SemaDecl.cpp revision a316e7b735b12ce6b34961a9dcfaae34f4b08d29
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34/// \brief If the identifier refers to a type name within this scope,
35/// return the declaration of that type.
36///
37/// This routine performs ordinary name lookup of the identifier II
38/// within the given scope, with optional C++ scope specifier SS, to
39/// determine whether the name refers to a type. If so, returns an
40/// opaque pointer (actually a QualType) corresponding to that
41/// type. Otherwise, returns NULL.
42///
43/// If name lookup results in an ambiguity, this routine will complain
44/// and then return NULL.
45Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
46                                Scope *S, const CXXScopeSpec *SS) {
47  Decl *IIDecl = 0;
48  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
49                                         false, false);
50  switch (Result.getKind()) {
51    case LookupResult::NotFound:
52    case LookupResult::FoundOverloaded:
53      return 0;
54
55    case LookupResult::AmbiguousBaseSubobjectTypes:
56    case LookupResult::AmbiguousBaseSubobjects:
57    case LookupResult::AmbiguousReference:
58      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
59      return 0;
60
61    case LookupResult::Found:
62      IIDecl = Result.getAsDecl();
63      break;
64  }
65
66  if (IIDecl) {
67    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
68      return Context.getTypeDeclType(TD).getAsOpaquePtr();
69    else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
70      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
71  }
72  return 0;
73}
74
75DeclContext *Sema::getContainingDC(DeclContext *DC) {
76  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
77    // A C++ out-of-line method will return to the file declaration context.
78    if (MD->isOutOfLineDefinition())
79      return MD->getLexicalDeclContext();
80
81    // A C++ inline method is parsed *after* the topmost class it was declared in
82    // is fully parsed (it's "complete").
83    // The parsing of a C++ inline method happens at the declaration context of
84    // the topmost (non-nested) class it is lexically declared in.
85    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
86    DC = MD->getParent();
87    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
88      DC = RD;
89
90    // Return the declaration context of the topmost class the inline method is
91    // declared in.
92    return DC;
93  }
94
95  if (isa<ObjCMethodDecl>(DC))
96    return Context.getTranslationUnitDecl();
97
98  if (Decl *D = dyn_cast<Decl>(DC))
99    return D->getLexicalDeclContext();
100
101  return DC->getLexicalParent();
102}
103
104void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
105  assert(getContainingDC(DC) == CurContext &&
106      "The next DeclContext should be lexically contained in the current one.");
107  CurContext = DC;
108  S->setEntity(DC);
109}
110
111void Sema::PopDeclContext() {
112  assert(CurContext && "DeclContext imbalance!");
113
114  CurContext = getContainingDC(CurContext);
115}
116
117/// \brief Determine whether we allow overloading of the function
118/// PrevDecl with another declaration.
119///
120/// This routine determines whether overloading is possible, not
121/// whether some new function is actually an overload. It will return
122/// true in C++ (where we can always provide overloads) or, as an
123/// extension, in C when the previous function is already an
124/// overloaded function declaration or has the "overloadable"
125/// attribute.
126static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
127  if (Context.getLangOptions().CPlusPlus)
128    return true;
129
130  if (isa<OverloadedFunctionDecl>(PrevDecl))
131    return true;
132
133  return PrevDecl->getAttr<OverloadableAttr>() != 0;
134}
135
136/// Add this decl to the scope shadowed decl chains.
137void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
138  // Move up the scope chain until we find the nearest enclosing
139  // non-transparent context. The declaration will be introduced into this
140  // scope.
141  while (S->getEntity() &&
142         ((DeclContext *)S->getEntity())->isTransparentContext())
143    S = S->getParent();
144
145  S->AddDecl(D);
146
147  // Add scoped declarations into their context, so that they can be
148  // found later. Declarations without a context won't be inserted
149  // into any context.
150  CurContext->addDecl(D);
151
152  // C++ [basic.scope]p4:
153  //   -- exactly one declaration shall declare a class name or
154  //   enumeration name that is not a typedef name and the other
155  //   declarations shall all refer to the same object or
156  //   enumerator, or all refer to functions and function templates;
157  //   in this case the class name or enumeration name is hidden.
158  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
159    // We are pushing the name of a tag (enum or class).
160    if (CurContext->getLookupContext()
161          == TD->getDeclContext()->getLookupContext()) {
162      // We're pushing the tag into the current context, which might
163      // require some reshuffling in the identifier resolver.
164      IdentifierResolver::iterator
165        I = IdResolver.begin(TD->getDeclName()),
166        IEnd = IdResolver.end();
167      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
168        NamedDecl *PrevDecl = *I;
169        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
170             PrevDecl = *I, ++I) {
171          if (TD->declarationReplaces(*I)) {
172            // This is a redeclaration. Remove it from the chain and
173            // break out, so that we'll add in the shadowed
174            // declaration.
175            S->RemoveDecl(*I);
176            if (PrevDecl == *I) {
177              IdResolver.RemoveDecl(*I);
178              IdResolver.AddDecl(TD);
179              return;
180            } else {
181              IdResolver.RemoveDecl(*I);
182              break;
183            }
184          }
185        }
186
187        // There is already a declaration with the same name in the same
188        // scope, which is not a tag declaration. It must be found
189        // before we find the new declaration, so insert the new
190        // declaration at the end of the chain.
191        IdResolver.AddShadowedDecl(TD, PrevDecl);
192
193        return;
194      }
195    }
196  } else if (isa<FunctionDecl>(D) &&
197             AllowOverloadingOfFunction(D, Context)) {
198    // We are pushing the name of a function, which might be an
199    // overloaded name.
200    FunctionDecl *FD = cast<FunctionDecl>(D);
201    IdentifierResolver::iterator Redecl
202      = std::find_if(IdResolver.begin(FD->getDeclName()),
203                     IdResolver.end(),
204                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
205                                  FD));
206    if (Redecl != IdResolver.end()) {
207      // There is already a declaration of a function on our
208      // IdResolver chain. Replace it with this declaration.
209      S->RemoveDecl(*Redecl);
210      IdResolver.RemoveDecl(*Redecl);
211    }
212  }
213
214  IdResolver.AddDecl(D);
215}
216
217void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
218  if (S->decl_empty()) return;
219  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
220	 "Scope shouldn't contain decls!");
221
222  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
223       I != E; ++I) {
224    Decl *TmpD = static_cast<Decl*>(*I);
225    assert(TmpD && "This decl didn't get pushed??");
226
227    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
228    NamedDecl *D = cast<NamedDecl>(TmpD);
229
230    if (!D->getDeclName()) continue;
231
232    // Remove this name from our lexical scope.
233    IdResolver.RemoveDecl(D);
234  }
235}
236
237/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
238/// return 0 if one not found.
239ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
240  // The third "scope" argument is 0 since we aren't enabling lazy built-in
241  // creation from this context.
242  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
243
244  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
245}
246
247/// getNonFieldDeclScope - Retrieves the innermost scope, starting
248/// from S, where a non-field would be declared. This routine copes
249/// with the difference between C and C++ scoping rules in structs and
250/// unions. For example, the following code is well-formed in C but
251/// ill-formed in C++:
252/// @code
253/// struct S6 {
254///   enum { BAR } e;
255/// };
256///
257/// void test_S6() {
258///   struct S6 a;
259///   a.e = BAR;
260/// }
261/// @endcode
262/// For the declaration of BAR, this routine will return a different
263/// scope. The scope S will be the scope of the unnamed enumeration
264/// within S6. In C++, this routine will return the scope associated
265/// with S6, because the enumeration's scope is a transparent
266/// context but structures can contain non-field names. In C, this
267/// routine will return the translation unit scope, since the
268/// enumeration's scope is a transparent context and structures cannot
269/// contain non-field names.
270Scope *Sema::getNonFieldDeclScope(Scope *S) {
271  while (((S->getFlags() & Scope::DeclScope) == 0) ||
272         (S->getEntity() &&
273          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
274         (S->isClassScope() && !getLangOptions().CPlusPlus))
275    S = S->getParent();
276  return S;
277}
278
279void Sema::InitBuiltinVaListType() {
280  if (!Context.getBuiltinVaListType().isNull())
281    return;
282
283  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
284  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
285  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
286  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
287}
288
289/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
290/// file scope.  lazily create a decl for it. ForRedeclaration is true
291/// if we're creating this built-in in anticipation of redeclaring the
292/// built-in.
293NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
294                                     Scope *S, bool ForRedeclaration,
295                                     SourceLocation Loc) {
296  Builtin::ID BID = (Builtin::ID)bid;
297
298  if (Context.BuiltinInfo.hasVAListUse(BID))
299    InitBuiltinVaListType();
300
301  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
302
303  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
304    Diag(Loc, diag::ext_implicit_lib_function_decl)
305      << Context.BuiltinInfo.GetName(BID)
306      << R;
307    if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
308        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
309          != diag::MAP_IGNORE)
310      Diag(Loc, diag::note_please_include_header)
311        << Context.BuiltinInfo.getHeaderName(BID)
312        << Context.BuiltinInfo.GetName(BID);
313  }
314
315  FunctionDecl *New = FunctionDecl::Create(Context,
316                                           Context.getTranslationUnitDecl(),
317                                           Loc, II, R,
318                                           FunctionDecl::Extern, false);
319  New->setImplicit();
320
321  // Create Decl objects for each parameter, adding them to the
322  // FunctionDecl.
323  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
324    llvm::SmallVector<ParmVarDecl*, 16> Params;
325    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
326      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
327                                           FT->getArgType(i), VarDecl::None, 0));
328    New->setParams(Context, &Params[0], Params.size());
329  }
330
331
332
333  // TUScope is the translation-unit scope to insert this function into.
334  // FIXME: This is hideous. We need to teach PushOnScopeChains to
335  // relate Scopes to DeclContexts, and probably eliminate CurContext
336  // entirely, but we're not there yet.
337  DeclContext *SavedContext = CurContext;
338  CurContext = Context.getTranslationUnitDecl();
339  PushOnScopeChains(New, TUScope);
340  CurContext = SavedContext;
341  return New;
342}
343
344/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
345/// everything from the standard library is defined.
346NamespaceDecl *Sema::GetStdNamespace() {
347  if (!StdNamespace) {
348    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
349    DeclContext *Global = Context.getTranslationUnitDecl();
350    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
351    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
352  }
353  return StdNamespace;
354}
355
356/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
357/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
358/// situation, merging decls or emitting diagnostics as appropriate.
359///
360TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
361  bool objc_types = false;
362  // Allow multiple definitions for ObjC built-in typedefs.
363  // FIXME: Verify the underlying types are equivalent!
364  if (getLangOptions().ObjC1) {
365    const IdentifierInfo *TypeID = New->getIdentifier();
366    switch (TypeID->getLength()) {
367    default: break;
368    case 2:
369      if (!TypeID->isStr("id"))
370        break;
371      Context.setObjCIdType(New);
372      objc_types = true;
373      break;
374    case 5:
375      if (!TypeID->isStr("Class"))
376        break;
377      Context.setObjCClassType(New);
378      objc_types = true;
379      return New;
380    case 3:
381      if (!TypeID->isStr("SEL"))
382        break;
383      Context.setObjCSelType(New);
384      objc_types = true;
385      return New;
386    case 8:
387      if (!TypeID->isStr("Protocol"))
388        break;
389      Context.setObjCProtoType(New->getUnderlyingType());
390      objc_types = true;
391      return New;
392    }
393    // Fall through - the typedef name was not a builtin type.
394  }
395  // Verify the old decl was also a type.
396  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
397  if (!Old) {
398    Diag(New->getLocation(), diag::err_redefinition_different_kind)
399      << New->getDeclName();
400    if (!objc_types)
401      Diag(OldD->getLocation(), diag::note_previous_definition);
402    return New;
403  }
404
405  // Determine the "old" type we'll use for checking and diagnostics.
406  QualType OldType;
407  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
408    OldType = OldTypedef->getUnderlyingType();
409  else
410    OldType = Context.getTypeDeclType(Old);
411
412  // If the typedef types are not identical, reject them in all languages and
413  // with any extensions enabled.
414
415  if (OldType != New->getUnderlyingType() &&
416      Context.getCanonicalType(OldType) !=
417      Context.getCanonicalType(New->getUnderlyingType())) {
418    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
419      << New->getUnderlyingType() << OldType;
420    if (!objc_types)
421      Diag(Old->getLocation(), diag::note_previous_definition);
422    return New;
423  }
424  if (objc_types) return New;
425  if (getLangOptions().Microsoft) return New;
426
427  // C++ [dcl.typedef]p2:
428  //   In a given non-class scope, a typedef specifier can be used to
429  //   redefine the name of any type declared in that scope to refer
430  //   to the type to which it already refers.
431  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
432    return New;
433
434  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
435  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
436  // *either* declaration is in a system header. The code below implements
437  // this adhoc compatibility rule. FIXME: The following code will not
438  // work properly when compiling ".i" files (containing preprocessed output).
439  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
440    SourceManager &SrcMgr = Context.getSourceManager();
441    if (SrcMgr.isInSystemHeader(Old->getLocation()))
442      return New;
443    if (SrcMgr.isInSystemHeader(New->getLocation()))
444      return New;
445  }
446
447  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
448  Diag(Old->getLocation(), diag::note_previous_definition);
449  return New;
450}
451
452/// DeclhasAttr - returns true if decl Declaration already has the target
453/// attribute.
454static bool DeclHasAttr(const Decl *decl, const Attr *target) {
455  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
456    if (attr->getKind() == target->getKind())
457      return true;
458
459  return false;
460}
461
462/// MergeAttributes - append attributes from the Old decl to the New one.
463static void MergeAttributes(Decl *New, Decl *Old) {
464  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
465
466  while (attr) {
467    tmp = attr;
468    attr = attr->getNext();
469
470    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
471      tmp->setInherited(true);
472      New->addAttr(tmp);
473    } else {
474      tmp->setNext(0);
475      delete(tmp);
476    }
477  }
478
479  Old->invalidateAttrs();
480}
481
482/// MergeFunctionDecl - We just parsed a function 'New' from
483/// declarator D which has the same name and scope as a previous
484/// declaration 'Old'.  Figure out how to resolve this situation,
485/// merging decls or emitting diagnostics as appropriate.
486/// Redeclaration will be set true if this New is a redeclaration OldD.
487///
488/// In C++, New and Old must be declarations that are not
489/// overloaded. Use IsOverload to determine whether New and Old are
490/// overloaded, and to select the Old declaration that New should be
491/// merged with.
492FunctionDecl *
493Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
494  assert(!isa<OverloadedFunctionDecl>(OldD) &&
495         "Cannot merge with an overloaded function declaration");
496
497  Redeclaration = false;
498  // Verify the old decl was also a function.
499  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
500  if (!Old) {
501    Diag(New->getLocation(), diag::err_redefinition_different_kind)
502      << New->getDeclName();
503    Diag(OldD->getLocation(), diag::note_previous_definition);
504    return New;
505  }
506
507  // Determine whether the previous declaration was a definition,
508  // implicit declaration, or a declaration.
509  diag::kind PrevDiag;
510  if (Old->isThisDeclarationADefinition())
511    PrevDiag = diag::note_previous_definition;
512  else if (Old->isImplicit()) {
513    if (Old->getBuiltinID())
514      PrevDiag = diag::note_previous_builtin_declaration;
515    else
516      PrevDiag = diag::note_previous_implicit_declaration;
517  } else
518    PrevDiag = diag::note_previous_declaration;
519
520  QualType OldQType = Context.getCanonicalType(Old->getType());
521  QualType NewQType = Context.getCanonicalType(New->getType());
522
523  if (getLangOptions().CPlusPlus) {
524    // (C++98 13.1p2):
525    //   Certain function declarations cannot be overloaded:
526    //     -- Function declarations that differ only in the return type
527    //        cannot be overloaded.
