false;
1757  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1758                               FEnd = AnonRecord->field_end();
1759       F != FEnd; ++F) {
1760    if ((*F)->getDeclName()) {
1761      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1762                                       (*F)->getLocation(), diagKind)) {
1763        // C++ [class.union]p2:
1764        //   The names of the members of an anonymous union shall be
1765        //   distinct from the names of any other entity in the
1766        //   scope in which the anonymous union is declared.
1767        Invalid = true;
1768      } else {
1769        // C++ [class.union]p2:
1770        //   For the purpose of name lookup, after the anonymous union
1771        //   definition, the members of the anonymous union are
1772        //   considered to have been defined in the scope in which the
1773        //   anonymous union is declared.
1774        Owner->makeDeclVisibleInContext(*F);
1775        S->AddDecl(*F);
1776        SemaRef.IdResolver.AddDecl(*F);
1777
1778        // That includes picking up the appropriate access specifier.
1779        if (AS != AS_none) (*F)->setAccess(AS);
1780      }
1781    } else if (const RecordType *InnerRecordType
1782                 = (*F)->getType()->getAs<RecordType>()) {
1783      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1784      if (InnerRecord->isAnonymousStructOrUnion())
1785        Invalid = Invalid ||
1786          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1787                                              InnerRecord, AS);
1788    }
1789  }
1790
1791  return Invalid;
1792}
1793
1794/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1795/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1796/// illegal input values are mapped to SC_None.
1797static StorageClass
1798StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1799  switch (StorageClassSpec) {
1800  case DeclSpec::SCS_unspecified:    return SC_None;
1801  case DeclSpec::SCS_extern:         return SC_Extern;
1802  case DeclSpec::SCS_static:         return SC_Static;
1803  case DeclSpec::SCS_auto:           return SC_Auto;
1804  case DeclSpec::SCS_register:       return SC_Register;
1805  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1806    // Illegal SCSs map to None: error reporting is up to the caller.
1807  case DeclSpec::SCS_mutable:        // Fall through.
1808  case DeclSpec::SCS_typedef:        return SC_None;
1809  }
1810  llvm_unreachable("unknown storage class specifier");
1811}
1812
1813/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1814/// a StorageClass. Any error reporting is up to the caller:
1815/// illegal input values are mapped to SC_None.
1816static StorageClass
1817StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1818  switch (StorageClassSpec) {
1819  case DeclSpec::SCS_unspecified:    return SC_None;
1820  case DeclSpec::SCS_extern:         return SC_Extern;
1821  case DeclSpec::SCS_static:         return SC_Static;
1822  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1823    // Illegal SCSs map to None: error reporting is up to the caller.
1824  case DeclSpec::SCS_auto:           // Fall through.
1825  case DeclSpec::SCS_mutable:        // Fall through.
1826  case DeclSpec::SCS_register:       // Fall through.
1827  case DeclSpec::SCS_typedef:        return SC_None;
1828  }
1829  llvm_unreachable("unknown storage class specifier");
1830}
1831
1832/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1833/// anonymous structure or union. Anonymous unions are a C++ feature
1834/// (C++ [class.union]) and a GNU C extension; anonymous structures
1835/// are a GNU C and GNU C++ extension.
1836Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1837                                             AccessSpecifier AS,
1838                                             RecordDecl *Record) {
1839  DeclContext *Owner = Record->getDeclContext();
1840
1841  // Diagnose whether this anonymous struct/union is an extension.
1842  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1843    Diag(Record->getLocation(), diag::ext_anonymous_union);
1844  else if (!Record->isUnion())
1845    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1846
1847  // C and C++ require different kinds of checks for anonymous
1848  // structs/unions.
1849  bool Invalid = false;
1850  if (getLangOptions().CPlusPlus) {
1851    const char* PrevSpec = 0;
1852    unsigned DiagID;
1853    // C++ [class.union]p3:
1854    //   Anonymous unions declared in a named namespace or in the
1855    //   global namespace shall be declared static.
1856    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1857        (isa<TranslationUnitDecl>(Owner) ||
1858         (isa<NamespaceDecl>(Owner) &&
1859          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1860      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1861      Invalid = true;
1862
1863      // Recover by adding 'static'.
1864      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1865                             PrevSpec, DiagID);
1866    }
1867    // C++ [class.union]p3:
1868    //   A storage class is not allowed in a declaration of an
1869    //   anonymous union in a class scope.
1870    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1871             isa<RecordDecl>(Owner)) {
1872      Diag(DS.getStorageClassSpecLoc(),
1873           diag::err_anonymous_union_with_storage_spec);
1874      Invalid = true;
1875
1876      // Recover by removing the storage specifier.
1877      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1878                             PrevSpec, DiagID);
1879    }
1880
1881    // C++ [class.union]p2:
1882    //   The member-specification of an anonymous union shall only
1883    //   define non-static data members. [Note: nested types and
1884    //   functions cannot be declared within an anonymous union. ]
1885    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1886                                 MemEnd = Record->decls_end();
1887         Mem != MemEnd; ++Mem) {
1888      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1889        // C++ [class.union]p3:
1890        //   An anonymous union shall not have private or protected
1891        //   members (clause 11).
1892        assert(FD->getAccess() != AS_none);
1893        if (FD->getAccess() != AS_public) {
1894          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1895            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1896          Invalid = true;
1897        }
1898
1899        if (CheckNontrivialField(FD))
1900          Invalid = true;
1901      } else if ((*Mem)->isImplicit()) {
1902        // Any implicit members are fine.
1903      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1904        // This is a type that showed up in an
1905        // elaborated-type-specifier inside the anonymous struct or
1906        // union, but which actually declares a type outside of the
1907        // anonymous struct or union. It's okay.
1908      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1909        if (!MemRecord->isAnonymousStructOrUnion() &&
1910            MemRecord->getDeclName()) {
1911          // Visual C++ allows type definition in anonymous struct or union.
1912          if (getLangOptions().Microsoft)
1913            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1914              << (int)Record->isUnion();
1915          else {
1916            // This is a nested type declaration.
1917            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1918              << (int)Record->isUnion();
1919            Invalid = true;
1920          }
1921        }
1922      } else if (isa<AccessSpecDecl>(*Mem)) {
1923        // Any access specifier is fine.
1924      } else {
1925        // We have something that isn't a non-static data
1926        // member. Complain about it.
1927        unsigned DK = diag::err_anonymous_record_bad_member;
1928        if (isa<TypeDecl>(*Mem))
1929          DK = diag::err_anonymous_record_with_type;
1930        else if (isa<FunctionDecl>(*Mem))
1931          DK = diag::err_anonymous_record_with_function;
1932        else if (isa<VarDecl>(*Mem))
1933          DK = diag::err_anonymous_record_with_static;
1934
1935        // Visual C++ allows type definition in anonymous struct or union.
1936        if (getLangOptions().Microsoft &&
1937            DK == diag::err_anonymous_record_with_type)
1938          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1939            << (int)Record->isUnion();
1940        else {
1941          Diag((*Mem)->getLocation(), DK)
1942              << (int)Record->isUnion();
1943          Invalid = true;
1944        }
1945      }
1946    }
1947  }
1948
1949  if (!Record->isUnion() && !Owner->isRecord()) {
1950    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1951      << (int)getLangOptions().CPlusPlus;
1952    Invalid = true;
1953  }
1954
1955  // Mock up a declarator.
1956  Declarator Dc(DS, Declarator::TypeNameContext);
1957  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1958  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1959
1960  // Create a declaration for this anonymous struct/union.
1961  NamedDecl *Anon = 0;
1962  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1963    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1964                             /*IdentifierInfo=*/0,
1965                             Context.getTypeDeclType(Record),
1966                             TInfo,
1967                             /*BitWidth=*/0, /*Mutable=*/false);
1968    Anon->setAccess(AS);
1969    if (getLangOptions().CPlusPlus)
1970      FieldCollector->Add(cast<FieldDecl>(Anon));
1971  } else {
1972    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1973    assert(SCSpec != DeclSpec::SCS_typedef &&
1974           "Parser allowed 'typedef' as storage class VarDecl.");
1975    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1976    if (SCSpec == DeclSpec::SCS_mutable) {
1977      // mutable can only appear on non-static class members, so it's always
1978      // an error here
1979      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1980      Invalid = true;
1981      SC = SC_None;
1982    }
1983    SCSpec = DS.getStorageClassSpecAsWritten();
1984    VarDecl::StorageClass SCAsWritten
1985      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1986
1987    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1988                           /*IdentifierInfo=*/0,
1989                           Context.getTypeDeclType(Record),
1990                           TInfo, SC, SCAsWritten);
1991  }
1992  Anon->setImplicit();
1993
1994  // Add the anonymous struct/union object to the current
1995  // context. We'll be referencing this object when we refer to one of
1996  // its members.
1997  Owner->addDecl(Anon);
1998
1999  // Inject the members of the anonymous struct/union into the owning
2000  // context and into the identifier resolver chain for name lookup
2001  // purposes.
2002  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
2003    Invalid = true;
2004
2005  // Mark this as an anonymous struct/union type. Note that we do not
2006  // do this until after we have already checked and injected the
2007  // members of this anonymous struct/union type, because otherwise
2008  // the members could be injected twice: once by DeclContext when it
2009  // builds its lookup table, and once by
2010  // InjectAnonymousStructOrUnionMembers.
2011  Record->setAnonymousStructOrUnion(true);
2012
2013  if (Invalid)
2014    Anon->setInvalidDecl();
2015
2016  return Anon;
2017}
2018
2019
2020/// GetNameForDeclarator - Determine the full declaration name for the
2021/// given Declarator.
2022DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2023  return GetNameFromUnqualifiedId(D.getName());
2024}
2025
2026/// \brief Retrieves the declaration name from a parsed unqualified-id.
2027DeclarationNameInfo
2028Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2029  DeclarationNameInfo NameInfo;
2030  NameInfo.setLoc(Name.StartLocation);
2031
2032  switch (Name.getKind()) {
2033
2034  case UnqualifiedId::IK_Identifier:
2035    NameInfo.setName(Name.Identifier);
2036    NameInfo.setLoc(Name.StartLocation);
2037    return NameInfo;
2038
2039  case UnqualifiedId::IK_OperatorFunctionId:
2040    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2041                                           Name.OperatorFunctionId.Operator));
2042    NameInfo.setLoc(Name.StartLocation);
2043    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2044      = Name.OperatorFunctionId.SymbolLocations[0];
2045    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2046      = Name.EndLocation.getRawEncoding();
2047    return NameInfo;
2048
2049  case UnqualifiedId::IK_LiteralOperatorId:
2050    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2051                                                           Name.Identifier));
2052    NameInfo.setLoc(Name.StartLocation);
2053    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2054    return NameInfo;
2055
2056  case UnqualifiedId::IK_ConversionFunctionId: {
2057    TypeSourceInfo *TInfo;
2058    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2059    if (Ty.isNull())
2060      return DeclarationNameInfo();
2061    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2062                                               Context.getCanonicalType(Ty)));
2063    NameInfo.setLoc(Name.StartLocation);
2064    NameInfo.setNamedTypeInfo(TInfo);
2065    return NameInfo;
2066  }
2067
2068  case UnqualifiedId::IK_ConstructorName: {
2069    TypeSourceInfo *TInfo;
2070    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2071    if (Ty.isNull())
2072      return DeclarationNameInfo();
2073    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2074                                              Context.getCanonicalType(Ty)));
2075    NameInfo.setLoc(Name.StartLocation);
2076    NameInfo.setNamedTypeInfo(TInfo);
2077    return NameInfo;
2078  }
2079
2080  case UnqualifiedId::IK_ConstructorTemplateId: {
2081    // In well-formed code, we can only have a constructor
2082    // template-id that refers to the current context, so go there
2083    // to find the actual type being constructed.
2084    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2085    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2086      return DeclarationNameInfo();
2087
2088    // Determine the type of the class being constructed.
2089    QualType CurClassType = Context.getTypeDeclType(CurClass);
2090
2091    // FIXME: Check two things: that the template-id names the same type as
2092    // CurClassType, and that the template-id does not occur when the name
2093    // was qualified.
2094
2095    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2096                                    Context.getCanonicalType(CurClassType)));
2097    NameInfo.setLoc(Name.StartLocation);
2098    // FIXME: should we retrieve TypeSourceInfo?
2099    NameInfo.setNamedTypeInfo(0);
2100    return NameInfo;
2101  }
2102
2103  case UnqualifiedId::IK_DestructorName: {
2104    TypeSourceInfo *TInfo;
2105    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2106    if (Ty.isNull())
2107      return DeclarationNameInfo();
2108    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2109                                              Context.getCanonicalType(Ty)));
2110    NameInfo.setLoc(Name.StartLocation);
2111    NameInfo.setNamedTypeInfo(TInfo);
2112    return NameInfo;
2113  }
2114
2115  case UnqualifiedId::IK_TemplateId: {
2116    TemplateName TName = Name.TemplateId->Template.get();
2117    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2118    return Context.getNameForTemplate(TName, TNameLoc);
2119  }
2120
2121  } // switch (Name.getKind())
2122
2123  assert(false && "Unknown name kind");
2124  return DeclarationNameInfo();
2125}
2126
2127/// isNearlyMatchingFunction - Determine whether the C++ functions
2128/// Declaration and Definition are "nearly" matching. This heuristic
2129/// is used to improve diagnostics in the case where an out-of-line
2130/// function definition doesn't match any declaration within
2131/// the class or namespace.
2132static bool isNearlyMatchingFunction(ASTContext &Context,
2133                                     FunctionDecl *Declaration,
2134                                     FunctionDecl *Definition) {
2135  if (Declaration->param_size() != Definition->param_size())
2136    return false;
2137  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2138    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2139    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2140
2141    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2142                                        DefParamTy.getNonReferenceType()))
2143      return false;
2144  }
2145
2146  return true;
2147}
2148
2149/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2150/// declarator needs to be rebuilt in the current instantiation.
2151/// Any bits of declarator which appear before the name are valid for
2152/// consideration here.  That's specifically the type in the decl spec
2153/// and the base type in any member-pointer chunks.
2154static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2155                                                    DeclarationName Name) {
2156  // The types we specifically need to rebuild are:
2157  //   - typenames, typeofs, and decltypes
2158  //   - types which will become injected class names
2159  // Of course, we also need to rebuild any type referencing such a
2160  // type.  It's safest to just say "dependent", but we call out a
2161  // few cases here.
2162
2163  DeclSpec &DS = D.getMutableDeclSpec();
2164  switch (DS.getTypeSpecType()) {
2165  case DeclSpec::TST_typename:
2166  case DeclSpec::TST_typeofType:
2167  case DeclSpec::TST_decltype: {
2168    // Grab the type from the parser.
2169    TypeSourceInfo *TSI = 0;
2170    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2171    if (T.isNull() || !T->isDependentType()) break;
2172
2173    // Make sure there's a type source info.  This isn't really much
2174    // of a waste; most dependent types should have type source info
2175    // attached already.
2176    if (!TSI)
2177      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2178
2179    // Rebuild the type in the current instantiation.
2180    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2181    if (!TSI) return true;
2182
2183    // Store the new type back in the decl spec.
2184    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2185    DS.UpdateTypeRep(LocType);
2186    break;
2187  }
2188
2189  case DeclSpec::TST_typeofExpr: {
2190    Expr *E = DS.getRepAsExpr();
2191    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2192    if (Result.isInvalid()) return true;
2193    DS.UpdateExprRep(Result.get());
2194    break;
2195  }
2196
2197  default:
2198    // Nothing to do for these decl specs.
2199    break;
2200  }
2201
2202  // It doesn't matter what order we do this in.
2203  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2204    DeclaratorChunk &Chunk = D.getTypeObject(I);
2205
2206    // The only type information in the declarator which can come
2207    // before the declaration name is the base type of a member
2208    // pointer.
2209    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2210      continue;
2211
2212    // Rebuild the scope specifier in-place.
2213    CXXScopeSpec &SS = Chunk.Mem.Scope();
2214    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2215      return true;
2216  }
2217
2218  return false;
2219}
2220
2221Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2222  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2223}
2224
2225Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2226                             MultiTemplateParamsArg TemplateParamLists,
2227                             bool IsFunctionDefinition) {
2228  // TODO: consider using NameInfo for diagnostic.
2229  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2230  DeclarationName Name = NameInfo.getName();
2231
2232  // All of these full declarators require an identifier.  If it doesn't have
2233  // one, the ParsedFreeStandingDeclSpec action should be used.
2234  if (!Name) {
2235    if (!D.isInvalidType())  // Reject this if we think it is valid.
2236      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2237           diag::err_declarator_need_ident)
2238        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2239    return 0;
2240  }
2241
2242  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2243  // we find one that is.
2244  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2245         (S->getFlags() & Scope::TemplateParamScope) != 0)
2246    S = S->getParent();
2247
2248  DeclContext *DC = CurContext;
2249  if (D.getCXXScopeSpec().isInvalid())
2250    D.setInvalidType();
2251  else if (D.getCXXScopeSpec().isSet()) {
2252    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2253    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2254    if (!DC) {
2255      // If we could not compute the declaration context, it's because the
2256      // declaration context is dependent but does not refer to a class,
2257      // class template, or class template partial specialization. Complain
2258      // and return early, to avoid the coming semantic disaster.
2259      Diag(D.getIdentifierLoc(),
2260           diag::err_template_qualified_declarator_no_match)
2261        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2262        << D.getCXXScopeSpec().getRange();
2263      return 0;
2264    }
2265
2266    bool IsDependentContext = DC->isDependentContext();
2267
2268    if (!IsDependentContext &&
2269        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2270      return 0;
2271
2272    if (isa<CXXRecordDecl>(DC)) {
2273      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2274        Diag(D.getIdentifierLoc(),
2275             diag::err_member_def_undefined_record)
2276          << Name << DC << D.getCXXScopeSpec().getRange();
2277        D.setInvalidType();
2278      } else if (isa<CXXRecordDecl>(CurContext) &&
2279                 !D.getDeclSpec().isFriendSpecified()) {
2280        // The user provided a superfluous scope specifier inside a class
2281        // definition:
2282        //
2283        // class X {
2284        //   void X::f();
2285        // };
2286        if (CurContext->Equals(DC))
2287          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2288            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2289        else
2290          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2291            << Name << D.getCXXScopeSpec().getRange();
2292
2293        // Pretend that this qualifier was not here.
2294        D.getCXXScopeSpec().clear();
2295      }
2296    }
2297
2298    // Check whether we need to rebuild the type of the given
2299    // declaration in the current instantiation.
2300    if (EnteringContext && IsDependentContext &&
2301        TemplateParamLists.size() != 0) {
2302      ContextRAII SavedContext(*this, DC);
2303      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2304        D.setInvalidType();
2305    }
2306  }
2307
2308  // C++ [class.mem]p13:
2309  //   If T is the name of a class, then each of the following shall have a
2310  //   name different from T:
2311  //     - every static data member of class T;
2312  //     - every member function of class T
2313  //     - every member of class T that is itself a type;
2314  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2315    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2316      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2317        << Name;
2318
2319      // If this is a typedef, we'll end up spewing multiple diagnostics.
2320      // Just return early; it's safer.
2321      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2322        return 0;
2323    }
2324
2325  NamedDecl *New;
2326
2327  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2328  QualType R = TInfo->getType();
2329
2330  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2331                        ForRedeclaration);
2332
2333  // See if this is a redefinition of a variable in the same scope.
2334  if (!D.getCXXScopeSpec().isSet()) {
2335    bool IsLinkageLookup = false;
2336
2337    // If the declaration we're planning to build will be a function
2338    // or object with linkage, then look for another declaration with
2339    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2340    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2341      /* Do nothing*/;
2342    else if (R->isFunctionType()) {
2343      if (CurContext->isFunctionOrMethod() ||
2344          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2345        IsLinkageLookup = true;
2346    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2347      IsLinkageLookup = true;
2348    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2349             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2350      IsLinkageLookup = true;
2351
2352    if (IsLinkageLookup)
2353      Previous.clear(LookupRedeclarationWithLinkage);
2354
2355    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2356  } else { // Something like "int foo::x;"
2357    LookupQualifiedName(Previous, DC);
2358
2359    // Don't consider using declarations as previous declarations for
2360    // out-of-line members.
2361    RemoveUsingDecls(Previous);
2362
2363    // C++ 7.3.1.2p2:
2364    // Members (including explicit specializations of templates) of a named
2365    // namespace can also be defined outside that namespace by explicit
2366    // qualification of the name being defined, provided that the entity being
2367    // defined was already declared in the namespace and the definition appears
2368    // after the point of declaration in a namespace that encloses the
2369    // declarations namespace.
2370    //
2371    // Note that we only check the context at this point. We don't yet
2372    // have enough information to make sure that PrevDecl is actually
2373    // the declaration we want to match. For example, given:
2374    //
2375    //   class X {
2376    //     void f();
2377    //     void f(float);
2378    //   };
2379    //
2380    //   void X::f(int) { } // ill-formed
2381    //
2382    // In this case, PrevDecl will point to the overload set
2383    // containing the two f's declared in X, but neither of them
2384    // matches.
2385
2386    // First check whether we named the global scope.
2387    if (isa<TranslationUnitDecl>(DC)) {
2388      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2389        << Name << D.getCXXScopeSpec().getRange();
2390    } else {
2391      DeclContext *Cur = CurContext;
2392      while (isa<LinkageSpecDecl>(Cur))
2393        Cur = Cur->getParent();
2394      if (!Cur->Encloses(DC)) {
2395        // The qualifying scope doesn't enclose the original declaration.
2396        // Emit diagnostic based on current scope.
2397        SourceLocation L = D.getIdentifierLoc();
2398        SourceRange R = D.getCXXScopeSpec().getRange();
2399        if (isa<FunctionDecl>(Cur))
2400          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2401        else
2402          Diag(L, diag::err_invalid_declarator_scope)
2403            << Name << cast<NamedDecl>(DC) << R;
2404        D.setInvalidType();
2405      }
2406    }
2407  }
2408
2409  if (Previous.isSingleResult() &&
2410      Previous.getFoundDecl()->isTemplateParameter()) {
2411    // Maybe we will complain about the shadowed template parameter.
2412    if (!D.isInvalidType())
2413      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2414                                          Previous.getFoundDecl()))
2415        D.setInvalidType();
2416
2417    // Just pretend that we didn't see the previous declaration.
2418    Previous.clear();
2419  }
2420
2421  // In C++, the previous declaration we find might be a tag type
2422  // (class or enum). In this case, the new declaration will hide the
2423  // tag type. Note that this does does not apply if we're declaring a
2424  // typedef (C++ [dcl.typedef]p4).
2425  if (Previous.isSingleTagDecl() &&
2426      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2427    Previous.clear();
2428
2429  bool Redeclaration = false;
2430  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2431    if (TemplateParamLists.size()) {
2432      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2433      return 0;
2434    }
2435
2436    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2437  } else if (R->isFunctionType()) {
2438    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2439                                  move(TemplateParamLists),
2440                                  IsFunctionDefinition, Redeclaration);
2441  } else {
2442    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2443                                  move(TemplateParamLists),
2444                                  Redeclaration);
2445  }
2446
2447  if (New == 0)
2448    return 0;
2449
2450  // If this has an identifier and is not an invalid redeclaration or
2451  // function template specialization, add it to the scope stack.
2452  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2453    PushOnScopeChains(New, S);
2454
2455  return New;
2456}
2457
2458/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2459/// types into constant array types in certain situations which would otherwise
2460/// be errors (for GCC compatibility).
