SemaDecl.cpp revision 9f9bf258f8ebae30bfb70feb9d797d6eb67b0460
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup up SS is a dependent
68  // scope name. FIXME: we will need to perform a special kind of
69  // lookup if the scope specifier names a member of the current
70  // instantiation.
71  if (SS && isDependentScopeSpecifier(*SS))
72    return 0;
73
74  NamedDecl *IIDecl = 0;
75  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
76                                         false, false);
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      T = Context.getTypeDeclType(TD);
128    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
129      // Check whether we can use this interface.
130      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
131
132      T = Context.getObjCInterfaceType(IDecl);
133    } else
134      return 0;
135
136    if (SS)
137      T = getQualifiedNameType(*SS, T);
138
139    return T.getAsOpaquePtr();
140  }
141
142  return 0;
143}
144
145/// isTagName() - This method is called *for error recovery purposes only*
146/// to determine if the specified name is a valid tag name ("struct foo").  If
147/// so, this returns the TST for the tag corresponding to it (TST_enum,
148/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
149/// where the user forgot to specify the tag.
150DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
151  // Do a tag name lookup in this scope.
152  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
153  if (R.getKind() == LookupResult::Found)
154    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
155      switch (TD->getTagKind()) {
156      case TagDecl::TK_struct: return DeclSpec::TST_struct;
157      case TagDecl::TK_union:  return DeclSpec::TST_union;
158      case TagDecl::TK_class:  return DeclSpec::TST_class;
159      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
160      }
161    }
162
163  return DeclSpec::TST_unspecified;
164}
165
166
167
168DeclContext *Sema::getContainingDC(DeclContext *DC) {
169  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
170    // A C++ out-of-line method will return to the file declaration context.
171    if (MD->isOutOfLineDefinition())
172      return MD->getLexicalDeclContext();
173
174    // A C++ inline method is parsed *after* the topmost class it was declared
175    // in is fully parsed (it's "complete").
176    // The parsing of a C++ inline method happens at the declaration context of
177    // the topmost (non-nested) class it is lexically declared in.
178    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
179    DC = MD->getParent();
180    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
181      DC = RD;
182
183    // Return the declaration context of the topmost class the inline method is
184    // declared in.
185    return DC;
186  }
187
188  if (isa<ObjCMethodDecl>(DC))
189    return Context.getTranslationUnitDecl();
190
191  return DC->getLexicalParent();
192}
193
194void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
195  assert(getContainingDC(DC) == CurContext &&
196      "The next DeclContext should be lexically contained in the current one.");
197  CurContext = DC;
198  S->setEntity(DC);
199}
200
201void Sema::PopDeclContext() {
202  assert(CurContext && "DeclContext imbalance!");
203
204  CurContext = getContainingDC(CurContext);
205}
206
207/// \brief Determine whether we allow overloading of the function
208/// PrevDecl with another declaration.
209///
210/// This routine determines whether overloading is possible, not
211/// whether some new function is actually an overload. It will return
212/// true in C++ (where we can always provide overloads) or, as an
213/// extension, in C when the previous function is already an
214/// overloaded function declaration or has the "overloadable"
215/// attribute.
216static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
217  if (Context.getLangOptions().CPlusPlus)
218    return true;
219
220  if (isa<OverloadedFunctionDecl>(PrevDecl))
221    return true;
222
223  return PrevDecl->getAttr<OverloadableAttr>() != 0;
224}
225
226/// Add this decl to the scope shadowed decl chains.
227void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
228  // Move up the scope chain until we find the nearest enclosing
229  // non-transparent context. The declaration will be introduced into this
230  // scope.
231  while (S->getEntity() &&
232         ((DeclContext *)S->getEntity())->isTransparentContext())
233    S = S->getParent();
234
235  S->AddDecl(DeclPtrTy::make(D));
236
237  // Add scoped declarations into their context, so that they can be
238  // found later. Declarations without a context won't be inserted
239  // into any context.
240  CurContext->addDecl(Context, D);
241
242  // C++ [basic.scope]p4:
243  //   -- exactly one declaration shall declare a class name or
244  //   enumeration name that is not a typedef name and the other
245  //   declarations shall all refer to the same object or
246  //   enumerator, or all refer to functions and function templates;
247  //   in this case the class name or enumeration name is hidden.
248  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
249    // We are pushing the name of a tag (enum or class).
250    if (CurContext->getLookupContext()
251          == TD->getDeclContext()->getLookupContext()) {
252      // We're pushing the tag into the current context, which might
253      // require some reshuffling in the identifier resolver.
254      IdentifierResolver::iterator
255        I = IdResolver.begin(TD->getDeclName()),
256        IEnd = IdResolver.end();
257      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
258        NamedDecl *PrevDecl = *I;
259        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
260             PrevDecl = *I, ++I) {
261          if (TD->declarationReplaces(*I)) {
262            // This is a redeclaration. Remove it from the chain and
263            // break out, so that we'll add in the shadowed
264            // declaration.
265            S->RemoveDecl(DeclPtrTy::make(*I));
266            if (PrevDecl == *I) {
267              IdResolver.RemoveDecl(*I);
268              IdResolver.AddDecl(TD);
269              return;
270            } else {
271              IdResolver.RemoveDecl(*I);
272              break;
273            }
274          }
275        }
276
277        // There is already a declaration with the same name in the same
278        // scope, which is not a tag declaration. It must be found
279        // before we find the new declaration, so insert the new
280        // declaration at the end of the chain.
281        IdResolver.AddShadowedDecl(TD, PrevDecl);
282
283        return;
284      }
285    }
286  } else if (isa<FunctionDecl>(D) &&
287             AllowOverloadingOfFunction(D, Context)) {
288    // We are pushing the name of a function, which might be an
289    // overloaded name.
290    FunctionDecl *FD = cast<FunctionDecl>(D);
291    IdentifierResolver::iterator Redecl
292      = std::find_if(IdResolver.begin(FD->getDeclName()),
293                     IdResolver.end(),
294                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
295                                  FD));
296    if (Redecl != IdResolver.end() &&
297        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
298      // There is already a declaration of a function on our
299      // IdResolver chain. Replace it with this declaration.
300      S->RemoveDecl(DeclPtrTy::make(*Redecl));
301      IdResolver.RemoveDecl(*Redecl);
302    }
303  } else if (isa<ObjCInterfaceDecl>(D)) {
304    // We're pushing an Objective-C interface into the current
305    // context. If there is already an alias declaration, remove it first.
306    for (IdentifierResolver::iterator
307           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
308         I != IEnd; ++I) {
309      if (isa<ObjCCompatibleAliasDecl>(*I)) {
310        S->RemoveDecl(DeclPtrTy::make(*I));
311        IdResolver.RemoveDecl(*I);
312        break;
313      }
314    }
315  }
316
317  IdResolver.AddDecl(D);
318}
319
320void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
321  if (S->decl_empty()) return;
322  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
323	 "Scope shouldn't contain decls!");
324
325  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
326       I != E; ++I) {
327    Decl *TmpD = (*I).getAs<Decl>();
328    assert(TmpD && "This decl didn't get pushed??");
329
330    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
331    NamedDecl *D = cast<NamedDecl>(TmpD);
332
333    if (!D->getDeclName()) continue;
334
335    // Remove this name from our lexical scope.
336    IdResolver.RemoveDecl(D);
337  }
338}
339
340/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
341/// return 0 if one not found.
342ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
343  // The third "scope" argument is 0 since we aren't enabling lazy built-in
344  // creation from this context.
345  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
346
347  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
348}
349
350/// getNonFieldDeclScope - Retrieves the innermost scope, starting
351/// from S, where a non-field would be declared. This routine copes
352/// with the difference between C and C++ scoping rules in structs and
353/// unions. For example, the following code is well-formed in C but
354/// ill-formed in C++:
355/// @code
356/// struct S6 {
357///   enum { BAR } e;
358/// };
359///
360/// void test_S6() {
361///   struct S6 a;
362///   a.e = BAR;
363/// }
364/// @endcode
365/// For the declaration of BAR, this routine will return a different
366/// scope. The scope S will be the scope of the unnamed enumeration
367/// within S6. In C++, this routine will return the scope associated
368/// with S6, because the enumeration's scope is a transparent
369/// context but structures can contain non-field names. In C, this
370/// routine will return the translation unit scope, since the
371/// enumeration's scope is a transparent context and structures cannot
372/// contain non-field names.
373Scope *Sema::getNonFieldDeclScope(Scope *S) {
374  while (((S->getFlags() & Scope::DeclScope) == 0) ||
375         (S->getEntity() &&
376          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
377         (S->isClassScope() && !getLangOptions().CPlusPlus))
378    S = S->getParent();
379  return S;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
393/// file scope.  lazily create a decl for it. ForRedeclaration is true
394/// if we're creating this built-in in anticipation of redeclaring the
395/// built-in.
396NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
397                                     Scope *S, bool ForRedeclaration,
398                                     SourceLocation Loc) {
399  Builtin::ID BID = (Builtin::ID)bid;
400
401  if (Context.BuiltinInfo.hasVAListUse(BID))
402    InitBuiltinVaListType();
403
404  Builtin::Context::GetBuiltinTypeError Error;
405  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
406  switch (Error) {
407  case Builtin::Context::GE_None:
408    // Okay
409    break;
410
411  case Builtin::Context::GE_Missing_FILE:
412    if (ForRedeclaration)
413      Diag(Loc, diag::err_implicit_decl_requires_stdio)
414        << Context.BuiltinInfo.GetName(BID);
415    return 0;
416  }
417
418  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
419    Diag(Loc, diag::ext_implicit_lib_function_decl)
420      << Context.BuiltinInfo.GetName(BID)
421      << R;
422    if (Context.BuiltinInfo.getHeaderName(BID) &&
423        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
424          != Diagnostic::Ignored)
425      Diag(Loc, diag::note_please_include_header)
426        << Context.BuiltinInfo.getHeaderName(BID)
427        << Context.BuiltinInfo.GetName(BID);
428  }
429
430  FunctionDecl *New = FunctionDecl::Create(Context,
431                                           Context.getTranslationUnitDecl(),
432                                           Loc, II, R,
433                                           FunctionDecl::Extern, false,
434                                           /*hasPrototype=*/true);
435  New->setImplicit();
436
437  // Create Decl objects for each parameter, adding them to the
438  // FunctionDecl.
439  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
440    llvm::SmallVector<ParmVarDecl*, 16> Params;
441    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
442      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
443                                           FT->getArgType(i), VarDecl::None, 0));
444    New->setParams(Context, &Params[0], Params.size());
445  }
446
447  AddKnownFunctionAttributes(New);
448
449  // TUScope is the translation-unit scope to insert this function into.
450  // FIXME: This is hideous. We need to teach PushOnScopeChains to
451  // relate Scopes to DeclContexts, and probably eliminate CurContext
452  // entirely, but we're not there yet.
453  DeclContext *SavedContext = CurContext;
454  CurContext = Context.getTranslationUnitDecl();
455  PushOnScopeChains(New, TUScope);
456  CurContext = SavedContext;
457  return New;
458}
459
460/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
461/// everything from the standard library is defined.
462NamespaceDecl *Sema::GetStdNamespace() {
463  if (!StdNamespace) {
464    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
465    DeclContext *Global = Context.getTranslationUnitDecl();
466    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
467    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
468  }
469  return StdNamespace;
470}
471
472/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
473/// same name and scope as a previous declaration 'Old'.  Figure out
474/// how to resolve this situation, merging decls or emitting
475/// diagnostics as appropriate. If there was an error, set New to be invalid.
476///
477void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  // If either decl is known invalid already, set the new one to be invalid and
479  // don't bother doing any merging checks.
480  if (New->isInvalidDecl() || OldD->isInvalidDecl())
481    return New->setInvalidDecl();
482
483  bool objc_types = false;
484
485  // Allow multiple definitions for ObjC built-in typedefs.
486  // FIXME: Verify the underlying types are equivalent!
487  if (getLangOptions().ObjC1) {
488    const IdentifierInfo *TypeID = New->getIdentifier();
489    switch (TypeID->getLength()) {
490    default: break;
491    case 2:
492      if (!TypeID->isStr("id"))
493        break;
494      Context.setObjCIdType(Context.getTypeDeclType(New));
495      objc_types = true;
496      break;
497    case 5:
498      if (!TypeID->isStr("Class"))
499        break;
500      Context.setObjCClassType(Context.getTypeDeclType(New));
501      return;
502    case 3:
503      if (!TypeID->isStr("SEL"))
504        break;
505      Context.setObjCSelType(Context.getTypeDeclType(New));
506      return;
507    case 8:
508      if (!TypeID->isStr("Protocol"))
509        break;
510      Context.setObjCProtoType(New->getUnderlyingType());
511      return;
512    }
513    // Fall through - the typedef name was not a builtin type.
514  }
515  // Verify the old decl was also a type.
516  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
517  if (!Old) {
518    Diag(New->getLocation(), diag::err_redefinition_different_kind)
519      << New->getDeclName();
520    if (OldD->getLocation().isValid())
521      Diag(OldD->getLocation(), diag::note_previous_definition);
522    return New->setInvalidDecl();
523  }
524
525  // Determine the "old" type we'll use for checking and diagnostics.
526  QualType OldType;
527  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
528    OldType = OldTypedef->getUnderlyingType();
529  else
530    OldType = Context.getTypeDeclType(Old);
531
532  // If the typedef types are not identical, reject them in all languages and
533  // with any extensions enabled.
534
535  if (OldType != New->getUnderlyingType() &&
536      Context.getCanonicalType(OldType) !=
537      Context.getCanonicalType(New->getUnderlyingType())) {
538    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
539      << New->getUnderlyingType() << OldType;
540    if (Old->getLocation().isValid())
541      Diag(Old->getLocation(), diag::note_previous_definition);
542    return New->setInvalidDecl();
543  }
544
545  if (objc_types || getLangOptions().Microsoft)
546    return;
547
548  // C++ [dcl.typedef]p2:
549  //   In a given non-class scope, a typedef specifier can be used to
550  //   redefine the name of any type declared in that scope to refer
551  //   to the type to which it already refers.
552  if (getLangOptions().CPlusPlus) {
553    if (!isa<CXXRecordDecl>(CurContext))
554      return;
555    Diag(New->getLocation(), diag::err_redefinition)
556      << New->getDeclName();
557    Diag(Old->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // If we have a redefinition of a typedef in C, emit a warning.  This warning
562  // is normally mapped to an error, but can be controlled with
563  // -Wtypedef-redefinition.  If either the original was in a system header,
564  // don't emit this for compatibility with GCC.
565  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
566      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
567    return;
568
569  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
570    << New->getDeclName();
571  Diag(Old->getLocation(), diag::note_previous_definition);
572  return;
573}
574
575/// DeclhasAttr - returns true if decl Declaration already has the target
576/// attribute.
577static bool DeclHasAttr(const Decl *decl, const Attr *target) {
578  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
579    if (attr->getKind() == target->getKind())
580      return true;
581
582  return false;
583}
584
585/// MergeAttributes - append attributes from the Old decl to the New one.
586static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
587  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
588    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
589      Attr *NewAttr = attr->clone(C);
590      NewAttr->setInherited(true);
591      New->addAttr(NewAttr);
592    }
593  }
594}
595
596/// Used in MergeFunctionDecl to keep track of function parameters in
597/// C.
598struct GNUCompatibleParamWarning {
599  ParmVarDecl *OldParm;
600  ParmVarDecl *NewParm;
601  QualType PromotedType;
602};
603
604/// MergeFunctionDecl - We just parsed a function 'New' from
605/// declarator D which has the same name and scope as a previous
606/// declaration 'Old'.  Figure out how to resolve this situation,
607/// merging decls or emitting diagnostics as appropriate.
608///
609/// In C++, New and Old must be declarations that are not
610/// overloaded. Use IsOverload to determine whether New and Old are
611/// overloaded, and to select the Old declaration that New should be
612/// merged with.
613///
614/// Returns true if there was an error, false otherwise.
615bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
616  assert(!isa<OverloadedFunctionDecl>(OldD) &&
617         "Cannot merge with an overloaded function declaration");
618
619  // Verify the old decl was also a function.
620  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
621  if (!Old) {
622    Diag(New->getLocation(), diag::err_redefinition_different_kind)
623      << New->getDeclName();
624    Diag(OldD->getLocation(), diag::note_previous_definition);
625    return true;
626  }
627
628  // Determine whether the previous declaration was a definition,
629  // implicit declaration, or a declaration.
630  diag::kind PrevDiag;
631  if (Old->isThisDeclarationADefinition())
632    PrevDiag = diag::note_previous_definition;
633  else if (Old->isImplicit())
634    PrevDiag = diag::note_previous_implicit_declaration;
635  else
636    PrevDiag = diag::note_previous_declaration;
637
638  QualType OldQType = Context.getCanonicalType(Old->getType());
639  QualType NewQType = Context.getCanonicalType(New->getType());
640
641  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
642      New->getStorageClass() == FunctionDecl::Static &&
643      Old->getStorageClass() != FunctionDecl::Static) {
644    Diag(New->getLocation(), diag::err_static_non_static)
645      << New;
646    Diag(Old->getLocation(), PrevDiag);
647    return true;
648  }
649
650  if (getLangOptions().CPlusPlus) {
651    // (C++98 13.1p2):
652    //   Certain function declarations cannot be overloaded:
653    //     -- Function declarations that differ only in the return type
654    //        cannot be overloaded.