528    QualType OldReturnType
529      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
530    QualType NewReturnType
531      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
532    if (OldReturnType != NewReturnType) {
533      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
534      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
535      Redeclaration = true;
536      return New;
537    }
538
539    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
540    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
541    if (OldMethod && NewMethod) {
542      //    -- Member function declarations with the same name and the
543      //       same parameter types cannot be overloaded if any of them
544      //       is a static member function declaration.
545      if (OldMethod->isStatic() || NewMethod->isStatic()) {
546        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
547        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
548        return New;
549      }
550
551      // C++ [class.mem]p1:
552      //   [...] A member shall not be declared twice in the
553      //   member-specification, except that a nested class or member
554      //   class template can be declared and then later defined.
555      if (OldMethod->getLexicalDeclContext() ==
556            NewMethod->getLexicalDeclContext()) {
557        unsigned NewDiag;
558        if (isa<CXXConstructorDecl>(OldMethod))
559          NewDiag = diag::err_constructor_redeclared;
560        else if (isa<CXXDestructorDecl>(NewMethod))
561          NewDiag = diag::err_destructor_redeclared;
562        else if (isa<CXXConversionDecl>(NewMethod))
563          NewDiag = diag::err_conv_function_redeclared;
564        else
565          NewDiag = diag::err_member_redeclared;
566
567        Diag(New->getLocation(), NewDiag);
568        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
569      }
570    }
571
572    // (C++98 8.3.5p3):
573    //   All declarations for a function shall agree exactly in both the
574    //   return type and the parameter-type-list.
575    if (OldQType == NewQType) {
576      // We have a redeclaration.
577      MergeAttributes(New, Old);
578      Redeclaration = true;
579      return MergeCXXFunctionDecl(New, Old);
580    }
581
582    // Fall through for conflicting redeclarations and redefinitions.
583  }
584
585  // C: Function types need to be compatible, not identical. This handles
586  // duplicate function decls like "void f(int); void f(enum X);" properly.
587  if (!getLangOptions().CPlusPlus &&
588      Context.typesAreCompatible(OldQType, NewQType)) {
589    MergeAttributes(New, Old);
590    Redeclaration = true;
591    return New;
592  }
593
594  // A function that has already been declared has been redeclared or defined
595  // with a different type- show appropriate diagnostic
596
597  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
598  // TODO: This is totally simplistic.  It should handle merging functions
599  // together etc, merging extern int X; int X; ...
600  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
601  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
602  return New;
603}
604
605/// Predicate for C "tentative" external object definitions (C99 6.9.2).
606static bool isTentativeDefinition(VarDecl *VD) {
607  if (VD->isFileVarDecl())
608    return (!VD->getInit() &&
609            (VD->getStorageClass() == VarDecl::None ||
610             VD->getStorageClass() == VarDecl::Static));
611  return false;
612}
613
614/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
615/// when dealing with C "tentative" external object definitions (C99 6.9.2).
616void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
617  bool VDIsTentative = isTentativeDefinition(VD);
618  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
619
620  // FIXME: I don't think this will actually see all of the
621  // redefinitions. Can't we check this property on-the-fly?
622  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
623                                    E = IdResolver.end();
624       I != E; ++I) {
625    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
626      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
627
628      // Handle the following case:
629      //   int a[10];
630      //   int a[];   - the code below makes sure we set the correct type.
631      //   int a[11]; - this is an error, size isn't 10.
632      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
633          OldDecl->getType()->isConstantArrayType())
634        VD->setType(OldDecl->getType());
635
636      // Check for "tentative" definitions. We can't accomplish this in
637      // MergeVarDecl since the initializer hasn't been attached.
638      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
639        continue;
640
641      // Handle __private_extern__ just like extern.
642      if (OldDecl->getStorageClass() != VarDecl::Extern &&
643          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
644          VD->getStorageClass() != VarDecl::Extern &&
645          VD->getStorageClass() != VarDecl::PrivateExtern) {
646        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
647        Diag(OldDecl->getLocation(), diag::note_previous_definition);
648        // One redefinition error is enough.
649        break;
650      }
651    }
652  }
653}
654
655/// MergeVarDecl - We just parsed a variable 'New' which has the same name
656/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
657/// situation, merging decls or emitting diagnostics as appropriate.
658///
659/// Tentative definition rules (C99 6.9.2p2) are checked by
660/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
661/// definitions here, since the initializer hasn't been attached.
662///
663VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
664  // Verify the old decl was also a variable.
665  VarDecl *Old = dyn_cast<VarDecl>(OldD);
666  if (!Old) {
667    Diag(New->getLocation(), diag::err_redefinition_different_kind)
668      << New->getDeclName();
669    Diag(OldD->getLocation(), diag::note_previous_definition);
670    return New;
671  }
672
673  MergeAttributes(New, Old);
674
675  // Merge the types
676  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
677  if (MergedT.isNull()) {
678    Diag(New->getLocation(), diag::err_redefinition_different_type)
679      << New->getDeclName();
680    Diag(Old->getLocation(), diag::note_previous_definition);
681    return New;
682  }
683  New->setType(MergedT);
684  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
685  if (New->getStorageClass() == VarDecl::Static &&
686      (Old->getStorageClass() == VarDecl::None ||
687       Old->getStorageClass() == VarDecl::Extern)) {
688    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
689    Diag(Old->getLocation(), diag::note_previous_definition);
690    return New;
691  }
692  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
693  if (New->getStorageClass() != VarDecl::Static &&
694      Old->getStorageClass() == VarDecl::Static) {
695    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
696    Diag(Old->getLocation(), diag::note_previous_definition);
697    return New;
698  }
699  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
700  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
701    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
702    Diag(Old->getLocation(), diag::note_previous_definition);
703  }
704  return New;
705}
706
707/// CheckParmsForFunctionDef - Check that the parameters of the given
708/// function are appropriate for the definition of a function. This
709/// takes care of any checks that cannot be performed on the
710/// declaration itself, e.g., that the types of each of the function
711/// parameters are complete.
712bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
713  bool HasInvalidParm = false;
714  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
715    ParmVarDecl *Param = FD->getParamDecl(p);
716
717    // C99 6.7.5.3p4: the parameters in a parameter type list in a
718    // function declarator that is part of a function definition of
719    // that function shall not have incomplete type.
720    if (!Param->isInvalidDecl() &&
721        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
722                               diag::err_typecheck_decl_incomplete_type)) {
723      Param->setInvalidDecl();
724      HasInvalidParm = true;
725    }
726
727    // C99 6.9.1p5: If the declarator includes a parameter type list, the
728    // declaration of each parameter shall include an identifier.
729    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
730      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
731  }
732
733  return HasInvalidParm;
734}
735
736/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
737/// no declarator (e.g. "struct foo;") is parsed.
738Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
739  TagDecl *Tag = 0;
740  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
741      DS.getTypeSpecType() == DeclSpec::TST_struct ||
742      DS.getTypeSpecType() == DeclSpec::TST_union ||
743      DS.getTypeSpecType() == DeclSpec::TST_enum)
744    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
745
746  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
747    if (!Record->getDeclName() && Record->isDefinition() &&
748        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
749      return BuildAnonymousStructOrUnion(S, DS, Record);
750
751    // Microsoft allows unnamed struct/union fields. Don't complain
752    // about them.
753    // FIXME: Should we support Microsoft's extensions in this area?
754    if (Record->getDeclName() && getLangOptions().Microsoft)
755      return Tag;
756  }
757
758  if (!DS.isMissingDeclaratorOk() &&
759      DS.getTypeSpecType() != DeclSpec::TST_error) {
760    // Warn about typedefs of enums without names, since this is an
761    // extension in both Microsoft an GNU.
762    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
763        Tag && isa<EnumDecl>(Tag)) {
764      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
765        << DS.getSourceRange();
766      return Tag;
767    }
768
769    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
770      << DS.getSourceRange();
771    return 0;
772  }
773
774  return Tag;
775}
776
777/// InjectAnonymousStructOrUnionMembers - Inject the members of the
778/// anonymous struct or union AnonRecord into the owning context Owner
779/// and scope S. This routine will be invoked just after we realize
780/// that an unnamed union or struct is actually an anonymous union or
781/// struct, e.g.,
782///
783/// @code
784/// union {
785///   int i;
786///   float f;
787/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
788///    // f into the surrounding scope.x
789/// @endcode
790///
791/// This routine is recursive, injecting the names of nested anonymous
792/// structs/unions into the owning context and scope as well.
793bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
794                                               RecordDecl *AnonRecord) {
795  bool Invalid = false;
796  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
797                               FEnd = AnonRecord->field_end();
798       F != FEnd; ++F) {
799    if ((*F)->getDeclName()) {
800      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
801                                                LookupOrdinaryName, true);
802      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
803        // C++ [class.union]p2:
804        //   The names of the members of an anonymous union shall be
805        //   distinct from the names of any other entity in the
806        //   scope in which the anonymous union is declared.
807        unsigned diagKind
808          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
809                                 : diag::err_anonymous_struct_member_redecl;
810        Diag((*F)->getLocation(), diagKind)
811          << (*F)->getDeclName();
812        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
813        Invalid = true;
814      } else {
815        // C++ [class.union]p2:
816        //   For the purpose of name lookup, after the anonymous union
817        //   definition, the members of the anonymous union are
818        //   considered to have been defined in the scope in which the
819        //   anonymous union is declared.
820        Owner->makeDeclVisibleInContext(*F);
821        S->AddDecl(*F);
822        IdResolver.AddDecl(*F);
823      }
824    } else if (const RecordType *InnerRecordType
825                 = (*F)->getType()->getAsRecordType()) {
826      RecordDecl *InnerRecord = InnerRecordType->getDecl();
827      if (InnerRecord->isAnonymousStructOrUnion())
828        Invalid = Invalid ||
829          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
830    }
831  }
832
833  return Invalid;
834}
835
836/// ActOnAnonymousStructOrUnion - Handle the declaration of an
837/// anonymous structure or union. Anonymous unions are a C++ feature
838/// (C++ [class.union]) and a GNU C extension; anonymous structures
839/// are a GNU C and GNU C++ extension.
840Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
841                                                RecordDecl *Record) {
842  DeclContext *Owner = Record->getDeclContext();
843
844  // Diagnose whether this anonymous struct/union is an extension.
845  if (Record->isUnion() && !getLangOptions().CPlusPlus)
846    Diag(Record->getLocation(), diag::ext_anonymous_union);
847  else if (!Record->isUnion())
848    Diag(Record->getLocation(), diag::ext_anonymous_struct);
849
850  // C and C++ require different kinds of checks for anonymous
851  // structs/unions.
852  bool Invalid = false;
853  if (getLangOptions().CPlusPlus) {
854    const char* PrevSpec = 0;
855    // C++ [class.union]p3:
856    //   Anonymous unions declared in a named namespace or in the
857    //   global namespace shall be declared static.
858    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
859        (isa<TranslationUnitDecl>(Owner) ||
860         (isa<NamespaceDecl>(Owner) &&
861          cast<NamespaceDecl>(Owner)->getDeclName()))) {
862      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
863      Invalid = true;
864
865      // Recover by adding 'static'.
866      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
867    }
868    // C++ [class.union]p3:
869    //   A storage class is not allowed in a declaration of an
870    //   anonymous union in a class scope.
871    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
872             isa<RecordDecl>(Owner)) {
873      Diag(DS.getStorageClassSpecLoc(),
874           diag::err_anonymous_union_with_storage_spec);
875      Invalid = true;
876
877      // Recover by removing the storage specifier.
878      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
879                             PrevSpec);
880    }
881
882    // C++ [class.union]p2:
883    //   The member-specification of an anonymous union shall only
884    //   define non-static data members. [Note: nested types and
885    //   functions cannot be declared within an anonymous union. ]
886    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
887                                 MemEnd = Record->decls_end();
888         Mem != MemEnd; ++Mem) {
889      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
890        // C++ [class.union]p3:
891        //   An anonymous union shall not have private or protected
892        //   members (clause 11).
893        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
894          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
895            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
896          Invalid = true;
897        }
898      } else if ((*Mem)->isImplicit()) {
899        // Any implicit members are fine.
900      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
901        // This is a type that showed up in an
902        // elaborated-type-specifier inside the anonymous struct or
903        // union, but which actually declares a type outside of the
904        // anonymous struct or union. It's okay.
905      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
906        if (!MemRecord->isAnonymousStructOrUnion() &&
907            MemRecord->getDeclName()) {
908          // This is a nested type declaration.
909          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
910            << (int)Record->isUnion();
911          Invalid = true;
912        }
913      } else {
914        // We have something that isn't a non-static data
915        // member. Complain about it.
916        unsigned DK = diag::err_anonymous_record_bad_member;
917        if (isa<TypeDecl>(*Mem))
918          DK = diag::err_anonymous_record_with_type;
919        else if (isa<FunctionDecl>(*Mem))
920          DK = diag::err_anonymous_record_with_function;
921        else if (isa<VarDecl>(*Mem))
922          DK = diag::err_anonymous_record_with_static;
923        Diag((*Mem)->getLocation(), DK)
924            << (int)Record->isUnion();
925          Invalid = true;
926      }
927    }
928  } else {
929    // FIXME: Check GNU C semantics
930    if (Record->isUnion() && !Owner->isRecord()) {
931      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
932        << (int)getLangOptions().CPlusPlus;
933      Invalid = true;
934    }
935  }
936
937  if (!Record->isUnion() && !Owner->isRecord()) {
938    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
939      << (int)getLangOptions().CPlusPlus;
940    Invalid = true;
941  }
942
943  // Create a declaration for this anonymous struct/union.
944  NamedDecl *Anon = 0;
945  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
946    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
947                             /*IdentifierInfo=*/0,
948                             Context.getTypeDeclType(Record),
949                             /*BitWidth=*/0, /*Mutable=*/false);
950    Anon->setAccess(AS_public);
951    if (getLangOptions().CPlusPlus)
952      FieldCollector->Add(cast<FieldDecl>(Anon));
953  } else {
954    VarDecl::StorageClass SC;
955    switch (DS.getStorageClassSpec()) {
956    default: assert(0 && "Unknown storage class!");
957    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
958    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
959    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
960    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
961    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
962    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
963    case DeclSpec::SCS_mutable:
964      // mutable can only appear on non-static class members, so it's always
965      // an error here
966      Diag(Record->getLocation(), diag::err_mutable_nonmember);
967      Invalid = true;
968      SC = VarDecl::None;
969      break;
970    }
971
972    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
973                           /*IdentifierInfo=*/0,
974                           Context.getTypeDeclType(Record),
975                           SC, DS.getSourceRange().getBegin());
976  }
977  Anon->setImplicit();
978
979  // Add the anonymous struct/union object to the current
980  // context. We'll be referencing this object when we refer to one of
981  // its members.
982  Owner->addDecl(Anon);
983
984  // Inject the members of the anonymous struct/union into the owning
985  // context and into the identifier resolver chain for name lookup
986  // purposes.
987  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
988    Invalid = true;
989
990  // Mark this as an anonymous struct/union type. Note that we do not
991  // do this until after we have already checked and injected the
992  // members of this anonymous struct/union type, because otherwise
993  // the members could be injected twice: once by DeclContext when it
994  // builds its lookup table, and once by
995  // InjectAnonymousStructOrUnionMembers.
996  Record->setAnonymousStructOrUnion(true);
997
998  if (Invalid)
999    Anon->setInvalidDecl();
1000
1001  return Anon;
1002}
1003
1004bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1005                                  bool DirectInit) {
1006  // Get the type before calling CheckSingleAssignmentConstraints(), since
1007  // it can promote the expression.
1008  QualType InitType = Init->getType();
1009
1010  if (getLangOptions().CPlusPlus) {
1011    // FIXME: I dislike this error message. A lot.
