SemaDecl.cpp revision a6bff2caf90d769e0b6bfe59c3e7f16ef8402e5a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    if (Ctor->isDefaultConstructor())
1512      return Sema::CXXDefaultConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  if (MD->isCopyAssignmentOperator())
1519    return Sema::CXXCopyAssignment;
1520
1521  llvm_unreachable("getSpecialMember on non-special member");
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1531          FD->isInlineSpecified() &&
1532          FD->getStorageClass() == SC_Extern);
1533}
1534
1535/// MergeFunctionDecl - We just parsed a function 'New' from
1536/// declarator D which has the same name and scope as a previous
1537/// declaration 'Old'.  Figure out how to resolve this situation,
1538/// merging decls or emitting diagnostics as appropriate.
1539///
1540/// In C++, New and Old must be declarations that are not
1541/// overloaded. Use IsOverload to determine whether New and Old are
1542/// overloaded, and to select the Old declaration that New should be
1543/// merged with.
1544///
1545/// Returns true if there was an error, false otherwise.
1546bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1547  // Verify the old decl was also a function.
1548  FunctionDecl *Old = 0;
1549  if (FunctionTemplateDecl *OldFunctionTemplate
1550        = dyn_cast<FunctionTemplateDecl>(OldD))
1551    Old = OldFunctionTemplate->getTemplatedDecl();
1552  else
1553    Old = dyn_cast<FunctionDecl>(OldD);
1554  if (!Old) {
1555    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1556      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1557      Diag(Shadow->getTargetDecl()->getLocation(),
1558           diag::note_using_decl_target);
1559      Diag(Shadow->getUsingDecl()->getLocation(),
1560           diag::note_using_decl) << 0;
1561      return true;
1562    }
1563
1564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1565      << New->getDeclName();
1566    Diag(OldD->getLocation(), diag::note_previous_definition);
1567    return true;
1568  }
1569
1570  // Determine whether the previous declaration was a definition,
1571  // implicit declaration, or a declaration.
1572  diag::kind PrevDiag;
1573  if (Old->isThisDeclarationADefinition())
1574    PrevDiag = diag::note_previous_definition;
1575  else if (Old->isImplicit())
1576    PrevDiag = diag::note_previous_implicit_declaration;
1577  else
1578    PrevDiag = diag::note_previous_declaration;
1579
1580  QualType OldQType = Context.getCanonicalType(Old->getType());
1581  QualType NewQType = Context.getCanonicalType(New->getType());
1582
1583  // Don't complain about this if we're in GNU89 mode and the old function
1584  // is an extern inline function.
1585  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1586      New->getStorageClass() == SC_Static &&
1587      Old->getStorageClass() != SC_Static &&
1588      !canRedefineFunction(Old, getLangOptions())) {
1589    if (getLangOptions().Microsoft) {
1590      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1591      Diag(Old->getLocation(), PrevDiag);
1592    } else {
1593      Diag(New->getLocation(), diag::err_static_non_static) << New;
1594      Diag(Old->getLocation(), PrevDiag);
1595      return true;
1596    }
1597  }
1598
1599  // If a function is first declared with a calling convention, but is
1600  // later declared or defined without one, the second decl assumes the
1601  // calling convention of the first.
1602  //
1603  // For the new decl, we have to look at the NON-canonical type to tell the
1604  // difference between a function that really doesn't have a calling
1605  // convention and one that is declared cdecl. That's because in
1606  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1607  // because it is the default calling convention.
1608  //
1609  // Note also that we DO NOT return at this point, because we still have
1610  // other tests to run.
1611  const FunctionType *OldType = cast<FunctionType>(OldQType);
1612  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1613  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1614  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1615  bool RequiresAdjustment = false;
1616  if (OldTypeInfo.getCC() != CC_Default &&
1617      NewTypeInfo.getCC() == CC_Default) {
1618    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1619    RequiresAdjustment = true;
1620  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1621                                     NewTypeInfo.getCC())) {
1622    // Calling conventions really aren't compatible, so complain.
1623    Diag(New->getLocation(), diag::err_cconv_change)
1624      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1625      << (OldTypeInfo.getCC() == CC_Default)
1626      << (OldTypeInfo.getCC() == CC_Default ? "" :
1627          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1628    Diag(Old->getLocation(), diag::note_previous_declaration);
1629    return true;
1630  }
1631
1632  // FIXME: diagnose the other way around?
