SemaDecl.cpp revision 9f55983d966bbf3e6916b5cf5b35acfab2944887
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692
693        // Update the name, so that the caller has the new name.
694        Name = Corrected.getCorrectionAsIdentifierInfo();
695
696        // Typo correction corrected to a keyword.
697        if (Corrected.isKeyword())
698          return Corrected.getCorrectionAsIdentifierInfo();
699
700        // Also update the LookupResult...
701        // FIXME: This should probably go away at some point
702        Result.clear();
703        Result.setLookupName(Corrected.getCorrection());
704        if (FirstDecl) {
705          Result.addDecl(FirstDecl);
706          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707            << CorrectedQuotedStr;
708        }
709
710        // If we found an Objective-C instance variable, let
711        // LookupInObjCMethod build the appropriate expression to
712        // reference the ivar.
713        // FIXME: This is a gross hack.
714        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715          Result.clear();
716          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717          return E;
718        }
719
720        goto Corrected;
721      }
722    }
723
724    // We failed to correct; just fall through and let the parser deal with it.
725    Result.suppressDiagnostics();
726    return NameClassification::Unknown();
727
728  case LookupResult::NotFoundInCurrentInstantiation: {
729    // We performed name lookup into the current instantiation, and there were
730    // dependent bases, so we treat this result the same way as any other
731    // dependent nested-name-specifier.
732
733    // C++ [temp.res]p2:
734    //   A name used in a template declaration or definition and that is
735    //   dependent on a template-parameter is assumed not to name a type
736    //   unless the applicable name lookup finds a type name or the name is
737    //   qualified by the keyword typename.
738    //
739    // FIXME: If the next token is '<', we might want to ask the parser to
740    // perform some heroics to see if we actually have a
741    // template-argument-list, which would indicate a missing 'template'
742    // keyword here.
743    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744                                      NameInfo, IsAddressOfOperand,
745                                      /*TemplateArgs=*/0);
746  }
747
748  case LookupResult::Found:
749  case LookupResult::FoundOverloaded:
750  case LookupResult::FoundUnresolvedValue:
751    break;
752
753  case LookupResult::Ambiguous:
754    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755        hasAnyAcceptableTemplateNames(Result)) {
756      // C++ [temp.local]p3:
757      //   A lookup that finds an injected-class-name (10.2) can result in an
758      //   ambiguity in certain cases (for example, if it is found in more than
759      //   one base class). If all of the injected-class-names that are found
760      //   refer to specializations of the same class template, and if the name
761      //   is followed by a template-argument-list, the reference refers to the
762      //   class template itself and not a specialization thereof, and is not
763      //   ambiguous.
764      //
765      // This filtering can make an ambiguous result into an unambiguous one,
766      // so try again after filtering out template names.
767      FilterAcceptableTemplateNames(Result);
768      if (!Result.isAmbiguous()) {
769        IsFilteredTemplateName = true;
770        break;
771      }
772    }
773
774    // Diagnose the ambiguity and return an error.
775    return NameClassification::Error();
776  }
777
778  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780    // C++ [temp.names]p3:
781    //   After name lookup (3.4) finds that a name is a template-name or that
782    //   an operator-function-id or a literal- operator-id refers to a set of
783    //   overloaded functions any member of which is a function template if
784    //   this is followed by a <, the < is always taken as the delimiter of a
785    //   template-argument-list and never as the less-than operator.
786    if (!IsFilteredTemplateName)
787      FilterAcceptableTemplateNames(Result);
788
789    if (!Result.empty()) {
790      bool IsFunctionTemplate;
791      TemplateName Template;
792      if (Result.end() - Result.begin() > 1) {
793        IsFunctionTemplate = true;
794        Template = Context.getOverloadedTemplateName(Result.begin(),
795                                                     Result.end());
796      } else {
797        TemplateDecl *TD
798          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800
801        if (SS.isSet() && !SS.isInvalid())
802          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803                                                    /*TemplateKeyword=*/false,
804                                                      TD);
805        else
806          Template = TemplateName(TD);
807      }
808
809      if (IsFunctionTemplate) {
810        // Function templates always go through overload resolution, at which
811        // point we'll perform the various checks (e.g., accessibility) we need
812        // to based on which function we selected.
813        Result.suppressDiagnostics();
814
815        return NameClassification::FunctionTemplate(Template);
816      }
817
818      return NameClassification::TypeTemplate(Template);
819    }
820  }
821
822  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824    DiagnoseUseOfDecl(Type, NameLoc);
825    QualType T = Context.getTypeDeclType(Type);
826    if (SS.isNotEmpty())
827      return buildNestedType(*this, SS, T, NameLoc);
828    return ParsedType::make(T);
829  }
830
831  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832  if (!Class) {
833    // FIXME: It's unfortunate that we don't have a Type node for handling this.
834    if (ObjCCompatibleAliasDecl *Alias
835                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836      Class = Alias->getClassInterface();
837  }
838
839  if (Class) {
840    DiagnoseUseOfDecl(Class, NameLoc);
841
842    if (NextToken.is(tok::period)) {
843      // Interface. <something> is parsed as a property reference expression.
844      // Just return "unknown" as a fall-through for now.
845      Result.suppressDiagnostics();
846      return NameClassification::Unknown();
847    }
848
849    QualType T = Context.getObjCInterfaceType(Class);
850    return ParsedType::make(T);
851  }
852
853  // We can have a type template here if we're classifying a template argument.
854  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855    return NameClassification::TypeTemplate(
856        TemplateName(cast<TemplateDecl>(FirstDecl)));
857
858  // Check for a tag type hidden by a non-type decl in a few cases where it
859  // seems likely a type is wanted instead of the non-type that was found.
860  if (!getLangOpts().ObjC1) {
861    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862    if ((NextToken.is(tok::identifier) ||
863         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866      DiagnoseUseOfDecl(Type, NameLoc);
867      QualType T = Context.getTypeDeclType(Type);
868      if (SS.isNotEmpty())
869        return buildNestedType(*this, SS, T, NameLoc);
870      return ParsedType::make(T);
871    }
872  }
873
874  if (FirstDecl->isCXXClassMember())
875    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
876
877  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
878  return BuildDeclarationNameExpr(SS, Result, ADL);
879}
880
881// Determines the context to return to after temporarily entering a
882// context.  This depends in an unnecessarily complicated way on the
883// exact ordering of callbacks from the parser.
884DeclContext *Sema::getContainingDC(DeclContext *DC) {
885
886  // Functions defined inline within classes aren't parsed until we've
887  // finished parsing the top-level class, so the top-level class is
888  // the context we'll need to return to.
889  if (isa<FunctionDecl>(DC)) {
890    DC = DC->getLexicalParent();
891
892    // A function not defined within a class will always return to its
893    // lexical context.
894    if (!isa<CXXRecordDecl>(DC))
895      return DC;
896
897    // A C++ inline method/friend is parsed *after* the topmost class
898    // it was declared in is fully parsed ("complete");  the topmost
899    // class is the context we need to return to.
900    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
901      DC = RD;
902
903    // Return the declaration context of the topmost class the inline method is
904    // declared in.
905    return DC;
906  }
907
908  return DC->getLexicalParent();
909}
910
911void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
912  assert(getContainingDC(DC) == CurContext &&
913      "The next DeclContext should be lexically contained in the current one.");
914  CurContext = DC;
915  S->setEntity(DC);
916}
917
918void Sema::PopDeclContext() {
919  assert(CurContext && "DeclContext imbalance!");
920
921  CurContext = getContainingDC(CurContext);
922  assert(CurContext && "Popped translation unit!");
923}
924
925/// EnterDeclaratorContext - Used when we must lookup names in the context
926/// of a declarator's nested name specifier.
927///
928void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
929  // C++0x [basic.lookup.unqual]p13:
930  //   A name used in the definition of a static data member of class
931  //   X (after the qualified-id of the static member) is looked up as
932  //   if the name was used in a member function of X.
933  // C++0x [basic.lookup.unqual]p14:
934  //   If a variable member of a namespace is defined outside of the
935  //   scope of its namespace then any name used in the definition of
936  //   the variable member (after the declarator-id) is looked up as
937  //   if the definition of the variable member occurred in its
938  //   namespace.
939  // Both of these imply that we should push a scope whose context
940  // is the semantic context of the declaration.  We can't use
941  // PushDeclContext here because that context is not necessarily
942  // lexically contained in the current context.  Fortunately,
943  // the containing scope should have the appropriate information.
944
945  assert(!S->getEntity() && "scope already has entity");
946
947#ifndef NDEBUG
948  Scope *Ancestor = S->getParent();
949  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
951#endif
952
953  CurContext = DC;
954  S->setEntity(DC);
955}
956
957void Sema::ExitDeclaratorContext(Scope *S) {
958  assert(S->getEntity() == CurContext && "Context imbalance!");
959
960  // Switch back to the lexical context.  The safety of this is
961  // enforced by an assert in EnterDeclaratorContext.
962  Scope *Ancestor = S->getParent();
963  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
964  CurContext = (DeclContext*) Ancestor->getEntity();
965
966  // We don't need to do anything with the scope, which is going to
967  // disappear.
968}
969
970
971void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
972  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
973  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
974    // We assume that the caller has already called
975    // ActOnReenterTemplateScope
976    FD = TFD->getTemplatedDecl();
977  }
978  if (!FD)
979    return;
980
981  // Same implementation as PushDeclContext, but enters the context
982  // from the lexical parent, rather than the top-level class.
983  assert(CurContext == FD->getLexicalParent() &&
984    "The next DeclContext should be lexically contained in the current one.");
985  CurContext = FD;
986  S->setEntity(CurContext);
987
988  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
989    ParmVarDecl *Param = FD->getParamDecl(P);
990    // If the parameter has an identifier, then add it to the scope
991    if (Param->getIdentifier()) {
992      S->AddDecl(Param);
993      IdResolver.AddDecl(Param);
994    }
995  }
996}
997
998
999void Sema::ActOnExitFunctionContext() {
1000  // Same implementation as PopDeclContext, but returns to the lexical parent,
1001  // rather than the top-level class.
1002  assert(CurContext && "DeclContext imbalance!");
1003  CurContext = CurContext->getLexicalParent();
1004  assert(CurContext && "Popped translation unit!");
1005}
1006
1007
1008/// \brief Determine whether we allow overloading of the function
1009/// PrevDecl with another declaration.
1010///
1011/// This routine determines whether overloading is possible, not
1012/// whether some new function is actually an overload. It will return
1013/// true in C++ (where we can always provide overloads) or, as an
1014/// extension, in C when the previous function is already an
1015/// overloaded function declaration or has the "overloadable"
1016/// attribute.
1017static bool AllowOverloadingOfFunction(LookupResult &Previous,
1018                                       ASTContext &Context) {
1019  if (Context.getLangOpts().CPlusPlus)
1020    return true;
1021
1022  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1023    return true;
1024
1025  return (Previous.getResultKind() == LookupResult::Found
1026          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1027}
1028
1029/// Add this decl to the scope shadowed decl chains.
1030void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1031  // Move up the scope chain until we find the nearest enclosing
1032  // non-transparent context. The declaration will be introduced into this
1033  // scope.
1034  while (S->getEntity() &&
1035         ((DeclContext *)S->getEntity())->isTransparentContext())
1036    S = S->getParent();
1037
1038  // Add scoped declarations into their context, so that they can be
1039  // found later. Declarations without a context won't be inserted
1040  // into any context.
1041  if (AddToContext)
1042    CurContext->addDecl(D);
1043
1044  // Out-of-line definitions shouldn't be pushed into scope in C++.
1045  // Out-of-line variable and function definitions shouldn't even in C.
1046  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1047      D->isOutOfLine() &&
1048      !D->getDeclContext()->getRedeclContext()->Equals(
1049        D->getLexicalDeclContext()->getRedeclContext()))
1050    return;
1051
1052  // Template instantiations should also not be pushed into scope.
1053  if (isa<FunctionDecl>(D) &&
1054      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1055    return;
1056
1057  // If this replaces anything in the current scope,
1058  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1059                               IEnd = IdResolver.end();
1060  for (; I != IEnd; ++I) {
1061    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1062      S->RemoveDecl(*I);
1063      IdResolver.RemoveDecl(*I);
1064
1065      // Should only need to replace one decl.
1066      break;
1067    }
1068  }
1069
1070  S->AddDecl(D);
1071
1072  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1073    // Implicitly-generated labels may end up getting generated in an order that
1074    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1075    // the label at the appropriate place in the identifier chain.
1076    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1077      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1078      if (IDC == CurContext) {
1079        if (!S->isDeclScope(*I))
1080          continue;
1081      } else if (IDC->Encloses(CurContext))
1082        break;
1083    }
1084
1085    IdResolver.InsertDeclAfter(I, D);
1086  } else {
1087    IdResolver.AddDecl(D);
1088  }
1089}
1090
1091void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1092  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1093    TUScope->AddDecl(D);
1094}
1095
1096bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1097                         bool ExplicitInstantiationOrSpecialization) {
1098  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1099                                  ExplicitInstantiationOrSpecialization);
1100}
1101
1102Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1103  DeclContext *TargetDC = DC->getPrimaryContext();
1104  do {
1105    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1106      if (ScopeDC->getPrimaryContext() == TargetDC)
1107        return S;
1108  } while ((S = S->getParent()));
1109
1110  return 0;
1111}
1112
1113static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1114                                            DeclContext*,
1115                                            ASTContext&);
1116
1117/// Filters out lookup results that don't fall within the given scope
1118/// as determined by isDeclInScope.
1119void Sema::FilterLookupForScope(LookupResult &R,
1120                                DeclContext *Ctx, Scope *S,
1121                                bool ConsiderLinkage,
1122                                bool ExplicitInstantiationOrSpecialization) {
1123  LookupResult::Filter F = R.makeFilter();
1124  while (F.hasNext()) {
1125    NamedDecl *D = F.next();
1126
1127    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1128      continue;
1129
1130    if (ConsiderLinkage &&
1131        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1132      continue;
1133
1134    F.erase();
1135  }
1136
1137  F.done();
1138}
1139
1140static bool isUsingDecl(NamedDecl *D) {
1141  return isa<UsingShadowDecl>(D) ||
1142         isa<UnresolvedUsingTypenameDecl>(D) ||
1143         isa<UnresolvedUsingValueDecl>(D);
1144}
1145
1146/// Removes using shadow declarations from the lookup results.
1147static void RemoveUsingDecls(LookupResult &R) {
1148  LookupResult::Filter F = R.makeFilter();
1149  while (F.hasNext())
1150    if (isUsingDecl(F.next()))
1151      F.erase();
1152
1153  F.done();
1154}
1155
1156/// \brief Check for this common pattern:
1157/// @code
1158/// class S {
1159///   S(const S&); // DO NOT IMPLEMENT
1160///   void operator=(const S&); // DO NOT IMPLEMENT
1161/// };
1162/// @endcode
1163static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1164  // FIXME: Should check for private access too but access is set after we get
1165  // the decl here.
1166  if (D->doesThisDeclarationHaveABody())
1167    return false;
1168
1169  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1170    return CD->isCopyConstructor();
1171  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1172    return Method->isCopyAssignmentOperator();
1173  return false;
1174}
1175
1176bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1177  assert(D);
1178
1179  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1180    return false;
1181
1182  // Ignore class templates.
1183  if (D->getDeclContext()->isDependentContext() ||
1184      D->getLexicalDeclContext()->isDependentContext())
1185    return false;
1186
1187  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1188    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1189      return false;
1190
1191    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1192      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1193        return false;
1194    } else {
1195      // 'static inline' functions are used in headers; don't warn.
1196      if (FD->getStorageClass() == SC_Static &&
1197          FD->isInlineSpecified())
1198        return false;
1199    }
1200
1201    if (FD->doesThisDeclarationHaveABody() &&
1202        Context.DeclMustBeEmitted(FD))
1203      return false;
1204  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1205    if (!VD->isFileVarDecl() ||
1206        VD->getType().isConstant(Context) ||
1207        Context.DeclMustBeEmitted(VD))
1208      return false;
1209
1210    if (VD->isStaticDataMember() &&
1211        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1212      return false;
1213
1214  } else {
1215    return false;
1216  }
1217
1218  // Only warn for unused decls internal to the translation unit.
1219  if (D->getLinkage() == ExternalLinkage)
1220    return false;
1221
1222  return true;
1223}
1224
1225void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1226  if (!D)
1227    return;
1228
1229  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1230    const FunctionDecl *First = FD->getFirstDeclaration();
1231    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1232      return; // First should already be in the vector.
1233  }
1234
1235  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1236    const VarDecl *First = VD->getFirstDeclaration();
1237    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1238      return; // First should already be in the vector.
1239  }
1240
1241  if (ShouldWarnIfUnusedFileScopedDecl(D))
1242    UnusedFileScopedDecls.push_back(D);
1243}
1244
1245static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1246  if (D->isInvalidDecl())
1247    return false;
1248
1249  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1250    return false;
1251
1252  if (isa<LabelDecl>(D))
1253    return true;
1254
1255  // White-list anything that isn't a local variable.
1256  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1257      !D->getDeclContext()->isFunctionOrMethod())
1258    return false;
1259
1260  // Types of valid local variables should be complete, so this should succeed.
1261  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1262
1263    // White-list anything with an __attribute__((unused)) type.
1264    QualType Ty = VD->getType();
1265
1266    // Only look at the outermost level of typedef.
1267    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1268      if (TT->getDecl()->hasAttr<UnusedAttr>())
1269        return false;
1270    }
1271
1272    // If we failed to complete the type for some reason, or if the type is
1273    // dependent, don't diagnose the variable.
1274    if (Ty->isIncompleteType() || Ty->isDependentType())
1275      return false;
1276
1277    if (const TagType *TT = Ty->getAs<TagType>()) {
1278      const TagDecl *Tag = TT->getDecl();
1279      if (Tag->hasAttr<UnusedAttr>())
1280        return false;
1281
1282      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1283        if (!RD->hasTrivialDestructor())
1284          return false;
1285
1286        if (const Expr *Init = VD->getInit()) {
1287          const CXXConstructExpr *Construct =
1288            dyn_cast<CXXConstructExpr>(Init);
1289          if (Construct && !Construct->isElidable()) {
1290            CXXConstructorDecl *CD = Construct->getConstructor();
1291            if (!CD->isTrivial())
1292              return false;
1293          }
1294        }
1295      }
1296    }
1297
1298    // TODO: __attribute__((unused)) templates?
1299  }
1300
1301  return true;
1302}
1303
1304static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1305                                     FixItHint &Hint) {
1306  if (isa<LabelDecl>(D)) {
1307    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1308                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1309    if (AfterColon.isInvalid())
1310      return;
1311    Hint = FixItHint::CreateRemoval(CharSourceRange::
1312                                    getCharRange(D->getLocStart(), AfterColon));
1313  }
1314  return;
1315}
1316
1317/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1318/// unless they are marked attr(unused).
1319void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1320  FixItHint Hint;
1321  if (!ShouldDiagnoseUnusedDecl(D))
1322    return;
1323
1324  GenerateFixForUnusedDecl(D, Context, Hint);
1325
1326  unsigned DiagID;
1327  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1328    DiagID = diag::warn_unused_exception_param;
1329  else if (isa<LabelDecl>(D))
1330    DiagID = diag::warn_unused_label;
1331  else
1332    DiagID = diag::warn_unused_variable;
1333
1334  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1335}
1336
1337static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1338  // Verify that we have no forward references left.  If so, there was a goto
1339  // or address of a label taken, but no definition of it.  Label fwd
1340  // definitions are indicated with a null substmt.
1341  if (L->getStmt() == 0)
1342    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1343}
1344
1345void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1346  if (S->decl_empty()) return;
1347  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1348         "Scope shouldn't contain decls!");
1349
1350  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1351       I != E; ++I) {
1352    Decl *TmpD = (*I);
1353    assert(TmpD && "This decl didn't get pushed??");
1354
1355    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1356    NamedDecl *D = cast<NamedDecl>(TmpD);
1357
1358    if (!D->getDeclName()) continue;
1359
1360    // Diagnose unused variables in this scope.
1361    if (!S->hasErrorOccurred())
1362      DiagnoseUnusedDecl(D);
1363
1364    // If this was a forward reference to a label, verify it was defined.
1365    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1366      CheckPoppedLabel(LD, *this);
1367
1368    // Remove this name from our lexical scope.
1369    IdResolver.RemoveDecl(D);
1370  }
1371}
1372
1373void Sema::ActOnStartFunctionDeclarator() {
1374  ++InFunctionDeclarator;
1375}
1376
1377void Sema::ActOnEndFunctionDeclarator() {
1378  assert(InFunctionDeclarator);
1379  --InFunctionDeclarator;
1380}
1381
1382/// \brief Look for an Objective-C class in the translation unit.
1383///
1384/// \param Id The name of the Objective-C class we're looking for. If
1385/// typo-correction fixes this name, the Id will be updated
1386/// to the fixed name.
1387///
1388/// \param IdLoc The location of the name in the translation unit.
1389///
1390/// \param DoTypoCorrection If true, this routine will attempt typo correction
1391/// if there is no class with the given name.
1392///
1393/// \returns The declaration of the named Objective-C class, or NULL if the
1394/// class could not be found.
1395ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1396                                              SourceLocation IdLoc,
1397                                              bool DoTypoCorrection) {
1398  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1399  // creation from this context.
1400  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1401
1402  if (!IDecl && DoTypoCorrection) {
1403    // Perform typo correction at the given location, but only if we
1404    // find an Objective-C class name.
1405    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1406    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1407                                       LookupOrdinaryName, TUScope, NULL,
1408                                       Validator)) {
1409      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1410      Diag(IdLoc, diag::err_undef_interface_suggest)
1411        << Id << IDecl->getDeclName()
1412        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1413      Diag(IDecl->getLocation(), diag::note_previous_decl)
1414        << IDecl->getDeclName();
1415
1416      Id = IDecl->getIdentifier();
1417    }
1418  }
1419  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1420  // This routine must always return a class definition, if any.
1421  if (Def && Def->getDefinition())
1422      Def = Def->getDefinition();
1423  return Def;
1424}
1425
1426/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1427/// from S, where a non-field would be declared. This routine copes
1428/// with the difference between C and C++ scoping rules in structs and
1429/// unions. For example, the following code is well-formed in C but
1430/// ill-formed in C++:
1431/// @code
1432/// struct S6 {
1433///   enum { BAR } e;
1434/// };
1435///
1436/// void test_S6() {
1437///   struct S6 a;
1438///   a.e = BAR;
1439/// }
1440/// @endcode
1441/// For the declaration of BAR, this routine will return a different
1442/// scope. The scope S will be the scope of the unnamed enumeration
1443/// within S6. In C++, this routine will return the scope associated
1444/// with S6, because the enumeration's scope is a transparent
1445/// context but structures can contain non-field names. In C, this
1446/// routine will return the translation unit scope, since the
1447/// enumeration's scope is a transparent context and structures cannot
1448/// contain non-field names.
1449Scope *Sema::getNonFieldDeclScope(Scope *S) {
1450  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1451         (S->getEntity() &&
1452          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1453         (S->isClassScope() && !getLangOpts().CPlusPlus))
1454    S = S->getParent();
1455  return S;
1456}
1457
1458/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1459/// file scope.  lazily create a decl for it. ForRedeclaration is true
1460/// if we're creating this built-in in anticipation of redeclaring the
1461/// built-in.
1462NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1463                                     Scope *S, bool ForRedeclaration,
1464                                     SourceLocation Loc) {
1465  Builtin::ID BID = (Builtin::ID)bid;
1466
1467  ASTContext::GetBuiltinTypeError Error;
1468  QualType R = Context.GetBuiltinType(BID, Error);
1469  switch (Error) {
1470  case ASTContext::GE_None:
1471    // Okay
1472    break;
1473
1474  case ASTContext::GE_Missing_stdio:
1475    if (ForRedeclaration)
1476      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1477        << Context.BuiltinInfo.GetName(BID);
1478    return 0;
1479
1480  case ASTContext::GE_Missing_setjmp:
1481    if (ForRedeclaration)
1482      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1483        << Context.BuiltinInfo.GetName(BID);
1484    return 0;
1485
1486  case ASTContext::GE_Missing_ucontext:
1487    if (ForRedeclaration)
1488      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1489        << Context.BuiltinInfo.GetName(BID);
1490    return 0;
1491  }
1492
1493  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1494    Diag(Loc, diag::ext_implicit_lib_function_decl)
1495      << Context.BuiltinInfo.GetName(BID)
1496      << R;
1497    if (Context.BuiltinInfo.getHeaderName(BID) &&
1498        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1499          != DiagnosticsEngine::Ignored)
1500      Diag(Loc, diag::note_please_include_header)
1501        << Context.BuiltinInfo.getHeaderName(BID)
1502        << Context.BuiltinInfo.GetName(BID);
1503  }
1504
1505  FunctionDecl *New = FunctionDecl::Create(Context,
1506                                           Context.getTranslationUnitDecl(),
1507                                           Loc, Loc, II, R, /*TInfo=*/0,
1508                                           SC_Extern,
1509                                           SC_None, false,
1510                                           /*hasPrototype=*/true);
1511  New->setImplicit();
1512
1513  // Create Decl objects for each parameter, adding them to the
1514  // FunctionDecl.
1515  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1516    SmallVector<ParmVarDecl*, 16> Params;
1517    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1518      ParmVarDecl *parm =
1519        ParmVarDecl::Create(Context, New, SourceLocation(),
1520                            SourceLocation(), 0,
1521                            FT->getArgType(i), /*TInfo=*/0,
1522                            SC_None, SC_None, 0);
1523      parm->setScopeInfo(0, i);
1524      Params.push_back(parm);
1525    }
1526    New->setParams(Params);
1527  }
1528
1529  AddKnownFunctionAttributes(New);
1530
1531  // TUScope is the translation-unit scope to insert this function into.
1532  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1533  // relate Scopes to DeclContexts, and probably eliminate CurContext
1534  // entirely, but we're not there yet.
1535  DeclContext *SavedContext = CurContext;
1536  CurContext = Context.getTranslationUnitDecl();
1537  PushOnScopeChains(New, TUScope);
1538  CurContext = SavedContext;
1539  return New;
1540}
1541
1542bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1543  QualType OldType;
1544  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1545    OldType = OldTypedef->getUnderlyingType();
1546  else
1547    OldType = Context.getTypeDeclType(Old);
1548  QualType NewType = New->getUnderlyingType();
1549
1550  if (NewType->isVariablyModifiedType()) {
1551    // Must not redefine a typedef with a variably-modified type.
1552    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1553    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1554      << Kind << NewType;
1555    if (Old->getLocation().isValid())
1556      Diag(Old->getLocation(), diag::note_previous_definition);
1557    New->setInvalidDecl();
1558    return true;
1559  }
1560
1561  if (OldType != NewType &&
1562      !OldType->isDependentType() &&
1563      !NewType->isDependentType() &&
1564      !Context.hasSameType(OldType, NewType)) {
1565    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1566    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1567      << Kind << NewType << OldType;
1568    if (Old->getLocation().isValid())
1569      Diag(Old->getLocation(), diag::note_previous_definition);
1570    New->setInvalidDecl();
1571    return true;
1572  }
1573  return false;
1574}
1575
1576/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1577/// same name and scope as a previous declaration 'Old'.  Figure out
1578/// how to resolve this situation, merging decls or emitting
1579/// diagnostics as appropriate. If there was an error, set New to be invalid.
1580///
1581void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1582  // If the new decl is known invalid already, don't bother doing any
1583  // merging checks.
1584  if (New->isInvalidDecl()) return;
1585
1586  // Allow multiple definitions for ObjC built-in typedefs.
1587  // FIXME: Verify the underlying types are equivalent!
1588  if (getLangOpts().ObjC1) {
1589    const IdentifierInfo *TypeID = New->getIdentifier();
1590    switch (TypeID->getLength()) {
1591    default: break;
1592    case 2:
1593      {
1594        if (!TypeID->isStr("id"))
1595          break;
1596        QualType T = New->getUnderlyingType();
1597        if (!T->isPointerType())
1598          break;
1599        if (!T->isVoidPointerType()) {
1600          QualType PT = T->getAs<PointerType>()->getPointeeType();
1601          if (!PT->isStructureType())
1602            break;
1603        }
1604        Context.setObjCIdRedefinitionType(T);
1605        // Install the built-in type for 'id', ignoring the current definition.
1606        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1607        return;
1608      }
1609    case 5:
1610      if (!TypeID->isStr("Class"))
1611        break;
1612      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1613      // Install the built-in type for 'Class', ignoring the current definition.
1614      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1615      return;
1616    case 3:
1617      if (!TypeID->isStr("SEL"))
1618        break;
1619      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1620      // Install the built-in type for 'SEL', ignoring the current definition.
1621      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1622      return;
1623    }
1624    // Fall through - the typedef name was not a builtin type.
1625  }
1626
1627  // Verify the old decl was also a type.
1628  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1629  if (!Old) {
1630    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1631      << New->getDeclName();
1632
1633    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1634    if (OldD->getLocation().isValid())
1635      Diag(OldD->getLocation(), diag::note_previous_definition);
1636
1637    return New->setInvalidDecl();
1638  }
1639
1640  // If the old declaration is invalid, just give up here.
1641  if (Old->isInvalidDecl())
1642    return New->setInvalidDecl();
1643
1644  // If the typedef types are not identical, reject them in all languages and
1645  // with any extensions enabled.
1646  if (isIncompatibleTypedef(Old, New))
1647    return;
1648
1649  // The types match.  Link up the redeclaration chain if the old
1650  // declaration was a typedef.
1651  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1652    New->setPreviousDeclaration(Typedef);
1653
1654  if (getLangOpts().MicrosoftExt)
1655    return;
1656
1657  if (getLangOpts().CPlusPlus) {
1658    // C++ [dcl.typedef]p2:
1659    //   In a given non-class scope, a typedef specifier can be used to
1660    //   redefine the name of any type declared in that scope to refer
1661    //   to the type to which it already refers.
1662    if (!isa<CXXRecordDecl>(CurContext))
1663      return;
1664
1665    // C++0x [dcl.typedef]p4:
1666    //   In a given class scope, a typedef specifier can be used to redefine
1667    //   any class-name declared in that scope that is not also a typedef-name
1668    //   to refer to the type to which it already refers.
1669    //
1670    // This wording came in via DR424, which was a correction to the
1671    // wording in DR56, which accidentally banned code like:
1672    //
1673    //   struct S {
1674    //     typedef struct A { } A;
1675    //   };
1676    //
1677    // in the C++03 standard. We implement the C++0x semantics, which
1678    // allow the above but disallow
1679    //
1680    //   struct S {
1681    //     typedef int I;
1682    //     typedef int I;
1683    //   };
1684    //
1685    // since that was the intent of DR56.
1686    if (!isa<TypedefNameDecl>(Old))
1687      return;
1688
1689    Diag(New->getLocation(), diag::err_redefinition)
1690      << New->getDeclName();
1691    Diag(Old->getLocation(), diag::note_previous_definition);
1692    return New->setInvalidDecl();
1693  }
1694
1695  // Modules always permit redefinition of typedefs, as does C11.
1696  if (getLangOpts().Modules || getLangOpts().C11)
1697    return;
1698
1699  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1700  // is normally mapped to an error, but can be controlled with
1701  // -Wtypedef-redefinition.  If either the original or the redefinition is
1702  // in a system header, don't emit this for compatibility with GCC.
1703  if (getDiagnostics().getSuppressSystemWarnings() &&
1704      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1705       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1706    return;
1707
1708  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1709    << New->getDeclName();
1710  Diag(Old->getLocation(), diag::note_previous_definition);
1711  return;
1712}
1713
1714/// DeclhasAttr - returns true if decl Declaration already has the target
1715/// attribute.
1716static bool
1717DeclHasAttr(const Decl *D, const Attr *A) {
1718  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1719  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1720  // responsible for making sure they are consistent.
1721  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1722  if (AA)
1723    return false;
1724
1725  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1726  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1727  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1728    if ((*i)->getKind() == A->getKind()) {
1729      if (Ann) {
1730        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1731          return true;
1732        continue;
1733      }
1734      // FIXME: Don't hardcode this check
1735      if (OA && isa<OwnershipAttr>(*i))
1736        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1737      return true;
1738    }
1739
1740  return false;
1741}
1742
1743bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1744  InheritableAttr *NewAttr = NULL;
1745  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1746    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1747                                    AA->getIntroduced(), AA->getDeprecated(),
1748                                    AA->getObsoleted(), AA->getUnavailable(),
1749                                    AA->getMessage());
1750  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1751    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1752  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1753    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1754  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1755    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1756  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1757    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1758                              FA->getFormatIdx(), FA->getFirstArg());
1759  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1760    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1761  else if (!DeclHasAttr(D, Attr))
1762    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1763
1764  if (NewAttr) {
1765    NewAttr->setInherited(true);
1766    D->addAttr(NewAttr);
1767    return true;
1768  }
1769
1770  return false;
1771}
1772
1773static const Decl *getDefinition(const Decl *D) {
1774  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1775    return TD->getDefinition();
1776  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1777    return VD->getDefinition();
1778  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1779    const FunctionDecl* Def;
1780    if (FD->hasBody(Def))
1781      return Def;
1782  }
1783  return NULL;
1784}
1785
1786static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1787  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1788       I != E; ++I) {
1789    Attr *Attribute = *I;
1790    if (Attribute->getKind() == Kind)
1791      return true;
1792  }
1793  return false;
1794}
1795
1796/// checkNewAttributesAfterDef - If we already have a definition, check that
1797/// there are no new attributes in this declaration.
1798static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1799  if (!New->hasAttrs())
1800    return;
1801
1802  const Decl *Def = getDefinition(Old);
1803  if (!Def || Def == New)
1804    return;
1805
1806  AttrVec &NewAttributes = New->getAttrs();
1807  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1808    const Attr *NewAttribute = NewAttributes[I];
1809    if (hasAttribute(Def, NewAttribute->getKind())) {
1810      ++I;
1811      continue; // regular attr merging will take care of validating this.
1812    }
1813    S.Diag(NewAttribute->getLocation(),
1814           diag::warn_attribute_precede_definition);
1815    S.Diag(Def->getLocation(), diag::note_previous_definition);
1816    NewAttributes.erase(NewAttributes.begin() + I);
1817    --E;
1818  }
1819}
1820
1821/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1822void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1823                               bool MergeDeprecation) {
1824  // attributes declared post-definition are currently ignored
1825  checkNewAttributesAfterDef(*this, New, Old);
1826
1827  if (!Old->hasAttrs())
1828    return;
1829
1830  bool foundAny = New->hasAttrs();
1831
1832  // Ensure that any moving of objects within the allocated map is done before
1833  // we process them.
1834  if (!foundAny) New->setAttrs(AttrVec());
1835
1836  for (specific_attr_iterator<InheritableAttr>
1837         i = Old->specific_attr_begin<InheritableAttr>(),
1838         e = Old->specific_attr_end<InheritableAttr>();
1839       i != e; ++i) {
1840    // Ignore deprecated/unavailable/availability attributes if requested.
1841    if (!MergeDeprecation &&
1842        (isa<DeprecatedAttr>(*i) ||
1843         isa<UnavailableAttr>(*i) ||
1844         isa<AvailabilityAttr>(*i)))
1845      continue;
1846
1847    if (mergeDeclAttribute(New, *i))
1848      foundAny = true;
1849  }
1850
1851  if (!foundAny) New->dropAttrs();
1852}
1853
1854/// mergeParamDeclAttributes - Copy attributes from the old parameter
1855/// to the new one.
1856static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1857                                     const ParmVarDecl *oldDecl,
1858                                     ASTContext &C) {
1859  if (!oldDecl->hasAttrs())
1860    return;
1861
1862  bool foundAny = newDecl->hasAttrs();
1863
1864  // Ensure that any moving of objects within the allocated map is
1865  // done before we process them.
1866  if (!foundAny) newDecl->setAttrs(AttrVec());
1867
1868  for (specific_attr_iterator<InheritableParamAttr>
1869       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1870       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1871    if (!DeclHasAttr(newDecl, *i)) {
1872      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1873      newAttr->setInherited(true);
1874      newDecl->addAttr(newAttr);
1875      foundAny = true;
1876    }
1877  }
1878
1879  if (!foundAny) newDecl->dropAttrs();
1880}
1881
1882namespace {
1883
1884/// Used in MergeFunctionDecl to keep track of function parameters in
1885/// C.
1886struct GNUCompatibleParamWarning {
1887  ParmVarDecl *OldParm;
1888  ParmVarDecl *NewParm;
1889  QualType PromotedType;
1890};
1891
1892}
1893
1894/// getSpecialMember - get the special member enum for a method.
1895Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1896  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1897    if (Ctor->isDefaultConstructor())
1898      return Sema::CXXDefaultConstructor;
1899
1900    if (Ctor->isCopyConstructor())
1901      return Sema::CXXCopyConstructor;
1902
1903    if (Ctor->isMoveConstructor())
1904      return Sema::CXXMoveConstructor;
1905  } else if (isa<CXXDestructorDecl>(MD)) {
1906    return Sema::CXXDestructor;
1907  } else if (MD->isCopyAssignmentOperator()) {
1908    return Sema::CXXCopyAssignment;
1909  } else if (MD->isMoveAssignmentOperator()) {
1910    return Sema::CXXMoveAssignment;
1911  }
1912
1913  return Sema::CXXInvalid;
1914}
1915
1916/// canRedefineFunction - checks if a function can be redefined. Currently,
1917/// only extern inline functions can be redefined, and even then only in
1918/// GNU89 mode.
1919static bool canRedefineFunction(const FunctionDecl *FD,
1920                                const LangOptions& LangOpts) {
1921  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1922          !LangOpts.CPlusPlus &&
1923          FD->isInlineSpecified() &&
1924          FD->getStorageClass() == SC_Extern);
1925}
1926
1927/// Is the given calling convention the ABI default for the given
1928/// declaration?
1929static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1930  CallingConv ABIDefaultCC;
1931  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1932    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1933  } else {
1934    // Free C function or a static method.
1935    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1936  }
1937  return ABIDefaultCC == CC;
1938}
1939
1940/// MergeFunctionDecl - We just parsed a function 'New' from
1941/// declarator D which has the same name and scope as a previous
1942/// declaration 'Old'.  Figure out how to resolve this situation,
1943/// merging decls or emitting diagnostics as appropriate.
1944///
1945/// In C++, New and Old must be declarations that are not
1946/// overloaded. Use IsOverload to determine whether New and Old are
1947/// overloaded, and to select the Old declaration that New should be
1948/// merged with.
1949///
1950/// Returns true if there was an error, false otherwise.
1951bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1952  // Verify the old decl was also a function.
1953  FunctionDecl *Old = 0;
1954  if (FunctionTemplateDecl *OldFunctionTemplate
1955        = dyn_cast<FunctionTemplateDecl>(OldD))
1956    Old = OldFunctionTemplate->getTemplatedDecl();
1957  else
1958    Old = dyn_cast<FunctionDecl>(OldD);
1959  if (!Old) {
1960    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1961      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1962      Diag(Shadow->getTargetDecl()->getLocation(),
1963           diag::note_using_decl_target);
1964      Diag(Shadow->getUsingDecl()->getLocation(),
1965           diag::note_using_decl) << 0;
1966      return true;
1967    }
1968
1969    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1970      << New->getDeclName();
1971    Diag(OldD->getLocation(), diag::note_previous_definition);
1972    return true;
1973  }
1974
1975  // Determine whether the previous declaration was a definition,
1976  // implicit declaration, or a declaration.
1977  diag::kind PrevDiag;
1978  if (Old->isThisDeclarationADefinition())
1979    PrevDiag = diag::note_previous_definition;
1980  else if (Old->isImplicit())
1981    PrevDiag = diag::note_previous_implicit_declaration;
1982  else
1983    PrevDiag = diag::note_previous_declaration;
1984
1985  QualType OldQType = Context.getCanonicalType(Old->getType());
1986  QualType NewQType = Context.getCanonicalType(New->getType());
1987
1988  // Don't complain about this if we're in GNU89 mode and the old function
1989  // is an extern inline function.
1990  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1991      New->getStorageClass() == SC_Static &&
1992      Old->getStorageClass() != SC_Static &&
1993      !canRedefineFunction(Old, getLangOpts())) {
1994    if (getLangOpts().MicrosoftExt) {
1995      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1996      Diag(Old->getLocation(), PrevDiag);
1997    } else {
1998      Diag(New->getLocation(), diag::err_static_non_static) << New;
1999      Diag(Old->getLocation(), PrevDiag);
2000      return true;
2001    }
2002  }
2003
2004  // If a function is first declared with a calling convention, but is
2005  // later declared or defined without one, the second decl assumes the
2006  // calling convention of the first.
2007  //
2008  // It's OK if a function is first declared without a calling convention,
2009  // but is later declared or defined with the default calling convention.
2010  //
2011  // For the new decl, we have to look at the NON-canonical type to tell the
2012  // difference between a function that really doesn't have a calling
2013  // convention and one that is declared cdecl. That's because in
2014  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2015  // because it is the default calling convention.
2016  //
2017  // Note also that we DO NOT return at this point, because we still have
2018  // other tests to run.
2019  const FunctionType *OldType = cast<FunctionType>(OldQType);
2020  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2021  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2022  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2023  bool RequiresAdjustment = false;
2024  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2025    // Fast path: nothing to do.
2026
2027  // Inherit the CC from the previous declaration if it was specified
2028  // there but not here.
2029  } else if (NewTypeInfo.getCC() == CC_Default) {
2030    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2031    RequiresAdjustment = true;
2032
2033  // Don't complain about mismatches when the default CC is
2034  // effectively the same as the explict one.
2035  } else if (OldTypeInfo.getCC() == CC_Default &&
2036             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2037    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2038    RequiresAdjustment = true;
2039
2040  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2041                                     NewTypeInfo.getCC())) {
2042    // Calling conventions really aren't compatible, so complain.
2043    Diag(New->getLocation(), diag::err_cconv_change)
2044      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2045      << (OldTypeInfo.getCC() == CC_Default)
2046      << (OldTypeInfo.getCC() == CC_Default ? "" :
2047          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2048    Diag(Old->getLocation(), diag::note_previous_declaration);
2049    return true;
2050  }
2051
2052  // FIXME: diagnose the other way around?