1012    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1013      return Diag(Init->getSourceRange().getBegin(),
1014                  diag::err_typecheck_convert_incompatible)
1015        << DeclType << Init->getType() << "initializing"
1016        << Init->getSourceRange();
1017
1018    return false;
1019  }
1020
1021  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1022  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1023                                  InitType, Init, "initializing");
1024}
1025
1026bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1027  const ArrayType *AT = Context.getAsArrayType(DeclT);
1028
1029  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1030    // C99 6.7.8p14. We have an array of character type with unknown size
1031    // being initialized to a string literal.
1032    llvm::APSInt ConstVal(32);
1033    ConstVal = strLiteral->getByteLength() + 1;
1034    // Return a new array type (C99 6.7.8p22).
1035    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1036                                         ArrayType::Normal, 0);
1037  } else {
1038    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1039    // C99 6.7.8p14. We have an array of character type with known size.
1040    // FIXME: Avoid truncation for 64-bit length strings.
1041    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1042      Diag(strLiteral->getSourceRange().getBegin(),
1043           diag::warn_initializer_string_for_char_array_too_long)
1044        << strLiteral->getSourceRange();
1045  }
1046  // Set type from "char *" to "constant array of char".
1047  strLiteral->setType(DeclT);
1048  // For now, we always return false (meaning success).
1049  return false;
1050}
1051
1052StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1053  const ArrayType *AT = Context.getAsArrayType(DeclType);
1054  if (AT && AT->getElementType()->isCharType()) {
1055    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1056  }
1057  return 0;
1058}
1059
1060bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1061                                 SourceLocation InitLoc,
1062                                 DeclarationName InitEntity,
1063                                 bool DirectInit) {
1064  if (DeclType->isDependentType() || Init->isTypeDependent())
1065    return false;
1066
1067  // C++ [dcl.init.ref]p1:
1068  //   A variable declared to be a T&, that is "reference to type T"
1069  //   (8.3.2), shall be initialized by an object, or function, of
1070  //   type T or by an object that can be converted into a T.
1071  if (DeclType->isReferenceType())
1072    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1073
1074  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1075  // of unknown size ("[]") or an object type that is not a variable array type.
1076  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1077    return Diag(InitLoc,  diag::err_variable_object_no_init)
1078      << VAT->getSizeExpr()->getSourceRange();
1079
1080  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1081  if (!InitList) {
1082    // FIXME: Handle wide strings
1083    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1084      return CheckStringLiteralInit(strLiteral, DeclType);
1085
1086    // C++ [dcl.init]p14:
1087    //   -- If the destination type is a (possibly cv-qualified) class
1088    //      type:
1089    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1090      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1091      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1092
1093      //   -- If the initialization is direct-initialization, or if it is
1094      //      copy-initialization where the cv-unqualified version of the
1095      //      source type is the same class as, or a derived class of, the
1096      //      class of the destination, constructors are considered.
1097      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1098          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1099        CXXConstructorDecl *Constructor
1100          = PerformInitializationByConstructor(DeclType, &Init, 1,
1101                                               InitLoc, Init->getSourceRange(),
1102                                               InitEntity,
1103                                               DirectInit? IK_Direct : IK_Copy);
1104        return Constructor == 0;
1105      }
1106
1107      //   -- Otherwise (i.e., for the remaining copy-initialization
1108      //      cases), user-defined conversion sequences that can
1109      //      convert from the source type to the destination type or
1110      //      (when a conversion function is used) to a derived class
1111      //      thereof are enumerated as described in 13.3.1.4, and the
1112      //      best one is chosen through overload resolution
1113      //      (13.3). If the conversion cannot be done or is
1114      //      ambiguous, the initialization is ill-formed. The
1115      //      function selected is called with the initializer
1116      //      expression as its argument; if the function is a
1117      //      constructor, the call initializes a temporary of the
1118      //      destination type.
1119      // FIXME: We're pretending to do copy elision here; return to
1120      // this when we have ASTs for such things.
1121      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1122        return false;
1123
1124      if (InitEntity)
1125        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1126          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1127          << Init->getType() << Init->getSourceRange();
1128      else
1129        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1130          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1131          << Init->getType() << Init->getSourceRange();
1132    }
1133
1134    // C99 6.7.8p16.
1135    if (DeclType->isArrayType())
1136      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1137        << Init->getSourceRange();
1138
1139    return CheckSingleInitializer(Init, DeclType, DirectInit);
1140  }
1141
1142  bool hadError = CheckInitList(InitList, DeclType);
1143  Init = InitList;
1144  return hadError;
1145}
1146
1147/// GetNameForDeclarator - Determine the full declaration name for the
1148/// given Declarator.
1149DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1150  switch (D.getKind()) {
1151  case Declarator::DK_Abstract:
1152    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1153    return DeclarationName();
1154
1155  case Declarator::DK_Normal:
1156    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1157    return DeclarationName(D.getIdentifier());
1158
1159  case Declarator::DK_Constructor: {
1160    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1161    Ty = Context.getCanonicalType(Ty);
1162    return Context.DeclarationNames.getCXXConstructorName(Ty);
1163  }
1164
1165  case Declarator::DK_Destructor: {
1166    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1167    Ty = Context.getCanonicalType(Ty);
1168    return Context.DeclarationNames.getCXXDestructorName(Ty);
1169  }
1170
1171  case Declarator::DK_Conversion: {
1172    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1173    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1174    Ty = Context.getCanonicalType(Ty);
1175    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1176  }
1177
1178  case Declarator::DK_Operator:
1179    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1180    return Context.DeclarationNames.getCXXOperatorName(
1181                                                D.getOverloadedOperator());
1182  }
1183
1184  assert(false && "Unknown name kind");
1185  return DeclarationName();
1186}
1187
1188/// isNearlyMatchingFunction - Determine whether the C++ functions
1189/// Declaration and Definition are "nearly" matching. This heuristic
1190/// is used to improve diagnostics in the case where an out-of-line
1191/// function definition doesn't match any declaration within
1192/// the class or namespace.
1193static bool isNearlyMatchingFunction(ASTContext &Context,
1194                                     FunctionDecl *Declaration,
1195                                     FunctionDecl *Definition) {
1196  if (Declaration->param_size() != Definition->param_size())
1197    return false;
1198  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1199    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1200    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1201
1202    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1203    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1204    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1205      return false;
1206  }
1207
1208  return true;
1209}
1210
1211Sema::DeclTy *
1212Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1213                      bool IsFunctionDefinition) {
1214  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1215  DeclarationName Name = GetNameForDeclarator(D);
1216
1217  // All of these full declarators require an identifier.  If it doesn't have
1218  // one, the ParsedFreeStandingDeclSpec action should be used.
1219  if (!Name) {
1220    if (!D.getInvalidType())  // Reject this if we think it is valid.
1221      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1222           diag::err_declarator_need_ident)
1223        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1224    return 0;
1225  }
1226
1227  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1228  // we find one that is.
1229  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1230         (S->getFlags() & Scope::TemplateParamScope) != 0)
1231    S = S->getParent();
1232
1233  DeclContext *DC;
1234  NamedDecl *PrevDecl;
1235  NamedDecl *New;
1236  bool InvalidDecl = false;
1237
1238  // See if this is a redefinition of a variable in the same scope.
1239  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1240    DC = CurContext;
1241    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1242                          D.getIdentifierLoc());
1243  } else { // Something like "int foo::x;"
1244    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1245    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1246
1247    // C++ 7.3.1.2p2:
1248    // Members (including explicit specializations of templates) of a named
1249    // namespace can also be defined outside that namespace by explicit
1250    // qualification of the name being defined, provided that the entity being
1251    // defined was already declared in the namespace and the definition appears
1252    // after the point of declaration in a namespace that encloses the
1253    // declarations namespace.
1254    //
1255    // Note that we only check the context at this point. We don't yet
1256    // have enough information to make sure that PrevDecl is actually
1257    // the declaration we want to match. For example, given:
1258    //
1259    //   class X {
1260    //     void f();
1261    //     void f(float);
1262    //   };
1263    //
1264    //   void X::f(int) { } // ill-formed
1265    //
1266    // In this case, PrevDecl will point to the overload set
1267    // containing the two f's declared in X, but neither of them
1268    // matches.
1269
1270    // First check whether we named the global scope.
1271    if (isa<TranslationUnitDecl>(DC)) {
1272      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1273        << Name << D.getCXXScopeSpec().getRange();
1274    } else if (!CurContext->Encloses(DC)) {
1275      // The qualifying scope doesn't enclose the original declaration.
1276      // Emit diagnostic based on current scope.
1277      SourceLocation L = D.getIdentifierLoc();
1278      SourceRange R = D.getCXXScopeSpec().getRange();
1279      if (isa<FunctionDecl>(CurContext))
1280        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1281      else
1282        Diag(L, diag::err_invalid_declarator_scope)
1283          << Name << cast<NamedDecl>(DC) << R;
1284      InvalidDecl = true;
1285    }
1286  }
1287
1288  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1289    // Maybe we will complain about the shadowed template parameter.
1290    InvalidDecl = InvalidDecl
1291      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1292    // Just pretend that we didn't see the previous declaration.
1293    PrevDecl = 0;
1294  }
1295
1296  // In C++, the previous declaration we find might be a tag type
1297  // (class or enum). In this case, the new declaration will hide the
1298  // tag type. Note that this does does not apply if we're declaring a
1299  // typedef (C++ [dcl.typedef]p4).
1300  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1301      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1302    PrevDecl = 0;
1303
1304  QualType R = GetTypeForDeclarator(D, S);
1305  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1306
1307  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1308    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1309                                 InvalidDecl);
1310  } else if (R.getTypePtr()->isFunctionType()) {
1311    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1312                                  IsFunctionDefinition, InvalidDecl);
1313  } else {
1314    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1315                                  InvalidDecl);
1316  }
1317
1318  if (New == 0)
1319    return 0;
1320
1321  // Set the lexical context. If the declarator has a C++ scope specifier, the
1322  // lexical context will be different from the semantic context.
1323  New->setLexicalDeclContext(CurContext);
1324
1325  // If this has an identifier, add it to the scope stack.
1326  if (Name)
1327    PushOnScopeChains(New, S);
1328  // If any semantic error occurred, mark the decl as invalid.
1329  if (D.getInvalidType() || InvalidDecl)
1330    New->setInvalidDecl();
1331
1332  return New;
1333}
1334
1335NamedDecl*
1336Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1337                             QualType R, Decl* LastDeclarator,
1338                             Decl* PrevDecl, bool& InvalidDecl) {
1339  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1340  if (D.getCXXScopeSpec().isSet()) {
1341    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1342      << D.getCXXScopeSpec().getRange();
1343    InvalidDecl = true;
1344    // Pretend we didn't see the scope specifier.
1345    DC = 0;
1346  }
1347
1348  // Check that there are no default arguments (C++ only).
1349  if (getLangOptions().CPlusPlus)
1350    CheckExtraCXXDefaultArguments(D);
1351
1352  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1353  if (!NewTD) return 0;
1354
1355  // Handle attributes prior to checking for duplicates in MergeVarDecl
1356  ProcessDeclAttributes(NewTD, D);
1357  // Merge the decl with the existing one if appropriate. If the decl is
1358  // in an outer scope, it isn't the same thing.
1359  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1360    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1361    if (NewTD == 0) return 0;
1362  }
1363
1364  if (S->getFnParent() == 0) {
1365    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1366    // then it shall have block scope.
1367    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1368      if (NewTD->getUnderlyingType()->isVariableArrayType())
1369        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1370      else
1371        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1372
1373      InvalidDecl = true;
1374    }
1375  }
1376  return NewTD;
1377}
1378
1379NamedDecl*
1380Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1381                              QualType R, Decl* LastDeclarator,
1382                              Decl* PrevDecl, bool& InvalidDecl) {
1383  DeclarationName Name = GetNameForDeclarator(D);
1384
1385  // Check that there are no default arguments (C++ only).
1386  if (getLangOptions().CPlusPlus)
1387    CheckExtraCXXDefaultArguments(D);
1388
1389  if (R.getTypePtr()->isObjCInterfaceType()) {
1390    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1391      << D.getIdentifier();
1392    InvalidDecl = true;
1393  }
1394
1395  VarDecl *NewVD;
1396  VarDecl::StorageClass SC;
1397  switch (D.getDeclSpec().getStorageClassSpec()) {
1398  default: assert(0 && "Unknown storage class!");
1399  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1400  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1401  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1402  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1403  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1404  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1405  case DeclSpec::SCS_mutable:
1406    // mutable can only appear on non-static class members, so it's always
1407    // an error here
1408    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1409    InvalidDecl = true;
1410    SC = VarDecl::None;
1411    break;
1412  }
1413
1414  IdentifierInfo *II = Name.getAsIdentifierInfo();
1415  if (!II) {
1416    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1417      << Name.getAsString();
1418    return 0;
1419  }
1420
1421  if (DC->isRecord()) {
1422    // This is a static data member for a C++ class.
1423    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1424                                    D.getIdentifierLoc(), II,
1425                                    R);
1426  } else {
1427    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1428    if (S->getFnParent() == 0) {
1429      // C99 6.9p2: The storage-class specifiers auto and register shall not
1430      // appear in the declaration specifiers in an external declaration.
1431      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1432        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1433        InvalidDecl = true;
1434      }
1435    }
1436    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1437                            II, R, SC,
1438                            // FIXME: Move to DeclGroup...
1439                            D.getDeclSpec().getSourceRange().getBegin());
1440    NewVD->setThreadSpecified(ThreadSpecified);
1441  }
1442  NewVD->setNextDeclarator(LastDeclarator);
1443
1444  // Handle attributes prior to checking for duplicates in MergeVarDecl
1445  ProcessDeclAttributes(NewVD, D);
1446
1447  // Handle GNU asm-label extension (encoded as an attribute).
1448  if (Expr *E = (Expr*) D.getAsmLabel()) {
1449    // The parser guarantees this is a string.
1450    StringLiteral *SE = cast<StringLiteral>(E);
1451    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1452                                                SE->getByteLength())));
1453  }
1454
1455  // Emit an error if an address space was applied to decl with local storage.
1456  // This includes arrays of objects with address space qualifiers, but not
1457  // automatic variables that point to other address spaces.
1458  // ISO/IEC TR 18037 S5.1.2
1459  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1460    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1461    InvalidDecl = true;
1462  }
1463  // Merge the decl with the existing one if appropriate. If the decl is
1464  // in an outer scope, it isn't the same thing.
1465  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1466    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1467      // The user tried to define a non-static data member
1468      // out-of-line (C++ [dcl.meaning]p1).
1469      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1470        << D.getCXXScopeSpec().getRange();
1471      NewVD->Destroy(Context);
1472      return 0;
1473    }
1474
1475    NewVD = MergeVarDecl(NewVD, PrevDecl);
1476    if (NewVD == 0) return 0;
1477
1478    if (D.getCXXScopeSpec().isSet()) {
1479      // No previous declaration in the qualifying scope.
1480      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1481        << Name << D.getCXXScopeSpec().getRange();
1482      InvalidDecl = true;
1483    }
1484  }
1485  return NewVD;
1486}
1487
1488NamedDecl*
1489Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1490                              QualType R, Decl *LastDeclarator,
1491                              Decl* PrevDecl, bool IsFunctionDefinition,
1492                              bool& InvalidDecl) {
1493  assert(R.getTypePtr()->isFunctionType());
1494
1495  DeclarationName Name = GetNameForDeclarator(D);
1496  FunctionDecl::StorageClass SC = FunctionDecl::None;
1497  switch (D.getDeclSpec().getStorageClassSpec()) {
1498  default: assert(0 && "Unknown storage class!");
1499  case DeclSpec::SCS_auto:
1500  case DeclSpec::SCS_register:
1501  case DeclSpec::SCS_mutable:
1502    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1503    InvalidDecl = true;
1504    break;
1505  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1506  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1507  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1508  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1509  }
1510
1511  bool isInline = D.getDeclSpec().isInlineSpecified();
1512  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1513  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1514
1515  FunctionDecl *NewFD;
1516  if (D.getKind() == Declarator::DK_Constructor) {
1517    // This is a C++ constructor declaration.