655    QualType OldReturnType
656      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
657    QualType NewReturnType
658      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
659    if (OldReturnType != NewReturnType) {
660      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
661      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
662      return true;
663    }
664
665    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
666    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
667    if (OldMethod && NewMethod &&
668        OldMethod->getLexicalDeclContext() ==
669          NewMethod->getLexicalDeclContext()) {
670      //    -- Member function declarations with the same name and the
671      //       same parameter types cannot be overloaded if any of them
672      //       is a static member function declaration.
673      if (OldMethod->isStatic() || NewMethod->isStatic()) {
674        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
675        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676        return true;
677      }
678
679      // C++ [class.mem]p1:
680      //   [...] A member shall not be declared twice in the
681      //   member-specification, except that a nested class or member
682      //   class template can be declared and then later defined.
683      unsigned NewDiag;
684      if (isa<CXXConstructorDecl>(OldMethod))
685        NewDiag = diag::err_constructor_redeclared;
686      else if (isa<CXXDestructorDecl>(NewMethod))
687        NewDiag = diag::err_destructor_redeclared;
688      else if (isa<CXXConversionDecl>(NewMethod))
689        NewDiag = diag::err_conv_function_redeclared;
690      else
691        NewDiag = diag::err_member_redeclared;
692
693      Diag(New->getLocation(), NewDiag);
694      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
695    }
696
697    // (C++98 8.3.5p3):
698    //   All declarations for a function shall agree exactly in both the
699    //   return type and the parameter-type-list.
700    if (OldQType == NewQType)
701      return MergeCompatibleFunctionDecls(New, Old);
702
703    // Fall through for conflicting redeclarations and redefinitions.
704  }
705
706  // C: Function types need to be compatible, not identical. This handles
707  // duplicate function decls like "void f(int); void f(enum X);" properly.
708  if (!getLangOptions().CPlusPlus &&
709      Context.typesAreCompatible(OldQType, NewQType)) {
710    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
711    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
712    const FunctionProtoType *OldProto = 0;
713    if (isa<FunctionNoProtoType>(NewFuncType) &&
714        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
715      // The old declaration provided a function prototype, but the
716      // new declaration does not. Merge in the prototype.
717      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
718                                                 OldProto->arg_type_end());
719      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
720                                         &ParamTypes[0], ParamTypes.size(),
721                                         OldProto->isVariadic(),
722                                         OldProto->getTypeQuals());
723      New->setType(NewQType);
724      New->setInheritedPrototype();
725
726      // Synthesize a parameter for each argument type.
727      llvm::SmallVector<ParmVarDecl*, 16> Params;
728      for (FunctionProtoType::arg_type_iterator
729             ParamType = OldProto->arg_type_begin(),
730             ParamEnd = OldProto->arg_type_end();
731           ParamType != ParamEnd; ++ParamType) {
732        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
733                                                 SourceLocation(), 0,
734                                                 *ParamType, VarDecl::None,
735                                                 0);
736        Param->setImplicit();
737        Params.push_back(Param);
738      }
739
740      New->setParams(Context, &Params[0], Params.size());
741    }
742
743    return MergeCompatibleFunctionDecls(New, Old);
744  }
745
746  // GNU C permits a K&R definition to follow a prototype declaration
747  // if the declared types of the parameters in the K&R definition
748  // match the types in the prototype declaration, even when the
749  // promoted types of the parameters from the K&R definition differ
750  // from the types in the prototype. GCC then keeps the types from
751  // the prototype.
752  if (!getLangOptions().CPlusPlus &&
753      Old->hasPrototype() && !New->hasPrototype() &&
754      New->getType()->getAsFunctionProtoType() &&
755      Old->getNumParams() == New->getNumParams()) {
756    llvm::SmallVector<QualType, 16> ArgTypes;
757    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
758    const FunctionProtoType *OldProto
759      = Old->getType()->getAsFunctionProtoType();
760    const FunctionProtoType *NewProto
761      = New->getType()->getAsFunctionProtoType();
762
763    // Determine whether this is the GNU C extension.
764    bool GNUCompatible =
765      Context.typesAreCompatible(OldProto->getResultType(),
766                                 NewProto->getResultType()) &&
767      (OldProto->isVariadic() == NewProto->isVariadic());
768    for (unsigned Idx = 0, End = Old->getNumParams();
769         GNUCompatible && Idx != End; ++Idx) {
770      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
771      ParmVarDecl *NewParm = New->getParamDecl(Idx);
772      if (Context.typesAreCompatible(OldParm->getType(),
773                                     NewProto->getArgType(Idx))) {
774        ArgTypes.push_back(NewParm->getType());
775      } else if (Context.typesAreCompatible(OldParm->getType(),
776                                            NewParm->getType())) {
777        GNUCompatibleParamWarning Warn
778          = { OldParm, NewParm, NewProto->getArgType(Idx) };
779        Warnings.push_back(Warn);
780        ArgTypes.push_back(NewParm->getType());
781      } else
782        GNUCompatible = false;
783    }
784
785    if (GNUCompatible) {
786      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
787        Diag(Warnings[Warn].NewParm->getLocation(),
788             diag::ext_param_promoted_not_compatible_with_prototype)
789          << Warnings[Warn].PromotedType
790          << Warnings[Warn].OldParm->getType();
791        Diag(Warnings[Warn].OldParm->getLocation(),
792             diag::note_previous_declaration);
793      }
794
795      New->setType(Context.getFunctionType(NewProto->getResultType(),
796                                           &ArgTypes[0], ArgTypes.size(),
797                                           NewProto->isVariadic(),
798                                           NewProto->getTypeQuals()));
799      return MergeCompatibleFunctionDecls(New, Old);
800    }
801
802    // Fall through to diagnose conflicting types.
803  }
804
805  // A function that has already been declared has been redeclared or defined
806  // with a different type- show appropriate diagnostic
807  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
808    // The user has declared a builtin function with an incompatible
809    // signature.
810    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
811      // The function the user is redeclaring is a library-defined
812      // function like 'malloc' or 'printf'. Warn about the
813      // redeclaration, then pretend that we don't know about this
814      // library built-in.
815      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
816      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
817        << Old << Old->getType();
818      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
819      Old->setInvalidDecl();
820      return false;
821    }
822
823    PrevDiag = diag::note_previous_builtin_declaration;
824  }
825
826  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
827  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
828  return true;
829}
830
831/// \brief Completes the merge of two function declarations that are
832/// known to be compatible.
833///
834/// This routine handles the merging of attributes and other
835/// properties of function declarations form the old declaration to
836/// the new declaration, once we know that New is in fact a
837/// redeclaration of Old.
838///
839/// \returns false
840bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
841  // Merge the attributes
842  MergeAttributes(New, Old, Context);
843
844  // Merge the storage class.
845  if (Old->getStorageClass() != FunctionDecl::Extern)
846    New->setStorageClass(Old->getStorageClass());
847
848  // Merge "inline"
849  if (Old->isInline())
850    New->setInline(true);
851
852  // If this function declaration by itself qualifies as a C99 inline
853  // definition (C99 6.7.4p6), but the previous definition did not,
854  // then the function is not a C99 inline definition.
855  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
856    New->setC99InlineDefinition(false);
857  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
858    // Mark all preceding definitions as not being C99 inline definitions.
859    for (const FunctionDecl *Prev = Old; Prev;
860         Prev = Prev->getPreviousDeclaration())
861      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
862  }
863
864  // Merge "pure" flag.
865  if (Old->isPure())
866    New->setPure();
867
868  // Merge the "deleted" flag.
869  if (Old->isDeleted())
870    New->setDeleted();
871
872  if (getLangOptions().CPlusPlus)
873    return MergeCXXFunctionDecl(New, Old);
874
875  return false;
876}
877
878/// MergeVarDecl - We just parsed a variable 'New' which has the same name
879/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
880/// situation, merging decls or emitting diagnostics as appropriate.
881///
882/// Tentative definition rules (C99 6.9.2p2) are checked by
883/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
884/// definitions here, since the initializer hasn't been attached.
885///
886void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
887  // If either decl is invalid, make sure the new one is marked invalid and
888  // don't do any other checking.
889  if (New->isInvalidDecl() || OldD->isInvalidDecl())
890    return New->setInvalidDecl();
891
892  // Verify the old decl was also a variable.
893  VarDecl *Old = dyn_cast<VarDecl>(OldD);
894  if (!Old) {
895    Diag(New->getLocation(), diag::err_redefinition_different_kind)
896      << New->getDeclName();
897    Diag(OldD->getLocation(), diag::note_previous_definition);
898    return New->setInvalidDecl();
899  }
900
901  MergeAttributes(New, Old, Context);
902
903  // Merge the types
904  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
905  if (MergedT.isNull()) {
906    Diag(New->getLocation(), diag::err_redefinition_different_type)
907      << New->getDeclName();
908    Diag(Old->getLocation(), diag::note_previous_definition);
909    return New->setInvalidDecl();
910  }
911  New->setType(MergedT);
912
913  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
914  if (New->getStorageClass() == VarDecl::Static &&
915      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
916    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
917    Diag(Old->getLocation(), diag::note_previous_definition);
918    return New->setInvalidDecl();
919  }
920  // C99 6.2.2p4:
921  //   For an identifier declared with the storage-class specifier
922  //   extern in a scope in which a prior declaration of that
923  //   identifier is visible,23) if the prior declaration specifies
924  //   internal or external linkage, the linkage of the identifier at
925  //   the later declaration is the same as the linkage specified at
926  //   the prior declaration. If no prior declaration is visible, or
927  //   if the prior declaration specifies no linkage, then the
928  //   identifier has external linkage.
929  if (New->hasExternalStorage() && Old->hasLinkage())
930    /* Okay */;
931  else if (New->getStorageClass() != VarDecl::Static &&
932           Old->getStorageClass() == VarDecl::Static) {
933    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
934    Diag(Old->getLocation(), diag::note_previous_definition);
935    return New->setInvalidDecl();
936  }
937
938  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
939
940  // FIXME: The test for external storage here seems wrong? We still
941  // need to check for mismatches.
942  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
943      // Don't complain about out-of-line definitions of static members.
944      !(Old->getLexicalDeclContext()->isRecord() &&
945        !New->getLexicalDeclContext()->isRecord())) {
946    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
947    Diag(Old->getLocation(), diag::note_previous_definition);
948    return New->setInvalidDecl();
949  }
950
951  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
952    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
953    Diag(Old->getLocation(), diag::note_previous_definition);
954  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
955    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957  }
958
959  // Keep a chain of previous declarations.
960  New->setPreviousDeclaration(Old);
961}
962
963/// CheckParmsForFunctionDef - Check that the parameters of the given
964/// function are appropriate for the definition of a function. This
965/// takes care of any checks that cannot be performed on the
966/// declaration itself, e.g., that the types of each of the function
967/// parameters are complete.
968bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
969  bool HasInvalidParm = false;
970  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
971    ParmVarDecl *Param = FD->getParamDecl(p);
972
973    // C99 6.7.5.3p4: the parameters in a parameter type list in a
974    // function declarator that is part of a function definition of
975    // that function shall not have incomplete type.
976    //
977    // This is also C++ [dcl.fct]p6.
978    if (!Param->isInvalidDecl() &&
979        RequireCompleteType(Param->getLocation(), Param->getType(),
980                               diag::err_typecheck_decl_incomplete_type)) {
981      Param->setInvalidDecl();
982      HasInvalidParm = true;
983    }
984
985    // C99 6.9.1p5: If the declarator includes a parameter type list, the
986    // declaration of each parameter shall include an identifier.
987    if (Param->getIdentifier() == 0 &&
988        !Param->isImplicit() &&
989        !getLangOptions().CPlusPlus)
990      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
991  }
992
993  return HasInvalidParm;
994}
995
996/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
997/// no declarator (e.g. "struct foo;") is parsed.
998Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
999  // FIXME: Error on auto/register at file scope
1000  // FIXME: Error on inline/virtual/explicit
1001  // FIXME: Error on invalid restrict
1002  // FIXME: Warn on useless __thread
1003  // FIXME: Warn on useless const/volatile
1004  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1005  // FIXME: Warn on useless attributes
1006
1007  TagDecl *Tag = 0;
1008  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1009      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1010      DS.getTypeSpecType() == DeclSpec::TST_union ||
1011      DS.getTypeSpecType() == DeclSpec::TST_enum)
1012    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1013
1014  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1015    if (!Record->getDeclName() && Record->isDefinition() &&
1016        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1017      if (getLangOptions().CPlusPlus ||
1018          Record->getDeclContext()->isRecord())
1019        return BuildAnonymousStructOrUnion(S, DS, Record);
1020
1021      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1022        << DS.getSourceRange();
1023    }
1024
1025    // Microsoft allows unnamed struct/union fields. Don't complain
1026    // about them.
1027    // FIXME: Should we support Microsoft's extensions in this area?
1028    if (Record->getDeclName() && getLangOptions().Microsoft)
1029      return DeclPtrTy::make(Tag);
1030  }
1031
1032  if (!DS.isMissingDeclaratorOk() &&
1033      DS.getTypeSpecType() != DeclSpec::TST_error) {
1034    // Warn about typedefs of enums without names, since this is an
1035    // extension in both Microsoft an GNU.
1036    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1037        Tag && isa<EnumDecl>(Tag)) {
1038      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1039        << DS.getSourceRange();
1040      return DeclPtrTy::make(Tag);
1041    }
1042
1043    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1044      << DS.getSourceRange();
1045    return DeclPtrTy();
1046  }
1047
1048  return DeclPtrTy::make(Tag);
1049}
1050
1051/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1052/// anonymous struct or union AnonRecord into the owning context Owner
1053/// and scope S. This routine will be invoked just after we realize
1054/// that an unnamed union or struct is actually an anonymous union or
1055/// struct, e.g.,
1056///
1057/// @code
1058/// union {
1059///   int i;
1060///   float f;
1061/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1062///    // f into the surrounding scope.x
1063/// @endcode
1064///
1065/// This routine is recursive, injecting the names of nested anonymous
1066/// structs/unions into the owning context and scope as well.
1067bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1068                                               RecordDecl *AnonRecord) {
1069  bool Invalid = false;
1070  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1071                               FEnd = AnonRecord->field_end(Context);
1072       F != FEnd; ++F) {
1073    if ((*F)->getDeclName()) {
1074      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1075                                                LookupOrdinaryName, true);
1076      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1077        // C++ [class.union]p2:
1078        //   The names of the members of an anonymous union shall be
1079        //   distinct from the names of any other entity in the
1080        //   scope in which the anonymous union is declared.
1081        unsigned diagKind
1082          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1083                                 : diag::err_anonymous_struct_member_redecl;
1084        Diag((*F)->getLocation(), diagKind)
1085          << (*F)->getDeclName();
1086        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1087        Invalid = true;
1088      } else {
1089        // C++ [class.union]p2:
1090        //   For the purpose of name lookup, after the anonymous union
1091        //   definition, the members of the anonymous union are
1092        //   considered to have been defined in the scope in which the
1093        //   anonymous union is declared.
1094        Owner->makeDeclVisibleInContext(Context, *F);
1095        S->AddDecl(DeclPtrTy::make(*F));
1096        IdResolver.AddDecl(*F);
1097      }
1098    } else if (const RecordType *InnerRecordType
1099                 = (*F)->getType()->getAsRecordType()) {
1100      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1101      if (InnerRecord->isAnonymousStructOrUnion())
1102        Invalid = Invalid ||
1103          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1104    }
1105  }
1106
1107  return Invalid;
1108}
1109
1110/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1111/// anonymous structure or union. Anonymous unions are a C++ feature
1112/// (C++ [class.union]) and a GNU C extension; anonymous structures
1113/// are a GNU C and GNU C++ extension.
1114Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1115                                                  RecordDecl *Record) {
1116  DeclContext *Owner = Record->getDeclContext();
1117
1118  // Diagnose whether this anonymous struct/union is an extension.
1119  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1120    Diag(Record->getLocation(), diag::ext_anonymous_union);
1121  else if (!Record->isUnion())
1122    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1123
1124  // C and C++ require different kinds of checks for anonymous
1125  // structs/unions.
1126  bool Invalid = false;
1127  if (getLangOptions().CPlusPlus) {
1128    const char* PrevSpec = 0;
1129    // C++ [class.union]p3:
1130    //   Anonymous unions declared in a named namespace or in the
1131    //   global namespace shall be declared static.
1132    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1133        (isa<TranslationUnitDecl>(Owner) ||
1134         (isa<NamespaceDecl>(Owner) &&
1135          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1136      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1137      Invalid = true;
1138
1139      // Recover by adding 'static'.
1140      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1141    }
1142    // C++ [class.union]p3:
1143    //   A storage class is not allowed in a declaration of an
1144    //   anonymous union in a class scope.