1633  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1634    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1635    RequiresAdjustment = true;
1636  }
1637
1638  // Merge regparm attribute.
1639  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1640      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1641    if (NewTypeInfo.getHasRegParm()) {
1642      Diag(New->getLocation(), diag::err_regparm_mismatch)
1643        << NewType->getRegParmType()
1644        << OldType->getRegParmType();
1645      Diag(Old->getLocation(), diag::note_previous_declaration);
1646      return true;
1647    }
1648
1649    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1650    RequiresAdjustment = true;
1651  }
1652
1653  if (RequiresAdjustment) {
1654    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1655    New->setType(QualType(NewType, 0));
1656    NewQType = Context.getCanonicalType(New->getType());
1657  }
1658
1659  if (getLangOptions().CPlusPlus) {
1660    // (C++98 13.1p2):
1661    //   Certain function declarations cannot be overloaded:
1662    //     -- Function declarations that differ only in the return type
1663    //        cannot be overloaded.
1664    QualType OldReturnType = OldType->getResultType();
1665    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1666    QualType ResQT;
1667    if (OldReturnType != NewReturnType) {
1668      if (NewReturnType->isObjCObjectPointerType()
1669          && OldReturnType->isObjCObjectPointerType())
1670        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1671      if (ResQT.isNull()) {
1672        if (New->isCXXClassMember() && New->isOutOfLine())
1673          Diag(New->getLocation(),
1674               diag::err_member_def_does_not_match_ret_type) << New;
1675        else
1676          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1677        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1678        return true;
1679      }
1680      else
1681        NewQType = ResQT;
1682    }
1683
1684    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1685    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1686    if (OldMethod && NewMethod) {
1687      // Preserve triviality.
1688      NewMethod->setTrivial(OldMethod->isTrivial());
1689
1690      bool isFriend = NewMethod->getFriendObjectKind();
1691
1692      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1693        //    -- Member function declarations with the same name and the
1694        //       same parameter types cannot be overloaded if any of them
1695        //       is a static member function declaration.
1696        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1697          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1698          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1699          return true;
1700        }
1701
1702        // C++ [class.mem]p1:
1703        //   [...] A member shall not be declared twice in the
1704        //   member-specification, except that a nested class or member
1705        //   class template can be declared and then later defined.
1706        unsigned NewDiag;
1707        if (isa<CXXConstructorDecl>(OldMethod))
1708          NewDiag = diag::err_constructor_redeclared;
1709        else if (isa<CXXDestructorDecl>(NewMethod))
1710          NewDiag = diag::err_destructor_redeclared;
1711        else if (isa<CXXConversionDecl>(NewMethod))
1712          NewDiag = diag::err_conv_function_redeclared;
1713        else
1714          NewDiag = diag::err_member_redeclared;
1715
1716        Diag(New->getLocation(), NewDiag);
1717        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1718
1719      // Complain if this is an explicit declaration of a special
1720      // member that was initially declared implicitly.
1721      //
1722      // As an exception, it's okay to befriend such methods in order
1723      // to permit the implicit constructor/destructor/operator calls.
1724      } else if (OldMethod->isImplicit()) {
1725        if (isFriend) {
1726          NewMethod->setImplicit();
1727        } else {
1728          Diag(NewMethod->getLocation(),
1729               diag::err_definition_of_implicitly_declared_member)
1730            << New << getSpecialMember(OldMethod);
1731          return true;
1732        }
1733      } else if (OldMethod->isExplicitlyDefaulted()) {
1734        Diag(NewMethod->getLocation(),
1735             diag::err_definition_of_explicitly_defaulted_member)
1736          << getSpecialMember(OldMethod);
1737        return true;
1738      }
1739    }
1740
1741    // (C++98 8.3.5p3):
1742    //   All declarations for a function shall agree exactly in both the
1743    //   return type and the parameter-type-list.
1744    // We also want to respect all the extended bits except noreturn.
1745
1746    // noreturn should now match unless the old type info didn't have it.