2053  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2054    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2055    RequiresAdjustment = true;
2056  }
2057
2058  // Merge regparm attribute.
2059  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2060      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2061    if (NewTypeInfo.getHasRegParm()) {
2062      Diag(New->getLocation(), diag::err_regparm_mismatch)
2063        << NewType->getRegParmType()
2064        << OldType->getRegParmType();
2065      Diag(Old->getLocation(), diag::note_previous_declaration);
2066      return true;
2067    }
2068
2069    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2070    RequiresAdjustment = true;
2071  }
2072
2073  // Merge ns_returns_retained attribute.
2074  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2075    if (NewTypeInfo.getProducesResult()) {
2076      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2077      Diag(Old->getLocation(), diag::note_previous_declaration);
2078      return true;
2079    }
2080
2081    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2082    RequiresAdjustment = true;
2083  }
2084
2085  if (RequiresAdjustment) {
2086    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2087    New->setType(QualType(NewType, 0));
2088    NewQType = Context.getCanonicalType(New->getType());
2089  }
2090
2091  if (getLangOpts().CPlusPlus) {
2092    // (C++98 13.1p2):
2093    //   Certain function declarations cannot be overloaded:
2094    //     -- Function declarations that differ only in the return type
2095    //        cannot be overloaded.
2096    QualType OldReturnType = OldType->getResultType();
2097    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2098    QualType ResQT;
2099    if (OldReturnType != NewReturnType) {
2100      if (NewReturnType->isObjCObjectPointerType()
2101          && OldReturnType->isObjCObjectPointerType())
2102        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2103      if (ResQT.isNull()) {
2104        if (New->isCXXClassMember() && New->isOutOfLine())
2105          Diag(New->getLocation(),
2106               diag::err_member_def_does_not_match_ret_type) << New;
2107        else
2108          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2109        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2110        return true;
2111      }
2112      else
2113        NewQType = ResQT;
2114    }
2115
2116    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2117    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2118    if (OldMethod && NewMethod) {
2119      // Preserve triviality.
2120      NewMethod->setTrivial(OldMethod->isTrivial());
2121
2122      // MSVC allows explicit template specialization at class scope:
2123      // 2 CXMethodDecls referring to the same function will be injected.
2124      // We don't want a redeclartion error.
2125      bool IsClassScopeExplicitSpecialization =
2126                              OldMethod->isFunctionTemplateSpecialization() &&
2127                              NewMethod->isFunctionTemplateSpecialization();
2128      bool isFriend = NewMethod->getFriendObjectKind();
2129
2130      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2131          !IsClassScopeExplicitSpecialization) {
2132        //    -- Member function declarations with the same name and the
2133        //       same parameter types cannot be overloaded if any of them
2134        //       is a static member function declaration.
2135        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2136          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2137          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2138          return true;
2139        }
2140
2141        // C++ [class.mem]p1:
2142        //   [...] A member shall not be declared twice in the
2143        //   member-specification, except that a nested class or member
2144        //   class template can be declared and then later defined.
2145        if (ActiveTemplateInstantiations.empty()) {
2146          unsigned NewDiag;
2147          if (isa<CXXConstructorDecl>(OldMethod))
2148            NewDiag = diag::err_constructor_redeclared;
2149          else if (isa<CXXDestructorDecl>(NewMethod))
2150            NewDiag = diag::err_destructor_redeclared;
2151          else if (isa<CXXConversionDecl>(NewMethod))
2152            NewDiag = diag::err_conv_function_redeclared;
2153          else
2154            NewDiag = diag::err_member_redeclared;
2155
2156          Diag(New->getLocation(), NewDiag);
2157        } else {
2158          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2159            << New << New->getType();
2160        }
2161        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2162
2163      // Complain if this is an explicit declaration of a special
2164      // member that was initially declared implicitly.
2165      //
2166      // As an exception, it's okay to befriend such methods in order
2167      // to permit the implicit constructor/destructor/operator calls.
2168      } else if (OldMethod->isImplicit()) {
2169        if (isFriend) {
2170          NewMethod->setImplicit();
2171        } else {
2172          Diag(NewMethod->getLocation(),
2173               diag::err_definition_of_implicitly_declared_member)
2174            << New << getSpecialMember(OldMethod);
2175          return true;
2176        }
2177      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2178        Diag(NewMethod->getLocation(),
2179             diag::err_definition_of_explicitly_defaulted_member)
2180          << getSpecialMember(OldMethod);
2181        return true;
2182      }
2183    }
2184
2185    // (C++98 8.3.5p3):
2186    //   All declarations for a function shall agree exactly in both the
2187    //   return type and the parameter-type-list.
2188    // We also want to respect all the extended bits except noreturn.
2189
2190    // noreturn should now match unless the old type info didn't have it.
2191    QualType OldQTypeForComparison = OldQType;
2192    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2193      assert(OldQType == QualType(OldType, 0));
2194      const FunctionType *OldTypeForComparison
2195        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2196      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2197      assert(OldQTypeForComparison.isCanonical());
2198    }
2199
2200    if (OldQTypeForComparison == NewQType)
2201      return MergeCompatibleFunctionDecls(New, Old, S);
2202
2203    // Fall through for conflicting redeclarations and redefinitions.
2204  }
2205
2206  // C: Function types need to be compatible, not identical. This handles
2207  // duplicate function decls like "void f(int); void f(enum X);" properly.
2208  if (!getLangOpts().CPlusPlus &&
2209      Context.typesAreCompatible(OldQType, NewQType)) {
2210    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2211    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2212    const FunctionProtoType *OldProto = 0;
2213    if (isa<FunctionNoProtoType>(NewFuncType) &&
2214        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2215      // The old declaration provided a function prototype, but the
2216      // new declaration does not. Merge in the prototype.
2217      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2218      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2219                                                 OldProto->arg_type_end());
2220      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2221                                         ParamTypes.data(), ParamTypes.size(),
2222                                         OldProto->getExtProtoInfo());
2223      New->setType(NewQType);
2224      New->setHasInheritedPrototype();
2225
2226      // Synthesize a parameter for each argument type.
2227      SmallVector<ParmVarDecl*, 16> Params;
2228      for (FunctionProtoType::arg_type_iterator
2229             ParamType = OldProto->arg_type_begin(),
2230             ParamEnd = OldProto->arg_type_end();
2231           ParamType != ParamEnd; ++ParamType) {
2232        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2233                                                 SourceLocation(),
2234                                                 SourceLocation(), 0,
2235                                                 *ParamType, /*TInfo=*/0,
2236                                                 SC_None, SC_None,
2237                                                 0);
2238        Param->setScopeInfo(0, Params.size());
2239        Param->setImplicit();
2240        Params.push_back(Param);
2241      }
2242
2243      New->setParams(Params);
2244    }
2245
2246    return MergeCompatibleFunctionDecls(New, Old, S);
2247  }
2248
2249  // GNU C permits a K&R definition to follow a prototype declaration
2250  // if the declared types of the parameters in the K&R definition
2251  // match the types in the prototype declaration, even when the
2252  // promoted types of the parameters from the K&R definition differ
2253  // from the types in the prototype. GCC then keeps the types from
2254  // the prototype.
2255  //
2256  // If a variadic prototype is followed by a non-variadic K&R definition,
2257  // the K&R definition becomes variadic.  This is sort of an edge case, but
2258  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2259  // C99 6.9.1p8.
2260  if (!getLangOpts().CPlusPlus &&
2261      Old->hasPrototype() && !New->hasPrototype() &&
2262      New->getType()->getAs<FunctionProtoType>() &&
2263      Old->getNumParams() == New->getNumParams()) {
2264    SmallVector<QualType, 16> ArgTypes;
2265    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2266    const FunctionProtoType *OldProto
2267      = Old->getType()->getAs<FunctionProtoType>();
2268    const FunctionProtoType *NewProto
2269      = New->getType()->getAs<FunctionProtoType>();
2270
2271    // Determine whether this is the GNU C extension.
2272    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2273                                               NewProto->getResultType());
2274    bool LooseCompatible = !MergedReturn.isNull();
2275    for (unsigned Idx = 0, End = Old->getNumParams();
2276         LooseCompatible && Idx != End; ++Idx) {
2277      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2278      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2279      if (Context.typesAreCompatible(OldParm->getType(),
2280                                     NewProto->getArgType(Idx))) {
2281        ArgTypes.push_back(NewParm->getType());
2282      } else if (Context.typesAreCompatible(OldParm->getType(),
2283                                            NewParm->getType(),
2284                                            /*CompareUnqualified=*/true)) {
2285        GNUCompatibleParamWarning Warn
2286          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2287        Warnings.push_back(Warn);
2288        ArgTypes.push_back(NewParm->getType());
2289      } else
2290        LooseCompatible = false;
2291    }
2292
2293    if (LooseCompatible) {
2294      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2295        Diag(Warnings[Warn].NewParm->getLocation(),
2296             diag::ext_param_promoted_not_compatible_with_prototype)
2297          << Warnings[Warn].PromotedType
2298          << Warnings[Warn].OldParm->getType();
2299        if (Warnings[Warn].OldParm->getLocation().isValid())
2300          Diag(Warnings[Warn].OldParm->getLocation(),
2301               diag::note_previous_declaration);
2302      }
2303
2304      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2305                                           ArgTypes.size(),
2306                                           OldProto->getExtProtoInfo()));
2307      return MergeCompatibleFunctionDecls(New, Old, S);
2308    }
2309
2310    // Fall through to diagnose conflicting types.
2311  }
2312
2313  // A function that has already been declared has been redeclared or defined
2314  // with a different type- show appropriate diagnostic
2315  if (unsigned BuiltinID = Old->getBuiltinID()) {
2316    // The user has declared a builtin function with an incompatible
2317    // signature.
2318    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2319      // The function the user is redeclaring is a library-defined
2320      // function like 'malloc' or 'printf'. Warn about the
2321      // redeclaration, then pretend that we don't know about this
2322      // library built-in.
2323      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2324      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2325        << Old << Old->getType();
2326      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2327      Old->setInvalidDecl();
2328      return false;
2329    }
2330
2331    PrevDiag = diag::note_previous_builtin_declaration;
2332  }
2333
2334  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2335  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2336  return true;
2337}
2338
2339/// \brief Completes the merge of two function declarations that are
2340/// known to be compatible.
2341///
2342/// This routine handles the merging of attributes and other
2343/// properties of function declarations form the old declaration to
2344/// the new declaration, once we know that New is in fact a
2345/// redeclaration of Old.
2346///
2347/// \returns false
2348bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2349                                        Scope *S) {
2350  // Merge the attributes
2351  mergeDeclAttributes(New, Old);
2352
2353  // Merge the storage class.
2354  if (Old->getStorageClass() != SC_Extern &&
2355      Old->getStorageClass() != SC_None)
2356    New->setStorageClass(Old->getStorageClass());
2357
2358  // Merge "pure" flag.
2359  if (Old->isPure())
2360    New->setPure();
2361
2362  // Merge attributes from the parameters.  These can mismatch with K&R
2363  // declarations.
2364  if (New->getNumParams() == Old->getNumParams())
2365    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2366      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2367                               Context);
2368
2369  if (getLangOpts().CPlusPlus)
2370    return MergeCXXFunctionDecl(New, Old, S);
2371
2372  return false;
2373}
2374
2375
2376void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2377                                ObjCMethodDecl *oldMethod) {
2378
2379  // Merge the attributes, including deprecated/unavailable
2380  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2381
2382  // Merge attributes from the parameters.
2383  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2384                                       oe = oldMethod->param_end();
2385  for (ObjCMethodDecl::param_iterator
2386         ni = newMethod->param_begin(), ne = newMethod->param_end();
2387       ni != ne && oi != oe; ++ni, ++oi)
2388    mergeParamDeclAttributes(*ni, *oi, Context);
2389
2390  CheckObjCMethodOverride(newMethod, oldMethod, true);
2391}
2392
2393/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2394/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2395/// emitting diagnostics as appropriate.
2396///
2397/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2398/// to here in AddInitializerToDecl. We can't check them before the initializer
2399/// is attached.
2400void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2401  if (New->isInvalidDecl() || Old->isInvalidDecl())
2402    return;
2403
2404  QualType MergedT;
2405  if (getLangOpts().CPlusPlus) {
2406    AutoType *AT = New->getType()->getContainedAutoType();
2407    if (AT && !AT->isDeduced()) {
2408      // We don't know what the new type is until the initializer is attached.
2409      return;
2410    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2411      // These could still be something that needs exception specs checked.
2412      return MergeVarDeclExceptionSpecs(New, Old);
2413    }
2414    // C++ [basic.link]p10:
2415    //   [...] the types specified by all declarations referring to a given
2416    //   object or function shall be identical, except that declarations for an
2417    //   array object can specify array types that differ by the presence or
2418    //   absence of a major array bound (8.3.4).
2419    else if (Old->getType()->isIncompleteArrayType() &&
2420             New->getType()->isArrayType()) {
2421      CanQual<ArrayType> OldArray
2422        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2423      CanQual<ArrayType> NewArray
2424        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2425      if (OldArray->getElementType() == NewArray->getElementType())
2426        MergedT = New->getType();
2427    } else if (Old->getType()->isArrayType() &&
2428             New->getType()->isIncompleteArrayType()) {
2429      CanQual<ArrayType> OldArray
2430        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2431      CanQual<ArrayType> NewArray
2432        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2433      if (OldArray->getElementType() == NewArray->getElementType())
2434        MergedT = Old->getType();
2435    } else if (New->getType()->isObjCObjectPointerType()
2436               && Old->getType()->isObjCObjectPointerType()) {
2437        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2438                                                        Old->getType());
2439    }
2440  } else {
2441    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2442  }
2443  if (MergedT.isNull()) {
2444    Diag(New->getLocation(), diag::err_redefinition_different_type)
2445      << New->getDeclName();
2446    Diag(Old->getLocation(), diag::note_previous_definition);
2447    return New->setInvalidDecl();
2448  }
2449  New->setType(MergedT);
2450}
2451
2452/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2453/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2454/// situation, merging decls or emitting diagnostics as appropriate.
2455///
2456/// Tentative definition rules (C99 6.9.2p2) are checked by
2457/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2458/// definitions here, since the initializer hasn't been attached.
2459///
2460void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2461  // If the new decl is already invalid, don't do any other checking.
2462  if (New->isInvalidDecl())
2463    return;
2464
2465  // Verify the old decl was also a variable.
2466  VarDecl *Old = 0;
2467  if (!Previous.isSingleResult() ||
2468      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2469    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2470      << New->getDeclName();
2471    Diag(Previous.getRepresentativeDecl()->getLocation(),
2472         diag::note_previous_definition);
2473    return New->setInvalidDecl();
2474  }
2475
2476  // C++ [class.mem]p1:
2477  //   A member shall not be declared twice in the member-specification [...]
2478  //
2479  // Here, we need only consider static data members.
2480  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2481    Diag(New->getLocation(), diag::err_duplicate_member)
2482      << New->getIdentifier();
2483    Diag(Old->getLocation(), diag::note_previous_declaration);
2484    New->setInvalidDecl();
2485  }
2486
2487  mergeDeclAttributes(New, Old);
2488  // Warn if an already-declared variable is made a weak_import in a subsequent
2489  // declaration
2490  if (New->getAttr<WeakImportAttr>() &&
2491      Old->getStorageClass() == SC_None &&
2492      !Old->getAttr<WeakImportAttr>()) {
2493    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2494    Diag(Old->getLocation(), diag::note_previous_definition);
2495    // Remove weak_import attribute on new declaration.
2496    New->dropAttr<WeakImportAttr>();
2497  }
2498
2499  // Merge the types.
2500  MergeVarDeclTypes(New, Old);
2501  if (New->isInvalidDecl())
2502    return;
2503
2504  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2505  if (New->getStorageClass() == SC_Static &&
2506      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2507    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2508    Diag(Old->getLocation(), diag::note_previous_definition);
2509    return New->setInvalidDecl();
2510  }
2511  // C99 6.2.2p4:
2512  //   For an identifier declared with the storage-class specifier
2513  //   extern in a scope in which a prior declaration of that
2514  //   identifier is visible,23) if the prior declaration specifies
2515  //   internal or external linkage, the linkage of the identifier at
2516  //   the later declaration is the same as the linkage specified at
2517  //   the prior declaration. If no prior declaration is visible, or
2518  //   if the prior declaration specifies no linkage, then the
2519  //   identifier has external linkage.
2520  if (New->hasExternalStorage() && Old->hasLinkage())
2521    /* Okay */;
2522  else if (New->getStorageClass() != SC_Static &&
2523           Old->getStorageClass() == SC_Static) {
2524    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2525    Diag(Old->getLocation(), diag::note_previous_definition);
2526    return New->setInvalidDecl();
2527  }
2528
2529  // Check if extern is followed by non-extern and vice-versa.
2530  if (New->hasExternalStorage() &&
2531      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2532    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2533    Diag(Old->getLocation(), diag::note_previous_definition);
2534    return New->setInvalidDecl();
2535  }
2536  if (Old->hasExternalStorage() &&
2537      !New->hasLinkage() && New->isLocalVarDecl()) {
2538    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2539    Diag(Old->getLocation(), diag::note_previous_definition);
2540    return New->setInvalidDecl();
2541  }
2542
2543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2544
2545  // FIXME: The test for external storage here seems wrong? We still
2546  // need to check for mismatches.
2547  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2548      // Don't complain about out-of-line definitions of static members.
2549      !(Old->getLexicalDeclContext()->isRecord() &&
2550        !New->getLexicalDeclContext()->isRecord())) {
2551    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2552    Diag(Old->getLocation(), diag::note_previous_definition);
2553    return New->setInvalidDecl();
2554  }
2555
2556  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2557    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2558    Diag(Old->getLocation(), diag::note_previous_definition);
2559  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2560    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2561    Diag(Old->getLocation(), diag::note_previous_definition);
2562  }
2563
2564  // C++ doesn't have tentative definitions, so go right ahead and check here.
2565  const VarDecl *Def;
2566  if (getLangOpts().CPlusPlus &&
2567      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2568      (Def = Old->getDefinition())) {
2569    Diag(New->getLocation(), diag::err_redefinition)
2570      << New->getDeclName();
2571    Diag(Def->getLocation(), diag::note_previous_definition);
2572    New->setInvalidDecl();
2573    return;
2574  }
2575  // c99 6.2.2 P4.
2576  // For an identifier declared with the storage-class specifier extern in a
2577  // scope in which a prior declaration of that identifier is visible, if
2578  // the prior declaration specifies internal or external linkage, the linkage
2579  // of the identifier at the later declaration is the same as the linkage
2580  // specified at the prior declaration.
2581  // FIXME. revisit this code.
2582  if (New->hasExternalStorage() &&
2583      Old->getLinkage() == InternalLinkage &&
2584      New->getDeclContext() == Old->getDeclContext())
2585    New->setStorageClass(Old->getStorageClass());
2586
2587  // Keep a chain of previous declarations.
2588  New->setPreviousDeclaration(Old);
2589
2590  // Inherit access appropriately.
2591  New->setAccess(Old->getAccess());
2592}
2593
2594/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2595/// no declarator (e.g. "struct foo;") is parsed.
2596Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2597                                       DeclSpec &DS) {
2598  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2599}
2600
2601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2602/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2603/// parameters to cope with template friend declarations.
2604Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2605                                       DeclSpec &DS,
2606                                       MultiTemplateParamsArg TemplateParams) {
2607  Decl *TagD = 0;
2608  TagDecl *Tag = 0;
2609  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2610      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2611      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2612      DS.getTypeSpecType() == DeclSpec::TST_union ||
2613      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2614    TagD = DS.getRepAsDecl();
2615
2616    if (!TagD) // We probably had an error
2617      return 0;
2618
2619    // Note that the above type specs guarantee that the
2620    // type rep is a Decl, whereas in many of the others
2621    // it's a Type.
2622    if (isa<TagDecl>(TagD))
2623      Tag = cast<TagDecl>(TagD);
2624    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2625      Tag = CTD->getTemplatedDecl();
2626  }
2627
2628  if (Tag) {
2629    Tag->setFreeStanding();
2630    if (Tag->isInvalidDecl())
2631      return Tag;
2632  }
2633
2634  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2635    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2636    // or incomplete types shall not be restrict-qualified."
2637    if (TypeQuals & DeclSpec::TQ_restrict)
2638      Diag(DS.getRestrictSpecLoc(),
2639           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2640           << DS.getSourceRange();
2641  }
2642
2643  if (DS.isConstexprSpecified()) {
2644    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2645    // and definitions of functions and variables.
2646    if (Tag)
2647      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2648        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2649            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2650            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2651            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2652    else
2653      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2654    // Don't emit warnings after this error.
2655    return TagD;
2656  }
2657
2658  if (DS.isFriendSpecified()) {
2659    // If we're dealing with a decl but not a TagDecl, assume that
2660    // whatever routines created it handled the friendship aspect.
2661    if (TagD && !Tag)
2662      return 0;
2663    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2664  }
2665
2666  // Track whether we warned about the fact that there aren't any
2667  // declarators.
2668  bool emittedWarning = false;
2669
2670  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2671    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2672        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2673      if (getLangOpts().CPlusPlus ||
2674          Record->getDeclContext()->isRecord())
2675        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2676
2677      Diag(DS.getLocStart(), diag::ext_no_declarators)
2678        << DS.getSourceRange();
2679      emittedWarning = true;
2680    }
2681  }
2682
2683  // Check for Microsoft C extension: anonymous struct.
2684  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2685      CurContext->isRecord() &&
2686      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2687    // Handle 2 kinds of anonymous struct:
2688    //   struct STRUCT;
2689    // and
2690    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2691    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2692    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2693        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2694         DS.getRepAsType().get()->isStructureType())) {
2695      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2696        << DS.getSourceRange();
2697      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2698    }
2699  }
2700
2701  if (getLangOpts().CPlusPlus &&
2702      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2703    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2704      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2705          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2706        Diag(Enum->getLocation(), diag::ext_no_declarators)
2707          << DS.getSourceRange();
2708        emittedWarning = true;
2709      }
2710
2711  // Skip all the checks below if we have a type error.
2712  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2713
2714  if (!DS.isMissingDeclaratorOk()) {
2715    // Warn about typedefs of enums without names, since this is an
2716    // extension in both Microsoft and GNU.
2717    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2718        Tag && isa<EnumDecl>(Tag)) {
2719      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2720        << DS.getSourceRange();
2721      return Tag;
2722    }
2723
2724    Diag(DS.getLocStart(), diag::ext_no_declarators)
2725      << DS.getSourceRange();
2726    emittedWarning = true;
2727  }
2728
2729  // We're going to complain about a bunch of spurious specifiers;
2730  // only do this if we're declaring a tag, because otherwise we
2731  // should be getting diag::ext_no_declarators.
2732  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2733    return TagD;
2734
2735  // Note that a linkage-specification sets a storage class, but
2736  // 'extern "C" struct foo;' is actually valid and not theoretically
2737  // useless.
2738  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2739    if (!DS.isExternInLinkageSpec())
2740      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2741        << DeclSpec::getSpecifierName(scs);
2742
2743  if (DS.isThreadSpecified())
2744    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2745  if (DS.getTypeQualifiers()) {
2746    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2747      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2748    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2749      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2750    // Restrict is covered above.
2751  }
2752  if (DS.isInlineSpecified())
2753    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2754  if (DS.isVirtualSpecified())
2755    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2756  if (DS.isExplicitSpecified())
2757    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2758
2759  if (DS.isModulePrivateSpecified() &&
2760      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2761    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2762      << Tag->getTagKind()
2763      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2764
2765  // Warn about ignored type attributes, for example:
2766  // __attribute__((aligned)) struct A;
2767  // Attributes should be placed after tag to apply to type declaration.
2768  if (!DS.getAttributes().empty()) {
2769    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2770    if (TypeSpecType == DeclSpec::TST_class ||
2771        TypeSpecType == DeclSpec::TST_struct ||
2772        TypeSpecType == DeclSpec::TST_interface ||
2773        TypeSpecType == DeclSpec::TST_union ||
2774        TypeSpecType == DeclSpec::TST_enum) {
2775      AttributeList* attrs = DS.getAttributes().getList();
2776      while (attrs) {
2777        Diag(attrs->getScopeLoc(),
2778             diag::warn_declspec_attribute_ignored)
2779        << attrs->getName()
2780        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2781            TypeSpecType == DeclSpec::TST_struct ? 1 :
2782            TypeSpecType == DeclSpec::TST_union ? 2 :
2783            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2784        attrs = attrs->getNext();
2785      }
2786    }
2787  }
2788
2789  ActOnDocumentableDecl(TagD);
2790
2791  return TagD;
2792}
2793
2794/// We are trying to inject an anonymous member into the given scope;
2795/// check if there's an existing declaration that can't be overloaded.
2796///
2797/// \return true if this is a forbidden redeclaration
2798static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2799                                         Scope *S,
2800                                         DeclContext *Owner,
2801                                         DeclarationName Name,
2802                                         SourceLocation NameLoc,
2803                                         unsigned diagnostic) {
2804  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2805                 Sema::ForRedeclaration);
2806  if (!SemaRef.LookupName(R, S)) return false;
2807
2808  if (R.getAsSingle<TagDecl>())
2809    return false;
2810
2811  // Pick a representative declaration.
2812  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2813  assert(PrevDecl && "Expected a non-null Decl");
2814
2815  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2816    return false;
2817
2818  SemaRef.Diag(NameLoc, diagnostic) << Name;
2819  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2820
2821  return true;
2822}
2823
2824/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2825/// anonymous struct or union AnonRecord into the owning context Owner
2826/// and scope S. This routine will be invoked just after we realize
2827/// that an unnamed union or struct is actually an anonymous union or
2828/// struct, e.g.,
2829///
2830/// @code
2831/// union {
2832///   int i;
2833///   float f;
2834/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2835///    // f into the surrounding scope.x
2836/// @endcode
2837///
2838/// This routine is recursive, injecting the names of nested anonymous
2839/// structs/unions into the owning context and scope as well.
2840static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2841                                                DeclContext *Owner,
2842                                                RecordDecl *AnonRecord,
2843                                                AccessSpecifier AS,
2844                              SmallVector<NamedDecl*, 2> &Chaining,
2845                                                      bool MSAnonStruct) {
2846  unsigned diagKind
2847    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2848                            : diag::err_anonymous_struct_member_redecl;
2849
2850  bool Invalid = false;
2851
2852  // Look every FieldDecl and IndirectFieldDecl with a name.
2853  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2854                               DEnd = AnonRecord->decls_end();
2855       D != DEnd; ++D) {
2856    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2857        cast<NamedDecl>(*D)->getDeclName()) {
2858      ValueDecl *VD = cast<ValueDecl>(*D);
2859      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2860                                       VD->getLocation(), diagKind)) {
2861        // C++ [class.union]p2:
2862        //   The names of the members of an anonymous union shall be
2863        //   distinct from the names of any other entity in the
2864        //   scope in which the anonymous union is declared.
2865        Invalid = true;
2866      } else {
2867        // C++ [class.union]p2:
2868        //   For the purpose of name lookup, after the anonymous union
2869        //   definition, the members of the anonymous union are
2870        //   considered to have been defined in the scope in which the
2871        //   anonymous union is declared.
2872        unsigned OldChainingSize = Chaining.size();
2873        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2874          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2875               PE = IF->chain_end(); PI != PE; ++PI)
2876            Chaining.push_back(*PI);
2877        else
2878          Chaining.push_back(VD);
2879
2880        assert(Chaining.size() >= 2);
2881        NamedDecl **NamedChain =
2882          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2883        for (unsigned i = 0; i < Chaining.size(); i++)
2884          NamedChain[i] = Chaining[i];
2885
2886        IndirectFieldDecl* IndirectField =
2887          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2888                                    VD->getIdentifier(), VD->getType(),
2889                                    NamedChain, Chaining.size());
2890
2891        IndirectField->setAccess(AS);
2892        IndirectField->setImplicit();
2893        SemaRef.PushOnScopeChains(IndirectField, S);
2894
2895        // That includes picking up the appropriate access specifier.
2896        if (AS != AS_none) IndirectField->setAccess(AS);
2897
2898        Chaining.resize(OldChainingSize);
2899      }
2900    }
2901  }
2902
2903  return Invalid;
2904}
2905
2906/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2907/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2908/// illegal input values are mapped to SC_None.
2909static StorageClass
2910StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2911  switch (StorageClassSpec) {
2912  case DeclSpec::SCS_unspecified:    return SC_None;
2913  case DeclSpec::SCS_extern:         return SC_Extern;
2914  case DeclSpec::SCS_static:         return SC_Static;
2915  case DeclSpec::SCS_auto:           return SC_Auto;
2916  case DeclSpec::SCS_register:       return SC_Register;
2917  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2918    // Illegal SCSs map to None: error reporting is up to the caller.
2919  case DeclSpec::SCS_mutable:        // Fall through.
2920  case DeclSpec::SCS_typedef:        return SC_None;
2921  }
2922  llvm_unreachable("unknown storage class specifier");
2923}
2924
2925/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2926/// a StorageClass. Any error reporting is up to the caller:
2927/// illegal input values are mapped to SC_None.
2928static StorageClass
2929StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2930  switch (StorageClassSpec) {
2931  case DeclSpec::SCS_unspecified:    return SC_None;
2932  case DeclSpec::SCS_extern:         return SC_Extern;
2933  case DeclSpec::SCS_static:         return SC_Static;
2934  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2935    // Illegal SCSs map to None: error reporting is up to the caller.
2936  case DeclSpec::SCS_auto:           // Fall through.
2937  case DeclSpec::SCS_mutable:        // Fall through.
2938  case DeclSpec::SCS_register:       // Fall through.
2939  case DeclSpec::SCS_typedef:        return SC_None;
2940  }
2941  llvm_unreachable("unknown storage class specifier");
2942}
2943
2944/// BuildAnonymousStructOrUnion - Handle the declaration of an
2945/// anonymous structure or union. Anonymous unions are a C++ feature
2946/// (C++ [class.union]) and a C11 feature; anonymous structures
2947/// are a C11 feature and GNU C++ extension.
2948Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2949                                             AccessSpecifier AS,
2950                                             RecordDecl *Record) {
2951  DeclContext *Owner = Record->getDeclContext();
2952
2953  // Diagnose whether this anonymous struct/union is an extension.
2954  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2955    Diag(Record->getLocation(), diag::ext_anonymous_union);
2956  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2957    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2958  else if (!Record->isUnion() && !getLangOpts().C11)
2959    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2960
2961  // C and C++ require different kinds of checks for anonymous
2962  // structs/unions.
2963  bool Invalid = false;
2964  if (getLangOpts().CPlusPlus) {
2965    const char* PrevSpec = 0;
2966    unsigned DiagID;
2967    if (Record->isUnion()) {
2968      // C++ [class.union]p6:
2969      //   Anonymous unions declared in a named namespace or in the
2970      //   global namespace shall be declared static.
2971      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2972          (isa<TranslationUnitDecl>(Owner) ||
2973           (isa<NamespaceDecl>(Owner) &&
2974            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2975        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2976          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2977
2978        // Recover by adding 'static'.
2979        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2980                               PrevSpec, DiagID);
2981      }
2982      // C++ [class.union]p6:
2983      //   A storage class is not allowed in a declaration of an
2984      //   anonymous union in a class scope.
2985      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2986               isa<RecordDecl>(Owner)) {
2987        Diag(DS.getStorageClassSpecLoc(),
2988             diag::err_anonymous_union_with_storage_spec)
2989          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2990
2991        // Recover by removing the storage specifier.
2992        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2993                               SourceLocation(),
2994                               PrevSpec, DiagID);
2995      }
2996    }
2997
2998    // Ignore const/volatile/restrict qualifiers.
2999    if (DS.getTypeQualifiers()) {
3000      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3001        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3002          << Record->isUnion() << 0
3003          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3004      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3005        Diag(DS.getVolatileSpecLoc(),
3006             diag::ext_anonymous_struct_union_qualified)
3007          << Record->isUnion() << 1
3008          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3009      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3010        Diag(DS.getRestrictSpecLoc(),
3011             diag::ext_anonymous_struct_union_qualified)
3012          << Record->isUnion() << 2
3013          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3014
3015      DS.ClearTypeQualifiers();
3016    }
3017
3018    // C++ [class.union]p2:
3019    //   The member-specification of an anonymous union shall only
3020    //   define non-static data members. [Note: nested types and
3021    //   functions cannot be declared within an anonymous union. ]
3022    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3023                                 MemEnd = Record->decls_end();
3024         Mem != MemEnd; ++Mem) {
3025      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3026        // C++ [class.union]p3:
3027        //   An anonymous union shall not have private or protected
3028        //   members (clause 11).
3029        assert(FD->getAccess() != AS_none);
3030        if (FD->getAccess() != AS_public) {
3031          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3032            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3033          Invalid = true;
3034        }
3035
3036        // C++ [class.union]p1
3037        //   An object of a class with a non-trivial constructor, a non-trivial
3038        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3039        //   assignment operator cannot be a member of a union, nor can an
3040        //   array of such objects.
3041        if (CheckNontrivialField(FD))
3042          Invalid = true;
3043      } else if ((*Mem)->isImplicit()) {
3044        // Any implicit members are fine.
3045      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3046        // This is a type that showed up in an
3047        // elaborated-type-specifier inside the anonymous struct or
3048        // union, but which actually declares a type outside of the
3049        // anonymous struct or union. It's okay.
3050      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3051        if (!MemRecord->isAnonymousStructOrUnion() &&
3052            MemRecord->getDeclName()) {
3053          // Visual C++ allows type definition in anonymous struct or union.
3054          if (getLangOpts().MicrosoftExt)
3055            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3056              << (int)Record->isUnion();
3057          else {
3058            // This is a nested type declaration.
3059            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3060              << (int)Record->isUnion();
3061            Invalid = true;
3062          }
3063        }
3064      } else if (isa<AccessSpecDecl>(*Mem)) {
3065        // Any access specifier is fine.
3066      } else {
3067        // We have something that isn't a non-static data
3068        // member. Complain about it.
3069        unsigned DK = diag::err_anonymous_record_bad_member;
3070        if (isa<TypeDecl>(*Mem))
3071          DK = diag::err_anonymous_record_with_type;
3072        else if (isa<FunctionDecl>(*Mem))
3073          DK = diag::err_anonymous_record_with_function;
3074        else if (isa<VarDecl>(*Mem))
3075          DK = diag::err_anonymous_record_with_static;
3076
3077        // Visual C++ allows type definition in anonymous struct or union.
3078        if (getLangOpts().MicrosoftExt &&
3079            DK == diag::err_anonymous_record_with_type)
3080          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3081            << (int)Record->isUnion();
3082        else {
3083          Diag((*Mem)->getLocation(), DK)
3084              << (int)Record->isUnion();
3085          Invalid = true;
3086        }
3087      }
3088    }
3089  }
3090
3091  if (!Record->isUnion() && !Owner->isRecord()) {
3092    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3093      << (int)getLangOpts().CPlusPlus;
3094    Invalid = true;
3095  }
3096
3097  // Mock up a declarator.
3098  Declarator Dc(DS, Declarator::MemberContext);
3099  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3101
3102  // Create a declaration for this anonymous struct/union.
3103  NamedDecl *Anon = 0;
3104  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3105    Anon = FieldDecl::Create(Context, OwningClass,
3106                             DS.getLocStart(),
3107                             Record->getLocation(),
3108                             /*IdentifierInfo=*/0,
3109                             Context.getTypeDeclType(Record),
3110                             TInfo,
3111                             /*BitWidth=*/0, /*Mutable=*/false,
3112                             /*InitStyle=*/ICIS_NoInit);
3113    Anon->setAccess(AS);
3114    if (getLangOpts().CPlusPlus)
3115      FieldCollector->Add(cast<FieldDecl>(Anon));
3116  } else {
3117    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3118    assert(SCSpec != DeclSpec::SCS_typedef &&
3119           "Parser allowed 'typedef' as storage class VarDecl.");
3120    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3121    if (SCSpec == DeclSpec::SCS_mutable) {
3122      // mutable can only appear on non-static class members, so it's always
3123      // an error here
3124      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3125      Invalid = true;
3126      SC = SC_None;
3127    }
3128    SCSpec = DS.getStorageClassSpecAsWritten();
3129    VarDecl::StorageClass SCAsWritten
3130      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3131
3132    Anon = VarDecl::Create(Context, Owner,
3133                           DS.getLocStart(),
3134                           Record->getLocation(), /*IdentifierInfo=*/0,
3135                           Context.getTypeDeclType(Record),
3136                           TInfo, SC, SCAsWritten);
3137
3138    // Default-initialize the implicit variable. This initialization will be
3139    // trivial in almost all cases, except if a union member has an in-class
3140    // initializer:
3141    //   union { int n = 0; };
3142    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3143  }
3144  Anon->setImplicit();
3145
3146  // Add the anonymous struct/union object to the current
3147  // context. We'll be referencing this object when we refer to one of
3148  // its members.
3149  Owner->addDecl(Anon);
3150
3151  // Inject the members of the anonymous struct/union into the owning
3152  // context and into the identifier resolver chain for name lookup
3153  // purposes.
3154  SmallVector<NamedDecl*, 2> Chain;
3155  Chain.push_back(Anon);
3156
3157  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3158                                          Chain, false))
3159    Invalid = true;
3160
3161  // Mark this as an anonymous struct/union type. Note that we do not
3162  // do this until after we have already checked and injected the
3163  // members of this anonymous struct/union type, because otherwise
3164  // the members could be injected twice: once by DeclContext when it
3165  // builds its lookup table, and once by
3166  // InjectAnonymousStructOrUnionMembers.
3167  Record->setAnonymousStructOrUnion(true);
3168
3169  if (Invalid)
3170    Anon->setInvalidDecl();
3171
3172  return Anon;
3173}
3174
3175/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3176/// Microsoft C anonymous structure.
3177/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3178/// Example:
3179///
3180/// struct A { int a; };
3181/// struct B { struct A; int b; };
3182///
3183/// void foo() {
3184///   B var;
3185///   var.a = 3;
3186/// }
3187///
3188Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3189                                           RecordDecl *Record) {
3190
3191  // If there is no Record, get the record via the typedef.
3192  if (!Record)
3193    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3194
3195  // Mock up a declarator.
3196  Declarator Dc(DS, Declarator::TypeNameContext);
3197  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3198  assert(TInfo && "couldn't build declarator info for anonymous struct");
3199
3200  // Create a declaration for this anonymous struct.
3201  NamedDecl* Anon = FieldDecl::Create(Context,
3202                             cast<RecordDecl>(CurContext),
3203                             DS.getLocStart(),
3204                             DS.getLocStart(),
3205                             /*IdentifierInfo=*/0,
3206                             Context.getTypeDeclType(Record),
3207                             TInfo,
3208                             /*BitWidth=*/0, /*Mutable=*/false,
3209                             /*InitStyle=*/ICIS_NoInit);
3210  Anon->setImplicit();
3211
3212  // Add the anonymous struct object to the current context.
3213  CurContext->addDecl(Anon);
3214
3215  // Inject the members of the anonymous struct into the current
3216  // context and into the identifier resolver chain for name lookup
3217  // purposes.
3218  SmallVector<NamedDecl*, 2> Chain;
3219  Chain.push_back(Anon);
3220
3221  RecordDecl *RecordDef = Record->getDefinition();
3222  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3223                                                        RecordDef, AS_none,
3224                                                        Chain, true))
3225    Anon->setInvalidDecl();
3226
3227  return Anon;
3228}
3229
3230/// GetNameForDeclarator - Determine the full declaration name for the
3231/// given Declarator.
3232DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3233  return GetNameFromUnqualifiedId(D.getName());
3234}
3235
3236/// \brief Retrieves the declaration name from a parsed unqualified-id.
3237DeclarationNameInfo
3238Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3239  DeclarationNameInfo NameInfo;
3240  NameInfo.setLoc(Name.StartLocation);
3241
3242  switch (Name.getKind()) {
3243
3244  case UnqualifiedId::IK_ImplicitSelfParam:
3245  case UnqualifiedId::IK_Identifier:
3246    NameInfo.setName(Name.Identifier);
3247    NameInfo.setLoc(Name.StartLocation);
3248    return NameInfo;
3249
3250  case UnqualifiedId::IK_OperatorFunctionId:
3251    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3252                                           Name.OperatorFunctionId.Operator));
3253    NameInfo.setLoc(Name.StartLocation);
3254    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3255      = Name.OperatorFunctionId.SymbolLocations[0];
3256    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3257      = Name.EndLocation.getRawEncoding();
3258    return NameInfo;
3259
3260  case UnqualifiedId::IK_LiteralOperatorId:
3261    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3262                                                           Name.Identifier));
3263    NameInfo.setLoc(Name.StartLocation);
3264    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3265    return NameInfo;
3266
3267  case UnqualifiedId::IK_ConversionFunctionId: {
3268    TypeSourceInfo *TInfo;
3269    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3270    if (Ty.isNull())
3271      return DeclarationNameInfo();
3272    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3273                                               Context.getCanonicalType(Ty)));
3274    NameInfo.setLoc(Name.StartLocation);
3275    NameInfo.setNamedTypeInfo(TInfo);
3276    return NameInfo;
3277  }
3278
3279  case UnqualifiedId::IK_ConstructorName: {
3280    TypeSourceInfo *TInfo;
3281    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3282    if (Ty.isNull())
3283      return DeclarationNameInfo();
3284    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3285                                              Context.getCanonicalType(Ty)));
3286    NameInfo.setLoc(Name.StartLocation);
3287    NameInfo.setNamedTypeInfo(TInfo);
3288    return NameInfo;
3289  }
3290
3291  case UnqualifiedId::IK_ConstructorTemplateId: {
3292    // In well-formed code, we can only have a constructor
3293    // template-id that refers to the current context, so go there
3294    // to find the actual type being constructed.
3295    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3296    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3297      return DeclarationNameInfo();
3298
3299    // Determine the type of the class being constructed.
3300    QualType CurClassType = Context.getTypeDeclType(CurClass);
3301
3302    // FIXME: Check two things: that the template-id names the same type as
3303    // CurClassType, and that the template-id does not occur when the name
3304    // was qualified.