1145    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1146             isa<RecordDecl>(Owner)) {
1147      Diag(DS.getStorageClassSpecLoc(),
1148           diag::err_anonymous_union_with_storage_spec);
1149      Invalid = true;
1150
1151      // Recover by removing the storage specifier.
1152      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1153                             PrevSpec);
1154    }
1155
1156    // C++ [class.union]p2:
1157    //   The member-specification of an anonymous union shall only
1158    //   define non-static data members. [Note: nested types and
1159    //   functions cannot be declared within an anonymous union. ]
1160    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1161                                 MemEnd = Record->decls_end(Context);
1162         Mem != MemEnd; ++Mem) {
1163      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1164        // C++ [class.union]p3:
1165        //   An anonymous union shall not have private or protected
1166        //   members (clause 11).
1167        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1168          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1169            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1170          Invalid = true;
1171        }
1172      } else if ((*Mem)->isImplicit()) {
1173        // Any implicit members are fine.
1174      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1175        // This is a type that showed up in an
1176        // elaborated-type-specifier inside the anonymous struct or
1177        // union, but which actually declares a type outside of the
1178        // anonymous struct or union. It's okay.
1179      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1180        if (!MemRecord->isAnonymousStructOrUnion() &&
1181            MemRecord->getDeclName()) {
1182          // This is a nested type declaration.
1183          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1184            << (int)Record->isUnion();
1185          Invalid = true;
1186        }
1187      } else {
1188        // We have something that isn't a non-static data
1189        // member. Complain about it.
1190        unsigned DK = diag::err_anonymous_record_bad_member;
1191        if (isa<TypeDecl>(*Mem))
1192          DK = diag::err_anonymous_record_with_type;
1193        else if (isa<FunctionDecl>(*Mem))
1194          DK = diag::err_anonymous_record_with_function;
1195        else if (isa<VarDecl>(*Mem))
1196          DK = diag::err_anonymous_record_with_static;
1197        Diag((*Mem)->getLocation(), DK)
1198            << (int)Record->isUnion();
1199          Invalid = true;
1200      }
1201    }
1202  }
1203
1204  if (!Record->isUnion() && !Owner->isRecord()) {
1205    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1206      << (int)getLangOptions().CPlusPlus;
1207    Invalid = true;
1208  }
1209
1210  // Create a declaration for this anonymous struct/union.
1211  NamedDecl *Anon = 0;
1212  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1213    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1214                             /*IdentifierInfo=*/0,
1215                             Context.getTypeDeclType(Record),
1216                             /*BitWidth=*/0, /*Mutable=*/false);
1217    Anon->setAccess(AS_public);
1218    if (getLangOptions().CPlusPlus)
1219      FieldCollector->Add(cast<FieldDecl>(Anon));
1220  } else {
1221    VarDecl::StorageClass SC;
1222    switch (DS.getStorageClassSpec()) {
1223    default: assert(0 && "Unknown storage class!");
1224    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1225    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1226    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1227    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1228    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1229    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1230    case DeclSpec::SCS_mutable:
1231      // mutable can only appear on non-static class members, so it's always
1232      // an error here
1233      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1234      Invalid = true;
1235      SC = VarDecl::None;
1236      break;
1237    }
1238
1239    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1240                           /*IdentifierInfo=*/0,
1241                           Context.getTypeDeclType(Record),
1242                           SC, DS.getSourceRange().getBegin());
1243  }
1244  Anon->setImplicit();
1245
1246  // Add the anonymous struct/union object to the current
1247  // context. We'll be referencing this object when we refer to one of
1248  // its members.
1249  Owner->addDecl(Context, Anon);
1250
1251  // Inject the members of the anonymous struct/union into the owning
1252  // context and into the identifier resolver chain for name lookup
1253  // purposes.
1254  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1255    Invalid = true;
1256
1257  // Mark this as an anonymous struct/union type. Note that we do not
1258  // do this until after we have already checked and injected the
1259  // members of this anonymous struct/union type, because otherwise
1260  // the members could be injected twice: once by DeclContext when it
1261  // builds its lookup table, and once by
1262  // InjectAnonymousStructOrUnionMembers.
1263  Record->setAnonymousStructOrUnion(true);
1264
1265  if (Invalid)
1266    Anon->setInvalidDecl();
1267
1268  return DeclPtrTy::make(Anon);
1269}
1270
1271
1272/// GetNameForDeclarator - Determine the full declaration name for the
1273/// given Declarator.
1274DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1275  switch (D.getKind()) {
1276  case Declarator::DK_Abstract:
1277    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1278    return DeclarationName();
1279
1280  case Declarator::DK_Normal:
1281    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1282    return DeclarationName(D.getIdentifier());
1283
1284  case Declarator::DK_Constructor: {
1285    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1286    Ty = Context.getCanonicalType(Ty);
1287    return Context.DeclarationNames.getCXXConstructorName(Ty);
1288  }
1289
1290  case Declarator::DK_Destructor: {
1291    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1292    Ty = Context.getCanonicalType(Ty);
1293    return Context.DeclarationNames.getCXXDestructorName(Ty);
1294  }
1295
1296  case Declarator::DK_Conversion: {
1297    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1298    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1299    Ty = Context.getCanonicalType(Ty);
1300    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1301  }
1302
1303  case Declarator::DK_Operator:
1304    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1305    return Context.DeclarationNames.getCXXOperatorName(
1306                                                D.getOverloadedOperator());
1307  }
1308
1309  assert(false && "Unknown name kind");
1310  return DeclarationName();
1311}
1312
1313/// isNearlyMatchingFunction - Determine whether the C++ functions
1314/// Declaration and Definition are "nearly" matching. This heuristic
1315/// is used to improve diagnostics in the case where an out-of-line
1316/// function definition doesn't match any declaration within
1317/// the class or namespace.
1318static bool isNearlyMatchingFunction(ASTContext &Context,
1319                                     FunctionDecl *Declaration,
1320                                     FunctionDecl *Definition) {
1321  if (Declaration->param_size() != Definition->param_size())
1322    return false;
1323  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1324    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1325    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1326
1327    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1328    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1329    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1330      return false;
1331  }
1332
1333  return true;
1334}
1335
1336Sema::DeclPtrTy
1337Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1338  DeclarationName Name = GetNameForDeclarator(D);
1339
1340  // All of these full declarators require an identifier.  If it doesn't have
1341  // one, the ParsedFreeStandingDeclSpec action should be used.
1342  if (!Name) {
1343    if (!D.isInvalidType())  // Reject this if we think it is valid.
1344      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1345           diag::err_declarator_need_ident)
1346        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1347    return DeclPtrTy();
1348  }
1349
1350  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1351  // we find one that is.
1352  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1353         (S->getFlags() & Scope::TemplateParamScope) != 0)
1354    S = S->getParent();
1355
1356  DeclContext *DC;
1357  NamedDecl *PrevDecl;
1358  NamedDecl *New;
1359
1360  QualType R = GetTypeForDeclarator(D, S);
1361
1362  // See if this is a redefinition of a variable in the same scope.
1363  if (D.getCXXScopeSpec().isInvalid()) {
1364    DC = CurContext;
1365    PrevDecl = 0;
1366    D.setInvalidType();
1367  } else if (!D.getCXXScopeSpec().isSet()) {
1368    LookupNameKind NameKind = LookupOrdinaryName;
1369
1370    // If the declaration we're planning to build will be a function
1371    // or object with linkage, then look for another declaration with
1372    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1373    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1374      /* Do nothing*/;
1375    else if (R->isFunctionType()) {
1376      if (CurContext->isFunctionOrMethod())
1377        NameKind = LookupRedeclarationWithLinkage;
1378    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1379      NameKind = LookupRedeclarationWithLinkage;
1380
1381    DC = CurContext;
1382    PrevDecl = LookupName(S, Name, NameKind, true,
1383                          D.getDeclSpec().getStorageClassSpec() !=
1384                            DeclSpec::SCS_static,
1385                          D.getIdentifierLoc());
1386  } else { // Something like "int foo::x;"
1387    DC = computeDeclContext(D.getCXXScopeSpec());
1388    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1389    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1390
1391    // C++ 7.3.1.2p2:
1392    // Members (including explicit specializations of templates) of a named
1393    // namespace can also be defined outside that namespace by explicit
1394    // qualification of the name being defined, provided that the entity being
1395    // defined was already declared in the namespace and the definition appears
1396    // after the point of declaration in a namespace that encloses the
1397    // declarations namespace.
1398    //
1399    // Note that we only check the context at this point. We don't yet
1400    // have enough information to make sure that PrevDecl is actually
1401    // the declaration we want to match. For example, given:
1402    //
1403    //   class X {
1404    //     void f();
1405    //     void f(float);
1406    //   };
1407    //
1408    //   void X::f(int) { } // ill-formed
1409    //
1410    // In this case, PrevDecl will point to the overload set
1411    // containing the two f's declared in X, but neither of them
1412    // matches.
1413
1414    // First check whether we named the global scope.
1415    if (isa<TranslationUnitDecl>(DC)) {
1416      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1417        << Name << D.getCXXScopeSpec().getRange();
1418    } else if (!CurContext->Encloses(DC)) {
1419      // The qualifying scope doesn't enclose the original declaration.
1420      // Emit diagnostic based on current scope.
1421      SourceLocation L = D.getIdentifierLoc();
1422      SourceRange R = D.getCXXScopeSpec().getRange();
1423      if (isa<FunctionDecl>(CurContext))
1424        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1425      else
1426        Diag(L, diag::err_invalid_declarator_scope)
1427          << Name << cast<NamedDecl>(DC) << R;
1428      D.setInvalidType();
1429    }
1430  }
1431
1432  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1433    // Maybe we will complain about the shadowed template parameter.
1434    if (!D.isInvalidType())
1435      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1436        D.setInvalidType();
1437
1438    // Just pretend that we didn't see the previous declaration.
1439    PrevDecl = 0;
1440  }
1441
1442  // In C++, the previous declaration we find might be a tag type
1443  // (class or enum). In this case, the new declaration will hide the
1444  // tag type. Note that this does does not apply if we're declaring a
1445  // typedef (C++ [dcl.typedef]p4).
1446  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1447      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1448    PrevDecl = 0;
1449
1450  bool Redeclaration = false;
1451  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1452    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1453  } else if (R->isFunctionType()) {
1454    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1455                                  IsFunctionDefinition, Redeclaration);
1456  } else {
1457    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1458  }
1459
1460  if (New == 0)
1461    return DeclPtrTy();
1462
1463  // If this has an identifier and is not an invalid redeclaration,
1464  // add it to the scope stack.
1465  if (Name && !(Redeclaration && New->isInvalidDecl()))
1466    PushOnScopeChains(New, S);
1467
1468  return DeclPtrTy::make(New);
1469}
1470
1471/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1472/// types into constant array types in certain situations which would otherwise
1473/// be errors (for GCC compatibility).
1474static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1475                                                    ASTContext &Context,
1476                                                    bool &SizeIsNegative) {
1477  // This method tries to turn a variable array into a constant
1478  // array even when the size isn't an ICE.  This is necessary
1479  // for compatibility with code that depends on gcc's buggy
1480  // constant expression folding, like struct {char x[(int)(char*)2];}
1481  SizeIsNegative = false;
1482
1483  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1484    QualType Pointee = PTy->getPointeeType();
1485    QualType FixedType =
1486        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1487    if (FixedType.isNull()) return FixedType;
1488    FixedType = Context.getPointerType(FixedType);
1489    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1490    return FixedType;
1491  }
1492
1493  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1494  if (!VLATy)
1495    return QualType();
1496  // FIXME: We should probably handle this case
1497  if (VLATy->getElementType()->isVariablyModifiedType())
1498    return QualType();
1499
1500  Expr::EvalResult EvalResult;
1501  if (!VLATy->getSizeExpr() ||
1502      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1503      !EvalResult.Val.isInt())
1504    return QualType();
1505
1506  llvm::APSInt &Res = EvalResult.Val.getInt();
1507  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1508    return Context.getConstantArrayType(VLATy->getElementType(),
1509                                        Res, ArrayType::Normal, 0);
1510
1511  SizeIsNegative = true;
1512  return QualType();
1513}
1514
1515/// \brief Register the given locally-scoped external C declaration so
1516/// that it can be found later for redeclarations
1517void
1518Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1519                                       Scope *S) {
1520  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1521         "Decl is not a locally-scoped decl!");
1522  // Note that we have a locally-scoped external with this name.
1523  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1524
1525  if (!PrevDecl)
1526    return;
1527
1528  // If there was a previous declaration of this variable, it may be
1529  // in our identifier chain. Update the identifier chain with the new
1530  // declaration.
1531  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1532    // The previous declaration was found on the identifer resolver
1533    // chain, so remove it from its scope.
1534    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1535      S = S->getParent();
1536
1537    if (S)
1538      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1539  }
1540}
1541
1542/// \brief Diagnose function specifiers on a declaration of an identifier that
1543/// does not identify a function.
1544void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1545  // FIXME: We should probably indicate the identifier in question to avoid
1546  // confusion for constructs like "inline int a(), b;"
1547  if (D.getDeclSpec().isInlineSpecified())
1548    Diag(D.getDeclSpec().getInlineSpecLoc(),
1549         diag::err_inline_non_function);
1550
1551  if (D.getDeclSpec().isVirtualSpecified())
1552    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1553         diag::err_virtual_non_function);
1554
1555  if (D.getDeclSpec().isExplicitSpecified())
1556    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1557         diag::err_explicit_non_function);
1558}
1559
1560NamedDecl*
1561Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1562                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1563  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1564  if (D.getCXXScopeSpec().isSet()) {
1565    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1566      << D.getCXXScopeSpec().getRange();
1567    D.setInvalidType();
1568    // Pretend we didn't see the scope specifier.
1569    DC = 0;
1570  }
1571
1572  if (getLangOptions().CPlusPlus) {
1573    // Check that there are no default arguments (C++ only).
1574    CheckExtraCXXDefaultArguments(D);
1575  }
1576
1577  DiagnoseFunctionSpecifiers(D);
1578
1579  if (D.getDeclSpec().isThreadSpecified())
1580    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1581
1582  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1583  if (!NewTD) return 0;
1584
1585  if (D.isInvalidType())
1586    NewTD->setInvalidDecl();
1587
1588  // Handle attributes prior to checking for duplicates in MergeVarDecl
1589  ProcessDeclAttributes(NewTD, D);
1590  // Merge the decl with the existing one if appropriate. If the decl is
1591  // in an outer scope, it isn't the same thing.
1592  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1593    Redeclaration = true;
1594    MergeTypeDefDecl(NewTD, PrevDecl);
1595  }
1596
1597  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1598  // then it shall have block scope.
1599  QualType T = NewTD->getUnderlyingType();
1600  if (T->isVariablyModifiedType()) {
1601    CurFunctionNeedsScopeChecking = true;
1602
1603    if (S->getFnParent() == 0) {
1604      bool SizeIsNegative;
1605      QualType FixedTy =
1606          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1607      if (!FixedTy.isNull()) {
1608        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1609        NewTD->setUnderlyingType(FixedTy);
1610      } else {
1611        if (SizeIsNegative)
1612          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1613        else if (T->isVariableArrayType())
1614          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1615        else
1616          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1617        NewTD->setInvalidDecl();
1618      }
1619    }
1620  }
1621  return NewTD;
1622}
1623
1624/// \brief Determines whether the given declaration is an out-of-scope
1625/// previous declaration.
1626///
1627/// This routine should be invoked when name lookup has found a
1628/// previous declaration (PrevDecl) that is not in the scope where a
1629/// new declaration by the same name is being introduced. If the new
1630/// declaration occurs in a local scope, previous declarations with
1631/// linkage may still be considered previous declarations (C99
1632/// 6.2.2p4-5, C++ [basic.link]p6).
1633///
1634/// \param PrevDecl the previous declaration found by name
1635/// lookup
1636///
1637/// \param DC the context in which the new declaration is being
1638/// declared.
1639///
1640/// \returns true if PrevDecl is an out-of-scope previous declaration
1641/// for a new delcaration with the same name.
1642static bool
1643isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1644                                ASTContext &Context) {
1645  if (!PrevDecl)
1646    return 0;
1647
1648  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1649  // case we need to check each of the overloaded functions.
1650  if (!PrevDecl->hasLinkage())
1651    return false;
1652
1653  if (Context.getLangOptions().CPlusPlus) {
1654    // C++ [basic.link]p6:
1655    //   If there is a visible declaration of an entity with linkage
1656    //   having the same name and type, ignoring entities declared
1657    //   outside the innermost enclosing namespace scope, the block
1658    //   scope declaration declares that same entity and receives the
1659    //   linkage of the previous declaration.
1660    DeclContext *OuterContext = DC->getLookupContext();
1661    if (!OuterContext->isFunctionOrMethod())
1662      // This rule only applies to block-scope declarations.
1663      return false;
1664    else {
1665      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1666      if (PrevOuterContext->isRecord())
1667        // We found a member function: ignore it.
1668        return false;
1669      else {
1670        // Find the innermost enclosing namespace for the new and
1671        // previous declarations.