1518    assert(DC->isRecord() &&
1519           "Constructors can only be declared in a member context");
1520
1521    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1522
1523    // Create the new declaration
1524    NewFD = CXXConstructorDecl::Create(Context,
1525                                       cast<CXXRecordDecl>(DC),
1526                                       D.getIdentifierLoc(), Name, R,
1527                                       isExplicit, isInline,
1528                                       /*isImplicitlyDeclared=*/false);
1529
1530    if (InvalidDecl)
1531      NewFD->setInvalidDecl();
1532  } else if (D.getKind() == Declarator::DK_Destructor) {
1533    // This is a C++ destructor declaration.
1534    if (DC->isRecord()) {
1535      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1536
1537      NewFD = CXXDestructorDecl::Create(Context,
1538                                        cast<CXXRecordDecl>(DC),
1539                                        D.getIdentifierLoc(), Name, R,
1540                                        isInline,
1541                                        /*isImplicitlyDeclared=*/false);
1542
1543      if (InvalidDecl)
1544        NewFD->setInvalidDecl();
1545    } else {
1546      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1547
1548      // Create a FunctionDecl to satisfy the function definition parsing
1549      // code path.
1550      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1551                                   Name, R, SC, isInline,
1552                                   // FIXME: Move to DeclGroup...
1553                                   D.getDeclSpec().getSourceRange().getBegin());
1554      InvalidDecl = true;
1555      NewFD->setInvalidDecl();
1556    }
1557  } else if (D.getKind() == Declarator::DK_Conversion) {
1558    if (!DC->isRecord()) {
1559      Diag(D.getIdentifierLoc(),
1560           diag::err_conv_function_not_member);
1561      return 0;
1562    } else {
1563      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1564
1565      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1566                                        D.getIdentifierLoc(), Name, R,
1567                                        isInline, isExplicit);
1568
1569      if (InvalidDecl)
1570        NewFD->setInvalidDecl();
1571    }
1572  } else if (DC->isRecord()) {
1573    // This is a C++ method declaration.
1574    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1575                                  D.getIdentifierLoc(), Name, R,
1576                                  (SC == FunctionDecl::Static), isInline);
1577  } else {
1578    NewFD = FunctionDecl::Create(Context, DC,
1579                                 D.getIdentifierLoc(),
1580                                 Name, R, SC, isInline,
1581                                 // FIXME: Move to DeclGroup...
1582                                 D.getDeclSpec().getSourceRange().getBegin());
1583  }
1584  NewFD->setNextDeclarator(LastDeclarator);
1585
1586  // Set the lexical context. If the declarator has a C++
1587  // scope specifier, the lexical context will be different
1588  // from the semantic context.
1589  NewFD->setLexicalDeclContext(CurContext);
1590
1591  // Handle GNU asm-label extension (encoded as an attribute).
1592  if (Expr *E = (Expr*) D.getAsmLabel()) {
1593    // The parser guarantees this is a string.
1594    StringLiteral *SE = cast<StringLiteral>(E);
1595    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1596                                                SE->getByteLength())));
1597  }
1598
1599  // Copy the parameter declarations from the declarator D to
1600  // the function declaration NewFD, if they are available.
1601  if (D.getNumTypeObjects() > 0) {
1602    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1603
1604    // Create Decl objects for each parameter, adding them to the
1605    // FunctionDecl.
1606    llvm::SmallVector<ParmVarDecl*, 16> Params;
1607
1608    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1609    // function that takes no arguments, not a function that takes a
1610    // single void argument.
1611    // We let through "const void" here because Sema::GetTypeForDeclarator
1612    // already checks for that case.
1613    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1614        FTI.ArgInfo[0].Param &&
1615        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1616      // empty arg list, don't push any params.
1617      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1618
1619      // In C++, the empty parameter-type-list must be spelled "void"; a
1620      // typedef of void is not permitted.
1621      if (getLangOptions().CPlusPlus &&
1622          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1623        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1624      }
1625    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1626      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1627        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1628    }
1629
1630    NewFD->setParams(Context, &Params[0], Params.size());
1631  } else if (R->getAsTypedefType()) {
1632    // When we're declaring a function with a typedef, as in the
1633    // following example, we'll need to synthesize (unnamed)
1634    // parameters for use in the declaration.
1635    //
1636    // @code
1637    // typedef void fn(int);
1638    // fn f;
1639    // @endcode
1640    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1641    if (!FT) {
1642      // This is a typedef of a function with no prototype, so we
1643      // don't need to do anything.
1644    } else if ((FT->getNumArgs() == 0) ||
1645               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1646                FT->getArgType(0)->isVoidType())) {
1647      // This is a zero-argument function. We don't need to do anything.
1648    } else {
1649      // Synthesize a parameter for each argument type.
1650      llvm::SmallVector<ParmVarDecl*, 16> Params;
1651      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1652           ArgType != FT->arg_type_end(); ++ArgType) {
1653        Params.push_back(ParmVarDecl::Create(Context, DC,
1654                                             SourceLocation(), 0,
1655                                             *ArgType, VarDecl::None,
1656                                             0));
1657      }
1658
1659      NewFD->setParams(Context, &Params[0], Params.size());
1660    }
1661  }
1662
1663  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1664    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1665  else if (isa<CXXDestructorDecl>(NewFD)) {
1666    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1667    Record->setUserDeclaredDestructor(true);
1668    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1669    // user-defined destructor.
1670    Record->setPOD(false);
1671  } else if (CXXConversionDecl *Conversion =
1672             dyn_cast<CXXConversionDecl>(NewFD))
1673    ActOnConversionDeclarator(Conversion);
1674
1675  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1676  if (NewFD->isOverloadedOperator() &&
1677      CheckOverloadedOperatorDeclaration(NewFD))
1678    NewFD->setInvalidDecl();
1679
1680  // Merge the decl with the existing one if appropriate. Since C functions
1681  // are in a flat namespace, make sure we consider decls in outer scopes.
1682  bool OverloadableAttrRequired = false;
1683  bool Redeclaration = false;
1684  if (PrevDecl &&
1685      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1686    // Determine whether NewFD is an overload of PrevDecl or
1687    // a declaration that requires merging. If it's an overload,
1688    // there's no more work to do here; we'll just add the new
1689    // function to the scope.
1690    OverloadedFunctionDecl::function_iterator MatchedDecl;
1691
1692    if (!getLangOptions().CPlusPlus &&
1693        AllowOverloadingOfFunction(PrevDecl, Context))
1694      OverloadableAttrRequired = true;
1695
1696    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1697        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1698      Decl *OldDecl = PrevDecl;
1699
1700      // If PrevDecl was an overloaded function, extract the
1701      // FunctionDecl that matched.
1702      if (isa<OverloadedFunctionDecl>(PrevDecl))
1703        OldDecl = *MatchedDecl;
1704
1705      // NewFD and PrevDecl represent declarations that need to be
1706      // merged.
1707      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1708
1709      if (NewFD == 0) return 0;
1710      if (Redeclaration) {
1711        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1712
1713        // An out-of-line member function declaration must also be a
1714        // definition (C++ [dcl.meaning]p1).
1715        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1716            !InvalidDecl) {
1717          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1718            << D.getCXXScopeSpec().getRange();
1719          NewFD->setInvalidDecl();
1720        }
1721      }
1722    }
1723  }
1724
1725  if (D.getCXXScopeSpec().isSet() &&
1726      (!PrevDecl || !Redeclaration)) {
1727    // The user tried to provide an out-of-line definition for a
1728    // function that is a member of a class or namespace, but there
1729    // was no such member function declared (C++ [class.mfct]p2,
1730    // C++ [namespace.memdef]p2). For example:
1731    //
1732    // class X {
1733    //   void f() const;
1734    // };
1735    //
1736    // void X::f() { } // ill-formed
1737    //
1738    // Complain about this problem, and attempt to suggest close
1739    // matches (e.g., those that differ only in cv-qualifiers and
1740    // whether the parameter types are references).
1741    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1742      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1743    InvalidDecl = true;
1744
1745    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1746                                            true);
1747    assert(!Prev.isAmbiguous() &&
1748           "Cannot have an ambiguity in previous-declaration lookup");
1749    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1750         Func != FuncEnd; ++Func) {
1751      if (isa<FunctionDecl>(*Func) &&
1752          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1753        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1754    }
1755
1756    PrevDecl = 0;
1757  }
1758
1759  // Handle attributes. We need to have merged decls when handling attributes
1760  // (for example to check for conflicts, etc).
1761  ProcessDeclAttributes(NewFD, D);
1762
1763  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1764    // If a function name is overloadable in C, then every function
1765    // with that name must be marked "overloadable".
1766    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1767      << Redeclaration << NewFD;
1768    if (PrevDecl)
1769      Diag(PrevDecl->getLocation(),
1770           diag::note_attribute_overloadable_prev_overload);
1771    NewFD->addAttr(new OverloadableAttr);
1772  }
1773
1774  if (getLangOptions().CPlusPlus) {
1775    // In C++, check default arguments now that we have merged decls. Unless
1776    // the lexical context is the class, because in this case this is done
1777    // during delayed parsing anyway.
1778    if (!CurContext->isRecord())
1779      CheckCXXDefaultArguments(NewFD);
1780
1781    // An out-of-line member function declaration must also be a
1782    // definition (C++ [dcl.meaning]p1).
1783    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1784      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1785        << D.getCXXScopeSpec().getRange();
1786      InvalidDecl = true;
1787    }
1788  }
1789  return NewFD;
1790}
1791
1792void Sema::InitializerElementNotConstant(const Expr *Init) {
1793  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1794    << Init->getSourceRange();
1795}
1796
1797bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1798  switch (Init->getStmtClass()) {
1799  default:
1800    InitializerElementNotConstant(Init);
1801    return true;
1802  case Expr::ParenExprClass: {
1803    const ParenExpr* PE = cast<ParenExpr>(Init);
1804    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1805  }
1806  case Expr::CompoundLiteralExprClass:
1807    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1808  case Expr::DeclRefExprClass:
1809  case Expr::QualifiedDeclRefExprClass: {
1810    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1811    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1812      if (VD->hasGlobalStorage())
1813        return false;
1814      InitializerElementNotConstant(Init);
1815      return true;
1816    }
1817    if (isa<FunctionDecl>(D))
1818      return false;
1819    InitializerElementNotConstant(Init);
1820    return true;
1821  }
1822  case Expr::MemberExprClass: {
1823    const MemberExpr *M = cast<MemberExpr>(Init);
1824    if (M->isArrow())
1825      return CheckAddressConstantExpression(M->getBase());
1826    return CheckAddressConstantExpressionLValue(M->getBase());
1827  }
1828  case Expr::ArraySubscriptExprClass: {
1829    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1830    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1831    return CheckAddressConstantExpression(ASE->getBase()) ||
1832           CheckArithmeticConstantExpression(ASE->getIdx());
1833  }
1834  case Expr::StringLiteralClass:
1835  case Expr::PredefinedExprClass:
1836    return false;
1837  case Expr::UnaryOperatorClass: {
1838    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1839
1840    // C99 6.6p9
1841    if (Exp->getOpcode() == UnaryOperator::Deref)
1842      return CheckAddressConstantExpression(Exp->getSubExpr());
1843
1844    InitializerElementNotConstant(Init);
1845    return true;
1846  }
1847  }
1848}
1849
1850bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1851  switch (Init->getStmtClass()) {
1852  default:
1853    InitializerElementNotConstant(Init);
1854    return true;
1855  case Expr::ParenExprClass:
1856    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1857  case Expr::StringLiteralClass:
1858  case Expr::ObjCStringLiteralClass:
1859    return false;
1860  case Expr::CallExprClass:
1861  case Expr::CXXOperatorCallExprClass:
1862    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1863    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1864           Builtin::BI__builtin___CFStringMakeConstantString)
1865      return false;
1866
1867    InitializerElementNotConstant(Init);
1868    return true;
1869
1870  case Expr::UnaryOperatorClass: {
1871    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1872
1873    // C99 6.6p9
1874    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1875      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1876
1877    if (Exp->getOpcode() == UnaryOperator::Extension)
1878      return CheckAddressConstantExpression(Exp->getSubExpr());
1879
1880    InitializerElementNotConstant(Init);
1881    return true;
1882  }
1883  case Expr::BinaryOperatorClass: {
1884    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1885    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1886
1887    Expr *PExp = Exp->getLHS();
1888    Expr *IExp = Exp->getRHS();
1889    if (IExp->getType()->isPointerType())
1890      std::swap(PExp, IExp);
1891
1892    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1893    return CheckAddressConstantExpression(PExp) ||
1894           CheckArithmeticConstantExpression(IExp);
1895  }
1896  case Expr::ImplicitCastExprClass:
1897  case Expr::CStyleCastExprClass: {
1898    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1899    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1900      // Check for implicit promotion
1901      if (SubExpr->getType()->isFunctionType() ||
1902          SubExpr->getType()->isArrayType())
1903        return CheckAddressConstantExpressionLValue(SubExpr);
1904    }
1905
1906    // Check for pointer->pointer cast
1907    if (SubExpr->getType()->isPointerType())
1908      return CheckAddressConstantExpression(SubExpr);
1909
1910    if (SubExpr->getType()->isIntegralType()) {
1911      // Check for the special-case of a pointer->int->pointer cast;
1912      // this isn't standard, but some code requires it. See
1913      // PR2720 for an example.
1914      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1915        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1916          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1917          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1918          if (IntWidth >= PointerWidth) {
1919            return CheckAddressConstantExpression(SubCast->getSubExpr());
1920          }
1921        }
1922      }
1923    }
1924    if (SubExpr->getType()->isArithmeticType()) {
1925      return CheckArithmeticConstantExpression(SubExpr);
1926    }
1927
1928    InitializerElementNotConstant(Init);
1929    return true;
1930  }
1931  case Expr::ConditionalOperatorClass: {
1932    // FIXME: Should we pedwarn here?