3305
3306    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3307                                    Context.getCanonicalType(CurClassType)));
3308    NameInfo.setLoc(Name.StartLocation);
3309    // FIXME: should we retrieve TypeSourceInfo?
3310    NameInfo.setNamedTypeInfo(0);
3311    return NameInfo;
3312  }
3313
3314  case UnqualifiedId::IK_DestructorName: {
3315    TypeSourceInfo *TInfo;
3316    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3317    if (Ty.isNull())
3318      return DeclarationNameInfo();
3319    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3320                                              Context.getCanonicalType(Ty)));
3321    NameInfo.setLoc(Name.StartLocation);
3322    NameInfo.setNamedTypeInfo(TInfo);
3323    return NameInfo;
3324  }
3325
3326  case UnqualifiedId::IK_TemplateId: {
3327    TemplateName TName = Name.TemplateId->Template.get();
3328    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3329    return Context.getNameForTemplate(TName, TNameLoc);
3330  }
3331
3332  } // switch (Name.getKind())
3333
3334  llvm_unreachable("Unknown name kind");
3335}
3336
3337static QualType getCoreType(QualType Ty) {
3338  do {
3339    if (Ty->isPointerType() || Ty->isReferenceType())
3340      Ty = Ty->getPointeeType();
3341    else if (Ty->isArrayType())
3342      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3343    else
3344      return Ty.withoutLocalFastQualifiers();
3345  } while (true);
3346}
3347
3348/// hasSimilarParameters - Determine whether the C++ functions Declaration
3349/// and Definition have "nearly" matching parameters. This heuristic is
3350/// used to improve diagnostics in the case where an out-of-line function
3351/// definition doesn't match any declaration within the class or namespace.
3352/// Also sets Params to the list of indices to the parameters that differ
3353/// between the declaration and the definition. If hasSimilarParameters
3354/// returns true and Params is empty, then all of the parameters match.
3355static bool hasSimilarParameters(ASTContext &Context,
3356                                     FunctionDecl *Declaration,
3357                                     FunctionDecl *Definition,
3358                                     llvm::SmallVectorImpl<unsigned> &Params) {
3359  Params.clear();
3360  if (Declaration->param_size() != Definition->param_size())
3361    return false;
3362  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3363    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3364    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3365
3366    // The parameter types are identical
3367    if (Context.hasSameType(DefParamTy, DeclParamTy))
3368      continue;
3369
3370    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3371    QualType DefParamBaseTy = getCoreType(DefParamTy);
3372    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3373    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3374
3375    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3376        (DeclTyName && DeclTyName == DefTyName))
3377      Params.push_back(Idx);
3378    else  // The two parameters aren't even close
3379      return false;
3380  }
3381
3382  return true;
3383}
3384
3385/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3386/// declarator needs to be rebuilt in the current instantiation.
3387/// Any bits of declarator which appear before the name are valid for
3388/// consideration here.  That's specifically the type in the decl spec
3389/// and the base type in any member-pointer chunks.
3390static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3391                                                    DeclarationName Name) {
3392  // The types we specifically need to rebuild are:
3393  //   - typenames, typeofs, and decltypes
3394  //   - types which will become injected class names
3395  // Of course, we also need to rebuild any type referencing such a
3396  // type.  It's safest to just say "dependent", but we call out a
3397  // few cases here.
3398
3399  DeclSpec &DS = D.getMutableDeclSpec();
3400  switch (DS.getTypeSpecType()) {
3401  case DeclSpec::TST_typename:
3402  case DeclSpec::TST_typeofType:
3403  case DeclSpec::TST_decltype:
3404  case DeclSpec::TST_underlyingType:
3405  case DeclSpec::TST_atomic: {
3406    // Grab the type from the parser.
3407    TypeSourceInfo *TSI = 0;
3408    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3409    if (T.isNull() || !T->isDependentType()) break;
3410
3411    // Make sure there's a type source info.  This isn't really much
3412    // of a waste; most dependent types should have type source info
3413    // attached already.
3414    if (!TSI)
3415      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3416
3417    // Rebuild the type in the current instantiation.
3418    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3419    if (!TSI) return true;
3420
3421    // Store the new type back in the decl spec.
3422    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3423    DS.UpdateTypeRep(LocType);
3424    break;
3425  }
3426
3427  case DeclSpec::TST_typeofExpr: {
3428    Expr *E = DS.getRepAsExpr();
3429    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3430    if (Result.isInvalid()) return true;
3431    DS.UpdateExprRep(Result.get());
3432    break;
3433  }
3434
3435  default:
3436    // Nothing to do for these decl specs.
3437    break;
3438  }
3439
3440  // It doesn't matter what order we do this in.
3441  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3442    DeclaratorChunk &Chunk = D.getTypeObject(I);
3443
3444    // The only type information in the declarator which can come
3445    // before the declaration name is the base type of a member
3446    // pointer.
3447    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3448      continue;
3449
3450    // Rebuild the scope specifier in-place.
3451    CXXScopeSpec &SS = Chunk.Mem.Scope();
3452    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3453      return true;
3454  }
3455
3456  return false;
3457}
3458
3459Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3460  D.setFunctionDefinitionKind(FDK_Declaration);
3461  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3462
3463  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3464      Dcl && Dcl->getDeclContext()->isFileContext())
3465    Dcl->setTopLevelDeclInObjCContainer();
3466
3467  return Dcl;
3468}
3469
3470/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3471///   If T is the name of a class, then each of the following shall have a
3472///   name different from T:
3473///     - every static data member of class T;
3474///     - every member function of class T
3475///     - every member of class T that is itself a type;
3476/// \returns true if the declaration name violates these rules.
3477bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3478                                   DeclarationNameInfo NameInfo) {
3479  DeclarationName Name = NameInfo.getName();
3480
3481  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3482    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3483      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3484      return true;
3485    }
3486
3487  return false;
3488}
3489
3490/// \brief Diagnose a declaration whose declarator-id has the given
3491/// nested-name-specifier.
3492///
3493/// \param SS The nested-name-specifier of the declarator-id.
3494///
3495/// \param DC The declaration context to which the nested-name-specifier
3496/// resolves.
3497///
3498/// \param Name The name of the entity being declared.
3499///
3500/// \param Loc The location of the name of the entity being declared.
3501///
3502/// \returns true if we cannot safely recover from this error, false otherwise.
3503bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3504                                        DeclarationName Name,
3505                                      SourceLocation Loc) {
3506  DeclContext *Cur = CurContext;
3507  while (isa<LinkageSpecDecl>(Cur))
3508    Cur = Cur->getParent();
3509
3510  // C++ [dcl.meaning]p1:
3511  //   A declarator-id shall not be qualified except for the definition
3512  //   of a member function (9.3) or static data member (9.4) outside of
3513  //   its class, the definition or explicit instantiation of a function
3514  //   or variable member of a namespace outside of its namespace, or the
3515  //   definition of an explicit specialization outside of its namespace,
3516  //   or the declaration of a friend function that is a member of
3517  //   another class or namespace (11.3). [...]
3518
3519  // The user provided a superfluous scope specifier that refers back to the
3520  // class or namespaces in which the entity is already declared.
3521  //
3522  // class X {
3523  //   void X::f();
3524  // };
3525  if (Cur->Equals(DC)) {
3526    Diag(Loc, diag::warn_member_extra_qualification)
3527      << Name << FixItHint::CreateRemoval(SS.getRange());
3528    SS.clear();
3529    return false;
3530  }
3531
3532  // Check whether the qualifying scope encloses the scope of the original
3533  // declaration.
3534  if (!Cur->Encloses(DC)) {
3535    if (Cur->isRecord())
3536      Diag(Loc, diag::err_member_qualification)
3537        << Name << SS.getRange();
3538    else if (isa<TranslationUnitDecl>(DC))
3539      Diag(Loc, diag::err_invalid_declarator_global_scope)
3540        << Name << SS.getRange();
3541    else if (isa<FunctionDecl>(Cur))
3542      Diag(Loc, diag::err_invalid_declarator_in_function)
3543        << Name << SS.getRange();
3544    else
3545      Diag(Loc, diag::err_invalid_declarator_scope)
3546      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3547
3548    return true;
3549  }
3550
3551  if (Cur->isRecord()) {
3552    // Cannot qualify members within a class.
3553    Diag(Loc, diag::err_member_qualification)
3554      << Name << SS.getRange();
3555    SS.clear();
3556
3557    // C++ constructors and destructors with incorrect scopes can break
3558    // our AST invariants by having the wrong underlying types. If
3559    // that's the case, then drop this declaration entirely.
3560    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3561         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3562        !Context.hasSameType(Name.getCXXNameType(),
3563                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3564      return true;
3565
3566    return false;
3567  }
3568
3569  // C++11 [dcl.meaning]p1:
3570  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3571  //   not begin with a decltype-specifer"
3572  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3573  while (SpecLoc.getPrefix())
3574    SpecLoc = SpecLoc.getPrefix();
3575  if (dyn_cast_or_null<DecltypeType>(
3576        SpecLoc.getNestedNameSpecifier()->getAsType()))
3577    Diag(Loc, diag::err_decltype_in_declarator)
3578      << SpecLoc.getTypeLoc().getSourceRange();
3579
3580  return false;
3581}
3582
3583Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3584                             MultiTemplateParamsArg TemplateParamLists) {
3585  // TODO: consider using NameInfo for diagnostic.
3586  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3587  DeclarationName Name = NameInfo.getName();
3588
3589  // All of these full declarators require an identifier.  If it doesn't have
3590  // one, the ParsedFreeStandingDeclSpec action should be used.
3591  if (!Name) {
3592    if (!D.isInvalidType())  // Reject this if we think it is valid.
3593      Diag(D.getDeclSpec().getLocStart(),
3594           diag::err_declarator_need_ident)
3595        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3596    return 0;
3597  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3598    return 0;
3599
3600  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3601  // we find one that is.
3602  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3603         (S->getFlags() & Scope::TemplateParamScope) != 0)
3604    S = S->getParent();
3605
3606  DeclContext *DC = CurContext;
3607  if (D.getCXXScopeSpec().isInvalid())
3608    D.setInvalidType();
3609  else if (D.getCXXScopeSpec().isSet()) {
3610    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3611                                        UPPC_DeclarationQualifier))
3612      return 0;
3613
3614    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3615    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3616    if (!DC) {
3617      // If we could not compute the declaration context, it's because the
3618      // declaration context is dependent but does not refer to a class,
3619      // class template, or class template partial specialization. Complain
3620      // and return early, to avoid the coming semantic disaster.
3621      Diag(D.getIdentifierLoc(),
3622           diag::err_template_qualified_declarator_no_match)
3623        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3624        << D.getCXXScopeSpec().getRange();
3625      return 0;
3626    }
3627    bool IsDependentContext = DC->isDependentContext();
3628
3629    if (!IsDependentContext &&
3630        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3631      return 0;
3632
3633    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3634      Diag(D.getIdentifierLoc(),
3635           diag::err_member_def_undefined_record)
3636        << Name << DC << D.getCXXScopeSpec().getRange();
3637      D.setInvalidType();
3638    } else if (!D.getDeclSpec().isFriendSpecified()) {
3639      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3640                                      Name, D.getIdentifierLoc())) {
3641        if (DC->isRecord())
3642          return 0;
3643
3644        D.setInvalidType();
3645      }
3646    }
3647
3648    // Check whether we need to rebuild the type of the given
3649    // declaration in the current instantiation.
3650    if (EnteringContext && IsDependentContext &&
3651        TemplateParamLists.size() != 0) {
3652      ContextRAII SavedContext(*this, DC);
3653      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3654        D.setInvalidType();
3655    }
3656  }
3657
3658  if (DiagnoseClassNameShadow(DC, NameInfo))
3659    // If this is a typedef, we'll end up spewing multiple diagnostics.
3660    // Just return early; it's safer.
3661    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3662      return 0;
3663
3664  NamedDecl *New;
3665
3666  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3667  QualType R = TInfo->getType();
3668
3669  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3670                                      UPPC_DeclarationType))
3671    D.setInvalidType();
3672
3673  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3674                        ForRedeclaration);
3675
3676  // See if this is a redefinition of a variable in the same scope.
3677  if (!D.getCXXScopeSpec().isSet()) {
3678    bool IsLinkageLookup = false;
3679
3680    // If the declaration we're planning to build will be a function
3681    // or object with linkage, then look for another declaration with
3682    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3683    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3684      /* Do nothing*/;
3685    else if (R->isFunctionType()) {
3686      if (CurContext->isFunctionOrMethod() ||
3687          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3688        IsLinkageLookup = true;
3689    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3690      IsLinkageLookup = true;
3691    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3692             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3693      IsLinkageLookup = true;
3694
3695    if (IsLinkageLookup)
3696      Previous.clear(LookupRedeclarationWithLinkage);
3697
3698    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3699  } else { // Something like "int foo::x;"
3700    LookupQualifiedName(Previous, DC);
3701
3702    // C++ [dcl.meaning]p1:
3703    //   When the declarator-id is qualified, the declaration shall refer to a
3704    //  previously declared member of the class or namespace to which the
3705    //  qualifier refers (or, in the case of a namespace, of an element of the
3706    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3707    //  thereof; [...]
3708    //
3709    // Note that we already checked the context above, and that we do not have
3710    // enough information to make sure that Previous contains the declaration
3711    // we want to match. For example, given:
3712    //
3713    //   class X {
3714    //     void f();
3715    //     void f(float);
3716    //   };
3717    //
3718    //   void X::f(int) { } // ill-formed
3719    //
3720    // In this case, Previous will point to the overload set
3721    // containing the two f's declared in X, but neither of them
3722    // matches.
3723
3724    // C++ [dcl.meaning]p1:
3725    //   [...] the member shall not merely have been introduced by a
3726    //   using-declaration in the scope of the class or namespace nominated by
3727    //   the nested-name-specifier of the declarator-id.
3728    RemoveUsingDecls(Previous);
3729  }
3730
3731  if (Previous.isSingleResult() &&
3732      Previous.getFoundDecl()->isTemplateParameter()) {
3733    // Maybe we will complain about the shadowed template parameter.
3734    if (!D.isInvalidType())
3735      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3736                                      Previous.getFoundDecl());
3737
3738    // Just pretend that we didn't see the previous declaration.
3739    Previous.clear();
3740  }
3741
3742  // In C++, the previous declaration we find might be a tag type
3743  // (class or enum). In this case, the new declaration will hide the
3744  // tag type. Note that this does does not apply if we're declaring a
3745  // typedef (C++ [dcl.typedef]p4).
3746  if (Previous.isSingleTagDecl() &&
3747      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3748    Previous.clear();
3749
3750  bool AddToScope = true;
3751  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3752    if (TemplateParamLists.size()) {
3753      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3754      return 0;
3755    }
3756
3757    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3758  } else if (R->isFunctionType()) {
3759    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3760                                  TemplateParamLists,
3761                                  AddToScope);
3762  } else {
3763    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3764                                  TemplateParamLists);
3765  }
3766
3767  if (New == 0)
3768    return 0;
3769
3770  // If this has an identifier and is not an invalid redeclaration or
3771  // function template specialization, add it to the scope stack.
3772  if (New->getDeclName() && AddToScope &&
3773       !(D.isRedeclaration() && New->isInvalidDecl()))
3774    PushOnScopeChains(New, S);
3775
3776  return New;
3777}
3778
3779/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3780/// types into constant array types in certain situations which would otherwise
3781/// be errors (for GCC compatibility).
3782static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3783                                                    ASTContext &Context,
3784                                                    bool &SizeIsNegative,
3785                                                    llvm::APSInt &Oversized) {
3786  // This method tries to turn a variable array into a constant
3787  // array even when the size isn't an ICE.  This is necessary
3788  // for compatibility with code that depends on gcc's buggy
3789  // constant expression folding, like struct {char x[(int)(char*)2];}
3790  SizeIsNegative = false;
3791  Oversized = 0;
3792
3793  if (T->isDependentType())
3794    return QualType();
3795
3796  QualifierCollector Qs;
3797  const Type *Ty = Qs.strip(T);
3798
3799  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3800    QualType Pointee = PTy->getPointeeType();
3801    QualType FixedType =
3802        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3803                                            Oversized);
3804    if (FixedType.isNull()) return FixedType;
3805    FixedType = Context.getPointerType(FixedType);
3806    return Qs.apply(Context, FixedType);
3807  }
3808  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3809    QualType Inner = PTy->getInnerType();
3810    QualType FixedType =
3811        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3812                                            Oversized);
3813    if (FixedType.isNull()) return FixedType;
3814    FixedType = Context.getParenType(FixedType);
3815    return Qs.apply(Context, FixedType);
3816  }
3817
3818  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3819  if (!VLATy)
3820    return QualType();
3821  // FIXME: We should probably handle this case
3822  if (VLATy->getElementType()->isVariablyModifiedType())
3823    return QualType();
3824
3825  llvm::APSInt Res;
3826  if (!VLATy->getSizeExpr() ||
3827      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3828    return QualType();
3829
3830  // Check whether the array size is negative.
3831  if (Res.isSigned() && Res.isNegative()) {
3832    SizeIsNegative = true;
3833    return QualType();
3834  }
3835
3836  // Check whether the array is too large to be addressed.
3837  unsigned ActiveSizeBits
3838    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3839                                              Res);
3840  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3841    Oversized = Res;
3842    return QualType();
3843  }
3844
3845  return Context.getConstantArrayType(VLATy->getElementType(),
3846                                      Res, ArrayType::Normal, 0);
3847}
3848
3849/// \brief Register the given locally-scoped external C declaration so
3850/// that it can be found later for redeclarations
3851void
3852Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3853                                       const LookupResult &Previous,
3854                                       Scope *S) {
3855  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3856         "Decl is not a locally-scoped decl!");
3857  // Note that we have a locally-scoped external with this name.
3858  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3859
3860  if (!Previous.isSingleResult())
3861    return;
3862
3863  NamedDecl *PrevDecl = Previous.getFoundDecl();
3864
3865  // If there was a previous declaration of this variable, it may be
3866  // in our identifier chain. Update the identifier chain with the new
3867  // declaration.
3868  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3869    // The previous declaration was found on the identifer resolver
3870    // chain, so remove it from its scope.
3871
3872    if (S->isDeclScope(PrevDecl)) {
3873      // Special case for redeclarations in the SAME scope.
3874      // Because this declaration is going to be added to the identifier chain
3875      // later, we should temporarily take it OFF the chain.
3876      IdResolver.RemoveDecl(ND);
3877
3878    } else {
3879      // Find the scope for the original declaration.
3880      while (S && !S->isDeclScope(PrevDecl))
3881        S = S->getParent();
3882    }
3883
3884    if (S)
3885      S->RemoveDecl(PrevDecl);
3886  }
3887}
3888
3889llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3890Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3891  if (ExternalSource) {
3892    // Load locally-scoped external decls from the external source.
3893    SmallVector<NamedDecl *, 4> Decls;
3894    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3895    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3896      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3897        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3898      if (Pos == LocallyScopedExternalDecls.end())
3899        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3900    }
3901  }
3902
3903  return LocallyScopedExternalDecls.find(Name);
3904}
3905
3906/// \brief Diagnose function specifiers on a declaration of an identifier that
3907/// does not identify a function.
3908void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3909  // FIXME: We should probably indicate the identifier in question to avoid
3910  // confusion for constructs like "inline int a(), b;"
3911  if (D.getDeclSpec().isInlineSpecified())
3912    Diag(D.getDeclSpec().getInlineSpecLoc(),
3913         diag::err_inline_non_function);
3914
3915  if (D.getDeclSpec().isVirtualSpecified())
3916    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3917         diag::err_virtual_non_function);
3918
3919  if (D.getDeclSpec().isExplicitSpecified())
3920    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3921         diag::err_explicit_non_function);
3922}
3923
3924NamedDecl*
3925Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3926                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3927  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3928  if (D.getCXXScopeSpec().isSet()) {
3929    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3930      << D.getCXXScopeSpec().getRange();
3931    D.setInvalidType();
3932    // Pretend we didn't see the scope specifier.
3933    DC = CurContext;
3934    Previous.clear();
3935  }
3936
3937  if (getLangOpts().CPlusPlus) {
3938    // Check that there are no default arguments (C++ only).
3939    CheckExtraCXXDefaultArguments(D);
3940  }
3941
3942  DiagnoseFunctionSpecifiers(D);
3943
3944  if (D.getDeclSpec().isThreadSpecified())
3945    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3946  if (D.getDeclSpec().isConstexprSpecified())
3947    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3948      << 1;
3949
3950  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3951    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3952      << D.getName().getSourceRange();
3953    return 0;
3954  }
3955
3956  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3957  if (!NewTD) return 0;
3958
3959  // Handle attributes prior to checking for duplicates in MergeVarDecl
3960  ProcessDeclAttributes(S, NewTD, D);
3961
3962  CheckTypedefForVariablyModifiedType(S, NewTD);
3963
3964  bool Redeclaration = D.isRedeclaration();
3965  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3966  D.setRedeclaration(Redeclaration);
3967  return ND;
3968}
3969
3970void
3971Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3972  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3973  // then it shall have block scope.
3974  // Note that variably modified types must be fixed before merging the decl so
3975  // that redeclarations will match.
3976  QualType T = NewTD->getUnderlyingType();
3977  if (T->isVariablyModifiedType()) {
3978    getCurFunction()->setHasBranchProtectedScope();
3979
3980    if (S->getFnParent() == 0) {
3981      bool SizeIsNegative;
3982      llvm::APSInt Oversized;
3983      QualType FixedTy =
3984          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3985                                              Oversized);
3986      if (!FixedTy.isNull()) {
3987        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3988        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3989      } else {
3990        if (SizeIsNegative)
3991          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3992        else if (T->isVariableArrayType())
3993          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3994        else if (Oversized.getBoolValue())
3995          Diag(NewTD->getLocation(), diag::err_array_too_large)
3996            << Oversized.toString(10);
3997        else
3998          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3999        NewTD->setInvalidDecl();
4000      }
4001    }
4002  }
4003}
4004
4005
4006/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4007/// declares a typedef-name, either using the 'typedef' type specifier or via
4008/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4009NamedDecl*
4010Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4011                           LookupResult &Previous, bool &Redeclaration) {
4012  // Merge the decl with the existing one if appropriate. If the decl is
4013  // in an outer scope, it isn't the same thing.
4014  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4015                       /*ExplicitInstantiationOrSpecialization=*/false);
4016  if (!Previous.empty()) {
4017    Redeclaration = true;
4018    MergeTypedefNameDecl(NewTD, Previous);
4019  }
4020
4021  // If this is the C FILE type, notify the AST context.
4022  if (IdentifierInfo *II = NewTD->getIdentifier())
4023    if (!NewTD->isInvalidDecl() &&
4024        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4025      if (II->isStr("FILE"))
4026        Context.setFILEDecl(NewTD);
4027      else if (II->isStr("jmp_buf"))
4028        Context.setjmp_bufDecl(NewTD);
4029      else if (II->isStr("sigjmp_buf"))
4030        Context.setsigjmp_bufDecl(NewTD);
4031      else if (II->isStr("ucontext_t"))
4032        Context.setucontext_tDecl(NewTD);
4033    }
4034
4035  return NewTD;
4036}
4037
4038/// \brief Determines whether the given declaration is an out-of-scope
4039/// previous declaration.
4040///
4041/// This routine should be invoked when name lookup has found a
4042/// previous declaration (PrevDecl) that is not in the scope where a
4043/// new declaration by the same name is being introduced. If the new
4044/// declaration occurs in a local scope, previous declarations with
4045/// linkage may still be considered previous declarations (C99
4046/// 6.2.2p4-5, C++ [basic.link]p6).
4047///
4048/// \param PrevDecl the previous declaration found by name
4049/// lookup
4050///
4051/// \param DC the context in which the new declaration is being
4052/// declared.
4053///
4054/// \returns true if PrevDecl is an out-of-scope previous declaration
4055/// for a new delcaration with the same name.
4056static bool
4057isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4058                                ASTContext &Context) {
4059  if (!PrevDecl)
4060    return false;
4061
4062  if (!PrevDecl->hasLinkage())
4063    return false;
4064
4065  if (Context.getLangOpts().CPlusPlus) {
4066    // C++ [basic.link]p6:
4067    //   If there is a visible declaration of an entity with linkage
4068    //   having the same name and type, ignoring entities declared
4069    //   outside the innermost enclosing namespace scope, the block
4070    //   scope declaration declares that same entity and receives the
4071    //   linkage of the previous declaration.
4072    DeclContext *OuterContext = DC->getRedeclContext();
4073    if (!OuterContext->isFunctionOrMethod())
4074      // This rule only applies to block-scope declarations.
4075      return false;
4076
4077    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4078    if (PrevOuterContext->isRecord())
4079      // We found a member function: ignore it.
4080      return false;
4081
4082    // Find the innermost enclosing namespace for the new and
4083    // previous declarations.
4084    OuterContext = OuterContext->getEnclosingNamespaceContext();
4085    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4086
4087    // The previous declaration is in a different namespace, so it
4088    // isn't the same function.
4089    if (!OuterContext->Equals(PrevOuterContext))
4090      return false;
4091  }
4092
4093  return true;
4094}
4095
4096static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4097  CXXScopeSpec &SS = D.getCXXScopeSpec();
4098  if (!SS.isSet()) return;
4099  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4100}
4101
4102bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4103  QualType type = decl->getType();
4104  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4105  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4106    // Various kinds of declaration aren't allowed to be __autoreleasing.
4107    unsigned kind = -1U;
4108    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4109      if (var->hasAttr<BlocksAttr>())
4110        kind = 0; // __block
4111      else if (!var->hasLocalStorage())
4112        kind = 1; // global
4113    } else if (isa<ObjCIvarDecl>(decl)) {
4114      kind = 3; // ivar
4115    } else if (isa<FieldDecl>(decl)) {
4116      kind = 2; // field
4117    }
4118
4119    if (kind != -1U) {
4120      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4121        << kind;
4122    }
4123  } else if (lifetime == Qualifiers::OCL_None) {
4124    // Try to infer lifetime.
4125    if (!type->isObjCLifetimeType())
4126      return false;
4127
4128    lifetime = type->getObjCARCImplicitLifetime();
4129    type = Context.getLifetimeQualifiedType(type, lifetime);
4130    decl->setType(type);
4131  }
4132
4133  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4134    // Thread-local variables cannot have lifetime.
4135    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4136        var->isThreadSpecified()) {
4137      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4138        << var->getType();
4139      return true;
4140    }
4141  }
4142
4143  return false;
4144}
4145
4146NamedDecl*
4147Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4148                              TypeSourceInfo *TInfo, LookupResult &Previous,
4149                              MultiTemplateParamsArg TemplateParamLists) {
4150  QualType R = TInfo->getType();
4151  DeclarationName Name = GetNameForDeclarator(D).getName();
4152
4153  // Check that there are no default arguments (C++ only).
4154  if (getLangOpts().CPlusPlus)
4155    CheckExtraCXXDefaultArguments(D);
4156
4157  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4158  assert(SCSpec != DeclSpec::SCS_typedef &&
4159         "Parser allowed 'typedef' as storage class VarDecl.");
4160  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4161  if (SCSpec == DeclSpec::SCS_mutable) {
4162    // mutable can only appear on non-static class members, so it's always
4163    // an error here
4164    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4165    D.setInvalidType();
4166    SC = SC_None;
4167  }
4168  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4169  VarDecl::StorageClass SCAsWritten
4170    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4171
4172  IdentifierInfo *II = Name.getAsIdentifierInfo();
4173  if (!II) {
4174    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4175      << Name;
4176    return 0;
4177  }
4178
4179  DiagnoseFunctionSpecifiers(D);
4180
4181  if (!DC->isRecord() && S->getFnParent() == 0) {
4182    // C99 6.9p2: The storage-class specifiers auto and register shall not
4183    // appear in the declaration specifiers in an external declaration.
4184    if (SC == SC_Auto || SC == SC_Register) {
4185
4186      // If this is a register variable with an asm label specified, then this
4187      // is a GNU extension.
4188      if (SC == SC_Register && D.getAsmLabel())
4189        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4190      else
4191        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4192      D.setInvalidType();
4193    }
4194  }
4195
4196  if (getLangOpts().OpenCL) {
4197    // Set up the special work-group-local storage class for variables in the
4198    // OpenCL __local address space.
4199    if (R.getAddressSpace() == LangAS::opencl_local)
4200      SC = SC_OpenCLWorkGroupLocal;
4201  }
4202
4203  bool isExplicitSpecialization = false;
4204  VarDecl *NewVD;
4205  if (!getLangOpts().CPlusPlus) {
4206    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4207                            D.getIdentifierLoc(), II,
4208                            R, TInfo, SC, SCAsWritten);
4209
4210    if (D.isInvalidType())
4211      NewVD->setInvalidDecl();
4212  } else {
4213    if (DC->isRecord() && !CurContext->isRecord()) {
4214      // This is an out-of-line definition of a static data member.
4215      if (SC == SC_Static) {
4216        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4217             diag::err_static_out_of_line)
4218          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4219      } else if (SC == SC_None)
4220        SC = SC_Static;
4221    }
4222    if (SC == SC_Static && CurContext->isRecord()) {
4223      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4224        if (RD->isLocalClass())
4225          Diag(D.getIdentifierLoc(),
4226               diag::err_static_data_member_not_allowed_in_local_class)
4227            << Name << RD->getDeclName();
4228
4229        // C++98 [class.union]p1: If a union contains a static data member,
4230        // the program is ill-formed. C++11 drops this restriction.
4231        if (RD->isUnion())
4232          Diag(D.getIdentifierLoc(),
4233               getLangOpts().CPlusPlus0x
4234                 ? diag::warn_cxx98_compat_static_data_member_in_union
4235                 : diag::ext_static_data_member_in_union) << Name;
4236        // We conservatively disallow static data members in anonymous structs.
4237        else if (!RD->getDeclName())
4238          Diag(D.getIdentifierLoc(),
4239               diag::err_static_data_member_not_allowed_in_anon_struct)
4240            << Name << RD->isUnion();
4241      }
4242    }
4243
4244    // Match up the template parameter lists with the scope specifier, then
4245    // determine whether we have a template or a template specialization.
4246    isExplicitSpecialization = false;
4247    bool Invalid = false;
4248    if (TemplateParameterList *TemplateParams
4249        = MatchTemplateParametersToScopeSpecifier(
4250                                  D.getDeclSpec().getLocStart(),
4251                                                  D.getIdentifierLoc(),
4252                                                  D.getCXXScopeSpec(),
4253                                                  TemplateParamLists.data(),
4254                                                  TemplateParamLists.size(),
4255                                                  /*never a friend*/ false,
4256                                                  isExplicitSpecialization,
4257                                                  Invalid)) {
4258      if (TemplateParams->size() > 0) {
4259        // There is no such thing as a variable template.
4260        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4261          << II
4262          << SourceRange(TemplateParams->getTemplateLoc(),
4263                         TemplateParams->getRAngleLoc());
4264        return 0;
4265      } else {
4266        // There is an extraneous 'template<>' for this variable. Complain
4267        // about it, but allow the declaration of the variable.
4268        Diag(TemplateParams->getTemplateLoc(),
4269             diag::err_template_variable_noparams)
4270          << II
4271          << SourceRange(TemplateParams->getTemplateLoc(),
4272                         TemplateParams->getRAngleLoc());
4273      }
4274    }
4275
4276    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4277                            D.getIdentifierLoc(), II,
4278                            R, TInfo, SC, SCAsWritten);
4279
4280    // If this decl has an auto type in need of deduction, make a note of the
4281    // Decl so we can diagnose uses of it in its own initializer.
4282    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4283        R->getContainedAutoType())
4284      ParsingInitForAutoVars.insert(NewVD);
4285
4286    if (D.isInvalidType() || Invalid)
4287      NewVD->setInvalidDecl();
4288
4289    SetNestedNameSpecifier(NewVD, D);
4290
4291    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4292      NewVD->setTemplateParameterListsInfo(Context,
4293                                           TemplateParamLists.size(),
4294                                           TemplateParamLists.data());
4295    }
4296
4297    if (D.getDeclSpec().isConstexprSpecified())
4298      NewVD->setConstexpr(true);
4299  }
4300
4301  // Set the lexical context. If the declarator has a C++ scope specifier, the
4302  // lexical context will be different from the semantic context.
4303  NewVD->setLexicalDeclContext(CurContext);
4304
4305  if (D.getDeclSpec().isThreadSpecified()) {
4306    if (NewVD->hasLocalStorage())
4307      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4308    else if (!Context.getTargetInfo().isTLSSupported())
4309      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4310    else
4311      NewVD->setThreadSpecified(true);
4312  }
4313
4314  if (D.getDeclSpec().isModulePrivateSpecified()) {
4315    if (isExplicitSpecialization)
4316      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4317        << 2
4318        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4319    else if (NewVD->hasLocalStorage())
4320      Diag(NewVD->getLocation(), diag::err_module_private_local)
4321        << 0 << NewVD->getDeclName()
4322        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4323        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4324    else
4325      NewVD->setModulePrivate();
4326  }
4327
4328  // Handle attributes prior to checking for duplicates in MergeVarDecl
4329  ProcessDeclAttributes(S, NewVD, D);
4330
4331  if (getLangOpts().CUDA) {
4332    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4333    // storage [duration]."
4334    if (SC == SC_None && S->getFnParent() != 0 &&
4335       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4336      NewVD->setStorageClass(SC_Static);
4337  }
4338
4339  // In auto-retain/release, infer strong retension for variables of
4340  // retainable type.
4341  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4342    NewVD->setInvalidDecl();
4343
4344  // Handle GNU asm-label extension (encoded as an attribute).
4345  if (Expr *E = (Expr*)D.getAsmLabel()) {
4346    // The parser guarantees this is a string.
4347    StringLiteral *SE = cast<StringLiteral>(E);
4348    StringRef Label = SE->getString();
4349    if (S->getFnParent() != 0) {
4350      switch (SC) {
4351      case SC_None:
4352      case SC_Auto:
4353        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4354        break;
4355      case SC_Register:
4356        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4357          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4358        break;
4359      case SC_Static:
4360      case SC_Extern:
4361      case SC_PrivateExtern:
4362      case SC_OpenCLWorkGroupLocal:
4363        break;
4364      }
4365    }
4366
4367    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4368                                                Context, Label));
4369  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4370    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4371      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4372    if (I != ExtnameUndeclaredIdentifiers.end()) {
4373      NewVD->addAttr(I->second);
4374      ExtnameUndeclaredIdentifiers.erase(I);
4375    }
4376  }
4377
4378  // Diagnose shadowed variables before filtering for scope.
4379  if (!D.getCXXScopeSpec().isSet())
4380    CheckShadow(S, NewVD, Previous);
4381
4382  // Don't consider existing declarations that are in a different
4383  // scope and are out-of-semantic-context declarations (if the new
4384  // declaration has linkage).
4385  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4386                       isExplicitSpecialization);
4387
4388  if (!getLangOpts().CPlusPlus) {
4389    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4390  } else {
4391    // Merge the decl with the existing one if appropriate.
4392    if (!Previous.empty()) {
4393      if (Previous.isSingleResult() &&
4394          isa<FieldDecl>(Previous.getFoundDecl()) &&
4395          D.getCXXScopeSpec().isSet()) {
4396        // The user tried to define a non-static data member
4397        // out-of-line (C++ [dcl.meaning]p1).
4398        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4399          << D.getCXXScopeSpec().getRange();
4400        Previous.clear();
4401        NewVD->setInvalidDecl();
4402      }
4403    } else if (D.getCXXScopeSpec().isSet()) {
4404      // No previous declaration in the qualifying scope.
4405      Diag(D.getIdentifierLoc(), diag::err_no_member)
4406        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4407        << D.getCXXScopeSpec().getRange();
4408      NewVD->setInvalidDecl();
4409    }
4410
4411    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4412
4413    // This is an explicit specialization of a static data member. Check it.
4414    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4415        CheckMemberSpecialization(NewVD, Previous))
4416      NewVD->setInvalidDecl();
4417  }
4418
4419  // If this is a locally-scoped extern C variable, update the map of
4420  // such variables.
4421  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4422      !NewVD->isInvalidDecl())
4423    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4424
4425  // If there's a #pragma GCC visibility in scope, and this isn't a class
4426  // member, set the visibility of this variable.
4427  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4428    AddPushedVisibilityAttribute(NewVD);
4429
4430  MarkUnusedFileScopedDecl(NewVD);
4431
4432  return NewVD;
4433}
4434
4435/// \brief Diagnose variable or built-in function shadowing.  Implements
4436/// -Wshadow.
4437///
4438/// This method is called whenever a VarDecl is added to a "useful"
4439/// scope.
4440///
4441/// \param S the scope in which the shadowing name is being declared
4442/// \param R the lookup of the name
4443///
4444void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4445  // Return if warning is ignored.
4446  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4447        DiagnosticsEngine::Ignored)
4448    return;
4449
4450  // Don't diagnose declarations at file scope.
4451  if (D->hasGlobalStorage())
4452    return;
4453
4454  DeclContext *NewDC = D->getDeclContext();
4455
4456  // Only diagnose if we're shadowing an unambiguous field or variable.
4457  if (R.getResultKind() != LookupResult::Found)
4458    return;
4459
4460  NamedDecl* ShadowedDecl = R.getFoundDecl();
4461  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4462    return;
4463
4464  // Fields are not shadowed by variables in C++ static methods.
4465  if (isa<FieldDecl>(ShadowedDecl))
4466    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4467      if (MD->isStatic())
4468        return;
4469
4470  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4471    if (shadowedVar->isExternC()) {
4472      // For shadowing external vars, make sure that we point to the global
4473      // declaration, not a locally scoped extern declaration.
4474      for (VarDecl::redecl_iterator
4475             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4476           I != E; ++I)
4477        if (I->isFileVarDecl()) {
4478          ShadowedDecl = *I;
4479          break;
4480        }
4481    }
4482
4483  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4484
4485  // Only warn about certain kinds of shadowing for class members.
4486  if (NewDC && NewDC->isRecord()) {
4487    // In particular, don't warn about shadowing non-class members.
4488    if (!OldDC->isRecord())
4489      return;
4490
4491    // TODO: should we warn about static data members shadowing
4492    // static data members from base classes?
4493
4494    // TODO: don't diagnose for inaccessible shadowed members.
4495    // This is hard to do perfectly because we might friend the
4496    // shadowing context, but that's just a false negative.
4497  }
4498
4499  // Determine what kind of declaration we're shadowing.
4500  unsigned Kind;
4501  if (isa<RecordDecl>(OldDC)) {
4502    if (isa<FieldDecl>(ShadowedDecl))
4503      Kind = 3; // field
4504    else
4505      Kind = 2; // static data member
4506  } else if (OldDC->isFileContext())
4507    Kind = 1; // global
4508  else
4509    Kind = 0; // local
4510
4511  DeclarationName Name = R.getLookupName();
4512
4513  // Emit warning and note.
4514  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4515  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4516}
4517
4518/// \brief Check -Wshadow without the advantage of a previous lookup.
4519void Sema::CheckShadow(Scope *S, VarDecl *D) {
4520  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4521        DiagnosticsEngine::Ignored)
4522    return;
4523
4524  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4525                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4526  LookupName(R, S);
4527  CheckShadow(S, D, R);
4528}
4529
4530/// \brief Perform semantic checking on a newly-created variable
4531/// declaration.
4532///
4533/// This routine performs all of the type-checking required for a
4534/// variable declaration once it has been built. It is used both to
4535/// check variables after they have been parsed and their declarators
4536/// have been translated into a declaration, and to check variables
4537/// that have been instantiated from a template.
4538///
4539/// Sets NewVD->isInvalidDecl() if an error was encountered.
4540///
4541/// Returns true if the variable declaration is a redeclaration.
4542bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4543                                    LookupResult &Previous) {
4544  // If the decl is already known invalid, don't check it.
4545  if (NewVD->isInvalidDecl())
4546    return false;
4547
4548  QualType T = NewVD->getType();
4549
4550  if (T->isObjCObjectType()) {
4551    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4552      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4553    T = Context.getObjCObjectPointerType(T);
4554    NewVD->setType(T);
4555  }
4556
4557  // Emit an error if an address space was applied to decl with local storage.
4558  // This includes arrays of objects with address space qualifiers, but not
4559  // automatic variables that point to other address spaces.
4560  // ISO/IEC TR 18037 S5.1.2
4561  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4562    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4563    NewVD->setInvalidDecl();
4564    return false;
4565  }
4566
4567  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4568  // scope.
4569  if ((getLangOpts().OpenCLVersion >= 120)
4570      && NewVD->isStaticLocal()) {
4571    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4572    NewVD->setInvalidDecl();
4573    return false;
4574  }
4575
4576  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4577      && !NewVD->hasAttr<BlocksAttr>()) {
4578    if (getLangOpts().getGC() != LangOptions::NonGC)
4579      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4580    else
4581      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4582  }
4583
4584  bool isVM = T->isVariablyModifiedType();
4585  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4586      NewVD->hasAttr<BlocksAttr>())
4587    getCurFunction()->setHasBranchProtectedScope();
4588
4589  if ((isVM && NewVD->hasLinkage()) ||
4590      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4591    bool SizeIsNegative;
4592    llvm::APSInt Oversized;
4593    QualType FixedTy =
4594        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4595                                            Oversized);
4596
4597    if (FixedTy.isNull() && T->isVariableArrayType()) {
4598      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4599      // FIXME: This won't give the correct result for
4600      // int a[10][n];
4601      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4602
4603      if (NewVD->isFileVarDecl())
4604        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4605        << SizeRange;
4606      else if (NewVD->getStorageClass() == SC_Static)
4607        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4608        << SizeRange;
4609      else
4610        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4611        << SizeRange;
4612      NewVD->setInvalidDecl();
4613      return false;
4614    }
4615
4616    if (FixedTy.isNull()) {
4617      if (NewVD->isFileVarDecl())
4618        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4619      else
4620        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4621      NewVD->setInvalidDecl();
4622      return false;
4623    }
4624
4625    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4626    NewVD->setType(FixedTy);
4627  }
4628
4629  if (Previous.empty() && NewVD->isExternC()) {
4630    // Since we did not find anything by this name and we're declaring
4631    // an extern "C" variable, look for a non-visible extern "C"
4632    // declaration with the same name.