2461static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2462                                                    ASTContext &Context,
2463                                                    bool &SizeIsNegative,
2464                                                    llvm::APSInt &Oversized) {
2465  // This method tries to turn a variable array into a constant
2466  // array even when the size isn't an ICE.  This is necessary
2467  // for compatibility with code that depends on gcc's buggy
2468  // constant expression folding, like struct {char x[(int)(char*)2];}
2469  SizeIsNegative = false;
2470  Oversized = 0;
2471
2472  if (T->isDependentType())
2473    return QualType();
2474
2475  QualifierCollector Qs;
2476  const Type *Ty = Qs.strip(T);
2477
2478  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2479    QualType Pointee = PTy->getPointeeType();
2480    QualType FixedType =
2481        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2482                                            Oversized);
2483    if (FixedType.isNull()) return FixedType;
2484    FixedType = Context.getPointerType(FixedType);
2485    return Qs.apply(FixedType);
2486  }
2487
2488  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2489  if (!VLATy)
2490    return QualType();
2491  // FIXME: We should probably handle this case
2492  if (VLATy->getElementType()->isVariablyModifiedType())
2493    return QualType();
2494
2495  Expr::EvalResult EvalResult;
2496  if (!VLATy->getSizeExpr() ||
2497      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2498      !EvalResult.Val.isInt())
2499    return QualType();
2500
2501  // Check whether the array size is negative.
2502  llvm::APSInt &Res = EvalResult.Val.getInt();
2503  if (Res.isSigned() && Res.isNegative()) {
2504    SizeIsNegative = true;
2505    return QualType();
2506  }
2507
2508  // Check whether the array is too large to be addressed.
2509  unsigned ActiveSizeBits
2510    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2511                                              Res);
2512  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2513    Oversized = Res;
2514    return QualType();
2515  }
2516
2517  return Context.getConstantArrayType(VLATy->getElementType(),
2518                                      Res, ArrayType::Normal, 0);
2519}
2520
2521/// \brief Register the given locally-scoped external C declaration so
2522/// that it can be found later for redeclarations
2523void
2524Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2525                                       const LookupResult &Previous,
2526                                       Scope *S) {
2527  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2528         "Decl is not a locally-scoped decl!");
2529  // Note that we have a locally-scoped external with this name.
2530  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2531
2532  if (!Previous.isSingleResult())
2533    return;
2534
2535  NamedDecl *PrevDecl = Previous.getFoundDecl();
2536
2537  // If there was a previous declaration of this variable, it may be
2538  // in our identifier chain. Update the identifier chain with the new
2539  // declaration.
2540  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2541    // The previous declaration was found on the identifer resolver
2542    // chain, so remove it from its scope.
2543    while (S && !S->isDeclScope(PrevDecl))
2544      S = S->getParent();
2545
2546    if (S)
2547      S->RemoveDecl(PrevDecl);
2548  }
2549}
2550
2551/// \brief Diagnose function specifiers on a declaration of an identifier that
2552/// does not identify a function.
2553void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2554  // FIXME: We should probably indicate the identifier in question to avoid
2555  // confusion for constructs like "inline int a(), b;"
2556  if (D.getDeclSpec().isInlineSpecified())
2557    Diag(D.getDeclSpec().getInlineSpecLoc(),
2558         diag::err_inline_non_function);
2559
2560  if (D.getDeclSpec().isVirtualSpecified())
2561    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2562         diag::err_virtual_non_function);
2563
2564  if (D.getDeclSpec().isExplicitSpecified())
2565    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2566         diag::err_explicit_non_function);
2567}
2568
2569NamedDecl*
2570Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2571                             QualType R,  TypeSourceInfo *TInfo,
2572                             LookupResult &Previous, bool &Redeclaration) {
2573  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2574  if (D.getCXXScopeSpec().isSet()) {
2575    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2576      << D.getCXXScopeSpec().getRange();
2577    D.setInvalidType();
2578    // Pretend we didn't see the scope specifier.
2579    DC = CurContext;
2580    Previous.clear();
2581  }
2582
2583  if (getLangOptions().CPlusPlus) {
2584    // Check that there are no default arguments (C++ only).
2585    CheckExtraCXXDefaultArguments(D);
2586  }
2587
2588  DiagnoseFunctionSpecifiers(D);
2589
2590  if (D.getDeclSpec().isThreadSpecified())
2591    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2592
2593  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2594    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2595      << D.getName().getSourceRange();
2596    return 0;
2597  }
2598
2599  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2600  if (!NewTD) return 0;
2601
2602  // Handle attributes prior to checking for duplicates in MergeVarDecl
2603  ProcessDeclAttributes(S, NewTD, D);
2604
2605  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2606  // then it shall have block scope.
2607  // Note that variably modified types must be fixed before merging the decl so
2608  // that redeclarations will match.
2609  QualType T = NewTD->getUnderlyingType();
2610  if (T->isVariablyModifiedType()) {
2611    getCurFunction()->setHasBranchProtectedScope();
2612
2613    if (S->getFnParent() == 0) {
2614      bool SizeIsNegative;
2615      llvm::APSInt Oversized;
2616      QualType FixedTy =
2617          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2618                                              Oversized);
2619      if (!FixedTy.isNull()) {
2620        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2621        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2622      } else {
2623        if (SizeIsNegative)
2624          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2625        else if (T->isVariableArrayType())
2626          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2627        else if (Oversized.getBoolValue())
2628          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2629            << Oversized.toString(10);
2630        else
2631          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2632        NewTD->setInvalidDecl();
2633      }
2634    }
2635  }
2636
2637  // Merge the decl with the existing one if appropriate. If the decl is
2638  // in an outer scope, it isn't the same thing.
2639  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2640  if (!Previous.empty()) {
2641    Redeclaration = true;
2642    MergeTypeDefDecl(NewTD, Previous);
2643  }
2644
2645  // If this is the C FILE type, notify the AST context.
2646  if (IdentifierInfo *II = NewTD->getIdentifier())
2647    if (!NewTD->isInvalidDecl() &&
2648        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2649      if (II->isStr("FILE"))
2650        Context.setFILEDecl(NewTD);
2651      else if (II->isStr("jmp_buf"))
2652        Context.setjmp_bufDecl(NewTD);
2653      else if (II->isStr("sigjmp_buf"))
2654        Context.setsigjmp_bufDecl(NewTD);
2655      else if (II->isStr("__builtin_va_list"))
2656        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2657    }
2658
2659  return NewTD;
2660}
2661
2662/// \brief Determines whether the given declaration is an out-of-scope
2663/// previous declaration.
2664///
2665/// This routine should be invoked when name lookup has found a
2666/// previous declaration (PrevDecl) that is not in the scope where a
2667/// new declaration by the same name is being introduced. If the new
2668/// declaration occurs in a local scope, previous declarations with
2669/// linkage may still be considered previous declarations (C99
2670/// 6.2.2p4-5, C++ [basic.link]p6).
2671///
2672/// \param PrevDecl the previous declaration found by name
2673/// lookup
2674///
2675/// \param DC the context in which the new declaration is being
2676/// declared.
2677///
2678/// \returns true if PrevDecl is an out-of-scope previous declaration
2679/// for a new delcaration with the same name.
2680static bool
2681isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2682                                ASTContext &Context) {
2683  if (!PrevDecl)
2684    return false;
2685
2686  if (!PrevDecl->hasLinkage())
2687    return false;
2688
2689  if (Context.getLangOptions().CPlusPlus) {
2690    // C++ [basic.link]p6:
2691    //   If there is a visible declaration of an entity with linkage
2692    //   having the same name and type, ignoring entities declared
2693    //   outside the innermost enclosing namespace scope, the block
2694    //   scope declaration declares that same entity and receives the
2695    //   linkage of the previous declaration.
2696    DeclContext *OuterContext = DC->getRedeclContext();
2697    if (!OuterContext->isFunctionOrMethod())
2698      // This rule only applies to block-scope declarations.
2699      return false;
2700
2701    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2702    if (PrevOuterContext->isRecord())
2703      // We found a member function: ignore it.
2704      return false;
2705
2706    // Find the innermost enclosing namespace for the new and
2707    // previous declarations.
2708    OuterContext = OuterContext->getEnclosingNamespaceContext();
2709    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2710
2711    // The previous declaration is in a different namespace, so it
2712    // isn't the same function.
2713    if (!OuterContext->Equals(PrevOuterContext))
2714      return false;
2715  }
2716
2717  return true;
2718}
2719
2720static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2721  CXXScopeSpec &SS = D.getCXXScopeSpec();
2722  if (!SS.isSet()) return;
2723  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2724                       SS.getRange());
2725}
2726
2727NamedDecl*
2728Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2729                              QualType R, TypeSourceInfo *TInfo,
2730                              LookupResult &Previous,
2731                              MultiTemplateParamsArg TemplateParamLists,
2732                              bool &Redeclaration) {
2733  DeclarationName Name = GetNameForDeclarator(D).getName();
2734
2735  // Check that there are no default arguments (C++ only).
2736  if (getLangOptions().CPlusPlus)
2737    CheckExtraCXXDefaultArguments(D);
2738
2739  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2740  assert(SCSpec != DeclSpec::SCS_typedef &&
2741         "Parser allowed 'typedef' as storage class VarDecl.");
2742  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2743  if (SCSpec == DeclSpec::SCS_mutable) {
2744    // mutable can only appear on non-static class members, so it's always
2745    // an error here
2746    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2747    D.setInvalidType();
2748    SC = SC_None;
2749  }
2750  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2751  VarDecl::StorageClass SCAsWritten
2752    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2753
2754  IdentifierInfo *II = Name.getAsIdentifierInfo();
2755  if (!II) {
2756    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2757      << Name.getAsString();
2758    return 0;
2759  }
2760
2761  DiagnoseFunctionSpecifiers(D);
2762
2763  if (!DC->isRecord() && S->getFnParent() == 0) {
2764    // C99 6.9p2: The storage-class specifiers auto and register shall not
2765    // appear in the declaration specifiers in an external declaration.
2766    if (SC == SC_Auto || SC == SC_Register) {
2767
2768      // If this is a register variable with an asm label specified, then this
2769      // is a GNU extension.
2770      if (SC == SC_Register && D.getAsmLabel())
2771        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2772      else
2773        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2774      D.setInvalidType();
2775    }
2776  }
2777  if (DC->isRecord() && !CurContext->isRecord()) {
2778    // This is an out-of-line definition of a static data member.
2779    if (SC == SC_Static) {
2780      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2781           diag::err_static_out_of_line)
2782        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2783    } else if (SC == SC_None)
2784      SC = SC_Static;
2785  }
2786  if (SC == SC_Static) {
2787    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2788      if (RD->isLocalClass())
2789        Diag(D.getIdentifierLoc(),
2790             diag::err_static_data_member_not_allowed_in_local_class)
2791          << Name << RD->getDeclName();
2792
2793      // C++ [class.union]p1: If a union contains a static data member,
2794      // the program is ill-formed.
2795      //
2796      // We also disallow static data members in anonymous structs.
2797      if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2798        Diag(D.getIdentifierLoc(),
2799             diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2800          << Name << RD->isUnion();
2801    }
2802  }
2803
2804  // Match up the template parameter lists with the scope specifier, then
2805  // determine whether we have a template or a template specialization.
2806  bool isExplicitSpecialization = false;
2807  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2808  bool Invalid = false;
2809  if (TemplateParameterList *TemplateParams
2810        = MatchTemplateParametersToScopeSpecifier(
2811                                  D.getDeclSpec().getSourceRange().getBegin(),
2812                                                  D.getCXXScopeSpec(),
2813                                                  TemplateParamLists.get(),
2814                                                  TemplateParamLists.size(),
2815                                                  /*never a friend*/ false,
2816                                                  isExplicitSpecialization,
2817                                                  Invalid)) {
2818    // All but one template parameter lists have been matching.
2819    --NumMatchedTemplateParamLists;
2820
2821    if (TemplateParams->size() > 0) {
2822      // There is no such thing as a variable template.
2823      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2824        << II
2825        << SourceRange(TemplateParams->getTemplateLoc(),
2826                       TemplateParams->getRAngleLoc());
2827      return 0;
2828    } else {
2829      // There is an extraneous 'template<>' for this variable. Complain
2830      // about it, but allow the declaration of the variable.
2831      Diag(TemplateParams->getTemplateLoc(),
2832           diag::err_template_variable_noparams)
2833        << II
2834        << SourceRange(TemplateParams->getTemplateLoc(),
2835                       TemplateParams->getRAngleLoc());
2836
2837      isExplicitSpecialization = true;
2838    }
2839  }
2840
2841  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2842                                   II, R, TInfo, SC, SCAsWritten);
2843
2844  if (D.isInvalidType() || Invalid)
2845    NewVD->setInvalidDecl();
2846
2847  SetNestedNameSpecifier(NewVD, D);
2848
2849  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2850    NewVD->setTemplateParameterListsInfo(Context,
2851                                         NumMatchedTemplateParamLists,
2852                                         TemplateParamLists.release());
2853  }
2854
2855  if (D.getDeclSpec().isThreadSpecified()) {
2856    if (NewVD->hasLocalStorage())
2857      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2858    else if (!Context.Target.isTLSSupported())
2859      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2860    else
2861      NewVD->setThreadSpecified(true);
2862  }
2863
2864  // Set the lexical context. If the declarator has a C++ scope specifier, the
2865  // lexical context will be different from the semantic context.
2866  NewVD->setLexicalDeclContext(CurContext);
2867
2868  // Handle attributes prior to checking for duplicates in MergeVarDecl
2869  ProcessDeclAttributes(S, NewVD, D);
2870
2871  // Handle GNU asm-label extension (encoded as an attribute).
2872  if (Expr *E = (Expr*)D.getAsmLabel()) {
2873    // The parser guarantees this is a string.
2874    StringLiteral *SE = cast<StringLiteral>(E);
2875    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2876                                                Context, SE->getString()));
2877  }
2878
2879  // Diagnose shadowed variables before filtering for scope.
2880  if (!D.getCXXScopeSpec().isSet())
2881    CheckShadow(S, NewVD, Previous);
2882
2883  // Don't consider existing declarations that are in a different
2884  // scope and are out-of-semantic-context declarations (if the new
2885  // declaration has linkage).
2886  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2887
2888  // Merge the decl with the existing one if appropriate.
2889  if (!Previous.empty()) {
2890    if (Previous.isSingleResult() &&
2891        isa<FieldDecl>(Previous.getFoundDecl()) &&
2892        D.getCXXScopeSpec().isSet()) {
2893      // The user tried to define a non-static data member
2894      // out-of-line (C++ [dcl.meaning]p1).
2895      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2896        << D.getCXXScopeSpec().getRange();
2897      Previous.clear();
2898      NewVD->setInvalidDecl();
2899    }
2900  } else if (D.getCXXScopeSpec().isSet()) {
2901    // No previous declaration in the qualifying scope.
2902    Diag(D.getIdentifierLoc(), diag::err_no_member)
2903      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2904      << D.getCXXScopeSpec().getRange();
2905    NewVD->setInvalidDecl();
2906  }
2907
2908  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2909
2910  // This is an explicit specialization of a static data member. Check it.
2911  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2912      CheckMemberSpecialization(NewVD, Previous))
2913    NewVD->setInvalidDecl();
2914
2915  // attributes declared post-definition are currently ignored
2916  // FIXME: This should be handled in attribute merging, not
2917  // here.
2918  if (Previous.isSingleResult()) {
2919    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2920    if (Def && (Def = Def->getDefinition()) &&
2921        Def != NewVD && D.hasAttributes()) {
2922      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2923      Diag(Def->getLocation(), diag::note_previous_definition);
2924    }
2925  }
2926
2927  // If this is a locally-scoped extern C variable, update the map of
2928  // such variables.
2929  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2930      !NewVD->isInvalidDecl())
2931    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2932
2933  // If there's a #pragma GCC visibility in scope, and this isn't a class
2934  // member, set the visibility of this variable.
2935  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2936    AddPushedVisibilityAttribute(NewVD);
2937
2938  MarkUnusedFileScopedDecl(NewVD);
2939
2940  return NewVD;
2941}
2942
2943/// \brief Diagnose variable or built-in function shadowing.  Implements
2944/// -Wshadow.
2945///
2946/// This method is called whenever a VarDecl is added to a "useful"
2947/// scope.
2948///
2949/// \param S the scope in which the shadowing name is being declared
2950/// \param R the lookup of the name
2951///
2952void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2953  // Return if warning is ignored.
2954  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2955    return;
2956
2957  // Don't diagnose declarations at file scope.  The scope might not
2958  // have a DeclContext if (e.g.) we're parsing a function prototype.
2959  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2960  if (NewDC && NewDC->isFileContext())
2961    return;
2962
2963  // Only diagnose if we're shadowing an unambiguous field or variable.
2964  if (R.getResultKind() != LookupResult::Found)
2965    return;
2966
2967  NamedDecl* ShadowedDecl = R.getFoundDecl();
2968  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2969    return;
2970
2971  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2972
2973  // Only warn about certain kinds of shadowing for class members.
2974  if (NewDC && NewDC->isRecord()) {
2975    // In particular, don't warn about shadowing non-class members.
2976    if (!OldDC->isRecord())
2977      return;
2978
2979    // TODO: should we warn about static data members shadowing
2980    // static data members from base classes?
2981
2982    // TODO: don't diagnose for inaccessible shadowed members.
2983    // This is hard to do perfectly because we might friend the
2984    // shadowing context, but that's just a false negative.
2985  }
2986
2987  // Determine what kind of declaration we're shadowing.
2988  unsigned Kind;
2989  if (isa<RecordDecl>(OldDC)) {
2990    if (isa<FieldDecl>(ShadowedDecl))
2991      Kind = 3; // field
2992    else
2993      Kind = 2; // static data member
2994  } else if (OldDC->isFileContext())
2995    Kind = 1; // global
2996  else
2997    Kind = 0; // local
2998
2999  DeclarationName Name = R.getLookupName();
3000
3001  // Emit warning and note.
3002  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3003  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3004}
3005
3006/// \brief Check -Wshadow without the advantage of a previous lookup.
3007void Sema::CheckShadow(Scope *S, VarDecl *D) {
3008  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3009                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3010  LookupName(R, S);
3011  CheckShadow(S, D, R);
3012}
3013
3014/// \brief Perform semantic checking on a newly-created variable
3015/// declaration.
3016///
3017/// This routine performs all of the type-checking required for a
3018/// variable declaration once it has been built. It is used both to
3019/// check variables after they have been parsed and their declarators
3020/// have been translated into a declaration, and to check variables
3021/// that have been instantiated from a template.
3022///
3023/// Sets NewVD->isInvalidDecl() if an error was encountered.
3024void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3025                                    LookupResult &Previous,
3026                                    bool &Redeclaration) {
3027  // If the decl is already known invalid, don't check it.
3028  if (NewVD->isInvalidDecl())
3029    return;
3030
3031  QualType T = NewVD->getType();
3032
3033  if (T->isObjCObjectType()) {
3034    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3035    return NewVD->setInvalidDecl();
3036  }
3037
3038  // Emit an error if an address space was applied to decl with local storage.
3039  // This includes arrays of objects with address space qualifiers, but not
3040  // automatic variables that point to other address spaces.
3041  // ISO/IEC TR 18037 S5.1.2
3042  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3043    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3044    return NewVD->setInvalidDecl();
3045  }
3046
3047  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3048      && !NewVD->hasAttr<BlocksAttr>())
3049    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3050
3051  bool isVM = T->isVariablyModifiedType();
3052  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3053      NewVD->hasAttr<BlocksAttr>())
3054    getCurFunction()->setHasBranchProtectedScope();
3055
3056  if ((isVM && NewVD->hasLinkage()) ||
3057      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3058    bool SizeIsNegative;
3059    llvm::APSInt Oversized;
3060    QualType FixedTy =
3061        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3062                                            Oversized);
3063
3064    if (FixedTy.isNull() && T->isVariableArrayType()) {
3065      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3066      // FIXME: This won't give the correct result for
3067      // int a[10][n];
3068      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3069
3070      if (NewVD->isFileVarDecl())
3071        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3072        << SizeRange;
3073      else if (NewVD->getStorageClass() == SC_Static)
3074        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3075        << SizeRange;
3076      else
3077        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3078        << SizeRange;
3079      return NewVD->setInvalidDecl();
3080    }
3081
3082    if (FixedTy.isNull()) {
3083      if (NewVD->isFileVarDecl())
3084        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3085      else
3086        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3087      return NewVD->setInvalidDecl();
3088    }
3089
3090    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3091    NewVD->setType(FixedTy);
3092  }
3093
3094  if (Previous.empty() && NewVD->isExternC()) {
3095    // Since we did not find anything by this name and we're declaring
3096    // an extern "C" variable, look for a non-visible extern "C"
3097    // declaration with the same name.
3098    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3099      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3100    if (Pos != LocallyScopedExternalDecls.end())
3101      Previous.addDecl(Pos->second);
3102  }
3103
3104  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3105    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3106      << T;
3107    return NewVD->setInvalidDecl();
3108  }
3109
3110  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3111    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3112    return NewVD->setInvalidDecl();
3113  }
3114
3115  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3116    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3117    return NewVD->setInvalidDecl();
3118  }
3119
3120  // Function pointers and references cannot have qualified function type, only
3121  // function pointer-to-members can do that.
3122  QualType Pointee;
3123  unsigned PtrOrRef = 0;
3124  if (const PointerType *Ptr = T->getAs<PointerType>())
3125    Pointee = Ptr->getPointeeType();
3126  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3127    Pointee = Ref->getPointeeType();
3128    PtrOrRef = 1;
3129  }
3130  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3131      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3132    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3133        << PtrOrRef;
3134    return NewVD->setInvalidDecl();
3135  }
3136
3137  if (!Previous.empty()) {
3138    Redeclaration = true;
3139    MergeVarDecl(NewVD, Previous);
3140  }
3141}
3142
3143/// \brief Data used with FindOverriddenMethod
3144struct FindOverriddenMethodData {
3145  Sema *S;
3146  CXXMethodDecl *Method;
3147};
3148
3149/// \brief Member lookup function that determines whether a given C++
3150/// method overrides a method in a base class, to be used with
3151/// CXXRecordDecl::lookupInBases().
3152static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3153                                 CXXBasePath &Path,
3154                                 void *UserData) {
3155  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3156
3157  FindOverriddenMethodData *Data
3158    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3159
3160  DeclarationName Name = Data->Method->getDeclName();
3161
3162  // FIXME: Do we care about other names here too?
3163  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3164    // We really want to find the base class destructor here.
3165    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3166    CanQualType CT = Data->S->Context.getCanonicalType(T);
3167
3168    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3169  }
3170
3171  for (Path.Decls = BaseRecord->lookup(Name);
3172       Path.Decls.first != Path.Decls.second;
3173       ++Path.Decls.first) {
3174    NamedDecl *D = *Path.Decls.first;
3175    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3176      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3177        return true;
3178    }
3179  }
3180
3181  return false;
3182}
3183
3184/// AddOverriddenMethods - See if a method overrides any in the base classes,
3185/// and if so, check that it's a valid override and remember it.
3186bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3187  // Look for virtual methods in base classes that this method might override.
3188  CXXBasePaths Paths;
3189  FindOverriddenMethodData Data;
3190  Data.Method = MD;
3191  Data.S = this;
3192  bool AddedAny = false;
3193  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3194    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3195         E = Paths.found_decls_end(); I != E; ++I) {
3196      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3197        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3198            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3199            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3200          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3201          AddedAny = true;
3202        }
3203      }
3204    }
3205  }
3206
3207  return AddedAny;
3208}
3209
3210static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3211  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3212                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3213  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3214  assert(!Prev.isAmbiguous() &&
3215         "Cannot have an ambiguity in previous-declaration lookup");
3216  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3217       Func != FuncEnd; ++Func) {
3218    if (isa<FunctionDecl>(*Func) &&
3219        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3220      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3221  }
3222}
3223
3224/// CheckClassMemberNameAttributes - Check for class member name checking
3225/// attributes according to [dcl.attr.override]
3226static void
3227CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3228  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3229  if (!MD || !MD->isVirtual())
3230    return;
3231
3232  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3233  bool HasOverriddenMethods =
3234    MD->begin_overridden_methods() != MD->end_overridden_methods();
3235
3236  /// C++ [dcl.attr.override]p2:
3237  ///   If a virtual member function f is marked override and does not override
3238  ///   a member function of a base class the program is ill-formed.