1933    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1934    if (!Exp->getCond()->getType()->isArithmeticType()) {
1935      InitializerElementNotConstant(Init);
1936      return true;
1937    }
1938    if (CheckArithmeticConstantExpression(Exp->getCond()))
1939      return true;
1940    if (Exp->getLHS() &&
1941        CheckAddressConstantExpression(Exp->getLHS()))
1942      return true;
1943    return CheckAddressConstantExpression(Exp->getRHS());
1944  }
1945  case Expr::AddrLabelExprClass:
1946    return false;
1947  }
1948}
1949
1950static const Expr* FindExpressionBaseAddress(const Expr* E);
1951
1952static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1953  switch (E->getStmtClass()) {
1954  default:
1955    return E;
1956  case Expr::ParenExprClass: {
1957    const ParenExpr* PE = cast<ParenExpr>(E);
1958    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1959  }
1960  case Expr::MemberExprClass: {
1961    const MemberExpr *M = cast<MemberExpr>(E);
1962    if (M->isArrow())
1963      return FindExpressionBaseAddress(M->getBase());
1964    return FindExpressionBaseAddressLValue(M->getBase());
1965  }
1966  case Expr::ArraySubscriptExprClass: {
1967    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1968    return FindExpressionBaseAddress(ASE->getBase());
1969  }
1970  case Expr::UnaryOperatorClass: {
1971    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1972
1973    if (Exp->getOpcode() == UnaryOperator::Deref)
1974      return FindExpressionBaseAddress(Exp->getSubExpr());
1975
1976    return E;
1977  }
1978  }
1979}
1980
1981static const Expr* FindExpressionBaseAddress(const Expr* E) {
1982  switch (E->getStmtClass()) {
1983  default:
1984    return E;
1985  case Expr::ParenExprClass: {
1986    const ParenExpr* PE = cast<ParenExpr>(E);
1987    return FindExpressionBaseAddress(PE->getSubExpr());
1988  }
1989  case Expr::UnaryOperatorClass: {
1990    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1991
1992    // C99 6.6p9
1993    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1994      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1995
1996    if (Exp->getOpcode() == UnaryOperator::Extension)
1997      return FindExpressionBaseAddress(Exp->getSubExpr());
1998
1999    return E;
2000  }
2001  case Expr::BinaryOperatorClass: {
2002    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2003
2004    Expr *PExp = Exp->getLHS();
2005    Expr *IExp = Exp->getRHS();
2006    if (IExp->getType()->isPointerType())
2007      std::swap(PExp, IExp);
2008
2009    return FindExpressionBaseAddress(PExp);
2010  }
2011  case Expr::ImplicitCastExprClass: {
2012    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2013
2014    // Check for implicit promotion
2015    if (SubExpr->getType()->isFunctionType() ||
2016        SubExpr->getType()->isArrayType())
2017      return FindExpressionBaseAddressLValue(SubExpr);
2018
2019    // Check for pointer->pointer cast
2020    if (SubExpr->getType()->isPointerType())
2021      return FindExpressionBaseAddress(SubExpr);
2022
2023    // We assume that we have an arithmetic expression here;
2024    // if we don't, we'll figure it out later
2025    return 0;
2026  }
2027  case Expr::CStyleCastExprClass: {
2028    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2029
2030    // Check for pointer->pointer cast
2031    if (SubExpr->getType()->isPointerType())
2032      return FindExpressionBaseAddress(SubExpr);
2033
2034    // We assume that we have an arithmetic expression here;
2035    // if we don't, we'll figure it out later
2036    return 0;
2037  }
2038  }
2039}
2040
2041bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2042  switch (Init->getStmtClass()) {
2043  default:
2044    InitializerElementNotConstant(Init);
2045    return true;
2046  case Expr::ParenExprClass: {
2047    const ParenExpr* PE = cast<ParenExpr>(Init);
2048    return CheckArithmeticConstantExpression(PE->getSubExpr());
2049  }
2050  case Expr::FloatingLiteralClass:
2051  case Expr::IntegerLiteralClass:
2052  case Expr::CharacterLiteralClass:
2053  case Expr::ImaginaryLiteralClass:
2054  case Expr::TypesCompatibleExprClass:
2055  case Expr::CXXBoolLiteralExprClass:
2056    return false;
2057  case Expr::CallExprClass:
2058  case Expr::CXXOperatorCallExprClass: {
2059    const CallExpr *CE = cast<CallExpr>(Init);
2060
2061    // Allow any constant foldable calls to builtins.
2062    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2063      return false;
2064
2065    InitializerElementNotConstant(Init);
2066    return true;
2067  }
2068  case Expr::DeclRefExprClass:
2069  case Expr::QualifiedDeclRefExprClass: {
2070    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2071    if (isa<EnumConstantDecl>(D))
2072      return false;
2073    InitializerElementNotConstant(Init);
2074    return true;
2075  }
2076  case Expr::CompoundLiteralExprClass:
2077    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2078    // but vectors are allowed to be magic.
2079    if (Init->getType()->isVectorType())
2080      return false;
2081    InitializerElementNotConstant(Init);
2082    return true;
2083  case Expr::UnaryOperatorClass: {
2084    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2085
2086    switch (Exp->getOpcode()) {
2087    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2088    // See C99 6.6p3.
2089    default:
2090      InitializerElementNotConstant(Init);
2091      return true;
2092    case UnaryOperator::OffsetOf:
2093      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2094        return false;
2095      InitializerElementNotConstant(Init);
2096      return true;
2097    case UnaryOperator::Extension:
2098    case UnaryOperator::LNot:
2099    case UnaryOperator::Plus:
2100    case UnaryOperator::Minus:
2101    case UnaryOperator::Not:
2102      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2103    }
2104  }
2105  case Expr::SizeOfAlignOfExprClass: {
2106    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2107    // Special check for void types, which are allowed as an extension
2108    if (Exp->getTypeOfArgument()->isVoidType())
2109      return false;
2110    // alignof always evaluates to a constant.
2111    // FIXME: is sizeof(int[3.0]) a constant expression?
2112    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2113      InitializerElementNotConstant(Init);
2114      return true;
2115    }
2116    return false;
2117  }
2118  case Expr::BinaryOperatorClass: {
2119    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2120
2121    if (Exp->getLHS()->getType()->isArithmeticType() &&
2122        Exp->getRHS()->getType()->isArithmeticType()) {
2123      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2124             CheckArithmeticConstantExpression(Exp->getRHS());
2125    }
2126
2127    if (Exp->getLHS()->getType()->isPointerType() &&
2128        Exp->getRHS()->getType()->isPointerType()) {
2129      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2130      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2131
2132      // Only allow a null (constant integer) base; we could
2133      // allow some additional cases if necessary, but this
2134      // is sufficient to cover offsetof-like constructs.
2135      if (!LHSBase && !RHSBase) {
2136        return CheckAddressConstantExpression(Exp->getLHS()) ||
2137               CheckAddressConstantExpression(Exp->getRHS());
2138      }
2139    }
2140
2141    InitializerElementNotConstant(Init);
2142    return true;
2143  }
2144  case Expr::ImplicitCastExprClass:
2145  case Expr::CStyleCastExprClass: {
2146    const CastExpr *CE = cast<CastExpr>(Init);
2147    const Expr *SubExpr = CE->getSubExpr();
2148
2149    if (SubExpr->getType()->isArithmeticType())
2150      return CheckArithmeticConstantExpression(SubExpr);
2151
2152    if (SubExpr->getType()->isPointerType()) {
2153      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2154      if (Base) {
2155        // the cast is only valid if done to a wide enough type
2156        if (Context.getTypeSize(CE->getType()) >=
2157            Context.getTypeSize(SubExpr->getType()))
2158          return false;
2159      } else {
2160        // If the pointer has a null base, this is an offsetof-like construct
2161        return CheckAddressConstantExpression(SubExpr);
2162      }
2163    }
2164
2165    InitializerElementNotConstant(Init);
2166    return true;
2167  }
2168  case Expr::ConditionalOperatorClass: {
2169    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2170
2171    // If GNU extensions are disabled, we require all operands to be arithmetic
2172    // constant expressions.
2173    if (getLangOptions().NoExtensions) {
2174      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2175          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2176             CheckArithmeticConstantExpression(Exp->getRHS());
2177    }
2178
2179    // Otherwise, we have to emulate some of the behavior of fold here.
2180    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2181    // because it can constant fold things away.  To retain compatibility with
2182    // GCC code, we see if we can fold the condition to a constant (which we
2183    // should always be able to do in theory).  If so, we only require the
2184    // specified arm of the conditional to be a constant.  This is a horrible
2185    // hack, but is require by real world code that uses __builtin_constant_p.
2186    Expr::EvalResult EvalResult;
2187    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2188        EvalResult.HasSideEffects) {
2189      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2190      // won't be able to either.  Use it to emit the diagnostic though.
2191      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2192      assert(Res && "Evaluate couldn't evaluate this constant?");
2193      return Res;
2194    }
2195
2196    // Verify that the side following the condition is also a constant.
2197    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2198    if (EvalResult.Val.getInt() == 0)
2199      std::swap(TrueSide, FalseSide);
2200
2201    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2202      return true;
2203
2204    // Okay, the evaluated side evaluates to a constant, so we accept this.
2205    // Check to see if the other side is obviously not a constant.  If so,
2206    // emit a warning that this is a GNU extension.
2207    if (FalseSide && !FalseSide->isEvaluatable(Context))
2208      Diag(Init->getExprLoc(),
2209           diag::ext_typecheck_expression_not_constant_but_accepted)
2210        << FalseSide->getSourceRange();
2211    return false;
2212  }
2213  }
2214}
2215
2216bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2217  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2218    Init = DIE->getInit();
2219
2220  Init = Init->IgnoreParens();
2221
2222  if (Init->isEvaluatable(Context))
2223    return false;
2224
2225  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2226  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2227    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2228
2229  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2230    return CheckForConstantInitializer(e->getInitializer(), DclT);
2231
2232  if (isa<ImplicitValueInitExpr>(Init)) {
2233    // FIXME: In C++, check for non-POD types.
2234    return false;
2235  }
2236
2237  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2238    unsigned numInits = Exp->getNumInits();
2239    for (unsigned i = 0; i < numInits; i++) {
2240      // FIXME: Need to get the type of the declaration for C++,
2241      // because it could be a reference?
2242
2243      if (CheckForConstantInitializer(Exp->getInit(i),
2244                                      Exp->getInit(i)->getType()))
2245        return true;
2246    }
2247    return false;
2248  }
2249
2250  // FIXME: We can probably remove some of this code below, now that
2251  // Expr::Evaluate is doing the heavy lifting for scalars.
2252
2253  if (Init->isNullPointerConstant(Context))
2254    return false;
2255  if (Init->getType()->isArithmeticType()) {
2256    QualType InitTy = Context.getCanonicalType(Init->getType())
2257                             .getUnqualifiedType();
2258    if (InitTy == Context.BoolTy) {
2259      // Special handling for pointers implicitly cast to bool;
2260      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2261      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2262        Expr* SubE = ICE->getSubExpr();
2263        if (SubE->getType()->isPointerType() ||
2264            SubE->getType()->isArrayType() ||
2265            SubE->getType()->isFunctionType()) {
2266          return CheckAddressConstantExpression(Init);
2267        }
2268      }
2269    } else if (InitTy->isIntegralType()) {
2270      Expr* SubE = 0;
2271      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2272        SubE = CE->getSubExpr();
2273      // Special check for pointer cast to int; we allow as an extension
2274      // an address constant cast to an integer if the integer
2275      // is of an appropriate width (this sort of code is apparently used
2276      // in some places).
2277      // FIXME: Add pedwarn?
2278      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2279      if (SubE && (SubE->getType()->isPointerType() ||
2280                   SubE->getType()->isArrayType() ||
2281                   SubE->getType()->isFunctionType())) {
2282        unsigned IntWidth = Context.getTypeSize(Init->getType());
2283        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2284        if (IntWidth >= PointerWidth)
2285          return CheckAddressConstantExpression(Init);
2286      }
2287    }
2288
2289    return CheckArithmeticConstantExpression(Init);
2290  }
2291
2292  if (Init->getType()->isPointerType())
2293    return CheckAddressConstantExpression(Init);
2294
2295  // An array type at the top level that isn't an init-list must
2296  // be a string literal
2297  if (Init->getType()->isArrayType())
2298    return false;
2299
2300  if (Init->getType()->isFunctionType())
2301    return false;
2302
2303  // Allow block exprs at top level.
2304  if (Init->getType()->isBlockPointerType())
2305    return false;
2306
2307  // GCC cast to union extension
2308  // note: the validity of the cast expr is checked by CheckCastTypes()
2309  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2310    QualType T = C->getType();
2311    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2312  }
2313
2314  InitializerElementNotConstant(Init);
2315  return true;
2316}
2317
2318void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2319  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2320}
2321
2322/// AddInitializerToDecl - Adds the initializer Init to the
2323/// declaration dcl. If DirectInit is true, this is C++ direct
2324/// initialization rather than copy initialization.
2325void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2326  Decl *RealDecl = static_cast<Decl *>(dcl);
2327  Expr *Init = static_cast<Expr *>(init.release());
2328  assert(Init && "missing initializer");
2329
2330  // If there is no declaration, there was an error parsing it.  Just ignore
2331  // the initializer.
2332  if (RealDecl == 0) {
2333    Init->Destroy(Context);
2334    return;
2335  }
2336
2337  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2338  if (!VDecl) {
2339    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2340    RealDecl->setInvalidDecl();
2341    return;
2342  }
2343  // Get the decls type and save a reference for later, since
2344  // CheckInitializerTypes may change it.
2345  QualType DclT = VDecl->getType(), SavT = DclT;
2346  if (VDecl->isBlockVarDecl()) {
2347    VarDecl::StorageClass SC = VDecl->getStorageClass();
2348    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2349      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2350      VDecl->setInvalidDecl();
2351    } else if (!VDecl->isInvalidDecl()) {
2352      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2353                                VDecl->getDeclName(), DirectInit))
2354        VDecl->setInvalidDecl();
2355
2356      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2357      if (!getLangOptions().CPlusPlus) {
2358        if (SC == VarDecl::Static) // C99 6.7.8p4.
2359          CheckForConstantInitializer(Init, DclT);
2360      }
2361    }
2362  } else if (VDecl->isFileVarDecl()) {
2363    if (VDecl->getStorageClass() == VarDecl::Extern)
2364      Diag(VDecl->getLocation(), diag::warn_extern_init);
2365    if (!VDecl->isInvalidDecl())
2366      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2367                                VDecl->getDeclName(), DirectInit))
2368        VDecl->setInvalidDecl();
2369
2370    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2371    if (!getLangOptions().CPlusPlus) {
2372      // C99 6.7.8p4. All file scoped initializers need to be constant.
2373      CheckForConstantInitializer(Init, DclT);
2374    }
2375  }
2376  // If the type changed, it means we had an incomplete type that was
2377  // completed by the initializer. For example:
2378  //   int ary[] = { 1, 3, 5 };
2379  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2380  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2381    VDecl->setType(DclT);
2382    Init->setType(DclT);
2383  }
2384
2385  // Attach the initializer to the decl.
2386  VDecl->setInit(Init);
2387  return;
2388}
2389
2390void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2391  Decl *RealDecl = static_cast<Decl *>(dcl);
2392
2393  // If there is no declaration, there was an error parsing it. Just ignore it.
2394  if (RealDecl == 0)
2395    return;
2396
2397  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2398    QualType Type = Var->getType();
2399    // C++ [dcl.init.ref]p3:
2400    //   The initializer can be omitted for a reference only in a
2401    //   parameter declaration (8.3.5), in the declaration of a
2402    //   function return type, in the declaration of a class member
2403    //   within its class declaration (9.2), and where the extern
2404    //   specifier is explicitly used.
2405    if (Type->isReferenceType() &&
2406        Var->getStorageClass() != VarDecl::Extern &&
2407        Var->getStorageClass() != VarDecl::PrivateExtern) {
2408      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2409        << Var->getDeclName()
2410        << SourceRange(Var->getLocation(), Var->getLocation());
2411      Var->setInvalidDecl();
2412      return;
2413    }
2414
2415    // C++ [dcl.init]p9:
2416    //
2417    //   If no initializer is specified for an object, and the object
2418    //   is of (possibly cv-qualified) non-POD class type (or array
2419    //   thereof), the object shall be default-initialized; if the
2420    //   object is of const-qualified type, the underlying class type
2421    //   shall have a user-declared default constructor.
2422    if (getLangOptions().CPlusPlus) {
2423      QualType InitType = Type;
2424      if (const ArrayType *Array = Context.getAsArrayType(Type))
2425        InitType = Array->getElementType();
2426      if (Var->getStorageClass() != VarDecl::Extern &&
2427          Var->getStorageClass() != VarDecl::PrivateExtern &&
2428          InitType->isRecordType()) {
2429        const CXXConstructorDecl *Constructor
2430          = PerformInitializationByConstructor(InitType, 0, 0,
2431                                               Var->getLocation(),
2432                                               SourceRange(Var->getLocation(),
2433                                                           Var->getLocation()),
2434                                               Var->getDeclName(),
2435                                               IK_Default);
2436        if (!Constructor)
2437          Var->setInvalidDecl();
2438      }
2439    }
2440
2441#if 0
2442    // FIXME: Temporarily disabled because we are not properly parsing
2443    // linkage specifications on declarations, e.g.,
2444    //
2445    //   extern "C" const CGPoint CGPointerZero;
2446    //
2447    // C++ [dcl.init]p9:
2448    //
2449    //     If no initializer is specified for an object, and the
2450    //     object is of (possibly cv-qualified) non-POD class type (or
2451    //     array thereof), the object shall be default-initialized; if
2452    //     the object is of const-qualified type, the underlying class
2453    //     type shall have a user-declared default
2454    //     constructor. Otherwise, if no initializer is specified for
2455    //     an object, the object and its subobjects, if any, have an
2456    //     indeterminate initial value; if the object or any of its
2457    //     subobjects are of const-qualified type, the program is
2458    //     ill-formed.