1672        while (!OuterContext->isFileContext())
1673          OuterContext = OuterContext->getParent();
1674        while (!PrevOuterContext->isFileContext())
1675          PrevOuterContext = PrevOuterContext->getParent();
1676
1677        // The previous declaration is in a different namespace, so it
1678        // isn't the same function.
1679        if (OuterContext->getPrimaryContext() !=
1680            PrevOuterContext->getPrimaryContext())
1681          return false;
1682      }
1683    }
1684  }
1685
1686  return true;
1687}
1688
1689NamedDecl*
1690Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1691                              QualType R,NamedDecl* PrevDecl,
1692                              bool &Redeclaration) {
1693  DeclarationName Name = GetNameForDeclarator(D);
1694
1695  // Check that there are no default arguments (C++ only).
1696  if (getLangOptions().CPlusPlus)
1697    CheckExtraCXXDefaultArguments(D);
1698
1699  VarDecl *NewVD;
1700  VarDecl::StorageClass SC;
1701  switch (D.getDeclSpec().getStorageClassSpec()) {
1702  default: assert(0 && "Unknown storage class!");
1703  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1704  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1705  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1706  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1707  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1708  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1709  case DeclSpec::SCS_mutable:
1710    // mutable can only appear on non-static class members, so it's always
1711    // an error here
1712    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1713    D.setInvalidType();
1714    SC = VarDecl::None;
1715    break;
1716  }
1717
1718  IdentifierInfo *II = Name.getAsIdentifierInfo();
1719  if (!II) {
1720    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1721      << Name.getAsString();
1722    return 0;
1723  }
1724
1725  DiagnoseFunctionSpecifiers(D);
1726
1727  if (!DC->isRecord() && S->getFnParent() == 0) {
1728    // C99 6.9p2: The storage-class specifiers auto and register shall not
1729    // appear in the declaration specifiers in an external declaration.
1730    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1731      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1732      D.setInvalidType();
1733    }
1734  }
1735  if (DC->isRecord() && !CurContext->isRecord()) {
1736    // This is an out-of-line definition of a static data member.
1737    if (SC == VarDecl::Static) {
1738      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1739           diag::err_static_out_of_line)
1740        << CodeModificationHint::CreateRemoval(
1741                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1742    } else if (SC == VarDecl::None)
1743      SC = VarDecl::Static;
1744  }
1745
1746  // The variable can not
1747  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1748                          II, R, SC,
1749                          // FIXME: Move to DeclGroup...
1750                          D.getDeclSpec().getSourceRange().getBegin());
1751
1752  if (D.isInvalidType())
1753    NewVD->setInvalidDecl();
1754
1755  if (D.getDeclSpec().isThreadSpecified()) {
1756    if (NewVD->hasLocalStorage())
1757      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1758    else if (!Context.Target.isTLSSupported())
1759      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1760    else
1761      NewVD->setThreadSpecified(true);
1762  }
1763
1764  // Set the lexical context. If the declarator has a C++ scope specifier, the
1765  // lexical context will be different from the semantic context.
1766  NewVD->setLexicalDeclContext(CurContext);
1767
1768  // Handle attributes prior to checking for duplicates in MergeVarDecl
1769  ProcessDeclAttributes(NewVD, D);
1770
1771  // Handle GNU asm-label extension (encoded as an attribute).
1772  if (Expr *E = (Expr*) D.getAsmLabel()) {
1773    // The parser guarantees this is a string.
1774    StringLiteral *SE = cast<StringLiteral>(E);
1775    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1776                                                        SE->getByteLength())));
1777  }
1778
1779  // If name lookup finds a previous declaration that is not in the
1780  // same scope as the new declaration, this may still be an
1781  // acceptable redeclaration.
1782  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1783      !(NewVD->hasLinkage() &&
1784        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1785    PrevDecl = 0;
1786
1787  // Merge the decl with the existing one if appropriate.
1788  if (PrevDecl) {
1789    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1790      // The user tried to define a non-static data member
1791      // out-of-line (C++ [dcl.meaning]p1).
1792      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1793        << D.getCXXScopeSpec().getRange();
1794      PrevDecl = 0;
1795      NewVD->setInvalidDecl();
1796    }
1797  } else if (D.getCXXScopeSpec().isSet()) {
1798    // No previous declaration in the qualifying scope.
1799    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1800      << Name << D.getCXXScopeSpec().getRange();
1801    NewVD->setInvalidDecl();
1802  }
1803
1804  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1805
1806  // If this is a locally-scoped extern C variable, update the map of
1807  // such variables.
1808  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1809      !NewVD->isInvalidDecl())
1810    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1811
1812  return NewVD;
1813}
1814
1815/// \brief Perform semantic checking on a newly-created variable
1816/// declaration.
1817///
1818/// This routine performs all of the type-checking required for a
1819/// variable declaration once it has been build. It is used both to
1820/// check variables after they have been parsed and their declarators
1821/// have been translated into a declaration, and to check
1822///
1823/// Sets NewVD->isInvalidDecl() if an error was encountered.
1824void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1825                                    bool &Redeclaration) {
1826  // If the decl is already known invalid, don't check it.
1827  if (NewVD->isInvalidDecl())
1828    return;
1829
1830  QualType T = NewVD->getType();
1831
1832  if (T->isObjCInterfaceType()) {
1833    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1834    return NewVD->setInvalidDecl();
1835  }
1836
1837  // The variable can not have an abstract class type.
1838  if (RequireNonAbstractType(NewVD->getLocation(), T,
1839                             diag::err_abstract_type_in_decl,
1840                             AbstractVariableType))
1841    return NewVD->setInvalidDecl();
1842
1843  // Emit an error if an address space was applied to decl with local storage.
1844  // This includes arrays of objects with address space qualifiers, but not
1845  // automatic variables that point to other address spaces.
1846  // ISO/IEC TR 18037 S5.1.2
1847  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1848    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1849    return NewVD->setInvalidDecl();
1850  }
1851
1852  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1853      && !NewVD->hasAttr<BlocksAttr>())
1854    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1855
1856  bool isVM = T->isVariablyModifiedType();
1857  if (isVM || NewVD->hasAttr<CleanupAttr>())
1858    CurFunctionNeedsScopeChecking = true;
1859
1860  if ((isVM && NewVD->hasLinkage()) ||
1861      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1862    bool SizeIsNegative;
1863    QualType FixedTy =
1864        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1865
1866    if (FixedTy.isNull() && T->isVariableArrayType()) {
1867      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1868      // FIXME: This won't give the correct result for
1869      // int a[10][n];
1870      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1871
1872      if (NewVD->isFileVarDecl())
1873        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1874        << SizeRange;
1875      else if (NewVD->getStorageClass() == VarDecl::Static)
1876        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1877        << SizeRange;
1878      else
1879        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1880        << SizeRange;
1881      return NewVD->setInvalidDecl();
1882    }
1883
1884    if (FixedTy.isNull()) {
1885      if (NewVD->isFileVarDecl())
1886        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1887      else
1888        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1889      return NewVD->setInvalidDecl();
1890    }
1891
1892    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1893    NewVD->setType(FixedTy);
1894  }
1895
1896  if (!PrevDecl && NewVD->isExternC(Context)) {
1897    // Since we did not find anything by this name and we're declaring
1898    // an extern "C" variable, look for a non-visible extern "C"
1899    // declaration with the same name.
1900    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1901      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1902    if (Pos != LocallyScopedExternalDecls.end())
1903      PrevDecl = Pos->second;
1904  }
1905
1906  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1907    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1908      << T;
1909    return NewVD->setInvalidDecl();
1910  }
1911
1912  if (PrevDecl) {
1913    Redeclaration = true;
1914    MergeVarDecl(NewVD, PrevDecl);
1915  }
1916}
1917
1918NamedDecl*
1919Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1920                              QualType R, NamedDecl* PrevDecl,
1921                              bool IsFunctionDefinition, bool &Redeclaration) {
1922  assert(R.getTypePtr()->isFunctionType());
1923
1924  DeclarationName Name = GetNameForDeclarator(D);
1925  FunctionDecl::StorageClass SC = FunctionDecl::None;
1926  switch (D.getDeclSpec().getStorageClassSpec()) {
1927  default: assert(0 && "Unknown storage class!");
1928  case DeclSpec::SCS_auto:
1929  case DeclSpec::SCS_register:
1930  case DeclSpec::SCS_mutable:
1931    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1932         diag::err_typecheck_sclass_func);
1933    D.setInvalidType();
1934    break;
1935  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1936  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1937  case DeclSpec::SCS_static: {
1938    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1939      // C99 6.7.1p5:
1940      //   The declaration of an identifier for a function that has
1941      //   block scope shall have no explicit storage-class specifier
1942      //   other than extern
1943      // See also (C++ [dcl.stc]p4).
1944      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1945           diag::err_static_block_func);
1946      SC = FunctionDecl::None;
1947    } else
1948      SC = FunctionDecl::Static;
1949    break;
1950  }
1951  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1952  }
1953
1954  if (D.getDeclSpec().isThreadSpecified())
1955    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1956
1957  bool isInline = D.getDeclSpec().isInlineSpecified();
1958  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1959  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1960
1961  // Check that the return type is not an abstract class type.
1962  // For record types, this is done by the AbstractClassUsageDiagnoser once
1963  // the class has been completely parsed.
1964  if (!DC->isRecord() &&
1965      RequireNonAbstractType(D.getIdentifierLoc(),
1966                             R->getAsFunctionType()->getResultType(),
1967                             diag::err_abstract_type_in_decl,
1968                             AbstractReturnType))
1969    D.setInvalidType();
1970
1971  // Do not allow returning a objc interface by-value.
1972  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1973    Diag(D.getIdentifierLoc(),
1974         diag::err_object_cannot_be_passed_returned_by_value) << 0
1975      << R->getAsFunctionType()->getResultType();
1976    D.setInvalidType();
1977  }
1978
1979  bool isVirtualOkay = false;
1980  FunctionDecl *NewFD;
1981  if (D.getKind() == Declarator::DK_Constructor) {
1982    // This is a C++ constructor declaration.
1983    assert(DC->isRecord() &&
1984           "Constructors can only be declared in a member context");
1985
1986    R = CheckConstructorDeclarator(D, R, SC);
1987
1988    // Create the new declaration
1989    NewFD = CXXConstructorDecl::Create(Context,
1990                                       cast<CXXRecordDecl>(DC),
1991                                       D.getIdentifierLoc(), Name, R,
1992                                       isExplicit, isInline,
1993                                       /*isImplicitlyDeclared=*/false);
1994  } else if (D.getKind() == Declarator::DK_Destructor) {
1995    // This is a C++ destructor declaration.
1996    if (DC->isRecord()) {
1997      R = CheckDestructorDeclarator(D, SC);
1998
1999      NewFD = CXXDestructorDecl::Create(Context,
2000                                        cast<CXXRecordDecl>(DC),
2001                                        D.getIdentifierLoc(), Name, R,
2002                                        isInline,
2003                                        /*isImplicitlyDeclared=*/false);
2004
2005      isVirtualOkay = true;
2006    } else {
2007      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2008
2009      // Create a FunctionDecl to satisfy the function definition parsing
2010      // code path.
2011      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2012                                   Name, R, SC, isInline,
2013                                   /*hasPrototype=*/true,
2014                                   // FIXME: Move to DeclGroup...
2015                                   D.getDeclSpec().getSourceRange().getBegin());
2016      D.setInvalidType();
2017    }
2018  } else if (D.getKind() == Declarator::DK_Conversion) {
2019    if (!DC->isRecord()) {
2020      Diag(D.getIdentifierLoc(),
2021           diag::err_conv_function_not_member);
2022      return 0;
2023    }
2024
2025    CheckConversionDeclarator(D, R, SC);
2026    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2027                                      D.getIdentifierLoc(), Name, R,
2028                                      isInline, isExplicit);
2029
2030    isVirtualOkay = true;
2031  } else if (DC->isRecord()) {
2032    // This is a C++ method declaration.
2033    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2034                                  D.getIdentifierLoc(), Name, R,
2035                                  (SC == FunctionDecl::Static), isInline);
2036
2037    isVirtualOkay = (SC != FunctionDecl::Static);
2038  } else {
2039    // Determine whether the function was written with a
2040    // prototype. This true when:
2041    //   - we're in C++ (where every function has a prototype),
2042    //   - there is a prototype in the declarator, or
2043    //   - the type R of the function is some kind of typedef or other reference
2044    //     to a type name (which eventually refers to a function type).
2045    bool HasPrototype =
2046       getLangOptions().CPlusPlus ||
2047       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2048       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2049
2050    NewFD = FunctionDecl::Create(Context, DC,
2051                                 D.getIdentifierLoc(),
2052                                 Name, R, SC, isInline, HasPrototype,
2053                                 // FIXME: Move to DeclGroup...
2054                                 D.getDeclSpec().getSourceRange().getBegin());
2055  }
2056
2057  if (D.isInvalidType())
2058    NewFD->setInvalidDecl();
2059
2060  // Set the lexical context. If the declarator has a C++
2061  // scope specifier, the lexical context will be different
2062  // from the semantic context.
2063  NewFD->setLexicalDeclContext(CurContext);
2064
2065  // C++ [dcl.fct.spec]p5:
2066  //   The virtual specifier shall only be used in declarations of
2067  //   nonstatic class member functions that appear within a
2068  //   member-specification of a class declaration; see 10.3.
2069  //
2070  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2071  // function is also virtual if it overrides an already virtual
2072  // function. This is important to do here because it's part of the
2073  // declaration.
2074  if (isVirtual && !NewFD->isInvalidDecl()) {
2075    if (!isVirtualOkay) {
2076       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2077           diag::err_virtual_non_function);
2078    } else if (!CurContext->isRecord()) {
2079      // 'virtual' was specified outside of the class.
2080      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2081        << CodeModificationHint::CreateRemoval(
2082                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2083    } else {
2084      // Okay: Add virtual to the method.
2085      cast<CXXMethodDecl>(NewFD)->setVirtual();
2086      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2087      CurClass->setAggregate(false);
2088      CurClass->setPOD(false);
2089      CurClass->setPolymorphic(true);
2090      CurClass->setHasTrivialConstructor(false);
2091    }
2092  }
2093
2094  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2095      !CurContext->isRecord()) {
2096    // C++ [class.static]p1:
2097    //   A data or function member of a class may be declared static
2098    //   in a class definition, in which case it is a static member of
2099    //   the class.
2100
2101    // Complain about the 'static' specifier if it's on an out-of-line
2102    // member function definition.
2103    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2104         diag::err_static_out_of_line)
2105      << CodeModificationHint::CreateRemoval(
2106                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2107  }
2108
2109  // Handle GNU asm-label extension (encoded as an attribute).
2110  if (Expr *E = (Expr*) D.getAsmLabel()) {
2111    // The parser guarantees this is a string.
2112    StringLiteral *SE = cast<StringLiteral>(E);
2113    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2114                                                        SE->getByteLength())));
2115  }
2116
2117  // Copy the parameter declarations from the declarator D to the function
2118  // declaration NewFD, if they are available.  First scavenge them into Params.
2119  llvm::SmallVector<ParmVarDecl*, 16> Params;
2120  if (D.getNumTypeObjects() > 0) {
2121    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2122
2123    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2124    // function that takes no arguments, not a function that takes a
2125    // single void argument.
2126    // We let through "const void" here because Sema::GetTypeForDeclarator
2127    // already checks for that case.
2128    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2129        FTI.ArgInfo[0].Param &&
2130        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2131      // Empty arg list, don't push any params.
2132      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2133
2134      // In C++, the empty parameter-type-list must be spelled "void"; a
2135      // typedef of void is not permitted.
2136      if (getLangOptions().CPlusPlus &&
2137          Param->getType().getUnqualifiedType() != Context.VoidTy)
2138        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2139      // FIXME: Leaks decl?
2140    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2141      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2142        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2143    }
2144
2145  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2146    // When we're declaring a function with a typedef, typeof, etc as in the
2147    // following example, we'll need to synthesize (unnamed)
2148    // parameters for use in the declaration.
2149    //
2150    // @code
2151    // typedef void fn(int);
2152    // fn f;
2153    // @endcode
2154
2155    // Synthesize a parameter for each argument type.
2156    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2157         AE = FT->arg_type_end(); AI != AE; ++AI) {
2158      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2159                                               SourceLocation(), 0,
2160                                               *AI, VarDecl::None, 0);
2161      Param->setImplicit();
2162      Params.push_back(Param);
2163    }
2164  } else {
2165    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2166           "Should not need args for typedef of non-prototype fn");
2167  }
2168  // Finally, we know we have the right number of parameters, install them.
2169  NewFD->setParams(Context, &Params[0], Params.size());
2170
2171
2172
2173  // If name lookup finds a previous declaration that is not in the
2174  // same scope as the new declaration, this may still be an
2175  // acceptable redeclaration.
2176  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2177      !(NewFD->hasLinkage() &&
2178        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2179    PrevDecl = 0;
2180
2181  // Perform semantic checking on the function declaration.
2182  bool OverloadableAttrRequired = false; // FIXME: HACK!
2183  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2184                           /*FIXME:*/OverloadableAttrRequired);
2185
2186  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2187    // An out-of-line member function declaration must also be a
2188    // definition (C++ [dcl.meaning]p1).