4633    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4634      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4635    if (Pos != LocallyScopedExternalDecls.end())
4636      Previous.addDecl(Pos->second);
4637  }
4638
4639  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4640    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4641      << T;
4642    NewVD->setInvalidDecl();
4643    return false;
4644  }
4645
4646  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4647    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4648    NewVD->setInvalidDecl();
4649    return false;
4650  }
4651
4652  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4653    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4654    NewVD->setInvalidDecl();
4655    return false;
4656  }
4657
4658  if (NewVD->isConstexpr() && !T->isDependentType() &&
4659      RequireLiteralType(NewVD->getLocation(), T,
4660                         diag::err_constexpr_var_non_literal)) {
4661    NewVD->setInvalidDecl();
4662    return false;
4663  }
4664
4665  if (!Previous.empty()) {
4666    MergeVarDecl(NewVD, Previous);
4667    return true;
4668  }
4669  return false;
4670}
4671
4672/// \brief Data used with FindOverriddenMethod
4673struct FindOverriddenMethodData {
4674  Sema *S;
4675  CXXMethodDecl *Method;
4676};
4677
4678/// \brief Member lookup function that determines whether a given C++
4679/// method overrides a method in a base class, to be used with
4680/// CXXRecordDecl::lookupInBases().
4681static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4682                                 CXXBasePath &Path,
4683                                 void *UserData) {
4684  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4685
4686  FindOverriddenMethodData *Data
4687    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4688
4689  DeclarationName Name = Data->Method->getDeclName();
4690
4691  // FIXME: Do we care about other names here too?
4692  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4693    // We really want to find the base class destructor here.
4694    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4695    CanQualType CT = Data->S->Context.getCanonicalType(T);
4696
4697    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4698  }
4699
4700  for (Path.Decls = BaseRecord->lookup(Name);
4701       Path.Decls.first != Path.Decls.second;
4702       ++Path.Decls.first) {
4703    NamedDecl *D = *Path.Decls.first;
4704    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4705      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4706        return true;
4707    }
4708  }
4709
4710  return false;
4711}
4712
4713/// AddOverriddenMethods - See if a method overrides any in the base classes,
4714/// and if so, check that it's a valid override and remember it.
4715bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4716  // Look for virtual methods in base classes that this method might override.
4717  CXXBasePaths Paths;
4718  FindOverriddenMethodData Data;
4719  Data.Method = MD;
4720  Data.S = this;
4721  bool AddedAny = false;
4722  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4723    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4724         E = Paths.found_decls_end(); I != E; ++I) {
4725      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4726        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4727        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4728            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4729            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4730          AddedAny = true;
4731        }
4732      }
4733    }
4734  }
4735
4736  return AddedAny;
4737}
4738
4739namespace {
4740  // Struct for holding all of the extra arguments needed by
4741  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4742  struct ActOnFDArgs {
4743    Scope *S;
4744    Declarator &D;
4745    MultiTemplateParamsArg TemplateParamLists;
4746    bool AddToScope;
4747  };
4748}
4749
4750namespace {
4751
4752// Callback to only accept typo corrections that have a non-zero edit distance.
4753// Also only accept corrections that have the same parent decl.
4754class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4755 public:
4756  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4757                            CXXRecordDecl *Parent)
4758      : Context(Context), OriginalFD(TypoFD),
4759        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4760
4761  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4762    if (candidate.getEditDistance() == 0)
4763      return false;
4764
4765    llvm::SmallVector<unsigned, 1> MismatchedParams;
4766    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4767                                          CDeclEnd = candidate.end();
4768         CDecl != CDeclEnd; ++CDecl) {
4769      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4770
4771      if (FD && !FD->hasBody() &&
4772          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4773        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4774          CXXRecordDecl *Parent = MD->getParent();
4775          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4776            return true;
4777        } else if (!ExpectedParent) {
4778          return true;
4779        }
4780      }
4781    }
4782
4783    return false;
4784  }
4785
4786 private:
4787  ASTContext &Context;
4788  FunctionDecl *OriginalFD;
4789  CXXRecordDecl *ExpectedParent;
4790};
4791
4792}
4793
4794/// \brief Generate diagnostics for an invalid function redeclaration.
4795///
4796/// This routine handles generating the diagnostic messages for an invalid
4797/// function redeclaration, including finding possible similar declarations
4798/// or performing typo correction if there are no previous declarations with
4799/// the same name.
4800///
4801/// Returns a NamedDecl iff typo correction was performed and substituting in
4802/// the new declaration name does not cause new errors.
4803static NamedDecl* DiagnoseInvalidRedeclaration(
4804    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4805    ActOnFDArgs &ExtraArgs) {
4806  NamedDecl *Result = NULL;
4807  DeclarationName Name = NewFD->getDeclName();
4808  DeclContext *NewDC = NewFD->getDeclContext();
4809  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4810                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4811  llvm::SmallVector<unsigned, 1> MismatchedParams;
4812  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4813  TypoCorrection Correction;
4814  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4815                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4816  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4817                                  : diag::err_member_def_does_not_match;
4818
4819  NewFD->setInvalidDecl();
4820  SemaRef.LookupQualifiedName(Prev, NewDC);
4821  assert(!Prev.isAmbiguous() &&
4822         "Cannot have an ambiguity in previous-declaration lookup");
4823  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4824  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4825                                      MD ? MD->getParent() : 0);
4826  if (!Prev.empty()) {
4827    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4828         Func != FuncEnd; ++Func) {
4829      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4830      if (FD &&
4831          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4832        // Add 1 to the index so that 0 can mean the mismatch didn't
4833        // involve a parameter
4834        unsigned ParamNum =
4835            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4836        NearMatches.push_back(std::make_pair(FD, ParamNum));
4837      }
4838    }
4839  // If the qualified name lookup yielded nothing, try typo correction
4840  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4841                                         Prev.getLookupKind(), 0, 0,
4842                                         Validator, NewDC))) {
4843    // Trap errors.
4844    Sema::SFINAETrap Trap(SemaRef);
4845
4846    // Set up everything for the call to ActOnFunctionDeclarator
4847    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4848                              ExtraArgs.D.getIdentifierLoc());
4849    Previous.clear();
4850    Previous.setLookupName(Correction.getCorrection());
4851    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4852                                    CDeclEnd = Correction.end();
4853         CDecl != CDeclEnd; ++CDecl) {
4854      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4855      if (FD && !FD->hasBody() &&
4856          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4857        Previous.addDecl(FD);
4858      }
4859    }
4860    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4861    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4862    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4863    // eliminate the need for the parameter pack ExtraArgs.
4864    Result = SemaRef.ActOnFunctionDeclarator(
4865        ExtraArgs.S, ExtraArgs.D,
4866        Correction.getCorrectionDecl()->getDeclContext(),
4867        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4868        ExtraArgs.AddToScope);
4869    if (Trap.hasErrorOccurred()) {
4870      // Pretend the typo correction never occurred
4871      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4872                                ExtraArgs.D.getIdentifierLoc());
4873      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4874      Previous.clear();
4875      Previous.setLookupName(Name);
4876      Result = NULL;
4877    } else {
4878      for (LookupResult::iterator Func = Previous.begin(),
4879                               FuncEnd = Previous.end();
4880           Func != FuncEnd; ++Func) {
4881        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4882          NearMatches.push_back(std::make_pair(FD, 0));
4883      }
4884    }
4885    if (NearMatches.empty()) {
4886      // Ignore the correction if it didn't yield any close FunctionDecl matches
4887      Correction = TypoCorrection();
4888    } else {
4889      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4890                             : diag::err_member_def_does_not_match_suggest;
4891    }
4892  }
4893
4894  if (Correction) {
4895    SourceRange FixItLoc(NewFD->getLocation());
4896    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4897    if (Correction.getCorrectionSpecifier() && SS.isValid())
4898      FixItLoc.setBegin(SS.getBeginLoc());
4899    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4900        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4901        << FixItHint::CreateReplacement(
4902            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4903  } else {
4904    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4905        << Name << NewDC << NewFD->getLocation();
4906  }
4907
4908  bool NewFDisConst = false;
4909  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4910    NewFDisConst = NewMD->isConst();
4911
4912  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4913       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4914       NearMatch != NearMatchEnd; ++NearMatch) {
4915    FunctionDecl *FD = NearMatch->first;
4916    bool FDisConst = false;
4917    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4918      FDisConst = MD->isConst();
4919
4920    if (unsigned Idx = NearMatch->second) {
4921      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4922      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4923      if (Loc.isInvalid()) Loc = FD->getLocation();
4924      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4925          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4926    } else if (Correction) {
4927      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4928          << Correction.getQuoted(SemaRef.getLangOpts());
4929    } else if (FDisConst != NewFDisConst) {
4930      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4931          << NewFDisConst << FD->getSourceRange().getEnd();
4932    } else
4933      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4934  }
4935  return Result;
4936}
4937
4938static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4939                                                          Declarator &D) {
4940  switch (D.getDeclSpec().getStorageClassSpec()) {
4941  default: llvm_unreachable("Unknown storage class!");
4942  case DeclSpec::SCS_auto:
4943  case DeclSpec::SCS_register:
4944  case DeclSpec::SCS_mutable:
4945    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4946                 diag::err_typecheck_sclass_func);
4947    D.setInvalidType();
4948    break;
4949  case DeclSpec::SCS_unspecified: break;
4950  case DeclSpec::SCS_extern: return SC_Extern;
4951  case DeclSpec::SCS_static: {
4952    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4953      // C99 6.7.1p5:
4954      //   The declaration of an identifier for a function that has
4955      //   block scope shall have no explicit storage-class specifier
4956      //   other than extern
4957      // See also (C++ [dcl.stc]p4).
4958      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4959                   diag::err_static_block_func);
4960      break;
4961    } else
4962      return SC_Static;
4963  }
4964  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4965  }
4966
4967  // No explicit storage class has already been returned
4968  return SC_None;
4969}
4970
4971static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4972                                           DeclContext *DC, QualType &R,
4973                                           TypeSourceInfo *TInfo,
4974                                           FunctionDecl::StorageClass SC,
4975                                           bool &IsVirtualOkay) {
4976  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4977  DeclarationName Name = NameInfo.getName();
4978
4979  FunctionDecl *NewFD = 0;
4980  bool isInline = D.getDeclSpec().isInlineSpecified();
4981  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4982  FunctionDecl::StorageClass SCAsWritten
4983    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4984
4985  if (!SemaRef.getLangOpts().CPlusPlus) {
4986    // Determine whether the function was written with a
4987    // prototype. This true when:
4988    //   - there is a prototype in the declarator, or
4989    //   - the type R of the function is some kind of typedef or other reference
4990    //     to a type name (which eventually refers to a function type).
4991    bool HasPrototype =
4992      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4993      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4994
4995    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4996                                 D.getLocStart(), NameInfo, R,
4997                                 TInfo, SC, SCAsWritten, isInline,
4998                                 HasPrototype);
4999    if (D.isInvalidType())
5000      NewFD->setInvalidDecl();
5001
5002    // Set the lexical context.
5003    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5004
5005    return NewFD;
5006  }
5007
5008  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5009  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5010
5011  // Check that the return type is not an abstract class type.
5012  // For record types, this is done by the AbstractClassUsageDiagnoser once
5013  // the class has been completely parsed.
5014  if (!DC->isRecord() &&
5015      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5016                                     R->getAs<FunctionType>()->getResultType(),
5017                                     diag::err_abstract_type_in_decl,
5018                                     SemaRef.AbstractReturnType))
5019    D.setInvalidType();
5020
5021  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5022    // This is a C++ constructor declaration.
5023    assert(DC->isRecord() &&
5024           "Constructors can only be declared in a member context");
5025
5026    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5027    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5028                                      D.getLocStart(), NameInfo,
5029                                      R, TInfo, isExplicit, isInline,
5030                                      /*isImplicitlyDeclared=*/false,
5031                                      isConstexpr);
5032
5033  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5034    // This is a C++ destructor declaration.
5035    if (DC->isRecord()) {
5036      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5037      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5038      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5039                                        SemaRef.Context, Record,
5040                                        D.getLocStart(),
5041                                        NameInfo, R, TInfo, isInline,
5042                                        /*isImplicitlyDeclared=*/false);
5043
5044      // If the class is complete, then we now create the implicit exception
5045      // specification. If the class is incomplete or dependent, we can't do
5046      // it yet.
5047      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5048          Record->getDefinition() && !Record->isBeingDefined() &&
5049          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5050        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5051      }
5052
5053      IsVirtualOkay = true;
5054      return NewDD;
5055
5056    } else {
5057      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5058      D.setInvalidType();
5059
5060      // Create a FunctionDecl to satisfy the function definition parsing
5061      // code path.
5062      return FunctionDecl::Create(SemaRef.Context, DC,
5063                                  D.getLocStart(),
5064                                  D.getIdentifierLoc(), Name, R, TInfo,
5065                                  SC, SCAsWritten, isInline,
5066                                  /*hasPrototype=*/true, isConstexpr);
5067    }
5068
5069  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5070    if (!DC->isRecord()) {
5071      SemaRef.Diag(D.getIdentifierLoc(),
5072           diag::err_conv_function_not_member);
5073      return 0;
5074    }
5075
5076    SemaRef.CheckConversionDeclarator(D, R, SC);
5077    IsVirtualOkay = true;
5078    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5079                                     D.getLocStart(), NameInfo,
5080                                     R, TInfo, isInline, isExplicit,
5081                                     isConstexpr, SourceLocation());
5082
5083  } else if (DC->isRecord()) {
5084    // If the name of the function is the same as the name of the record,
5085    // then this must be an invalid constructor that has a return type.
5086    // (The parser checks for a return type and makes the declarator a
5087    // constructor if it has no return type).
5088    if (Name.getAsIdentifierInfo() &&
5089        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5090      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5091        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5092        << SourceRange(D.getIdentifierLoc());
5093      return 0;
5094    }
5095
5096    bool isStatic = SC == SC_Static;
5097
5098    // [class.free]p1:
5099    // Any allocation function for a class T is a static member
5100    // (even if not explicitly declared static).
5101    if (Name.getCXXOverloadedOperator() == OO_New ||
5102        Name.getCXXOverloadedOperator() == OO_Array_New)
5103      isStatic = true;
5104
5105    // [class.free]p6 Any deallocation function for a class X is a static member
5106    // (even if not explicitly declared static).
5107    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5108        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5109      isStatic = true;
5110
5111    IsVirtualOkay = !isStatic;
5112
5113    // This is a C++ method declaration.
5114    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5115                                 D.getLocStart(), NameInfo, R,
5116                                 TInfo, isStatic, SCAsWritten, isInline,
5117                                 isConstexpr, SourceLocation());
5118
5119  } else {
5120    // Determine whether the function was written with a
5121    // prototype. This true when:
5122    //   - we're in C++ (where every function has a prototype),
5123    return FunctionDecl::Create(SemaRef.Context, DC,
5124                                D.getLocStart(),
5125                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5126                                true/*HasPrototype*/, isConstexpr);
5127  }
5128}
5129
5130NamedDecl*
5131Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5132                              TypeSourceInfo *TInfo, LookupResult &Previous,
5133                              MultiTemplateParamsArg TemplateParamLists,
5134                              bool &AddToScope) {
5135  QualType R = TInfo->getType();
5136
5137  assert(R.getTypePtr()->isFunctionType());
5138
5139  // TODO: consider using NameInfo for diagnostic.
5140  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5141  DeclarationName Name = NameInfo.getName();
5142  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5143
5144  if (D.getDeclSpec().isThreadSpecified())
5145    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5146
5147  // Do not allow returning a objc interface by-value.
5148  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5149    Diag(D.getIdentifierLoc(),
5150         diag::err_object_cannot_be_passed_returned_by_value) << 0
5151    << R->getAs<FunctionType>()->getResultType()
5152    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5153
5154    QualType T = R->getAs<FunctionType>()->getResultType();
5155    T = Context.getObjCObjectPointerType(T);
5156    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5157      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5158      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5159                                  FPT->getNumArgs(), EPI);
5160    }
5161    else if (isa<FunctionNoProtoType>(R))
5162      R = Context.getFunctionNoProtoType(T);
5163  }
5164
5165  bool isFriend = false;
5166  FunctionTemplateDecl *FunctionTemplate = 0;
5167  bool isExplicitSpecialization = false;
5168  bool isFunctionTemplateSpecialization = false;
5169
5170  bool isDependentClassScopeExplicitSpecialization = false;
5171  bool HasExplicitTemplateArgs = false;
5172  TemplateArgumentListInfo TemplateArgs;
5173
5174  bool isVirtualOkay = false;
5175
5176  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5177                                              isVirtualOkay);
5178  if (!NewFD) return 0;
5179
5180  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5181    NewFD->setTopLevelDeclInObjCContainer();
5182
5183  if (getLangOpts().CPlusPlus) {
5184    bool isInline = D.getDeclSpec().isInlineSpecified();
5185    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5186    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5187    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5188    isFriend = D.getDeclSpec().isFriendSpecified();
5189    if (isFriend && !isInline && D.isFunctionDefinition()) {
5190      // C++ [class.friend]p5
5191      //   A function can be defined in a friend declaration of a
5192      //   class . . . . Such a function is implicitly inline.
5193      NewFD->setImplicitlyInline();
5194    }
5195
5196    // if this is a method defined in an __interface, set pure
5197    // (isVirtual will already return true)
5198    if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
5199        NewFD->getDeclContext())) {
5200      if (Parent->getTagKind() == TTK_Interface)
5201        NewFD->setPure(true);
5202    }
5203
5204    SetNestedNameSpecifier(NewFD, D);
5205    isExplicitSpecialization = false;
5206    isFunctionTemplateSpecialization = false;
5207    if (D.isInvalidType())
5208      NewFD->setInvalidDecl();
5209
5210    // Set the lexical context. If the declarator has a C++
5211    // scope specifier, or is the object of a friend declaration, the
5212    // lexical context will be different from the semantic context.
5213    NewFD->setLexicalDeclContext(CurContext);
5214
5215    // Match up the template parameter lists with the scope specifier, then
5216    // determine whether we have a template or a template specialization.
5217    bool Invalid = false;
5218    if (TemplateParameterList *TemplateParams
5219          = MatchTemplateParametersToScopeSpecifier(
5220                                  D.getDeclSpec().getLocStart(),
5221                                  D.getIdentifierLoc(),
5222                                  D.getCXXScopeSpec(),
5223                                  TemplateParamLists.data(),
5224                                  TemplateParamLists.size(),
5225                                  isFriend,
5226                                  isExplicitSpecialization,
5227                                  Invalid)) {
5228      if (TemplateParams->size() > 0) {
5229        // This is a function template
5230
5231        // Check that we can declare a template here.
5232        if (CheckTemplateDeclScope(S, TemplateParams))
5233          return 0;
5234
5235        // A destructor cannot be a template.
5236        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5237          Diag(NewFD->getLocation(), diag::err_destructor_template);
5238          return 0;
5239        }
5240
5241        // If we're adding a template to a dependent context, we may need to
5242        // rebuilding some of the types used within the template parameter list,
5243        // now that we know what the current instantiation is.
5244        if (DC->isDependentContext()) {
5245          ContextRAII SavedContext(*this, DC);
5246          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5247            Invalid = true;
5248        }
5249
5250
5251        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5252                                                        NewFD->getLocation(),
5253                                                        Name, TemplateParams,
5254                                                        NewFD);
5255        FunctionTemplate->setLexicalDeclContext(CurContext);
5256        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5257
5258        // For source fidelity, store the other template param lists.
5259        if (TemplateParamLists.size() > 1) {
5260          NewFD->setTemplateParameterListsInfo(Context,
5261                                               TemplateParamLists.size() - 1,
5262                                               TemplateParamLists.data());
5263        }
5264      } else {
5265        // This is a function template specialization.
5266        isFunctionTemplateSpecialization = true;
5267        // For source fidelity, store all the template param lists.
5268        NewFD->setTemplateParameterListsInfo(Context,
5269                                             TemplateParamLists.size(),
5270                                             TemplateParamLists.data());
5271
5272        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5273        if (isFriend) {
5274          // We want to remove the "template<>", found here.
5275          SourceRange RemoveRange = TemplateParams->getSourceRange();
5276
5277          // If we remove the template<> and the name is not a
5278          // template-id, we're actually silently creating a problem:
5279          // the friend declaration will refer to an untemplated decl,
5280          // and clearly the user wants a template specialization.  So
5281          // we need to insert '<>' after the name.
5282          SourceLocation InsertLoc;
5283          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5284            InsertLoc = D.getName().getSourceRange().getEnd();
5285            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5286          }
5287
5288          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5289            << Name << RemoveRange
5290            << FixItHint::CreateRemoval(RemoveRange)
5291            << FixItHint::CreateInsertion(InsertLoc, "<>");
5292        }
5293      }
5294    }
5295    else {
5296      // All template param lists were matched against the scope specifier:
5297      // this is NOT (an explicit specialization of) a template.
5298      if (TemplateParamLists.size() > 0)
5299        // For source fidelity, store all the template param lists.
5300        NewFD->setTemplateParameterListsInfo(Context,
5301                                             TemplateParamLists.size(),
5302                                             TemplateParamLists.data());
5303    }
5304
5305    if (Invalid) {
5306      NewFD->setInvalidDecl();
5307      if (FunctionTemplate)
5308        FunctionTemplate->setInvalidDecl();
5309    }
5310
5311    // C++ [dcl.fct.spec]p5:
5312    //   The virtual specifier shall only be used in declarations of
5313    //   nonstatic class member functions that appear within a
5314    //   member-specification of a class declaration; see 10.3.
5315    //
5316    if (isVirtual && !NewFD->isInvalidDecl()) {
5317      if (!isVirtualOkay) {
5318        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5319             diag::err_virtual_non_function);
5320      } else if (!CurContext->isRecord()) {
5321        // 'virtual' was specified outside of the class.
5322        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5323             diag::err_virtual_out_of_class)
5324          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5325      } else if (NewFD->getDescribedFunctionTemplate()) {
5326        // C++ [temp.mem]p3:
5327        //  A member function template shall not be virtual.
5328        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5329             diag::err_virtual_member_function_template)
5330          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5331      } else {
5332        // Okay: Add virtual to the method.
5333        NewFD->setVirtualAsWritten(true);
5334      }
5335    }
5336
5337    // C++ [dcl.fct.spec]p3:
5338    //  The inline specifier shall not appear on a block scope function
5339    //  declaration.
5340    if (isInline && !NewFD->isInvalidDecl()) {
5341      if (CurContext->isFunctionOrMethod()) {
5342        // 'inline' is not allowed on block scope function declaration.
5343        Diag(D.getDeclSpec().getInlineSpecLoc(),
5344             diag::err_inline_declaration_block_scope) << Name
5345          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5346      }
5347    }
5348
5349    // C++ [dcl.fct.spec]p6:
5350    //  The explicit specifier shall be used only in the declaration of a
5351    //  constructor or conversion function within its class definition;
5352    //  see 12.3.1 and 12.3.2.
5353    if (isExplicit && !NewFD->isInvalidDecl()) {
5354      if (!CurContext->isRecord()) {
5355        // 'explicit' was specified outside of the class.
5356        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5357             diag::err_explicit_out_of_class)
5358          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5359      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5360                 !isa<CXXConversionDecl>(NewFD)) {
5361        // 'explicit' was specified on a function that wasn't a constructor
5362        // or conversion function.
5363        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5364             diag::err_explicit_non_ctor_or_conv_function)
5365          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5366      }
5367    }
5368
5369    if (isConstexpr) {
5370      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5371      // are implicitly inline.
5372      NewFD->setImplicitlyInline();
5373
5374      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5375      // be either constructors or to return a literal type. Therefore,
5376      // destructors cannot be declared constexpr.
5377      if (isa<CXXDestructorDecl>(NewFD))
5378        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5379    }
5380
5381    // If __module_private__ was specified, mark the function accordingly.
5382    if (D.getDeclSpec().isModulePrivateSpecified()) {
5383      if (isFunctionTemplateSpecialization) {
5384        SourceLocation ModulePrivateLoc
5385          = D.getDeclSpec().getModulePrivateSpecLoc();
5386        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5387          << 0
5388          << FixItHint::CreateRemoval(ModulePrivateLoc);
5389      } else {
5390        NewFD->setModulePrivate();
5391        if (FunctionTemplate)
5392          FunctionTemplate->setModulePrivate();
5393      }
5394    }
5395
5396    if (isFriend) {
5397      // For now, claim that the objects have no previous declaration.
5398      if (FunctionTemplate) {
5399        FunctionTemplate->setObjectOfFriendDecl(false);
5400        FunctionTemplate->setAccess(AS_public);
5401      }
5402      NewFD->setObjectOfFriendDecl(false);
5403      NewFD->setAccess(AS_public);
5404    }
5405
5406    // If a function is defined as defaulted or deleted, mark it as such now.
5407    switch (D.getFunctionDefinitionKind()) {
5408      case FDK_Declaration:
5409      case FDK_Definition:
5410        break;
5411
5412      case FDK_Defaulted:
5413        NewFD->setDefaulted();
5414        break;
5415
5416      case FDK_Deleted:
5417        NewFD->setDeletedAsWritten();
5418        break;
5419    }
5420
5421    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5422        D.isFunctionDefinition()) {
5423      // C++ [class.mfct]p2:
5424      //   A member function may be defined (8.4) in its class definition, in
5425      //   which case it is an inline member function (7.1.2)
5426      NewFD->setImplicitlyInline();
5427    }
5428
5429    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5430        !CurContext->isRecord()) {
5431      // C++ [class.static]p1:
5432      //   A data or function member of a class may be declared static
5433      //   in a class definition, in which case it is a static member of
5434      //   the class.
5435
5436      // Complain about the 'static' specifier if it's on an out-of-line
5437      // member function definition.
5438      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5439           diag::err_static_out_of_line)
5440        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5441    }
5442  }
5443
5444  // Filter out previous declarations that don't match the scope.
5445  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5446                       isExplicitSpecialization ||
5447                       isFunctionTemplateSpecialization);
5448
5449  // Handle GNU asm-label extension (encoded as an attribute).
5450  if (Expr *E = (Expr*) D.getAsmLabel()) {
5451    // The parser guarantees this is a string.
5452    StringLiteral *SE = cast<StringLiteral>(E);
5453    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5454                                                SE->getString()));
5455  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5456    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5457      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5458    if (I != ExtnameUndeclaredIdentifiers.end()) {
5459      NewFD->addAttr(I->second);
5460      ExtnameUndeclaredIdentifiers.erase(I);
5461    }
5462  }
5463
5464  // Copy the parameter declarations from the declarator D to the function
5465  // declaration NewFD, if they are available.  First scavenge them into Params.
5466  SmallVector<ParmVarDecl*, 16> Params;
5467  if (D.isFunctionDeclarator()) {
5468    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5469
5470    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5471    // function that takes no arguments, not a function that takes a
5472    // single void argument.
5473    // We let through "const void" here because Sema::GetTypeForDeclarator
5474    // already checks for that case.
5475    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5476        FTI.ArgInfo[0].Param &&
5477        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5478      // Empty arg list, don't push any params.
5479      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5480
5481      // In C++, the empty parameter-type-list must be spelled "void"; a
5482      // typedef of void is not permitted.
5483      if (getLangOpts().CPlusPlus &&
5484          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5485        bool IsTypeAlias = false;
5486        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5487          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5488        else if (const TemplateSpecializationType *TST =
5489                   Param->getType()->getAs<TemplateSpecializationType>())
5490          IsTypeAlias = TST->isTypeAlias();
5491        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5492          << IsTypeAlias;
5493      }
5494    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5495      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5496        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5497        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5498        Param->setDeclContext(NewFD);
5499        Params.push_back(Param);
5500
5501        if (Param->isInvalidDecl())
5502          NewFD->setInvalidDecl();
5503      }
5504    }
5505
5506  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5507    // When we're declaring a function with a typedef, typeof, etc as in the
5508    // following example, we'll need to synthesize (unnamed)
5509    // parameters for use in the declaration.
5510    //
5511    // @code
5512    // typedef void fn(int);
5513    // fn f;
5514    // @endcode
5515
5516    // Synthesize a parameter for each argument type.
5517    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5518         AE = FT->arg_type_end(); AI != AE; ++AI) {
5519      ParmVarDecl *Param =
5520        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5521      Param->setScopeInfo(0, Params.size());
5522      Params.push_back(Param);
5523    }
5524  } else {
5525    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5526           "Should not need args for typedef of non-prototype fn");
5527  }
5528
5529  // Finally, we know we have the right number of parameters, install them.
5530  NewFD->setParams(Params);
5531
5532  // Find all anonymous symbols defined during the declaration of this function
5533  // and add to NewFD. This lets us track decls such 'enum Y' in:
5534  //
5535  //   void f(enum Y {AA} x) {}
5536  //
5537  // which would otherwise incorrectly end up in the translation unit scope.
5538  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5539  DeclsInPrototypeScope.clear();
5540
5541  // Process the non-inheritable attributes on this declaration.
5542  ProcessDeclAttributes(S, NewFD, D,
5543                        /*NonInheritable=*/true, /*Inheritable=*/false);
5544
5545  // Functions returning a variably modified type violate C99 6.7.5.2p2
5546  // because all functions have linkage.
5547  if (!NewFD->isInvalidDecl() &&
5548      NewFD->getResultType()->isVariablyModifiedType()) {
5549    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5550    NewFD->setInvalidDecl();
5551  }
5552
5553  // Handle attributes.
5554  ProcessDeclAttributes(S, NewFD, D,
5555                        /*NonInheritable=*/false, /*Inheritable=*/true);
5556
5557  if (!getLangOpts().CPlusPlus) {
5558    // Perform semantic checking on the function declaration.
5559    bool isExplicitSpecialization=false;
5560    if (!NewFD->isInvalidDecl()) {
5561      if (NewFD->isMain())
5562        CheckMain(NewFD, D.getDeclSpec());
5563      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5564                                                  isExplicitSpecialization));
5565    }
5566    // Make graceful recovery from an invalid redeclaration.
5567    else if (!Previous.empty())
5568           D.setRedeclaration(true);
5569    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5570            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5571           "previous declaration set still overloaded");
5572  } else {
5573    // If the declarator is a template-id, translate the parser's template
5574    // argument list into our AST format.
5575    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5576      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5577      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5578      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5579      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5580                                         TemplateId->NumArgs);
5581      translateTemplateArguments(TemplateArgsPtr,
5582                                 TemplateArgs);
5583
5584      HasExplicitTemplateArgs = true;
5585
5586      if (NewFD->isInvalidDecl()) {
5587        HasExplicitTemplateArgs = false;
5588      } else if (FunctionTemplate) {
5589        // Function template with explicit template arguments.
5590        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5591          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5592
5593        HasExplicitTemplateArgs = false;
5594      } else if (!isFunctionTemplateSpecialization &&
5595                 !D.getDeclSpec().isFriendSpecified()) {
5596        // We have encountered something that the user meant to be a
5597        // specialization (because it has explicitly-specified template
5598        // arguments) but that was not introduced with a "template<>" (or had
5599        // too few of them).
5600        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5601          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5602          << FixItHint::CreateInsertion(
5603                                    D.getDeclSpec().getLocStart(),
5604                                        "template<> ");
5605        isFunctionTemplateSpecialization = true;
5606      } else {
5607        // "friend void foo<>(int);" is an implicit specialization decl.
5608        isFunctionTemplateSpecialization = true;
5609      }
5610    } else if (isFriend && isFunctionTemplateSpecialization) {
5611      // This combination is only possible in a recovery case;  the user
5612      // wrote something like:
5613      //   template <> friend void foo(int);
5614      // which we're recovering from as if the user had written:
5615      //   friend void foo<>(int);
5616      // Go ahead and fake up a template id.
5617      HasExplicitTemplateArgs = true;
5618        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5619      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5620    }
5621
5622    // If it's a friend (and only if it's a friend), it's possible
5623    // that either the specialized function type or the specialized
5624    // template is dependent, and therefore matching will fail.  In
5625    // this case, don't check the specialization yet.
5626    bool InstantiationDependent = false;
5627    if (isFunctionTemplateSpecialization && isFriend &&
5628        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5629         TemplateSpecializationType::anyDependentTemplateArguments(
5630            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5631            InstantiationDependent))) {
5632      assert(HasExplicitTemplateArgs &&
5633             "friend function specialization without template args");
5634      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5635                                                       Previous))
5636        NewFD->setInvalidDecl();
5637    } else if (isFunctionTemplateSpecialization) {
5638      if (CurContext->isDependentContext() && CurContext->isRecord()
5639          && !isFriend) {
5640        isDependentClassScopeExplicitSpecialization = true;
5641        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5642          diag::ext_function_specialization_in_class :
5643          diag::err_function_specialization_in_class)
5644          << NewFD->getDeclName();
5645      } else if (CheckFunctionTemplateSpecialization(NewFD,
5646                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5647                                                     Previous))
5648        NewFD->setInvalidDecl();
5649
5650      // C++ [dcl.stc]p1:
5651      //   A storage-class-specifier shall not be specified in an explicit
5652      //   specialization (14.7.3)
5653      if (SC != SC_None) {
5654        if (SC != NewFD->getStorageClass())
5655          Diag(NewFD->getLocation(),
5656               diag::err_explicit_specialization_inconsistent_storage_class)
5657            << SC
5658            << FixItHint::CreateRemoval(
5659                                      D.getDeclSpec().getStorageClassSpecLoc());
5660
5661        else
5662          Diag(NewFD->getLocation(),
5663               diag::ext_explicit_specialization_storage_class)
5664            << FixItHint::CreateRemoval(
5665                                      D.getDeclSpec().getStorageClassSpecLoc());
5666      }
5667
5668    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5669      if (CheckMemberSpecialization(NewFD, Previous))
5670          NewFD->setInvalidDecl();
5671    }
5672
5673    // Perform semantic checking on the function declaration.
5674    if (!isDependentClassScopeExplicitSpecialization) {
5675      if (NewFD->isInvalidDecl()) {
5676        // If this is a class member, mark the class invalid immediately.
5677        // This avoids some consistency errors later.
5678        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5679          methodDecl->getParent()->setInvalidDecl();
5680      } else {
5681        if (NewFD->isMain())
5682          CheckMain(NewFD, D.getDeclSpec());
5683        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5684                                                    isExplicitSpecialization));
5685      }
5686    }
5687
5688    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5689            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5690           "previous declaration set still overloaded");
5691
5692    NamedDecl *PrincipalDecl = (FunctionTemplate
5693                                ? cast<NamedDecl>(FunctionTemplate)
5694                                : NewFD);
5695
5696    if (isFriend && D.isRedeclaration()) {
5697      AccessSpecifier Access = AS_public;
5698      if (!NewFD->isInvalidDecl())
5699        Access = NewFD->getPreviousDecl()->getAccess();
5700
5701      NewFD->setAccess(Access);
5702      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5703
5704      PrincipalDecl->setObjectOfFriendDecl(true);
5705    }
5706
5707    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5708        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5709      PrincipalDecl->setNonMemberOperator();
5710
5711    // If we have a function template, check the template parameter
5712    // list. This will check and merge default template arguments.
5713    if (FunctionTemplate) {
5714      FunctionTemplateDecl *PrevTemplate =
5715                                     FunctionTemplate->getPreviousDecl();
5716      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5717                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5718                            D.getDeclSpec().isFriendSpecified()
5719                              ? (D.isFunctionDefinition()
5720                                   ? TPC_FriendFunctionTemplateDefinition
5721                                   : TPC_FriendFunctionTemplate)
5722                              : (D.getCXXScopeSpec().isSet() &&
5723                                 DC && DC->isRecord() &&
5724                                 DC->isDependentContext())
5725                                  ? TPC_ClassTemplateMember
5726                                  : TPC_FunctionTemplate);
5727    }
5728
5729    if (NewFD->isInvalidDecl()) {
5730      // Ignore all the rest of this.
5731    } else if (!D.isRedeclaration()) {
5732      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5733                                       AddToScope };
5734      // Fake up an access specifier if it's supposed to be a class member.
5735      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5736        NewFD->setAccess(AS_public);
5737
5738      // Qualified decls generally require a previous declaration.
5739      if (D.getCXXScopeSpec().isSet()) {
5740        // ...with the major exception of templated-scope or
5741        // dependent-scope friend declarations.
5742
5743        // TODO: we currently also suppress this check in dependent
5744        // contexts because (1) the parameter depth will be off when
5745        // matching friend templates and (2) we might actually be
5746        // selecting a friend based on a dependent factor.  But there
5747        // are situations where these conditions don't apply and we
5748        // can actually do this check immediately.
5749        if (isFriend &&
5750            (TemplateParamLists.size() ||
5751             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5752             CurContext->isDependentContext())) {
5753          // ignore these
5754        } else {
5755          // The user tried to provide an out-of-line definition for a
5756          // function that is a member of a class or namespace, but there
5757          // was no such member function declared (C++ [class.mfct]p2,
5758          // C++ [namespace.memdef]p2). For example:
5759          //
5760          // class X {
5761          //   void f() const;
5762          // };
5763          //
5764          // void X::f() { } // ill-formed
5765          //
5766          // Complain about this problem, and attempt to suggest close
5767          // matches (e.g., those that differ only in cv-qualifiers and
5768          // whether the parameter types are references).
5769
5770          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5771                                                               NewFD,
5772                                                               ExtraArgs)) {
5773            AddToScope = ExtraArgs.AddToScope;
5774            return Result;
5775          }
5776        }
5777
5778        // Unqualified local friend declarations are required to resolve
5779        // to something.
5780      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5781        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5782                                                             NewFD,
5783                                                             ExtraArgs)) {
5784          AddToScope = ExtraArgs.AddToScope;
5785          return Result;
5786        }
5787      }
5788
5789    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5790               !isFriend && !isFunctionTemplateSpecialization &&
5791               !isExplicitSpecialization) {
5792      // An out-of-line member function declaration must also be a
5793      // definition (C++ [dcl.meaning]p1).
5794      // Note that this is not the case for explicit specializations of
5795      // function templates or member functions of class templates, per
5796      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5797      // extension for compatibility with old SWIG code which likes to
5798      // generate them.
5799      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5800        << D.getCXXScopeSpec().getRange();
5801    }
5802  }
5803
5804  AddKnownFunctionAttributes(NewFD);
5805
5806  if (NewFD->hasAttr<OverloadableAttr>() &&
5807      !NewFD->getType()->getAs<FunctionProtoType>()) {
5808    Diag(NewFD->getLocation(),
5809         diag::err_attribute_overloadable_no_prototype)
5810      << NewFD;
5811
5812    // Turn this into a variadic function with no parameters.
5813    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5814    FunctionProtoType::ExtProtoInfo EPI;
5815    EPI.Variadic = true;
5816    EPI.ExtInfo = FT->getExtInfo();
5817
5818    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5819    NewFD->setType(R);
5820  }
5821
5822  // If there's a #pragma GCC visibility in scope, and this isn't a class
5823  // member, set the visibility of this function.
5824  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5825    AddPushedVisibilityAttribute(NewFD);
5826
5827  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5828  // marking the function.
5829  AddCFAuditedAttribute(NewFD);
5830
5831  // If this is a locally-scoped extern C function, update the
5832  // map of such names.
5833  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5834      && !NewFD->isInvalidDecl())
5835    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5836
5837  // Set this FunctionDecl's range up to the right paren.
5838  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5839
5840  if (getLangOpts().CPlusPlus) {
5841    if (FunctionTemplate) {
5842      if (NewFD->isInvalidDecl())
5843        FunctionTemplate->setInvalidDecl();
5844      return FunctionTemplate;
5845    }
5846  }
5847
5848  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5849  if ((getLangOpts().OpenCLVersion >= 120)
5850      && NewFD->hasAttr<OpenCLKernelAttr>()
5851      && (SC == SC_Static)) {
5852    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5853    D.setInvalidType();
5854  }
5855
5856  MarkUnusedFileScopedDecl(NewFD);
5857
5858  if (getLangOpts().CUDA)
5859    if (IdentifierInfo *II = NewFD->getIdentifier())
5860      if (!NewFD->isInvalidDecl() &&
5861          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5862        if (II->isStr("cudaConfigureCall")) {
5863          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5864            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5865
5866          Context.setcudaConfigureCallDecl(NewFD);
5867        }
5868      }
5869
5870  // Here we have an function template explicit specialization at class scope.
5871  // The actually specialization will be postponed to template instatiation
5872  // time via the ClassScopeFunctionSpecializationDecl node.
5873  if (isDependentClassScopeExplicitSpecialization) {
5874    ClassScopeFunctionSpecializationDecl *NewSpec =
5875                         ClassScopeFunctionSpecializationDecl::Create(
5876                                Context, CurContext, SourceLocation(),
5877                                cast<CXXMethodDecl>(NewFD),
5878                                HasExplicitTemplateArgs, TemplateArgs);
5879    CurContext->addDecl(NewSpec);
5880    AddToScope = false;
5881  }
5882
5883  return NewFD;
5884}
5885
5886/// \brief Perform semantic checking of a new function declaration.
5887///
5888/// Performs semantic analysis of the new function declaration
5889/// NewFD. This routine performs all semantic checking that does not
5890/// require the actual declarator involved in the declaration, and is
5891/// used both for the declaration of functions as they are parsed
5892/// (called via ActOnDeclarator) and for the declaration of functions
5893/// that have been instantiated via C++ template instantiation (called
5894/// via InstantiateDecl).
5895///
5896/// \param IsExplicitSpecialization whether this new function declaration is
5897/// an explicit specialization of the previous declaration.
5898///
5899/// This sets NewFD->isInvalidDecl() to true if there was an error.
5900///
5901/// \returns true if the function declaration is a redeclaration.
5902bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5903                                    LookupResult &Previous,
5904                                    bool IsExplicitSpecialization) {
5905  assert(!NewFD->getResultType()->isVariablyModifiedType()
5906         && "Variably modified return types are not handled here");
5907
5908  // Check for a previous declaration of this name.