3239  if (HasOverrideAttr && !HasOverriddenMethods) {
3240    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3241      << MD->getDeclName();
3242    return;
3243  }
3244
3245  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3246    return;
3247
3248  /// C++ [dcl.attr.override]p6:
3249  ///   In a class definition marked base_check, if a virtual member function
3250  ///    that is neither implicitly-declared nor a destructor overrides a
3251  ///    member function of a base class and it is not marked override, the
3252  ///    program is ill-formed.
3253  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3254      !isa<CXXDestructorDecl>(MD)) {
3255    llvm::SmallVector<const CXXMethodDecl*, 4>
3256      OverriddenMethods(MD->begin_overridden_methods(),
3257                        MD->end_overridden_methods());
3258
3259    SemaRef.Diag(MD->getLocation(),
3260                 diag::err_function_overriding_without_override)
3261      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3262
3263    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3264      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3265                   diag::note_overridden_virtual_function);
3266  }
3267}
3268
3269NamedDecl*
3270Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3271                              QualType R, TypeSourceInfo *TInfo,
3272                              LookupResult &Previous,
3273                              MultiTemplateParamsArg TemplateParamLists,
3274                              bool IsFunctionDefinition, bool &Redeclaration) {
3275  assert(R.getTypePtr()->isFunctionType());
3276
3277  // TODO: consider using NameInfo for diagnostic.
3278  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3279  DeclarationName Name = NameInfo.getName();
3280  FunctionDecl::StorageClass SC = SC_None;
3281  switch (D.getDeclSpec().getStorageClassSpec()) {
3282  default: assert(0 && "Unknown storage class!");
3283  case DeclSpec::SCS_auto:
3284  case DeclSpec::SCS_register:
3285  case DeclSpec::SCS_mutable:
3286    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3287         diag::err_typecheck_sclass_func);
3288    D.setInvalidType();
3289    break;
3290  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3291  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3292  case DeclSpec::SCS_static: {
3293    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3294      // C99 6.7.1p5:
3295      //   The declaration of an identifier for a function that has
3296      //   block scope shall have no explicit storage-class specifier
3297      //   other than extern
3298      // See also (C++ [dcl.stc]p4).
3299      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3300           diag::err_static_block_func);
3301      SC = SC_None;
3302    } else
3303      SC = SC_Static;
3304    break;
3305  }
3306  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3307  }
3308
3309  if (D.getDeclSpec().isThreadSpecified())
3310    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3311
3312  bool isFriend = D.getDeclSpec().isFriendSpecified();
3313  bool isInline = D.getDeclSpec().isInlineSpecified();
3314  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3315  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3316
3317  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3318  FunctionDecl::StorageClass SCAsWritten
3319    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3320
3321  // Check that the return type is not an abstract class type.
3322  // For record types, this is done by the AbstractClassUsageDiagnoser once
3323  // the class has been completely parsed.
3324  if (!DC->isRecord() &&
3325      RequireNonAbstractType(D.getIdentifierLoc(),
3326                             R->getAs<FunctionType>()->getResultType(),
3327                             diag::err_abstract_type_in_decl,
3328                             AbstractReturnType))
3329    D.setInvalidType();
3330
3331  // Do not allow returning a objc interface by-value.
3332  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3333    Diag(D.getIdentifierLoc(),
3334         diag::err_object_cannot_be_passed_returned_by_value) << 0
3335      << R->getAs<FunctionType>()->getResultType();
3336    D.setInvalidType();
3337  }
3338
3339  bool isVirtualOkay = false;
3340  FunctionDecl *NewFD;
3341
3342  if (isFriend) {
3343    // C++ [class.friend]p5
3344    //   A function can be defined in a friend declaration of a
3345    //   class . . . . Such a function is implicitly inline.
3346    isInline |= IsFunctionDefinition;
3347  }
3348
3349  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3350    // This is a C++ constructor declaration.
3351    assert(DC->isRecord() &&
3352           "Constructors can only be declared in a member context");
3353
3354    R = CheckConstructorDeclarator(D, R, SC);
3355
3356    // Create the new declaration
3357    NewFD = CXXConstructorDecl::Create(Context,
3358                                       cast<CXXRecordDecl>(DC),
3359                                       NameInfo, R, TInfo,
3360                                       isExplicit, isInline,
3361                                       /*isImplicitlyDeclared=*/false);
3362  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3363    // This is a C++ destructor declaration.
3364    if (DC->isRecord()) {
3365      R = CheckDestructorDeclarator(D, R, SC);
3366
3367      NewFD = CXXDestructorDecl::Create(Context,
3368                                        cast<CXXRecordDecl>(DC),
3369                                        NameInfo, R, TInfo,
3370                                        isInline,
3371                                        /*isImplicitlyDeclared=*/false);
3372      isVirtualOkay = true;
3373    } else {
3374      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3375
3376      // Create a FunctionDecl to satisfy the function definition parsing
3377      // code path.
3378      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3379                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3380                                   /*hasPrototype=*/true);
3381      D.setInvalidType();
3382    }
3383  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3384    if (!DC->isRecord()) {
3385      Diag(D.getIdentifierLoc(),
3386           diag::err_conv_function_not_member);
3387      return 0;
3388    }
3389
3390    CheckConversionDeclarator(D, R, SC);
3391    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3392                                      NameInfo, R, TInfo,
3393                                      isInline, isExplicit);
3394
3395    isVirtualOkay = true;
3396  } else if (DC->isRecord()) {
3397    // If the of the function is the same as the name of the record, then this
3398    // must be an invalid constructor that has a return type.
3399    // (The parser checks for a return type and makes the declarator a
3400    // constructor if it has no return type).
3401    // must have an invalid constructor that has a return type
3402    if (Name.getAsIdentifierInfo() &&
3403        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3404      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3405        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3406        << SourceRange(D.getIdentifierLoc());
3407      return 0;
3408    }
3409
3410    bool isStatic = SC == SC_Static;
3411
3412    // [class.free]p1:
3413    // Any allocation function for a class T is a static member
3414    // (even if not explicitly declared static).
3415    if (Name.getCXXOverloadedOperator() == OO_New ||
3416        Name.getCXXOverloadedOperator() == OO_Array_New)
3417      isStatic = true;
3418
3419    // [class.free]p6 Any deallocation function for a class X is a static member
3420    // (even if not explicitly declared static).
3421    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3422        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3423      isStatic = true;
3424
3425    // This is a C++ method declaration.
3426    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3427                                  NameInfo, R, TInfo,
3428                                  isStatic, SCAsWritten, isInline);
3429
3430    isVirtualOkay = !isStatic;
3431  } else {
3432    // Determine whether the function was written with a
3433    // prototype. This true when:
3434    //   - we're in C++ (where every function has a prototype),
3435    //   - there is a prototype in the declarator, or
3436    //   - the type R of the function is some kind of typedef or other reference
3437    //     to a type name (which eventually refers to a function type).
3438    bool HasPrototype =
3439       getLangOptions().CPlusPlus ||
3440       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3441       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3442
3443    NewFD = FunctionDecl::Create(Context, DC,
3444                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3445                                 HasPrototype);
3446  }
3447
3448  if (D.isInvalidType())
3449    NewFD->setInvalidDecl();
3450
3451  SetNestedNameSpecifier(NewFD, D);
3452
3453  // Set the lexical context. If the declarator has a C++
3454  // scope specifier, or is the object of a friend declaration, the
3455  // lexical context will be different from the semantic context.
3456  NewFD->setLexicalDeclContext(CurContext);
3457
3458  // Match up the template parameter lists with the scope specifier, then
3459  // determine whether we have a template or a template specialization.
3460  FunctionTemplateDecl *FunctionTemplate = 0;
3461  bool isExplicitSpecialization = false;
3462  bool isFunctionTemplateSpecialization = false;
3463  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3464  bool Invalid = false;
3465  if (TemplateParameterList *TemplateParams
3466        = MatchTemplateParametersToScopeSpecifier(
3467                                  D.getDeclSpec().getSourceRange().getBegin(),
3468                                  D.getCXXScopeSpec(),
3469                                  TemplateParamLists.get(),
3470                                  TemplateParamLists.size(),
3471                                  isFriend,
3472                                  isExplicitSpecialization,
3473                                  Invalid)) {
3474    // All but one template parameter lists have been matching.
3475    --NumMatchedTemplateParamLists;
3476
3477    if (TemplateParams->size() > 0) {
3478      // This is a function template
3479
3480      // Check that we can declare a template here.
3481      if (CheckTemplateDeclScope(S, TemplateParams))
3482        return 0;
3483
3484      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3485                                                      NewFD->getLocation(),
3486                                                      Name, TemplateParams,
3487                                                      NewFD);
3488      FunctionTemplate->setLexicalDeclContext(CurContext);
3489      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3490    } else {
3491      // This is a function template specialization.
3492      isFunctionTemplateSpecialization = true;
3493
3494      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3495      if (isFriend && isFunctionTemplateSpecialization) {
3496        // We want to remove the "template<>", found here.
3497        SourceRange RemoveRange = TemplateParams->getSourceRange();
3498
3499        // If we remove the template<> and the name is not a
3500        // template-id, we're actually silently creating a problem:
3501        // the friend declaration will refer to an untemplated decl,
3502        // and clearly the user wants a template specialization.  So
3503        // we need to insert '<>' after the name.
3504        SourceLocation InsertLoc;
3505        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3506          InsertLoc = D.getName().getSourceRange().getEnd();
3507          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3508        }
3509
3510        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3511          << Name << RemoveRange
3512          << FixItHint::CreateRemoval(RemoveRange)
3513          << FixItHint::CreateInsertion(InsertLoc, "<>");
3514      }
3515    }
3516  }
3517
3518  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3519    NewFD->setTemplateParameterListsInfo(Context,
3520                                         NumMatchedTemplateParamLists,
3521                                         TemplateParamLists.release());
3522  }
3523
3524  if (Invalid) {
3525    NewFD->setInvalidDecl();
3526    if (FunctionTemplate)
3527      FunctionTemplate->setInvalidDecl();
3528  }
3529
3530  // C++ [dcl.fct.spec]p5:
3531  //   The virtual specifier shall only be used in declarations of
3532  //   nonstatic class member functions that appear within a
3533  //   member-specification of a class declaration; see 10.3.
3534  //
3535  if (isVirtual && !NewFD->isInvalidDecl()) {
3536    if (!isVirtualOkay) {
3537       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3538           diag::err_virtual_non_function);
3539    } else if (!CurContext->isRecord()) {
3540      // 'virtual' was specified outside of the class.
3541      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3542        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3543    } else {
3544      // Okay: Add virtual to the method.
3545      NewFD->setVirtualAsWritten(true);
3546    }
3547  }
3548
3549  // C++ [dcl.fct.spec]p3:
3550  //  The inline specifier shall not appear on a block scope function declaration.
3551  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3552    if (CurContext->isFunctionOrMethod()) {
3553      // 'inline' is not allowed on block scope function declaration.
3554      Diag(D.getDeclSpec().getInlineSpecLoc(),
3555           diag::err_inline_declaration_block_scope) << Name
3556        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3557    }
3558  }
3559
3560  // C++ [dcl.fct.spec]p6:
3561  //  The explicit specifier shall be used only in the declaration of a
3562  //  constructor or conversion function within its class definition; see 12.3.1
3563  //  and 12.3.2.
3564  if (isExplicit && !NewFD->isInvalidDecl()) {
3565    if (!CurContext->isRecord()) {
3566      // 'explicit' was specified outside of the class.
3567      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3568           diag::err_explicit_out_of_class)
3569        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3570    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3571               !isa<CXXConversionDecl>(NewFD)) {
3572      // 'explicit' was specified on a function that wasn't a constructor
3573      // or conversion function.
3574      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3575           diag::err_explicit_non_ctor_or_conv_function)
3576        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3577    }
3578  }
3579
3580  // Filter out previous declarations that don't match the scope.
3581  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3582
3583  if (isFriend) {
3584    // For now, claim that the objects have no previous declaration.
3585    if (FunctionTemplate) {
3586      FunctionTemplate->setObjectOfFriendDecl(false);
3587      FunctionTemplate->setAccess(AS_public);
3588    }
3589    NewFD->setObjectOfFriendDecl(false);
3590    NewFD->setAccess(AS_public);
3591  }
3592
3593  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3594      !CurContext->isRecord()) {
3595    // C++ [class.static]p1:
3596    //   A data or function member of a class may be declared static
3597    //   in a class definition, in which case it is a static member of
3598    //   the class.
3599
3600    // Complain about the 'static' specifier if it's on an out-of-line
3601    // member function definition.
3602    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3603         diag::err_static_out_of_line)
3604      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3605  }
3606
3607  // Handle GNU asm-label extension (encoded as an attribute).
3608  if (Expr *E = (Expr*) D.getAsmLabel()) {
3609    // The parser guarantees this is a string.
3610    StringLiteral *SE = cast<StringLiteral>(E);
3611    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3612                                                SE->getString()));
3613  }
3614
3615  // Copy the parameter declarations from the declarator D to the function
3616  // declaration NewFD, if they are available.  First scavenge them into Params.
3617  llvm::SmallVector<ParmVarDecl*, 16> Params;
3618  if (D.getNumTypeObjects() > 0) {
3619    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3620
3621    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3622    // function that takes no arguments, not a function that takes a
3623    // single void argument.
3624    // We let through "const void" here because Sema::GetTypeForDeclarator
3625    // already checks for that case.
3626    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3627        FTI.ArgInfo[0].Param &&
3628        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3629      // Empty arg list, don't push any params.
3630      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3631
3632      // In C++, the empty parameter-type-list must be spelled "void"; a
3633      // typedef of void is not permitted.
3634      if (getLangOptions().CPlusPlus &&
3635          Param->getType().getUnqualifiedType() != Context.VoidTy)
3636        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3637    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3638      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3639        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3640        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3641        Param->setDeclContext(NewFD);
3642        Params.push_back(Param);
3643
3644        if (Param->isInvalidDecl())
3645          NewFD->setInvalidDecl();
3646      }
3647    }
3648
3649  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3650    // When we're declaring a function with a typedef, typeof, etc as in the
3651    // following example, we'll need to synthesize (unnamed)
3652    // parameters for use in the declaration.
3653    //
3654    // @code
3655    // typedef void fn(int);
3656    // fn f;
3657    // @endcode
3658
3659    // Synthesize a parameter for each argument type.
3660    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3661         AE = FT->arg_type_end(); AI != AE; ++AI) {
3662      ParmVarDecl *Param =
3663        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3664      Params.push_back(Param);
3665    }
3666  } else {
3667    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3668           "Should not need args for typedef of non-prototype fn");
3669  }
3670  // Finally, we know we have the right number of parameters, install them.
3671  NewFD->setParams(Params.data(), Params.size());
3672
3673  // If the declarator is a template-id, translate the parser's template
3674  // argument list into our AST format.
3675  bool HasExplicitTemplateArgs = false;
3676  TemplateArgumentListInfo TemplateArgs;
3677  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3678    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3679    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3680    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3681    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3682                                       TemplateId->getTemplateArgs(),
3683                                       TemplateId->NumArgs);
3684    translateTemplateArguments(TemplateArgsPtr,
3685                               TemplateArgs);
3686    TemplateArgsPtr.release();
3687
3688    HasExplicitTemplateArgs = true;
3689
3690    if (FunctionTemplate) {
3691      // FIXME: Diagnose function template with explicit template
3692      // arguments.
3693      HasExplicitTemplateArgs = false;
3694    } else if (!isFunctionTemplateSpecialization &&
3695               !D.getDeclSpec().isFriendSpecified()) {
3696      // We have encountered something that the user meant to be a
3697      // specialization (because it has explicitly-specified template
3698      // arguments) but that was not introduced with a "template<>" (or had
3699      // too few of them).
3700      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3701        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3702        << FixItHint::CreateInsertion(
3703                                   D.getDeclSpec().getSourceRange().getBegin(),
3704                                                 "template<> ");
3705      isFunctionTemplateSpecialization = true;
3706    } else {
3707      // "friend void foo<>(int);" is an implicit specialization decl.
3708      isFunctionTemplateSpecialization = true;
3709    }
3710  } else if (isFriend && isFunctionTemplateSpecialization) {
3711    // This combination is only possible in a recovery case;  the user
3712    // wrote something like:
3713    //   template <> friend void foo(int);
3714    // which we're recovering from as if the user had written:
3715    //   friend void foo<>(int);
3716    // Go ahead and fake up a template id.
3717    HasExplicitTemplateArgs = true;
3718    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3719    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3720  }
3721
3722  // If it's a friend (and only if it's a friend), it's possible
3723  // that either the specialized function type or the specialized
3724  // template is dependent, and therefore matching will fail.  In
3725  // this case, don't check the specialization yet.
3726  if (isFunctionTemplateSpecialization && isFriend &&
3727      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3728    assert(HasExplicitTemplateArgs &&
3729           "friend function specialization without template args");
3730    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3731                                                     Previous))
3732      NewFD->setInvalidDecl();
3733  } else if (isFunctionTemplateSpecialization) {
3734    if (CheckFunctionTemplateSpecialization(NewFD,
3735                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3736                                            Previous))
3737      NewFD->setInvalidDecl();
3738  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3739    if (CheckMemberSpecialization(NewFD, Previous))
3740      NewFD->setInvalidDecl();
3741  }
3742
3743  // Perform semantic checking on the function declaration.
3744  bool OverloadableAttrRequired = false; // FIXME: HACK!
3745  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3746                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3747
3748  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3749          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3750         "previous declaration set still overloaded");
3751
3752  NamedDecl *PrincipalDecl = (FunctionTemplate
3753                              ? cast<NamedDecl>(FunctionTemplate)
3754                              : NewFD);
3755
3756  if (isFriend && Redeclaration) {
3757    AccessSpecifier Access = AS_public;
3758    if (!NewFD->isInvalidDecl())
3759      Access = NewFD->getPreviousDeclaration()->getAccess();
3760
3761    NewFD->setAccess(Access);
3762    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3763
3764    PrincipalDecl->setObjectOfFriendDecl(true);
3765  }
3766
3767  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3768      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3769    PrincipalDecl->setNonMemberOperator();
3770
3771  // If we have a function template, check the template parameter
3772  // list. This will check and merge default template arguments.
3773  if (FunctionTemplate) {
3774    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3775    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3776                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3777             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3778                                                : TPC_FunctionTemplate);
3779  }
3780
3781  if (NewFD->isInvalidDecl()) {
3782    // Ignore all the rest of this.
3783  } else if (!Redeclaration) {
3784    // Fake up an access specifier if it's supposed to be a class member.
3785    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3786      NewFD->setAccess(AS_public);
3787
3788    // Qualified decls generally require a previous declaration.
3789    if (D.getCXXScopeSpec().isSet()) {
3790      // ...with the major exception of templated-scope or
3791      // dependent-scope friend declarations.
3792
3793      // TODO: we currently also suppress this check in dependent
3794      // contexts because (1) the parameter depth will be off when
3795      // matching friend templates and (2) we might actually be
3796      // selecting a friend based on a dependent factor.  But there
3797      // are situations where these conditions don't apply and we
3798      // can actually do this check immediately.
3799      if (isFriend &&
3800          (NumMatchedTemplateParamLists ||
3801           D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3802           CurContext->isDependentContext())) {
3803        // ignore these
3804      } else {
3805        // The user tried to provide an out-of-line definition for a
3806        // function that is a member of a class or namespace, but there
3807        // was no such member function declared (C++ [class.mfct]p2,
3808        // C++ [namespace.memdef]p2). For example:
3809        //
3810        // class X {
3811        //   void f() const;
3812        // };
3813        //
3814        // void X::f() { } // ill-formed
3815        //
3816        // Complain about this problem, and attempt to suggest close
3817        // matches (e.g., those that differ only in cv-qualifiers and
3818        // whether the parameter types are references).
3819        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3820          << Name << DC << D.getCXXScopeSpec().getRange();
3821        NewFD->setInvalidDecl();
3822
3823        DiagnoseInvalidRedeclaration(*this, NewFD);
3824      }
3825
3826    // Unqualified local friend declarations are required to resolve
3827    // to something.
3828    } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3829      Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3830      NewFD->setInvalidDecl();
3831      DiagnoseInvalidRedeclaration(*this, NewFD);
3832    }
3833
3834  } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3835             !isFriend && !isFunctionTemplateSpecialization &&
3836             !isExplicitSpecialization) {
3837    // An out-of-line member function declaration must also be a
3838    // definition (C++ [dcl.meaning]p1).
3839    // Note that this is not the case for explicit specializations of
3840    // function templates or member functions of class templates, per
3841    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3842    // for compatibility with old SWIG code which likes to generate them.
3843    Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3844      << D.getCXXScopeSpec().getRange();
3845  }
3846
3847  // Handle attributes. We need to have merged decls when handling attributes
3848  // (for example to check for conflicts, etc).
3849  // FIXME: This needs to happen before we merge declarations. Then,
3850  // let attribute merging cope with attribute conflicts.
3851  ProcessDeclAttributes(S, NewFD, D);
3852
3853  // attributes declared post-definition are currently ignored
3854  // FIXME: This should happen during attribute merging
3855  if (Redeclaration && Previous.isSingleResult()) {
3856    const FunctionDecl *Def;
3857    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3858    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3859      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3860      Diag(Def->getLocation(), diag::note_previous_definition);
3861    }
3862  }
3863
3864  AddKnownFunctionAttributes(NewFD);
3865
3866  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3867    // If a function name is overloadable in C, then every function
3868    // with that name must be marked "overloadable".
3869    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3870      << Redeclaration << NewFD;
3871    if (!Previous.empty())
3872      Diag(Previous.getRepresentativeDecl()->getLocation(),
3873           diag::note_attribute_overloadable_prev_overload);
3874    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3875  }
3876
3877  if (NewFD->hasAttr<OverloadableAttr>() &&
3878      !NewFD->getType()->getAs<FunctionProtoType>()) {
3879    Diag(NewFD->getLocation(),
3880         diag::err_attribute_overloadable_no_prototype)
3881      << NewFD;
3882
3883    // Turn this into a variadic function with no parameters.
3884    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3885    QualType R = Context.getFunctionType(FT->getResultType(),
3886                                         0, 0, true, 0, false, false, 0, 0,
3887                                         FT->getExtInfo());
3888    NewFD->setType(R);
3889  }
3890
3891  // If there's a #pragma GCC visibility in scope, and this isn't a class
3892  // member, set the visibility of this function.
3893  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3894    AddPushedVisibilityAttribute(NewFD);
3895
3896  // If this is a locally-scoped extern C function, update the
3897  // map of such names.
3898  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3899      && !NewFD->isInvalidDecl())
3900    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3901
3902  // Set this FunctionDecl's range up to the right paren.
3903  NewFD->setLocEnd(D.getSourceRange().getEnd());
3904
3905  if (FunctionTemplate && NewFD->isInvalidDecl())
3906    FunctionTemplate->setInvalidDecl();
3907
3908  if (FunctionTemplate)
3909    return FunctionTemplate;
3910
3911  MarkUnusedFileScopedDecl(NewFD);
3912
3913  CheckClassMemberNameAttributes(*this, NewFD);
3914
3915  return NewFD;
3916}
3917
3918/// \brief Perform semantic checking of a new function declaration.
3919///
3920/// Performs semantic analysis of the new function declaration
3921/// NewFD. This routine performs all semantic checking that does not
3922/// require the actual declarator involved in the declaration, and is
3923/// used both for the declaration of functions as they are parsed
3924/// (called via ActOnDeclarator) and for the declaration of functions
3925/// that have been instantiated via C++ template instantiation (called
3926/// via InstantiateDecl).
3927///
3928/// \param IsExplicitSpecialiation whether this new function declaration is
3929/// an explicit specialization of the previous declaration.
3930///
3931/// This sets NewFD->isInvalidDecl() to true if there was an error.
3932void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3933                                    LookupResult &Previous,
3934                                    bool IsExplicitSpecialization,
3935                                    bool &Redeclaration,
3936                                    bool &OverloadableAttrRequired) {
3937  // If NewFD is already known erroneous, don't do any of this checking.