1747    QualType OldQTypeForComparison = OldQType;
1748    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1749      assert(OldQType == QualType(OldType, 0));
1750      const FunctionType *OldTypeForComparison
1751        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1752      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1753      assert(OldQTypeForComparison.isCanonical());
1754    }
1755
1756    if (OldQTypeForComparison == NewQType)
1757      return MergeCompatibleFunctionDecls(New, Old);
1758
1759    // Fall through for conflicting redeclarations and redefinitions.
1760  }
1761
1762  // C: Function types need to be compatible, not identical. This handles
1763  // duplicate function decls like "void f(int); void f(enum X);" properly.
1764  if (!getLangOptions().CPlusPlus &&
1765      Context.typesAreCompatible(OldQType, NewQType)) {
1766    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1767    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1768    const FunctionProtoType *OldProto = 0;
1769    if (isa<FunctionNoProtoType>(NewFuncType) &&
1770        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1771      // The old declaration provided a function prototype, but the
1772      // new declaration does not. Merge in the prototype.
1773      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1774      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1775                                                 OldProto->arg_type_end());
1776      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1777                                         ParamTypes.data(), ParamTypes.size(),
1778                                         OldProto->getExtProtoInfo());
1779      New->setType(NewQType);
1780      New->setHasInheritedPrototype();
1781
1782      // Synthesize a parameter for each argument type.
1783      llvm::SmallVector<ParmVarDecl*, 16> Params;
1784      for (FunctionProtoType::arg_type_iterator
1785             ParamType = OldProto->arg_type_begin(),
1786             ParamEnd = OldProto->arg_type_end();
1787           ParamType != ParamEnd; ++ParamType) {
1788        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1789                                                 SourceLocation(),
1790                                                 SourceLocation(), 0,
1791                                                 *ParamType, /*TInfo=*/0,
1792                                                 SC_None, SC_None,
1793                                                 0);
1794        Param->setScopeInfo(0, Params.size());
1795        Param->setImplicit();
1796        Params.push_back(Param);
1797      }
1798
1799      New->setParams(Params.data(), Params.size());
1800    }
1801
1802    return MergeCompatibleFunctionDecls(New, Old);
1803  }
1804
1805  // GNU C permits a K&R definition to follow a prototype declaration
1806  // if the declared types of the parameters in the K&R definition
1807  // match the types in the prototype declaration, even when the
1808  // promoted types of the parameters from the K&R definition differ
1809  // from the types in the prototype. GCC then keeps the types from
1810  // the prototype.
1811  //
1812  // If a variadic prototype is followed by a non-variadic K&R definition,
1813  // the K&R definition becomes variadic.  This is sort of an edge case, but
1814  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1815  // C99 6.9.1p8.
1816  if (!getLangOptions().CPlusPlus &&
1817      Old->hasPrototype() && !New->hasPrototype() &&
1818      New->getType()->getAs<FunctionProtoType>() &&
1819      Old->getNumParams() == New->getNumParams()) {
1820    llvm::SmallVector<QualType, 16> ArgTypes;
1821    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1822    const FunctionProtoType *OldProto
1823      = Old->getType()->getAs<FunctionProtoType>();
1824    const FunctionProtoType *NewProto
1825      = New->getType()->getAs<FunctionProtoType>();
1826
1827    // Determine whether this is the GNU C extension.
1828    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1829                                               NewProto->getResultType());
1830    bool LooseCompatible = !MergedReturn.isNull();
1831    for (unsigned Idx = 0, End = Old->getNumParams();
1832         LooseCompatible && Idx != End; ++Idx) {
1833      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1834      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1835      if (Context.typesAreCompatible(OldParm->getType(),
1836                                     NewProto->getArgType(Idx))) {
1837        ArgTypes.push_back(NewParm->getType());
1838      } else if (Context.typesAreCompatible(OldParm->getType(),
1839                                            NewParm->getType(),
1840                                            /*CompareUnqualified=*/true)) {
1841        GNUCompatibleParamWarning Warn
1842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1843        Warnings.push_back(Warn);
1844        ArgTypes.push_back(NewParm->getType());
1845      } else
1846        LooseCompatible = false;
1847    }
1848
1849    if (LooseCompatible) {
1850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1851        Diag(Warnings[Warn].NewParm->getLocation(),
1852             diag::ext_param_promoted_not_compatible_with_prototype)
1853          << Warnings[Warn].PromotedType
1854          << Warnings[Warn].OldParm->getType();
1855        if (Warnings[Warn].OldParm->getLocation().isValid())
1856          Diag(Warnings[Warn].OldParm->getLocation(),
1857               diag::note_previous_declaration);
1858      }
1859
1860      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1861                                           ArgTypes.size(),
1862                                           OldProto->getExtProtoInfo()));
1863      return MergeCompatibleFunctionDecls(New, Old);
1864    }
1865
1866    // Fall through to diagnose conflicting types.