5909  if (Previous.empty() && NewFD->isExternC()) {
5910    // Since we did not find anything by this name and we're declaring
5911    // an extern "C" function, look for a non-visible extern "C"
5912    // declaration with the same name.
5913    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5914      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5915    if (Pos != LocallyScopedExternalDecls.end())
5916      Previous.addDecl(Pos->second);
5917  }
5918
5919  bool Redeclaration = false;
5920
5921  // Merge or overload the declaration with an existing declaration of
5922  // the same name, if appropriate.
5923  if (!Previous.empty()) {
5924    // Determine whether NewFD is an overload of PrevDecl or
5925    // a declaration that requires merging. If it's an overload,
5926    // there's no more work to do here; we'll just add the new
5927    // function to the scope.
5928
5929    NamedDecl *OldDecl = 0;
5930    if (!AllowOverloadingOfFunction(Previous, Context)) {
5931      Redeclaration = true;
5932      OldDecl = Previous.getFoundDecl();
5933    } else {
5934      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5935                            /*NewIsUsingDecl*/ false)) {
5936      case Ovl_Match:
5937        Redeclaration = true;
5938        break;
5939
5940      case Ovl_NonFunction:
5941        Redeclaration = true;
5942        break;
5943
5944      case Ovl_Overload:
5945        Redeclaration = false;
5946        break;
5947      }
5948
5949      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5950        // If a function name is overloadable in C, then every function
5951        // with that name must be marked "overloadable".
5952        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5953          << Redeclaration << NewFD;
5954        NamedDecl *OverloadedDecl = 0;
5955        if (Redeclaration)
5956          OverloadedDecl = OldDecl;
5957        else if (!Previous.empty())
5958          OverloadedDecl = Previous.getRepresentativeDecl();
5959        if (OverloadedDecl)
5960          Diag(OverloadedDecl->getLocation(),
5961               diag::note_attribute_overloadable_prev_overload);
5962        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5963                                                        Context));
5964      }
5965    }
5966
5967    if (Redeclaration) {
5968      // NewFD and OldDecl represent declarations that need to be
5969      // merged.
5970      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5971        NewFD->setInvalidDecl();
5972        return Redeclaration;
5973      }
5974
5975      Previous.clear();
5976      Previous.addDecl(OldDecl);
5977
5978      if (FunctionTemplateDecl *OldTemplateDecl
5979                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5980        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5981        FunctionTemplateDecl *NewTemplateDecl
5982          = NewFD->getDescribedFunctionTemplate();
5983        assert(NewTemplateDecl && "Template/non-template mismatch");
5984        if (CXXMethodDecl *Method
5985              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5986          Method->setAccess(OldTemplateDecl->getAccess());
5987          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5988        }
5989
5990        // If this is an explicit specialization of a member that is a function
5991        // template, mark it as a member specialization.
5992        if (IsExplicitSpecialization &&
5993            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5994          NewTemplateDecl->setMemberSpecialization();
5995          assert(OldTemplateDecl->isMemberSpecialization());
5996        }
5997
5998      } else {
5999        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6000          NewFD->setAccess(OldDecl->getAccess());
6001        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6002      }
6003    }
6004  }
6005
6006  // Semantic checking for this function declaration (in isolation).
6007  if (getLangOpts().CPlusPlus) {
6008    // C++-specific checks.
6009    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6010      CheckConstructor(Constructor);
6011    } else if (CXXDestructorDecl *Destructor =
6012                dyn_cast<CXXDestructorDecl>(NewFD)) {
6013      CXXRecordDecl *Record = Destructor->getParent();
6014      QualType ClassType = Context.getTypeDeclType(Record);
6015
6016      // FIXME: Shouldn't we be able to perform this check even when the class
6017      // type is dependent? Both gcc and edg can handle that.
6018      if (!ClassType->isDependentType()) {
6019        DeclarationName Name
6020          = Context.DeclarationNames.getCXXDestructorName(
6021                                        Context.getCanonicalType(ClassType));
6022        if (NewFD->getDeclName() != Name) {
6023          Diag(NewFD->getLocation(), diag::err_destructor_name);
6024          NewFD->setInvalidDecl();
6025          return Redeclaration;
6026        }
6027      }
6028    } else if (CXXConversionDecl *Conversion
6029               = dyn_cast<CXXConversionDecl>(NewFD)) {
6030      ActOnConversionDeclarator(Conversion);
6031    }
6032
6033    // Find any virtual functions that this function overrides.
6034    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6035      if (!Method->isFunctionTemplateSpecialization() &&
6036          !Method->getDescribedFunctionTemplate()) {
6037        if (AddOverriddenMethods(Method->getParent(), Method)) {
6038          // If the function was marked as "static", we have a problem.
6039          if (NewFD->getStorageClass() == SC_Static) {
6040            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6041              << NewFD->getDeclName();
6042            for (CXXMethodDecl::method_iterator
6043                      Overridden = Method->begin_overridden_methods(),
6044                   OverriddenEnd = Method->end_overridden_methods();
6045                 Overridden != OverriddenEnd;
6046                 ++Overridden) {
6047              Diag((*Overridden)->getLocation(),
6048                   diag::note_overridden_virtual_function);
6049            }
6050          }
6051        }
6052      }
6053
6054      if (Method->isStatic())
6055        checkThisInStaticMemberFunctionType(Method);
6056    }
6057
6058    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6059    if (NewFD->isOverloadedOperator() &&
6060        CheckOverloadedOperatorDeclaration(NewFD)) {
6061      NewFD->setInvalidDecl();
6062      return Redeclaration;
6063    }
6064
6065    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6066    if (NewFD->getLiteralIdentifier() &&
6067        CheckLiteralOperatorDeclaration(NewFD)) {
6068      NewFD->setInvalidDecl();
6069      return Redeclaration;
6070    }
6071
6072    // In C++, check default arguments now that we have merged decls. Unless
6073    // the lexical context is the class, because in this case this is done
6074    // during delayed parsing anyway.
6075    if (!CurContext->isRecord())
6076      CheckCXXDefaultArguments(NewFD);
6077
6078    // If this function declares a builtin function, check the type of this
6079    // declaration against the expected type for the builtin.
6080    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6081      ASTContext::GetBuiltinTypeError Error;
6082      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6083      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6084        // The type of this function differs from the type of the builtin,
6085        // so forget about the builtin entirely.
6086        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6087      }
6088    }
6089
6090    // If this function is declared as being extern "C", then check to see if
6091    // the function returns a UDT (class, struct, or union type) that is not C
6092    // compatible, and if it does, warn the user.
6093    if (NewFD->isExternC()) {
6094      QualType R = NewFD->getResultType();
6095      if (R->isIncompleteType() && !R->isVoidType())
6096        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6097            << NewFD << R;
6098      else if (!R.isPODType(Context) && !R->isVoidType() &&
6099               !R->isObjCObjectPointerType())
6100        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6101    }
6102  }
6103  return Redeclaration;
6104}
6105
6106void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6107  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6108  //   static or constexpr is ill-formed.
6109  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6110  //   shall not appear in a declaration of main.
6111  // static main is not an error under C99, but we should warn about it.
6112  if (FD->getStorageClass() == SC_Static)
6113    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6114         ? diag::err_static_main : diag::warn_static_main)
6115      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6116  if (FD->isInlineSpecified())
6117    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6118      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6119  if (FD->isConstexpr()) {
6120    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6121      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6122    FD->setConstexpr(false);
6123  }
6124
6125  QualType T = FD->getType();
6126  assert(T->isFunctionType() && "function decl is not of function type");
6127  const FunctionType* FT = T->castAs<FunctionType>();
6128
6129  // All the standards say that main() should should return 'int'.
6130  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6131    // In C and C++, main magically returns 0 if you fall off the end;
6132    // set the flag which tells us that.
6133    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6134    FD->setHasImplicitReturnZero(true);
6135
6136  // In C with GNU extensions we allow main() to have non-integer return
6137  // type, but we should warn about the extension, and we disable the
6138  // implicit-return-zero rule.
6139  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6140    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6141
6142  // Otherwise, this is just a flat-out error.
6143  } else {
6144    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6145    FD->setInvalidDecl(true);
6146  }
6147
6148  // Treat protoless main() as nullary.
6149  if (isa<FunctionNoProtoType>(FT)) return;
6150
6151  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6152  unsigned nparams = FTP->getNumArgs();
6153  assert(FD->getNumParams() == nparams);
6154
6155  bool HasExtraParameters = (nparams > 3);
6156
6157  // Darwin passes an undocumented fourth argument of type char**.  If
6158  // other platforms start sprouting these, the logic below will start
6159  // getting shifty.
6160  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6161    HasExtraParameters = false;
6162
6163  if (HasExtraParameters) {
6164    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6165    FD->setInvalidDecl(true);
6166    nparams = 3;
6167  }
6168
6169  // FIXME: a lot of the following diagnostics would be improved
6170  // if we had some location information about types.
6171
6172  QualType CharPP =
6173    Context.getPointerType(Context.getPointerType(Context.CharTy));
6174  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6175
6176  for (unsigned i = 0; i < nparams; ++i) {
6177    QualType AT = FTP->getArgType(i);
6178
6179    bool mismatch = true;
6180
6181    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6182      mismatch = false;
6183    else if (Expected[i] == CharPP) {
6184      // As an extension, the following forms are okay:
6185      //   char const **
6186      //   char const * const *
6187      //   char * const *
6188
6189      QualifierCollector qs;
6190      const PointerType* PT;
6191      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6192          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6193          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6194        qs.removeConst();
6195        mismatch = !qs.empty();
6196      }
6197    }
6198
6199    if (mismatch) {
6200      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6201      // TODO: suggest replacing given type with expected type
6202      FD->setInvalidDecl(true);
6203    }
6204  }
6205
6206  if (nparams == 1 && !FD->isInvalidDecl()) {
6207    Diag(FD->getLocation(), diag::warn_main_one_arg);
6208  }
6209
6210  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6211    Diag(FD->getLocation(), diag::err_main_template_decl);
6212    FD->setInvalidDecl();
6213  }
6214}
6215
6216bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6217  // FIXME: Need strict checking.  In C89, we need to check for
6218  // any assignment, increment, decrement, function-calls, or
6219  // commas outside of a sizeof.  In C99, it's the same list,
6220  // except that the aforementioned are allowed in unevaluated
6221  // expressions.  Everything else falls under the
6222  // "may accept other forms of constant expressions" exception.
6223  // (We never end up here for C++, so the constant expression
6224  // rules there don't matter.)
6225  if (Init->isConstantInitializer(Context, false))
6226    return false;
6227  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6228    << Init->getSourceRange();
6229  return true;
6230}
6231
6232namespace {
6233  // Visits an initialization expression to see if OrigDecl is evaluated in
6234  // its own initialization and throws a warning if it does.
6235  class SelfReferenceChecker
6236      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6237    Sema &S;
6238    Decl *OrigDecl;
6239    bool isRecordType;
6240    bool isPODType;
6241    bool isReferenceType;
6242
6243  public:
6244    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6245
6246    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6247                                                    S(S), OrigDecl(OrigDecl) {
6248      isPODType = false;
6249      isRecordType = false;
6250      isReferenceType = false;
6251      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6252        isPODType = VD->getType().isPODType(S.Context);
6253        isRecordType = VD->getType()->isRecordType();
6254        isReferenceType = VD->getType()->isReferenceType();
6255      }
6256    }
6257
6258    // Sometimes, the expression passed in lacks the casts that are used
6259    // to determine which DeclRefExpr's to check.  Assume that the casts
6260    // are present and continue visiting the expression.
6261    void HandleExpr(Expr *E) {
6262      // Skip checking T a = a where T is not a record or reference type.
6263      // Doing so is a way to silence uninitialized warnings.
6264      if (isRecordType || isReferenceType)
6265        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6266          HandleDeclRefExpr(DRE);
6267
6268      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6269        HandleValue(CO->getTrueExpr());
6270        HandleValue(CO->getFalseExpr());
6271      }
6272
6273      Visit(E);
6274    }
6275
6276    // For most expressions, the cast is directly above the DeclRefExpr.
6277    // For conditional operators, the cast can be outside the conditional
6278    // operator if both expressions are DeclRefExpr's.
6279    void HandleValue(Expr *E) {
6280      E = E->IgnoreParenImpCasts();
6281      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6282        HandleDeclRefExpr(DRE);
6283        return;
6284      }
6285
6286      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6287        HandleValue(CO->getTrueExpr());
6288        HandleValue(CO->getFalseExpr());
6289      }
6290    }
6291
6292    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6293      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6294          (isRecordType && E->getCastKind() == CK_NoOp))
6295        HandleValue(E->getSubExpr());
6296
6297      Inherited::VisitImplicitCastExpr(E);
6298    }
6299
6300    void VisitMemberExpr(MemberExpr *E) {
6301      // Don't warn on arrays since they can be treated as pointers.
6302      if (E->getType()->canDecayToPointerType()) return;
6303
6304      ValueDecl *VD = E->getMemberDecl();
6305      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6306      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6307        if (DeclRefExpr *DRE
6308              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6309          HandleDeclRefExpr(DRE);
6310          return;
6311        }
6312
6313      Inherited::VisitMemberExpr(E);
6314    }
6315
6316    void VisitUnaryOperator(UnaryOperator *E) {
6317      // For POD record types, addresses of its own members are well-defined.
6318      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6319          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6320      Inherited::VisitUnaryOperator(E);
6321    }
6322
6323    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6324
6325    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6326      Decl* ReferenceDecl = DRE->getDecl();
6327      if (OrigDecl != ReferenceDecl) return;
6328      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6329                          Sema::NotForRedeclaration);
6330      unsigned diag = isReferenceType
6331          ? diag::warn_uninit_self_reference_in_reference_init
6332          : diag::warn_uninit_self_reference_in_init;
6333      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6334                            S.PDiag(diag)
6335                              << Result.getLookupName()
6336                              << OrigDecl->getLocation()
6337                              << DRE->getSourceRange());
6338    }
6339  };
6340}
6341
6342/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6343void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6344  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6345}
6346
6347/// AddInitializerToDecl - Adds the initializer Init to the
6348/// declaration dcl. If DirectInit is true, this is C++ direct
6349/// initialization rather than copy initialization.
6350void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6351                                bool DirectInit, bool TypeMayContainAuto) {
6352  // If there is no declaration, there was an error parsing it.  Just ignore
6353  // the initializer.
6354  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6355    return;
6356
6357  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6358    // With declarators parsed the way they are, the parser cannot
6359    // distinguish between a normal initializer and a pure-specifier.
6360    // Thus this grotesque test.
6361    IntegerLiteral *IL;
6362    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6363        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6364      CheckPureMethod(Method, Init->getSourceRange());
6365    else {
6366      Diag(Method->getLocation(), diag::err_member_function_initialization)
6367        << Method->getDeclName() << Init->getSourceRange();
6368      Method->setInvalidDecl();
6369    }
6370    return;
6371  }
6372
6373  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6374  if (!VDecl) {
6375    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6376    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6377    RealDecl->setInvalidDecl();
6378    return;
6379  }
6380
6381  // Check for self-references within variable initializers.
6382  // Variables declared within a function/method body (except for references)
6383  // are handled by a dataflow analysis.
6384  // Record types initialized by initializer list are handled here.
6385  // Initialization by constructors are handled in TryConstructorInitialization.
6386  if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6387      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6388    CheckSelfReference(RealDecl, Init);
6389
6390  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6391
6392  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6393  AutoType *Auto = 0;
6394  if (TypeMayContainAuto &&
6395      (Auto = VDecl->getType()->getContainedAutoType()) &&
6396      !Auto->isDeduced()) {
6397    Expr *DeduceInit = Init;
6398    // Initializer could be a C++ direct-initializer. Deduction only works if it
6399    // contains exactly one expression.
6400    if (CXXDirectInit) {
6401      if (CXXDirectInit->getNumExprs() == 0) {
6402        // It isn't possible to write this directly, but it is possible to
6403        // end up in this situation with "auto x(some_pack...);"
6404        Diag(CXXDirectInit->getLocStart(),
6405             diag::err_auto_var_init_no_expression)
6406          << VDecl->getDeclName() << VDecl->getType()
6407          << VDecl->getSourceRange();
6408        RealDecl->setInvalidDecl();
6409        return;
6410      } else if (CXXDirectInit->getNumExprs() > 1) {
6411        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6412             diag::err_auto_var_init_multiple_expressions)
6413          << VDecl->getDeclName() << VDecl->getType()
6414          << VDecl->getSourceRange();
6415        RealDecl->setInvalidDecl();
6416        return;
6417      } else {
6418        DeduceInit = CXXDirectInit->getExpr(0);
6419      }
6420    }
6421    TypeSourceInfo *DeducedType = 0;
6422    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6423            DAR_Failed)
6424      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6425    if (!DeducedType) {
6426      RealDecl->setInvalidDecl();
6427      return;
6428    }
6429    VDecl->setTypeSourceInfo(DeducedType);
6430    VDecl->setType(DeducedType->getType());
6431    VDecl->ClearLinkageCache();
6432
6433    // In ARC, infer lifetime.
6434    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6435      VDecl->setInvalidDecl();
6436
6437    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6438    // 'id' instead of a specific object type prevents most of our usual checks.
6439    // We only want to warn outside of template instantiations, though:
6440    // inside a template, the 'id' could have come from a parameter.
6441    if (ActiveTemplateInstantiations.empty() &&
6442        DeducedType->getType()->isObjCIdType()) {
6443      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6444      Diag(Loc, diag::warn_auto_var_is_id)
6445        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6446    }
6447
6448    // If this is a redeclaration, check that the type we just deduced matches
6449    // the previously declared type.
6450    if (VarDecl *Old = VDecl->getPreviousDecl())
6451      MergeVarDeclTypes(VDecl, Old);
6452  }
6453
6454  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6455    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6456    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6457    VDecl->setInvalidDecl();
6458    return;
6459  }
6460
6461  if (!VDecl->getType()->isDependentType()) {
6462    // A definition must end up with a complete type, which means it must be
6463    // complete with the restriction that an array type might be completed by
6464    // the initializer; note that later code assumes this restriction.
6465    QualType BaseDeclType = VDecl->getType();
6466    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6467      BaseDeclType = Array->getElementType();
6468    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6469                            diag::err_typecheck_decl_incomplete_type)) {
6470      RealDecl->setInvalidDecl();
6471      return;
6472    }
6473
6474    // The variable can not have an abstract class type.
6475    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6476                               diag::err_abstract_type_in_decl,
6477                               AbstractVariableType))
6478      VDecl->setInvalidDecl();
6479  }
6480
6481  const VarDecl *Def;
6482  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6483    Diag(VDecl->getLocation(), diag::err_redefinition)
6484      << VDecl->getDeclName();
6485    Diag(Def->getLocation(), diag::note_previous_definition);
6486    VDecl->setInvalidDecl();
6487    return;
6488  }
6489
6490  const VarDecl* PrevInit = 0;
6491  if (getLangOpts().CPlusPlus) {
6492    // C++ [class.static.data]p4
6493    //   If a static data member is of const integral or const
6494    //   enumeration type, its declaration in the class definition can
6495    //   specify a constant-initializer which shall be an integral
6496    //   constant expression (5.19). In that case, the member can appear
6497    //   in integral constant expressions. The member shall still be
6498    //   defined in a namespace scope if it is used in the program and the
6499    //   namespace scope definition shall not contain an initializer.
6500    //
6501    // We already performed a redefinition check above, but for static
6502    // data members we also need to check whether there was an in-class
6503    // declaration with an initializer.
6504    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6505      Diag(VDecl->getLocation(), diag::err_redefinition)
6506        << VDecl->getDeclName();
6507      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6508      return;
6509    }
6510
6511    if (VDecl->hasLocalStorage())
6512      getCurFunction()->setHasBranchProtectedScope();
6513
6514    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6515      VDecl->setInvalidDecl();
6516      return;
6517    }
6518  }
6519
6520  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6521  // a kernel function cannot be initialized."
6522  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6523    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6524    VDecl->setInvalidDecl();
6525    return;
6526  }
6527
6528  // Get the decls type and save a reference for later, since
6529  // CheckInitializerTypes may change it.
6530  QualType DclT = VDecl->getType(), SavT = DclT;
6531
6532  // Top-level message sends default to 'id' when we're in a debugger
6533  // and we are assigning it to a variable of 'id' type.
6534  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6535    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6536      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6537      if (Result.isInvalid()) {
6538        VDecl->setInvalidDecl();
6539        return;
6540      }
6541      Init = Result.take();
6542    }
6543
6544  // Perform the initialization.
6545  if (!VDecl->isInvalidDecl()) {
6546    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6547    InitializationKind Kind
6548      = DirectInit ?
6549          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6550                                                           Init->getLocStart(),
6551                                                           Init->getLocEnd())
6552                        : InitializationKind::CreateDirectList(
6553                                                          VDecl->getLocation())
6554                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6555                                                    Init->getLocStart());
6556
6557    Expr **Args = &Init;
6558    unsigned NumArgs = 1;
6559    if (CXXDirectInit) {
6560      Args = CXXDirectInit->getExprs();
6561      NumArgs = CXXDirectInit->getNumExprs();
6562    }
6563    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6564    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6565                                        MultiExprArg(Args, NumArgs), &DclT);
6566    if (Result.isInvalid()) {
6567      VDecl->setInvalidDecl();
6568      return;
6569    }
6570
6571    Init = Result.takeAs<Expr>();
6572  }
6573
6574  // If the type changed, it means we had an incomplete type that was
6575  // completed by the initializer. For example:
6576  //   int ary[] = { 1, 3, 5 };
6577  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6578  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6579    VDecl->setType(DclT);
6580
6581  // Check any implicit conversions within the expression.
6582  CheckImplicitConversions(Init, VDecl->getLocation());
6583
6584  if (!VDecl->isInvalidDecl())
6585    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6586
6587  Init = MaybeCreateExprWithCleanups(Init);
6588  // Attach the initializer to the decl.
6589  VDecl->setInit(Init);
6590
6591  if (VDecl->isLocalVarDecl()) {
6592    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6593    // static storage duration shall be constant expressions or string literals.
6594    // C++ does not have this restriction.
6595    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6596        VDecl->getStorageClass() == SC_Static)
6597      CheckForConstantInitializer(Init, DclT);
6598  } else if (VDecl->isStaticDataMember() &&
6599             VDecl->getLexicalDeclContext()->isRecord()) {
6600    // This is an in-class initialization for a static data member, e.g.,
6601    //
6602    // struct S {
6603    //   static const int value = 17;
6604    // };
6605
6606    // C++ [class.mem]p4:
6607    //   A member-declarator can contain a constant-initializer only
6608    //   if it declares a static member (9.4) of const integral or
6609    //   const enumeration type, see 9.4.2.
6610    //
6611    // C++11 [class.static.data]p3:
6612    //   If a non-volatile const static data member is of integral or
6613    //   enumeration type, its declaration in the class definition can
6614    //   specify a brace-or-equal-initializer in which every initalizer-clause
6615    //   that is an assignment-expression is a constant expression. A static
6616    //   data member of literal type can be declared in the class definition
6617    //   with the constexpr specifier; if so, its declaration shall specify a
6618    //   brace-or-equal-initializer in which every initializer-clause that is
6619    //   an assignment-expression is a constant expression.
6620
6621    // Do nothing on dependent types.
6622    if (DclT->isDependentType()) {
6623
6624    // Allow any 'static constexpr' members, whether or not they are of literal
6625    // type. We separately check that every constexpr variable is of literal
6626    // type.
6627    } else if (VDecl->isConstexpr()) {
6628
6629    // Require constness.
6630    } else if (!DclT.isConstQualified()) {
6631      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6632        << Init->getSourceRange();
6633      VDecl->setInvalidDecl();
6634
6635    // We allow integer constant expressions in all cases.
6636    } else if (DclT->isIntegralOrEnumerationType()) {
6637      // Check whether the expression is a constant expression.
6638      SourceLocation Loc;
6639      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6640        // In C++11, a non-constexpr const static data member with an
6641        // in-class initializer cannot be volatile.
6642        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6643      else if (Init->isValueDependent())
6644        ; // Nothing to check.
6645      else if (Init->isIntegerConstantExpr(Context, &Loc))
6646        ; // Ok, it's an ICE!
6647      else if (Init->isEvaluatable(Context)) {
6648        // If we can constant fold the initializer through heroics, accept it,
6649        // but report this as a use of an extension for -pedantic.
6650        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6651          << Init->getSourceRange();
6652      } else {
6653        // Otherwise, this is some crazy unknown case.  Report the issue at the
6654        // location provided by the isIntegerConstantExpr failed check.
6655        Diag(Loc, diag::err_in_class_initializer_non_constant)
6656          << Init->getSourceRange();
6657        VDecl->setInvalidDecl();
6658      }
6659
6660    // We allow foldable floating-point constants as an extension.
6661    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6662      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6663        << DclT << Init->getSourceRange();
6664      if (getLangOpts().CPlusPlus0x)
6665        Diag(VDecl->getLocation(),
6666             diag::note_in_class_initializer_float_type_constexpr)
6667          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6668
6669      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6670        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6671          << Init->getSourceRange();
6672        VDecl->setInvalidDecl();
6673      }
6674
6675    // Suggest adding 'constexpr' in C++11 for literal types.
6676    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6677      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6678        << DclT << Init->getSourceRange()
6679        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6680      VDecl->setConstexpr(true);
6681
6682    } else {
6683      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6684        << DclT << Init->getSourceRange();
6685      VDecl->setInvalidDecl();
6686    }
6687  } else if (VDecl->isFileVarDecl()) {
6688    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6689        (!getLangOpts().CPlusPlus ||
6690         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6691      Diag(VDecl->getLocation(), diag::warn_extern_init);
6692
6693    // C99 6.7.8p4. All file scoped initializers need to be constant.
6694    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6695      CheckForConstantInitializer(Init, DclT);
6696  }
6697
6698  // We will represent direct-initialization similarly to copy-initialization:
6699  //    int x(1);  -as-> int x = 1;
6700  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6701  //
6702  // Clients that want to distinguish between the two forms, can check for
6703  // direct initializer using VarDecl::getInitStyle().
6704  // A major benefit is that clients that don't particularly care about which
6705  // exactly form was it (like the CodeGen) can handle both cases without
6706  // special case code.
6707
6708  // C++ 8.5p11:
6709  // The form of initialization (using parentheses or '=') is generally
6710  // insignificant, but does matter when the entity being initialized has a
6711  // class type.
6712  if (CXXDirectInit) {
6713    assert(DirectInit && "Call-style initializer must be direct init.");
6714    VDecl->setInitStyle(VarDecl::CallInit);
6715  } else if (DirectInit) {
6716    // This must be list-initialization. No other way is direct-initialization.
6717    VDecl->setInitStyle(VarDecl::ListInit);
6718  }
6719
6720  CheckCompleteVariableDeclaration(VDecl);
6721}
6722
6723/// ActOnInitializerError - Given that there was an error parsing an
6724/// initializer for the given declaration, try to return to some form
6725/// of sanity.
6726void Sema::ActOnInitializerError(Decl *D) {
6727  // Our main concern here is re-establishing invariants like "a
6728  // variable's type is either dependent or complete".
6729  if (!D || D->isInvalidDecl()) return;
6730
6731  VarDecl *VD = dyn_cast<VarDecl>(D);
6732  if (!VD) return;
6733
6734  // Auto types are meaningless if we can't make sense of the initializer.
6735  if (ParsingInitForAutoVars.count(D)) {
6736    D->setInvalidDecl();
6737    return;
6738  }
6739
6740  QualType Ty = VD->getType();
6741  if (Ty->isDependentType()) return;
6742
6743  // Require a complete type.
6744  if (RequireCompleteType(VD->getLocation(),
6745                          Context.getBaseElementType(Ty),
6746                          diag::err_typecheck_decl_incomplete_type)) {
6747    VD->setInvalidDecl();
6748    return;
6749  }
6750
6751  // Require an abstract type.
6752  if (RequireNonAbstractType(VD->getLocation(), Ty,
6753                             diag::err_abstract_type_in_decl,
6754                             AbstractVariableType)) {
6755    VD->setInvalidDecl();
6756    return;
6757  }
6758
6759  // Don't bother complaining about constructors or destructors,
6760  // though.
6761}
6762
6763void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6764                                  bool TypeMayContainAuto) {
6765  // If there is no declaration, there was an error parsing it. Just ignore it.
6766  if (RealDecl == 0)
6767    return;
6768
6769  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6770    QualType Type = Var->getType();
6771
6772    // C++11 [dcl.spec.auto]p3
6773    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6774      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6775        << Var->getDeclName() << Type;
6776      Var->setInvalidDecl();
6777      return;
6778    }
6779
6780    // C++11 [class.static.data]p3: A static data member can be declared with
6781    // the constexpr specifier; if so, its declaration shall specify
6782    // a brace-or-equal-initializer.
6783    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6784    // the definition of a variable [...] or the declaration of a static data
6785    // member.
6786    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6787      if (Var->isStaticDataMember())
6788        Diag(Var->getLocation(),
6789             diag::err_constexpr_static_mem_var_requires_init)
6790          << Var->getDeclName();
6791      else
6792        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6793      Var->setInvalidDecl();
6794      return;
6795    }
6796
6797    switch (Var->isThisDeclarationADefinition()) {
6798    case VarDecl::Definition:
6799      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6800        break;
6801
6802      // We have an out-of-line definition of a static data member
6803      // that has an in-class initializer, so we type-check this like
6804      // a declaration.
6805      //
6806      // Fall through
6807
6808    case VarDecl::DeclarationOnly:
6809      // It's only a declaration.
6810
6811      // Block scope. C99 6.7p7: If an identifier for an object is
6812      // declared with no linkage (C99 6.2.2p6), the type for the
6813      // object shall be complete.
6814      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6815          !Var->getLinkage() && !Var->isInvalidDecl() &&
6816          RequireCompleteType(Var->getLocation(), Type,
6817                              diag::err_typecheck_decl_incomplete_type))
6818        Var->setInvalidDecl();
6819
6820      // Make sure that the type is not abstract.
6821      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6822          RequireNonAbstractType(Var->getLocation(), Type,
6823                                 diag::err_abstract_type_in_decl,
6824                                 AbstractVariableType))
6825        Var->setInvalidDecl();
6826      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6827          Var->getStorageClass() == SC_PrivateExtern) {
6828        Diag(Var->getLocation(), diag::warn_private_extern);
6829        Diag(Var->getLocation(), diag::note_private_extern);
6830      }
6831
6832      return;
6833
6834    case VarDecl::TentativeDefinition:
6835      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6836      // object that has file scope without an initializer, and without a
6837      // storage-class specifier or with the storage-class specifier "static",
6838      // constitutes a tentative definition. Note: A tentative definition with
6839      // external linkage is valid (C99 6.2.2p5).
6840      if (!Var->isInvalidDecl()) {
6841        if (const IncompleteArrayType *ArrayT
6842                                    = Context.getAsIncompleteArrayType(Type)) {
6843          if (RequireCompleteType(Var->getLocation(),
6844                                  ArrayT->getElementType(),
6845                                  diag::err_illegal_decl_array_incomplete_type))
6846            Var->setInvalidDecl();
6847        } else if (Var->getStorageClass() == SC_Static) {
6848          // C99 6.9.2p3: If the declaration of an identifier for an object is
6849          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6850          // declared type shall not be an incomplete type.
6851          // NOTE: code such as the following
6852          //     static struct s;
6853          //     struct s { int a; };
6854          // is accepted by gcc. Hence here we issue a warning instead of
6855          // an error and we do not invalidate the static declaration.
6856          // NOTE: to avoid multiple warnings, only check the first declaration.
6857          if (Var->getPreviousDecl() == 0)
6858            RequireCompleteType(Var->getLocation(), Type,
6859                                diag::ext_typecheck_decl_incomplete_type);
6860        }
6861      }
6862
6863      // Record the tentative definition; we're done.
6864      if (!Var->isInvalidDecl())
6865        TentativeDefinitions.push_back(Var);
6866      return;
6867    }
6868
6869    // Provide a specific diagnostic for uninitialized variable
6870    // definitions with incomplete array type.
6871    if (Type->isIncompleteArrayType()) {
6872      Diag(Var->getLocation(),
6873           diag::err_typecheck_incomplete_array_needs_initializer);
6874      Var->setInvalidDecl();
6875      return;
6876    }
6877
6878    // Provide a specific diagnostic for uninitialized variable
6879    // definitions with reference type.
6880    if (Type->isReferenceType()) {
6881      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6882        << Var->getDeclName()
6883        << SourceRange(Var->getLocation(), Var->getLocation());
6884      Var->setInvalidDecl();
6885      return;
6886    }
6887
6888    // Do not attempt to type-check the default initializer for a
6889    // variable with dependent type.
6890    if (Type->isDependentType())
6891      return;
6892
6893    if (Var->isInvalidDecl())
6894      return;
6895
6896    if (RequireCompleteType(Var->getLocation(),
6897                            Context.getBaseElementType(Type),
6898                            diag::err_typecheck_decl_incomplete_type)) {
6899      Var->setInvalidDecl();
6900      return;
6901    }
6902
6903    // The variable can not have an abstract class type.
6904    if (RequireNonAbstractType(Var->getLocation(), Type,
6905                               diag::err_abstract_type_in_decl,
6906                               AbstractVariableType)) {
6907      Var->setInvalidDecl();
6908      return;
6909    }
6910
6911    // Check for jumps past the implicit initializer.  C++0x
6912    // clarifies that this applies to a "variable with automatic
6913    // storage duration", not a "local variable".
6914    // C++11 [stmt.dcl]p3
6915    //   A program that jumps from a point where a variable with automatic
6916    //   storage duration is not in scope to a point where it is in scope is
6917    //   ill-formed unless the variable has scalar type, class type with a
6918    //   trivial default constructor and a trivial destructor, a cv-qualified
6919    //   version of one of these types, or an array of one of the preceding
6920    //   types and is declared without an initializer.
6921    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6922      if (const RecordType *Record
6923            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6924        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6925        // Mark the function for further checking even if the looser rules of
6926        // C++11 do not require such checks, so that we can diagnose
6927        // incompatibilities with C++98.
6928        if (!CXXRecord->isPOD())
6929          getCurFunction()->setHasBranchProtectedScope();
6930      }
6931    }
6932
6933    // C++03 [dcl.init]p9:
6934    //   If no initializer is specified for an object, and the
6935    //   object is of (possibly cv-qualified) non-POD class type (or
6936    //   array thereof), the object shall be default-initialized; if
6937    //   the object is of const-qualified type, the underlying class
6938    //   type shall have a user-declared default
6939    //   constructor. Otherwise, if no initializer is specified for
6940    //   a non- static object, the object and its subobjects, if
6941    //   any, have an indeterminate initial value); if the object
6942    //   or any of its subobjects are of const-qualified type, the
6943    //   program is ill-formed.
6944    // C++0x [dcl.init]p11:
6945    //   If no initializer is specified for an object, the object is
6946    //   default-initialized; [...].
6947    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6948    InitializationKind Kind
6949      = InitializationKind::CreateDefault(Var->getLocation());
6950
6951    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6952    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6953    if (Init.isInvalid())
6954      Var->setInvalidDecl();
6955    else if (Init.get()) {
6956      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6957      // This is important for template substitution.
6958      Var->setInitStyle(VarDecl::CallInit);
6959    }
6960
6961    CheckCompleteVariableDeclaration(Var);
6962  }
6963}
6964
6965void Sema::ActOnCXXForRangeDecl(Decl *D) {
6966  VarDecl *VD = dyn_cast<VarDecl>(D);
6967  if (!VD) {
6968    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6969    D->setInvalidDecl();
6970    return;
6971  }
6972
6973  VD->setCXXForRangeDecl(true);
6974
6975  // for-range-declaration cannot be given a storage class specifier.
6976  int Error = -1;
6977  switch (VD->getStorageClassAsWritten()) {
6978  case SC_None:
6979    break;
6980  case SC_Extern:
6981    Error = 0;
6982    break;
6983  case SC_Static:
6984    Error = 1;
6985    break;
6986  case SC_PrivateExtern:
6987    Error = 2;
6988    break;
6989  case SC_Auto:
6990    Error = 3;
6991    break;
6992  case SC_Register:
6993    Error = 4;
6994    break;
6995  case SC_OpenCLWorkGroupLocal:
6996    llvm_unreachable("Unexpected storage class");
6997  }
6998  if (VD->isConstexpr())
6999    Error = 5;
7000  if (Error != -1) {
7001    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7002      << VD->getDeclName() << Error;
7003    D->setInvalidDecl();
7004  }
7005}
7006
7007void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7008  if (var->isInvalidDecl()) return;
7009
7010  // In ARC, don't allow jumps past the implicit initialization of a
7011  // local retaining variable.
7012  if (getLangOpts().ObjCAutoRefCount &&
7013      var->hasLocalStorage()) {
7014    switch (var->getType().getObjCLifetime()) {
7015    case Qualifiers::OCL_None:
7016    case Qualifiers::OCL_ExplicitNone:
7017    case Qualifiers::OCL_Autoreleasing:
7018      break;
7019
7020    case Qualifiers::OCL_Weak:
7021    case Qualifiers::OCL_Strong:
7022      getCurFunction()->setHasBranchProtectedScope();
7023      break;
7024    }
7025  }
7026
7027  // All the following checks are C++ only.
7028  if (!getLangOpts().CPlusPlus) return;
7029
7030  QualType baseType = Context.getBaseElementType(var->getType());
7031  if (baseType->isDependentType()) return;
7032
7033  // __block variables might require us to capture a copy-initializer.
7034  if (var->hasAttr<BlocksAttr>()) {
7035    // It's currently invalid to ever have a __block variable with an
7036    // array type; should we diagnose that here?
7037
7038    // Regardless, we don't want to ignore array nesting when
7039    // constructing this copy.
7040    QualType type = var->getType();
7041
7042    if (type->isStructureOrClassType()) {
7043      SourceLocation poi = var->getLocation();
7044      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7045      ExprResult result =
7046        PerformCopyInitialization(
7047                        InitializedEntity::InitializeBlock(poi, type, false),
7048                                  poi, Owned(varRef));
7049      if (!result.isInvalid()) {
7050        result = MaybeCreateExprWithCleanups(result);
7051        Expr *init = result.takeAs<Expr>();
7052        Context.setBlockVarCopyInits(var, init);
7053      }
7054    }
7055  }
7056
7057  Expr *Init = var->getInit();
7058  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7059
7060  if (!var->getDeclContext()->isDependentContext() && Init) {
7061    if (IsGlobal && !var->isConstexpr() &&
7062        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7063                                            var->getLocation())
7064          != DiagnosticsEngine::Ignored &&
7065        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7066      Diag(var->getLocation(), diag::warn_global_constructor)
7067        << Init->getSourceRange();
7068
7069    if (var->isConstexpr()) {
7070      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7071      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7072        SourceLocation DiagLoc = var->getLocation();
7073        // If the note doesn't add any useful information other than a source
7074        // location, fold it into the primary diagnostic.
7075        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7076              diag::note_invalid_subexpr_in_const_expr) {
7077          DiagLoc = Notes[0].first;
7078          Notes.clear();
7079        }
7080        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7081          << var << Init->getSourceRange();
7082        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7083          Diag(Notes[I].first, Notes[I].second);
7084      }
7085    } else if (var->isUsableInConstantExpressions(Context)) {
7086      // Check whether the initializer of a const variable of integral or
7087      // enumeration type is an ICE now, since we can't tell whether it was
7088      // initialized by a constant expression if we check later.
7089      var->checkInitIsICE();
7090    }
7091  }
7092
7093  // Require the destructor.
7094  if (const RecordType *recordType = baseType->getAs<RecordType>())
7095    FinalizeVarWithDestructor(var, recordType);
7096}
7097
7098/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7099/// any semantic actions necessary after any initializer has been attached.
7100void
7101Sema::FinalizeDeclaration(Decl *ThisDecl) {
7102  // Note that we are no longer parsing the initializer for this declaration.
7103  ParsingInitForAutoVars.erase(ThisDecl);
7104
7105  // Now we have parsed the initializer and can update the table of magic
7106  // tag values.
7107  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7108    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7109    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7110      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7111               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7112               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7113           I != E; ++I) {
7114        const Expr *MagicValueExpr = VD->getInit();
7115        if (!MagicValueExpr) {
7116          continue;
7117        }
7118        llvm::APSInt MagicValueInt;
7119        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7120          Diag(I->getRange().getBegin(),
7121               diag::err_type_tag_for_datatype_not_ice)
7122            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7123          continue;
7124        }
7125        if (MagicValueInt.getActiveBits() > 64) {
7126          Diag(I->getRange().getBegin(),
7127               diag::err_type_tag_for_datatype_too_large)
7128            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7129          continue;
7130        }
7131        uint64_t MagicValue = MagicValueInt.getZExtValue();
7132        RegisterTypeTagForDatatype(I->getArgumentKind(),
7133                                   MagicValue,
7134                                   I->getMatchingCType(),
7135                                   I->getLayoutCompatible(),
7136                                   I->getMustBeNull());
7137      }
7138    }
7139  }
7140}
7141
7142Sema::DeclGroupPtrTy
7143Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7144                              Decl **Group, unsigned NumDecls) {
7145  SmallVector<Decl*, 8> Decls;
7146
7147  if (DS.isTypeSpecOwned())
7148    Decls.push_back(DS.getRepAsDecl());
7149
7150  for (unsigned i = 0; i != NumDecls; ++i)
7151    if (Decl *D = Group[i])
7152      Decls.push_back(D);
7153
7154  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7155                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7156}
7157
7158/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7159/// group, performing any necessary semantic checking.
7160Sema::DeclGroupPtrTy
7161Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7162                           bool TypeMayContainAuto) {
7163  // C++0x [dcl.spec.auto]p7:
7164  //   If the type deduced for the template parameter U is not the same in each
7165  //   deduction, the program is ill-formed.
7166  // FIXME: When initializer-list support is added, a distinction is needed
7167  // between the deduced type U and the deduced type which 'auto' stands for.
7168  //   auto a = 0, b = { 1, 2, 3 };
7169  // is legal because the deduced type U is 'int' in both cases.