2189    if (!IsFunctionDefinition) {
2190      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2191        << D.getCXXScopeSpec().getRange();
2192      NewFD->setInvalidDecl();
2193    } else if (!Redeclaration) {
2194      // The user tried to provide an out-of-line definition for a
2195      // function that is a member of a class or namespace, but there
2196      // was no such member function declared (C++ [class.mfct]p2,
2197      // C++ [namespace.memdef]p2). For example:
2198      //
2199      // class X {
2200      //   void f() const;
2201      // };
2202      //
2203      // void X::f() { } // ill-formed
2204      //
2205      // Complain about this problem, and attempt to suggest close
2206      // matches (e.g., those that differ only in cv-qualifiers and
2207      // whether the parameter types are references).
2208      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2209        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2210      NewFD->setInvalidDecl();
2211
2212      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2213                                              true);
2214      assert(!Prev.isAmbiguous() &&
2215             "Cannot have an ambiguity in previous-declaration lookup");
2216      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2217           Func != FuncEnd; ++Func) {
2218        if (isa<FunctionDecl>(*Func) &&
2219            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2220          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2221      }
2222
2223      PrevDecl = 0;
2224    }
2225  }
2226
2227  // Handle attributes. We need to have merged decls when handling attributes
2228  // (for example to check for conflicts, etc).
2229  // FIXME: This needs to happen before we merge declarations. Then,
2230  // let attribute merging cope with attribute conflicts.
2231  ProcessDeclAttributes(NewFD, D);
2232  AddKnownFunctionAttributes(NewFD);
2233
2234  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2235    // If a function name is overloadable in C, then every function
2236    // with that name must be marked "overloadable".
2237    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2238      << Redeclaration << NewFD;
2239    if (PrevDecl)
2240      Diag(PrevDecl->getLocation(),
2241           diag::note_attribute_overloadable_prev_overload);
2242    NewFD->addAttr(::new (Context) OverloadableAttr());
2243  }
2244
2245  // If this is a locally-scoped extern C function, update the
2246  // map of such names.
2247  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2248      && !NewFD->isInvalidDecl())
2249    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2250
2251  return NewFD;
2252}
2253
2254/// \brief Perform semantic checking of a new function declaration.
2255///
2256/// Performs semantic analysis of the new function declaration
2257/// NewFD. This routine performs all semantic checking that does not
2258/// require the actual declarator involved in the declaration, and is
2259/// used both for the declaration of functions as they are parsed
2260/// (called via ActOnDeclarator) and for the declaration of functions
2261/// that have been instantiated via C++ template instantiation (called
2262/// via InstantiateDecl).
2263///
2264/// This sets NewFD->isInvalidDecl() to true if there was an error.
2265void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2266                                    bool &Redeclaration,
2267                                    bool &OverloadableAttrRequired) {
2268  // If NewFD is already known erroneous, don't do any of this checking.
2269  if (NewFD->isInvalidDecl())
2270    return;
2271
2272  // Semantic checking for this function declaration (in isolation).
2273  if (getLangOptions().CPlusPlus) {
2274    // C++-specific checks.
2275    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2276      CheckConstructor(Constructor);
2277    } else if (isa<CXXDestructorDecl>(NewFD)) {
2278      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2279      Record->setUserDeclaredDestructor(true);
2280      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2281      // user-defined destructor.
2282      Record->setPOD(false);
2283
2284      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2285      // declared destructor.
2286      Record->setHasTrivialDestructor(false);
2287    } else if (CXXConversionDecl *Conversion
2288               = dyn_cast<CXXConversionDecl>(NewFD))
2289      ActOnConversionDeclarator(Conversion);
2290
2291    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2292    if (NewFD->isOverloadedOperator() &&
2293        CheckOverloadedOperatorDeclaration(NewFD))
2294      return NewFD->setInvalidDecl();
2295  }
2296
2297  // C99 6.7.4p6:
2298  //   [... ] For a function with external linkage, the following
2299  //   restrictions apply: [...] If all of the file scope declarations
2300  //   for a function in a translation unit include the inline
2301  //   function specifier without extern, then the definition in that
2302  //   translation unit is an inline definition. An inline definition
2303  //   does not provide an external definition for the function, and
2304  //   does not forbid an external definition in another translation
2305  //   unit.
2306  //
2307  // Here we determine whether this function, in isolation, would be a
2308  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2309  // previous declarations.
2310  if (NewFD->isInline() && getLangOptions().C99 &&
2311      NewFD->getStorageClass() == FunctionDecl::None &&
2312      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2313    NewFD->setC99InlineDefinition(true);
2314
2315  // Check for a previous declaration of this name.
2316  if (!PrevDecl && NewFD->isExternC(Context)) {
2317    // Since we did not find anything by this name and we're declaring
2318    // an extern "C" function, look for a non-visible extern "C"
2319    // declaration with the same name.
2320    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2321      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2322    if (Pos != LocallyScopedExternalDecls.end())
2323      PrevDecl = Pos->second;
2324  }
2325
2326  // Merge or overload the declaration with an existing declaration of
2327  // the same name, if appropriate.
2328  if (PrevDecl) {
2329    // Determine whether NewFD is an overload of PrevDecl or
2330    // a declaration that requires merging. If it's an overload,
2331    // there's no more work to do here; we'll just add the new
2332    // function to the scope.
2333    OverloadedFunctionDecl::function_iterator MatchedDecl;
2334
2335    if (!getLangOptions().CPlusPlus &&
2336        AllowOverloadingOfFunction(PrevDecl, Context)) {
2337      OverloadableAttrRequired = true;
2338
2339      // Functions marked "overloadable" must have a prototype (that
2340      // we can't get through declaration merging).
2341      if (!NewFD->getType()->getAsFunctionProtoType()) {
2342        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2343          << NewFD;
2344        Redeclaration = true;
2345
2346        // Turn this into a variadic function with no parameters.
2347        QualType R = Context.getFunctionType(
2348                       NewFD->getType()->getAsFunctionType()->getResultType(),
2349                       0, 0, true, 0);
2350        NewFD->setType(R);
2351        return NewFD->setInvalidDecl();
2352      }
2353    }
2354
2355    if (PrevDecl &&
2356        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2357         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2358      Redeclaration = true;
2359      Decl *OldDecl = PrevDecl;
2360
2361      // If PrevDecl was an overloaded function, extract the
2362      // FunctionDecl that matched.
2363      if (isa<OverloadedFunctionDecl>(PrevDecl))
2364        OldDecl = *MatchedDecl;
2365
2366      // NewFD and OldDecl represent declarations that need to be
2367      // merged.
2368      if (MergeFunctionDecl(NewFD, OldDecl))
2369        return NewFD->setInvalidDecl();
2370
2371      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2372    }
2373  }
2374
2375  // In C++, check default arguments now that we have merged decls. Unless
2376  // the lexical context is the class, because in this case this is done
2377  // during delayed parsing anyway.
2378  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2379    CheckCXXDefaultArguments(NewFD);
2380}
2381
2382bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2383  // FIXME: Need strict checking.  In C89, we need to check for
2384  // any assignment, increment, decrement, function-calls, or
2385  // commas outside of a sizeof.  In C99, it's the same list,
2386  // except that the aforementioned are allowed in unevaluated
2387  // expressions.  Everything else falls under the
2388  // "may accept other forms of constant expressions" exception.
2389  // (We never end up here for C++, so the constant expression
2390  // rules there don't matter.)
2391  if (Init->isConstantInitializer(Context))
2392    return false;
2393  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2394    << Init->getSourceRange();
2395  return true;
2396}
2397
2398void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2399  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2400}
2401
2402/// AddInitializerToDecl - Adds the initializer Init to the
2403/// declaration dcl. If DirectInit is true, this is C++ direct
2404/// initialization rather than copy initialization.
2405void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2406  Decl *RealDecl = dcl.getAs<Decl>();
2407  // If there is no declaration, there was an error parsing it.  Just ignore
2408  // the initializer.
2409  if (RealDecl == 0)
2410    return;
2411
2412  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2413    // With declarators parsed the way they are, the parser cannot
2414    // distinguish between a normal initializer and a pure-specifier.
2415    // Thus this grotesque test.
2416    IntegerLiteral *IL;
2417    Expr *Init = static_cast<Expr *>(init.get());
2418    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2419        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2420      if (Method->isVirtual()) {
2421        Method->setPure();
2422
2423        // A class is abstract if at least one function is pure virtual.
2424        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2425      } else if (!Method->isInvalidDecl()) {
2426        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2427          << Method->getDeclName() << Init->getSourceRange();
2428        Method->setInvalidDecl();
2429      }
2430    } else {
2431      Diag(Method->getLocation(), diag::err_member_function_initialization)
2432        << Method->getDeclName() << Init->getSourceRange();
2433      Method->setInvalidDecl();
2434    }
2435    return;
2436  }
2437
2438  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2439  if (!VDecl) {
2440    if (getLangOptions().CPlusPlus &&
2441        RealDecl->getLexicalDeclContext()->isRecord() &&
2442        isa<NamedDecl>(RealDecl))
2443      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2444        << cast<NamedDecl>(RealDecl)->getDeclName();
2445    else
2446      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2447    RealDecl->setInvalidDecl();
2448    return;
2449  }
2450
2451  if (!VDecl->getType()->isArrayType() &&
2452      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2453                          diag::err_typecheck_decl_incomplete_type)) {
2454    RealDecl->setInvalidDecl();
2455    return;
2456  }
2457
2458  const VarDecl *Def = 0;
2459  if (VDecl->getDefinition(Def)) {
2460    Diag(VDecl->getLocation(), diag::err_redefinition)
2461      << VDecl->getDeclName();
2462    Diag(Def->getLocation(), diag::note_previous_definition);
2463    VDecl->setInvalidDecl();
2464    return;
2465  }
2466
2467  // Take ownership of the expression, now that we're sure we have somewhere
2468  // to put it.
2469  Expr *Init = static_cast<Expr *>(init.release());
2470  assert(Init && "missing initializer");
2471
2472  // Get the decls type and save a reference for later, since
2473  // CheckInitializerTypes may change it.
2474  QualType DclT = VDecl->getType(), SavT = DclT;
2475  if (VDecl->isBlockVarDecl()) {
2476    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2477      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2478      VDecl->setInvalidDecl();
2479    } else if (!VDecl->isInvalidDecl()) {
2480      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2481                                VDecl->getDeclName(), DirectInit))
2482        VDecl->setInvalidDecl();
2483
2484      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2485      // Don't check invalid declarations to avoid emitting useless diagnostics.
2486      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2487        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2488          CheckForConstantInitializer(Init, DclT);
2489      }
2490    }
2491  } else if (VDecl->isStaticDataMember() &&
2492             VDecl->getLexicalDeclContext()->isRecord()) {
2493    // This is an in-class initialization for a static data member, e.g.,
2494    //
2495    // struct S {
2496    //   static const int value = 17;
2497    // };
2498
2499    // Attach the initializer
2500    VDecl->setInit(Init);
2501
2502    // C++ [class.mem]p4:
2503    //   A member-declarator can contain a constant-initializer only
2504    //   if it declares a static member (9.4) of const integral or
2505    //   const enumeration type, see 9.4.2.
2506    QualType T = VDecl->getType();
2507    if (!T->isDependentType() &&
2508        (!Context.getCanonicalType(T).isConstQualified() ||
2509         !T->isIntegralType())) {
2510      Diag(VDecl->getLocation(), diag::err_member_initialization)
2511        << VDecl->getDeclName() << Init->getSourceRange();
2512      VDecl->setInvalidDecl();
2513    } else {
2514      // C++ [class.static.data]p4:
2515      //   If a static data member is of const integral or const
2516      //   enumeration type, its declaration in the class definition
2517      //   can specify a constant-initializer which shall be an
2518      //   integral constant expression (5.19).
2519      if (!Init->isTypeDependent() &&
2520          !Init->getType()->isIntegralType()) {
2521        // We have a non-dependent, non-integral or enumeration type.
2522        Diag(Init->getSourceRange().getBegin(),
2523             diag::err_in_class_initializer_non_integral_type)
2524          << Init->getType() << Init->getSourceRange();
2525        VDecl->setInvalidDecl();
2526      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2527        // Check whether the expression is a constant expression.
2528        llvm::APSInt Value;
2529        SourceLocation Loc;
2530        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2531          Diag(Loc, diag::err_in_class_initializer_non_constant)
2532            << Init->getSourceRange();
2533          VDecl->setInvalidDecl();
2534        } else if (!VDecl->getType()->isDependentType())
2535          ImpCastExprToType(Init, VDecl->getType());
2536      }
2537    }
2538  } else if (VDecl->isFileVarDecl()) {
2539    if (VDecl->getStorageClass() == VarDecl::Extern)
2540      Diag(VDecl->getLocation(), diag::warn_extern_init);
2541    if (!VDecl->isInvalidDecl())
2542      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2543                                VDecl->getDeclName(), DirectInit))
2544        VDecl->setInvalidDecl();
2545
2546    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2547    // Don't check invalid declarations to avoid emitting useless diagnostics.
2548    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2549      // C99 6.7.8p4. All file scoped initializers need to be constant.
2550      CheckForConstantInitializer(Init, DclT);
2551    }
2552  }
2553  // If the type changed, it means we had an incomplete type that was
2554  // completed by the initializer. For example:
2555  //   int ary[] = { 1, 3, 5 };
2556  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2557  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2558    VDecl->setType(DclT);
2559    Init->setType(DclT);
2560  }
2561
2562  // Attach the initializer to the decl.
2563  VDecl->setInit(Init);
2564
2565  // If the previous declaration of VDecl was a tentative definition,
2566  // remove it from the set of tentative definitions.
2567  if (VDecl->getPreviousDeclaration() &&
2568      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2569    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2570      = TentativeDefinitions.find(VDecl->getDeclName());
2571    assert(Pos != TentativeDefinitions.end() &&
2572           "Unrecorded tentative definition?");
2573    TentativeDefinitions.erase(Pos);
2574  }
2575
2576  return;
2577}
2578
2579void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2580  Decl *RealDecl = dcl.getAs<Decl>();
2581
2582  // If there is no declaration, there was an error parsing it. Just ignore it.
2583  if (RealDecl == 0)
2584    return;
2585
2586  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2587    QualType Type = Var->getType();
2588
2589    // Record tentative definitions.
2590    if (Var->isTentativeDefinition(Context))
2591      TentativeDefinitions[Var->getDeclName()] = Var;
2592
2593    // C++ [dcl.init.ref]p3:
2594    //   The initializer can be omitted for a reference only in a
2595    //   parameter declaration (8.3.5), in the declaration of a
2596    //   function return type, in the declaration of a class member
2597    //   within its class declaration (9.2), and where the extern
2598    //   specifier is explicitly used.
2599    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2600      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2601        << Var->getDeclName()
2602        << SourceRange(Var->getLocation(), Var->getLocation());
2603      Var->setInvalidDecl();
2604      return;
2605    }
2606
2607    // C++ [dcl.init]p9:
2608    //
2609    //   If no initializer is specified for an object, and the object
2610    //   is of (possibly cv-qualified) non-POD class type (or array
2611    //   thereof), the object shall be default-initialized; if the
2612    //   object is of const-qualified type, the underlying class type
2613    //   shall have a user-declared default constructor.
2614    if (getLangOptions().CPlusPlus) {
2615      QualType InitType = Type;
2616      if (const ArrayType *Array = Context.getAsArrayType(Type))
2617        InitType = Array->getElementType();
2618      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2619        CXXRecordDecl *RD =
2620          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2621        CXXConstructorDecl *Constructor = 0;
2622        if (!RequireCompleteType(Var->getLocation(), InitType,
2623                                    diag::err_invalid_incomplete_type_use))
2624          Constructor
2625            = PerformInitializationByConstructor(InitType, 0, 0,
2626                                                 Var->getLocation(),
2627                                               SourceRange(Var->getLocation(),
2628                                                           Var->getLocation()),
2629                                                 Var->getDeclName(),
2630                                                 IK_Default);
2631        if (!Constructor)
2632          Var->setInvalidDecl();
2633        else if (!RD->hasTrivialConstructor())
2634          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2635      }
2636    }
2637
2638#if 0
2639    // FIXME: Temporarily disabled because we are not properly parsing
2640    // linkage specifications on declarations, e.g.,
2641    //
2642    //   extern "C" const CGPoint CGPointerZero;
2643    //
2644    // C++ [dcl.init]p9:
2645    //
2646    //     If no initializer is specified for an object, and the
2647    //     object is of (possibly cv-qualified) non-POD class type (or
2648    //     array thereof), the object shall be default-initialized; if
2649    //     the object is of const-qualified type, the underlying class
2650    //     type shall have a user-declared default
2651    //     constructor. Otherwise, if no initializer is specified for
2652    //     an object, the object and its subobjects, if any, have an
2653    //     indeterminate initial value; if the object or any of its
2654    //     subobjects are of const-qualified type, the program is
2655    //     ill-formed.
2656    //
2657    // This isn't technically an error in C, so we don't diagnose it.
2658    //
2659    // FIXME: Actually perform the POD/user-defined default
2660    // constructor check.