3938  if (NewFD->isInvalidDecl()) {
3939    // If this is a class member, mark the class invalid immediately.
3940    // This avoids some consistency errors later.
3941    if (isa<CXXMethodDecl>(NewFD))
3942      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3943
3944    return;
3945  }
3946
3947  if (NewFD->getResultType()->isVariablyModifiedType()) {
3948    // Functions returning a variably modified type violate C99 6.7.5.2p2
3949    // because all functions have linkage.
3950    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3951    return NewFD->setInvalidDecl();
3952  }
3953
3954  if (NewFD->isMain())
3955    CheckMain(NewFD);
3956
3957  // Check for a previous declaration of this name.
3958  if (Previous.empty() && NewFD->isExternC()) {
3959    // Since we did not find anything by this name and we're declaring
3960    // an extern "C" function, look for a non-visible extern "C"
3961    // declaration with the same name.
3962    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3963      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3964    if (Pos != LocallyScopedExternalDecls.end())
3965      Previous.addDecl(Pos->second);
3966  }
3967
3968  // Merge or overload the declaration with an existing declaration of
3969  // the same name, if appropriate.
3970  if (!Previous.empty()) {
3971    // Determine whether NewFD is an overload of PrevDecl or
3972    // a declaration that requires merging. If it's an overload,
3973    // there's no more work to do here; we'll just add the new
3974    // function to the scope.
3975
3976    NamedDecl *OldDecl = 0;
3977    if (!AllowOverloadingOfFunction(Previous, Context)) {
3978      Redeclaration = true;
3979      OldDecl = Previous.getFoundDecl();
3980    } else {
3981      if (!getLangOptions().CPlusPlus)
3982        OverloadableAttrRequired = true;
3983
3984      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3985                            /*NewIsUsingDecl*/ false)) {
3986      case Ovl_Match:
3987        Redeclaration = true;
3988        break;
3989
3990      case Ovl_NonFunction:
3991        Redeclaration = true;
3992        break;
3993
3994      case Ovl_Overload:
3995        Redeclaration = false;
3996        break;
3997      }
3998    }
3999
4000    if (Redeclaration) {
4001      // NewFD and OldDecl represent declarations that need to be
4002      // merged.
4003      if (MergeFunctionDecl(NewFD, OldDecl))
4004        return NewFD->setInvalidDecl();
4005
4006      Previous.clear();
4007      Previous.addDecl(OldDecl);
4008
4009      if (FunctionTemplateDecl *OldTemplateDecl
4010                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4011        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4012        FunctionTemplateDecl *NewTemplateDecl
4013          = NewFD->getDescribedFunctionTemplate();
4014        assert(NewTemplateDecl && "Template/non-template mismatch");
4015        if (CXXMethodDecl *Method
4016              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4017          Method->setAccess(OldTemplateDecl->getAccess());
4018          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4019        }
4020
4021        // If this is an explicit specialization of a member that is a function
4022        // template, mark it as a member specialization.
4023        if (IsExplicitSpecialization &&
4024            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4025          NewTemplateDecl->setMemberSpecialization();
4026          assert(OldTemplateDecl->isMemberSpecialization());
4027        }
4028      } else {
4029        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4030          NewFD->setAccess(OldDecl->getAccess());
4031        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4032      }
4033    }
4034  }
4035
4036  // Semantic checking for this function declaration (in isolation).
4037  if (getLangOptions().CPlusPlus) {
4038    // C++-specific checks.
4039    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4040      CheckConstructor(Constructor);
4041    } else if (CXXDestructorDecl *Destructor =
4042                dyn_cast<CXXDestructorDecl>(NewFD)) {
4043      CXXRecordDecl *Record = Destructor->getParent();
4044      QualType ClassType = Context.getTypeDeclType(Record);
4045
4046      // FIXME: Shouldn't we be able to perform this check even when the class
4047      // type is dependent? Both gcc and edg can handle that.
4048      if (!ClassType->isDependentType()) {
4049        DeclarationName Name
4050          = Context.DeclarationNames.getCXXDestructorName(
4051                                        Context.getCanonicalType(ClassType));
4052        if (NewFD->getDeclName() != Name) {
4053          Diag(NewFD->getLocation(), diag::err_destructor_name);
4054          return NewFD->setInvalidDecl();
4055        }
4056      }
4057    } else if (CXXConversionDecl *Conversion
4058               = dyn_cast<CXXConversionDecl>(NewFD)) {
4059      ActOnConversionDeclarator(Conversion);
4060    }
4061
4062    // Find any virtual functions that this function overrides.
4063    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4064      if (!Method->isFunctionTemplateSpecialization() &&
4065          !Method->getDescribedFunctionTemplate()) {
4066        if (AddOverriddenMethods(Method->getParent(), Method)) {
4067          // If the function was marked as "static", we have a problem.
4068          if (NewFD->getStorageClass() == SC_Static) {
4069            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4070              << NewFD->getDeclName();
4071            for (CXXMethodDecl::method_iterator
4072                      Overridden = Method->begin_overridden_methods(),
4073                   OverriddenEnd = Method->end_overridden_methods();
4074                 Overridden != OverriddenEnd;
4075                 ++Overridden) {
4076              Diag((*Overridden)->getLocation(),
4077                   diag::note_overridden_virtual_function);
4078            }
4079          }
4080        }
4081      }
4082    }
4083
4084    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4085    if (NewFD->isOverloadedOperator() &&
4086        CheckOverloadedOperatorDeclaration(NewFD))
4087      return NewFD->setInvalidDecl();
4088
4089    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4090    if (NewFD->getLiteralIdentifier() &&
4091        CheckLiteralOperatorDeclaration(NewFD))
4092      return NewFD->setInvalidDecl();
4093
4094    // In C++, check default arguments now that we have merged decls. Unless
4095    // the lexical context is the class, because in this case this is done
4096    // during delayed parsing anyway.
4097    if (!CurContext->isRecord())
4098      CheckCXXDefaultArguments(NewFD);
4099  }
4100}
4101
4102void Sema::CheckMain(FunctionDecl* FD) {
4103  // C++ [basic.start.main]p3:  A program that declares main to be inline
4104  //   or static is ill-formed.
4105  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4106  //   shall not appear in a declaration of main.
4107  // static main is not an error under C99, but we should warn about it.
4108  bool isInline = FD->isInlineSpecified();
4109  bool isStatic = FD->getStorageClass() == SC_Static;
4110  if (isInline || isStatic) {
4111    unsigned diagID = diag::warn_unusual_main_decl;
4112    if (isInline || getLangOptions().CPlusPlus)
4113      diagID = diag::err_unusual_main_decl;
4114
4115    int which = isStatic + (isInline << 1) - 1;
4116    Diag(FD->getLocation(), diagID) << which;
4117  }
4118
4119  QualType T = FD->getType();
4120  assert(T->isFunctionType() && "function decl is not of function type");
4121  const FunctionType* FT = T->getAs<FunctionType>();
4122
4123  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4124    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4125    TypeLoc TL = TSI->getTypeLoc();
4126    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4127                                          diag::err_main_returns_nonint);
4128    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4129      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4130                                        "int");
4131    }
4132    FD->setInvalidDecl(true);
4133  }
4134
4135  // Treat protoless main() as nullary.
4136  if (isa<FunctionNoProtoType>(FT)) return;
4137
4138  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4139  unsigned nparams = FTP->getNumArgs();
4140  assert(FD->getNumParams() == nparams);
4141
4142  bool HasExtraParameters = (nparams > 3);
4143
4144  // Darwin passes an undocumented fourth argument of type char**.  If
4145  // other platforms start sprouting these, the logic below will start
4146  // getting shifty.
4147  if (nparams == 4 &&
4148      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4149    HasExtraParameters = false;
4150
4151  if (HasExtraParameters) {
4152    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4153    FD->setInvalidDecl(true);
4154    nparams = 3;
4155  }
4156
4157  // FIXME: a lot of the following diagnostics would be improved
4158  // if we had some location information about types.
4159
4160  QualType CharPP =
4161    Context.getPointerType(Context.getPointerType(Context.CharTy));
4162  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4163
4164  for (unsigned i = 0; i < nparams; ++i) {
4165    QualType AT = FTP->getArgType(i);
4166
4167    bool mismatch = true;
4168
4169    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4170      mismatch = false;
4171    else if (Expected[i] == CharPP) {
4172      // As an extension, the following forms are okay:
4173      //   char const **
4174      //   char const * const *
4175      //   char * const *
4176
4177      QualifierCollector qs;
4178      const PointerType* PT;
4179      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4180          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4181          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4182        qs.removeConst();
4183        mismatch = !qs.empty();
4184      }
4185    }
4186
4187    if (mismatch) {
4188      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4189      // TODO: suggest replacing given type with expected type
4190      FD->setInvalidDecl(true);
4191    }
4192  }
4193
4194  if (nparams == 1 && !FD->isInvalidDecl()) {
4195    Diag(FD->getLocation(), diag::warn_main_one_arg);
4196  }
4197
4198  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4199    Diag(FD->getLocation(), diag::err_main_template_decl);
4200    FD->setInvalidDecl();
4201  }
4202}
4203
4204bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4205  // FIXME: Need strict checking.  In C89, we need to check for
4206  // any assignment, increment, decrement, function-calls, or
4207  // commas outside of a sizeof.  In C99, it's the same list,
4208  // except that the aforementioned are allowed in unevaluated
4209  // expressions.  Everything else falls under the
4210  // "may accept other forms of constant expressions" exception.
4211  // (We never end up here for C++, so the constant expression
4212  // rules there don't matter.)
4213  if (Init->isConstantInitializer(Context, false))
4214    return false;
4215  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4216    << Init->getSourceRange();
4217  return true;
4218}
4219
4220void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4221  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4222}
4223
4224/// AddInitializerToDecl - Adds the initializer Init to the
4225/// declaration dcl. If DirectInit is true, this is C++ direct
4226/// initialization rather than copy initialization.
4227void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4228  // If there is no declaration, there was an error parsing it.  Just ignore
4229  // the initializer.
4230  if (RealDecl == 0)
4231    return;
4232
4233  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4234    // With declarators parsed the way they are, the parser cannot
4235    // distinguish between a normal initializer and a pure-specifier.
4236    // Thus this grotesque test.
4237    IntegerLiteral *IL;
4238    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4239        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4240      CheckPureMethod(Method, Init->getSourceRange());
4241    else {
4242      Diag(Method->getLocation(), diag::err_member_function_initialization)
4243        << Method->getDeclName() << Init->getSourceRange();
4244      Method->setInvalidDecl();
4245    }
4246    return;
4247  }
4248
4249  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4250  if (!VDecl) {
4251    if (getLangOptions().CPlusPlus &&
4252        RealDecl->getLexicalDeclContext()->isRecord() &&
4253        isa<NamedDecl>(RealDecl))
4254      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4255    else
4256      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4257    RealDecl->setInvalidDecl();
4258    return;
4259  }
4260
4261
4262
4263  // A definition must end up with a complete type, which means it must be
4264  // complete with the restriction that an array type might be completed by the
4265  // initializer; note that later code assumes this restriction.
4266  QualType BaseDeclType = VDecl->getType();
4267  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4268    BaseDeclType = Array->getElementType();
4269  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4270                          diag::err_typecheck_decl_incomplete_type)) {
4271    RealDecl->setInvalidDecl();
4272    return;
4273  }
4274
4275  // The variable can not have an abstract class type.
4276  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4277                             diag::err_abstract_type_in_decl,
4278                             AbstractVariableType))
4279    VDecl->setInvalidDecl();
4280
4281  const VarDecl *Def;
4282  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4283    Diag(VDecl->getLocation(), diag::err_redefinition)
4284      << VDecl->getDeclName();
4285    Diag(Def->getLocation(), diag::note_previous_definition);
4286    VDecl->setInvalidDecl();
4287    return;
4288  }
4289
4290  // C++ [class.static.data]p4
4291  //   If a static data member is of const integral or const
4292  //   enumeration type, its declaration in the class definition can
4293  //   specify a constant-initializer which shall be an integral
4294  //   constant expression (5.19). In that case, the member can appear
4295  //   in integral constant expressions. The member shall still be
4296  //   defined in a namespace scope if it is used in the program and the
4297  //   namespace scope definition shall not contain an initializer.
4298  //
4299  // We already performed a redefinition check above, but for static
4300  // data members we also need to check whether there was an in-class
4301  // declaration with an initializer.
4302  const VarDecl* PrevInit = 0;
4303  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4304    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4305    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4306    return;
4307  }
4308
4309  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4310    getCurFunction()->setHasBranchProtectedScope();
4311
4312  // Capture the variable that is being initialized and the style of
4313  // initialization.
4314  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4315
4316  // FIXME: Poor source location information.
4317  InitializationKind Kind
4318    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4319                                                   Init->getLocStart(),
4320                                                   Init->getLocEnd())
4321                : InitializationKind::CreateCopy(VDecl->getLocation(),
4322                                                 Init->getLocStart());
4323
4324  // Get the decls type and save a reference for later, since
4325  // CheckInitializerTypes may change it.
4326  QualType DclT = VDecl->getType(), SavT = DclT;
4327  if (VDecl->isLocalVarDecl()) {
4328    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4329      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4330      VDecl->setInvalidDecl();
4331    } else if (!VDecl->isInvalidDecl()) {
4332      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4333      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4334                                                MultiExprArg(*this, &Init, 1),
4335                                                &DclT);
4336      if (Result.isInvalid()) {
4337        VDecl->setInvalidDecl();
4338        return;
4339      }
4340
4341      Init = Result.takeAs<Expr>();
4342
4343      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4344      // Don't check invalid declarations to avoid emitting useless diagnostics.
4345      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4346        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4347          CheckForConstantInitializer(Init, DclT);
4348      }
4349    }
4350  } else if (VDecl->isStaticDataMember() &&
4351             VDecl->getLexicalDeclContext()->isRecord()) {
4352    // This is an in-class initialization for a static data member, e.g.,
4353    //
4354    // struct S {
4355    //   static const int value = 17;
4356    // };
4357
4358    // Try to perform the initialization regardless.
4359    if (!VDecl->isInvalidDecl()) {
4360      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4361      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4362                                          MultiExprArg(*this, &Init, 1),
4363                                          &DclT);
4364      if (Result.isInvalid()) {
4365        VDecl->setInvalidDecl();
4366        return;
4367      }
4368
4369      Init = Result.takeAs<Expr>();
4370    }
4371
4372    // C++ [class.mem]p4:
4373    //   A member-declarator can contain a constant-initializer only
4374    //   if it declares a static member (9.4) of const integral or
4375    //   const enumeration type, see 9.4.2.
4376    QualType T = VDecl->getType();
4377
4378    // Do nothing on dependent types.
4379    if (T->isDependentType()) {
4380
4381    // Require constness.
4382    } else if (!T.isConstQualified()) {
4383      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4384        << Init->getSourceRange();
4385      VDecl->setInvalidDecl();
4386
4387    // We allow integer constant expressions in all cases.
4388    } else if (T->isIntegralOrEnumerationType()) {
4389      if (!Init->isValueDependent()) {
4390        // Check whether the expression is a constant expression.
4391        llvm::APSInt Value;
4392        SourceLocation Loc;
4393        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4394          Diag(Loc, diag::err_in_class_initializer_non_constant)
4395            << Init->getSourceRange();
4396          VDecl->setInvalidDecl();
4397        }
4398      }
4399
4400    // We allow floating-point constants as an extension in C++03, and
4401    // C++0x has far more complicated rules that we don't really
4402    // implement fully.
4403    } else {
4404      bool Allowed = false;
4405      if (getLangOptions().CPlusPlus0x) {
4406        Allowed = T->isLiteralType();
4407      } else if (T->isFloatingType()) { // also permits complex, which is ok
4408        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4409          << T << Init->getSourceRange();
4410        Allowed = true;
4411      }
4412
4413      if (!Allowed) {
4414        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4415          << T << Init->getSourceRange();
4416        VDecl->setInvalidDecl();
4417
4418      // TODO: there are probably expressions that pass here that shouldn't.
4419      } else if (!Init->isValueDependent() &&
4420                 !Init->isConstantInitializer(Context, false)) {
4421        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4422          << Init->getSourceRange();
4423        VDecl->setInvalidDecl();
4424      }
4425    }
4426  } else if (VDecl->isFileVarDecl()) {
4427    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4428        (!getLangOptions().CPlusPlus ||
4429         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4430      Diag(VDecl->getLocation(), diag::warn_extern_init);
4431    if (!VDecl->isInvalidDecl()) {
4432      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4433      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4434                                                MultiExprArg(*this, &Init, 1),
4435                                                &DclT);
4436      if (Result.isInvalid()) {
4437        VDecl->setInvalidDecl();
4438        return;
4439      }
4440
4441      Init = Result.takeAs<Expr>();
4442    }
4443
4444    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4445    // Don't check invalid declarations to avoid emitting useless diagnostics.
4446    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4447      // C99 6.7.8p4. All file scoped initializers need to be constant.
4448      CheckForConstantInitializer(Init, DclT);
4449    }
4450  }
4451  // If the type changed, it means we had an incomplete type that was
4452  // completed by the initializer. For example:
4453  //   int ary[] = { 1, 3, 5 };
4454  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4455  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4456    VDecl->setType(DclT);
4457    Init->setType(DclT);
4458  }
4459
4460
4461  // If this variable is a local declaration with record type, make sure it
4462  // doesn't have a flexible member initialization.  We only support this as a
4463  // global/static definition.
4464  if (VDecl->hasLocalStorage())
4465    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4466      if (RT->getDecl()->hasFlexibleArrayMember()) {
4467        // Check whether the initializer tries to initialize the flexible
4468        // array member itself to anything other than an empty initializer list.
4469        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4470          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4471                                         RT->getDecl()->field_end()) - 1;
4472          if (Index < ILE->getNumInits() &&
4473              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4474                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4475            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4476            VDecl->setInvalidDecl();
4477          }
4478        }
4479      }
4480
4481  // Check any implicit conversions within the expression.
4482  CheckImplicitConversions(Init, VDecl->getLocation());
4483
4484  Init = MaybeCreateCXXExprWithTemporaries(Init);
4485  // Attach the initializer to the decl.
4486  VDecl->setInit(Init);
4487
4488  if (getLangOptions().CPlusPlus) {
4489    if (!VDecl->isInvalidDecl() &&
4490        !VDecl->getDeclContext()->isDependentContext() &&
4491        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4492        !Init->isConstantInitializer(Context,
4493                                     VDecl->getType()->isReferenceType()))
4494      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4495        << Init->getSourceRange();
4496
4497    // Make sure we mark the destructor as used if necessary.
4498    QualType InitType = VDecl->getType();
4499    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4500      InitType = Context.getBaseElementType(Array);
4501    if (const RecordType *Record = InitType->getAs<RecordType>())
4502      FinalizeVarWithDestructor(VDecl, Record);
4503  }
4504
4505  return;
4506}
4507
4508/// ActOnInitializerError - Given that there was an error parsing an
4509/// initializer for the given declaration, try to return to some form
4510/// of sanity.
4511void Sema::ActOnInitializerError(Decl *D) {
4512  // Our main concern here is re-establishing invariants like "a
4513  // variable's type is either dependent or complete".
4514  if (!D || D->isInvalidDecl()) return;
4515
4516  VarDecl *VD = dyn_cast<VarDecl>(D);
4517  if (!VD) return;
4518
4519  QualType Ty = VD->getType();
4520  if (Ty->isDependentType()) return;
4521
4522  // Require a complete type.
4523  if (RequireCompleteType(VD->getLocation(),
4524                          Context.getBaseElementType(Ty),
4525                          diag::err_typecheck_decl_incomplete_type)) {
4526    VD->setInvalidDecl();
4527    return;
4528  }
4529
4530  // Require an abstract type.
4531  if (RequireNonAbstractType(VD->getLocation(), Ty,
4532                             diag::err_abstract_type_in_decl,
4533                             AbstractVariableType)) {
4534    VD->setInvalidDecl();
4535    return;
4536  }
4537
4538  // Don't bother complaining about constructors or destructors,
4539  // though.
4540}
4541
4542void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4543                                  bool TypeContainsUndeducedAuto) {
4544  // If there is no declaration, there was an error parsing it. Just ignore it.
4545  if (RealDecl == 0)
4546    return;
4547
4548  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4549    QualType Type = Var->getType();
4550
4551    // C++0x [dcl.spec.auto]p3
4552    if (TypeContainsUndeducedAuto) {
4553      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4554        << Var->getDeclName() << Type;
4555      Var->setInvalidDecl();
4556      return;
4557    }
4558
4559    switch (Var->isThisDeclarationADefinition()) {
4560    case VarDecl::Definition:
4561      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4562        break;
4563
4564      // We have an out-of-line definition of a static data member
4565      // that has an in-class initializer, so we type-check this like
4566      // a declaration.
4567      //
4568      // Fall through
4569
4570    case VarDecl::DeclarationOnly:
4571      // It's only a declaration.
4572
4573      // Block scope. C99 6.7p7: If an identifier for an object is
4574      // declared with no linkage (C99 6.2.2p6), the type for the
4575      // object shall be complete.
4576      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4577          !Var->getLinkage() && !Var->isInvalidDecl() &&
4578          RequireCompleteType(Var->getLocation(), Type,
4579                              diag::err_typecheck_decl_incomplete_type))
4580        Var->setInvalidDecl();
4581
4582      // Make sure that the type is not abstract.
4583      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4584          RequireNonAbstractType(Var->getLocation(), Type,
4585                                 diag::err_abstract_type_in_decl,
4586                                 AbstractVariableType))
4587        Var->setInvalidDecl();
4588      return;
4589
4590    case VarDecl::TentativeDefinition:
4591      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4592      // object that has file scope without an initializer, and without a
4593      // storage-class specifier or with the storage-class specifier "static",
4594      // constitutes a tentative definition. Note: A tentative definition with
4595      // external linkage is valid (C99 6.2.2p5).
4596      if (!Var->isInvalidDecl()) {
4597        if (const IncompleteArrayType *ArrayT
4598                                    = Context.getAsIncompleteArrayType(Type)) {
4599          if (RequireCompleteType(Var->getLocation(),
4600                                  ArrayT->getElementType(),
4601                                  diag::err_illegal_decl_array_incomplete_type))
4602            Var->setInvalidDecl();
4603        } else if (Var->getStorageClass() == SC_Static) {
4604          // C99 6.9.2p3: If the declaration of an identifier for an object is
4605          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4606          // declared type shall not be an incomplete type.
4607          // NOTE: code such as the following
4608          //     static struct s;
4609          //     struct s { int a; };
4610          // is accepted by gcc. Hence here we issue a warning instead of
4611          // an error and we do not invalidate the static declaration.
4612          // NOTE: to avoid multiple warnings, only check the first declaration.
4613          if (Var->getPreviousDeclaration() == 0)
4614            RequireCompleteType(Var->getLocation(), Type,
4615                                diag::ext_typecheck_decl_incomplete_type);
4616        }
4617      }
4618
4619      // Record the tentative definition; we're done.
4620      if (!Var->isInvalidDecl())
4621        TentativeDefinitions.push_back(Var);
4622      return;
4623    }
4624
4625    // Provide a specific diagnostic for uninitialized variable
4626    // definitions with incomplete array type.
4627    if (Type->isIncompleteArrayType()) {
4628      Diag(Var->getLocation(),
4629           diag::err_typecheck_incomplete_array_needs_initializer);
4630      Var->setInvalidDecl();
4631      return;
4632    }
4633
4634    // Provide a specific diagnostic for uninitialized variable
4635    // definitions with reference type.
4636    if (Type->isReferenceType()) {
4637      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4638        << Var->getDeclName()
4639        << SourceRange(Var->getLocation(), Var->getLocation());
4640      Var->setInvalidDecl();
4641      return;
4642    }
4643
4644    // Do not attempt to type-check the default initializer for a
4645    // variable with dependent type.