7170  if (TypeMayContainAuto && NumDecls > 1) {
7171    QualType Deduced;
7172    CanQualType DeducedCanon;
7173    VarDecl *DeducedDecl = 0;
7174    for (unsigned i = 0; i != NumDecls; ++i) {
7175      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7176        AutoType *AT = D->getType()->getContainedAutoType();
7177        // Don't reissue diagnostics when instantiating a template.
7178        if (AT && D->isInvalidDecl())
7179          break;
7180        if (AT && AT->isDeduced()) {
7181          QualType U = AT->getDeducedType();
7182          CanQualType UCanon = Context.getCanonicalType(U);
7183          if (Deduced.isNull()) {
7184            Deduced = U;
7185            DeducedCanon = UCanon;
7186            DeducedDecl = D;
7187          } else if (DeducedCanon != UCanon) {
7188            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7189                 diag::err_auto_different_deductions)
7190              << Deduced << DeducedDecl->getDeclName()
7191              << U << D->getDeclName()
7192              << DeducedDecl->getInit()->getSourceRange()
7193              << D->getInit()->getSourceRange();
7194            D->setInvalidDecl();
7195            break;
7196          }
7197        }
7198      }
7199    }
7200  }
7201
7202  ActOnDocumentableDecls(Group, NumDecls);
7203
7204  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7205}
7206
7207void Sema::ActOnDocumentableDecl(Decl *D) {
7208  ActOnDocumentableDecls(&D, 1);
7209}
7210
7211void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7212  // Don't parse the comment if Doxygen diagnostics are ignored.
7213  if (NumDecls == 0 || !Group[0])
7214   return;
7215
7216  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7217                               Group[0]->getLocation())
7218        == DiagnosticsEngine::Ignored)
7219    return;
7220
7221  if (NumDecls >= 2) {
7222    // This is a decl group.  Normally it will contain only declarations
7223    // procuded from declarator list.  But in case we have any definitions or
7224    // additional declaration references:
7225    //   'typedef struct S {} S;'
7226    //   'typedef struct S *S;'
7227    //   'struct S *pS;'
7228    // FinalizeDeclaratorGroup adds these as separate declarations.
7229    Decl *MaybeTagDecl = Group[0];
7230    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7231      Group++;
7232      NumDecls--;
7233    }
7234  }
7235
7236  // See if there are any new comments that are not attached to a decl.
7237  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7238  if (!Comments.empty() &&
7239      !Comments.back()->isAttached()) {
7240    // There is at least one comment that not attached to a decl.
7241    // Maybe it should be attached to one of these decls?
7242    //
7243    // Note that this way we pick up not only comments that precede the
7244    // declaration, but also comments that *follow* the declaration -- thanks to
7245    // the lookahead in the lexer: we've consumed the semicolon and looked
7246    // ahead through comments.
7247    for (unsigned i = 0; i != NumDecls; ++i)
7248      Context.getCommentForDecl(Group[i]);
7249  }
7250}
7251
7252/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7253/// to introduce parameters into function prototype scope.
7254Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7255  const DeclSpec &DS = D.getDeclSpec();
7256
7257  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7258  // C++03 [dcl.stc]p2 also permits 'auto'.
7259  VarDecl::StorageClass StorageClass = SC_None;
7260  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7261  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7262    StorageClass = SC_Register;
7263    StorageClassAsWritten = SC_Register;
7264  } else if (getLangOpts().CPlusPlus &&
7265             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7266    StorageClass = SC_Auto;
7267    StorageClassAsWritten = SC_Auto;
7268  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7269    Diag(DS.getStorageClassSpecLoc(),
7270         diag::err_invalid_storage_class_in_func_decl);
7271    D.getMutableDeclSpec().ClearStorageClassSpecs();
7272  }
7273
7274  if (D.getDeclSpec().isThreadSpecified())
7275    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7276  if (D.getDeclSpec().isConstexprSpecified())
7277    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7278      << 0;
7279
7280  DiagnoseFunctionSpecifiers(D);
7281
7282  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7283  QualType parmDeclType = TInfo->getType();
7284
7285  if (getLangOpts().CPlusPlus) {
7286    // Check that there are no default arguments inside the type of this
7287    // parameter.
7288    CheckExtraCXXDefaultArguments(D);
7289
7290    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7291    if (D.getCXXScopeSpec().isSet()) {
7292      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7293        << D.getCXXScopeSpec().getRange();
7294      D.getCXXScopeSpec().clear();
7295    }
7296  }
7297
7298  // Ensure we have a valid name
7299  IdentifierInfo *II = 0;
7300  if (D.hasName()) {
7301    II = D.getIdentifier();
7302    if (!II) {
7303      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7304        << GetNameForDeclarator(D).getName().getAsString();
7305      D.setInvalidType(true);
7306    }
7307  }
7308
7309  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7310  if (II) {
7311    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7312                   ForRedeclaration);
7313    LookupName(R, S);
7314    if (R.isSingleResult()) {
7315      NamedDecl *PrevDecl = R.getFoundDecl();
7316      if (PrevDecl->isTemplateParameter()) {
7317        // Maybe we will complain about the shadowed template parameter.
7318        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7319        // Just pretend that we didn't see the previous declaration.
7320        PrevDecl = 0;
7321      } else if (S->isDeclScope(PrevDecl)) {
7322        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7323        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7324
7325        // Recover by removing the name
7326        II = 0;
7327        D.SetIdentifier(0, D.getIdentifierLoc());
7328        D.setInvalidType(true);
7329      }
7330    }
7331  }
7332
7333  // Temporarily put parameter variables in the translation unit, not
7334  // the enclosing context.  This prevents them from accidentally
7335  // looking like class members in C++.
7336  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7337                                    D.getLocStart(),
7338                                    D.getIdentifierLoc(), II,
7339                                    parmDeclType, TInfo,
7340                                    StorageClass, StorageClassAsWritten);
7341
7342  if (D.isInvalidType())
7343    New->setInvalidDecl();
7344
7345  assert(S->isFunctionPrototypeScope());
7346  assert(S->getFunctionPrototypeDepth() >= 1);
7347  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7348                    S->getNextFunctionPrototypeIndex());
7349
7350  // Add the parameter declaration into this scope.
7351  S->AddDecl(New);
7352  if (II)
7353    IdResolver.AddDecl(New);
7354
7355  ProcessDeclAttributes(S, New, D);
7356
7357  if (D.getDeclSpec().isModulePrivateSpecified())
7358    Diag(New->getLocation(), diag::err_module_private_local)
7359      << 1 << New->getDeclName()
7360      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7361      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7362
7363  if (New->hasAttr<BlocksAttr>()) {
7364    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7365  }
7366  return New;
7367}
7368
7369/// \brief Synthesizes a variable for a parameter arising from a
7370/// typedef.
7371ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7372                                              SourceLocation Loc,
7373                                              QualType T) {
7374  /* FIXME: setting StartLoc == Loc.
7375     Would it be worth to modify callers so as to provide proper source
7376     location for the unnamed parameters, embedding the parameter's type? */
7377  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7378                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7379                                           SC_None, SC_None, 0);
7380  Param->setImplicit();
7381  return Param;
7382}
7383
7384void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7385                                    ParmVarDecl * const *ParamEnd) {
7386  // Don't diagnose unused-parameter errors in template instantiations; we
7387  // will already have done so in the template itself.
7388  if (!ActiveTemplateInstantiations.empty())
7389    return;
7390
7391  for (; Param != ParamEnd; ++Param) {
7392    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7393        !(*Param)->hasAttr<UnusedAttr>()) {
7394      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7395        << (*Param)->getDeclName();
7396    }
7397  }
7398}
7399
7400void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7401                                                  ParmVarDecl * const *ParamEnd,
7402                                                  QualType ReturnTy,
7403                                                  NamedDecl *D) {
7404  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7405    return;
7406
7407  // Warn if the return value is pass-by-value and larger than the specified
7408  // threshold.
7409  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7410    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7411    if (Size > LangOpts.NumLargeByValueCopy)
7412      Diag(D->getLocation(), diag::warn_return_value_size)
7413          << D->getDeclName() << Size;
7414  }
7415
7416  // Warn if any parameter is pass-by-value and larger than the specified
7417  // threshold.
7418  for (; Param != ParamEnd; ++Param) {
7419    QualType T = (*Param)->getType();
7420    if (T->isDependentType() || !T.isPODType(Context))
7421      continue;
7422    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7423    if (Size > LangOpts.NumLargeByValueCopy)
7424      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7425          << (*Param)->getDeclName() << Size;
7426  }
7427}
7428
7429ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7430                                  SourceLocation NameLoc, IdentifierInfo *Name,
7431                                  QualType T, TypeSourceInfo *TSInfo,
7432                                  VarDecl::StorageClass StorageClass,
7433                                  VarDecl::StorageClass StorageClassAsWritten) {
7434  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7435  if (getLangOpts().ObjCAutoRefCount &&
7436      T.getObjCLifetime() == Qualifiers::OCL_None &&
7437      T->isObjCLifetimeType()) {
7438
7439    Qualifiers::ObjCLifetime lifetime;
7440
7441    // Special cases for arrays:
7442    //   - if it's const, use __unsafe_unretained
7443    //   - otherwise, it's an error
7444    if (T->isArrayType()) {
7445      if (!T.isConstQualified()) {
7446        DelayedDiagnostics.add(
7447            sema::DelayedDiagnostic::makeForbiddenType(
7448            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7449      }
7450      lifetime = Qualifiers::OCL_ExplicitNone;
7451    } else {
7452      lifetime = T->getObjCARCImplicitLifetime();
7453    }
7454    T = Context.getLifetimeQualifiedType(T, lifetime);
7455  }
7456
7457  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7458                                         Context.getAdjustedParameterType(T),
7459                                         TSInfo,
7460                                         StorageClass, StorageClassAsWritten,
7461                                         0);
7462
7463  // Parameters can not be abstract class types.
7464  // For record types, this is done by the AbstractClassUsageDiagnoser once
7465  // the class has been completely parsed.
7466  if (!CurContext->isRecord() &&
7467      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7468                             AbstractParamType))
7469    New->setInvalidDecl();
7470
7471  // Parameter declarators cannot be interface types. All ObjC objects are
7472  // passed by reference.
7473  if (T->isObjCObjectType()) {
7474    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7475    Diag(NameLoc,
7476         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7477      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7478    T = Context.getObjCObjectPointerType(T);
7479    New->setType(T);
7480  }
7481
7482  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7483  // duration shall not be qualified by an address-space qualifier."
7484  // Since all parameters have automatic store duration, they can not have
7485  // an address space.
7486  if (T.getAddressSpace() != 0) {
7487    Diag(NameLoc, diag::err_arg_with_address_space);
7488    New->setInvalidDecl();
7489  }
7490
7491  return New;
7492}
7493
7494void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7495                                           SourceLocation LocAfterDecls) {
7496  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7497
7498  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7499  // for a K&R function.
7500  if (!FTI.hasPrototype) {
7501    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7502      --i;
7503      if (FTI.ArgInfo[i].Param == 0) {
7504        SmallString<256> Code;
7505        llvm::raw_svector_ostream(Code) << "  int "
7506                                        << FTI.ArgInfo[i].Ident->getName()
7507                                        << ";\n";
7508        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7509          << FTI.ArgInfo[i].Ident
7510          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7511
7512        // Implicitly declare the argument as type 'int' for lack of a better
7513        // type.
7514        AttributeFactory attrs;
7515        DeclSpec DS(attrs);
7516        const char* PrevSpec; // unused
7517        unsigned DiagID; // unused
7518        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7519                           PrevSpec, DiagID);
7520        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7521        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7522        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7523      }
7524    }
7525  }
7526}
7527
7528Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7529  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7530  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7531  Scope *ParentScope = FnBodyScope->getParent();
7532
7533  D.setFunctionDefinitionKind(FDK_Definition);
7534  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7535  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7536}
7537
7538static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7539  // Don't warn about invalid declarations.
7540  if (FD->isInvalidDecl())
7541    return false;
7542
7543  // Or declarations that aren't global.
7544  if (!FD->isGlobal())
7545    return false;
7546
7547  // Don't warn about C++ member functions.
7548  if (isa<CXXMethodDecl>(FD))
7549    return false;
7550
7551  // Don't warn about 'main'.
7552  if (FD->isMain())
7553    return false;
7554
7555  // Don't warn about inline functions.
7556  if (FD->isInlined())
7557    return false;
7558
7559  // Don't warn about function templates.
7560  if (FD->getDescribedFunctionTemplate())
7561    return false;
7562
7563  // Don't warn about function template specializations.
7564  if (FD->isFunctionTemplateSpecialization())
7565    return false;
7566
7567  // Don't warn for OpenCL kernels.
7568  if (FD->hasAttr<OpenCLKernelAttr>())
7569    return false;
7570
7571  bool MissingPrototype = true;
7572  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7573       Prev; Prev = Prev->getPreviousDecl()) {
7574    // Ignore any declarations that occur in function or method
7575    // scope, because they aren't visible from the header.
7576    if (Prev->getDeclContext()->isFunctionOrMethod())
7577      continue;
7578
7579    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7580    break;
7581  }
7582
7583  return MissingPrototype;
7584}
7585
7586void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7587  // Don't complain if we're in GNU89 mode and the previous definition
7588  // was an extern inline function.
7589  const FunctionDecl *Definition;
7590  if (FD->isDefined(Definition) &&
7591      !canRedefineFunction(Definition, getLangOpts())) {
7592    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7593        Definition->getStorageClass() == SC_Extern)
7594      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7595        << FD->getDeclName() << getLangOpts().CPlusPlus;
7596    else
7597      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7598    Diag(Definition->getLocation(), diag::note_previous_definition);
7599    FD->setInvalidDecl();
7600  }
7601}
7602
7603Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7604  // Clear the last template instantiation error context.
7605  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7606
7607  if (!D)
7608    return D;
7609  FunctionDecl *FD = 0;
7610
7611  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7612    FD = FunTmpl->getTemplatedDecl();
7613  else
7614    FD = cast<FunctionDecl>(D);
7615
7616  // Enter a new function scope
7617  PushFunctionScope();
7618
7619  // See if this is a redefinition.
7620  if (!FD->isLateTemplateParsed())
7621    CheckForFunctionRedefinition(FD);
7622
7623  // Builtin functions cannot be defined.
7624  if (unsigned BuiltinID = FD->getBuiltinID()) {
7625    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7626      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7627      FD->setInvalidDecl();
7628    }
7629  }
7630
7631  // The return type of a function definition must be complete
7632  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7633  QualType ResultType = FD->getResultType();
7634  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7635      !FD->isInvalidDecl() &&
7636      RequireCompleteType(FD->getLocation(), ResultType,
7637                          diag::err_func_def_incomplete_result))
7638    FD->setInvalidDecl();
7639
7640  // GNU warning -Wmissing-prototypes:
7641  //   Warn if a global function is defined without a previous
7642  //   prototype declaration. This warning is issued even if the
7643  //   definition itself provides a prototype. The aim is to detect
7644  //   global functions that fail to be declared in header files.
7645  if (ShouldWarnAboutMissingPrototype(FD))
7646    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7647
7648  if (FnBodyScope)
7649    PushDeclContext(FnBodyScope, FD);
7650
7651  // Check the validity of our function parameters
7652  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7653                           /*CheckParameterNames=*/true);
7654
7655  // Introduce our parameters into the function scope
7656  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7657    ParmVarDecl *Param = FD->getParamDecl(p);
7658    Param->setOwningFunction(FD);
7659
7660    // If this has an identifier, add it to the scope stack.
7661    if (Param->getIdentifier() && FnBodyScope) {
7662      CheckShadow(FnBodyScope, Param);
7663
7664      PushOnScopeChains(Param, FnBodyScope);
7665    }
7666  }
7667
7668  // If we had any tags defined in the function prototype,
7669  // introduce them into the function scope.
7670  if (FnBodyScope) {
7671    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7672           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7673      NamedDecl *D = *I;
7674
7675      // Some of these decls (like enums) may have been pinned to the translation unit
7676      // for lack of a real context earlier. If so, remove from the translation unit
7677      // and reattach to the current context.
7678      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7679        // Is the decl actually in the context?
7680        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7681               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7682          if (*DI == D) {
7683            Context.getTranslationUnitDecl()->removeDecl(D);
7684            break;
7685          }
7686        }
7687        // Either way, reassign the lexical decl context to our FunctionDecl.
7688        D->setLexicalDeclContext(CurContext);
7689      }
7690
7691      // If the decl has a non-null name, make accessible in the current scope.
7692      if (!D->getName().empty())
7693        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7694
7695      // Similarly, dive into enums and fish their constants out, making them
7696      // accessible in this scope.
7697      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7698        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7699               EE = ED->enumerator_end(); EI != EE; ++EI)
7700          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7701      }
7702    }
7703  }
7704
7705  // Ensure that the function's exception specification is instantiated.
7706  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7707    ResolveExceptionSpec(D->getLocation(), FPT);
7708
7709  // Checking attributes of current function definition
7710  // dllimport attribute.
7711  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7712  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7713    // dllimport attribute cannot be directly applied to definition.
7714    // Microsoft accepts dllimport for functions defined within class scope.
7715    if (!DA->isInherited() &&
7716        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7717      Diag(FD->getLocation(),
7718           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7719        << "dllimport";
7720      FD->setInvalidDecl();
7721      return FD;
7722    }
7723
7724    // Visual C++ appears to not think this is an issue, so only issue
7725    // a warning when Microsoft extensions are disabled.
7726    if (!LangOpts.MicrosoftExt) {
7727      // If a symbol previously declared dllimport is later defined, the
7728      // attribute is ignored in subsequent references, and a warning is
7729      // emitted.
7730      Diag(FD->getLocation(),
7731           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7732        << FD->getName() << "dllimport";
7733    }
7734  }
7735  // We want to attach documentation to original Decl (which might be
7736  // a function template).
7737  ActOnDocumentableDecl(D);
7738  return FD;
7739}
7740
7741/// \brief Given the set of return statements within a function body,
7742/// compute the variables that are subject to the named return value
7743/// optimization.
7744///
7745/// Each of the variables that is subject to the named return value
7746/// optimization will be marked as NRVO variables in the AST, and any
7747/// return statement that has a marked NRVO variable as its NRVO candidate can
7748/// use the named return value optimization.
7749///
7750/// This function applies a very simplistic algorithm for NRVO: if every return
7751/// statement in the function has the same NRVO candidate, that candidate is
7752/// the NRVO variable.
7753///
7754/// FIXME: Employ a smarter algorithm that accounts for multiple return
7755/// statements and the lifetimes of the NRVO candidates. We should be able to
7756/// find a maximal set of NRVO variables.
7757void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7758  ReturnStmt **Returns = Scope->Returns.data();
7759
7760  const VarDecl *NRVOCandidate = 0;
7761  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7762    if (!Returns[I]->getNRVOCandidate())
7763      return;
7764
7765    if (!NRVOCandidate)
7766      NRVOCandidate = Returns[I]->getNRVOCandidate();
7767    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7768      return;
7769  }
7770
7771  if (NRVOCandidate)
7772    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7773}
7774
7775Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7776  return ActOnFinishFunctionBody(D, BodyArg, false);
7777}
7778
7779Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7780                                    bool IsInstantiation) {
7781  FunctionDecl *FD = 0;
7782  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7783  if (FunTmpl)
7784    FD = FunTmpl->getTemplatedDecl();
7785  else
7786    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7787
7788  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7789  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7790
7791  if (FD) {
7792    FD->setBody(Body);
7793
7794    // If the function implicitly returns zero (like 'main') or is naked,
7795    // don't complain about missing return statements.
7796    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7797      WP.disableCheckFallThrough();
7798
7799    // MSVC permits the use of pure specifier (=0) on function definition,
7800    // defined at class scope, warn about this non standard construct.
7801    if (getLangOpts().MicrosoftExt && FD->isPure())
7802      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7803
7804    if (!FD->isInvalidDecl()) {
7805      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7806      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7807                                             FD->getResultType(), FD);
7808
7809      // If this is a constructor, we need a vtable.
7810      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7811        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7812
7813      // Try to apply the named return value optimization. We have to check
7814      // if we can do this here because lambdas keep return statements around
7815      // to deduce an implicit return type.
7816      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7817          !FD->isDependentContext())
7818        computeNRVO(Body, getCurFunction());
7819    }
7820
7821    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7822           "Function parsing confused");
7823  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7824    assert(MD == getCurMethodDecl() && "Method parsing confused");
7825    MD->setBody(Body);
7826    if (!MD->isInvalidDecl()) {
7827      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7828      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7829                                             MD->getResultType(), MD);
7830
7831      if (Body)
7832        computeNRVO(Body, getCurFunction());
7833    }
7834    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7835      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
7836        << MD->getSelector().getAsString();
7837      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7838    }
7839    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7840      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7841      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7842    }
7843  } else {
7844    return 0;
7845  }
7846
7847  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7848         "This should only be set for ObjC methods, which should have been "
7849         "handled in the block above.");
7850  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7851         "This should only be set for ObjC methods, which should have been "
7852         "handled in the block above.");
7853
7854  // Verify and clean out per-function state.
7855  if (Body) {
7856    // C++ constructors that have function-try-blocks can't have return
7857    // statements in the handlers of that block. (C++ [except.handle]p14)
7858    // Verify this.
7859    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7860      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7861
7862    // Verify that gotos and switch cases don't jump into scopes illegally.
7863    if (getCurFunction()->NeedsScopeChecking() &&
7864        !dcl->isInvalidDecl() &&
7865        !hasAnyUnrecoverableErrorsInThisFunction() &&
7866        !PP.isCodeCompletionEnabled())
7867      DiagnoseInvalidJumps(Body);
7868
7869    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7870      if (!Destructor->getParent()->isDependentType())
7871        CheckDestructor(Destructor);
7872
7873      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7874                                             Destructor->getParent());
7875    }
7876
7877    // If any errors have occurred, clear out any temporaries that may have
7878    // been leftover. This ensures that these temporaries won't be picked up for
7879    // deletion in some later function.
7880    if (PP.getDiagnostics().hasErrorOccurred() ||
7881        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7882      DiscardCleanupsInEvaluationContext();
7883    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7884      // Since the body is valid, issue any analysis-based warnings that are
7885      // enabled.
7886      ActivePolicy = &WP;
7887    }
7888
7889    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7890        (!CheckConstexprFunctionDecl(FD) ||
7891         !CheckConstexprFunctionBody(FD, Body)))
7892      FD->setInvalidDecl();
7893
7894    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7895    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7896    assert(MaybeODRUseExprs.empty() &&
7897           "Leftover expressions for odr-use checking");
7898  }
7899
7900  if (!IsInstantiation)
7901    PopDeclContext();
7902
7903  PopFunctionScopeInfo(ActivePolicy, dcl);
7904
7905  // If any errors have occurred, clear out any temporaries that may have
7906  // been leftover. This ensures that these temporaries won't be picked up for
7907  // deletion in some later function.
7908  if (getDiagnostics().hasErrorOccurred()) {
7909    DiscardCleanupsInEvaluationContext();
7910  }
7911
7912  return dcl;
7913}
7914
7915
7916/// When we finish delayed parsing of an attribute, we must attach it to the
7917/// relevant Decl.
7918void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7919                                       ParsedAttributes &Attrs) {
7920  // Always attach attributes to the underlying decl.
7921  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7922    D = TD->getTemplatedDecl();
7923  ProcessDeclAttributeList(S, D, Attrs.getList());
7924
7925  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7926    if (Method->isStatic())
7927      checkThisInStaticMemberFunctionAttributes(Method);
7928}
7929
7930
7931/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7932/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7933NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7934                                          IdentifierInfo &II, Scope *S) {
7935  // Before we produce a declaration for an implicitly defined
7936  // function, see whether there was a locally-scoped declaration of
7937  // this name as a function or variable. If so, use that
7938  // (non-visible) declaration, and complain about it.
7939  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7940    = findLocallyScopedExternalDecl(&II);
7941  if (Pos != LocallyScopedExternalDecls.end()) {
7942    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7943    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7944    return Pos->second;
7945  }
7946
7947  // Extension in C99.  Legal in C90, but warn about it.
7948  unsigned diag_id;
7949  if (II.getName().startswith("__builtin_"))
7950    diag_id = diag::warn_builtin_unknown;
7951  else if (getLangOpts().C99)
7952    diag_id = diag::ext_implicit_function_decl;
7953  else
7954    diag_id = diag::warn_implicit_function_decl;
7955  Diag(Loc, diag_id) << &II;
7956
7957  // Because typo correction is expensive, only do it if the implicit
7958  // function declaration is going to be treated as an error.
7959  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7960    TypoCorrection Corrected;
7961    DeclFilterCCC<FunctionDecl> Validator;
7962    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7963                                      LookupOrdinaryName, S, 0, Validator))) {
7964      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7965      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7966      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7967
7968      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7969          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7970
7971      if (Func->getLocation().isValid()
7972          && !II.getName().startswith("__builtin_"))
7973        Diag(Func->getLocation(), diag::note_previous_decl)
7974            << CorrectedQuotedStr;
7975    }
7976  }
7977
7978  // Set a Declarator for the implicit definition: int foo();
7979  const char *Dummy;
7980  AttributeFactory attrFactory;
7981  DeclSpec DS(attrFactory);
7982  unsigned DiagID;
7983  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7984  (void)Error; // Silence warning.
7985  assert(!Error && "Error setting up implicit decl!");
7986  Declarator D(DS, Declarator::BlockContext);
7987  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7988                                             SourceLocation(), 0, 0, 0, true,
7989                                             SourceLocation(), SourceLocation(),
7990                                             SourceLocation(), SourceLocation(),
7991                                             EST_None, SourceLocation(),
7992                                             0, 0, 0, 0, Loc, Loc, D),
7993                DS.getAttributes(),
7994                SourceLocation());
7995  D.SetIdentifier(&II, Loc);
7996
7997  // Insert this function into translation-unit scope.
7998
7999  DeclContext *PrevDC = CurContext;
8000  CurContext = Context.getTranslationUnitDecl();
8001
8002  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8003  FD->setImplicit();
8004
8005  CurContext = PrevDC;
8006
8007  AddKnownFunctionAttributes(FD);
8008
8009  return FD;
8010}
8011
8012/// \brief Adds any function attributes that we know a priori based on
8013/// the declaration of this function.
8014///
8015/// These attributes can apply both to implicitly-declared builtins
8016/// (like __builtin___printf_chk) or to library-declared functions
8017/// like NSLog or printf.
8018///
8019/// We need to check for duplicate attributes both here and where user-written
8020/// attributes are applied to declarations.
8021void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8022  if (FD->isInvalidDecl())
8023    return;
8024
8025  // If this is a built-in function, map its builtin attributes to
8026  // actual attributes.
8027  if (unsigned BuiltinID = FD->getBuiltinID()) {
8028    // Handle printf-formatting attributes.
8029    unsigned FormatIdx;
8030    bool HasVAListArg;
8031    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8032      if (!FD->getAttr<FormatAttr>()) {
8033        const char *fmt = "printf";
8034        unsigned int NumParams = FD->getNumParams();
8035        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8036            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8037          fmt = "NSString";
8038        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8039                                               fmt, FormatIdx+1,
8040                                               HasVAListArg ? 0 : FormatIdx+2));
8041      }
8042    }
8043    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8044                                             HasVAListArg)) {
8045     if (!FD->getAttr<FormatAttr>())
8046       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8047                                              "scanf", FormatIdx+1,
8048                                              HasVAListArg ? 0 : FormatIdx+2));
8049    }
8050
8051    // Mark const if we don't care about errno and that is the only
8052    // thing preventing the function from being const. This allows
8053    // IRgen to use LLVM intrinsics for such functions.
8054    if (!getLangOpts().MathErrno &&
8055        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8056      if (!FD->getAttr<ConstAttr>())
8057        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8058    }
8059
8060    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8061        !FD->getAttr<ReturnsTwiceAttr>())
8062      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8063    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8064      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8065    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8066      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8067  }
8068
8069  IdentifierInfo *Name = FD->getIdentifier();
8070  if (!Name)
8071    return;
8072  if ((!getLangOpts().CPlusPlus &&
8073       FD->getDeclContext()->isTranslationUnit()) ||
8074      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8075       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8076       LinkageSpecDecl::lang_c)) {
8077    // Okay: this could be a libc/libm/Objective-C function we know
8078    // about.
8079  } else
8080    return;
8081
8082  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8083    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8084    // target-specific builtins, perhaps?
8085    if (!FD->getAttr<FormatAttr>())
8086      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8087                                             "printf", 2,
8088                                             Name->isStr("vasprintf") ? 0 : 3));
8089  }
8090
8091  if (Name->isStr("__CFStringMakeConstantString")) {
8092    // We already have a __builtin___CFStringMakeConstantString,
8093    // but builds that use -fno-constant-cfstrings don't go through that.
8094    if (!FD->getAttr<FormatArgAttr>())
8095      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8096  }
8097}
8098
8099TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8100                                    TypeSourceInfo *TInfo) {
8101  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8102  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8103
8104  if (!TInfo) {
8105    assert(D.isInvalidType() && "no declarator info for valid type");
8106    TInfo = Context.getTrivialTypeSourceInfo(T);
8107  }
8108
8109  // Scope manipulation handled by caller.
8110  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8111                                           D.getLocStart(),
8112                                           D.getIdentifierLoc(),
8113                                           D.getIdentifier(),
8114                                           TInfo);
8115
8116  // Bail out immediately if we have an invalid declaration.
8117  if (D.isInvalidType()) {
8118    NewTD->setInvalidDecl();
8119    return NewTD;
8120  }
8121
8122  if (D.getDeclSpec().isModulePrivateSpecified()) {
8123    if (CurContext->isFunctionOrMethod())
8124      Diag(NewTD->getLocation(), diag::err_module_private_local)
8125        << 2 << NewTD->getDeclName()
8126        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8127        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8128    else
8129      NewTD->setModulePrivate();
8130  }
8131
8132  // C++ [dcl.typedef]p8:
8133  //   If the typedef declaration defines an unnamed class (or
8134  //   enum), the first typedef-name declared by the declaration
8135  //   to be that class type (or enum type) is used to denote the
8136  //   class type (or enum type) for linkage purposes only.
8137  // We need to check whether the type was declared in the declaration.
8138  switch (D.getDeclSpec().getTypeSpecType()) {
8139  case TST_enum:
8140  case TST_struct:
8141  case TST_interface:
8142  case TST_union:
8143  case TST_class: {
8144    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8145
8146    // Do nothing if the tag is not anonymous or already has an
8147    // associated typedef (from an earlier typedef in this decl group).
8148    if (tagFromDeclSpec->getIdentifier()) break;
8149    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8150
8151    // A well-formed anonymous tag must always be a TUK_Definition.
8152    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8153
8154    // The type must match the tag exactly;  no qualifiers allowed.
8155    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8156      break;
8157
8158    // Otherwise, set this is the anon-decl typedef for the tag.
8159    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8160    break;
8161  }
8162
8163  default:
8164    break;
8165  }
8166
8167  return NewTD;
8168}
8169
8170
8171/// \brief Check that this is a valid underlying type for an enum declaration.
8172bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8173  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8174  QualType T = TI->getType();
8175
8176  if (T->isDependentType() || T->isIntegralType(Context))
8177    return false;
8178
8179  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8180  return true;
8181}
8182
8183/// Check whether this is a valid redeclaration of a previous enumeration.
8184/// \return true if the redeclaration was invalid.
8185bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8186                                  QualType EnumUnderlyingTy,
8187                                  const EnumDecl *Prev) {
8188  bool IsFixed = !EnumUnderlyingTy.isNull();
8189
8190  if (IsScoped != Prev->isScoped()) {
8191    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8192      << Prev->isScoped();
8193    Diag(Prev->getLocation(), diag::note_previous_use);
8194    return true;
8195  }
8196
8197  if (IsFixed && Prev->isFixed()) {
8198    if (!EnumUnderlyingTy->isDependentType() &&
8199        !Prev->getIntegerType()->isDependentType() &&
8200        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8201                                        Prev->getIntegerType())) {
8202      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8203        << EnumUnderlyingTy << Prev->getIntegerType();
8204      Diag(Prev->getLocation(), diag::note_previous_use);
8205      return true;
8206    }
8207  } else if (IsFixed != Prev->isFixed()) {
8208    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8209      << Prev->isFixed();
8210    Diag(Prev->getLocation(), diag::note_previous_use);
8211    return true;
8212  }
8213
8214  return false;
8215}
8216
8217/// \brief Get diagnostic %select index for tag kind for
8218/// redeclaration diagnostic message.
8219/// WARNING: Indexes apply to particular diagnostics only!
8220///
8221/// \returns diagnostic %select index.
8222static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8223  switch (Tag) {
8224  case TTK_Struct: return 0;
8225  case TTK_Interface: return 1;
8226  case TTK_Class:  return 2;
8227  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8228  }
8229}
8230
8231/// \brief Determine if tag kind is a class-key compatible with
8232/// class for redeclaration (class, struct, or __interface).
8233///
8234/// \returns true iff the tag kind is compatible.
8235static bool isClassCompatTagKind(TagTypeKind Tag)
8236{
8237  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8238}
8239
8240/// \brief Determine whether a tag with a given kind is acceptable
8241/// as a redeclaration of the given tag declaration.
8242///
8243/// \returns true if the new tag kind is acceptable, false otherwise.
8244bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8245                                        TagTypeKind NewTag, bool isDefinition,
8246                                        SourceLocation NewTagLoc,
8247                                        const IdentifierInfo &Name) {
8248  // C++ [dcl.type.elab]p3:
8249  //   The class-key or enum keyword present in the
8250  //   elaborated-type-specifier shall agree in kind with the
8251  //   declaration to which the name in the elaborated-type-specifier
8252  //   refers. This rule also applies to the form of
8253  //   elaborated-type-specifier that declares a class-name or
8254  //   friend class since it can be construed as referring to the
8255  //   definition of the class. Thus, in any
8256  //   elaborated-type-specifier, the enum keyword shall be used to
8257  //   refer to an enumeration (7.2), the union class-key shall be
8258  //   used to refer to a union (clause 9), and either the class or
8259  //   struct class-key shall be used to refer to a class (clause 9)
8260  //   declared using the class or struct class-key.
8261  TagTypeKind OldTag = Previous->getTagKind();
8262  if (!isDefinition || !isClassCompatTagKind(NewTag))
8263    if (OldTag == NewTag)
8264      return true;
8265
8266  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8267    // Warn about the struct/class tag mismatch.
8268    bool isTemplate = false;
8269    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8270      isTemplate = Record->getDescribedClassTemplate();
8271
8272    if (!ActiveTemplateInstantiations.empty()) {
8273      // In a template instantiation, do not offer fix-its for tag mismatches
8274      // since they usually mess up the template instead of fixing the problem.
8275      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8276        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8277        << getRedeclDiagFromTagKind(OldTag);
8278      return true;
8279    }
8280
8281    if (isDefinition) {
8282      // On definitions, check previous tags and issue a fix-it for each
8283      // one that doesn't match the current tag.
8284      if (Previous->getDefinition()) {
8285        // Don't suggest fix-its for redefinitions.
8286        return true;
8287      }
8288
8289      bool previousMismatch = false;
8290      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8291           E(Previous->redecls_end()); I != E; ++I) {
8292        if (I->getTagKind() != NewTag) {
8293          if (!previousMismatch) {
8294            previousMismatch = true;
8295            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8296              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8297              << getRedeclDiagFromTagKind(I->getTagKind());
8298          }
8299          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8300            << getRedeclDiagFromTagKind(NewTag)
8301            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8302                 TypeWithKeyword::getTagTypeKindName(NewTag));
8303        }
8304      }
8305      return true;
8306    }
8307
8308    // Check for a previous definition.  If current tag and definition
8309    // are same type, do nothing.  If no definition, but disagree with
8310    // with previous tag type, give a warning, but no fix-it.
8311    const TagDecl *Redecl = Previous->getDefinition() ?
8312                            Previous->getDefinition() : Previous;
8313    if (Redecl->getTagKind() == NewTag) {
8314      return true;
8315    }
8316
8317    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8318      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8319      << getRedeclDiagFromTagKind(OldTag);
8320    Diag(Redecl->getLocation(), diag::note_previous_use);
8321
8322    // If there is a previous defintion, suggest a fix-it.
8323    if (Previous->getDefinition()) {
8324        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8325          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8326          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8327               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8328    }
8329
8330    return true;
8331  }
8332  return false;
8333}
8334
8335/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8336/// former case, Name will be non-null.  In the later case, Name will be null.
8337/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8338/// reference/declaration/definition of a tag.
8339Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8340                     SourceLocation KWLoc, CXXScopeSpec &SS,
8341                     IdentifierInfo *Name, SourceLocation NameLoc,
8342                     AttributeList *Attr, AccessSpecifier AS,
8343                     SourceLocation ModulePrivateLoc,
8344                     MultiTemplateParamsArg TemplateParameterLists,
8345                     bool &OwnedDecl, bool &IsDependent,
8346                     SourceLocation ScopedEnumKWLoc,
8347                     bool ScopedEnumUsesClassTag,
8348                     TypeResult UnderlyingType) {
8349  // If this is not a definition, it must have a name.
8350  IdentifierInfo *OrigName = Name;
8351  assert((Name != 0 || TUK == TUK_Definition) &&
8352         "Nameless record must be a definition!");
8353  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8354
8355  OwnedDecl = false;
8356  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8357  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8358
8359  // FIXME: Check explicit specializations more carefully.
8360  bool isExplicitSpecialization = false;
8361  bool Invalid = false;
8362
8363  // We only need to do this matching if we have template parameters
8364  // or a scope specifier, which also conveniently avoids this work
8365  // for non-C++ cases.
8366  if (TemplateParameterLists.size() > 0 ||
8367      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8368    if (TemplateParameterList *TemplateParams
8369          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8370                                                TemplateParameterLists.data(),
8371                                                TemplateParameterLists.size(),
8372                                                    TUK == TUK_Friend,
8373                                                    isExplicitSpecialization,
8374                                                    Invalid)) {
8375      if (TemplateParams->size() > 0) {
8376        // This is a declaration or definition of a class template (which may
8377        // be a member of another template).
8378
8379        if (Invalid)
8380          return 0;
8381
8382        OwnedDecl = false;
8383        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8384                                               SS, Name, NameLoc, Attr,
8385                                               TemplateParams, AS,
8386                                               ModulePrivateLoc,
8387                                               TemplateParameterLists.size()-1,
8388                                               TemplateParameterLists.data());
8389        return Result.get();
8390      } else {
8391        // The "template<>" header is extraneous.
8392        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8393          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8394        isExplicitSpecialization = true;
8395      }
8396    }
8397  }
8398
8399  // Figure out the underlying type if this a enum declaration. We need to do
8400  // this early, because it's needed to detect if this is an incompatible
8401  // redeclaration.
8402  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8403
8404  if (Kind == TTK_Enum) {
8405    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8406      // No underlying type explicitly specified, or we failed to parse the
8407      // type, default to int.
8408      EnumUnderlying = Context.IntTy.getTypePtr();
8409    else if (UnderlyingType.get()) {
8410      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8411      // integral type; any cv-qualification is ignored.
8412      TypeSourceInfo *TI = 0;
8413      GetTypeFromParser(UnderlyingType.get(), &TI);
8414      EnumUnderlying = TI;
8415
8416      if (CheckEnumUnderlyingType(TI))
8417        // Recover by falling back to int.
8418        EnumUnderlying = Context.IntTy.getTypePtr();
8419
8420      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8421                                          UPPC_FixedUnderlyingType))
8422        EnumUnderlying = Context.IntTy.getTypePtr();
8423
8424    } else if (getLangOpts().MicrosoftMode)
8425      // Microsoft enums are always of int type.
8426      EnumUnderlying = Context.IntTy.getTypePtr();
8427  }
8428
8429  DeclContext *SearchDC = CurContext;
8430  DeclContext *DC = CurContext;
8431  bool isStdBadAlloc = false;
8432
8433  RedeclarationKind Redecl = ForRedeclaration;
8434  if (TUK == TUK_Friend || TUK == TUK_Reference)
8435    Redecl = NotForRedeclaration;
8436
8437  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8438
8439  if (Name && SS.isNotEmpty()) {
8440    // We have a nested-name tag ('struct foo::bar').
8441
8442    // Check for invalid 'foo::'.
8443    if (SS.isInvalid()) {
8444      Name = 0;
8445      goto CreateNewDecl;
8446    }
8447
8448    // If this is a friend or a reference to a class in a dependent
8449    // context, don't try to make a decl for it.
8450    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8451      DC = computeDeclContext(SS, false);
8452      if (!DC) {
8453        IsDependent = true;
8454        return 0;
8455      }
8456    } else {
8457      DC = computeDeclContext(SS, true);
8458      if (!DC) {
8459        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8460          << SS.getRange();
8461        return 0;
8462      }
8463    }
8464
8465    if (RequireCompleteDeclContext(SS, DC))
8466      return 0;
8467
8468    SearchDC = DC;
8469    // Look-up name inside 'foo::'.
8470    LookupQualifiedName(Previous, DC);
8471
8472    if (Previous.isAmbiguous())
8473      return 0;
8474
8475    if (Previous.empty()) {
8476      // Name lookup did not find anything. However, if the
8477      // nested-name-specifier refers to the current instantiation,
8478      // and that current instantiation has any dependent base
8479      // classes, we might find something at instantiation time: treat
8480      // this as a dependent elaborated-type-specifier.
8481      // But this only makes any sense for reference-like lookups.
8482      if (Previous.wasNotFoundInCurrentInstantiation() &&
8483          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8484        IsDependent = true;
8485        return 0;
8486      }
8487
8488      // A tag 'foo::bar' must already exist.
8489      Diag(NameLoc, diag::err_not_tag_in_scope)
8490        << Kind << Name << DC << SS.getRange();
8491      Name = 0;
8492      Invalid = true;
8493      goto CreateNewDecl;
8494    }
8495  } else if (Name) {
8496    // If this is a named struct, check to see if there was a previous forward
8497    // declaration or definition.
8498    // FIXME: We're looking into outer scopes here, even when we
8499    // shouldn't be. Doing so can result in ambiguities that we
8500    // shouldn't be diagnosing.