2459    //
2460    // This isn't technically an error in C, so we don't diagnose it.
2461    //
2462    // FIXME: Actually perform the POD/user-defined default
2463    // constructor check.
2464    if (getLangOptions().CPlusPlus &&
2465        Context.getCanonicalType(Type).isConstQualified() &&
2466        Var->getStorageClass() != VarDecl::Extern)
2467      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2468        << Var->getName()
2469        << SourceRange(Var->getLocation(), Var->getLocation());
2470#endif
2471  }
2472}
2473
2474/// The declarators are chained together backwards, reverse the list.
2475Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2476  // Often we have single declarators, handle them quickly.
2477  Decl *GroupDecl = static_cast<Decl*>(group);
2478  if (GroupDecl == 0)
2479    return 0;
2480
2481  Decl *Group = dyn_cast<Decl>(GroupDecl);
2482  Decl *NewGroup = 0;
2483  if (Group->getNextDeclarator() == 0)
2484    NewGroup = Group;
2485  else { // reverse the list.
2486    while (Group) {
2487      Decl *Next = Group->getNextDeclarator();
2488      Group->setNextDeclarator(NewGroup);
2489      NewGroup = Group;
2490      Group = Next;
2491    }
2492  }
2493  // Perform semantic analysis that depends on having fully processed both
2494  // the declarator and initializer.
2495  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2496    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2497    if (!IDecl)
2498      continue;
2499    QualType T = IDecl->getType();
2500
2501    if (T->isVariableArrayType()) {
2502      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2503
2504      // FIXME: This won't give the correct result for
2505      // int a[10][n];
2506      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2507      if (IDecl->isFileVarDecl()) {
2508        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2509          SizeRange;
2510
2511        IDecl->setInvalidDecl();
2512      } else {
2513        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2514        // static storage duration, it shall not have a variable length array.
2515        if (IDecl->getStorageClass() == VarDecl::Static) {
2516          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2517            << SizeRange;
2518          IDecl->setInvalidDecl();
2519        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2520          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2521            << SizeRange;
2522          IDecl->setInvalidDecl();
2523        }
2524      }
2525    } else if (T->isVariablyModifiedType()) {
2526      if (IDecl->isFileVarDecl()) {
2527        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2528        IDecl->setInvalidDecl();
2529      } else {
2530        if (IDecl->getStorageClass() == VarDecl::Extern) {
2531          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2532          IDecl->setInvalidDecl();
2533        }
2534      }
2535    }
2536
2537    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2538    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2539    if (IDecl->isBlockVarDecl() &&
2540        IDecl->getStorageClass() != VarDecl::Extern) {
2541      if (!IDecl->isInvalidDecl() &&
2542          DiagnoseIncompleteType(IDecl->getLocation(), T,
2543                                 diag::err_typecheck_decl_incomplete_type))
2544        IDecl->setInvalidDecl();
2545    }
2546    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2547    // object that has file scope without an initializer, and without a
2548    // storage-class specifier or with the storage-class specifier "static",
2549    // constitutes a tentative definition. Note: A tentative definition with
2550    // external linkage is valid (C99 6.2.2p5).
2551    if (isTentativeDefinition(IDecl)) {
2552      if (T->isIncompleteArrayType()) {
2553        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2554        // array to be completed. Don't issue a diagnostic.
2555      } else if (!IDecl->isInvalidDecl() &&
2556                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2557                                        diag::err_typecheck_decl_incomplete_type))
2558        // C99 6.9.2p3: If the declaration of an identifier for an object is
2559        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2560        // declared type shall not be an incomplete type.
2561        IDecl->setInvalidDecl();
2562    }
2563    if (IDecl->isFileVarDecl())
2564      CheckForFileScopedRedefinitions(S, IDecl);
2565  }
2566  return NewGroup;
2567}
2568
2569/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2570/// to introduce parameters into function prototype scope.
2571Sema::DeclTy *
2572Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2573  const DeclSpec &DS = D.getDeclSpec();
2574
2575  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2576  VarDecl::StorageClass StorageClass = VarDecl::None;
2577  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2578    StorageClass = VarDecl::Register;
2579  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2580    Diag(DS.getStorageClassSpecLoc(),
2581         diag::err_invalid_storage_class_in_func_decl);
2582    D.getMutableDeclSpec().ClearStorageClassSpecs();
2583  }
2584  if (DS.isThreadSpecified()) {
2585    Diag(DS.getThreadSpecLoc(),
2586         diag::err_invalid_storage_class_in_func_decl);
2587    D.getMutableDeclSpec().ClearStorageClassSpecs();
2588  }
2589
2590  // Check that there are no default arguments inside the type of this
2591  // parameter (C++ only).
2592  if (getLangOptions().CPlusPlus)
2593    CheckExtraCXXDefaultArguments(D);
2594
2595  // In this context, we *do not* check D.getInvalidType(). If the declarator
2596  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2597  // though it will not reflect the user specified type.
2598  QualType parmDeclType = GetTypeForDeclarator(D, S);
2599
2600  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2601
2602  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2603  // Can this happen for params?  We already checked that they don't conflict
2604  // among each other.  Here they can only shadow globals, which is ok.
2605  IdentifierInfo *II = D.getIdentifier();
2606  if (II) {
2607    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2608      if (PrevDecl->isTemplateParameter()) {
2609        // Maybe we will complain about the shadowed template parameter.
2610        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2611        // Just pretend that we didn't see the previous declaration.
2612        PrevDecl = 0;
2613      } else if (S->isDeclScope(PrevDecl)) {
2614        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2615
2616        // Recover by removing the name
2617        II = 0;
2618        D.SetIdentifier(0, D.getIdentifierLoc());
2619      }
2620    }
2621  }
2622
2623  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2624  // Doing the promotion here has a win and a loss. The win is the type for
2625  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2626  // code generator). The loss is the orginal type isn't preserved. For example:
2627  //
2628  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2629  //    int blockvardecl[5];
2630  //    sizeof(parmvardecl);  // size == 4
2631  //    sizeof(blockvardecl); // size == 20
2632  // }
2633  //
2634  // For expressions, all implicit conversions are captured using the
2635  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2636  //
2637  // FIXME: If a source translation tool needs to see the original type, then
2638  // we need to consider storing both types (in ParmVarDecl)...
2639  //
2640  if (parmDeclType->isArrayType()) {
2641    // int x[restrict 4] ->  int *restrict
2642    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2643  } else if (parmDeclType->isFunctionType())
2644    parmDeclType = Context.getPointerType(parmDeclType);
2645
2646  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2647                                         D.getIdentifierLoc(), II,
2648                                         parmDeclType, StorageClass,
2649                                         0);
2650
2651  if (D.getInvalidType())
2652    New->setInvalidDecl();
2653
2654  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2655  if (D.getCXXScopeSpec().isSet()) {
2656    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2657      << D.getCXXScopeSpec().getRange();
2658    New->setInvalidDecl();
2659  }
2660
2661  // Add the parameter declaration into this scope.
2662  S->AddDecl(New);
2663  if (II)
2664    IdResolver.AddDecl(New);
2665
2666  ProcessDeclAttributes(New, D);
2667  return New;
2668
2669}
2670
2671void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2672  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2673         "Not a function declarator!");
2674  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2675
2676  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2677  // for a K&R function.
2678  if (!FTI.hasPrototype) {
2679    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2680      if (FTI.ArgInfo[i].Param == 0) {
2681        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2682          << FTI.ArgInfo[i].Ident;
2683        // Implicitly declare the argument as type 'int' for lack of a better
2684        // type.
2685        DeclSpec DS;
2686        const char* PrevSpec; // unused
2687        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2688                           PrevSpec);
2689        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2690        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2691        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2692      }
2693    }
2694  }
2695}
2696
2697Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2698  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2699  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2700         "Not a function declarator!");
2701  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2702
2703  if (FTI.hasPrototype) {
2704    // FIXME: Diagnose arguments without names in C.
2705  }
2706
2707  Scope *ParentScope = FnBodyScope->getParent();
2708
2709  return ActOnStartOfFunctionDef(FnBodyScope,
2710                                 ActOnDeclarator(ParentScope, D, 0,
2711                                                 /*IsFunctionDefinition=*/true));
2712}
2713
2714Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2715  Decl *decl = static_cast<Decl*>(D);
2716  FunctionDecl *FD = cast<FunctionDecl>(decl);
2717
2718  // See if this is a redefinition.
2719  const FunctionDecl *Definition;
2720  if (FD->getBody(Definition)) {
2721    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2722    Diag(Definition->getLocation(), diag::note_previous_definition);
2723  }
2724
2725  PushDeclContext(FnBodyScope, FD);
2726
2727  // Check the validity of our function parameters
2728  CheckParmsForFunctionDef(FD);
2729
2730  // Introduce our parameters into the function scope
2731  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2732    ParmVarDecl *Param = FD->getParamDecl(p);
2733    Param->setOwningFunction(FD);
2734
2735    // If this has an identifier, add it to the scope stack.
2736    if (Param->getIdentifier())
2737      PushOnScopeChains(Param, FnBodyScope);
2738  }
2739
2740  // Checking attributes of current function definition
2741  // dllimport attribute.
2742  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2743    // dllimport attribute cannot be applied to definition.
2744    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2745      Diag(FD->getLocation(),
2746           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2747        << "dllimport";
2748      FD->setInvalidDecl();
2749      return FD;
2750    } else {
2751      // If a symbol previously declared dllimport is later defined, the
2752      // attribute is ignored in subsequent references, and a warning is
2753      // emitted.
2754      Diag(FD->getLocation(),
2755           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2756        << FD->getNameAsCString() << "dllimport";
2757    }
2758  }
2759  return FD;
2760}
2761
2762Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2763  Decl *dcl = static_cast<Decl *>(D);
2764  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2765  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2766    FD->setBody(Body);
2767    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2768  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2769    MD->setBody((Stmt*)Body);
2770  } else {
2771    Body->Destroy(Context);
2772    return 0;
2773  }
2774  PopDeclContext();
2775  // Verify and clean out per-function state.
2776
2777  // Check goto/label use.
2778  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2779       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2780    // Verify that we have no forward references left.  If so, there was a goto
2781    // or address of a label taken, but no definition of it.  Label fwd
2782    // definitions are indicated with a null substmt.
2783    if (I->second->getSubStmt() == 0) {
2784      LabelStmt *L = I->second;
2785      // Emit error.
2786      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2787
2788      // At this point, we have gotos that use the bogus label.  Stitch it into
2789      // the function body so that they aren't leaked and that the AST is well
2790      // formed.
2791      if (Body) {
2792#if 0
2793        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2794        // and the AST is malformed anyway.  We should just blow away 'L'.
2795        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2796        cast<CompoundStmt>(Body)->push_back(L);
2797#else
2798        L->Destroy(Context);
2799#endif
2800      } else {
2801        // The whole function wasn't parsed correctly, just delete this.
2802        L->Destroy(Context);
2803      }
2804    }
2805  }
2806  LabelMap.clear();
2807
2808  return D;
2809}
2810
2811/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2812/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2813NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2814                                          IdentifierInfo &II, Scope *S) {
2815  // Extension in C99.  Legal in C90, but warn about it.
2816  if (getLangOptions().C99)
2817    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2818  else
2819    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2820
2821  // FIXME: handle stuff like:
2822  // void foo() { extern float X(); }
2823  // void bar() { X(); }  <-- implicit decl for X in another scope.
2824
2825  // Set a Declarator for the implicit definition: int foo();
2826  const char *Dummy;
2827  DeclSpec DS;
2828  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2829  Error = Error; // Silence warning.
2830  assert(!Error && "Error setting up implicit decl!");
2831  Declarator D(DS, Declarator::BlockContext);
2832  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2833                SourceLocation());
2834  D.SetIdentifier(&II, Loc);
2835
2836  // Insert this function into translation-unit scope.
2837
2838  DeclContext *PrevDC = CurContext;
2839  CurContext = Context.getTranslationUnitDecl();
2840
2841  FunctionDecl *FD =
2842    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2843  FD->setImplicit();
2844
2845  CurContext = PrevDC;
2846
2847  return FD;
2848}
2849
2850
2851TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2852                                    Decl *LastDeclarator) {
2853  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2854  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2855
2856  // Scope manipulation handled by caller.
2857  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2858                                           D.getIdentifierLoc(),
2859                                           D.getIdentifier(),
2860                                           T);
2861  NewTD->setNextDeclarator(LastDeclarator);
2862  if (D.getInvalidType())
2863    NewTD->setInvalidDecl();
2864  return NewTD;
2865}
2866
2867/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2868/// former case, Name will be non-null.  In the later case, Name will be null.
2869/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2870/// reference/declaration/definition of a tag.
2871Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2872                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2873                             IdentifierInfo *Name, SourceLocation NameLoc,
2874                             AttributeList *Attr) {
2875  // If this is not a definition, it must have a name.
2876  assert((Name != 0 || TK == TK_Definition) &&
2877         "Nameless record must be a definition!");
2878
2879  TagDecl::TagKind Kind;
2880  switch (TagSpec) {
2881  default: assert(0 && "Unknown tag type!");
2882  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2883  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2884  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2885  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2886  }
2887
2888  DeclContext *SearchDC = CurContext;
2889  DeclContext *DC = CurContext;
2890  NamedDecl *PrevDecl = 0;
2891
2892  bool Invalid = false;
2893
2894  if (Name && SS.isNotEmpty()) {
2895    // We have a nested-name tag ('struct foo::bar').
2896
2897    // Check for invalid 'foo::'.
2898    if (SS.isInvalid()) {
2899      Name = 0;
2900      goto CreateNewDecl;
2901    }
2902
2903    DC = static_cast<DeclContext*>(SS.getScopeRep());
2904    SearchDC = DC;
2905    // Look-up name inside 'foo::'.
2906    PrevDecl = dyn_cast_or_null<TagDecl>(
2907                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2908
2909    // A tag 'foo::bar' must already exist.
2910    if (PrevDecl == 0) {
2911      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2912      Name = 0;
2913      goto CreateNewDecl;
2914    }
2915  } else if (Name) {
2916    // If this is a named struct, check to see if there was a previous forward
2917    // declaration or definition.
2918    // FIXME: We're looking into outer scopes here, even when we
2919    // shouldn't be. Doing so can result in ambiguities that we
2920    // shouldn't be diagnosing.
2921    LookupResult R = LookupName(S, Name, LookupTagName,
2922                                /*RedeclarationOnly=*/(TK != TK_Reference));
2923    if (R.isAmbiguous()) {
2924      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2925      // FIXME: This is not best way to recover from case like:
2926      //
2927      // struct S s;
2928      //
2929      // causes needless err_ovl_no_viable_function_in_init latter.
2930      Name = 0;
2931      PrevDecl = 0;
2932      Invalid = true;
2933    }
2934    else
2935      PrevDecl = R;
2936
2937    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2938      // FIXME: This makes sure that we ignore the contexts associated
2939      // with C structs, unions, and enums when looking for a matching
2940      // tag declaration or definition. See the similar lookup tweak
2941      // in Sema::LookupName; is there a better way to deal with this?
2942      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2943        SearchDC = SearchDC->getParent();
2944    }
2945  }
2946
2947  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2948    // Maybe we will complain about the shadowed template parameter.
2949    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2950    // Just pretend that we didn't see the previous declaration.