2661    if (getLangOptions().CPlusPlus &&
2662        Context.getCanonicalType(Type).isConstQualified() &&
2663        !Var->hasExternalStorage())
2664      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2665        << Var->getName()
2666        << SourceRange(Var->getLocation(), Var->getLocation());
2667#endif
2668  }
2669}
2670
2671Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2672                                                   unsigned NumDecls) {
2673  llvm::SmallVector<Decl*, 8> Decls;
2674
2675  for (unsigned i = 0; i != NumDecls; ++i)
2676    if (Decl *D = Group[i].getAs<Decl>())
2677      Decls.push_back(D);
2678
2679  // Perform semantic analysis that depends on having fully processed both
2680  // the declarator and initializer.
2681  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2682    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2683    if (!IDecl)
2684      continue;
2685    QualType T = IDecl->getType();
2686
2687    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2688    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2689    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2690      if (!IDecl->isInvalidDecl() &&
2691          RequireCompleteType(IDecl->getLocation(), T,
2692                              diag::err_typecheck_decl_incomplete_type))
2693        IDecl->setInvalidDecl();
2694    }
2695    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2696    // object that has file scope without an initializer, and without a
2697    // storage-class specifier or with the storage-class specifier "static",
2698    // constitutes a tentative definition. Note: A tentative definition with
2699    // external linkage is valid (C99 6.2.2p5).
2700    if (IDecl->isTentativeDefinition(Context)) {
2701      QualType CheckType = T;
2702      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2703
2704      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2705      if (ArrayT) {
2706        CheckType = ArrayT->getElementType();
2707        DiagID = diag::err_illegal_decl_array_incomplete_type;
2708      }
2709
2710      if (IDecl->isInvalidDecl()) {
2711        // Do nothing with invalid declarations
2712      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2713                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2714        // C99 6.9.2p3: If the declaration of an identifier for an object is
2715        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2716        // declared type shall not be an incomplete type.
2717        IDecl->setInvalidDecl();
2718      }
2719    }
2720  }
2721  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2722                                                   &Decls[0], Decls.size()));
2723}
2724
2725
2726/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2727/// to introduce parameters into function prototype scope.
2728Sema::DeclPtrTy
2729Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2730  const DeclSpec &DS = D.getDeclSpec();
2731
2732  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2733  VarDecl::StorageClass StorageClass = VarDecl::None;
2734  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2735    StorageClass = VarDecl::Register;
2736  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2737    Diag(DS.getStorageClassSpecLoc(),
2738         diag::err_invalid_storage_class_in_func_decl);
2739    D.getMutableDeclSpec().ClearStorageClassSpecs();
2740  }
2741
2742  if (D.getDeclSpec().isThreadSpecified())
2743    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2744
2745  DiagnoseFunctionSpecifiers(D);
2746
2747  // Check that there are no default arguments inside the type of this
2748  // parameter (C++ only).
2749  if (getLangOptions().CPlusPlus)
2750    CheckExtraCXXDefaultArguments(D);
2751
2752  QualType parmDeclType = GetTypeForDeclarator(D, S);
2753
2754  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2755  // Can this happen for params?  We already checked that they don't conflict
2756  // among each other.  Here they can only shadow globals, which is ok.
2757  IdentifierInfo *II = D.getIdentifier();
2758  if (II) {
2759    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2760      if (PrevDecl->isTemplateParameter()) {
2761        // Maybe we will complain about the shadowed template parameter.
2762        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2763        // Just pretend that we didn't see the previous declaration.
2764        PrevDecl = 0;
2765      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2766        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2767
2768        // Recover by removing the name
2769        II = 0;
2770        D.SetIdentifier(0, D.getIdentifierLoc());
2771      }
2772    }
2773  }
2774
2775  // Parameters can not be abstract class types.
2776  // For record types, this is done by the AbstractClassUsageDiagnoser once
2777  // the class has been completely parsed.
2778  if (!CurContext->isRecord() &&
2779      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2780                             diag::err_abstract_type_in_decl,
2781                             AbstractParamType))
2782    D.setInvalidType(true);
2783
2784  QualType T = adjustParameterType(parmDeclType);
2785
2786  ParmVarDecl *New;
2787  if (T == parmDeclType) // parameter type did not need adjustment
2788    New = ParmVarDecl::Create(Context, CurContext,
2789                              D.getIdentifierLoc(), II,
2790                              parmDeclType, StorageClass,
2791                              0);
2792  else // keep track of both the adjusted and unadjusted types
2793    New = OriginalParmVarDecl::Create(Context, CurContext,
2794                                      D.getIdentifierLoc(), II, T,
2795                                      parmDeclType, StorageClass, 0);
2796
2797  if (D.isInvalidType())
2798    New->setInvalidDecl();
2799
2800  // Parameter declarators cannot be interface types. All ObjC objects are
2801  // passed by reference.
2802  if (T->isObjCInterfaceType()) {
2803    Diag(D.getIdentifierLoc(),
2804         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2805    New->setInvalidDecl();
2806  }
2807
2808  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2809  if (D.getCXXScopeSpec().isSet()) {
2810    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2811      << D.getCXXScopeSpec().getRange();
2812    New->setInvalidDecl();
2813  }
2814
2815  // Add the parameter declaration into this scope.
2816  S->AddDecl(DeclPtrTy::make(New));
2817  if (II)
2818    IdResolver.AddDecl(New);
2819
2820  ProcessDeclAttributes(New, D);
2821  return DeclPtrTy::make(New);
2822}
2823
2824void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2825                                           SourceLocation LocAfterDecls) {
2826  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2827         "Not a function declarator!");
2828  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2829
2830  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2831  // for a K&R function.
2832  if (!FTI.hasPrototype) {
2833    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2834      --i;
2835      if (FTI.ArgInfo[i].Param == 0) {
2836        std::string Code = "  int ";
2837        Code += FTI.ArgInfo[i].Ident->getName();
2838        Code += ";\n";
2839        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2840          << FTI.ArgInfo[i].Ident
2841          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2842
2843        // Implicitly declare the argument as type 'int' for lack of a better
2844        // type.
2845        DeclSpec DS;
2846        const char* PrevSpec; // unused
2847        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2848                           PrevSpec);
2849        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2850        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2851        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2852      }
2853    }
2854  }
2855}
2856
2857Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2858                                              Declarator &D) {
2859  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2860  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2861         "Not a function declarator!");
2862  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2863
2864  if (FTI.hasPrototype) {
2865    // FIXME: Diagnose arguments without names in C.
2866  }
2867
2868  Scope *ParentScope = FnBodyScope->getParent();
2869
2870  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2871  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2872}
2873
2874Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2875  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2876
2877  CurFunctionNeedsScopeChecking = false;
2878
2879  // See if this is a redefinition.
2880  const FunctionDecl *Definition;
2881  if (FD->getBody(Context, Definition)) {
2882    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2883    Diag(Definition->getLocation(), diag::note_previous_definition);
2884  }
2885
2886  // Builtin functions cannot be defined.
2887  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2888    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2889      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2890      FD->setInvalidDecl();
2891    }
2892  }
2893
2894  // The return type of a function definition must be complete
2895  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2896  QualType ResultType = FD->getResultType();
2897  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2898      RequireCompleteType(FD->getLocation(), ResultType,
2899                          diag::err_func_def_incomplete_result))
2900    FD->setInvalidDecl();
2901
2902  // GNU warning -Wmissing-prototypes:
2903  //   Warn if a global function is defined without a previous
2904  //   prototype declaration. This warning is issued even if the
2905  //   definition itself provides a prototype. The aim is to detect
2906  //   global functions that fail to be declared in header files.
2907  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2908      !FD->isMain()) {
2909    bool MissingPrototype = true;
2910    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2911         Prev; Prev = Prev->getPreviousDeclaration()) {
2912      // Ignore any declarations that occur in function or method
2913      // scope, because they aren't visible from the header.
2914      if (Prev->getDeclContext()->isFunctionOrMethod())
2915        continue;
2916
2917      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2918      break;
2919    }
2920
2921    if (MissingPrototype)
2922      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2923  }
2924
2925  PushDeclContext(FnBodyScope, FD);
2926
2927  // Check the validity of our function parameters
2928  CheckParmsForFunctionDef(FD);
2929
2930  // Introduce our parameters into the function scope
2931  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2932    ParmVarDecl *Param = FD->getParamDecl(p);
2933    Param->setOwningFunction(FD);
2934
2935    // If this has an identifier, add it to the scope stack.
2936    if (Param->getIdentifier())
2937      PushOnScopeChains(Param, FnBodyScope);
2938  }
2939
2940  // Checking attributes of current function definition
2941  // dllimport attribute.
2942  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2943    // dllimport attribute cannot be applied to definition.
2944    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2945      Diag(FD->getLocation(),
2946           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2947        << "dllimport";
2948      FD->setInvalidDecl();
2949      return DeclPtrTy::make(FD);
2950    } else {
2951      // If a symbol previously declared dllimport is later defined, the
2952      // attribute is ignored in subsequent references, and a warning is
2953      // emitted.
2954      Diag(FD->getLocation(),
2955           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2956        << FD->getNameAsCString() << "dllimport";
2957    }
2958  }
2959  return DeclPtrTy::make(FD);
2960}
2961
2962
2963Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2964  Decl *dcl = D.getAs<Decl>();
2965  Stmt *Body = BodyArg.takeAs<Stmt>();
2966  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2967    FD->setBody(Body);
2968    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2969  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2970    assert(MD == getCurMethodDecl() && "Method parsing confused");
2971    MD->setBody(Body);
2972  } else {
2973    Body->Destroy(Context);
2974    return DeclPtrTy();
2975  }
2976  PopDeclContext();
2977  // Verify and clean out per-function state.
2978
2979  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
2980
2981  // Check goto/label use.
2982  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2983       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
2984    LabelStmt *L = I->second;
2985
2986    // Verify that we have no forward references left.  If so, there was a goto
2987    // or address of a label taken, but no definition of it.  Label fwd
2988    // definitions are indicated with a null substmt.
2989    if (L->getSubStmt() != 0)
2990      continue;
2991
2992    // Emit error.
2993    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2994
2995    // At this point, we have gotos that use the bogus label.  Stitch it into
2996    // the function body so that they aren't leaked and that the AST is well
2997    // formed.
2998    if (Body == 0) {
2999      // The whole function wasn't parsed correctly, just delete this.
3000      L->Destroy(Context);
3001      continue;
3002    }
3003
3004    // Otherwise, the body is valid: we want to stitch the label decl into the
3005    // function somewhere so that it is properly owned and so that the goto
3006    // has a valid target.  Do this by creating a new compound stmt with the
3007    // label in it.
3008
3009    // Give the label a sub-statement.
3010    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3011
3012    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3013                               cast<CXXTryStmt>(Body)->getTryBlock() :
3014                               cast<CompoundStmt>(Body);
3015    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3016    Elements.push_back(L);
3017    Compound->setStmts(Context, &Elements[0], Elements.size());
3018  }
3019  FunctionLabelMap.clear();
3020
3021  if (!Body) return D;
3022
3023  // Verify that that gotos and switch cases don't jump into scopes illegally.
3024  if (CurFunctionNeedsScopeChecking)
3025    DiagnoseInvalidJumps(Body);
3026
3027  // C++ constructors that have function-try-blocks can't have return statements
3028  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3029  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3030    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3031
3032  return D;
3033}
3034
3035/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3036/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3037NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3038                                          IdentifierInfo &II, Scope *S) {
3039  // Before we produce a declaration for an implicitly defined
3040  // function, see whether there was a locally-scoped declaration of
3041  // this name as a function or variable. If so, use that
3042  // (non-visible) declaration, and complain about it.
3043  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3044    = LocallyScopedExternalDecls.find(&II);
3045  if (Pos != LocallyScopedExternalDecls.end()) {
3046    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3047    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3048    return Pos->second;
3049  }
3050
3051  // Extension in C99.  Legal in C90, but warn about it.
3052  if (getLangOptions().C99)
3053    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3054  else
3055    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3056
3057  // FIXME: handle stuff like:
3058  // void foo() { extern float X(); }
3059  // void bar() { X(); }  <-- implicit decl for X in another scope.
3060
3061  // Set a Declarator for the implicit definition: int foo();
3062  const char *Dummy;
3063  DeclSpec DS;
3064  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3065  Error = Error; // Silence warning.
3066  assert(!Error && "Error setting up implicit decl!");
3067  Declarator D(DS, Declarator::BlockContext);
3068  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3069                                             0, 0, 0, Loc, D),
3070                SourceLocation());
3071  D.SetIdentifier(&II, Loc);
3072
3073  // Insert this function into translation-unit scope.
3074
3075  DeclContext *PrevDC = CurContext;
3076  CurContext = Context.getTranslationUnitDecl();
3077
3078  FunctionDecl *FD =
3079 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3080  FD->setImplicit();
3081
3082  CurContext = PrevDC;
3083
3084  AddKnownFunctionAttributes(FD);
3085
3086  return FD;
3087}
3088
3089/// \brief Adds any function attributes that we know a priori based on
3090/// the declaration of this function.
3091///
3092/// These attributes can apply both to implicitly-declared builtins
3093/// (like __builtin___printf_chk) or to library-declared functions
3094/// like NSLog or printf.
3095void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3096  if (FD->isInvalidDecl())
3097    return;
3098
3099  // If this is a built-in function, map its builtin attributes to
3100  // actual attributes.
3101  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3102    // Handle printf-formatting attributes.
3103    unsigned FormatIdx;
3104    bool HasVAListArg;
3105    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3106      if (!FD->getAttr<FormatAttr>())
3107        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3108                                               FormatIdx + 2));
3109    }
3110
3111    // Mark const if we don't care about errno and that is the only
3112    // thing preventing the function from being const. This allows
3113    // IRgen to use LLVM intrinsics for such functions.
3114    if (!getLangOptions().MathErrno &&
3115        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3116      if (!FD->getAttr<ConstAttr>())
3117        FD->addAttr(::new (Context) ConstAttr());
3118    }
3119  }
3120
3121  IdentifierInfo *Name = FD->getIdentifier();
3122  if (!Name)
3123    return;
3124  if ((!getLangOptions().CPlusPlus &&
3125       FD->getDeclContext()->isTranslationUnit()) ||
3126      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3127       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3128       LinkageSpecDecl::lang_c)) {
3129    // Okay: this could be a libc/libm/Objective-C function we know
3130    // about.
3131  } else
3132    return;
3133
3134  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3135    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3136      // FIXME: We known better than our headers.
3137      const_cast<FormatAttr *>(Format)->setType("printf");
3138    } else
3139      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3140  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3141    if (!FD->getAttr<FormatAttr>())
3142      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3143  }
3144}
3145
3146TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3147  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3148  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3149
3150  // Scope manipulation handled by caller.
3151  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3152                                           D.getIdentifierLoc(),
3153                                           D.getIdentifier(),
3154                                           T);
3155
3156  if (TagType *TT = dyn_cast<TagType>(T)) {
3157    TagDecl *TD = TT->getDecl();
3158
3159    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3160    // keep track of the TypedefDecl.
3161    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3162      TD->setTypedefForAnonDecl(NewTD);
3163  }
3164
3165  if (D.isInvalidType())
3166    NewTD->setInvalidDecl();
3167  return NewTD;
3168}
3169
3170/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3171/// former case, Name will be non-null.  In the later case, Name will be null.
3172/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3173/// reference/declaration/definition of a tag.
3174Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3175                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3176                               IdentifierInfo *Name, SourceLocation NameLoc,
3177                               AttributeList *Attr, AccessSpecifier AS) {
3178  // If this is not a definition, it must have a name.
3179  assert((Name != 0 || TK == TK_Definition) &&
3180         "Nameless record must be a definition!");
3181
3182  TagDecl::TagKind Kind;
3183  switch (TagSpec) {
3184  default: assert(0 && "Unknown tag type!");
3185  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3186  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3187  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3188  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3189  }
3190
3191  DeclContext *SearchDC = CurContext;
3192  DeclContext *DC = CurContext;
3193  NamedDecl *PrevDecl = 0;
3194
3195  bool Invalid = false;
3196
3197  if (Name && SS.isNotEmpty()) {
3198    // We have a nested-name tag ('struct foo::bar').
3199
3200    // Check for invalid 'foo::'.
3201    if (SS.isInvalid()) {
3202      Name = 0;
3203      goto CreateNewDecl;
3204    }
3205
3206    // FIXME: RequireCompleteDeclContext(SS)?
3207    DC = computeDeclContext(SS);
3208    SearchDC = DC;
3209    // Look-up name inside 'foo::'.
3210    PrevDecl = dyn_cast_or_null<TagDecl>(
3211                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3212
3213    // A tag 'foo::bar' must already exist.
3214    if (PrevDecl == 0) {
3215      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3216      Name = 0;
3217      goto CreateNewDecl;
3218    }
3219  } else if (Name) {
3220    // If this is a named struct, check to see if there was a previous forward
3221    // declaration or definition.
3222    // FIXME: We're looking into outer scopes here, even when we
3223    // shouldn't be. Doing so can result in ambiguities that we
3224    // shouldn't be diagnosing.