8501    LookupName(Previous, S);
8502
8503    if (Previous.isAmbiguous() &&
8504        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8505      LookupResult::Filter F = Previous.makeFilter();
8506      while (F.hasNext()) {
8507        NamedDecl *ND = F.next();
8508        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8509          F.erase();
8510      }
8511      F.done();
8512    }
8513
8514    // Note:  there used to be some attempt at recovery here.
8515    if (Previous.isAmbiguous())
8516      return 0;
8517
8518    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8519      // FIXME: This makes sure that we ignore the contexts associated
8520      // with C structs, unions, and enums when looking for a matching
8521      // tag declaration or definition. See the similar lookup tweak
8522      // in Sema::LookupName; is there a better way to deal with this?
8523      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8524        SearchDC = SearchDC->getParent();
8525    }
8526  } else if (S->isFunctionPrototypeScope()) {
8527    // If this is an enum declaration in function prototype scope, set its
8528    // initial context to the translation unit.
8529    // FIXME: [citation needed]
8530    SearchDC = Context.getTranslationUnitDecl();
8531  }
8532
8533  if (Previous.isSingleResult() &&
8534      Previous.getFoundDecl()->isTemplateParameter()) {
8535    // Maybe we will complain about the shadowed template parameter.
8536    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8537    // Just pretend that we didn't see the previous declaration.
8538    Previous.clear();
8539  }
8540
8541  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8542      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8543    // This is a declaration of or a reference to "std::bad_alloc".
8544    isStdBadAlloc = true;
8545
8546    if (Previous.empty() && StdBadAlloc) {
8547      // std::bad_alloc has been implicitly declared (but made invisible to
8548      // name lookup). Fill in this implicit declaration as the previous
8549      // declaration, so that the declarations get chained appropriately.
8550      Previous.addDecl(getStdBadAlloc());
8551    }
8552  }
8553
8554  // If we didn't find a previous declaration, and this is a reference
8555  // (or friend reference), move to the correct scope.  In C++, we
8556  // also need to do a redeclaration lookup there, just in case
8557  // there's a shadow friend decl.
8558  if (Name && Previous.empty() &&
8559      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8560    if (Invalid) goto CreateNewDecl;
8561    assert(SS.isEmpty());
8562
8563    if (TUK == TUK_Reference) {
8564      // C++ [basic.scope.pdecl]p5:
8565      //   -- for an elaborated-type-specifier of the form
8566      //
8567      //          class-key identifier
8568      //
8569      //      if the elaborated-type-specifier is used in the
8570      //      decl-specifier-seq or parameter-declaration-clause of a
8571      //      function defined in namespace scope, the identifier is
8572      //      declared as a class-name in the namespace that contains
8573      //      the declaration; otherwise, except as a friend
8574      //      declaration, the identifier is declared in the smallest
8575      //      non-class, non-function-prototype scope that contains the
8576      //      declaration.
8577      //
8578      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8579      // C structs and unions.
8580      //
8581      // It is an error in C++ to declare (rather than define) an enum
8582      // type, including via an elaborated type specifier.  We'll
8583      // diagnose that later; for now, declare the enum in the same
8584      // scope as we would have picked for any other tag type.
8585      //
8586      // GNU C also supports this behavior as part of its incomplete
8587      // enum types extension, while GNU C++ does not.
8588      //
8589      // Find the context where we'll be declaring the tag.
8590      // FIXME: We would like to maintain the current DeclContext as the
8591      // lexical context,
8592      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8593        SearchDC = SearchDC->getParent();
8594
8595      // Find the scope where we'll be declaring the tag.
8596      while (S->isClassScope() ||
8597             (getLangOpts().CPlusPlus &&
8598              S->isFunctionPrototypeScope()) ||
8599             ((S->getFlags() & Scope::DeclScope) == 0) ||
8600             (S->getEntity() &&
8601              ((DeclContext *)S->getEntity())->isTransparentContext()))
8602        S = S->getParent();
8603    } else {
8604      assert(TUK == TUK_Friend);
8605      // C++ [namespace.memdef]p3:
8606      //   If a friend declaration in a non-local class first declares a
8607      //   class or function, the friend class or function is a member of
8608      //   the innermost enclosing namespace.
8609      SearchDC = SearchDC->getEnclosingNamespaceContext();
8610    }
8611
8612    // In C++, we need to do a redeclaration lookup to properly
8613    // diagnose some problems.
8614    if (getLangOpts().CPlusPlus) {
8615      Previous.setRedeclarationKind(ForRedeclaration);
8616      LookupQualifiedName(Previous, SearchDC);
8617    }
8618  }
8619
8620  if (!Previous.empty()) {
8621    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8622
8623    // It's okay to have a tag decl in the same scope as a typedef
8624    // which hides a tag decl in the same scope.  Finding this
8625    // insanity with a redeclaration lookup can only actually happen
8626    // in C++.
8627    //
8628    // This is also okay for elaborated-type-specifiers, which is
8629    // technically forbidden by the current standard but which is
8630    // okay according to the likely resolution of an open issue;
8631    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8632    if (getLangOpts().CPlusPlus) {
8633      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8634        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8635          TagDecl *Tag = TT->getDecl();
8636          if (Tag->getDeclName() == Name &&
8637              Tag->getDeclContext()->getRedeclContext()
8638                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8639            PrevDecl = Tag;
8640            Previous.clear();
8641            Previous.addDecl(Tag);
8642            Previous.resolveKind();
8643          }
8644        }
8645      }
8646    }
8647
8648    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8649      // If this is a use of a previous tag, or if the tag is already declared
8650      // in the same scope (so that the definition/declaration completes or
8651      // rementions the tag), reuse the decl.
8652      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8653          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8654        // Make sure that this wasn't declared as an enum and now used as a
8655        // struct or something similar.
8656        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8657                                          TUK == TUK_Definition, KWLoc,
8658                                          *Name)) {
8659          bool SafeToContinue
8660            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8661               Kind != TTK_Enum);
8662          if (SafeToContinue)
8663            Diag(KWLoc, diag::err_use_with_wrong_tag)
8664              << Name
8665              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8666                                              PrevTagDecl->getKindName());
8667          else
8668            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8669          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8670
8671          if (SafeToContinue)
8672            Kind = PrevTagDecl->getTagKind();
8673          else {
8674            // Recover by making this an anonymous redefinition.
8675            Name = 0;
8676            Previous.clear();
8677            Invalid = true;
8678          }
8679        }
8680
8681        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8682          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8683
8684          // If this is an elaborated-type-specifier for a scoped enumeration,
8685          // the 'class' keyword is not necessary and not permitted.
8686          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8687            if (ScopedEnum)
8688              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8689                << PrevEnum->isScoped()
8690                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8691            return PrevTagDecl;
8692          }
8693
8694          QualType EnumUnderlyingTy;
8695          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8696            EnumUnderlyingTy = TI->getType();
8697          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8698            EnumUnderlyingTy = QualType(T, 0);
8699
8700          // All conflicts with previous declarations are recovered by
8701          // returning the previous declaration, unless this is a definition,
8702          // in which case we want the caller to bail out.
8703          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8704                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8705            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8706        }
8707
8708        if (!Invalid) {
8709          // If this is a use, just return the declaration we found.
8710
8711          // FIXME: In the future, return a variant or some other clue
8712          // for the consumer of this Decl to know it doesn't own it.
8713          // For our current ASTs this shouldn't be a problem, but will
8714          // need to be changed with DeclGroups.
8715          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8716               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8717            return PrevTagDecl;
8718
8719          // Diagnose attempts to redefine a tag.
8720          if (TUK == TUK_Definition) {
8721            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8722              // If we're defining a specialization and the previous definition
8723              // is from an implicit instantiation, don't emit an error
8724              // here; we'll catch this in the general case below.
8725              bool IsExplicitSpecializationAfterInstantiation = false;
8726              if (isExplicitSpecialization) {
8727                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8728                  IsExplicitSpecializationAfterInstantiation =
8729                    RD->getTemplateSpecializationKind() !=
8730                    TSK_ExplicitSpecialization;
8731                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8732                  IsExplicitSpecializationAfterInstantiation =
8733                    ED->getTemplateSpecializationKind() !=
8734                    TSK_ExplicitSpecialization;
8735              }
8736
8737              if (!IsExplicitSpecializationAfterInstantiation) {
8738                // A redeclaration in function prototype scope in C isn't
8739                // visible elsewhere, so merely issue a warning.
8740                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8741                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8742                else
8743                  Diag(NameLoc, diag::err_redefinition) << Name;
8744                Diag(Def->getLocation(), diag::note_previous_definition);
8745                // If this is a redefinition, recover by making this
8746                // struct be anonymous, which will make any later
8747                // references get the previous definition.
8748                Name = 0;
8749                Previous.clear();
8750                Invalid = true;
8751              }
8752            } else {
8753              // If the type is currently being defined, complain
8754              // about a nested redefinition.
8755              const TagType *Tag
8756                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8757              if (Tag->isBeingDefined()) {
8758                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8759                Diag(PrevTagDecl->getLocation(),
8760                     diag::note_previous_definition);
8761                Name = 0;
8762                Previous.clear();
8763                Invalid = true;
8764              }
8765            }
8766
8767            // Okay, this is definition of a previously declared or referenced
8768            // tag PrevDecl. We're going to create a new Decl for it.
8769          }
8770        }
8771        // If we get here we have (another) forward declaration or we
8772        // have a definition.  Just create a new decl.
8773
8774      } else {
8775        // If we get here, this is a definition of a new tag type in a nested
8776        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8777        // new decl/type.  We set PrevDecl to NULL so that the entities
8778        // have distinct types.
8779        Previous.clear();
8780      }
8781      // If we get here, we're going to create a new Decl. If PrevDecl
8782      // is non-NULL, it's a definition of the tag declared by
8783      // PrevDecl. If it's NULL, we have a new definition.
8784
8785
8786    // Otherwise, PrevDecl is not a tag, but was found with tag
8787    // lookup.  This is only actually possible in C++, where a few
8788    // things like templates still live in the tag namespace.
8789    } else {
8790      // Use a better diagnostic if an elaborated-type-specifier
8791      // found the wrong kind of type on the first
8792      // (non-redeclaration) lookup.
8793      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8794          !Previous.isForRedeclaration()) {
8795        unsigned Kind = 0;
8796        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8797        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8798        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8799        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8800        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8801        Invalid = true;
8802
8803      // Otherwise, only diagnose if the declaration is in scope.
8804      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8805                                isExplicitSpecialization)) {
8806        // do nothing
8807
8808      // Diagnose implicit declarations introduced by elaborated types.
8809      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8810        unsigned Kind = 0;
8811        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8812        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8813        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8814        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8815        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8816        Invalid = true;
8817
8818      // Otherwise it's a declaration.  Call out a particularly common
8819      // case here.
8820      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8821        unsigned Kind = 0;
8822        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8823        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8824          << Name << Kind << TND->getUnderlyingType();
8825        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8826        Invalid = true;
8827
8828      // Otherwise, diagnose.
8829      } else {
8830        // The tag name clashes with something else in the target scope,
8831        // issue an error and recover by making this tag be anonymous.
8832        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8833        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8834        Name = 0;
8835        Invalid = true;
8836      }
8837
8838      // The existing declaration isn't relevant to us; we're in a
8839      // new scope, so clear out the previous declaration.
8840      Previous.clear();
8841    }
8842  }
8843
8844CreateNewDecl:
8845
8846  TagDecl *PrevDecl = 0;
8847  if (Previous.isSingleResult())
8848    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8849
8850  // If there is an identifier, use the location of the identifier as the
8851  // location of the decl, otherwise use the location of the struct/union
8852  // keyword.
8853  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8854
8855  // Otherwise, create a new declaration. If there is a previous
8856  // declaration of the same entity, the two will be linked via
8857  // PrevDecl.
8858  TagDecl *New;
8859
8860  bool IsForwardReference = false;
8861  if (Kind == TTK_Enum) {
8862    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8863    // enum X { A, B, C } D;    D should chain to X.
8864    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8865                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8866                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8867    // If this is an undefined enum, warn.
8868    if (TUK != TUK_Definition && !Invalid) {
8869      TagDecl *Def;
8870      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8871        // C++0x: 7.2p2: opaque-enum-declaration.
8872        // Conflicts are diagnosed above. Do nothing.
8873      }
8874      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8875        Diag(Loc, diag::ext_forward_ref_enum_def)
8876          << New;
8877        Diag(Def->getLocation(), diag::note_previous_definition);
8878      } else {
8879        unsigned DiagID = diag::ext_forward_ref_enum;
8880        if (getLangOpts().MicrosoftMode)
8881          DiagID = diag::ext_ms_forward_ref_enum;
8882        else if (getLangOpts().CPlusPlus)
8883          DiagID = diag::err_forward_ref_enum;
8884        Diag(Loc, DiagID);
8885
8886        // If this is a forward-declared reference to an enumeration, make a
8887        // note of it; we won't actually be introducing the declaration into
8888        // the declaration context.
8889        if (TUK == TUK_Reference)
8890          IsForwardReference = true;
8891      }
8892    }
8893
8894    if (EnumUnderlying) {
8895      EnumDecl *ED = cast<EnumDecl>(New);
8896      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8897        ED->setIntegerTypeSourceInfo(TI);
8898      else
8899        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8900      ED->setPromotionType(ED->getIntegerType());
8901    }
8902
8903  } else {
8904    // struct/union/class
8905
8906    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8907    // struct X { int A; } D;    D should chain to X.
8908    if (getLangOpts().CPlusPlus) {
8909      // FIXME: Look for a way to use RecordDecl for simple structs.
8910      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8911                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8912
8913      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8914        StdBadAlloc = cast<CXXRecordDecl>(New);
8915    } else
8916      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8917                               cast_or_null<RecordDecl>(PrevDecl));
8918  }
8919
8920  // Maybe add qualifier info.
8921  if (SS.isNotEmpty()) {
8922    if (SS.isSet()) {
8923      // If this is either a declaration or a definition, check the
8924      // nested-name-specifier against the current context. We don't do this
8925      // for explicit specializations, because they have similar checking
8926      // (with more specific diagnostics) in the call to
8927      // CheckMemberSpecialization, below.
8928      if (!isExplicitSpecialization &&
8929          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8930          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8931        Invalid = true;
8932
8933      New->setQualifierInfo(SS.getWithLocInContext(Context));
8934      if (TemplateParameterLists.size() > 0) {
8935        New->setTemplateParameterListsInfo(Context,
8936                                           TemplateParameterLists.size(),
8937                                           TemplateParameterLists.data());
8938      }
8939    }
8940    else
8941      Invalid = true;
8942  }
8943
8944  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8945    // Add alignment attributes if necessary; these attributes are checked when
8946    // the ASTContext lays out the structure.
8947    //
8948    // It is important for implementing the correct semantics that this
8949    // happen here (in act on tag decl). The #pragma pack stack is
8950    // maintained as a result of parser callbacks which can occur at
8951    // many points during the parsing of a struct declaration (because
8952    // the #pragma tokens are effectively skipped over during the
8953    // parsing of the struct).
8954    if (TUK == TUK_Definition) {
8955      AddAlignmentAttributesForRecord(RD);
8956      AddMsStructLayoutForRecord(RD);
8957    }
8958  }
8959
8960  if (ModulePrivateLoc.isValid()) {
8961    if (isExplicitSpecialization)
8962      Diag(New->getLocation(), diag::err_module_private_specialization)
8963        << 2
8964        << FixItHint::CreateRemoval(ModulePrivateLoc);
8965    // __module_private__ does not apply to local classes. However, we only
8966    // diagnose this as an error when the declaration specifiers are
8967    // freestanding. Here, we just ignore the __module_private__.
8968    else if (!SearchDC->isFunctionOrMethod())
8969      New->setModulePrivate();
8970  }
8971
8972  // If this is a specialization of a member class (of a class template),
8973  // check the specialization.
8974  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8975    Invalid = true;
8976
8977  if (Invalid)
8978    New->setInvalidDecl();
8979
8980  if (Attr)
8981    ProcessDeclAttributeList(S, New, Attr);
8982
8983  // If we're declaring or defining a tag in function prototype scope
8984  // in C, note that this type can only be used within the function.
8985  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8986    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8987
8988  // Set the lexical context. If the tag has a C++ scope specifier, the
8989  // lexical context will be different from the semantic context.
8990  New->setLexicalDeclContext(CurContext);
8991
8992  // Mark this as a friend decl if applicable.
8993  // In Microsoft mode, a friend declaration also acts as a forward
8994  // declaration so we always pass true to setObjectOfFriendDecl to make
8995  // the tag name visible.
8996  if (TUK == TUK_Friend)
8997    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8998                               getLangOpts().MicrosoftExt);
8999
9000  // Set the access specifier.
9001  if (!Invalid && SearchDC->isRecord())
9002    SetMemberAccessSpecifier(New, PrevDecl, AS);
9003
9004  if (TUK == TUK_Definition)
9005    New->startDefinition();
9006
9007  // If this has an identifier, add it to the scope stack.
9008  if (TUK == TUK_Friend) {
9009    // We might be replacing an existing declaration in the lookup tables;
9010    // if so, borrow its access specifier.
9011    if (PrevDecl)
9012      New->setAccess(PrevDecl->getAccess());
9013
9014    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9015    DC->makeDeclVisibleInContext(New);
9016    if (Name) // can be null along some error paths
9017      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9018        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9019  } else if (Name) {
9020    S = getNonFieldDeclScope(S);
9021    PushOnScopeChains(New, S, !IsForwardReference);
9022    if (IsForwardReference)
9023      SearchDC->makeDeclVisibleInContext(New);
9024
9025  } else {
9026    CurContext->addDecl(New);
9027  }
9028
9029  // If this is the C FILE type, notify the AST context.
9030  if (IdentifierInfo *II = New->getIdentifier())
9031    if (!New->isInvalidDecl() &&
9032        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9033        II->isStr("FILE"))
9034      Context.setFILEDecl(New);
9035
9036  // If we were in function prototype scope (and not in C++ mode), add this
9037  // tag to the list of decls to inject into the function definition scope.
9038  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9039      InFunctionDeclarator && Name)
9040    DeclsInPrototypeScope.push_back(New);
9041
9042  if (PrevDecl)
9043    mergeDeclAttributes(New, PrevDecl);
9044
9045  // If there's a #pragma GCC visibility in scope, set the visibility of this
9046  // record.
9047  AddPushedVisibilityAttribute(New);
9048
9049  OwnedDecl = true;
9050  return New;
9051}
9052
9053void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9054  AdjustDeclIfTemplate(TagD);
9055  TagDecl *Tag = cast<TagDecl>(TagD);
9056
9057  // Enter the tag context.
9058  PushDeclContext(S, Tag);
9059
9060  ActOnDocumentableDecl(TagD);
9061
9062  // If there's a #pragma GCC visibility in scope, set the visibility of this
9063  // record.
9064  AddPushedVisibilityAttribute(Tag);
9065}
9066
9067Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9068  assert(isa<ObjCContainerDecl>(IDecl) &&
9069         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9070  DeclContext *OCD = cast<DeclContext>(IDecl);
9071  assert(getContainingDC(OCD) == CurContext &&
9072      "The next DeclContext should be lexically contained in the current one.");
9073  CurContext = OCD;
9074  return IDecl;
9075}
9076
9077void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9078                                           SourceLocation FinalLoc,
9079                                           SourceLocation LBraceLoc) {
9080  AdjustDeclIfTemplate(TagD);
9081  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9082
9083  FieldCollector->StartClass();
9084
9085  if (!Record->getIdentifier())
9086    return;
9087
9088  if (FinalLoc.isValid())
9089    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9090
9091  // C++ [class]p2:
9092  //   [...] The class-name is also inserted into the scope of the
9093  //   class itself; this is known as the injected-class-name. For
9094  //   purposes of access checking, the injected-class-name is treated
9095  //   as if it were a public member name.
9096  CXXRecordDecl *InjectedClassName
9097    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9098                            Record->getLocStart(), Record->getLocation(),
9099                            Record->getIdentifier(),
9100                            /*PrevDecl=*/0,
9101                            /*DelayTypeCreation=*/true);
9102  Context.getTypeDeclType(InjectedClassName, Record);
9103  InjectedClassName->setImplicit();
9104  InjectedClassName->setAccess(AS_public);
9105  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9106      InjectedClassName->setDescribedClassTemplate(Template);
9107  PushOnScopeChains(InjectedClassName, S);
9108  assert(InjectedClassName->isInjectedClassName() &&
9109         "Broken injected-class-name");
9110}
9111
9112void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9113                                    SourceLocation RBraceLoc) {
9114  AdjustDeclIfTemplate(TagD);
9115  TagDecl *Tag = cast<TagDecl>(TagD);
9116  Tag->setRBraceLoc(RBraceLoc);
9117
9118  // Make sure we "complete" the definition even it is invalid.
9119  if (Tag->isBeingDefined()) {
9120    assert(Tag->isInvalidDecl() && "We should already have completed it");
9121    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9122      RD->completeDefinition();
9123  }
9124
9125  if (isa<CXXRecordDecl>(Tag))
9126    FieldCollector->FinishClass();
9127
9128  // Exit this scope of this tag's definition.
9129  PopDeclContext();
9130
9131  // Notify the consumer that we've defined a tag.
9132  Consumer.HandleTagDeclDefinition(Tag);
9133}
9134
9135void Sema::ActOnObjCContainerFinishDefinition() {
9136  // Exit this scope of this interface definition.
9137  PopDeclContext();
9138}
9139
9140void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9141  assert(DC == CurContext && "Mismatch of container contexts");
9142  OriginalLexicalContext = DC;
9143  ActOnObjCContainerFinishDefinition();
9144}
9145
9146void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9147  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9148  OriginalLexicalContext = 0;
9149}
9150
9151void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9152  AdjustDeclIfTemplate(TagD);
9153  TagDecl *Tag = cast<TagDecl>(TagD);
9154  Tag->setInvalidDecl();
9155
9156  // Make sure we "complete" the definition even it is invalid.
9157  if (Tag->isBeingDefined()) {
9158    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9159      RD->completeDefinition();
9160  }
9161
9162  // We're undoing ActOnTagStartDefinition here, not
9163  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9164  // the FieldCollector.
9165
9166  PopDeclContext();
9167}
9168
9169// Note that FieldName may be null for anonymous bitfields.
9170ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9171                                IdentifierInfo *FieldName,
9172                                QualType FieldTy, Expr *BitWidth,
9173                                bool *ZeroWidth) {
9174  // Default to true; that shouldn't confuse checks for emptiness
9175  if (ZeroWidth)
9176    *ZeroWidth = true;
9177
9178  // C99 6.7.2.1p4 - verify the field type.
9179  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9180  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9181    // Handle incomplete types with specific error.
9182    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9183      return ExprError();
9184    if (FieldName)
9185      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9186        << FieldName << FieldTy << BitWidth->getSourceRange();
9187    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9188      << FieldTy << BitWidth->getSourceRange();
9189  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9190                                             UPPC_BitFieldWidth))
9191    return ExprError();
9192
9193  // If the bit-width is type- or value-dependent, don't try to check
9194  // it now.
9195  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9196    return Owned(BitWidth);
9197
9198  llvm::APSInt Value;
9199  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9200  if (ICE.isInvalid())
9201    return ICE;
9202  BitWidth = ICE.take();
9203
9204  if (Value != 0 && ZeroWidth)
9205    *ZeroWidth = false;
9206
9207  // Zero-width bitfield is ok for anonymous field.
9208  if (Value == 0 && FieldName)
9209    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9210
9211  if (Value.isSigned() && Value.isNegative()) {
9212    if (FieldName)
9213      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9214               << FieldName << Value.toString(10);
9215    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9216      << Value.toString(10);
9217  }
9218
9219  if (!FieldTy->isDependentType()) {
9220    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9221    if (Value.getZExtValue() > TypeSize) {
9222      if (!getLangOpts().CPlusPlus) {
9223        if (FieldName)
9224          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9225            << FieldName << (unsigned)Value.getZExtValue()
9226            << (unsigned)TypeSize;
9227
9228        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9229          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9230      }
9231
9232      if (FieldName)
9233        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9234          << FieldName << (unsigned)Value.getZExtValue()
9235          << (unsigned)TypeSize;
9236      else
9237        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9238          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9239    }
9240  }
9241
9242  return Owned(BitWidth);
9243}
9244
9245/// ActOnField - Each field of a C struct/union is passed into this in order
9246/// to create a FieldDecl object for it.
9247Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9248                       Declarator &D, Expr *BitfieldWidth) {
9249  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9250                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9251                               /*InitStyle=*/ICIS_NoInit, AS_public);
9252  return Res;
9253}
9254
9255/// HandleField - Analyze a field of a C struct or a C++ data member.
9256///
9257FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9258                             SourceLocation DeclStart,
9259                             Declarator &D, Expr *BitWidth,
9260                             InClassInitStyle InitStyle,
9261                             AccessSpecifier AS) {
9262  IdentifierInfo *II = D.getIdentifier();
9263  SourceLocation Loc = DeclStart;
9264  if (II) Loc = D.getIdentifierLoc();
9265
9266  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9267  QualType T = TInfo->getType();
9268  if (getLangOpts().CPlusPlus) {
9269    CheckExtraCXXDefaultArguments(D);
9270
9271    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9272                                        UPPC_DataMemberType)) {
9273      D.setInvalidType();
9274      T = Context.IntTy;
9275      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9276    }
9277  }
9278
9279  DiagnoseFunctionSpecifiers(D);
9280
9281  if (D.getDeclSpec().isThreadSpecified())
9282    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9283  if (D.getDeclSpec().isConstexprSpecified())
9284    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9285      << 2;
9286
9287  // Check to see if this name was declared as a member previously
9288  NamedDecl *PrevDecl = 0;
9289  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9290  LookupName(Previous, S);
9291  switch (Previous.getResultKind()) {
9292    case LookupResult::Found:
9293    case LookupResult::FoundUnresolvedValue:
9294      PrevDecl = Previous.getAsSingle<NamedDecl>();
9295      break;
9296
9297    case LookupResult::FoundOverloaded:
9298      PrevDecl = Previous.getRepresentativeDecl();
9299      break;
9300
9301    case LookupResult::NotFound:
9302    case LookupResult::NotFoundInCurrentInstantiation:
9303    case LookupResult::Ambiguous:
9304      break;
9305  }
9306  Previous.suppressDiagnostics();
9307
9308  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9309    // Maybe we will complain about the shadowed template parameter.
9310    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9311    // Just pretend that we didn't see the previous declaration.
9312    PrevDecl = 0;
9313  }
9314
9315  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9316    PrevDecl = 0;
9317
9318  bool Mutable
9319    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9320  SourceLocation TSSL = D.getLocStart();
9321  FieldDecl *NewFD
9322    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9323                     TSSL, AS, PrevDecl, &D);
9324
9325  if (NewFD->isInvalidDecl())
9326    Record->setInvalidDecl();
9327
9328  if (D.getDeclSpec().isModulePrivateSpecified())
9329    NewFD->setModulePrivate();
9330
9331  if (NewFD->isInvalidDecl() && PrevDecl) {
9332    // Don't introduce NewFD into scope; there's already something
9333    // with the same name in the same scope.
9334  } else if (II) {
9335    PushOnScopeChains(NewFD, S);
9336  } else
9337    Record->addDecl(NewFD);
9338
9339  return NewFD;
9340}
9341
9342/// \brief Build a new FieldDecl and check its well-formedness.
9343///
9344/// This routine builds a new FieldDecl given the fields name, type,
9345/// record, etc. \p PrevDecl should refer to any previous declaration
9346/// with the same name and in the same scope as the field to be
9347/// created.
9348///
9349/// \returns a new FieldDecl.
9350///
9351/// \todo The Declarator argument is a hack. It will be removed once
9352FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9353                                TypeSourceInfo *TInfo,
9354                                RecordDecl *Record, SourceLocation Loc,
9355                                bool Mutable, Expr *BitWidth,
9356                                InClassInitStyle InitStyle,
9357                                SourceLocation TSSL,
9358                                AccessSpecifier AS, NamedDecl *PrevDecl,
9359                                Declarator *D) {
9360  IdentifierInfo *II = Name.getAsIdentifierInfo();
9361  bool InvalidDecl = false;
9362  if (D) InvalidDecl = D->isInvalidType();
9363
9364  // If we receive a broken type, recover by assuming 'int' and
9365  // marking this declaration as invalid.
9366  if (T.isNull()) {
9367    InvalidDecl = true;
9368    T = Context.IntTy;
9369  }
9370
9371  QualType EltTy = Context.getBaseElementType(T);
9372  if (!EltTy->isDependentType()) {
9373    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9374      // Fields of incomplete type force their record to be invalid.
9375      Record->setInvalidDecl();
9376      InvalidDecl = true;
9377    } else {
9378      NamedDecl *Def;
9379      EltTy->isIncompleteType(&Def);
9380      if (Def && Def->isInvalidDecl()) {
9381        Record->setInvalidDecl();
9382        InvalidDecl = true;
9383      }
9384    }
9385  }
9386
9387  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9388  // than a variably modified type.
9389  if (!InvalidDecl && T->isVariablyModifiedType()) {
9390    bool SizeIsNegative;
9391    llvm::APSInt Oversized;
9392    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9393                                                           SizeIsNegative,
9394                                                           Oversized);
9395    if (!FixedTy.isNull()) {
9396      Diag(Loc, diag::warn_illegal_constant_array_size);
9397      T = FixedTy;
9398    } else {
9399      if (SizeIsNegative)
9400        Diag(Loc, diag::err_typecheck_negative_array_size);
9401      else if (Oversized.getBoolValue())
9402        Diag(Loc, diag::err_array_too_large)
9403          << Oversized.toString(10);
9404      else
9405        Diag(Loc, diag::err_typecheck_field_variable_size);
9406      InvalidDecl = true;
9407    }
9408  }
9409
9410  // Fields can not have abstract class types
9411  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9412                                             diag::err_abstract_type_in_decl,
9413                                             AbstractFieldType))
9414    InvalidDecl = true;
9415
9416  bool ZeroWidth = false;
9417  // If this is declared as a bit-field, check the bit-field.
9418  if (!InvalidDecl && BitWidth) {
9419    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9420    if (!BitWidth) {
9421      InvalidDecl = true;
9422      BitWidth = 0;
9423      ZeroWidth = false;
9424    }
9425  }
9426
9427  // Check that 'mutable' is consistent with the type of the declaration.
9428  if (!InvalidDecl && Mutable) {
9429    unsigned DiagID = 0;
9430    if (T->isReferenceType())
9431      DiagID = diag::err_mutable_reference;
9432    else if (T.isConstQualified())
9433      DiagID = diag::err_mutable_const;
9434
9435    if (DiagID) {
9436      SourceLocation ErrLoc = Loc;
9437      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9438        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9439      Diag(ErrLoc, DiagID);
9440      Mutable = false;
9441      InvalidDecl = true;
9442    }
9443  }
9444
9445  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9446                                       BitWidth, Mutable, InitStyle);
9447  if (InvalidDecl)
9448    NewFD->setInvalidDecl();
9449
9450  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9451    Diag(Loc, diag::err_duplicate_member) << II;
9452    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9453    NewFD->setInvalidDecl();
9454  }
9455
9456  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9457    if (Record->isUnion()) {
9458      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9459        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9460        if (RDecl->getDefinition()) {
9461          // C++ [class.union]p1: An object of a class with a non-trivial
9462          // constructor, a non-trivial copy constructor, a non-trivial
9463          // destructor, or a non-trivial copy assignment operator
9464          // cannot be a member of a union, nor can an array of such
9465          // objects.
9466          if (CheckNontrivialField(NewFD))
9467            NewFD->setInvalidDecl();
9468        }
9469      }
9470
9471      // C++ [class.union]p1: If a union contains a member of reference type,
9472      // the program is ill-formed.
9473      if (EltTy->isReferenceType()) {
9474        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9475          << NewFD->getDeclName() << EltTy;
9476        NewFD->setInvalidDecl();
9477      }
9478    }
9479  }
9480
9481  // FIXME: We need to pass in the attributes given an AST
9482  // representation, not a parser representation.
9483  if (D)
9484    // FIXME: What to pass instead of TUScope?
9485    ProcessDeclAttributes(TUScope, NewFD, *D);
9486
9487  // In auto-retain/release, infer strong retension for fields of
9488  // retainable type.
9489  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9490    NewFD->setInvalidDecl();
9491
9492  if (T.isObjCGCWeak())
9493    Diag(Loc, diag::warn_attribute_weak_on_field);
9494
9495  NewFD->setAccess(AS);
9496  return NewFD;
9497}
9498
9499bool Sema::CheckNontrivialField(FieldDecl *FD) {
9500  assert(FD);
9501  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9502
9503  if (FD->isInvalidDecl())
9504    return true;
9505
9506  QualType EltTy = Context.getBaseElementType(FD->getType());
9507  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9508    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9509    if (RDecl->getDefinition()) {
9510      // We check for copy constructors before constructors
9511      // because otherwise we'll never get complaints about
9512      // copy constructors.
9513
9514      CXXSpecialMember member = CXXInvalid;
9515      if (!RDecl->hasTrivialCopyConstructor())
9516        member = CXXCopyConstructor;
9517      else if (!RDecl->hasTrivialDefaultConstructor())
9518        member = CXXDefaultConstructor;
9519      else if (!RDecl->hasTrivialCopyAssignment())
9520        member = CXXCopyAssignment;
9521      else if (!RDecl->hasTrivialDestructor())
9522        member = CXXDestructor;
9523
9524      if (member != CXXInvalid) {
9525        if (!getLangOpts().CPlusPlus0x &&
9526            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9527          // Objective-C++ ARC: it is an error to have a non-trivial field of
9528          // a union. However, system headers in Objective-C programs
9529          // occasionally have Objective-C lifetime objects within unions,
9530          // and rather than cause the program to fail, we make those
9531          // members unavailable.
9532          SourceLocation Loc = FD->getLocation();
9533          if (getSourceManager().isInSystemHeader(Loc)) {
9534            if (!FD->hasAttr<UnavailableAttr>())
9535              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9536                                  "this system field has retaining ownership"));
9537            return false;
9538          }
9539        }
9540
9541        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9542               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9543               diag::err_illegal_union_or_anon_struct_member)
9544          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9545        DiagnoseNontrivial(RT, member);
9546        return !getLangOpts().CPlusPlus0x;
9547      }
9548    }
9549  }
9550
9551  return false;
9552}
9553
9554/// If the given constructor is user-declared, produce a diagnostic explaining
9555/// that it makes the class non-trivial.
9556static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9557                                               CXXConstructorDecl *CD,
9558                                               Sema::CXXSpecialMember CSM) {
9559  if (CD->isImplicit())
9560    return false;
9561
9562  SourceLocation CtorLoc = CD->getLocation();
9563  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9564  return true;
9565}
9566
9567/// DiagnoseNontrivial - Given that a class has a non-trivial
9568/// special member, figure out why.
9569void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9570  QualType QT(T, 0U);
9571  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9572
9573  // Check whether the member was user-declared.
9574  switch (member) {
9575  case CXXInvalid:
9576    break;
9577
9578  case CXXDefaultConstructor:
9579    if (RD->hasUserDeclaredConstructor()) {
9580      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9581      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9582        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9583          return;
9584
9585      // No user-delcared constructors; look for constructor templates.
9586      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9587          tmpl_iter;
9588      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9589           TI != TE; ++TI) {
9590        CXXConstructorDecl *CD =
9591            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9592        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9593          return;
9594      }
9595    }
9596    break;
9597
9598  case CXXCopyConstructor:
9599    if (RD->hasUserDeclaredCopyConstructor()) {
9600      SourceLocation CtorLoc =
9601        RD->getCopyConstructor(0)->getLocation();
9602      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9603      return;
9604    }
9605    break;
9606
9607  case CXXMoveConstructor:
9608    if (RD->hasUserDeclaredMoveConstructor()) {
9609      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9610      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9611      return;
9612    }
9613    break;
9614
9615  case CXXCopyAssignment:
9616    if (RD->hasUserDeclaredCopyAssignment()) {
9617      SourceLocation AssignLoc =
9618        RD->getCopyAssignmentOperator(0)->getLocation();
9619      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9620      return;
9621    }
9622    break;
9623
9624  case CXXMoveAssignment:
9625    if (RD->hasUserDeclaredMoveAssignment()) {
9626      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9627      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9628      return;
9629    }
9630    break;
9631
9632  case CXXDestructor:
9633    if (RD->hasUserDeclaredDestructor()) {
9634      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9635      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9636      return;
9637    }
9638    break;
9639  }
9640
9641  typedef CXXRecordDecl::base_class_iterator base_iter;
9642
9643  // Virtual bases and members inhibit trivial copying/construction,
9644  // but not trivial destruction.
9645  if (member != CXXDestructor) {
9646    // Check for virtual bases.  vbases includes indirect virtual bases,
9647    // so we just iterate through the direct bases.
9648    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9649      if (bi->isVirtual()) {
9650        SourceLocation BaseLoc = bi->getLocStart();
9651        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9652        return;
9653      }
9654
9655    // Check for virtual methods.
9656    typedef CXXRecordDecl::method_iterator meth_iter;
9657    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9658         ++mi) {
9659      if (mi->isVirtual()) {
9660        SourceLocation MLoc = mi->getLocStart();
9661        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9662        return;
9663      }
9664    }
9665  }
9666
9667  bool (CXXRecordDecl::*hasTrivial)() const;
9668  switch (member) {
9669  case CXXDefaultConstructor:
9670    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9671  case CXXCopyConstructor:
9672    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9673  case CXXCopyAssignment:
9674    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9675  case CXXDestructor:
9676    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9677  default:
9678    llvm_unreachable("unexpected special member");
9679  }
9680
9681  // Check for nontrivial bases (and recurse).
9682  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9683    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9684    assert(BaseRT && "Don't know how to handle dependent bases");
9685    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9686    if (!(BaseRecTy->*hasTrivial)()) {
9687      SourceLocation BaseLoc = bi->getLocStart();
9688      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9689      DiagnoseNontrivial(BaseRT, member);
9690      return;
9691    }
9692  }
9693
9694  // Check for nontrivial members (and recurse).
9695  typedef RecordDecl::field_iterator field_iter;
9696  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9697       ++fi) {
9698    QualType EltTy = Context.getBaseElementType(fi->getType());
9699    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9700      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9701
9702      if (!(EltRD->*hasTrivial)()) {
9703        SourceLocation FLoc = fi->getLocation();
9704        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9705        DiagnoseNontrivial(EltRT, member);
9706        return;
9707      }
9708    }
9709
9710    if (EltTy->isObjCLifetimeType()) {
9711      switch (EltTy.getObjCLifetime()) {
9712      case Qualifiers::OCL_None:
9713      case Qualifiers::OCL_ExplicitNone:
9714        break;
9715
9716      case Qualifiers::OCL_Autoreleasing:
9717      case Qualifiers::OCL_Weak:
9718      case Qualifiers::OCL_Strong:
9719        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9720          << QT << EltTy.getObjCLifetime();
9721        return;
9722      }
9723    }
9724  }
9725
9726  llvm_unreachable("found no explanation for non-trivial member");
9727}
9728
9729/// TranslateIvarVisibility - Translate visibility from a token ID to an
9730///  AST enum value.
9731static ObjCIvarDecl::AccessControl
9732TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9733  switch (ivarVisibility) {
9734  default: llvm_unreachable("Unknown visitibility kind");
9735  case tok::objc_private: return ObjCIvarDecl::Private;
9736  case tok::objc_public: return ObjCIvarDecl::Public;
9737  case tok::objc_protected: return ObjCIvarDecl::Protected;
9738  case tok::objc_package: return ObjCIvarDecl::Package;
9739  }
9740}
9741
9742/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9743/// in order to create an IvarDecl object for it.
9744Decl *Sema::ActOnIvar(Scope *S,
9745                                SourceLocation DeclStart,
9746                                Declarator &D, Expr *BitfieldWidth,
9747                                tok::ObjCKeywordKind Visibility) {
9748
9749  IdentifierInfo *II = D.getIdentifier();
9750  Expr *BitWidth = (Expr*)BitfieldWidth;
9751  SourceLocation Loc = DeclStart;
9752  if (II) Loc = D.getIdentifierLoc();
9753
9754  // FIXME: Unnamed fields can be handled in various different ways, for
9755  // example, unnamed unions inject all members into the struct namespace!
9756
9757  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9758  QualType T = TInfo->getType();
9759
9760  if (BitWidth) {
9761    // 6.7.2.1p3, 6.7.2.1p4
9762    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9763    if (!BitWidth)
9764      D.setInvalidType();
9765  } else {
9766    // Not a bitfield.
9767
9768    // validate II.
9769
9770  }
9771  if (T->isReferenceType()) {
9772    Diag(Loc, diag::err_ivar_reference_type);
9773    D.setInvalidType();
9774  }
9775  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9776  // than a variably modified type.
9777  else if (T->isVariablyModifiedType()) {
9778    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9779    D.setInvalidType();
9780  }
9781
9782  // Get the visibility (access control) for this ivar.
9783  ObjCIvarDecl::AccessControl ac =
9784    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9785                                        : ObjCIvarDecl::None;
9786  // Must set ivar's DeclContext to its enclosing interface.
9787  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9788  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9789    return 0;
9790  ObjCContainerDecl *EnclosingContext;
9791  if (ObjCImplementationDecl *IMPDecl =
9792      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9793    if (LangOpts.ObjCRuntime.isFragile()) {
9794    // Case of ivar declared in an implementation. Context is that of its class.
9795      EnclosingContext = IMPDecl->getClassInterface();
9796      assert(EnclosingContext && "Implementation has no class interface!");
9797    }
9798    else
9799      EnclosingContext = EnclosingDecl;
9800  } else {
9801    if (ObjCCategoryDecl *CDecl =
9802        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9803      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9804        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9805        return 0;
9806      }
9807    }
9808    EnclosingContext = EnclosingDecl;
9809  }
9810
9811  // Construct the decl.
9812  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9813                                             DeclStart, Loc, II, T,
9814                                             TInfo, ac, (Expr *)BitfieldWidth);
9815
9816  if (II) {
9817    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9818                                           ForRedeclaration);
9819    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9820        && !isa<TagDecl>(PrevDecl)) {
9821      Diag(Loc, diag::err_duplicate_member) << II;
9822      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9823      NewID->setInvalidDecl();
9824    }
9825  }
9826
9827  // Process attributes attached to the ivar.