4646    if (Type->isDependentType())
4647      return;
4648
4649    if (Var->isInvalidDecl())
4650      return;
4651
4652    if (RequireCompleteType(Var->getLocation(),
4653                            Context.getBaseElementType(Type),
4654                            diag::err_typecheck_decl_incomplete_type)) {
4655      Var->setInvalidDecl();
4656      return;
4657    }
4658
4659    // The variable can not have an abstract class type.
4660    if (RequireNonAbstractType(Var->getLocation(), Type,
4661                               diag::err_abstract_type_in_decl,
4662                               AbstractVariableType)) {
4663      Var->setInvalidDecl();
4664      return;
4665    }
4666
4667    const RecordType *Record
4668      = Context.getBaseElementType(Type)->getAs<RecordType>();
4669    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4670        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4671      // C++03 [dcl.init]p9:
4672      //   If no initializer is specified for an object, and the
4673      //   object is of (possibly cv-qualified) non-POD class type (or
4674      //   array thereof), the object shall be default-initialized; if
4675      //   the object is of const-qualified type, the underlying class
4676      //   type shall have a user-declared default
4677      //   constructor. Otherwise, if no initializer is specified for
4678      //   a non- static object, the object and its subobjects, if
4679      //   any, have an indeterminate initial value); if the object
4680      //   or any of its subobjects are of const-qualified type, the
4681      //   program is ill-formed.
4682      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4683    } else {
4684      // Check for jumps past the implicit initializer.  C++0x
4685      // clarifies that this applies to a "variable with automatic
4686      // storage duration", not a "local variable".
4687      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4688        getCurFunction()->setHasBranchProtectedScope();
4689
4690      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4691      InitializationKind Kind
4692        = InitializationKind::CreateDefault(Var->getLocation());
4693
4694      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4695      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4696                                        MultiExprArg(*this, 0, 0));
4697      if (Init.isInvalid())
4698        Var->setInvalidDecl();
4699      else if (Init.get()) {
4700        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4701
4702        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4703            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4704            !Var->getDeclContext()->isDependentContext() &&
4705            !Var->getInit()->isConstantInitializer(Context, false))
4706          Diag(Var->getLocation(), diag::warn_global_constructor);
4707      }
4708    }
4709
4710    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4711      FinalizeVarWithDestructor(Var, Record);
4712  }
4713}
4714
4715Sema::DeclGroupPtrTy
4716Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4717                              Decl **Group, unsigned NumDecls) {
4718  llvm::SmallVector<Decl*, 8> Decls;
4719
4720  if (DS.isTypeSpecOwned())
4721    Decls.push_back(DS.getRepAsDecl());
4722
4723  for (unsigned i = 0; i != NumDecls; ++i)
4724    if (Decl *D = Group[i])
4725      Decls.push_back(D);
4726
4727  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4728                                                   Decls.data(), Decls.size()));
4729}
4730
4731
4732/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4733/// to introduce parameters into function prototype scope.
4734Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4735  const DeclSpec &DS = D.getDeclSpec();
4736
4737  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4738  VarDecl::StorageClass StorageClass = SC_None;
4739  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4740  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4741    StorageClass = SC_Register;
4742    StorageClassAsWritten = SC_Register;
4743  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4744    Diag(DS.getStorageClassSpecLoc(),
4745         diag::err_invalid_storage_class_in_func_decl);
4746    D.getMutableDeclSpec().ClearStorageClassSpecs();
4747  }
4748
4749  if (D.getDeclSpec().isThreadSpecified())
4750    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4751
4752  DiagnoseFunctionSpecifiers(D);
4753
4754  // Check that there are no default arguments inside the type of this
4755  // parameter (C++ only).
4756  if (getLangOptions().CPlusPlus)
4757    CheckExtraCXXDefaultArguments(D);
4758
4759  TagDecl *OwnedDecl = 0;
4760  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4761  QualType parmDeclType = TInfo->getType();
4762
4763  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4764    // C++ [dcl.fct]p6:
4765    //   Types shall not be defined in return or parameter types.
4766    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4767      << Context.getTypeDeclType(OwnedDecl);
4768  }
4769
4770  // Ensure we have a valid name
4771  IdentifierInfo *II = 0;
4772  if (D.hasName()) {
4773    II = D.getIdentifier();
4774    if (!II) {
4775      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4776        << GetNameForDeclarator(D).getName().getAsString();
4777      D.setInvalidType(true);
4778    }
4779  }
4780
4781  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4782  if (II) {
4783    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4784                   ForRedeclaration);
4785    LookupName(R, S);
4786    if (R.isSingleResult()) {
4787      NamedDecl *PrevDecl = R.getFoundDecl();
4788      if (PrevDecl->isTemplateParameter()) {
4789        // Maybe we will complain about the shadowed template parameter.
4790        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4791        // Just pretend that we didn't see the previous declaration.
4792        PrevDecl = 0;
4793      } else if (S->isDeclScope(PrevDecl)) {
4794        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4795        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4796
4797        // Recover by removing the name
4798        II = 0;
4799        D.SetIdentifier(0, D.getIdentifierLoc());
4800        D.setInvalidType(true);
4801      }
4802    }
4803  }
4804
4805  // Temporarily put parameter variables in the translation unit, not
4806  // the enclosing context.  This prevents them from accidentally
4807  // looking like class members in C++.
4808  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4809                                    TInfo, parmDeclType, II,
4810                                    D.getIdentifierLoc(),
4811                                    StorageClass, StorageClassAsWritten);
4812
4813  if (D.isInvalidType())
4814    New->setInvalidDecl();
4815
4816  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4817  if (D.getCXXScopeSpec().isSet()) {
4818    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4819      << D.getCXXScopeSpec().getRange();
4820    New->setInvalidDecl();
4821  }
4822
4823  // Add the parameter declaration into this scope.
4824  S->AddDecl(New);
4825  if (II)
4826    IdResolver.AddDecl(New);
4827
4828  ProcessDeclAttributes(S, New, D);
4829
4830  if (New->hasAttr<BlocksAttr>()) {
4831    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4832  }
4833  return New;
4834}
4835
4836/// \brief Synthesizes a variable for a parameter arising from a
4837/// typedef.
4838ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4839                                              SourceLocation Loc,
4840                                              QualType T) {
4841  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4842                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4843                                           SC_None, SC_None, 0);
4844  Param->setImplicit();
4845  return Param;
4846}
4847
4848void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4849                                    ParmVarDecl * const *ParamEnd) {
4850  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4851        Diagnostic::Ignored)
4852    return;
4853
4854  // Don't diagnose unused-parameter errors in template instantiations; we
4855  // will already have done so in the template itself.
4856  if (!ActiveTemplateInstantiations.empty())
4857    return;
4858
4859  for (; Param != ParamEnd; ++Param) {
4860    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4861        !(*Param)->hasAttr<UnusedAttr>()) {
4862      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4863        << (*Param)->getDeclName();
4864    }
4865  }
4866}
4867
4868void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
4869                                                  ParmVarDecl * const *ParamEnd,
4870                                                  QualType ReturnTy,
4871                                                  NamedDecl *D) {
4872  if (LangOpts.NumLargeByValueCopy == 0) // No check.
4873    return;
4874
4875  // Warn if the return value is pass-by-value and larger than the specified
4876  // threshold.
4877  if (ReturnTy->isPODType()) {
4878    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
4879    if (Size > LangOpts.NumLargeByValueCopy)
4880      Diag(D->getLocation(), diag::warn_return_value_size)
4881          << D->getDeclName() << Size;
4882  }
4883
4884  if (Diags.getDiagnosticLevel(diag::warn_parameter_size)==Diagnostic::Ignored)
4885    return;
4886
4887  // Warn if any parameter is pass-by-value and larger than the specified
4888  // threshold.
4889  for (; Param != ParamEnd; ++Param) {
4890    QualType T = (*Param)->getType();
4891    if (!T->isPODType())
4892      continue;
4893    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
4894    if (Size > LangOpts.NumLargeByValueCopy)
4895      Diag((*Param)->getLocation(), diag::warn_parameter_size)
4896          << (*Param)->getDeclName() << Size;
4897  }
4898}
4899
4900ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4901                                  TypeSourceInfo *TSInfo, QualType T,
4902                                  IdentifierInfo *Name,
4903                                  SourceLocation NameLoc,
4904                                  VarDecl::StorageClass StorageClass,
4905                                  VarDecl::StorageClass StorageClassAsWritten) {
4906  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4907                                         adjustParameterType(T), TSInfo,
4908                                         StorageClass, StorageClassAsWritten,
4909                                         0);
4910
4911  // Parameters can not be abstract class types.
4912  // For record types, this is done by the AbstractClassUsageDiagnoser once
4913  // the class has been completely parsed.
4914  if (!CurContext->isRecord() &&
4915      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4916                             AbstractParamType))
4917    New->setInvalidDecl();
4918
4919  // Parameter declarators cannot be interface types. All ObjC objects are
4920  // passed by reference.
4921  if (T->isObjCObjectType()) {
4922    Diag(NameLoc,
4923         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4924    New->setInvalidDecl();
4925  }
4926
4927  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4928  // duration shall not be qualified by an address-space qualifier."
4929  // Since all parameters have automatic store duration, they can not have
4930  // an address space.
4931  if (T.getAddressSpace() != 0) {
4932    Diag(NameLoc, diag::err_arg_with_address_space);
4933    New->setInvalidDecl();
4934  }
4935
4936  return New;
4937}
4938
4939void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4940                                           SourceLocation LocAfterDecls) {
4941  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4942         "Not a function declarator!");
4943  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4944
4945  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4946  // for a K&R function.
4947  if (!FTI.hasPrototype) {
4948    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4949      --i;
4950      if (FTI.ArgInfo[i].Param == 0) {
4951        llvm::SmallString<256> Code;
4952        llvm::raw_svector_ostream(Code) << "  int "
4953                                        << FTI.ArgInfo[i].Ident->getName()
4954                                        << ";\n";
4955        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4956          << FTI.ArgInfo[i].Ident
4957          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4958
4959        // Implicitly declare the argument as type 'int' for lack of a better
4960        // type.
4961        DeclSpec DS;
4962        const char* PrevSpec; // unused
4963        unsigned DiagID; // unused
4964        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4965                           PrevSpec, DiagID);
4966        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4967        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4968        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4969      }
4970    }
4971  }
4972}
4973
4974Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4975                                         Declarator &D) {
4976  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4977  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4978         "Not a function declarator!");
4979  Scope *ParentScope = FnBodyScope->getParent();
4980
4981  Decl *DP = HandleDeclarator(ParentScope, D,
4982                              MultiTemplateParamsArg(*this),
4983                              /*IsFunctionDefinition=*/true);
4984  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4985}
4986
4987static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4988  // Don't warn about invalid declarations.
4989  if (FD->isInvalidDecl())
4990    return false;
4991
4992  // Or declarations that aren't global.
4993  if (!FD->isGlobal())
4994    return false;
4995
4996  // Don't warn about C++ member functions.
4997  if (isa<CXXMethodDecl>(FD))
4998    return false;
4999
5000  // Don't warn about 'main'.
5001  if (FD->isMain())
5002    return false;
5003
5004  // Don't warn about inline functions.
5005  if (FD->isInlineSpecified())
5006    return false;
5007
5008  // Don't warn about function templates.
5009  if (FD->getDescribedFunctionTemplate())
5010    return false;
5011
5012  // Don't warn about function template specializations.
5013  if (FD->isFunctionTemplateSpecialization())
5014    return false;
5015
5016  bool MissingPrototype = true;
5017  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5018       Prev; Prev = Prev->getPreviousDeclaration()) {
5019    // Ignore any declarations that occur in function or method
5020    // scope, because they aren't visible from the header.
5021    if (Prev->getDeclContext()->isFunctionOrMethod())
5022      continue;
5023
5024    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5025    break;
5026  }
5027
5028  return MissingPrototype;
5029}
5030
5031Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5032  // Clear the last template instantiation error context.
5033  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5034
5035  if (!D)
5036    return D;
5037  FunctionDecl *FD = 0;
5038
5039  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5040    FD = FunTmpl->getTemplatedDecl();
5041  else
5042    FD = cast<FunctionDecl>(D);
5043
5044  // Enter a new function scope
5045  PushFunctionScope();
5046
5047  // See if this is a redefinition.
5048  // But don't complain if we're in GNU89 mode and the previous definition
5049  // was an extern inline function.
5050  const FunctionDecl *Definition;
5051  if (FD->hasBody(Definition) &&
5052      !canRedefineFunction(Definition, getLangOptions())) {
5053    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5054        Definition->getStorageClass() == SC_Extern)
5055      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5056        << FD->getDeclName() << getLangOptions().CPlusPlus;
5057    else
5058      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5059    Diag(Definition->getLocation(), diag::note_previous_definition);
5060  }
5061
5062  // Builtin functions cannot be defined.
5063  if (unsigned BuiltinID = FD->getBuiltinID()) {
5064    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5065      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5066      FD->setInvalidDecl();
5067    }
5068  }
5069
5070  // The return type of a function definition must be complete
5071  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5072  QualType ResultType = FD->getResultType();
5073  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5074      !FD->isInvalidDecl() &&
5075      RequireCompleteType(FD->getLocation(), ResultType,
5076                          diag::err_func_def_incomplete_result))
5077    FD->setInvalidDecl();
5078
5079  // GNU warning -Wmissing-prototypes:
5080  //   Warn if a global function is defined without a previous
5081  //   prototype declaration. This warning is issued even if the
5082  //   definition itself provides a prototype. The aim is to detect
5083  //   global functions that fail to be declared in header files.
5084  if (ShouldWarnAboutMissingPrototype(FD))
5085    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5086
5087  if (FnBodyScope)
5088    PushDeclContext(FnBodyScope, FD);
5089
5090  // Check the validity of our function parameters
5091  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5092                           /*CheckParameterNames=*/true);
5093
5094  bool ShouldCheckShadow =
5095    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
5096
5097  // Introduce our parameters into the function scope
5098  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5099    ParmVarDecl *Param = FD->getParamDecl(p);
5100    Param->setOwningFunction(FD);
5101
5102    // If this has an identifier, add it to the scope stack.
5103    if (Param->getIdentifier() && FnBodyScope) {
5104      if (ShouldCheckShadow)
5105        CheckShadow(FnBodyScope, Param);
5106
5107      PushOnScopeChains(Param, FnBodyScope);
5108    }
5109  }
5110
5111  // Checking attributes of current function definition
5112  // dllimport attribute.
5113  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5114  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5115    // dllimport attribute cannot be directly applied to definition.
5116    if (!DA->isInherited()) {
5117      Diag(FD->getLocation(),
5118           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5119        << "dllimport";
5120      FD->setInvalidDecl();
5121      return FD;
5122    }
5123
5124    // Visual C++ appears to not think this is an issue, so only issue
5125    // a warning when Microsoft extensions are disabled.
5126    if (!LangOpts.Microsoft) {
5127      // If a symbol previously declared dllimport is later defined, the
5128      // attribute is ignored in subsequent references, and a warning is
5129      // emitted.
5130      Diag(FD->getLocation(),
5131           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5132        << FD->getName() << "dllimport";
5133    }
5134  }
5135  return FD;
5136}
5137
5138/// \brief Given the set of return statements within a function body,
5139/// compute the variables that are subject to the named return value
5140/// optimization.
5141///
5142/// Each of the variables that is subject to the named return value
5143/// optimization will be marked as NRVO variables in the AST, and any
5144/// return statement that has a marked NRVO variable as its NRVO candidate can
5145/// use the named return value optimization.
5146///
5147/// This function applies a very simplistic algorithm for NRVO: if every return
5148/// statement in the function has the same NRVO candidate, that candidate is
5149/// the NRVO variable.
5150///
5151/// FIXME: Employ a smarter algorithm that accounts for multiple return
5152/// statements and the lifetimes of the NRVO candidates. We should be able to
5153/// find a maximal set of NRVO variables.
5154static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5155  ReturnStmt **Returns = Scope->Returns.data();
5156
5157  const VarDecl *NRVOCandidate = 0;
5158  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5159    if (!Returns[I]->getNRVOCandidate())
5160      return;
5161
5162    if (!NRVOCandidate)
5163      NRVOCandidate = Returns[I]->getNRVOCandidate();
5164    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5165      return;
5166  }
5167
5168  if (NRVOCandidate)
5169    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5170}
5171
5172Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5173  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5174}
5175
5176Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5177                                    bool IsInstantiation) {
5178  FunctionDecl *FD = 0;
5179  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5180  if (FunTmpl)
5181    FD = FunTmpl->getTemplatedDecl();
5182  else
5183    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5184
5185  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5186
5187  if (FD) {
5188    FD->setBody(Body);
5189    if (FD->isMain()) {
5190      // C and C++ allow for main to automagically return 0.
5191      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5192      FD->setHasImplicitReturnZero(true);
5193      WP.disableCheckFallThrough();
5194    }
5195
5196    if (!FD->isInvalidDecl()) {
5197      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5198      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5199                                             FD->getResultType(), FD);
5200
5201      // If this is a constructor, we need a vtable.
5202      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5203        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5204
5205      ComputeNRVO(Body, getCurFunction());
5206    }
5207
5208    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5209  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5210    assert(MD == getCurMethodDecl() && "Method parsing confused");
5211    MD->setBody(Body);
5212    MD->setEndLoc(Body->getLocEnd());
5213    if (!MD->isInvalidDecl()) {
5214      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5215      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5216                                             MD->getResultType(), MD);
5217    }
5218  } else {
5219    return 0;
5220  }
5221
5222  // Verify and clean out per-function state.
5223
5224  // Check goto/label use.
5225  FunctionScopeInfo *CurFn = getCurFunction();
5226  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5227         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5228    LabelStmt *L = I->second;
5229
5230    // Verify that we have no forward references left.  If so, there was a goto
5231    // or address of a label taken, but no definition of it.  Label fwd
5232    // definitions are indicated with a null substmt.
5233    if (L->getSubStmt() != 0) {
5234      if (!L->isUsed())
5235        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5236      continue;
5237    }
5238
5239    // Emit error.
5240    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5241
5242    // At this point, we have gotos that use the bogus label.  Stitch it into
5243    // the function body so that they aren't leaked and that the AST is well
5244    // formed.
5245    if (Body == 0) {
5246      // The whole function wasn't parsed correctly.
5247      continue;
5248    }
5249
5250    // Otherwise, the body is valid: we want to stitch the label decl into the
5251    // function somewhere so that it is properly owned and so that the goto
5252    // has a valid target.  Do this by creating a new compound stmt with the
5253    // label in it.
5254
5255    // Give the label a sub-statement.
5256    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5257
5258    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5259                               cast<CXXTryStmt>(Body)->getTryBlock() :
5260                               cast<CompoundStmt>(Body);
5261    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5262                                          Compound->body_end());
5263    Elements.push_back(L);
5264    Compound->setStmts(Context, Elements.data(), Elements.size());
5265  }
5266
5267  if (Body) {
5268    // C++ constructors that have function-try-blocks can't have return
5269    // statements in the handlers of that block. (C++ [except.handle]p14)
5270    // Verify this.
5271    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5272      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5273
5274    // Verify that that gotos and switch cases don't jump into scopes illegally.
5275    // Verify that that gotos and switch cases don't jump into scopes illegally.
5276    if (getCurFunction()->NeedsScopeChecking() &&
5277        !dcl->isInvalidDecl() &&
5278        !hasAnyErrorsInThisFunction())
5279      DiagnoseInvalidJumps(Body);
5280
5281    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5282      if (!Destructor->getParent()->isDependentType())
5283        CheckDestructor(Destructor);
5284
5285      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5286                                             Destructor->getParent());
5287    }
5288
5289    // If any errors have occurred, clear out any temporaries that may have
5290    // been leftover. This ensures that these temporaries won't be picked up for
5291    // deletion in some later function.
5292    if (PP.getDiagnostics().hasErrorOccurred())
5293      ExprTemporaries.clear();
5294    else if (!isa<FunctionTemplateDecl>(dcl)) {
5295      // Since the body is valid, issue any analysis-based warnings that are
5296      // enabled.
5297      QualType ResultType;
5298      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5299        AnalysisWarnings.IssueWarnings(WP, FD);
5300      } else {
5301        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5302        AnalysisWarnings.IssueWarnings(WP, MD);
5303      }
5304    }
5305
5306    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5307  }
5308
5309  if (!IsInstantiation)
5310    PopDeclContext();
5311
5312  PopFunctionOrBlockScope();
5313
5314  // If any errors have occurred, clear out any temporaries that may have
5315  // been leftover. This ensures that these temporaries won't be picked up for
5316  // deletion in some later function.
5317  if (getDiagnostics().hasErrorOccurred())
5318    ExprTemporaries.clear();
5319
5320  return dcl;
5321}
5322
5323/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5324/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5325NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5326                                          IdentifierInfo &II, Scope *S) {
5327  // Before we produce a declaration for an implicitly defined
5328  // function, see whether there was a locally-scoped declaration of
5329  // this name as a function or variable. If so, use that
5330  // (non-visible) declaration, and complain about it.
5331  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5332    = LocallyScopedExternalDecls.find(&II);
5333  if (Pos != LocallyScopedExternalDecls.end()) {
5334    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5335    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5336    return Pos->second;
5337  }
5338
5339  // Extension in C99.  Legal in C90, but warn about it.
5340  if (II.getName().startswith("__builtin_"))
5341    Diag(Loc, diag::warn_builtin_unknown) << &II;
5342  else if (getLangOptions().C99)
5343    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5344  else
5345    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5346
5347  // Set a Declarator for the implicit definition: int foo();
5348  const char *Dummy;
5349  DeclSpec DS;
5350  unsigned DiagID;
5351  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5352  Error = Error; // Silence warning.
5353  assert(!Error && "Error setting up implicit decl!");
5354  Declarator D(DS, Declarator::BlockContext);
5355  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5356                                             0, 0, false, SourceLocation(),
5357                                             false, 0,0,0, Loc, Loc, D),
5358                SourceLocation());
5359  D.SetIdentifier(&II, Loc);
5360
5361  // Insert this function into translation-unit scope.
5362
5363  DeclContext *PrevDC = CurContext;
5364  CurContext = Context.getTranslationUnitDecl();
5365
5366  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5367  FD->setImplicit();
5368
5369  CurContext = PrevDC;
5370
5371  AddKnownFunctionAttributes(FD);
5372
5373  return FD;
5374}
5375
5376/// \brief Adds any function attributes that we know a priori based on
5377/// the declaration of this function.
5378///
5379/// These attributes can apply both to implicitly-declared builtins
5380/// (like __builtin___printf_chk) or to library-declared functions
5381/// like NSLog or printf.
5382void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5383  if (FD->isInvalidDecl())
5384    return;
5385
5386  // If this is a built-in function, map its builtin attributes to
5387  // actual attributes.
5388  if (unsigned BuiltinID = FD->getBuiltinID()) {
5389    // Handle printf-formatting attributes.
5390    unsigned FormatIdx;
5391    bool HasVAListArg;
5392    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5393      if (!FD->getAttr<FormatAttr>())
5394        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5395                                                "printf", FormatIdx+1,
5396                                               HasVAListArg ? 0 : FormatIdx+2));
5397    }
5398    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5399                                             HasVAListArg)) {
5400     if (!FD->getAttr<FormatAttr>())
5401       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5402                                              "scanf", FormatIdx+1,
5403                                              HasVAListArg ? 0 : FormatIdx+2));
5404    }
5405
5406    // Mark const if we don't care about errno and that is the only
5407    // thing preventing the function from being const. This allows
5408    // IRgen to use LLVM intrinsics for such functions.
5409    if (!getLangOptions().MathErrno &&
5410        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5411      if (!FD->getAttr<ConstAttr>())
5412        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5413    }
5414
5415    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5416      FD->setType(Context.getNoReturnType(FD->getType()));
5417    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5418      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5419    if (Context.BuiltinInfo.isConst(BuiltinID))
5420      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5421  }
5422
5423  IdentifierInfo *Name = FD->getIdentifier();
5424  if (!Name)
5425    return;
5426  if ((!getLangOptions().CPlusPlus &&
5427       FD->getDeclContext()->isTranslationUnit()) ||
5428      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5429       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5430       LinkageSpecDecl::lang_c)) {
5431    // Okay: this could be a libc/libm/Objective-C function we know
5432    // about.