3225    LookupResult R = LookupName(S, Name, LookupTagName,
3226                                /*RedeclarationOnly=*/(TK != TK_Reference));
3227    if (R.isAmbiguous()) {
3228      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3229      // FIXME: This is not best way to recover from case like:
3230      //
3231      // struct S s;
3232      //
3233      // causes needless "incomplete type" error later.
3234      Name = 0;
3235      PrevDecl = 0;
3236      Invalid = true;
3237    }
3238    else
3239      PrevDecl = R;
3240
3241    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3242      // FIXME: This makes sure that we ignore the contexts associated
3243      // with C structs, unions, and enums when looking for a matching
3244      // tag declaration or definition. See the similar lookup tweak
3245      // in Sema::LookupName; is there a better way to deal with this?
3246      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3247        SearchDC = SearchDC->getParent();
3248    }
3249  }
3250
3251  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3252    // Maybe we will complain about the shadowed template parameter.
3253    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3254    // Just pretend that we didn't see the previous declaration.
3255    PrevDecl = 0;
3256  }
3257
3258  if (PrevDecl) {
3259    // Check whether the previous declaration is usable.
3260    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3261
3262    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3263      // If this is a use of a previous tag, or if the tag is already declared
3264      // in the same scope (so that the definition/declaration completes or
3265      // rementions the tag), reuse the decl.
3266      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3267        // Make sure that this wasn't declared as an enum and now used as a
3268        // struct or something similar.
3269        if (PrevTagDecl->getTagKind() != Kind) {
3270          bool SafeToContinue
3271            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3272               Kind != TagDecl::TK_enum);
3273          if (SafeToContinue)
3274            Diag(KWLoc, diag::err_use_with_wrong_tag)
3275              << Name
3276              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3277                                                  PrevTagDecl->getKindName());
3278          else
3279            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3280          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3281
3282          if (SafeToContinue)
3283            Kind = PrevTagDecl->getTagKind();
3284          else {
3285            // Recover by making this an anonymous redefinition.
3286            Name = 0;
3287            PrevDecl = 0;
3288            Invalid = true;
3289          }
3290        }
3291
3292        if (!Invalid) {
3293          // If this is a use, just return the declaration we found.
3294
3295          // FIXME: In the future, return a variant or some other clue
3296          // for the consumer of this Decl to know it doesn't own it.
3297          // For our current ASTs this shouldn't be a problem, but will
3298          // need to be changed with DeclGroups.
3299          if (TK == TK_Reference)
3300            return DeclPtrTy::make(PrevDecl);
3301
3302          // Diagnose attempts to redefine a tag.
3303          if (TK == TK_Definition) {
3304            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3305              Diag(NameLoc, diag::err_redefinition) << Name;
3306              Diag(Def->getLocation(), diag::note_previous_definition);
3307              // If this is a redefinition, recover by making this
3308              // struct be anonymous, which will make any later
3309              // references get the previous definition.
3310              Name = 0;
3311              PrevDecl = 0;
3312              Invalid = true;
3313            } else {
3314              // If the type is currently being defined, complain
3315              // about a nested redefinition.
3316              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3317              if (Tag->isBeingDefined()) {
3318                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3319                Diag(PrevTagDecl->getLocation(),
3320                     diag::note_previous_definition);
3321                Name = 0;
3322                PrevDecl = 0;
3323                Invalid = true;
3324              }
3325            }
3326
3327            // Okay, this is definition of a previously declared or referenced
3328            // tag PrevDecl. We're going to create a new Decl for it.
3329          }
3330        }
3331        // If we get here we have (another) forward declaration or we
3332        // have a definition.  Just create a new decl.
3333      } else {
3334        // If we get here, this is a definition of a new tag type in a nested
3335        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3336        // new decl/type.  We set PrevDecl to NULL so that the entities
3337        // have distinct types.
3338        PrevDecl = 0;
3339      }
3340      // If we get here, we're going to create a new Decl. If PrevDecl
3341      // is non-NULL, it's a definition of the tag declared by
3342      // PrevDecl. If it's NULL, we have a new definition.
3343    } else {
3344      // PrevDecl is a namespace, template, or anything else
3345      // that lives in the IDNS_Tag identifier namespace.
3346      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3347        // The tag name clashes with a namespace name, issue an error and
3348        // recover by making this tag be anonymous.
3349        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3350        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3351        Name = 0;
3352        PrevDecl = 0;
3353        Invalid = true;
3354      } else {
3355        // The existing declaration isn't relevant to us; we're in a
3356        // new scope, so clear out the previous declaration.
3357        PrevDecl = 0;
3358      }
3359    }
3360  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3361             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3362    // C.scope.pdecl]p5:
3363    //   -- for an elaborated-type-specifier of the form
3364    //
3365    //          class-key identifier
3366    //
3367    //      if the elaborated-type-specifier is used in the
3368    //      decl-specifier-seq or parameter-declaration-clause of a
3369    //      function defined in namespace scope, the identifier is
3370    //      declared as a class-name in the namespace that contains
3371    //      the declaration; otherwise, except as a friend
3372    //      declaration, the identifier is declared in the smallest
3373    //      non-class, non-function-prototype scope that contains the
3374    //      declaration.
3375    //
3376    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3377    // C structs and unions.
3378    //
3379    // GNU C also supports this behavior as part of its incomplete
3380    // enum types extension, while GNU C++ does not.
3381    //
3382    // Find the context where we'll be declaring the tag.
3383    // FIXME: We would like to maintain the current DeclContext as the
3384    // lexical context,
3385    while (SearchDC->isRecord())
3386      SearchDC = SearchDC->getParent();
3387
3388    // Find the scope where we'll be declaring the tag.
3389    while (S->isClassScope() ||
3390           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3391           ((S->getFlags() & Scope::DeclScope) == 0) ||
3392           (S->getEntity() &&
3393            ((DeclContext *)S->getEntity())->isTransparentContext()))
3394      S = S->getParent();
3395  }
3396
3397CreateNewDecl:
3398
3399  // If there is an identifier, use the location of the identifier as the
3400  // location of the decl, otherwise use the location of the struct/union
3401  // keyword.
3402  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3403
3404  // Otherwise, create a new declaration. If there is a previous
3405  // declaration of the same entity, the two will be linked via
3406  // PrevDecl.
3407  TagDecl *New;
3408
3409  if (Kind == TagDecl::TK_enum) {
3410    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3411    // enum X { A, B, C } D;    D should chain to X.
3412    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3413                           cast_or_null<EnumDecl>(PrevDecl));
3414    // If this is an undefined enum, warn.
3415    if (TK != TK_Definition && !Invalid)  {
3416      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3417                                              : diag::ext_forward_ref_enum;
3418      Diag(Loc, DK);
3419    }
3420  } else {
3421    // struct/union/class
3422
3423    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3424    // struct X { int A; } D;    D should chain to X.
3425    if (getLangOptions().CPlusPlus)
3426      // FIXME: Look for a way to use RecordDecl for simple structs.
3427      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3428                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3429    else
3430      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3431                               cast_or_null<RecordDecl>(PrevDecl));
3432  }
3433
3434  if (Kind != TagDecl::TK_enum) {
3435    // Handle #pragma pack: if the #pragma pack stack has non-default
3436    // alignment, make up a packed attribute for this decl. These
3437    // attributes are checked when the ASTContext lays out the
3438    // structure.
3439    //
3440    // It is important for implementing the correct semantics that this
3441    // happen here (in act on tag decl). The #pragma pack stack is
3442    // maintained as a result of parser callbacks which can occur at
3443    // many points during the parsing of a struct declaration (because
3444    // the #pragma tokens are effectively skipped over during the
3445    // parsing of the struct).
3446    if (unsigned Alignment = getPragmaPackAlignment())
3447      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3448  }
3449
3450  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3451    // C++ [dcl.typedef]p3:
3452    //   [...] Similarly, in a given scope, a class or enumeration
3453    //   shall not be declared with the same name as a typedef-name
3454    //   that is declared in that scope and refers to a type other
3455    //   than the class or enumeration itself.
3456    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3457    TypedefDecl *PrevTypedef = 0;
3458    if (Lookup.getKind() == LookupResult::Found)
3459      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3460
3461    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3462        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3463          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3464      Diag(Loc, diag::err_tag_definition_of_typedef)
3465        << Context.getTypeDeclType(New)
3466        << PrevTypedef->getUnderlyingType();
3467      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3468      Invalid = true;
3469    }
3470  }
3471
3472  if (Invalid)
3473    New->setInvalidDecl();
3474
3475  if (Attr)
3476    ProcessDeclAttributeList(New, Attr);
3477
3478  // If we're declaring or defining a tag in function prototype scope
3479  // in C, note that this type can only be used within the function.
3480  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3481    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3482
3483  // Set the lexical context. If the tag has a C++ scope specifier, the
3484  // lexical context will be different from the semantic context.
3485  New->setLexicalDeclContext(CurContext);
3486
3487  // Set the access specifier.
3488  SetMemberAccessSpecifier(New, PrevDecl, AS);
3489
3490  if (TK == TK_Definition)
3491    New->startDefinition();
3492
3493  // If this has an identifier, add it to the scope stack.
3494  if (Name) {
3495    S = getNonFieldDeclScope(S);
3496    PushOnScopeChains(New, S);
3497  } else {
3498    CurContext->addDecl(Context, New);
3499  }
3500
3501  return DeclPtrTy::make(New);
3502}
3503
3504void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3505  AdjustDeclIfTemplate(TagD);
3506  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3507
3508  // Enter the tag context.
3509  PushDeclContext(S, Tag);
3510
3511  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3512    FieldCollector->StartClass();
3513
3514    if (Record->getIdentifier()) {
3515      // C++ [class]p2:
3516      //   [...] The class-name is also inserted into the scope of the
3517      //   class itself; this is known as the injected-class-name. For
3518      //   purposes of access checking, the injected-class-name is treated
3519      //   as if it were a public member name.
3520      CXXRecordDecl *InjectedClassName
3521        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3522                                CurContext, Record->getLocation(),
3523                                Record->getIdentifier(), Record);
3524      InjectedClassName->setImplicit();
3525      InjectedClassName->setAccess(AS_public);
3526      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3527        InjectedClassName->setDescribedClassTemplate(Template);
3528      PushOnScopeChains(InjectedClassName, S);
3529      assert(InjectedClassName->isInjectedClassName() &&
3530             "Broken injected-class-name");
3531    }
3532  }
3533}
3534
3535void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3536  AdjustDeclIfTemplate(TagD);
3537  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3538
3539  if (isa<CXXRecordDecl>(Tag))
3540    FieldCollector->FinishClass();
3541
3542  // Exit this scope of this tag's definition.
3543  PopDeclContext();
3544
3545  // Notify the consumer that we've defined a tag.
3546  Consumer.HandleTagDeclDefinition(Tag);
3547}
3548
3549// Note that FieldName may be null for anonymous bitfields.
3550bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3551                          QualType FieldTy, const Expr *BitWidth) {
3552
3553  // C99 6.7.2.1p4 - verify the field type.
3554  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3555  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3556    // Handle incomplete types with specific error.
3557    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3558      return true;
3559    if (FieldName)
3560      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3561        << FieldName << FieldTy << BitWidth->getSourceRange();
3562    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3563      << FieldTy << BitWidth->getSourceRange();
3564  }
3565
3566  // If the bit-width is type- or value-dependent, don't try to check
3567  // it now.
3568  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3569    return false;
3570
3571  llvm::APSInt Value;
3572  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3573    return true;
3574
3575  // Zero-width bitfield is ok for anonymous field.
3576  if (Value == 0 && FieldName)
3577    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3578
3579  if (Value.isSigned() && Value.isNegative()) {
3580    if (FieldName)
3581      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3582               << FieldName << Value.toString(10);
3583    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3584      << Value.toString(10);
3585  }
3586
3587  if (!FieldTy->isDependentType()) {
3588    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3589    if (Value.getZExtValue() > TypeSize) {
3590      if (FieldName)
3591        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3592          << FieldName << (unsigned)TypeSize;
3593      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3594        << (unsigned)TypeSize;
3595    }
3596  }
3597
3598  return false;
3599}
3600
3601/// ActOnField - Each field of a struct/union/class is passed into this in order
3602/// to create a FieldDecl object for it.
3603Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3604                                 SourceLocation DeclStart,
3605                                 Declarator &D, ExprTy *BitfieldWidth) {
3606  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3607                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3608                               AS_public);
3609  return DeclPtrTy::make(Res);
3610}
3611
3612/// HandleField - Analyze a field of a C struct or a C++ data member.
3613///
3614FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3615                             SourceLocation DeclStart,
3616                             Declarator &D, Expr *BitWidth,
3617                             AccessSpecifier AS) {
3618  IdentifierInfo *II = D.getIdentifier();
3619  SourceLocation Loc = DeclStart;
3620  if (II) Loc = D.getIdentifierLoc();
3621
3622  QualType T = GetTypeForDeclarator(D, S);
3623  if (getLangOptions().CPlusPlus)
3624    CheckExtraCXXDefaultArguments(D);
3625
3626  DiagnoseFunctionSpecifiers(D);
3627
3628  if (D.getDeclSpec().isThreadSpecified())
3629    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3630
3631  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3632  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3633    PrevDecl = 0;
3634
3635  FieldDecl *NewFD
3636    = CheckFieldDecl(II, T, Record, Loc,
3637               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3638                     BitWidth, AS, PrevDecl, &D);
3639  if (NewFD->isInvalidDecl() && PrevDecl) {
3640    // Don't introduce NewFD into scope; there's already something
3641    // with the same name in the same scope.
3642  } else if (II) {
3643    PushOnScopeChains(NewFD, S);
3644  } else
3645    Record->addDecl(Context, NewFD);
3646
3647  return NewFD;
3648}
3649
3650/// \brief Build a new FieldDecl and check its well-formedness.
3651///
3652/// This routine builds a new FieldDecl given the fields name, type,
3653/// record, etc. \p PrevDecl should refer to any previous declaration
3654/// with the same name and in the same scope as the field to be
3655/// created.
3656///
3657/// \returns a new FieldDecl.
3658///
3659/// \todo The Declarator argument is a hack. It will be removed once
3660FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3661                                RecordDecl *Record, SourceLocation Loc,
3662                                bool Mutable, Expr *BitWidth,
3663                                AccessSpecifier AS, NamedDecl *PrevDecl,
3664                                Declarator *D) {
3665  IdentifierInfo *II = Name.getAsIdentifierInfo();
3666  bool InvalidDecl = false;
3667  if (D) InvalidDecl = D->isInvalidType();
3668
3669  // If we receive a broken type, recover by assuming 'int' and
3670  // marking this declaration as invalid.
3671  if (T.isNull()) {
3672    InvalidDecl = true;
3673    T = Context.IntTy;
3674  }
3675
3676  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3677  // than a variably modified type.
3678  if (T->isVariablyModifiedType()) {
3679    bool SizeIsNegative;
3680    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3681                                                           SizeIsNegative);
3682    if (!FixedTy.isNull()) {
3683      Diag(Loc, diag::warn_illegal_constant_array_size);
3684      T = FixedTy;
3685    } else {
3686      if (SizeIsNegative)
3687        Diag(Loc, diag::err_typecheck_negative_array_size);
3688      else
3689        Diag(Loc, diag::err_typecheck_field_variable_size);
3690      T = Context.IntTy;
3691      InvalidDecl = true;
3692    }
3693  }
3694
3695  // Fields can not have abstract class types
3696  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3697                             AbstractFieldType))
3698    InvalidDecl = true;
3699
3700  // If this is declared as a bit-field, check the bit-field.
3701  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3702    InvalidDecl = true;
3703    DeleteExpr(BitWidth);
3704    BitWidth = 0;
3705  }
3706
3707  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3708                                       Mutable);
3709  if (InvalidDecl)
3710    NewFD->setInvalidDecl();
3711
3712  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3713    Diag(Loc, diag::err_duplicate_member) << II;
3714    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3715    NewFD->setInvalidDecl();
3716    Record->setInvalidDecl();
3717  }
3718
3719  if (getLangOptions().CPlusPlus && !T->isPODType())
3720    cast<CXXRecordDecl>(Record)->setPOD(false);
3721
3722  // FIXME: We need to pass in the attributes given an AST
3723  // representation, not a parser representation.
3724  if (D)
3725    ProcessDeclAttributes(NewFD, *D);
3726
3727  if (T.isObjCGCWeak())
3728    Diag(Loc, diag::warn_attribute_weak_on_field);
3729
3730  NewFD->setAccess(AS);
3731
3732  // C++ [dcl.init.aggr]p1:
3733  //   An aggregate is an array or a class (clause 9) with [...] no
3734  //   private or protected non-static data members (clause 11).
3735  // A POD must be an aggregate.
3736  if (getLangOptions().CPlusPlus &&
3737      (AS == AS_private || AS == AS_protected)) {
3738    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3739    CXXRecord->setAggregate(false);
3740    CXXRecord->setPOD(false);
3741  }
3742
3743  return NewFD;
3744}
3745
3746/// TranslateIvarVisibility - Translate visibility from a token ID to an
3747///  AST enum value.