2951    PrevDecl = 0;
2952  }
2953
2954  if (PrevDecl) {
2955    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2956      // If this is a use of a previous tag, or if the tag is already declared
2957      // in the same scope (so that the definition/declaration completes or
2958      // rementions the tag), reuse the decl.
2959      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2960        // Make sure that this wasn't declared as an enum and now used as a
2961        // struct or something similar.
2962        if (PrevTagDecl->getTagKind() != Kind) {
2963          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2964          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2965          // Recover by making this an anonymous redefinition.
2966          Name = 0;
2967          PrevDecl = 0;
2968          Invalid = true;
2969        } else {
2970          // If this is a use, just return the declaration we found.
2971
2972          // FIXME: In the future, return a variant or some other clue
2973          // for the consumer of this Decl to know it doesn't own it.
2974          // For our current ASTs this shouldn't be a problem, but will
2975          // need to be changed with DeclGroups.
2976          if (TK == TK_Reference)
2977            return PrevDecl;
2978
2979          // Diagnose attempts to redefine a tag.
2980          if (TK == TK_Definition) {
2981            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2982              Diag(NameLoc, diag::err_redefinition) << Name;
2983              Diag(Def->getLocation(), diag::note_previous_definition);
2984              // If this is a redefinition, recover by making this
2985              // struct be anonymous, which will make any later
2986              // references get the previous definition.
2987              Name = 0;
2988              PrevDecl = 0;
2989              Invalid = true;
2990            } else {
2991              // If the type is currently being defined, complain
2992              // about a nested redefinition.
2993              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2994              if (Tag->isBeingDefined()) {
2995                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2996                Diag(PrevTagDecl->getLocation(),
2997                     diag::note_previous_definition);
2998                Name = 0;
2999                PrevDecl = 0;
3000                Invalid = true;
3001              }
3002            }
3003
3004            // Okay, this is definition of a previously declared or referenced
3005            // tag PrevDecl. We're going to create a new Decl for it.
3006          }
3007        }
3008        // If we get here we have (another) forward declaration or we
3009        // have a definition.  Just create a new decl.
3010      } else {
3011        // If we get here, this is a definition of a new tag type in a nested
3012        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3013        // new decl/type.  We set PrevDecl to NULL so that the entities
3014        // have distinct types.
3015        PrevDecl = 0;
3016      }
3017      // If we get here, we're going to create a new Decl. If PrevDecl
3018      // is non-NULL, it's a definition of the tag declared by
3019      // PrevDecl. If it's NULL, we have a new definition.
3020    } else {
3021      // PrevDecl is a namespace, template, or anything else
3022      // that lives in the IDNS_Tag identifier namespace.
3023      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3024        // The tag name clashes with a namespace name, issue an error and
3025        // recover by making this tag be anonymous.
3026        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3027        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3028        Name = 0;
3029        PrevDecl = 0;
3030        Invalid = true;
3031      } else {
3032        // The existing declaration isn't relevant to us; we're in a
3033        // new scope, so clear out the previous declaration.
3034        PrevDecl = 0;
3035      }
3036    }
3037  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3038             (Kind != TagDecl::TK_enum))  {
3039    // C++ [basic.scope.pdecl]p5:
3040    //   -- for an elaborated-type-specifier of the form
3041    //
3042    //          class-key identifier
3043    //
3044    //      if the elaborated-type-specifier is used in the
3045    //      decl-specifier-seq or parameter-declaration-clause of a
3046    //      function defined in namespace scope, the identifier is
3047    //      declared as a class-name in the namespace that contains
3048    //      the declaration; otherwise, except as a friend
3049    //      declaration, the identifier is declared in the smallest
3050    //      non-class, non-function-prototype scope that contains the
3051    //      declaration.
3052    //
3053    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3054    // C structs and unions.
3055
3056    // Find the context where we'll be declaring the tag.
3057    // FIXME: We would like to maintain the current DeclContext as the
3058    // lexical context,
3059    while (SearchDC->isRecord())
3060      SearchDC = SearchDC->getParent();
3061
3062    // Find the scope where we'll be declaring the tag.
3063    while (S->isClassScope() ||
3064           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3065           ((S->getFlags() & Scope::DeclScope) == 0) ||
3066           (S->getEntity() &&
3067            ((DeclContext *)S->getEntity())->isTransparentContext()))
3068      S = S->getParent();
3069  }
3070
3071CreateNewDecl:
3072
3073  // If there is an identifier, use the location of the identifier as the
3074  // location of the decl, otherwise use the location of the struct/union
3075  // keyword.
3076  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3077
3078  // Otherwise, create a new declaration. If there is a previous
3079  // declaration of the same entity, the two will be linked via
3080  // PrevDecl.
3081  TagDecl *New;
3082
3083  if (Kind == TagDecl::TK_enum) {
3084    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3085    // enum X { A, B, C } D;    D should chain to X.
3086    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3087                           cast_or_null<EnumDecl>(PrevDecl));
3088    // If this is an undefined enum, warn.
3089    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3090  } else {
3091    // struct/union/class
3092
3093    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3094    // struct X { int A; } D;    D should chain to X.
3095    if (getLangOptions().CPlusPlus)
3096      // FIXME: Look for a way to use RecordDecl for simple structs.
3097      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3098                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3099    else
3100      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3101                               cast_or_null<RecordDecl>(PrevDecl));
3102  }
3103
3104  if (Kind != TagDecl::TK_enum) {
3105    // Handle #pragma pack: if the #pragma pack stack has non-default
3106    // alignment, make up a packed attribute for this decl. These
3107    // attributes are checked when the ASTContext lays out the
3108    // structure.
3109    //
3110    // It is important for implementing the correct semantics that this
3111    // happen here (in act on tag decl). The #pragma pack stack is
3112    // maintained as a result of parser callbacks which can occur at
3113    // many points during the parsing of a struct declaration (because
3114    // the #pragma tokens are effectively skipped over during the
3115    // parsing of the struct).
3116    if (unsigned Alignment = PackContext.getAlignment())
3117      New->addAttr(new PackedAttr(Alignment * 8));
3118  }
3119
3120  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3121    // C++ [dcl.typedef]p3:
3122    //   [...] Similarly, in a given scope, a class or enumeration
3123    //   shall not be declared with the same name as a typedef-name
3124    //   that is declared in that scope and refers to a type other
3125    //   than the class or enumeration itself.
3126    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3127    TypedefDecl *PrevTypedef = 0;
3128    if (Lookup.getKind() == LookupResult::Found)
3129      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3130
3131    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3132        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3133          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3134      Diag(Loc, diag::err_tag_definition_of_typedef)
3135        << Context.getTypeDeclType(New)
3136        << PrevTypedef->getUnderlyingType();
3137      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3138      Invalid = true;
3139    }
3140  }
3141
3142  if (Invalid)
3143    New->setInvalidDecl();
3144
3145  if (Attr)
3146    ProcessDeclAttributeList(New, Attr);
3147
3148  // If we're declaring or defining a tag in function prototype scope
3149  // in C, note that this type can only be used within the function.
3150  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3151    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3152
3153  // Set the lexical context. If the tag has a C++ scope specifier, the
3154  // lexical context will be different from the semantic context.
3155  New->setLexicalDeclContext(CurContext);
3156
3157  if (TK == TK_Definition)
3158    New->startDefinition();
3159
3160  // If this has an identifier, add it to the scope stack.
3161  if (Name) {
3162    S = getNonFieldDeclScope(S);
3163    PushOnScopeChains(New, S);
3164  } else {
3165    CurContext->addDecl(New);
3166  }
3167
3168  return New;
3169}
3170
3171void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3172  AdjustDeclIfTemplate(TagD);
3173  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3174
3175  // Enter the tag context.
3176  PushDeclContext(S, Tag);
3177
3178  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3179    FieldCollector->StartClass();
3180
3181    if (Record->getIdentifier()) {
3182      // C++ [class]p2:
3183      //   [...] The class-name is also inserted into the scope of the
3184      //   class itself; this is known as the injected-class-name. For
3185      //   purposes of access checking, the injected-class-name is treated
3186      //   as if it were a public member name.
3187      RecordDecl *InjectedClassName
3188        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3189                                CurContext, Record->getLocation(),
3190                                Record->getIdentifier(), Record);
3191      InjectedClassName->setImplicit();
3192      PushOnScopeChains(InjectedClassName, S);
3193    }
3194  }
3195}
3196
3197void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3198  AdjustDeclIfTemplate(TagD);
3199  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3200
3201  if (isa<CXXRecordDecl>(Tag))
3202    FieldCollector->FinishClass();
3203
3204  // Exit this scope of this tag's definition.
3205  PopDeclContext();
3206
3207  // Notify the consumer that we've defined a tag.
3208  Consumer.HandleTagDeclDefinition(Tag);
3209}
3210
3211/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3212/// types into constant array types in certain situations which would otherwise
3213/// be errors (for GCC compatibility).
3214static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3215                                                    ASTContext &Context) {
3216  // This method tries to turn a variable array into a constant
3217  // array even when the size isn't an ICE.  This is necessary
3218  // for compatibility with code that depends on gcc's buggy
3219  // constant expression folding, like struct {char x[(int)(char*)2];}
3220  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3221  if (!VLATy) return QualType();
3222
3223  Expr::EvalResult EvalResult;
3224  if (!VLATy->getSizeExpr() ||
3225      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3226    return QualType();
3227
3228  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3229  llvm::APSInt &Res = EvalResult.Val.getInt();
3230  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3231    return Context.getConstantArrayType(VLATy->getElementType(),
3232                                        Res, ArrayType::Normal, 0);
3233  return QualType();
3234}
3235
3236bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3237                          QualType FieldTy, const Expr *BitWidth) {
3238  // FIXME: 6.7.2.1p4 - verify the field type.
3239
3240  llvm::APSInt Value;
3241  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3242    return true;
3243
3244  // Zero-width bitfield is ok for anonymous field.
3245  if (Value == 0 && FieldName)
3246    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3247
3248  if (Value.isNegative())
3249    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3250
3251  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3252  // FIXME: We won't need the 0 size once we check that the field type is valid.
3253  if (TypeSize && Value.getZExtValue() > TypeSize)
3254    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3255       << FieldName << (unsigned)TypeSize;
3256
3257  return false;
3258}
3259
3260/// ActOnField - Each field of a struct/union/class is passed into this in order
3261/// to create a FieldDecl object for it.
3262Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3263                               SourceLocation DeclStart,
3264                               Declarator &D, ExprTy *BitfieldWidth) {
3265  IdentifierInfo *II = D.getIdentifier();
3266  Expr *BitWidth = (Expr*)BitfieldWidth;
3267  SourceLocation Loc = DeclStart;
3268  RecordDecl *Record = (RecordDecl *)TagD;
3269  if (II) Loc = D.getIdentifierLoc();
3270
3271  // FIXME: Unnamed fields can be handled in various different ways, for
3272  // example, unnamed unions inject all members into the struct namespace!
3273
3274  QualType T = GetTypeForDeclarator(D, S);
3275  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3276  bool InvalidDecl = false;
3277
3278  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3279  // than a variably modified type.
3280  if (T->isVariablyModifiedType()) {
3281    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3282    if (!FixedTy.isNull()) {
3283      Diag(Loc, diag::warn_illegal_constant_array_size);
3284      T = FixedTy;
3285    } else {
3286      Diag(Loc, diag::err_typecheck_field_variable_size);
3287      T = Context.IntTy;
3288      InvalidDecl = true;
3289    }
3290  }
3291
3292  if (BitWidth) {
3293    if (VerifyBitField(Loc, II, T, BitWidth))
3294      InvalidDecl = true;
3295  } else {
3296    // Not a bitfield.
3297
3298    // validate II.
3299
3300  }
3301
3302  // FIXME: Chain fielddecls together.
3303  FieldDecl *NewFD;
3304
3305  NewFD = FieldDecl::Create(Context, Record,
3306                            Loc, II, T, BitWidth,
3307                            D.getDeclSpec().getStorageClassSpec() ==
3308                              DeclSpec::SCS_mutable);
3309
3310  if (II) {
3311    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3312    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3313        && !isa<TagDecl>(PrevDecl)) {
3314      Diag(Loc, diag::err_duplicate_member) << II;
3315      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3316      NewFD->setInvalidDecl();
3317      Record->setInvalidDecl();
3318    }
3319  }
3320
3321  if (getLangOptions().CPlusPlus) {
3322    CheckExtraCXXDefaultArguments(D);
3323    if (!T->isPODType())
3324      cast<CXXRecordDecl>(Record)->setPOD(false);
3325  }
3326
3327  ProcessDeclAttributes(NewFD, D);
3328
3329  if (D.getInvalidType() || InvalidDecl)
3330    NewFD->setInvalidDecl();
3331
3332  if (II) {
3333    PushOnScopeChains(NewFD, S);
3334  } else
3335    Record->addDecl(NewFD);
3336
3337  return NewFD;
3338}
3339
3340/// TranslateIvarVisibility - Translate visibility from a token ID to an
3341///  AST enum value.
3342static ObjCIvarDecl::AccessControl
3343TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3344  switch (ivarVisibility) {
3345  default: assert(0 && "Unknown visitibility kind");
3346  case tok::objc_private: return ObjCIvarDecl::Private;
3347  case tok::objc_public: return ObjCIvarDecl::Public;
3348  case tok::objc_protected: return ObjCIvarDecl::Protected;
3349  case tok::objc_package: return ObjCIvarDecl::Package;
3350  }
3351}
3352
3353/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3354/// in order to create an IvarDecl object for it.
3355Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3356                              SourceLocation DeclStart,
3357                              Declarator &D, ExprTy *BitfieldWidth,
3358                              tok::ObjCKeywordKind Visibility) {
3359
3360  IdentifierInfo *II = D.getIdentifier();
3361  Expr *BitWidth = (Expr*)BitfieldWidth;
3362  SourceLocation Loc = DeclStart;
3363  if (II) Loc = D.getIdentifierLoc();
3364
3365  // FIXME: Unnamed fields can be handled in various different ways, for
3366  // example, unnamed unions inject all members into the struct namespace!
3367
3368  QualType T = GetTypeForDeclarator(D, S);
3369  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3370  bool InvalidDecl = false;
3371
3372  if (BitWidth) {
3373    // TODO: Validate.
3374    //printf("WARNING: BITFIELDS IGNORED!\n");
3375
3376    // 6.7.2.1p3
3377    // 6.7.2.1p4
3378
3379  } else {
3380    // Not a bitfield.
3381
3382    // validate II.
3383
3384  }
3385
3386  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3387  // than a variably modified type.
3388  if (T->isVariablyModifiedType()) {
3389    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3390    InvalidDecl = true;
3391  }
3392
3393  // Get the visibility (access control) for this ivar.
3394  ObjCIvarDecl::AccessControl ac =
3395    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3396                                        : ObjCIvarDecl::None;
3397
3398  // Construct the decl.
3399  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3400                                             (Expr *)BitfieldWidth);
3401
3402  if (II) {
3403    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3404    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3405        && !isa<TagDecl>(PrevDecl)) {
3406      Diag(Loc, diag::err_duplicate_member) << II;
3407      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3408      NewID->setInvalidDecl();
3409    }
3410  }
3411
3412  // Process attributes attached to the ivar.
3413  ProcessDeclAttributes(NewID, D);
3414
3415  if (D.getInvalidType() || InvalidDecl)
3416    NewID->setInvalidDecl();
3417
3418  if (II) {
3419    // FIXME: When interfaces are DeclContexts, we'll need to add
3420    // these to the interface.
3421    S->AddDecl(NewID);
3422    IdResolver.AddDecl(NewID);
3423  }
3424
3425  return NewID;
3426}
3427
3428void Sema::ActOnFields(Scope* S,
3429                       SourceLocation RecLoc, DeclTy *RecDecl,
3430                       DeclTy **Fields, unsigned NumFields,
3431                       SourceLocation LBrac, SourceLocation RBrac,
3432                       AttributeList *Attr) {
3433  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3434  assert(EnclosingDecl && "missing record or interface decl");
3435  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3436
3437  // Verify that all the fields are okay.