5433  } else
5434    return;
5435
5436  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5437    // FIXME: NSLog and NSLogv should be target specific
5438    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5439      // FIXME: We known better than our headers.
5440      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5441    } else
5442      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5443                                             "printf", 1,
5444                                             Name->isStr("NSLogv") ? 0 : 2));
5445  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5446    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5447    // target-specific builtins, perhaps?
5448    if (!FD->getAttr<FormatAttr>())
5449      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5450                                             "printf", 2,
5451                                             Name->isStr("vasprintf") ? 0 : 3));
5452  }
5453}
5454
5455TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5456                                    TypeSourceInfo *TInfo) {
5457  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5458  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5459
5460  if (!TInfo) {
5461    assert(D.isInvalidType() && "no declarator info for valid type");
5462    TInfo = Context.getTrivialTypeSourceInfo(T);
5463  }
5464
5465  // Scope manipulation handled by caller.
5466  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5467                                           D.getIdentifierLoc(),
5468                                           D.getIdentifier(),
5469                                           TInfo);
5470
5471  if (const TagType *TT = T->getAs<TagType>()) {
5472    TagDecl *TD = TT->getDecl();
5473
5474    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5475    // keep track of the TypedefDecl.
5476    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5477      TD->setTypedefForAnonDecl(NewTD);
5478  }
5479
5480  if (D.isInvalidType())
5481    NewTD->setInvalidDecl();
5482  return NewTD;
5483}
5484
5485
5486/// \brief Determine whether a tag with a given kind is acceptable
5487/// as a redeclaration of the given tag declaration.
5488///
5489/// \returns true if the new tag kind is acceptable, false otherwise.
5490bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5491                                        TagTypeKind NewTag,
5492                                        SourceLocation NewTagLoc,
5493                                        const IdentifierInfo &Name) {
5494  // C++ [dcl.type.elab]p3:
5495  //   The class-key or enum keyword present in the
5496  //   elaborated-type-specifier shall agree in kind with the
5497  //   declaration to which the name in the elaborated-type-specifier
5498  //   refers. This rule also applies to the form of
5499  //   elaborated-type-specifier that declares a class-name or
5500  //   friend class since it can be construed as referring to the
5501  //   definition of the class. Thus, in any
5502  //   elaborated-type-specifier, the enum keyword shall be used to
5503  //   refer to an enumeration (7.2), the union class-key shall be
5504  //   used to refer to a union (clause 9), and either the class or
5505  //   struct class-key shall be used to refer to a class (clause 9)
5506  //   declared using the class or struct class-key.
5507  TagTypeKind OldTag = Previous->getTagKind();
5508  if (OldTag == NewTag)
5509    return true;
5510
5511  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5512      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5513    // Warn about the struct/class tag mismatch.
5514    bool isTemplate = false;
5515    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5516      isTemplate = Record->getDescribedClassTemplate();
5517
5518    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5519      << (NewTag == TTK_Class)
5520      << isTemplate << &Name
5521      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5522                              OldTag == TTK_Class? "class" : "struct");
5523    Diag(Previous->getLocation(), diag::note_previous_use);
5524    return true;
5525  }
5526  return false;
5527}
5528
5529/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5530/// former case, Name will be non-null.  In the later case, Name will be null.
5531/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5532/// reference/declaration/definition of a tag.
5533Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5534                     SourceLocation KWLoc, CXXScopeSpec &SS,
5535                     IdentifierInfo *Name, SourceLocation NameLoc,
5536                     AttributeList *Attr, AccessSpecifier AS,
5537                     MultiTemplateParamsArg TemplateParameterLists,
5538                     bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5539                     TypeResult UnderlyingType) {
5540  // If this is not a definition, it must have a name.
5541  assert((Name != 0 || TUK == TUK_Definition) &&
5542         "Nameless record must be a definition!");
5543  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5544
5545  OwnedDecl = false;
5546  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5547
5548  // FIXME: Check explicit specializations more carefully.
5549  bool isExplicitSpecialization = false;
5550  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5551  bool Invalid = false;
5552
5553  // We only need to do this matching if we have template parameters
5554  // or a scope specifier, which also conveniently avoids this work
5555  // for non-C++ cases.
5556  if (NumMatchedTemplateParamLists ||
5557      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5558    if (TemplateParameterList *TemplateParams
5559          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5560                                                TemplateParameterLists.get(),
5561                                               TemplateParameterLists.size(),
5562                                                    TUK == TUK_Friend,
5563                                                    isExplicitSpecialization,
5564                                                    Invalid)) {
5565      // All but one template parameter lists have been matching.
5566      --NumMatchedTemplateParamLists;
5567
5568      if (TemplateParams->size() > 0) {
5569        // This is a declaration or definition of a class template (which may
5570        // be a member of another template).
5571        if (Invalid)
5572          return 0;
5573
5574        OwnedDecl = false;
5575        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5576                                               SS, Name, NameLoc, Attr,
5577                                               TemplateParams,
5578                                               AS);
5579        TemplateParameterLists.release();
5580        return Result.get();
5581      } else {
5582        // The "template<>" header is extraneous.
5583        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5584          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5585        isExplicitSpecialization = true;
5586      }
5587    }
5588  }
5589
5590  // Figure out the underlying type if this a enum declaration. We need to do
5591  // this early, because it's needed to detect if this is an incompatible
5592  // redeclaration.
5593  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5594
5595  if (Kind == TTK_Enum) {
5596    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5597      // No underlying type explicitly specified, or we failed to parse the
5598      // type, default to int.
5599      EnumUnderlying = Context.IntTy.getTypePtr();
5600    else if (UnderlyingType.get()) {
5601      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5602      // integral type; any cv-qualification is ignored.
5603      TypeSourceInfo *TI = 0;
5604      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5605      EnumUnderlying = TI;
5606
5607      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5608
5609      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5610        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5611          << T;
5612        // Recover by falling back to int.
5613        EnumUnderlying = Context.IntTy.getTypePtr();
5614      }
5615    } else if (getLangOptions().Microsoft)
5616      // Microsoft enums are always of int type.
5617      EnumUnderlying = Context.IntTy.getTypePtr();
5618  }
5619
5620  DeclContext *SearchDC = CurContext;
5621  DeclContext *DC = CurContext;
5622  bool isStdBadAlloc = false;
5623
5624  RedeclarationKind Redecl = ForRedeclaration;
5625  if (TUK == TUK_Friend || TUK == TUK_Reference)
5626    Redecl = NotForRedeclaration;
5627
5628  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5629
5630  if (Name && SS.isNotEmpty()) {
5631    // We have a nested-name tag ('struct foo::bar').
5632
5633    // Check for invalid 'foo::'.
5634    if (SS.isInvalid()) {
5635      Name = 0;
5636      goto CreateNewDecl;
5637    }
5638
5639    // If this is a friend or a reference to a class in a dependent
5640    // context, don't try to make a decl for it.
5641    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5642      DC = computeDeclContext(SS, false);
5643      if (!DC) {
5644        IsDependent = true;
5645        return 0;
5646      }
5647    } else {
5648      DC = computeDeclContext(SS, true);
5649      if (!DC) {
5650        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5651          << SS.getRange();
5652        return 0;
5653      }
5654    }
5655
5656    if (RequireCompleteDeclContext(SS, DC))
5657      return 0;
5658
5659    SearchDC = DC;
5660    // Look-up name inside 'foo::'.
5661    LookupQualifiedName(Previous, DC);
5662
5663    if (Previous.isAmbiguous())
5664      return 0;
5665
5666    if (Previous.empty()) {
5667      // Name lookup did not find anything. However, if the
5668      // nested-name-specifier refers to the current instantiation,
5669      // and that current instantiation has any dependent base
5670      // classes, we might find something at instantiation time: treat
5671      // this as a dependent elaborated-type-specifier.
5672      // But this only makes any sense for reference-like lookups.
5673      if (Previous.wasNotFoundInCurrentInstantiation() &&
5674          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5675        IsDependent = true;
5676        return 0;
5677      }
5678
5679      // A tag 'foo::bar' must already exist.
5680      Diag(NameLoc, diag::err_not_tag_in_scope)
5681        << Kind << Name << DC << SS.getRange();
5682      Name = 0;
5683      Invalid = true;
5684      goto CreateNewDecl;
5685    }
5686  } else if (Name) {
5687    // If this is a named struct, check to see if there was a previous forward
5688    // declaration or definition.
5689    // FIXME: We're looking into outer scopes here, even when we
5690    // shouldn't be. Doing so can result in ambiguities that we
5691    // shouldn't be diagnosing.
5692    LookupName(Previous, S);
5693
5694    // Note:  there used to be some attempt at recovery here.
5695    if (Previous.isAmbiguous())
5696      return 0;
5697
5698    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5699      // FIXME: This makes sure that we ignore the contexts associated
5700      // with C structs, unions, and enums when looking for a matching
5701      // tag declaration or definition. See the similar lookup tweak
5702      // in Sema::LookupName; is there a better way to deal with this?
5703      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5704        SearchDC = SearchDC->getParent();
5705    }
5706  } else if (S->isFunctionPrototypeScope()) {
5707    // If this is an enum declaration in function prototype scope, set its
5708    // initial context to the translation unit.
5709    SearchDC = Context.getTranslationUnitDecl();
5710  }
5711
5712  if (Previous.isSingleResult() &&
5713      Previous.getFoundDecl()->isTemplateParameter()) {
5714    // Maybe we will complain about the shadowed template parameter.
5715    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5716    // Just pretend that we didn't see the previous declaration.
5717    Previous.clear();
5718  }
5719
5720  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5721      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5722    // This is a declaration of or a reference to "std::bad_alloc".
5723    isStdBadAlloc = true;
5724
5725    if (Previous.empty() && StdBadAlloc) {
5726      // std::bad_alloc has been implicitly declared (but made invisible to
5727      // name lookup). Fill in this implicit declaration as the previous
5728      // declaration, so that the declarations get chained appropriately.
5729      Previous.addDecl(getStdBadAlloc());
5730    }
5731  }
5732
5733  // If we didn't find a previous declaration, and this is a reference
5734  // (or friend reference), move to the correct scope.  In C++, we
5735  // also need to do a redeclaration lookup there, just in case
5736  // there's a shadow friend decl.
5737  if (Name && Previous.empty() &&
5738      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5739    if (Invalid) goto CreateNewDecl;
5740    assert(SS.isEmpty());
5741
5742    if (TUK == TUK_Reference) {
5743      // C++ [basic.scope.pdecl]p5:
5744      //   -- for an elaborated-type-specifier of the form
5745      //
5746      //          class-key identifier
5747      //
5748      //      if the elaborated-type-specifier is used in the
5749      //      decl-specifier-seq or parameter-declaration-clause of a
5750      //      function defined in namespace scope, the identifier is
5751      //      declared as a class-name in the namespace that contains
5752      //      the declaration; otherwise, except as a friend
5753      //      declaration, the identifier is declared in the smallest
5754      //      non-class, non-function-prototype scope that contains the
5755      //      declaration.
5756      //
5757      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5758      // C structs and unions.
5759      //
5760      // It is an error in C++ to declare (rather than define) an enum
5761      // type, including via an elaborated type specifier.  We'll
5762      // diagnose that later; for now, declare the enum in the same
5763      // scope as we would have picked for any other tag type.
5764      //
5765      // GNU C also supports this behavior as part of its incomplete
5766      // enum types extension, while GNU C++ does not.
5767      //
5768      // Find the context where we'll be declaring the tag.
5769      // FIXME: We would like to maintain the current DeclContext as the
5770      // lexical context,
5771      while (SearchDC->isRecord())
5772        SearchDC = SearchDC->getParent();
5773
5774      // Find the scope where we'll be declaring the tag.
5775      while (S->isClassScope() ||
5776             (getLangOptions().CPlusPlus &&
5777              S->isFunctionPrototypeScope()) ||
5778             ((S->getFlags() & Scope::DeclScope) == 0) ||
5779             (S->getEntity() &&
5780              ((DeclContext *)S->getEntity())->isTransparentContext()))
5781        S = S->getParent();
5782    } else {
5783      assert(TUK == TUK_Friend);
5784      // C++ [namespace.memdef]p3:
5785      //   If a friend declaration in a non-local class first declares a
5786      //   class or function, the friend class or function is a member of
5787      //   the innermost enclosing namespace.
5788      SearchDC = SearchDC->getEnclosingNamespaceContext();
5789    }
5790
5791    // In C++, we need to do a redeclaration lookup to properly
5792    // diagnose some problems.
5793    if (getLangOptions().CPlusPlus) {
5794      Previous.setRedeclarationKind(ForRedeclaration);
5795      LookupQualifiedName(Previous, SearchDC);
5796    }
5797  }
5798
5799  if (!Previous.empty()) {
5800    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5801
5802    // It's okay to have a tag decl in the same scope as a typedef
5803    // which hides a tag decl in the same scope.  Finding this
5804    // insanity with a redeclaration lookup can only actually happen
5805    // in C++.
5806    //
5807    // This is also okay for elaborated-type-specifiers, which is
5808    // technically forbidden by the current standard but which is
5809    // okay according to the likely resolution of an open issue;
5810    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5811    if (getLangOptions().CPlusPlus) {
5812      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5813        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5814          TagDecl *Tag = TT->getDecl();
5815          if (Tag->getDeclName() == Name &&
5816              Tag->getDeclContext()->getRedeclContext()
5817                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5818            PrevDecl = Tag;
5819            Previous.clear();
5820            Previous.addDecl(Tag);
5821            Previous.resolveKind();
5822          }
5823        }
5824      }
5825    }
5826
5827    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5828      // If this is a use of a previous tag, or if the tag is already declared
5829      // in the same scope (so that the definition/declaration completes or
5830      // rementions the tag), reuse the decl.
5831      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5832          isDeclInScope(PrevDecl, SearchDC, S)) {
5833        // Make sure that this wasn't declared as an enum and now used as a
5834        // struct or something similar.
5835        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5836          bool SafeToContinue
5837            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5838               Kind != TTK_Enum);
5839          if (SafeToContinue)
5840            Diag(KWLoc, diag::err_use_with_wrong_tag)
5841              << Name
5842              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5843                                              PrevTagDecl->getKindName());
5844          else
5845            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5846          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5847
5848          if (SafeToContinue)
5849            Kind = PrevTagDecl->getTagKind();
5850          else {
5851            // Recover by making this an anonymous redefinition.
5852            Name = 0;
5853            Previous.clear();
5854            Invalid = true;
5855          }
5856        }
5857
5858        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5859          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5860
5861          // All conflicts with previous declarations are recovered by
5862          // returning the previous declaration.
5863          if (ScopedEnum != PrevEnum->isScoped()) {
5864            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5865              << PrevEnum->isScoped();
5866            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5867            return PrevTagDecl;
5868          }
5869          else if (EnumUnderlying && PrevEnum->isFixed()) {
5870            QualType T;
5871            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5872                T = TI->getType();
5873            else
5874                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5875
5876            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5877              Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5878              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5879              return PrevTagDecl;
5880            }
5881          }
5882          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5883            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5884              << PrevEnum->isFixed();
5885            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5886            return PrevTagDecl;
5887          }
5888        }
5889
5890        if (!Invalid) {
5891          // If this is a use, just return the declaration we found.
5892
5893          // FIXME: In the future, return a variant or some other clue
5894          // for the consumer of this Decl to know it doesn't own it.
5895          // For our current ASTs this shouldn't be a problem, but will
5896          // need to be changed with DeclGroups.
5897          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5898              TUK == TUK_Friend)
5899            return PrevTagDecl;
5900
5901          // Diagnose attempts to redefine a tag.
5902          if (TUK == TUK_Definition) {
5903            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5904              // If we're defining a specialization and the previous definition
5905              // is from an implicit instantiation, don't emit an error
5906              // here; we'll catch this in the general case below.
5907              if (!isExplicitSpecialization ||
5908                  !isa<CXXRecordDecl>(Def) ||
5909                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5910                                               == TSK_ExplicitSpecialization) {
5911                Diag(NameLoc, diag::err_redefinition) << Name;
5912                Diag(Def->getLocation(), diag::note_previous_definition);
5913                // If this is a redefinition, recover by making this
5914                // struct be anonymous, which will make any later
5915                // references get the previous definition.
5916                Name = 0;
5917                Previous.clear();
5918                Invalid = true;
5919              }
5920            } else {
5921              // If the type is currently being defined, complain
5922              // about a nested redefinition.
5923              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5924              if (Tag->isBeingDefined()) {
5925                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5926                Diag(PrevTagDecl->getLocation(),
5927                     diag::note_previous_definition);
5928                Name = 0;
5929                Previous.clear();
5930                Invalid = true;
5931              }
5932            }
5933
5934            // Okay, this is definition of a previously declared or referenced
5935            // tag PrevDecl. We're going to create a new Decl for it.
5936          }
5937        }
5938        // If we get here we have (another) forward declaration or we
5939        // have a definition.  Just create a new decl.
5940
5941      } else {
5942        // If we get here, this is a definition of a new tag type in a nested
5943        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5944        // new decl/type.  We set PrevDecl to NULL so that the entities
5945        // have distinct types.
5946        Previous.clear();
5947      }
5948      // If we get here, we're going to create a new Decl. If PrevDecl
5949      // is non-NULL, it's a definition of the tag declared by
5950      // PrevDecl. If it's NULL, we have a new definition.
5951
5952
5953    // Otherwise, PrevDecl is not a tag, but was found with tag
5954    // lookup.  This is only actually possible in C++, where a few
5955    // things like templates still live in the tag namespace.
5956    } else {
5957      assert(getLangOptions().CPlusPlus);
5958
5959      // Use a better diagnostic if an elaborated-type-specifier
5960      // found the wrong kind of type on the first
5961      // (non-redeclaration) lookup.
5962      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5963          !Previous.isForRedeclaration()) {
5964        unsigned Kind = 0;
5965        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5966        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5967        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5968        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5969        Invalid = true;
5970
5971      // Otherwise, only diagnose if the declaration is in scope.
5972      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5973        // do nothing
5974
5975      // Diagnose implicit declarations introduced by elaborated types.
5976      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5977        unsigned Kind = 0;
5978        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5979        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5980        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5981        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5982        Invalid = true;
5983
5984      // Otherwise it's a declaration.  Call out a particularly common
5985      // case here.
5986      } else if (isa<TypedefDecl>(PrevDecl)) {
5987        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5988          << Name
5989          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5990        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5991        Invalid = true;
5992
5993      // Otherwise, diagnose.
5994      } else {
5995        // The tag name clashes with something else in the target scope,
5996        // issue an error and recover by making this tag be anonymous.
5997        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5998        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5999        Name = 0;
6000        Invalid = true;
6001      }
6002
6003      // The existing declaration isn't relevant to us; we're in a
6004      // new scope, so clear out the previous declaration.
6005      Previous.clear();
6006    }
6007  }
6008
6009CreateNewDecl:
6010
6011  TagDecl *PrevDecl = 0;
6012  if (Previous.isSingleResult())
6013    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6014
6015  // If there is an identifier, use the location of the identifier as the
6016  // location of the decl, otherwise use the location of the struct/union
6017  // keyword.
6018  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6019
6020  // Otherwise, create a new declaration. If there is a previous
6021  // declaration of the same entity, the two will be linked via
6022  // PrevDecl.
6023  TagDecl *New;
6024
6025  bool IsForwardReference = false;
6026  if (Kind == TTK_Enum) {
6027    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6028    // enum X { A, B, C } D;    D should chain to X.
6029    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6030                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6031                           !EnumUnderlying.isNull());
6032    // If this is an undefined enum, warn.
6033    if (TUK != TUK_Definition && !Invalid) {
6034      TagDecl *Def;
6035      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6036        // C++0x: 7.2p2: opaque-enum-declaration.
6037        // Conflicts are diagnosed above. Do nothing.
6038      }
6039      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6040        Diag(Loc, diag::ext_forward_ref_enum_def)
6041          << New;
6042        Diag(Def->getLocation(), diag::note_previous_definition);
6043      } else {
6044        unsigned DiagID = diag::ext_forward_ref_enum;
6045        if (getLangOptions().Microsoft)
6046          DiagID = diag::ext_ms_forward_ref_enum;
6047        else if (getLangOptions().CPlusPlus)
6048          DiagID = diag::err_forward_ref_enum;
6049        Diag(Loc, DiagID);
6050
6051        // If this is a forward-declared reference to an enumeration, make a
6052        // note of it; we won't actually be introducing the declaration into
6053        // the declaration context.
6054        if (TUK == TUK_Reference)
6055          IsForwardReference = true;
6056      }
6057    }
6058
6059    if (EnumUnderlying) {
6060      EnumDecl *ED = cast<EnumDecl>(New);
6061      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6062        ED->setIntegerTypeSourceInfo(TI);
6063      else
6064        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6065      ED->setPromotionType(ED->getIntegerType());
6066    }
6067
6068  } else {
6069    // struct/union/class
6070
6071    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6072    // struct X { int A; } D;    D should chain to X.
6073    if (getLangOptions().CPlusPlus) {
6074      // FIXME: Look for a way to use RecordDecl for simple structs.
6075      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6076                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6077
6078      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6079        StdBadAlloc = cast<CXXRecordDecl>(New);
6080    } else
6081      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6082                               cast_or_null<RecordDecl>(PrevDecl));
6083  }
6084
6085  // Maybe add qualifier info.
6086  if (SS.isNotEmpty()) {
6087    if (SS.isSet()) {
6088      NestedNameSpecifier *NNS
6089        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6090      New->setQualifierInfo(NNS, SS.getRange());
6091      if (NumMatchedTemplateParamLists > 0) {
6092        New->setTemplateParameterListsInfo(Context,
6093                                           NumMatchedTemplateParamLists,
6094                    (TemplateParameterList**) TemplateParameterLists.release());
6095      }
6096    }
6097    else
6098      Invalid = true;
6099  }
6100
6101  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6102    // Add alignment attributes if necessary; these attributes are checked when
6103    // the ASTContext lays out the structure.
6104    //
6105    // It is important for implementing the correct semantics that this
6106    // happen here (in act on tag decl). The #pragma pack stack is
6107    // maintained as a result of parser callbacks which can occur at
6108    // many points during the parsing of a struct declaration (because
6109    // the #pragma tokens are effectively skipped over during the
6110    // parsing of the struct).
6111    AddAlignmentAttributesForRecord(RD);
6112  }
6113
6114  // If this is a specialization of a member class (of a class template),
6115  // check the specialization.
6116  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6117    Invalid = true;
6118
6119  if (Invalid)
6120    New->setInvalidDecl();
6121
6122  if (Attr)
6123    ProcessDeclAttributeList(S, New, Attr);
6124
6125  // If we're declaring or defining a tag in function prototype scope
6126  // in C, note that this type can only be used within the function.
6127  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6128    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6129
6130  // Set the lexical context. If the tag has a C++ scope specifier, the
6131  // lexical context will be different from the semantic context.
6132  New->setLexicalDeclContext(CurContext);
6133
6134  // Mark this as a friend decl if applicable.
6135  if (TUK == TUK_Friend)
6136    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6137
6138  // Set the access specifier.
6139  if (!Invalid && SearchDC->isRecord())
6140    SetMemberAccessSpecifier(New, PrevDecl, AS);
6141
6142  if (TUK == TUK_Definition)
6143    New->startDefinition();
6144
6145  // If this has an identifier, add it to the scope stack.
6146  if (TUK == TUK_Friend) {
6147    // We might be replacing an existing declaration in the lookup tables;
6148    // if so, borrow its access specifier.
6149    if (PrevDecl)
6150      New->setAccess(PrevDecl->getAccess());
6151
6152    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6153    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6154    if (Name) // can be null along some error paths
6155      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6156        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6157  } else if (Name) {
6158    S = getNonFieldDeclScope(S);
6159    PushOnScopeChains(New, S, !IsForwardReference);
6160    if (IsForwardReference)
6161      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6162
6163  } else {
6164    CurContext->addDecl(New);
6165  }
6166
6167  // If this is the C FILE type, notify the AST context.