9828  ProcessDeclAttributes(S, NewID, D);
9829
9830  if (D.isInvalidType())
9831    NewID->setInvalidDecl();
9832
9833  // In ARC, infer 'retaining' for ivars of retainable type.
9834  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9835    NewID->setInvalidDecl();
9836
9837  if (D.getDeclSpec().isModulePrivateSpecified())
9838    NewID->setModulePrivate();
9839
9840  if (II) {
9841    // FIXME: When interfaces are DeclContexts, we'll need to add
9842    // these to the interface.
9843    S->AddDecl(NewID);
9844    IdResolver.AddDecl(NewID);
9845  }
9846
9847  if (LangOpts.ObjCRuntime.isNonFragile() &&
9848      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9849    Diag(Loc, diag::warn_ivars_in_interface);
9850
9851  return NewID;
9852}
9853
9854/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9855/// class and class extensions. For every class @interface and class
9856/// extension @interface, if the last ivar is a bitfield of any type,
9857/// then add an implicit `char :0` ivar to the end of that interface.
9858void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9859                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9860  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9861    return;
9862
9863  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9864  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9865
9866  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9867    return;
9868  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9869  if (!ID) {
9870    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9871      if (!CD->IsClassExtension())
9872        return;
9873    }
9874    // No need to add this to end of @implementation.
9875    else
9876      return;
9877  }
9878  // All conditions are met. Add a new bitfield to the tail end of ivars.
9879  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9880  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9881
9882  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9883                              DeclLoc, DeclLoc, 0,
9884                              Context.CharTy,
9885                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9886                                                               DeclLoc),
9887                              ObjCIvarDecl::Private, BW,
9888                              true);
9889  AllIvarDecls.push_back(Ivar);
9890}
9891
9892void Sema::ActOnFields(Scope* S,
9893                       SourceLocation RecLoc, Decl *EnclosingDecl,
9894                       llvm::ArrayRef<Decl *> Fields,
9895                       SourceLocation LBrac, SourceLocation RBrac,
9896                       AttributeList *Attr) {
9897  assert(EnclosingDecl && "missing record or interface decl");
9898
9899  // If this is an Objective-C @implementation or category and we have
9900  // new fields here we should reset the layout of the interface since
9901  // it will now change.
9902  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9903    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9904    switch (DC->getKind()) {
9905    default: break;
9906    case Decl::ObjCCategory:
9907      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9908      break;
9909    case Decl::ObjCImplementation:
9910      Context.
9911        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9912      break;
9913    }
9914  }
9915
9916  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9917
9918  // Start counting up the number of named members; make sure to include
9919  // members of anonymous structs and unions in the total.
9920  unsigned NumNamedMembers = 0;
9921  if (Record) {
9922    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9923                                   e = Record->decls_end(); i != e; i++) {
9924      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9925        if (IFD->getDeclName())
9926          ++NumNamedMembers;
9927    }
9928  }
9929
9930  // Verify that all the fields are okay.
9931  SmallVector<FieldDecl*, 32> RecFields;
9932
9933  bool ARCErrReported = false;
9934  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9935       i != end; ++i) {
9936    FieldDecl *FD = cast<FieldDecl>(*i);
9937
9938    // Get the type for the field.
9939    const Type *FDTy = FD->getType().getTypePtr();
9940
9941    if (!FD->isAnonymousStructOrUnion()) {
9942      // Remember all fields written by the user.
9943      RecFields.push_back(FD);
9944    }
9945
9946    // If the field is already invalid for some reason, don't emit more
9947    // diagnostics about it.
9948    if (FD->isInvalidDecl()) {
9949      EnclosingDecl->setInvalidDecl();
9950      continue;
9951    }
9952
9953    // C99 6.7.2.1p2:
9954    //   A structure or union shall not contain a member with
9955    //   incomplete or function type (hence, a structure shall not
9956    //   contain an instance of itself, but may contain a pointer to
9957    //   an instance of itself), except that the last member of a
9958    //   structure with more than one named member may have incomplete
9959    //   array type; such a structure (and any union containing,
9960    //   possibly recursively, a member that is such a structure)
9961    //   shall not be a member of a structure or an element of an
9962    //   array.
9963    if (FDTy->isFunctionType()) {
9964      // Field declared as a function.
9965      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9966        << FD->getDeclName();
9967      FD->setInvalidDecl();
9968      EnclosingDecl->setInvalidDecl();
9969      continue;
9970    } else if (FDTy->isIncompleteArrayType() && Record &&
9971               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9972                ((getLangOpts().MicrosoftExt ||
9973                  getLangOpts().CPlusPlus) &&
9974                 (i + 1 == Fields.end() || Record->isUnion())))) {
9975      // Flexible array member.
9976      // Microsoft and g++ is more permissive regarding flexible array.
9977      // It will accept flexible array in union and also
9978      // as the sole element of a struct/class.
9979      if (getLangOpts().MicrosoftExt) {
9980        if (Record->isUnion())
9981          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9982            << FD->getDeclName();
9983        else if (Fields.size() == 1)
9984          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9985            << FD->getDeclName() << Record->getTagKind();
9986      } else if (getLangOpts().CPlusPlus) {
9987        if (Record->isUnion())
9988          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9989            << FD->getDeclName();
9990        else if (Fields.size() == 1)
9991          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9992            << FD->getDeclName() << Record->getTagKind();
9993      } else if (!getLangOpts().C99) {
9994      if (Record->isUnion())
9995        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9996          << FD->getDeclName();
9997      else
9998        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9999          << FD->getDeclName() << Record->getTagKind();
10000      } else if (NumNamedMembers < 1) {
10001        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10002          << FD->getDeclName();
10003        FD->setInvalidDecl();
10004        EnclosingDecl->setInvalidDecl();
10005        continue;
10006      }
10007      if (!FD->getType()->isDependentType() &&
10008          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10009        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10010          << FD->getDeclName() << FD->getType();
10011        FD->setInvalidDecl();
10012        EnclosingDecl->setInvalidDecl();
10013        continue;
10014      }
10015      // Okay, we have a legal flexible array member at the end of the struct.
10016      if (Record)
10017        Record->setHasFlexibleArrayMember(true);
10018    } else if (!FDTy->isDependentType() &&
10019               RequireCompleteType(FD->getLocation(), FD->getType(),
10020                                   diag::err_field_incomplete)) {
10021      // Incomplete type
10022      FD->setInvalidDecl();
10023      EnclosingDecl->setInvalidDecl();
10024      continue;
10025    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10026      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10027        // If this is a member of a union, then entire union becomes "flexible".
10028        if (Record && Record->isUnion()) {
10029          Record->setHasFlexibleArrayMember(true);
10030        } else {
10031          // If this is a struct/class and this is not the last element, reject
10032          // it.  Note that GCC supports variable sized arrays in the middle of
10033          // structures.
10034          if (i + 1 != Fields.end())
10035            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10036              << FD->getDeclName() << FD->getType();
10037          else {
10038            // We support flexible arrays at the end of structs in
10039            // other structs as an extension.
10040            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10041              << FD->getDeclName();
10042            if (Record)
10043              Record->setHasFlexibleArrayMember(true);
10044          }
10045        }
10046      }
10047      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10048          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10049                                 diag::err_abstract_type_in_decl,
10050                                 AbstractIvarType)) {
10051        // Ivars can not have abstract class types
10052        FD->setInvalidDecl();
10053      }
10054      if (Record && FDTTy->getDecl()->hasObjectMember())
10055        Record->setHasObjectMember(true);
10056    } else if (FDTy->isObjCObjectType()) {
10057      /// A field cannot be an Objective-c object
10058      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10059        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10060      QualType T = Context.getObjCObjectPointerType(FD->getType());
10061      FD->setType(T);
10062    } else if (!getLangOpts().CPlusPlus) {
10063      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10064        // It's an error in ARC if a field has lifetime.
10065        // We don't want to report this in a system header, though,
10066        // so we just make the field unavailable.
10067        // FIXME: that's really not sufficient; we need to make the type
10068        // itself invalid to, say, initialize or copy.
10069        QualType T = FD->getType();
10070        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10071        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10072          SourceLocation loc = FD->getLocation();
10073          if (getSourceManager().isInSystemHeader(loc)) {
10074            if (!FD->hasAttr<UnavailableAttr>()) {
10075              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10076                                "this system field has retaining ownership"));
10077            }
10078          } else {
10079            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10080              << T->isBlockPointerType();
10081          }
10082          ARCErrReported = true;
10083        }
10084      }
10085      else if (getLangOpts().ObjC1 &&
10086               getLangOpts().getGC() != LangOptions::NonGC &&
10087               Record && !Record->hasObjectMember()) {
10088        if (FD->getType()->isObjCObjectPointerType() ||
10089            FD->getType().isObjCGCStrong())
10090          Record->setHasObjectMember(true);
10091        else if (Context.getAsArrayType(FD->getType())) {
10092          QualType BaseType = Context.getBaseElementType(FD->getType());
10093          if (BaseType->isRecordType() &&
10094              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10095            Record->setHasObjectMember(true);
10096          else if (BaseType->isObjCObjectPointerType() ||
10097                   BaseType.isObjCGCStrong())
10098                 Record->setHasObjectMember(true);
10099        }
10100      }
10101    }
10102    // Keep track of the number of named members.
10103    if (FD->getIdentifier())
10104      ++NumNamedMembers;
10105  }
10106
10107  // Okay, we successfully defined 'Record'.
10108  if (Record) {
10109    bool Completed = false;
10110    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10111      if (!CXXRecord->isInvalidDecl()) {
10112        // Set access bits correctly on the directly-declared conversions.
10113        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10114        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10115             I != E; ++I)
10116          Convs->setAccess(I, (*I)->getAccess());
10117
10118        if (!CXXRecord->isDependentType()) {
10119          // Objective-C Automatic Reference Counting:
10120          //   If a class has a non-static data member of Objective-C pointer
10121          //   type (or array thereof), it is a non-POD type and its
10122          //   default constructor (if any), copy constructor, copy assignment
10123          //   operator, and destructor are non-trivial.
10124          //
10125          // This rule is also handled by CXXRecordDecl::completeDefinition().
10126          // However, here we check whether this particular class is only
10127          // non-POD because of the presence of an Objective-C pointer member.
10128          // If so, objects of this type cannot be shared between code compiled
10129          // with ARC and code compiled with manual retain/release.
10130          if (getLangOpts().ObjCAutoRefCount &&
10131              CXXRecord->hasObjectMember() &&
10132              CXXRecord->getLinkage() == ExternalLinkage) {
10133            if (CXXRecord->isPOD()) {
10134              Diag(CXXRecord->getLocation(),
10135                   diag::warn_arc_non_pod_class_with_object_member)
10136               << CXXRecord;
10137            } else {
10138              // FIXME: Fix-Its would be nice here, but finding a good location
10139              // for them is going to be tricky.
10140              if (CXXRecord->hasTrivialCopyConstructor())
10141                Diag(CXXRecord->getLocation(),
10142                     diag::warn_arc_trivial_member_function_with_object_member)
10143                  << CXXRecord << 0;
10144              if (CXXRecord->hasTrivialCopyAssignment())
10145                Diag(CXXRecord->getLocation(),
10146                     diag::warn_arc_trivial_member_function_with_object_member)
10147                << CXXRecord << 1;
10148              if (CXXRecord->hasTrivialDestructor())
10149                Diag(CXXRecord->getLocation(),
10150                     diag::warn_arc_trivial_member_function_with_object_member)
10151                << CXXRecord << 2;
10152            }
10153          }
10154
10155          // Adjust user-defined destructor exception spec.
10156          if (getLangOpts().CPlusPlus0x &&
10157              CXXRecord->hasUserDeclaredDestructor())
10158            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10159
10160          // Add any implicitly-declared members to this class.
10161          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10162
10163          // If we have virtual base classes, we may end up finding multiple
10164          // final overriders for a given virtual function. Check for this
10165          // problem now.
10166          if (CXXRecord->getNumVBases()) {
10167            CXXFinalOverriderMap FinalOverriders;
10168            CXXRecord->getFinalOverriders(FinalOverriders);
10169
10170            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10171                                             MEnd = FinalOverriders.end();
10172                 M != MEnd; ++M) {
10173              for (OverridingMethods::iterator SO = M->second.begin(),
10174                                            SOEnd = M->second.end();
10175                   SO != SOEnd; ++SO) {
10176                assert(SO->second.size() > 0 &&
10177                       "Virtual function without overridding functions?");
10178                if (SO->second.size() == 1)
10179                  continue;
10180
10181                // C++ [class.virtual]p2:
10182                //   In a derived class, if a virtual member function of a base
10183                //   class subobject has more than one final overrider the
10184                //   program is ill-formed.
10185                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10186                  << (const NamedDecl *)M->first << Record;
10187                Diag(M->first->getLocation(),
10188                     diag::note_overridden_virtual_function);
10189                for (OverridingMethods::overriding_iterator
10190                          OM = SO->second.begin(),
10191                       OMEnd = SO->second.end();
10192                     OM != OMEnd; ++OM)
10193                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10194                    << (const NamedDecl *)M->first << OM->Method->getParent();
10195
10196                Record->setInvalidDecl();
10197              }
10198            }
10199            CXXRecord->completeDefinition(&FinalOverriders);
10200            Completed = true;
10201          }
10202        }
10203      }
10204    }
10205
10206    if (!Completed)
10207      Record->completeDefinition();
10208
10209  } else {
10210    ObjCIvarDecl **ClsFields =
10211      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10212    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10213      ID->setEndOfDefinitionLoc(RBrac);
10214      // Add ivar's to class's DeclContext.
10215      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10216        ClsFields[i]->setLexicalDeclContext(ID);
10217        ID->addDecl(ClsFields[i]);
10218      }
10219      // Must enforce the rule that ivars in the base classes may not be
10220      // duplicates.
10221      if (ID->getSuperClass())
10222        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10223    } else if (ObjCImplementationDecl *IMPDecl =
10224                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10225      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10226      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10227        // Ivar declared in @implementation never belongs to the implementation.
10228        // Only it is in implementation's lexical context.
10229        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10230      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10231      IMPDecl->setIvarLBraceLoc(LBrac);
10232      IMPDecl->setIvarRBraceLoc(RBrac);
10233    } else if (ObjCCategoryDecl *CDecl =
10234                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10235      // case of ivars in class extension; all other cases have been
10236      // reported as errors elsewhere.
10237      // FIXME. Class extension does not have a LocEnd field.
10238      // CDecl->setLocEnd(RBrac);
10239      // Add ivar's to class extension's DeclContext.
10240      // Diagnose redeclaration of private ivars.
10241      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10242      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10243        if (IDecl) {
10244          if (const ObjCIvarDecl *ClsIvar =
10245              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10246            Diag(ClsFields[i]->getLocation(),
10247                 diag::err_duplicate_ivar_declaration);
10248            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10249            continue;
10250          }
10251          for (const ObjCCategoryDecl *ClsExtDecl =
10252                IDecl->getFirstClassExtension();
10253               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10254            if (const ObjCIvarDecl *ClsExtIvar =
10255                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10256              Diag(ClsFields[i]->getLocation(),
10257                   diag::err_duplicate_ivar_declaration);
10258              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10259              continue;
10260            }
10261          }
10262        }
10263        ClsFields[i]->setLexicalDeclContext(CDecl);
10264        CDecl->addDecl(ClsFields[i]);
10265      }
10266      CDecl->setIvarLBraceLoc(LBrac);
10267      CDecl->setIvarRBraceLoc(RBrac);
10268    }
10269  }
10270
10271  if (Attr)
10272    ProcessDeclAttributeList(S, Record, Attr);
10273}
10274
10275/// \brief Determine whether the given integral value is representable within
10276/// the given type T.
10277static bool isRepresentableIntegerValue(ASTContext &Context,
10278                                        llvm::APSInt &Value,
10279                                        QualType T) {
10280  assert(T->isIntegralType(Context) && "Integral type required!");
10281  unsigned BitWidth = Context.getIntWidth(T);
10282
10283  if (Value.isUnsigned() || Value.isNonNegative()) {
10284    if (T->isSignedIntegerOrEnumerationType())
10285      --BitWidth;
10286    return Value.getActiveBits() <= BitWidth;
10287  }
10288  return Value.getMinSignedBits() <= BitWidth;
10289}
10290
10291// \brief Given an integral type, return the next larger integral type
10292// (or a NULL type of no such type exists).
10293static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10294  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10295  // enum checking below.
10296  assert(T->isIntegralType(Context) && "Integral type required!");
10297  const unsigned NumTypes = 4;
10298  QualType SignedIntegralTypes[NumTypes] = {
10299    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10300  };
10301  QualType UnsignedIntegralTypes[NumTypes] = {
10302    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10303    Context.UnsignedLongLongTy
10304  };
10305
10306  unsigned BitWidth = Context.getTypeSize(T);
10307  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10308                                                        : UnsignedIntegralTypes;
10309  for (unsigned I = 0; I != NumTypes; ++I)
10310    if (Context.getTypeSize(Types[I]) > BitWidth)
10311      return Types[I];
10312
10313  return QualType();
10314}
10315
10316EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10317                                          EnumConstantDecl *LastEnumConst,
10318                                          SourceLocation IdLoc,
10319                                          IdentifierInfo *Id,
10320                                          Expr *Val) {
10321  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10322  llvm::APSInt EnumVal(IntWidth);
10323  QualType EltTy;
10324
10325  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10326    Val = 0;
10327
10328  if (Val)
10329    Val = DefaultLvalueConversion(Val).take();
10330
10331  if (Val) {
10332    if (Enum->isDependentType() || Val->isTypeDependent())
10333      EltTy = Context.DependentTy;
10334    else {
10335      SourceLocation ExpLoc;
10336      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10337          !getLangOpts().MicrosoftMode) {
10338        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10339        // constant-expression in the enumerator-definition shall be a converted
10340        // constant expression of the underlying type.
10341        EltTy = Enum->getIntegerType();
10342        ExprResult Converted =
10343          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10344                                           CCEK_Enumerator);
10345        if (Converted.isInvalid())
10346          Val = 0;
10347        else
10348          Val = Converted.take();
10349      } else if (!Val->isValueDependent() &&
10350                 !(Val = VerifyIntegerConstantExpression(Val,
10351                                                         &EnumVal).take())) {
10352        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10353      } else {
10354        if (Enum->isFixed()) {
10355          EltTy = Enum->getIntegerType();
10356
10357          // In Obj-C and Microsoft mode, require the enumeration value to be
10358          // representable in the underlying type of the enumeration. In C++11,
10359          // we perform a non-narrowing conversion as part of converted constant
10360          // expression checking.
10361          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10362            if (getLangOpts().MicrosoftMode) {
10363              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10364              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10365            } else
10366              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10367          } else
10368            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10369        } else if (getLangOpts().CPlusPlus) {
10370          // C++11 [dcl.enum]p5:
10371          //   If the underlying type is not fixed, the type of each enumerator
10372          //   is the type of its initializing value:
10373          //     - If an initializer is specified for an enumerator, the
10374          //       initializing value has the same type as the expression.
10375          EltTy = Val->getType();
10376        } else {
10377          // C99 6.7.2.2p2:
10378          //   The expression that defines the value of an enumeration constant
10379          //   shall be an integer constant expression that has a value
10380          //   representable as an int.
10381
10382          // Complain if the value is not representable in an int.
10383          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10384            Diag(IdLoc, diag::ext_enum_value_not_int)
10385              << EnumVal.toString(10) << Val->getSourceRange()
10386              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10387          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10388            // Force the type of the expression to 'int'.
10389            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10390          }
10391          EltTy = Val->getType();
10392        }
10393      }
10394    }
10395  }
10396
10397  if (!Val) {
10398    if (Enum->isDependentType())
10399      EltTy = Context.DependentTy;
10400    else if (!LastEnumConst) {
10401      // C++0x [dcl.enum]p5:
10402      //   If the underlying type is not fixed, the type of each enumerator
10403      //   is the type of its initializing value:
10404      //     - If no initializer is specified for the first enumerator, the
10405      //       initializing value has an unspecified integral type.
10406      //
10407      // GCC uses 'int' for its unspecified integral type, as does
10408      // C99 6.7.2.2p3.
10409      if (Enum->isFixed()) {
10410        EltTy = Enum->getIntegerType();
10411      }
10412      else {
10413        EltTy = Context.IntTy;
10414      }
10415    } else {
10416      // Assign the last value + 1.
10417      EnumVal = LastEnumConst->getInitVal();
10418      ++EnumVal;
10419      EltTy = LastEnumConst->getType();
10420
10421      // Check for overflow on increment.
10422      if (EnumVal < LastEnumConst->getInitVal()) {
10423        // C++0x [dcl.enum]p5:
10424        //   If the underlying type is not fixed, the type of each enumerator
10425        //   is the type of its initializing value:
10426        //
10427        //     - Otherwise the type of the initializing value is the same as
10428        //       the type of the initializing value of the preceding enumerator
10429        //       unless the incremented value is not representable in that type,
10430        //       in which case the type is an unspecified integral type
10431        //       sufficient to contain the incremented value. If no such type
10432        //       exists, the program is ill-formed.
10433        QualType T = getNextLargerIntegralType(Context, EltTy);
10434        if (T.isNull() || Enum->isFixed()) {
10435          // There is no integral type larger enough to represent this
10436          // value. Complain, then allow the value to wrap around.
10437          EnumVal = LastEnumConst->getInitVal();
10438          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10439          ++EnumVal;
10440          if (Enum->isFixed())
10441            // When the underlying type is fixed, this is ill-formed.
10442            Diag(IdLoc, diag::err_enumerator_wrapped)
10443              << EnumVal.toString(10)
10444              << EltTy;
10445          else
10446            Diag(IdLoc, diag::warn_enumerator_too_large)
10447              << EnumVal.toString(10);
10448        } else {
10449          EltTy = T;
10450        }
10451
10452        // Retrieve the last enumerator's value, extent that type to the
10453        // type that is supposed to be large enough to represent the incremented
10454        // value, then increment.
10455        EnumVal = LastEnumConst->getInitVal();
10456        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10457        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10458        ++EnumVal;
10459
10460        // If we're not in C++, diagnose the overflow of enumerator values,
10461        // which in C99 means that the enumerator value is not representable in
10462        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10463        // permits enumerator values that are representable in some larger
10464        // integral type.
10465        if (!getLangOpts().CPlusPlus && !T.isNull())
10466          Diag(IdLoc, diag::warn_enum_value_overflow);
10467      } else if (!getLangOpts().CPlusPlus &&
10468                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10469        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10470        Diag(IdLoc, diag::ext_enum_value_not_int)
10471          << EnumVal.toString(10) << 1;
10472      }
10473    }
10474  }
10475
10476  if (!EltTy->isDependentType()) {
10477    // Make the enumerator value match the signedness and size of the
10478    // enumerator's type.
10479    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10480    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10481  }
10482
10483  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10484                                  Val, EnumVal);
10485}
10486
10487
10488Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10489                              SourceLocation IdLoc, IdentifierInfo *Id,
10490                              AttributeList *Attr,
10491                              SourceLocation EqualLoc, Expr *Val) {
10492  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10493  EnumConstantDecl *LastEnumConst =
10494    cast_or_null<EnumConstantDecl>(lastEnumConst);
10495
10496  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10497  // we find one that is.
10498  S = getNonFieldDeclScope(S);
10499
10500  // Verify that there isn't already something declared with this name in this
10501  // scope.
10502  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10503                                         ForRedeclaration);
10504  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10505    // Maybe we will complain about the shadowed template parameter.
10506    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10507    // Just pretend that we didn't see the previous declaration.
10508    PrevDecl = 0;
10509  }
10510
10511  if (PrevDecl) {
10512    // When in C++, we may get a TagDecl with the same name; in this case the
10513    // enum constant will 'hide' the tag.
10514    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10515           "Received TagDecl when not in C++!");
10516    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10517      if (isa<EnumConstantDecl>(PrevDecl))
10518        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10519      else
10520        Diag(IdLoc, diag::err_redefinition) << Id;
10521      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10522      return 0;
10523    }
10524  }
10525
10526  // C++ [class.mem]p15:
10527  // If T is the name of a class, then each of the following shall have a name
10528  // different from T:
10529  // - every enumerator of every member of class T that is an unscoped
10530  // enumerated type
10531  if (CXXRecordDecl *Record
10532                      = dyn_cast<CXXRecordDecl>(
10533                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10534    if (!TheEnumDecl->isScoped() &&
10535        Record->getIdentifier() && Record->getIdentifier() == Id)
10536      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10537
10538  EnumConstantDecl *New =
10539    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10540
10541  if (New) {
10542    // Process attributes.
10543    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10544
10545    // Register this decl in the current scope stack.
10546    New->setAccess(TheEnumDecl->getAccess());
10547    PushOnScopeChains(New, S);
10548  }
10549
10550  ActOnDocumentableDecl(New);
10551
10552  return New;
10553}
10554
10555// Emits a warning if every element in the enum is the same value and if
10556// every element is initialized with a integer or boolean literal.
10557static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10558                                     unsigned NumElements, EnumDecl *Enum,
10559                                     QualType EnumType) {
10560  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10561                                 Enum->getLocation()) ==
10562      DiagnosticsEngine::Ignored)
10563    return;
10564
10565  if (NumElements < 2)
10566    return;
10567
10568  if (!Enum->getIdentifier())
10569    return;
10570
10571  llvm::APSInt FirstVal;
10572
10573  for (unsigned i = 0; i != NumElements; ++i) {
10574    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10575    if (!ECD)
10576      return;
10577
10578    Expr *InitExpr = ECD->getInitExpr();
10579    if (!InitExpr)
10580      return;
10581    InitExpr = InitExpr->IgnoreImpCasts();
10582    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10583      return;
10584
10585    if (i == 0) {
10586      FirstVal = ECD->getInitVal();
10587      continue;
10588    }
10589
10590    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10591      return;
10592  }
10593
10594  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10595      << EnumType << FirstVal.toString(10)
10596      << Enum->getSourceRange();
10597
10598  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10599                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10600
10601  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10602    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10603                                    Next->getName());
10604}
10605
10606// Returns true when the enum initial expression does not trigger the
10607// duplicate enum warning.  A few common cases are exempted as follows:
10608// Element2 = Element1
10609// Element2 = Element1 + 1
10610// Element2 = Element1 - 1
10611// Where Element2 and Element1 are from the same enum.
10612static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10613  Expr *InitExpr = ECD->getInitExpr();
10614  if (!InitExpr)
10615    return true;
10616  InitExpr = InitExpr->IgnoreImpCasts();
10617
10618  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10619    if (!BO->isAdditiveOp())
10620      return true;
10621    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10622    if (!IL)
10623      return true;
10624    if (IL->getValue() != 1)
10625      return true;
10626
10627    InitExpr = BO->getLHS();
10628  }
10629
10630  // This checks if the elements are from the same enum.
10631  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10632  if (!DRE)
10633    return true;
10634
10635  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10636  if (!EnumConstant)
10637    return true;
10638
10639  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10640      Enum)
10641    return true;
10642
10643  return false;
10644}
10645
10646struct DupKey {
10647  int64_t val;
10648  bool isTombstoneOrEmptyKey;
10649  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10650    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10651};
10652
10653static DupKey GetDupKey(const llvm::APSInt& Val) {
10654  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10655                false);
10656}
10657
10658struct DenseMapInfoDupKey {
10659  static DupKey getEmptyKey() { return DupKey(0, true); }
10660  static DupKey getTombstoneKey() { return DupKey(1, true); }
10661  static unsigned getHashValue(const DupKey Key) {
10662    return (unsigned)(Key.val * 37);
10663  }
10664  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10665    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10666           LHS.val == RHS.val;
10667  }
10668};
10669
10670// Emits a warning when an element is implicitly set a value that
10671// a previous element has already been set to.
10672static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10673                                        unsigned NumElements, EnumDecl *Enum,
10674                                        QualType EnumType) {
10675  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10676                                 Enum->getLocation()) ==
10677      DiagnosticsEngine::Ignored)
10678    return;
10679  // Avoid anonymous enums
10680  if (!Enum->getIdentifier())
10681    return;
10682
10683  // Only check for small enums.
10684  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10685    return;
10686
10687  typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10688  typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10689
10690  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10691  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10692          ValueToVectorMap;
10693
10694  DuplicatesVector DupVector;
10695  ValueToVectorMap EnumMap;
10696
10697  // Populate the EnumMap with all values represented by enum constants without
10698  // an initialier.
10699  for (unsigned i = 0; i < NumElements; ++i) {
10700    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10701
10702    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10703    // this constant.  Skip this enum since it may be ill-formed.
10704    if (!ECD) {
10705      return;
10706    }
10707
10708    if (ECD->getInitExpr())
10709      continue;
10710
10711    DupKey Key = GetDupKey(ECD->getInitVal());
10712    DeclOrVector &Entry = EnumMap[Key];
10713
10714    // First time encountering this value.
10715    if (Entry.isNull())
10716      Entry = ECD;
10717  }
10718
10719  // Create vectors for any values that has duplicates.
10720  for (unsigned i = 0; i < NumElements; ++i) {
10721    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10722    if (!ValidDuplicateEnum(ECD, Enum))
10723      continue;
10724
10725    DupKey Key = GetDupKey(ECD->getInitVal());
10726
10727    DeclOrVector& Entry = EnumMap[Key];
10728    if (Entry.isNull())
10729      continue;
10730
10731    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10732      // Ensure constants are different.
10733      if (D == ECD)
10734        continue;
10735
10736      // Create new vector and push values onto it.
10737      ECDVector *Vec = new ECDVector();
10738      Vec->push_back(D);
10739      Vec->push_back(ECD);
10740
10741      // Update entry to point to the duplicates vector.
10742      Entry = Vec;
10743
10744      // Store the vector somewhere we can consult later for quick emission of
10745      // diagnostics.
10746      DupVector.push_back(Vec);
10747      continue;
10748    }
10749
10750    ECDVector *Vec = Entry.get<ECDVector*>();
10751    // Make sure constants are not added more than once.
10752    if (*Vec->begin() == ECD)
10753      continue;
10754
10755    Vec->push_back(ECD);
10756  }
10757
10758  // Emit diagnostics.
10759  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10760                                  DupVectorEnd = DupVector.end();
10761       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10762    ECDVector *Vec = *DupVectorIter;
10763    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10764
10765    // Emit warning for one enum constant.
10766    ECDVector::iterator I = Vec->begin();
10767    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10768      << (*I)->getName() << (*I)->getInitVal().toString(10)
10769      << (*I)->getSourceRange();
10770    ++I;
10771
10772    // Emit one note for each of the remaining enum constants with
10773    // the same value.
10774    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10775      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10776        << (*I)->getName() << (*I)->getInitVal().toString(10)
10777        << (*I)->getSourceRange();
10778    delete Vec;
10779  }
10780}
10781
10782void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10783                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10784                         Decl **Elements, unsigned NumElements,
10785                         Scope *S, AttributeList *Attr) {
10786  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10787  QualType EnumType = Context.getTypeDeclType(Enum);
10788
10789  if (Attr)
10790    ProcessDeclAttributeList(S, Enum, Attr);
10791
10792  if (Enum->isDependentType()) {
10793    for (unsigned i = 0; i != NumElements; ++i) {
10794      EnumConstantDecl *ECD =
10795        cast_or_null<EnumConstantDecl>(Elements[i]);
10796      if (!ECD) continue;
10797
10798      ECD->setType(EnumType);
10799    }
10800
10801    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10802    return;
10803  }
10804
10805  // TODO: If the result value doesn't fit in an int, it must be a long or long
10806  // long value.  ISO C does not support this, but GCC does as an extension,
10807  // emit a warning.
10808  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10809  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10810  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10811
10812  // Verify that all the values are okay, compute the size of the values, and
10813  // reverse the list.
10814  unsigned NumNegativeBits = 0;
10815  unsigned NumPositiveBits = 0;
10816
10817  // Keep track of whether all elements have type int.
10818  bool AllElementsInt = true;
10819
10820  for (unsigned i = 0; i != NumElements; ++i) {
10821    EnumConstantDecl *ECD =
10822      cast_or_null<EnumConstantDecl>(Elements[i]);
10823    if (!ECD) continue;  // Already issued a diagnostic.
10824
10825    const llvm::APSInt &InitVal = ECD->getInitVal();
10826
10827    // Keep track of the size of positive and negative values.
10828    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10829      NumPositiveBits = std::max(NumPositiveBits,
10830                                 (unsigned)InitVal.getActiveBits());
10831    else
10832      NumNegativeBits = std::max(NumNegativeBits,
10833                                 (unsigned)InitVal.getMinSignedBits());
10834
10835    // Keep track of whether every enum element has type int (very commmon).
10836    if (AllElementsInt)
10837      AllElementsInt = ECD->getType() == Context.IntTy;
10838  }
10839
10840  // Figure out the type that should be used for this enum.
10841  QualType BestType;
10842  unsigned BestWidth;
10843
10844  // C++0x N3000 [conv.prom]p3:
10845  //   An rvalue of an unscoped enumeration type whose underlying
10846  //   type is not fixed can be converted to an rvalue of the first
10847  //   of the following types that can represent all the values of
10848  //   the enumeration: int, unsigned int, long int, unsigned long
10849  //   int, long long int, or unsigned long long int.
10850  // C99 6.4.4.3p2:
10851  //   An identifier declared as an enumeration constant has type int.
10852  // The C99 rule is modified by a gcc extension
10853  QualType BestPromotionType;
10854
10855  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10856  // -fshort-enums is the equivalent to specifying the packed attribute on all
10857  // enum definitions.
10858  if (LangOpts.ShortEnums)
10859    Packed = true;
10860
10861  if (Enum->isFixed()) {
10862    BestType = Enum->getIntegerType();
10863    if (BestType->isPromotableIntegerType())
10864      BestPromotionType = Context.getPromotedIntegerType(BestType);
10865    else
10866      BestPromotionType = BestType;
10867    // We don't need to set BestWidth, because BestType is going to be the type
10868    // of the enumerators, but we do anyway because otherwise some compilers
10869    // warn that it might be used uninitialized.
10870    BestWidth = CharWidth;
10871  }
10872  else if (NumNegativeBits) {
10873    // If there is a negative value, figure out the smallest integer type (of
10874    // int/long/longlong) that fits.
10875    // If it's packed, check also if it fits a char or a short.
10876    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10877      BestType = Context.SignedCharTy;
10878      BestWidth = CharWidth;
10879    } else if (Packed && NumNegativeBits <= ShortWidth &&
10880               NumPositiveBits < ShortWidth) {
10881      BestType = Context.ShortTy;
10882      BestWidth = ShortWidth;
10883    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10884      BestType = Context.IntTy;
10885      BestWidth = IntWidth;
10886    } else {
10887      BestWidth = Context.getTargetInfo().getLongWidth();
10888
10889      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10890        BestType = Context.LongTy;
10891      } else {
10892        BestWidth = Context.getTargetInfo().getLongLongWidth();
10893
10894        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10895          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10896        BestType = Context.LongLongTy;
10897      }
10898    }
10899    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10900  } else {
10901    // If there is no negative value, figure out the smallest type that fits
10902    // all of the enumerator values.
10903    // If it's packed, check also if it fits a char or a short.
10904    if (Packed && NumPositiveBits <= CharWidth) {
10905      BestType = Context.UnsignedCharTy;
10906      BestPromotionType = Context.IntTy;
10907      BestWidth = CharWidth;
10908    } else if (Packed && NumPositiveBits <= ShortWidth) {
10909      BestType = Context.UnsignedShortTy;
10910      BestPromotionType = Context.IntTy;
10911      BestWidth = ShortWidth;
10912    } else if (NumPositiveBits <= IntWidth) {
10913      BestType = Context.UnsignedIntTy;
10914      BestWidth = IntWidth;
10915      BestPromotionType
10916        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10917                           ? Context.UnsignedIntTy : Context.IntTy;
10918    } else if (NumPositiveBits <=
10919               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10920      BestType = Context.UnsignedLongTy;
10921      BestPromotionType
10922        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10923                           ? Context.UnsignedLongTy : Context.LongTy;
10924    } else {
10925      BestWidth = Context.getTargetInfo().getLongLongWidth();
10926      assert(NumPositiveBits <= BestWidth &&
10927             "How could an initializer get larger than ULL?");
10928      BestType = Context.UnsignedLongLongTy;
10929      BestPromotionType
10930        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10931                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10932    }
10933  }
10934
10935  // Loop over all of the enumerator constants, changing their types to match
10936  // the type of the enum if needed.
10937  for (unsigned i = 0; i != NumElements; ++i) {
10938    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10939    if (!ECD) continue;  // Already issued a diagnostic.
10940
10941    // Standard C says the enumerators have int type, but we allow, as an
10942    // extension, the enumerators to be larger than int size.  If each
10943    // enumerator value fits in an int, type it as an int, otherwise type it the
10944    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10945    // that X has type 'int', not 'unsigned'.
10946
10947    // Determine whether the value fits into an int.
10948    llvm::APSInt InitVal = ECD->getInitVal();
10949
10950    // If it fits into an integer type, force it.  Otherwise force it to match
10951    // the enum decl type.
10952    QualType NewTy;
10953    unsigned NewWidth;
10954    bool NewSign;
10955    if (!getLangOpts().CPlusPlus &&
10956        !Enum->isFixed() &&
10957        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10958      NewTy = Context.IntTy;
10959      NewWidth = IntWidth;
10960      NewSign = true;
10961    } else if (ECD->getType() == BestType) {
10962      // Already the right type!
10963      if (getLangOpts().CPlusPlus)
10964        // C++ [dcl.enum]p4: Following the closing brace of an
10965        // enum-specifier, each enumerator has the type of its
10966        // enumeration.
10967        ECD->setType(EnumType);
10968      continue;
10969    } else {
10970      NewTy = BestType;
10971      NewWidth = BestWidth;
10972      NewSign = BestType->isSignedIntegerOrEnumerationType();
10973    }
10974
10975    // Adjust the APSInt value.
10976    InitVal = InitVal.extOrTrunc(NewWidth);
10977    InitVal.setIsSigned(NewSign);
10978    ECD->setInitVal(InitVal);
10979
10980    // Adjust the Expr initializer and type.
10981    if (ECD->getInitExpr() &&
10982        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10983      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10984                                                CK_IntegralCast,
10985                                                ECD->getInitExpr(),
10986                                                /*base paths*/ 0,
10987                                                VK_RValue));
10988    if (getLangOpts().CPlusPlus)
10989      // C++ [dcl.enum]p4: Following the closing brace of an
10990      // enum-specifier, each enumerator has the type of its
10991      // enumeration.
10992      ECD->setType(EnumType);
10993    else
10994      ECD->setType(NewTy);
10995  }
10996
10997  Enum->completeDefinition(BestType, BestPromotionType,
10998                           NumPositiveBits, NumNegativeBits);
10999
11000  // If we're declaring a function, ensure this decl isn't forgotten about -
11001  // it needs to go into the function scope.
11002  if (InFunctionDeclarator)
11003    DeclsInPrototypeScope.push_back(Enum);
11004
11005  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
11006  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11007}
11008
11009Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11010                                  SourceLocation StartLoc,
11011                                  SourceLocation EndLoc) {
11012  StringLiteral *AsmString = cast<StringLiteral>(expr);
11013
11014  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11015                                                   AsmString, StartLoc,
11016                                                   EndLoc);
11017  CurContext->addDecl(New);
11018  return New;
11019}
11020
11021DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11022                                   SourceLocation ImportLoc,
11023                                   ModuleIdPath Path) {
11024  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11025                                                Module::AllVisible,
11026                                                /*IsIncludeDirective=*/false);
11027  if (!Mod)
11028    return true;
11029
11030  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11031  Module *ModCheck = Mod;
11032  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11033    // If we've run out of module parents, just drop the remaining identifiers.
11034    // We need the length to be consistent.
11035    if (!ModCheck)
11036      break;
11037    ModCheck = ModCheck->Parent;
11038
11039    IdentifierLocs.push_back(Path[I].second);
11040  }
11041
11042  ImportDecl *Import = ImportDecl::Create(Context,
11043                                          Context.getTranslationUnitDecl(),
11044                                          AtLoc.isValid()? AtLoc : ImportLoc,
11045                                          Mod, IdentifierLocs);
11046  Context.getTranslationUnitDecl()->addDecl(Import);
11047  return Import;
11048}
11049
11050void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11051                                      IdentifierInfo* AliasName,
11052                                      SourceLocation PragmaLoc,
11053                                      SourceLocation NameLoc,
11054                                      SourceLocation AliasNameLoc) {
11055  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11056                                    LookupOrdinaryName);
11057  AsmLabelAttr *Attr =
11058     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11059
11060  if (PrevDecl)
11061    PrevDecl->addAttr(Attr);
11062  else
11063    (void)ExtnameUndeclaredIdentifiers.insert(
11064      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11065}
11066
11067void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11068                             SourceLocation PragmaLoc,
11069                             SourceLocation NameLoc) {
11070  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11071
11072  if (PrevDecl) {
11073    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11074  } else {
11075    (void)WeakUndeclaredIdentifiers.insert(
11076      std::pair<IdentifierInfo*,WeakInfo>
11077        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11078  }
11079}
11080
11081void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11082                                IdentifierInfo* AliasName,
11083                                SourceLocation PragmaLoc,
11084                                SourceLocation NameLoc,
11085                                SourceLocation AliasNameLoc) {
11086  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11087                                    LookupOrdinaryName);
11088  WeakInfo W = WeakInfo(Name, NameLoc);
11089
11090  if (PrevDecl) {
11091    if (!PrevDecl->hasAttr<AliasAttr>())
11092      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11093        DeclApplyPragmaWeak(TUScope, ND, W);
11094  } else {
11095    (void)WeakUndeclaredIdentifiers.insert(
11096      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11097  }
11098}
11099
11100Decl *Sema::getObjCDeclContext() const {
11101  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11102}
11103
11104AvailabilityResult Sema::getCurContextAvailability() const {
11105  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11106  return D->getAvailability();
11107}
11108