3438  unsigned NumNamedMembers = 0;
3439  llvm::SmallVector<FieldDecl*, 32> RecFields;
3440
3441  for (unsigned i = 0; i != NumFields; ++i) {
3442    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3443    assert(FD && "missing field decl");
3444
3445    // Get the type for the field.
3446    Type *FDTy = FD->getType().getTypePtr();
3447
3448    if (!FD->isAnonymousStructOrUnion()) {
3449      // Remember all fields written by the user.
3450      RecFields.push_back(FD);
3451    }
3452
3453    // C99 6.7.2.1p2 - A field may not be a function type.
3454    if (FDTy->isFunctionType()) {
3455      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3456        << FD->getDeclName();
3457      FD->setInvalidDecl();
3458      EnclosingDecl->setInvalidDecl();
3459      continue;
3460    }
3461    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3462    if (FDTy->isIncompleteType()) {
3463      if (!Record) {  // Incomplete ivar type is always an error.
3464        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3465                               diag::err_field_incomplete);
3466        FD->setInvalidDecl();
3467        EnclosingDecl->setInvalidDecl();
3468        continue;
3469      }
3470      if (i != NumFields-1 ||                   // ... that the last member ...
3471          !Record->isStruct() ||  // ... of a structure ...
3472          !FDTy->isArrayType()) {         //... may have incomplete array type.
3473        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3474                               diag::err_field_incomplete);
3475        FD->setInvalidDecl();
3476        EnclosingDecl->setInvalidDecl();
3477        continue;
3478      }
3479      if (NumNamedMembers < 1) {  //... must have more than named member ...
3480        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3481          << FD->getDeclName();
3482        FD->setInvalidDecl();
3483        EnclosingDecl->setInvalidDecl();
3484        continue;
3485      }
3486      // Okay, we have a legal flexible array member at the end of the struct.
3487      if (Record)
3488        Record->setHasFlexibleArrayMember(true);
3489    }
3490    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3491    /// field of another structure or the element of an array.
3492    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3493      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3494        // If this is a member of a union, then entire union becomes "flexible".
3495        if (Record && Record->isUnion()) {
3496          Record->setHasFlexibleArrayMember(true);
3497        } else {
3498          // If this is a struct/class and this is not the last element, reject
3499          // it.  Note that GCC supports variable sized arrays in the middle of
3500          // structures.
3501          if (i != NumFields-1) {
3502            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3503              << FD->getDeclName();
3504            FD->setInvalidDecl();
3505            EnclosingDecl->setInvalidDecl();
3506            continue;
3507          }
3508          // We support flexible arrays at the end of structs in other structs
3509          // as an extension.
3510          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3511            << FD->getDeclName();
3512          if (Record)
3513            Record->setHasFlexibleArrayMember(true);
3514        }
3515      }
3516    }
3517    /// A field cannot be an Objective-c object
3518    if (FDTy->isObjCInterfaceType()) {
3519      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3520        << FD->getDeclName();
3521      FD->setInvalidDecl();
3522      EnclosingDecl->setInvalidDecl();
3523      continue;
3524    }
3525    // Keep track of the number of named members.
3526    if (FD->getIdentifier())
3527      ++NumNamedMembers;
3528  }
3529
3530  // Okay, we successfully defined 'Record'.
3531  if (Record) {
3532    Record->completeDefinition(Context);
3533  } else {
3534    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3535    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3536      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3537      // Must enforce the rule that ivars in the base classes may not be
3538      // duplicates.
3539      if (ID->getSuperClass()) {
3540        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3541             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3542          ObjCIvarDecl* Ivar = (*IVI);
3543          IdentifierInfo *II = Ivar->getIdentifier();
3544          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3545          if (prevIvar) {
3546            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3547            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3548          }
3549        }
3550      }
3551    }
3552    else if (ObjCImplementationDecl *IMPDecl =
3553               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3554      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3555      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3556      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3557    }
3558  }
3559
3560  if (Attr)
3561    ProcessDeclAttributeList(Record, Attr);
3562}
3563
3564Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3565                                      DeclTy *lastEnumConst,
3566                                      SourceLocation IdLoc, IdentifierInfo *Id,
3567                                      SourceLocation EqualLoc, ExprTy *val) {
3568  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3569  EnumConstantDecl *LastEnumConst =
3570    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3571  Expr *Val = static_cast<Expr*>(val);
3572
3573  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3574  // we find one that is.
3575  S = getNonFieldDeclScope(S);
3576
3577  // Verify that there isn't already something declared with this name in this
3578  // scope.
3579  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3580  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3581    // Maybe we will complain about the shadowed template parameter.
3582    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3583    // Just pretend that we didn't see the previous declaration.
3584    PrevDecl = 0;
3585  }
3586
3587  if (PrevDecl) {
3588    // When in C++, we may get a TagDecl with the same name; in this case the
3589    // enum constant will 'hide' the tag.
3590    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3591           "Received TagDecl when not in C++!");
3592    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3593      if (isa<EnumConstantDecl>(PrevDecl))
3594        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3595      else
3596        Diag(IdLoc, diag::err_redefinition) << Id;
3597      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3598      Val->Destroy(Context);
3599      return 0;
3600    }
3601  }
3602
3603  llvm::APSInt EnumVal(32);
3604  QualType EltTy;
3605  if (Val) {
3606    // Make sure to promote the operand type to int.
3607    UsualUnaryConversions(Val);
3608
3609    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3610    SourceLocation ExpLoc;
3611    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3612      Val->Destroy(Context);
3613      Val = 0;  // Just forget about it.
3614    } else {
3615      EltTy = Val->getType();
3616    }
3617  }
3618
3619  if (!Val) {
3620    if (LastEnumConst) {
3621      // Assign the last value + 1.
3622      EnumVal = LastEnumConst->getInitVal();
3623      ++EnumVal;
3624
3625      // Check for overflow on increment.
3626      if (EnumVal < LastEnumConst->getInitVal())
3627        Diag(IdLoc, diag::warn_enum_value_overflow);
3628
3629      EltTy = LastEnumConst->getType();
3630    } else {
3631      // First value, set to zero.
3632      EltTy = Context.IntTy;
3633      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3634    }
3635  }
3636
3637  EnumConstantDecl *New =
3638    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3639                             Val, EnumVal);
3640
3641  // Register this decl in the current scope stack.
3642  PushOnScopeChains(New, S);
3643
3644  return New;
3645}
3646
3647// FIXME: For consistency with ActOnFields(), we should have the parser
3648// pass in the source location for the left/right braces.
3649void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3650                         DeclTy **Elements, unsigned NumElements) {
3651  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3652  QualType EnumType = Context.getTypeDeclType(Enum);
3653
3654  // TODO: If the result value doesn't fit in an int, it must be a long or long
3655  // long value.  ISO C does not support this, but GCC does as an extension,
3656  // emit a warning.
3657  unsigned IntWidth = Context.Target.getIntWidth();
3658
3659  // Verify that all the values are okay, compute the size of the values, and
3660  // reverse the list.
3661  unsigned NumNegativeBits = 0;
3662  unsigned NumPositiveBits = 0;
3663
3664  // Keep track of whether all elements have type int.
3665  bool AllElementsInt = true;
3666
3667  for (unsigned i = 0; i != NumElements; ++i) {
3668    EnumConstantDecl *ECD =
3669      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3670    if (!ECD) continue;  // Already issued a diagnostic.
3671
3672    // If the enum value doesn't fit in an int, emit an extension warning.
3673    const llvm::APSInt &InitVal = ECD->getInitVal();
3674    assert(InitVal.getBitWidth() >= IntWidth &&
3675           "Should have promoted value to int");
3676    if (InitVal.getBitWidth() > IntWidth) {
3677      llvm::APSInt V(InitVal);
3678      V.trunc(IntWidth);
3679      V.extend(InitVal.getBitWidth());
3680      if (V != InitVal)
3681        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3682          << InitVal.toString(10);
3683    }
3684
3685    // Keep track of the size of positive and negative values.
3686    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3687      NumPositiveBits = std::max(NumPositiveBits,
3688                                 (unsigned)InitVal.getActiveBits());
3689    else
3690      NumNegativeBits = std::max(NumNegativeBits,
3691                                 (unsigned)InitVal.getMinSignedBits());
3692
3693    // Keep track of whether every enum element has type int (very commmon).
3694    if (AllElementsInt)
3695      AllElementsInt = ECD->getType() == Context.IntTy;
3696  }
3697
3698  // Figure out the type that should be used for this enum.
3699  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3700  QualType BestType;
3701  unsigned BestWidth;
3702
3703  if (NumNegativeBits) {
3704    // If there is a negative value, figure out the smallest integer type (of
3705    // int/long/longlong) that fits.
3706    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3707      BestType = Context.IntTy;
3708      BestWidth = IntWidth;
3709    } else {
3710      BestWidth = Context.Target.getLongWidth();
3711
3712      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3713        BestType = Context.LongTy;
3714      else {
3715        BestWidth = Context.Target.getLongLongWidth();
3716
3717        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3718          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3719        BestType = Context.LongLongTy;
3720      }
3721    }
3722  } else {
3723    // If there is no negative value, figure out which of uint, ulong, ulonglong
3724    // fits.
3725    if (NumPositiveBits <= IntWidth) {
3726      BestType = Context.UnsignedIntTy;
3727      BestWidth = IntWidth;
3728    } else if (NumPositiveBits <=
3729               (BestWidth = Context.Target.getLongWidth())) {
3730      BestType = Context.UnsignedLongTy;
3731    } else {
3732      BestWidth = Context.Target.getLongLongWidth();
3733      assert(NumPositiveBits <= BestWidth &&
3734             "How could an initializer get larger than ULL?");
3735      BestType = Context.UnsignedLongLongTy;
3736    }
3737  }
3738
3739  // Loop over all of the enumerator constants, changing their types to match
3740  // the type of the enum if needed.
3741  for (unsigned i = 0; i != NumElements; ++i) {
3742    EnumConstantDecl *ECD =
3743      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3744    if (!ECD) continue;  // Already issued a diagnostic.
3745
3746    // Standard C says the enumerators have int type, but we allow, as an
3747    // extension, the enumerators to be larger than int size.  If each
3748    // enumerator value fits in an int, type it as an int, otherwise type it the
3749    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3750    // that X has type 'int', not 'unsigned'.
3751    if (ECD->getType() == Context.IntTy) {
3752      // Make sure the init value is signed.
3753      llvm::APSInt IV = ECD->getInitVal();
3754      IV.setIsSigned(true);
3755      ECD->setInitVal(IV);
3756
3757      if (getLangOptions().CPlusPlus)
3758        // C++ [dcl.enum]p4: Following the closing brace of an
3759        // enum-specifier, each enumerator has the type of its
3760        // enumeration.
3761        ECD->setType(EnumType);
3762      continue;  // Already int type.
3763    }
3764
3765    // Determine whether the value fits into an int.
3766    llvm::APSInt InitVal = ECD->getInitVal();
3767    bool FitsInInt;
3768    if (InitVal.isUnsigned() || !InitVal.isNegative())
3769      FitsInInt = InitVal.getActiveBits() < IntWidth;
3770    else
3771      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3772
3773    // If it fits into an integer type, force it.  Otherwise force it to match
3774    // the enum decl type.
3775    QualType NewTy;
3776    unsigned NewWidth;
3777    bool NewSign;
3778    if (FitsInInt) {
3779      NewTy = Context.IntTy;
3780      NewWidth = IntWidth;
3781      NewSign = true;
3782    } else if (ECD->getType() == BestType) {
3783      // Already the right type!
3784      if (getLangOptions().CPlusPlus)
3785        // C++ [dcl.enum]p4: Following the closing brace of an
3786        // enum-specifier, each enumerator has the type of its
3787        // enumeration.
3788        ECD->setType(EnumType);
3789      continue;
3790    } else {
3791      NewTy = BestType;
3792      NewWidth = BestWidth;
3793      NewSign = BestType->isSignedIntegerType();
3794    }
3795
3796    // Adjust the APSInt value.
3797    InitVal.extOrTrunc(NewWidth);
3798    InitVal.setIsSigned(NewSign);
3799    ECD->setInitVal(InitVal);
3800
3801    // Adjust the Expr initializer and type.
3802    if (ECD->getInitExpr())
3803      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3804                                                      /*isLvalue=*/false));
3805    if (getLangOptions().CPlusPlus)
3806      // C++ [dcl.enum]p4: Following the closing brace of an
3807      // enum-specifier, each enumerator has the type of its
3808      // enumeration.
3809      ECD->setType(EnumType);
3810    else
3811      ECD->setType(NewTy);
3812  }
3813
3814  Enum->completeDefinition(Context, BestType);
3815}
3816
3817Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3818                                          ExprArg expr) {
3819  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3820
3821  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3822}
3823
3824
3825void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3826                           ExprTy *alignment, SourceLocation PragmaLoc,
3827                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3828  Expr *Alignment = static_cast<Expr *>(alignment);
3829
3830  // If specified then alignment must be a "small" power of two.
3831  unsigned AlignmentVal = 0;
3832  if (Alignment) {
3833    llvm::APSInt Val;
3834    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3835        !Val.isPowerOf2() ||
3836        Val.getZExtValue() > 16) {
3837      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3838      Alignment->Destroy(Context);
3839      return; // Ignore
3840    }
3841
3842    AlignmentVal = (unsigned) Val.getZExtValue();
3843  }
3844
3845  switch (Kind) {
3846  case Action::PPK_Default: // pack([n])
3847    PackContext.setAlignment(AlignmentVal);
3848    break;
3849
3850  case Action::PPK_Show: // pack(show)
3851    // Show the current alignment, making sure to show the right value
3852    // for the default.
3853    AlignmentVal = PackContext.getAlignment();
3854    // FIXME: This should come from the target.
3855    if (AlignmentVal == 0)
3856      AlignmentVal = 8;
3857    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3858    break;
3859
3860  case Action::PPK_Push: // pack(push [, id] [, [n])
3861    PackContext.push(Name);
3862    // Set the new alignment if specified.
3863    if (Alignment)
3864      PackContext.setAlignment(AlignmentVal);
3865    break;
3866
3867  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3868    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3869    // "#pragma pack(pop, identifier, n) is undefined"
3870    if (Alignment && Name)
3871      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3872
3873    // Do the pop.
3874    if (!PackContext.pop(Name)) {
3875      // If a name was specified then failure indicates the name
3876      // wasn't found. Otherwise failure indicates the stack was
3877      // empty.
3878      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3879        << (Name ? "no record matching name" : "stack empty");
3880
3881      // FIXME: Warn about popping named records as MSVC does.
3882    } else {
3883      // Pop succeeded, set the new alignment if specified.
3884      if (Alignment)
3885        PackContext.setAlignment(AlignmentVal);
3886    }
3887    break;
3888
3889  default:
3890    assert(0 && "Invalid #pragma pack kind.");
3891  }
3892}
3893
3894bool PragmaPackStack::pop(IdentifierInfo *Name) {
3895  if (Stack.empty())
3896    return false;
3897
3898  // If name is empty just pop top.
3899  if (!Name) {
3900    Alignment = Stack.back().first;
3901    Stack.pop_back();
3902    return true;
3903  }
3904
3905  // Otherwise, find the named record.
3906  for (unsigned i = Stack.size(); i != 0; ) {
3907    --i;
3908    if (Stack[i].second == Name) {
3909      // Found it, pop up to and including this record.
3910      Alignment = Stack[i].first;
3911      Stack.erase(Stack.begin() + i, Stack.end());
3912      return true;
3913    }
3914  }
3915
3916  return false;
3917}
3918