6168  if (IdentifierInfo *II = New->getIdentifier())
6169    if (!New->isInvalidDecl() &&
6170        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6171        II->isStr("FILE"))
6172      Context.setFILEDecl(New);
6173
6174  OwnedDecl = true;
6175  return New;
6176}
6177
6178void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6179  AdjustDeclIfTemplate(TagD);
6180  TagDecl *Tag = cast<TagDecl>(TagD);
6181
6182  // Enter the tag context.
6183  PushDeclContext(S, Tag);
6184}
6185
6186void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6187                                           SourceLocation LBraceLoc) {
6188  AdjustDeclIfTemplate(TagD);
6189  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6190
6191  FieldCollector->StartClass();
6192
6193  if (!Record->getIdentifier())
6194    return;
6195
6196  // C++ [class]p2:
6197  //   [...] The class-name is also inserted into the scope of the
6198  //   class itself; this is known as the injected-class-name. For
6199  //   purposes of access checking, the injected-class-name is treated
6200  //   as if it were a public member name.
6201  CXXRecordDecl *InjectedClassName
6202    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6203                            CurContext, Record->getLocation(),
6204                            Record->getIdentifier(),
6205                            Record->getTagKeywordLoc(),
6206                            /*PrevDecl=*/0,
6207                            /*DelayTypeCreation=*/true);
6208  Context.getTypeDeclType(InjectedClassName, Record);
6209  InjectedClassName->setImplicit();
6210  InjectedClassName->setAccess(AS_public);
6211  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6212      InjectedClassName->setDescribedClassTemplate(Template);
6213  PushOnScopeChains(InjectedClassName, S);
6214  assert(InjectedClassName->isInjectedClassName() &&
6215         "Broken injected-class-name");
6216}
6217
6218void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6219                                    SourceLocation RBraceLoc) {
6220  AdjustDeclIfTemplate(TagD);
6221  TagDecl *Tag = cast<TagDecl>(TagD);
6222  Tag->setRBraceLoc(RBraceLoc);
6223
6224  if (isa<CXXRecordDecl>(Tag))
6225    FieldCollector->FinishClass();
6226
6227  // Exit this scope of this tag's definition.
6228  PopDeclContext();
6229
6230  // Notify the consumer that we've defined a tag.
6231  Consumer.HandleTagDeclDefinition(Tag);
6232}
6233
6234void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6235  AdjustDeclIfTemplate(TagD);
6236  TagDecl *Tag = cast<TagDecl>(TagD);
6237  Tag->setInvalidDecl();
6238
6239  // We're undoing ActOnTagStartDefinition here, not
6240  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6241  // the FieldCollector.
6242
6243  PopDeclContext();
6244}
6245
6246// Note that FieldName may be null for anonymous bitfields.
6247bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6248                          QualType FieldTy, const Expr *BitWidth,
6249                          bool *ZeroWidth) {
6250  // Default to true; that shouldn't confuse checks for emptiness
6251  if (ZeroWidth)
6252    *ZeroWidth = true;
6253
6254  // C99 6.7.2.1p4 - verify the field type.
6255  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6256  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6257    // Handle incomplete types with specific error.
6258    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6259      return true;
6260    if (FieldName)
6261      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6262        << FieldName << FieldTy << BitWidth->getSourceRange();
6263    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6264      << FieldTy << BitWidth->getSourceRange();
6265  }
6266
6267  // If the bit-width is type- or value-dependent, don't try to check
6268  // it now.
6269  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6270    return false;
6271
6272  llvm::APSInt Value;
6273  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6274    return true;
6275
6276  if (Value != 0 && ZeroWidth)
6277    *ZeroWidth = false;
6278
6279  // Zero-width bitfield is ok for anonymous field.
6280  if (Value == 0 && FieldName)
6281    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6282
6283  if (Value.isSigned() && Value.isNegative()) {
6284    if (FieldName)
6285      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6286               << FieldName << Value.toString(10);
6287    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6288      << Value.toString(10);
6289  }
6290
6291  if (!FieldTy->isDependentType()) {
6292    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6293    if (Value.getZExtValue() > TypeSize) {
6294      if (!getLangOptions().CPlusPlus) {
6295        if (FieldName)
6296          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6297            << FieldName << (unsigned)Value.getZExtValue()
6298            << (unsigned)TypeSize;
6299
6300        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6301          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6302      }
6303
6304      if (FieldName)
6305        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6306          << FieldName << (unsigned)Value.getZExtValue()
6307          << (unsigned)TypeSize;
6308      else
6309        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6310          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6311    }
6312  }
6313
6314  return false;
6315}
6316
6317/// ActOnField - Each field of a struct/union/class is passed into this in order
6318/// to create a FieldDecl object for it.
6319Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6320                                 SourceLocation DeclStart,
6321                                 Declarator &D, ExprTy *BitfieldWidth) {
6322  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6323                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6324                               AS_public);
6325  return Res;
6326}
6327
6328/// HandleField - Analyze a field of a C struct or a C++ data member.
6329///
6330FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6331                             SourceLocation DeclStart,
6332                             Declarator &D, Expr *BitWidth,
6333                             AccessSpecifier AS) {
6334  IdentifierInfo *II = D.getIdentifier();
6335  SourceLocation Loc = DeclStart;
6336  if (II) Loc = D.getIdentifierLoc();
6337
6338  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6339  QualType T = TInfo->getType();
6340  if (getLangOptions().CPlusPlus)
6341    CheckExtraCXXDefaultArguments(D);
6342
6343  DiagnoseFunctionSpecifiers(D);
6344
6345  if (D.getDeclSpec().isThreadSpecified())
6346    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6347
6348  // Check to see if this name was declared as a member previously
6349  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6350  LookupName(Previous, S);
6351  assert((Previous.empty() || Previous.isOverloadedResult() ||
6352          Previous.isSingleResult())
6353    && "Lookup of member name should be either overloaded, single or null");
6354
6355  // If the name is overloaded then get any declaration else get the single result
6356  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6357    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6358
6359  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6360    // Maybe we will complain about the shadowed template parameter.
6361    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6362    // Just pretend that we didn't see the previous declaration.
6363    PrevDecl = 0;
6364  }
6365
6366  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6367    PrevDecl = 0;
6368
6369  bool Mutable
6370    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6371  SourceLocation TSSL = D.getSourceRange().getBegin();
6372  FieldDecl *NewFD
6373    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6374                     AS, PrevDecl, &D);
6375
6376  if (NewFD->isInvalidDecl())
6377    Record->setInvalidDecl();
6378
6379  if (NewFD->isInvalidDecl() && PrevDecl) {
6380    // Don't introduce NewFD into scope; there's already something
6381    // with the same name in the same scope.
6382  } else if (II) {
6383    PushOnScopeChains(NewFD, S);
6384  } else
6385    Record->addDecl(NewFD);
6386
6387  return NewFD;
6388}
6389
6390/// \brief Build a new FieldDecl and check its well-formedness.
6391///
6392/// This routine builds a new FieldDecl given the fields name, type,
6393/// record, etc. \p PrevDecl should refer to any previous declaration
6394/// with the same name and in the same scope as the field to be
6395/// created.
6396///
6397/// \returns a new FieldDecl.
6398///
6399/// \todo The Declarator argument is a hack. It will be removed once
6400FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6401                                TypeSourceInfo *TInfo,
6402                                RecordDecl *Record, SourceLocation Loc,
6403                                bool Mutable, Expr *BitWidth,
6404                                SourceLocation TSSL,
6405                                AccessSpecifier AS, NamedDecl *PrevDecl,
6406                                Declarator *D) {
6407  IdentifierInfo *II = Name.getAsIdentifierInfo();
6408  bool InvalidDecl = false;
6409  if (D) InvalidDecl = D->isInvalidType();
6410
6411  // If we receive a broken type, recover by assuming 'int' and
6412  // marking this declaration as invalid.
6413  if (T.isNull()) {
6414    InvalidDecl = true;
6415    T = Context.IntTy;
6416  }
6417
6418  QualType EltTy = Context.getBaseElementType(T);
6419  if (!EltTy->isDependentType() &&
6420      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6421    // Fields of incomplete type force their record to be invalid.
6422    Record->setInvalidDecl();
6423    InvalidDecl = true;
6424  }
6425
6426  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6427  // than a variably modified type.
6428  if (!InvalidDecl && T->isVariablyModifiedType()) {
6429    bool SizeIsNegative;
6430    llvm::APSInt Oversized;
6431    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6432                                                           SizeIsNegative,
6433                                                           Oversized);
6434    if (!FixedTy.isNull()) {
6435      Diag(Loc, diag::warn_illegal_constant_array_size);
6436      T = FixedTy;
6437    } else {
6438      if (SizeIsNegative)
6439        Diag(Loc, diag::err_typecheck_negative_array_size);
6440      else if (Oversized.getBoolValue())
6441        Diag(Loc, diag::err_array_too_large)
6442          << Oversized.toString(10);
6443      else
6444        Diag(Loc, diag::err_typecheck_field_variable_size);
6445      InvalidDecl = true;
6446    }
6447  }
6448
6449  // Fields can not have abstract class types
6450  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6451                                             diag::err_abstract_type_in_decl,
6452                                             AbstractFieldType))
6453    InvalidDecl = true;
6454
6455  bool ZeroWidth = false;
6456  // If this is declared as a bit-field, check the bit-field.
6457  if (!InvalidDecl && BitWidth &&
6458      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6459    InvalidDecl = true;
6460    BitWidth = 0;
6461    ZeroWidth = false;
6462  }
6463
6464  // Check that 'mutable' is consistent with the type of the declaration.
6465  if (!InvalidDecl && Mutable) {
6466    unsigned DiagID = 0;
6467    if (T->isReferenceType())
6468      DiagID = diag::err_mutable_reference;
6469    else if (T.isConstQualified())
6470      DiagID = diag::err_mutable_const;
6471
6472    if (DiagID) {
6473      SourceLocation ErrLoc = Loc;
6474      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6475        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6476      Diag(ErrLoc, DiagID);
6477      Mutable = false;
6478      InvalidDecl = true;
6479    }
6480  }
6481
6482  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6483                                       BitWidth, Mutable);
6484  if (InvalidDecl)
6485    NewFD->setInvalidDecl();
6486
6487  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6488    Diag(Loc, diag::err_duplicate_member) << II;
6489    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6490    NewFD->setInvalidDecl();
6491  }
6492
6493  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6494    if (Record->isUnion()) {
6495      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6496        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6497        if (RDecl->getDefinition()) {
6498          // C++ [class.union]p1: An object of a class with a non-trivial
6499          // constructor, a non-trivial copy constructor, a non-trivial
6500          // destructor, or a non-trivial copy assignment operator
6501          // cannot be a member of a union, nor can an array of such
6502          // objects.
6503          // TODO: C++0x alters this restriction significantly.
6504          if (CheckNontrivialField(NewFD))
6505            NewFD->setInvalidDecl();
6506        }
6507      }
6508
6509      // C++ [class.union]p1: If a union contains a member of reference type,
6510      // the program is ill-formed.
6511      if (EltTy->isReferenceType()) {
6512        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6513          << NewFD->getDeclName() << EltTy;
6514        NewFD->setInvalidDecl();
6515      }
6516    }
6517  }
6518
6519  // FIXME: We need to pass in the attributes given an AST
6520  // representation, not a parser representation.
6521  if (D)
6522    // FIXME: What to pass instead of TUScope?
6523    ProcessDeclAttributes(TUScope, NewFD, *D);
6524
6525  if (T.isObjCGCWeak())
6526    Diag(Loc, diag::warn_attribute_weak_on_field);
6527
6528  NewFD->setAccess(AS);
6529  return NewFD;
6530}
6531
6532bool Sema::CheckNontrivialField(FieldDecl *FD) {
6533  assert(FD);
6534  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6535
6536  if (FD->isInvalidDecl())
6537    return true;
6538
6539  QualType EltTy = Context.getBaseElementType(FD->getType());
6540  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6541    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6542    if (RDecl->getDefinition()) {
6543      // We check for copy constructors before constructors
6544      // because otherwise we'll never get complaints about
6545      // copy constructors.
6546
6547      CXXSpecialMember member = CXXInvalid;
6548      if (!RDecl->hasTrivialCopyConstructor())
6549        member = CXXCopyConstructor;
6550      else if (!RDecl->hasTrivialConstructor())
6551        member = CXXConstructor;
6552      else if (!RDecl->hasTrivialCopyAssignment())
6553        member = CXXCopyAssignment;
6554      else if (!RDecl->hasTrivialDestructor())
6555        member = CXXDestructor;
6556
6557      if (member != CXXInvalid) {
6558        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6559              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6560        DiagnoseNontrivial(RT, member);
6561        return true;
6562      }
6563    }
6564  }
6565
6566  return false;
6567}
6568
6569/// DiagnoseNontrivial - Given that a class has a non-trivial
6570/// special member, figure out why.
6571void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6572  QualType QT(T, 0U);
6573  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6574
6575  // Check whether the member was user-declared.
6576  switch (member) {
6577  case CXXInvalid:
6578    break;
6579
6580  case CXXConstructor:
6581    if (RD->hasUserDeclaredConstructor()) {
6582      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6583      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6584        const FunctionDecl *body = 0;
6585        ci->hasBody(body);
6586        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6587          SourceLocation CtorLoc = ci->getLocation();
6588          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6589          return;
6590        }
6591      }
6592
6593      assert(0 && "found no user-declared constructors");
6594      return;
6595    }
6596    break;
6597
6598  case CXXCopyConstructor:
6599    if (RD->hasUserDeclaredCopyConstructor()) {
6600      SourceLocation CtorLoc =
6601        RD->getCopyConstructor(Context, 0)->getLocation();
6602      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6603      return;
6604    }
6605    break;
6606
6607  case CXXCopyAssignment:
6608    if (RD->hasUserDeclaredCopyAssignment()) {
6609      // FIXME: this should use the location of the copy
6610      // assignment, not the type.
6611      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6612      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6613      return;
6614    }
6615    break;
6616
6617  case CXXDestructor:
6618    if (RD->hasUserDeclaredDestructor()) {
6619      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6620      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6621      return;
6622    }
6623    break;
6624  }
6625
6626  typedef CXXRecordDecl::base_class_iterator base_iter;
6627
6628  // Virtual bases and members inhibit trivial copying/construction,
6629  // but not trivial destruction.
6630  if (member != CXXDestructor) {
6631    // Check for virtual bases.  vbases includes indirect virtual bases,
6632    // so we just iterate through the direct bases.
6633    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6634      if (bi->isVirtual()) {
6635        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6636        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6637        return;
6638      }
6639
6640    // Check for virtual methods.
6641    typedef CXXRecordDecl::method_iterator meth_iter;
6642    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6643         ++mi) {
6644      if (mi->isVirtual()) {
6645        SourceLocation MLoc = mi->getSourceRange().getBegin();
6646        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6647        return;
6648      }
6649    }
6650  }
6651
6652  bool (CXXRecordDecl::*hasTrivial)() const;
6653  switch (member) {
6654  case CXXConstructor:
6655    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6656  case CXXCopyConstructor:
6657    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6658  case CXXCopyAssignment:
6659    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6660  case CXXDestructor:
6661    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6662  default:
6663    assert(0 && "unexpected special member"); return;
6664  }
6665
6666  // Check for nontrivial bases (and recurse).
6667  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6668    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6669    assert(BaseRT && "Don't know how to handle dependent bases");
6670    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6671    if (!(BaseRecTy->*hasTrivial)()) {
6672      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6673      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6674      DiagnoseNontrivial(BaseRT, member);
6675      return;
6676    }
6677  }
6678
6679  // Check for nontrivial members (and recurse).
6680  typedef RecordDecl::field_iterator field_iter;
6681  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6682       ++fi) {
6683    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6684    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6685      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6686
6687      if (!(EltRD->*hasTrivial)()) {
6688        SourceLocation FLoc = (*fi)->getLocation();
6689        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6690        DiagnoseNontrivial(EltRT, member);
6691        return;
6692      }
6693    }
6694  }
6695
6696  assert(0 && "found no explanation for non-trivial member");
6697}
6698
6699/// TranslateIvarVisibility - Translate visibility from a token ID to an
6700///  AST enum value.
6701static ObjCIvarDecl::AccessControl
6702TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6703  switch (ivarVisibility) {
6704  default: assert(0 && "Unknown visitibility kind");
6705  case tok::objc_private: return ObjCIvarDecl::Private;
6706  case tok::objc_public: return ObjCIvarDecl::Public;
6707  case tok::objc_protected: return ObjCIvarDecl::Protected;
6708  case tok::objc_package: return ObjCIvarDecl::Package;
6709  }
6710}
6711
6712/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6713/// in order to create an IvarDecl object for it.
6714Decl *Sema::ActOnIvar(Scope *S,
6715                                SourceLocation DeclStart,
6716                                Decl *IntfDecl,
6717                                Declarator &D, ExprTy *BitfieldWidth,
6718                                tok::ObjCKeywordKind Visibility) {
6719
6720  IdentifierInfo *II = D.getIdentifier();
6721  Expr *BitWidth = (Expr*)BitfieldWidth;
6722  SourceLocation Loc = DeclStart;
6723  if (II) Loc = D.getIdentifierLoc();
6724
6725  // FIXME: Unnamed fields can be handled in various different ways, for
6726  // example, unnamed unions inject all members into the struct namespace!
6727
6728  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6729  QualType T = TInfo->getType();
6730
6731  if (BitWidth) {
6732    // 6.7.2.1p3, 6.7.2.1p4
6733    if (VerifyBitField(Loc, II, T, BitWidth)) {
6734      D.setInvalidType();
6735      BitWidth = 0;
6736    }
6737  } else {
6738    // Not a bitfield.
6739
6740    // validate II.
6741
6742  }
6743  if (T->isReferenceType()) {
6744    Diag(Loc, diag::err_ivar_reference_type);
6745    D.setInvalidType();
6746  }
6747  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6748  // than a variably modified type.
6749  else if (T->isVariablyModifiedType()) {
6750    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6751    D.setInvalidType();
6752  }
6753
6754  // Get the visibility (access control) for this ivar.
6755  ObjCIvarDecl::AccessControl ac =
6756    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6757                                        : ObjCIvarDecl::None;
6758  // Must set ivar's DeclContext to its enclosing interface.
6759  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6760  ObjCContainerDecl *EnclosingContext;
6761  if (ObjCImplementationDecl *IMPDecl =
6762      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6763    if (!LangOpts.ObjCNonFragileABI2) {
6764    // Case of ivar declared in an implementation. Context is that of its class.
6765      EnclosingContext = IMPDecl->getClassInterface();
6766      assert(EnclosingContext && "Implementation has no class interface!");
6767    }
6768    else
6769      EnclosingContext = EnclosingDecl;
6770  } else {
6771    if (ObjCCategoryDecl *CDecl =
6772        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6773      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6774        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6775        return 0;
6776      }
6777    }
6778    EnclosingContext = EnclosingDecl;
6779  }
6780
6781  // Construct the decl.
6782  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6783                                             EnclosingContext, Loc, II, T,
6784                                             TInfo, ac, (Expr *)BitfieldWidth);
6785
6786  if (II) {
6787    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6788                                           ForRedeclaration);
6789    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6790        && !isa<TagDecl>(PrevDecl)) {
6791      Diag(Loc, diag::err_duplicate_member) << II;
6792      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6793      NewID->setInvalidDecl();
6794    }
6795  }
6796
6797  // Process attributes attached to the ivar.
6798  ProcessDeclAttributes(S, NewID, D);
6799
6800  if (D.isInvalidType())
6801    NewID->setInvalidDecl();
6802
6803  if (II) {
6804    // FIXME: When interfaces are DeclContexts, we'll need to add
6805    // these to the interface.
6806    S->AddDecl(NewID);
6807    IdResolver.AddDecl(NewID);
6808  }
6809
6810  return NewID;
6811}
6812
6813/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6814/// class and class extensions. For every class @interface and class
6815/// extension @interface, if the last ivar is a bitfield of any type,
6816/// then add an implicit `char :0` ivar to the end of that interface.
6817void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6818                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6819  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6820    return;
6821
6822  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6823  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6824
6825  if (!Ivar->isBitField())
6826    return;
6827  uint64_t BitFieldSize =
6828    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6829  if (BitFieldSize == 0)
6830    return;
6831  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6832  if (!ID) {
6833    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6834      if (!CD->IsClassExtension())
6835        return;
6836    }
6837    // No need to add this to end of @implementation.
6838    else
6839      return;
6840  }
6841  // All conditions are met. Add a new bitfield to the tail end of ivars.
6842  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6843  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6844
6845  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6846                              DeclLoc, 0,
6847                              Context.CharTy,
6848                              Context.CreateTypeSourceInfo(Context.CharTy),
6849                              ObjCIvarDecl::Private, BW,
6850                              true);
6851  AllIvarDecls.push_back(Ivar);
6852}
6853
6854void Sema::ActOnFields(Scope* S,
6855                       SourceLocation RecLoc, Decl *EnclosingDecl,
6856                       Decl **Fields, unsigned NumFields,
6857                       SourceLocation LBrac, SourceLocation RBrac,
6858                       AttributeList *Attr) {
6859  assert(EnclosingDecl && "missing record or interface decl");
6860
6861  // If the decl this is being inserted into is invalid, then it may be a
6862  // redeclaration or some other bogus case.  Don't try to add fields to it.
6863  if (EnclosingDecl->isInvalidDecl()) {
6864    // FIXME: Deallocate fields?
6865    return;
6866  }
6867
6868
6869  // Verify that all the fields are okay.
6870  unsigned NumNamedMembers = 0;
6871  llvm::SmallVector<FieldDecl*, 32> RecFields;
6872
6873  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6874  for (unsigned i = 0; i != NumFields; ++i) {
6875    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6876
6877    // Get the type for the field.
6878    Type *FDTy = FD->getType().getTypePtr();
6879
6880    if (!FD->isAnonymousStructOrUnion()) {
6881      // Remember all fields written by the user.
6882      RecFields.push_back(FD);
6883    }
6884
6885    // If the field is already invalid for some reason, don't emit more
6886    // diagnostics about it.
6887    if (FD->isInvalidDecl()) {
6888      EnclosingDecl->setInvalidDecl();
6889      continue;
6890    }
6891
6892    // C99 6.7.2.1p2:
6893    //   A structure or union shall not contain a member with
6894    //   incomplete or function type (hence, a structure shall not
6895    //   contain an instance of itself, but may contain a pointer to
6896    //   an instance of itself), except that the last member of a
6897    //   structure with more than one named member may have incomplete
6898    //   array type; such a structure (and any union containing,
6899    //   possibly recursively, a member that is such a structure)
6900    //   shall not be a member of a structure or an element of an
6901    //   array.
6902    if (FDTy->isFunctionType()) {
6903      // Field declared as a function.
6904      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6905        << FD->getDeclName();
6906      FD->setInvalidDecl();
6907      EnclosingDecl->setInvalidDecl();
6908      continue;
6909    } else if (FDTy->isIncompleteArrayType() && Record &&
6910               ((i == NumFields - 1 && !Record->isUnion()) ||
6911                (getLangOptions().Microsoft &&
6912                 (i == NumFields - 1 || Record->isUnion())))) {
6913      // Flexible array member.
6914      // Microsoft is more permissive regarding flexible array.
6915      // It will accept flexible array in union and also
6916      // as the sole element of a struct/class.
6917      if (getLangOptions().Microsoft) {
6918        if (Record->isUnion())
6919          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6920            << FD->getDeclName();
6921        else if (NumFields == 1)
6922          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6923            << FD->getDeclName() << Record->getTagKind();
6924      } else  if (NumNamedMembers < 1) {
6925        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6926          << FD->getDeclName();
6927        FD->setInvalidDecl();
6928        EnclosingDecl->setInvalidDecl();
6929        continue;
6930      }
6931      if (!FD->getType()->isDependentType() &&
6932          !Context.getBaseElementType(FD->getType())->isPODType()) {
6933        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6934          << FD->getDeclName() << FD->getType();
6935        FD->setInvalidDecl();
6936        EnclosingDecl->setInvalidDecl();
6937        continue;
6938      }
6939      // Okay, we have a legal flexible array member at the end of the struct.