3748static ObjCIvarDecl::AccessControl
3749TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3750  switch (ivarVisibility) {
3751  default: assert(0 && "Unknown visitibility kind");
3752  case tok::objc_private: return ObjCIvarDecl::Private;
3753  case tok::objc_public: return ObjCIvarDecl::Public;
3754  case tok::objc_protected: return ObjCIvarDecl::Protected;
3755  case tok::objc_package: return ObjCIvarDecl::Package;
3756  }
3757}
3758
3759/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3760/// in order to create an IvarDecl object for it.
3761Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3762                                SourceLocation DeclStart,
3763                                Declarator &D, ExprTy *BitfieldWidth,
3764                                tok::ObjCKeywordKind Visibility) {
3765
3766  IdentifierInfo *II = D.getIdentifier();
3767  Expr *BitWidth = (Expr*)BitfieldWidth;
3768  SourceLocation Loc = DeclStart;
3769  if (II) Loc = D.getIdentifierLoc();
3770
3771  // FIXME: Unnamed fields can be handled in various different ways, for
3772  // example, unnamed unions inject all members into the struct namespace!
3773
3774  QualType T = GetTypeForDeclarator(D, S);
3775
3776  if (BitWidth) {
3777    // 6.7.2.1p3, 6.7.2.1p4
3778    if (VerifyBitField(Loc, II, T, BitWidth)) {
3779      D.setInvalidType();
3780      DeleteExpr(BitWidth);
3781      BitWidth = 0;
3782    }
3783  } else {
3784    // Not a bitfield.
3785
3786    // validate II.
3787
3788  }
3789
3790  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3791  // than a variably modified type.
3792  if (T->isVariablyModifiedType()) {
3793    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3794    D.setInvalidType();
3795  }
3796
3797  // Get the visibility (access control) for this ivar.
3798  ObjCIvarDecl::AccessControl ac =
3799    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3800                                        : ObjCIvarDecl::None;
3801
3802  // Construct the decl.
3803  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3804                                             (Expr *)BitfieldWidth);
3805
3806  if (II) {
3807    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3808    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3809        && !isa<TagDecl>(PrevDecl)) {
3810      Diag(Loc, diag::err_duplicate_member) << II;
3811      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3812      NewID->setInvalidDecl();
3813    }
3814  }
3815
3816  // Process attributes attached to the ivar.
3817  ProcessDeclAttributes(NewID, D);
3818
3819  if (D.isInvalidType())
3820    NewID->setInvalidDecl();
3821
3822  if (II) {
3823    // FIXME: When interfaces are DeclContexts, we'll need to add
3824    // these to the interface.
3825    S->AddDecl(DeclPtrTy::make(NewID));
3826    IdResolver.AddDecl(NewID);
3827  }
3828
3829  return DeclPtrTy::make(NewID);
3830}
3831
3832void Sema::ActOnFields(Scope* S,
3833                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3834                       DeclPtrTy *Fields, unsigned NumFields,
3835                       SourceLocation LBrac, SourceLocation RBrac,
3836                       AttributeList *Attr) {
3837  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3838  assert(EnclosingDecl && "missing record or interface decl");
3839
3840  // If the decl this is being inserted into is invalid, then it may be a
3841  // redeclaration or some other bogus case.  Don't try to add fields to it.
3842  if (EnclosingDecl->isInvalidDecl()) {
3843    // FIXME: Deallocate fields?
3844    return;
3845  }
3846
3847
3848  // Verify that all the fields are okay.
3849  unsigned NumNamedMembers = 0;
3850  llvm::SmallVector<FieldDecl*, 32> RecFields;
3851
3852  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3853  for (unsigned i = 0; i != NumFields; ++i) {
3854    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3855
3856    // Get the type for the field.
3857    Type *FDTy = FD->getType().getTypePtr();
3858
3859    if (!FD->isAnonymousStructOrUnion()) {
3860      // Remember all fields written by the user.
3861      RecFields.push_back(FD);
3862    }
3863
3864    // If the field is already invalid for some reason, don't emit more
3865    // diagnostics about it.
3866    if (FD->isInvalidDecl())
3867      continue;
3868
3869    // C99 6.7.2.1p2:
3870    //   A structure or union shall not contain a member with
3871    //   incomplete or function type (hence, a structure shall not
3872    //   contain an instance of itself, but may contain a pointer to
3873    //   an instance of itself), except that the last member of a
3874    //   structure with more than one named member may have incomplete
3875    //   array type; such a structure (and any union containing,
3876    //   possibly recursively, a member that is such a structure)
3877    //   shall not be a member of a structure or an element of an
3878    //   array.
3879    if (FDTy->isFunctionType()) {
3880      // Field declared as a function.
3881      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3882        << FD->getDeclName();
3883      FD->setInvalidDecl();
3884      EnclosingDecl->setInvalidDecl();
3885      continue;
3886    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3887               Record && Record->isStruct()) {
3888      // Flexible array member.
3889      if (NumNamedMembers < 1) {
3890        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3891          << FD->getDeclName();
3892        FD->setInvalidDecl();
3893        EnclosingDecl->setInvalidDecl();
3894        continue;
3895      }
3896      // Okay, we have a legal flexible array member at the end of the struct.
3897      if (Record)
3898        Record->setHasFlexibleArrayMember(true);
3899    } else if (!FDTy->isDependentType() &&
3900               RequireCompleteType(FD->getLocation(), FD->getType(),
3901                                   diag::err_field_incomplete)) {
3902      // Incomplete type
3903      FD->setInvalidDecl();
3904      EnclosingDecl->setInvalidDecl();
3905      continue;
3906    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3907      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3908        // If this is a member of a union, then entire union becomes "flexible".
3909        if (Record && Record->isUnion()) {
3910          Record->setHasFlexibleArrayMember(true);
3911        } else {
3912          // If this is a struct/class and this is not the last element, reject
3913          // it.  Note that GCC supports variable sized arrays in the middle of
3914          // structures.
3915          if (i != NumFields-1)
3916            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3917              << FD->getDeclName() << FD->getType();
3918          else {
3919            // We support flexible arrays at the end of structs in
3920            // other structs as an extension.
3921            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3922              << FD->getDeclName();
3923            if (Record)
3924              Record->setHasFlexibleArrayMember(true);
3925          }
3926        }
3927      }
3928    } else if (FDTy->isObjCInterfaceType()) {
3929      /// A field cannot be an Objective-c object
3930      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3931      FD->setInvalidDecl();
3932      EnclosingDecl->setInvalidDecl();
3933      continue;
3934    }
3935    // Keep track of the number of named members.
3936    if (FD->getIdentifier())
3937      ++NumNamedMembers;
3938  }
3939
3940  // Okay, we successfully defined 'Record'.
3941  if (Record) {
3942    Record->completeDefinition(Context);
3943  } else {
3944    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3945    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3946      ID->setIVarList(ClsFields, RecFields.size(), Context);
3947      ID->setLocEnd(RBrac);
3948
3949      // Must enforce the rule that ivars in the base classes may not be
3950      // duplicates.
3951      if (ID->getSuperClass()) {
3952        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3953             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3954          ObjCIvarDecl* Ivar = (*IVI);
3955          IdentifierInfo *II = Ivar->getIdentifier();
3956          ObjCIvarDecl* prevIvar =
3957            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3958          if (prevIvar) {
3959            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3960            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3961          }
3962        }
3963      }
3964    } else if (ObjCImplementationDecl *IMPDecl =
3965                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3966      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3967      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
3968        // FIXME: Set the DeclContext correctly when we build the
3969        // declarations.
3970        ClsFields[I]->setLexicalDeclContext(IMPDecl);
3971        IMPDecl->addDecl(Context, ClsFields[I]);
3972      }
3973      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3974    }
3975  }
3976
3977  if (Attr)
3978    ProcessDeclAttributeList(Record, Attr);
3979}
3980
3981EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3982                                          EnumConstantDecl *LastEnumConst,
3983                                          SourceLocation IdLoc,
3984                                          IdentifierInfo *Id,
3985                                          ExprArg val) {
3986  Expr *Val = (Expr *)val.get();
3987
3988  llvm::APSInt EnumVal(32);
3989  QualType EltTy;
3990  if (Val && !Val->isTypeDependent()) {
3991    // Make sure to promote the operand type to int.
3992    UsualUnaryConversions(Val);
3993    if (Val != val.get()) {
3994      val.release();
3995      val = Val;
3996    }
3997
3998    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3999    SourceLocation ExpLoc;
4000    if (!Val->isValueDependent() &&
4001        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4002      Val = 0;
4003    } else {
4004      EltTy = Val->getType();
4005    }
4006  }
4007
4008  if (!Val) {
4009    if (LastEnumConst) {
4010      // Assign the last value + 1.
4011      EnumVal = LastEnumConst->getInitVal();
4012      ++EnumVal;
4013
4014      // Check for overflow on increment.
4015      if (EnumVal < LastEnumConst->getInitVal())
4016        Diag(IdLoc, diag::warn_enum_value_overflow);
4017
4018      EltTy = LastEnumConst->getType();
4019    } else {
4020      // First value, set to zero.
4021      EltTy = Context.IntTy;
4022      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4023    }
4024  }
4025
4026  val.release();
4027  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4028                                  Val, EnumVal);
4029}
4030
4031
4032Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4033                                        DeclPtrTy lastEnumConst,
4034                                        SourceLocation IdLoc,
4035                                        IdentifierInfo *Id,
4036                                        SourceLocation EqualLoc, ExprTy *val) {
4037  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4038  EnumConstantDecl *LastEnumConst =
4039    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4040  Expr *Val = static_cast<Expr*>(val);
4041
4042  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4043  // we find one that is.
4044  S = getNonFieldDeclScope(S);
4045
4046  // Verify that there isn't already something declared with this name in this
4047  // scope.
4048  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4049  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4050    // Maybe we will complain about the shadowed template parameter.
4051    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4052    // Just pretend that we didn't see the previous declaration.
4053    PrevDecl = 0;
4054  }
4055
4056  if (PrevDecl) {
4057    // When in C++, we may get a TagDecl with the same name; in this case the
4058    // enum constant will 'hide' the tag.
4059    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4060           "Received TagDecl when not in C++!");
4061    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4062      if (isa<EnumConstantDecl>(PrevDecl))
4063        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4064      else
4065        Diag(IdLoc, diag::err_redefinition) << Id;
4066      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4067      if (Val) Val->Destroy(Context);
4068      return DeclPtrTy();
4069    }
4070  }
4071
4072  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4073                                            IdLoc, Id, Owned(Val));
4074
4075  // Register this decl in the current scope stack.
4076  if (New)
4077    PushOnScopeChains(New, S);
4078
4079  return DeclPtrTy::make(New);
4080}
4081
4082// FIXME: For consistency with ActOnFields(), we should have the parser
4083// pass in the source location for the left/right braces.
4084void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4085                         DeclPtrTy *Elements, unsigned NumElements) {
4086  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4087  QualType EnumType = Context.getTypeDeclType(Enum);
4088
4089  // TODO: If the result value doesn't fit in an int, it must be a long or long
4090  // long value.  ISO C does not support this, but GCC does as an extension,
4091  // emit a warning.
4092  unsigned IntWidth = Context.Target.getIntWidth();
4093
4094  // Verify that all the values are okay, compute the size of the values, and
4095  // reverse the list.
4096  unsigned NumNegativeBits = 0;
4097  unsigned NumPositiveBits = 0;
4098
4099  // Keep track of whether all elements have type int.
4100  bool AllElementsInt = true;
4101
4102  for (unsigned i = 0; i != NumElements; ++i) {
4103    EnumConstantDecl *ECD =
4104      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4105    if (!ECD) continue;  // Already issued a diagnostic.
4106
4107    // If the enum value doesn't fit in an int, emit an extension warning.
4108    const llvm::APSInt &InitVal = ECD->getInitVal();
4109    assert(InitVal.getBitWidth() >= IntWidth &&
4110           "Should have promoted value to int");
4111    if (InitVal.getBitWidth() > IntWidth) {
4112      llvm::APSInt V(InitVal);
4113      V.trunc(IntWidth);
4114      V.extend(InitVal.getBitWidth());
4115      if (V != InitVal)
4116        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4117          << InitVal.toString(10);
4118    }
4119
4120    // Keep track of the size of positive and negative values.
4121    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4122      NumPositiveBits = std::max(NumPositiveBits,
4123                                 (unsigned)InitVal.getActiveBits());
4124    else
4125      NumNegativeBits = std::max(NumNegativeBits,
4126                                 (unsigned)InitVal.getMinSignedBits());
4127
4128    // Keep track of whether every enum element has type int (very commmon).
4129    if (AllElementsInt)
4130      AllElementsInt = ECD->getType() == Context.IntTy;
4131  }
4132
4133  // Figure out the type that should be used for this enum.
4134  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4135  QualType BestType;
4136  unsigned BestWidth;
4137
4138  if (NumNegativeBits) {
4139    // If there is a negative value, figure out the smallest integer type (of
4140    // int/long/longlong) that fits.
4141    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4142      BestType = Context.IntTy;
4143      BestWidth = IntWidth;
4144    } else {
4145      BestWidth = Context.Target.getLongWidth();
4146
4147      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4148        BestType = Context.LongTy;
4149      else {
4150        BestWidth = Context.Target.getLongLongWidth();
4151
4152        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4153          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4154        BestType = Context.LongLongTy;
4155      }
4156    }
4157  } else {
4158    // If there is no negative value, figure out which of uint, ulong, ulonglong
4159    // fits.
4160    if (NumPositiveBits <= IntWidth) {
4161      BestType = Context.UnsignedIntTy;
4162      BestWidth = IntWidth;
4163    } else if (NumPositiveBits <=
4164               (BestWidth = Context.Target.getLongWidth())) {
4165      BestType = Context.UnsignedLongTy;
4166    } else {
4167      BestWidth = Context.Target.getLongLongWidth();
4168      assert(NumPositiveBits <= BestWidth &&
4169             "How could an initializer get larger than ULL?");
4170      BestType = Context.UnsignedLongLongTy;
4171    }
4172  }
4173
4174  // Loop over all of the enumerator constants, changing their types to match
4175  // the type of the enum if needed.
4176  for (unsigned i = 0; i != NumElements; ++i) {
4177    EnumConstantDecl *ECD =
4178      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4179    if (!ECD) continue;  // Already issued a diagnostic.
4180
4181    // Standard C says the enumerators have int type, but we allow, as an
4182    // extension, the enumerators to be larger than int size.  If each
4183    // enumerator value fits in an int, type it as an int, otherwise type it the
4184    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4185    // that X has type 'int', not 'unsigned'.
4186    if (ECD->getType() == Context.IntTy) {
4187      // Make sure the init value is signed.
4188      llvm::APSInt IV = ECD->getInitVal();
4189      IV.setIsSigned(true);
4190      ECD->setInitVal(IV);
4191
4192      if (getLangOptions().CPlusPlus)
4193        // C++ [dcl.enum]p4: Following the closing brace of an
4194        // enum-specifier, each enumerator has the type of its
4195        // enumeration.
4196        ECD->setType(EnumType);
4197      continue;  // Already int type.
4198    }
4199
4200    // Determine whether the value fits into an int.
4201    llvm::APSInt InitVal = ECD->getInitVal();
4202    bool FitsInInt;
4203    if (InitVal.isUnsigned() || !InitVal.isNegative())
4204      FitsInInt = InitVal.getActiveBits() < IntWidth;
4205    else
4206      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4207
4208    // If it fits into an integer type, force it.  Otherwise force it to match
4209    // the enum decl type.
4210    QualType NewTy;
4211    unsigned NewWidth;
4212    bool NewSign;
4213    if (FitsInInt) {
4214      NewTy = Context.IntTy;
4215      NewWidth = IntWidth;
4216      NewSign = true;
4217    } else if (ECD->getType() == BestType) {
4218      // Already the right type!
4219      if (getLangOptions().CPlusPlus)
4220        // C++ [dcl.enum]p4: Following the closing brace of an
4221        // enum-specifier, each enumerator has the type of its
4222        // enumeration.
4223        ECD->setType(EnumType);
4224      continue;
4225    } else {
4226      NewTy = BestType;
4227      NewWidth = BestWidth;
4228      NewSign = BestType->isSignedIntegerType();
4229    }
4230
4231    // Adjust the APSInt value.
4232    InitVal.extOrTrunc(NewWidth);
4233    InitVal.setIsSigned(NewSign);
4234    ECD->setInitVal(InitVal);
4235
4236    // Adjust the Expr initializer and type.
4237    if (ECD->getInitExpr())
4238      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4239                                                      /*isLvalue=*/false));
4240    if (getLangOptions().CPlusPlus)
4241      // C++ [dcl.enum]p4: Following the closing brace of an
4242      // enum-specifier, each enumerator has the type of its
4243      // enumeration.
4244      ECD->setType(EnumType);
4245    else
4246      ECD->setType(NewTy);
4247  }
4248
4249  Enum->completeDefinition(Context, BestType);
4250}
4251
4252Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4253                                            ExprArg expr) {
4254  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4255
4256  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4257                                                  Loc, AsmString));
4258}
4259
4260