6940      if (Record)
6941        Record->setHasFlexibleArrayMember(true);
6942    } else if (!FDTy->isDependentType() &&
6943               RequireCompleteType(FD->getLocation(), FD->getType(),
6944                                   diag::err_field_incomplete)) {
6945      // Incomplete type
6946      FD->setInvalidDecl();
6947      EnclosingDecl->setInvalidDecl();
6948      continue;
6949    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6950      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6951        // If this is a member of a union, then entire union becomes "flexible".
6952        if (Record && Record->isUnion()) {
6953          Record->setHasFlexibleArrayMember(true);
6954        } else {
6955          // If this is a struct/class and this is not the last element, reject
6956          // it.  Note that GCC supports variable sized arrays in the middle of
6957          // structures.
6958          if (i != NumFields-1)
6959            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6960              << FD->getDeclName() << FD->getType();
6961          else {
6962            // We support flexible arrays at the end of structs in
6963            // other structs as an extension.
6964            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6965              << FD->getDeclName();
6966            if (Record)
6967              Record->setHasFlexibleArrayMember(true);
6968          }
6969        }
6970      }
6971      if (Record && FDTTy->getDecl()->hasObjectMember())
6972        Record->setHasObjectMember(true);
6973    } else if (FDTy->isObjCObjectType()) {
6974      /// A field cannot be an Objective-c object
6975      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6976      FD->setInvalidDecl();
6977      EnclosingDecl->setInvalidDecl();
6978      continue;
6979    } else if (getLangOptions().ObjC1 &&
6980               getLangOptions().getGCMode() != LangOptions::NonGC &&
6981               Record &&
6982               (FD->getType()->isObjCObjectPointerType() ||
6983                FD->getType().isObjCGCStrong()))
6984      Record->setHasObjectMember(true);
6985    else if (Context.getAsArrayType(FD->getType())) {
6986      QualType BaseType = Context.getBaseElementType(FD->getType());
6987      if (Record && BaseType->isRecordType() &&
6988          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6989        Record->setHasObjectMember(true);
6990    }
6991    // Keep track of the number of named members.
6992    if (FD->getIdentifier())
6993      ++NumNamedMembers;
6994  }
6995
6996  // Okay, we successfully defined 'Record'.
6997  if (Record) {
6998    bool Completed = false;
6999    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7000      if (!CXXRecord->isInvalidDecl()) {
7001        // Set access bits correctly on the directly-declared conversions.
7002        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7003        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7004             I != E; ++I)
7005          Convs->setAccess(I, (*I)->getAccess());
7006
7007        if (!CXXRecord->isDependentType()) {
7008          // Add any implicitly-declared members to this class.
7009          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7010
7011          // If we have virtual base classes, we may end up finding multiple
7012          // final overriders for a given virtual function. Check for this
7013          // problem now.
7014          if (CXXRecord->getNumVBases()) {
7015            CXXFinalOverriderMap FinalOverriders;
7016            CXXRecord->getFinalOverriders(FinalOverriders);
7017
7018            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7019                                             MEnd = FinalOverriders.end();
7020                 M != MEnd; ++M) {
7021              for (OverridingMethods::iterator SO = M->second.begin(),
7022                                            SOEnd = M->second.end();
7023                   SO != SOEnd; ++SO) {
7024                assert(SO->second.size() > 0 &&
7025                       "Virtual function without overridding functions?");
7026                if (SO->second.size() == 1)
7027                  continue;
7028
7029                // C++ [class.virtual]p2:
7030                //   In a derived class, if a virtual member function of a base
7031                //   class subobject has more than one final overrider the
7032                //   program is ill-formed.
7033                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7034                  << (NamedDecl *)M->first << Record;
7035                Diag(M->first->getLocation(),
7036                     diag::note_overridden_virtual_function);
7037                for (OverridingMethods::overriding_iterator
7038                          OM = SO->second.begin(),
7039                       OMEnd = SO->second.end();
7040                     OM != OMEnd; ++OM)
7041                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7042                    << (NamedDecl *)M->first << OM->Method->getParent();
7043
7044                Record->setInvalidDecl();
7045              }
7046            }
7047            CXXRecord->completeDefinition(&FinalOverriders);
7048            Completed = true;
7049          }
7050        }
7051      }
7052    }
7053
7054    if (!Completed)
7055      Record->completeDefinition();
7056  } else {
7057    ObjCIvarDecl **ClsFields =
7058      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7059    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7060      ID->setLocEnd(RBrac);
7061      // Add ivar's to class's DeclContext.
7062      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7063        ClsFields[i]->setLexicalDeclContext(ID);
7064        ID->addDecl(ClsFields[i]);
7065      }
7066      // Must enforce the rule that ivars in the base classes may not be
7067      // duplicates.
7068      if (ID->getSuperClass())
7069        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7070    } else if (ObjCImplementationDecl *IMPDecl =
7071                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7072      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7073      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7074        // Ivar declared in @implementation never belongs to the implementation.
7075        // Only it is in implementation's lexical context.
7076        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7077      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7078    } else if (ObjCCategoryDecl *CDecl =
7079                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7080      // case of ivars in class extension; all other cases have been
7081      // reported as errors elsewhere.
7082      // FIXME. Class extension does not have a LocEnd field.
7083      // CDecl->setLocEnd(RBrac);
7084      // Add ivar's to class extension's DeclContext.
7085      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7086        ClsFields[i]->setLexicalDeclContext(CDecl);
7087        CDecl->addDecl(ClsFields[i]);
7088      }
7089    }
7090  }
7091
7092  if (Attr)
7093    ProcessDeclAttributeList(S, Record, Attr);
7094
7095  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7096  // set the visibility of this record.
7097  if (Record && !Record->getDeclContext()->isRecord())
7098    AddPushedVisibilityAttribute(Record);
7099}
7100
7101/// \brief Determine whether the given integral value is representable within
7102/// the given type T.
7103static bool isRepresentableIntegerValue(ASTContext &Context,
7104                                        llvm::APSInt &Value,
7105                                        QualType T) {
7106  assert(T->isIntegralType(Context) && "Integral type required!");
7107  unsigned BitWidth = Context.getIntWidth(T);
7108
7109  if (Value.isUnsigned() || Value.isNonNegative()) {
7110    if (T->isSignedIntegerType())
7111      --BitWidth;
7112    return Value.getActiveBits() <= BitWidth;
7113  }
7114  return Value.getMinSignedBits() <= BitWidth;
7115}
7116
7117// \brief Given an integral type, return the next larger integral type
7118// (or a NULL type of no such type exists).
7119static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7120  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7121  // enum checking below.
7122  assert(T->isIntegralType(Context) && "Integral type required!");
7123  const unsigned NumTypes = 4;
7124  QualType SignedIntegralTypes[NumTypes] = {
7125    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7126  };
7127  QualType UnsignedIntegralTypes[NumTypes] = {
7128    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7129    Context.UnsignedLongLongTy
7130  };
7131
7132  unsigned BitWidth = Context.getTypeSize(T);
7133  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7134                                            : UnsignedIntegralTypes;
7135  for (unsigned I = 0; I != NumTypes; ++I)
7136    if (Context.getTypeSize(Types[I]) > BitWidth)
7137      return Types[I];
7138
7139  return QualType();
7140}
7141
7142EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7143                                          EnumConstantDecl *LastEnumConst,
7144                                          SourceLocation IdLoc,
7145                                          IdentifierInfo *Id,
7146                                          Expr *Val) {
7147  unsigned IntWidth = Context.Target.getIntWidth();
7148  llvm::APSInt EnumVal(IntWidth);
7149  QualType EltTy;
7150  if (Val) {
7151    if (Enum->isDependentType() || Val->isTypeDependent())
7152      EltTy = Context.DependentTy;
7153    else {
7154      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7155      SourceLocation ExpLoc;
7156      if (!Val->isValueDependent() &&
7157          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7158        Val = 0;
7159      } else {
7160        if (!getLangOptions().CPlusPlus) {
7161          // C99 6.7.2.2p2:
7162          //   The expression that defines the value of an enumeration constant
7163          //   shall be an integer constant expression that has a value
7164          //   representable as an int.
7165
7166          // Complain if the value is not representable in an int.
7167          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7168            Diag(IdLoc, diag::ext_enum_value_not_int)
7169              << EnumVal.toString(10) << Val->getSourceRange()
7170              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7171          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7172            // Force the type of the expression to 'int'.
7173            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7174          }
7175        }
7176
7177        if (Enum->isFixed()) {
7178          EltTy = Enum->getIntegerType();
7179
7180          // C++0x [dcl.enum]p5:
7181          //   ... if the initializing value of an enumerator cannot be
7182          //   represented by the underlying type, the program is ill-formed.
7183          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7184            if (getLangOptions().Microsoft) {
7185              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7186              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7187            } else
7188              Diag(IdLoc, diag::err_enumerator_too_large)
7189                << EltTy;
7190          } else
7191            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7192        }
7193        else {
7194          // C++0x [dcl.enum]p5:
7195          //   If the underlying type is not fixed, the type of each enumerator
7196          //   is the type of its initializing value:
7197          //     - If an initializer is specified for an enumerator, the
7198          //       initializing value has the same type as the expression.
7199          EltTy = Val->getType();
7200        }
7201      }
7202    }
7203  }
7204
7205  if (!Val) {
7206    if (Enum->isDependentType())
7207      EltTy = Context.DependentTy;
7208    else if (!LastEnumConst) {
7209      // C++0x [dcl.enum]p5:
7210      //   If the underlying type is not fixed, the type of each enumerator
7211      //   is the type of its initializing value:
7212      //     - If no initializer is specified for the first enumerator, the
7213      //       initializing value has an unspecified integral type.
7214      //
7215      // GCC uses 'int' for its unspecified integral type, as does
7216      // C99 6.7.2.2p3.
7217      if (Enum->isFixed()) {
7218        EltTy = Enum->getIntegerType();
7219      }
7220      else {
7221        EltTy = Context.IntTy;
7222      }
7223    } else {
7224      // Assign the last value + 1.
7225      EnumVal = LastEnumConst->getInitVal();
7226      ++EnumVal;
7227      EltTy = LastEnumConst->getType();
7228
7229      // Check for overflow on increment.
7230      if (EnumVal < LastEnumConst->getInitVal()) {
7231        // C++0x [dcl.enum]p5:
7232        //   If the underlying type is not fixed, the type of each enumerator
7233        //   is the type of its initializing value:
7234        //
7235        //     - Otherwise the type of the initializing value is the same as
7236        //       the type of the initializing value of the preceding enumerator
7237        //       unless the incremented value is not representable in that type,
7238        //       in which case the type is an unspecified integral type
7239        //       sufficient to contain the incremented value. If no such type
7240        //       exists, the program is ill-formed.
7241        QualType T = getNextLargerIntegralType(Context, EltTy);
7242        if (T.isNull() || Enum->isFixed()) {
7243          // There is no integral type larger enough to represent this
7244          // value. Complain, then allow the value to wrap around.
7245          EnumVal = LastEnumConst->getInitVal();
7246          EnumVal.zext(EnumVal.getBitWidth() * 2);
7247          ++EnumVal;
7248          if (Enum->isFixed())
7249            // When the underlying type is fixed, this is ill-formed.
7250            Diag(IdLoc, diag::err_enumerator_wrapped)
7251              << EnumVal.toString(10)
7252              << EltTy;
7253          else
7254            Diag(IdLoc, diag::warn_enumerator_too_large)
7255              << EnumVal.toString(10);
7256        } else {
7257          EltTy = T;
7258        }
7259
7260        // Retrieve the last enumerator's value, extent that type to the
7261        // type that is supposed to be large enough to represent the incremented
7262        // value, then increment.
7263        EnumVal = LastEnumConst->getInitVal();
7264        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7265        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7266        ++EnumVal;
7267
7268        // If we're not in C++, diagnose the overflow of enumerator values,
7269        // which in C99 means that the enumerator value is not representable in
7270        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7271        // permits enumerator values that are representable in some larger
7272        // integral type.
7273        if (!getLangOptions().CPlusPlus && !T.isNull())
7274          Diag(IdLoc, diag::warn_enum_value_overflow);
7275      } else if (!getLangOptions().CPlusPlus &&
7276                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7277        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7278        Diag(IdLoc, diag::ext_enum_value_not_int)
7279          << EnumVal.toString(10) << 1;
7280      }
7281    }
7282  }
7283
7284  if (!EltTy->isDependentType()) {
7285    // Make the enumerator value match the signedness and size of the
7286    // enumerator's type.
7287    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7288    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7289  }
7290
7291  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7292                                  Val, EnumVal);
7293}
7294
7295
7296Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7297                              SourceLocation IdLoc, IdentifierInfo *Id,
7298                              AttributeList *Attr,
7299                              SourceLocation EqualLoc, ExprTy *val) {
7300  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7301  EnumConstantDecl *LastEnumConst =
7302    cast_or_null<EnumConstantDecl>(lastEnumConst);
7303  Expr *Val = static_cast<Expr*>(val);
7304
7305  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7306  // we find one that is.
7307  S = getNonFieldDeclScope(S);
7308
7309  // Verify that there isn't already something declared with this name in this
7310  // scope.
7311  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7312                                         ForRedeclaration);
7313  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7314    // Maybe we will complain about the shadowed template parameter.
7315    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7316    // Just pretend that we didn't see the previous declaration.
7317    PrevDecl = 0;
7318  }
7319
7320  if (PrevDecl) {
7321    // When in C++, we may get a TagDecl with the same name; in this case the
7322    // enum constant will 'hide' the tag.
7323    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7324           "Received TagDecl when not in C++!");
7325    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7326      if (isa<EnumConstantDecl>(PrevDecl))
7327        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7328      else
7329        Diag(IdLoc, diag::err_redefinition) << Id;
7330      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7331      return 0;
7332    }
7333  }
7334
7335  // C++ [class.mem]p13:
7336  //   If T is the name of a class, then each of the following shall have a
7337  //   name different from T:
7338  //     - every enumerator of every member of class T that is an enumerated
7339  //       type
7340  if (CXXRecordDecl *Record
7341                      = dyn_cast<CXXRecordDecl>(
7342                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7343    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7344      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7345
7346  EnumConstantDecl *New =
7347    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7348
7349  if (New) {
7350    // Process attributes.
7351    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7352
7353    // Register this decl in the current scope stack.
7354    New->setAccess(TheEnumDecl->getAccess());
7355    PushOnScopeChains(New, S);
7356  }
7357
7358  return New;
7359}
7360
7361void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7362                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7363                         Decl **Elements, unsigned NumElements,
7364                         Scope *S, AttributeList *Attr) {
7365  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7366  QualType EnumType = Context.getTypeDeclType(Enum);
7367
7368  if (Attr)
7369    ProcessDeclAttributeList(S, Enum, Attr);
7370
7371  if (Enum->isDependentType()) {
7372    for (unsigned i = 0; i != NumElements; ++i) {
7373      EnumConstantDecl *ECD =
7374        cast_or_null<EnumConstantDecl>(Elements[i]);
7375      if (!ECD) continue;
7376
7377      ECD->setType(EnumType);
7378    }
7379
7380    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7381    return;
7382  }
7383
7384  // TODO: If the result value doesn't fit in an int, it must be a long or long
7385  // long value.  ISO C does not support this, but GCC does as an extension,
7386  // emit a warning.
7387  unsigned IntWidth = Context.Target.getIntWidth();
7388  unsigned CharWidth = Context.Target.getCharWidth();
7389  unsigned ShortWidth = Context.Target.getShortWidth();
7390
7391  // Verify that all the values are okay, compute the size of the values, and
7392  // reverse the list.
7393  unsigned NumNegativeBits = 0;
7394  unsigned NumPositiveBits = 0;
7395
7396  // Keep track of whether all elements have type int.
7397  bool AllElementsInt = true;
7398
7399  for (unsigned i = 0; i != NumElements; ++i) {
7400    EnumConstantDecl *ECD =
7401      cast_or_null<EnumConstantDecl>(Elements[i]);
7402    if (!ECD) continue;  // Already issued a diagnostic.
7403
7404    const llvm::APSInt &InitVal = ECD->getInitVal();
7405
7406    // Keep track of the size of positive and negative values.
7407    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7408      NumPositiveBits = std::max(NumPositiveBits,
7409                                 (unsigned)InitVal.getActiveBits());
7410    else
7411      NumNegativeBits = std::max(NumNegativeBits,
7412                                 (unsigned)InitVal.getMinSignedBits());
7413
7414    // Keep track of whether every enum element has type int (very commmon).
7415    if (AllElementsInt)
7416      AllElementsInt = ECD->getType() == Context.IntTy;
7417  }
7418
7419  // Figure out the type that should be used for this enum.
7420  QualType BestType;
7421  unsigned BestWidth;
7422
7423  // C++0x N3000 [conv.prom]p3:
7424  //   An rvalue of an unscoped enumeration type whose underlying
7425  //   type is not fixed can be converted to an rvalue of the first
7426  //   of the following types that can represent all the values of
7427  //   the enumeration: int, unsigned int, long int, unsigned long
7428  //   int, long long int, or unsigned long long int.
7429  // C99 6.4.4.3p2:
7430  //   An identifier declared as an enumeration constant has type int.
7431  // The C99 rule is modified by a gcc extension
7432  QualType BestPromotionType;
7433
7434  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7435  // -fshort-enums is the equivalent to specifying the packed attribute on all
7436  // enum definitions.
7437  if (LangOpts.ShortEnums)
7438    Packed = true;
7439
7440  if (Enum->isFixed()) {
7441    BestType = BestPromotionType = Enum->getIntegerType();
7442    // We don't need to set BestWidth, because BestType is going to be the type
7443    // of the enumerators, but we do anyway because otherwise some compilers
7444    // warn that it might be used uninitialized.
7445    BestWidth = CharWidth;
7446  }
7447  else if (NumNegativeBits) {
7448    // If there is a negative value, figure out the smallest integer type (of
7449    // int/long/longlong) that fits.
7450    // If it's packed, check also if it fits a char or a short.
7451    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7452      BestType = Context.SignedCharTy;
7453      BestWidth = CharWidth;
7454    } else if (Packed && NumNegativeBits <= ShortWidth &&
7455               NumPositiveBits < ShortWidth) {
7456      BestType = Context.ShortTy;
7457      BestWidth = ShortWidth;
7458    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7459      BestType = Context.IntTy;
7460      BestWidth = IntWidth;
7461    } else {
7462      BestWidth = Context.Target.getLongWidth();
7463
7464      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7465        BestType = Context.LongTy;
7466      } else {
7467        BestWidth = Context.Target.getLongLongWidth();
7468
7469        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7470          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7471        BestType = Context.LongLongTy;
7472      }
7473    }
7474    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7475  } else {
7476    // If there is no negative value, figure out the smallest type that fits
7477    // all of the enumerator values.
7478    // If it's packed, check also if it fits a char or a short.
7479    if (Packed && NumPositiveBits <= CharWidth) {
7480      BestType = Context.UnsignedCharTy;
7481      BestPromotionType = Context.IntTy;
7482      BestWidth = CharWidth;
7483    } else if (Packed && NumPositiveBits <= ShortWidth) {
7484      BestType = Context.UnsignedShortTy;
7485      BestPromotionType = Context.IntTy;
7486      BestWidth = ShortWidth;
7487    } else if (NumPositiveBits <= IntWidth) {
7488      BestType = Context.UnsignedIntTy;
7489      BestWidth = IntWidth;
7490      BestPromotionType
7491        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7492                           ? Context.UnsignedIntTy : Context.IntTy;
7493    } else if (NumPositiveBits <=
7494               (BestWidth = Context.Target.getLongWidth())) {
7495      BestType = Context.UnsignedLongTy;
7496      BestPromotionType
7497        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7498                           ? Context.UnsignedLongTy : Context.LongTy;
7499    } else {
7500      BestWidth = Context.Target.getLongLongWidth();
7501      assert(NumPositiveBits <= BestWidth &&
7502             "How could an initializer get larger than ULL?");
7503      BestType = Context.UnsignedLongLongTy;
7504      BestPromotionType
7505        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7506                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7507    }
7508  }
7509
7510  // Loop over all of the enumerator constants, changing their types to match
7511  // the type of the enum if needed.
7512  for (unsigned i = 0; i != NumElements; ++i) {
7513    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7514    if (!ECD) continue;  // Already issued a diagnostic.
7515
7516    // Standard C says the enumerators have int type, but we allow, as an
7517    // extension, the enumerators to be larger than int size.  If each
7518    // enumerator value fits in an int, type it as an int, otherwise type it the
7519    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7520    // that X has type 'int', not 'unsigned'.
7521
7522    // Determine whether the value fits into an int.
7523    llvm::APSInt InitVal = ECD->getInitVal();
7524
7525    // If it fits into an integer type, force it.  Otherwise force it to match
7526    // the enum decl type.
7527    QualType NewTy;
7528    unsigned NewWidth;
7529    bool NewSign;
7530    if (!getLangOptions().CPlusPlus &&
7531        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7532      NewTy = Context.IntTy;
7533      NewWidth = IntWidth;
7534      NewSign = true;
7535    } else if (ECD->getType() == BestType) {
7536      // Already the right type!
7537      if (getLangOptions().CPlusPlus)
7538        // C++ [dcl.enum]p4: Following the closing brace of an
7539        // enum-specifier, each enumerator has the type of its
7540        // enumeration.
7541        ECD->setType(EnumType);
7542      continue;
7543    } else {
7544      NewTy = BestType;
7545      NewWidth = BestWidth;
7546      NewSign = BestType->isSignedIntegerType();
7547    }
7548
7549    // Adjust the APSInt value.
7550    InitVal.extOrTrunc(NewWidth);
7551    InitVal.setIsSigned(NewSign);
7552    ECD->setInitVal(InitVal);
7553
7554    // Adjust the Expr initializer and type.
7555    if (ECD->getInitExpr())
7556      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7557                                                CK_IntegralCast,
7558                                                ECD->getInitExpr(),
7559                                                /*base paths*/ 0,
7560                                                VK_RValue));
7561    if (getLangOptions().CPlusPlus)
7562      // C++ [dcl.enum]p4: Following the closing brace of an
7563      // enum-specifier, each enumerator has the type of its
7564      // enumeration.
7565      ECD->setType(EnumType);
7566    else
7567      ECD->setType(NewTy);
7568  }
7569
7570  Enum->completeDefinition(BestType, BestPromotionType,
7571                           NumPositiveBits, NumNegativeBits);
7572}
7573
7574Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7575  StringLiteral *AsmString = cast<StringLiteral>(expr);
7576
7577  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7578                                                   Loc, AsmString);
7579  CurContext->addDecl(New);
7580  return New;
7581}
7582
7583void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7584                             SourceLocation PragmaLoc,
7585                             SourceLocation NameLoc) {
7586  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7587
7588  if (PrevDecl) {
7589    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7590  } else {
7591    (void)WeakUndeclaredIdentifiers.insert(
7592      std::pair<IdentifierInfo*,WeakInfo>
7593        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7594  }
7595}
7596
7597void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7598                                IdentifierInfo* AliasName,
7599                                SourceLocation PragmaLoc,
7600                                SourceLocation NameLoc,
7601                                SourceLocation AliasNameLoc) {
7602  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7603                                    LookupOrdinaryName);
7604  WeakInfo W = WeakInfo(Name, NameLoc);
7605
7606  if (PrevDecl) {
7607    if (!PrevDecl->hasAttr<AliasAttr>())
7608      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7609        DeclApplyPragmaWeak(TUScope, ND, W);
7610  } else {
7611    (void)WeakUndeclaredIdentifiers.insert(
7612      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7613  }
7614}
7615