1867  }
1868
1869  // A function that has already been declared has been redeclared or defined
1870  // with a different type- show appropriate diagnostic
1871  if (unsigned BuiltinID = Old->getBuiltinID()) {
1872    // The user has declared a builtin function with an incompatible
1873    // signature.
1874    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1875      // The function the user is redeclaring is a library-defined
1876      // function like 'malloc' or 'printf'. Warn about the
1877      // redeclaration, then pretend that we don't know about this
1878      // library built-in.
1879      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1880      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1881        << Old << Old->getType();
1882      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1883      Old->setInvalidDecl();
1884      return false;
1885    }
1886
1887    PrevDiag = diag::note_previous_builtin_declaration;
1888  }
1889
1890  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1891  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1892  return true;
1893}
1894
1895/// \brief Completes the merge of two function declarations that are
1896/// known to be compatible.
1897///
1898/// This routine handles the merging of attributes and other
1899/// properties of function declarations form the old declaration to
1900/// the new declaration, once we know that New is in fact a
1901/// redeclaration of Old.
1902///
1903/// \returns false
1904bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1905  // Merge the attributes
1906  mergeDeclAttributes(New, Old, Context);
1907
1908  // Merge the storage class.
1909  if (Old->getStorageClass() != SC_Extern &&
1910      Old->getStorageClass() != SC_None)
1911    New->setStorageClass(Old->getStorageClass());
1912
1913  // Merge "pure" flag.
1914  if (Old->isPure())
1915    New->setPure();
1916
1917  // Merge attributes from the parameters.  These can mismatch with K&R
1918  // declarations.
1919  if (New->getNumParams() == Old->getNumParams())
1920    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1921      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1922                               Context);
1923
1924  if (getLangOptions().CPlusPlus)
1925    return MergeCXXFunctionDecl(New, Old);
1926
1927  return false;
1928}
1929
1930void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1931                                const ObjCMethodDecl *oldMethod) {
1932  // Merge the attributes.
1933  mergeDeclAttributes(newMethod, oldMethod, Context);
1934
1935  // Merge attributes from the parameters.
1936  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1937         ni = newMethod->param_begin(), ne = newMethod->param_end();
1938       ni != ne; ++ni, ++oi)
1939    mergeParamDeclAttributes(*ni, *oi, Context);
1940}
1941
1942/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1943/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1944/// emitting diagnostics as appropriate.
1945///
1946/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1947/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1948/// check them before the initializer is attached.
1949///
1950void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1951  if (New->isInvalidDecl() || Old->isInvalidDecl())
1952    return;
1953
1954  QualType MergedT;
1955  if (getLangOptions().CPlusPlus) {
1956    AutoType *AT = New->getType()->getContainedAutoType();
1957    if (AT && !AT->isDeduced()) {
1958      // We don't know what the new type is until the initializer is attached.
1959      return;
1960    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1961      // These could still be something that needs exception specs checked.
1962      return MergeVarDeclExceptionSpecs(New, Old);
1963    }
1964    // C++ [basic.link]p10:
1965    //   [...] the types specified by all declarations referring to a given
1966    //   object or function shall be identical, except that declarations for an
1967    //   array object can specify array types that differ by the presence or
1968    //   absence of a major array bound (8.3.4).
1969    else if (Old->getType()->isIncompleteArrayType() &&
1970             New->getType()->isArrayType()) {
1971      CanQual<ArrayType> OldArray
1972        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1973      CanQual<ArrayType> NewArray
1974        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1975      if (OldArray->getElementType() == NewArray->getElementType())
1976        MergedT = New->getType();
1977    } else if (Old->getType()->isArrayType() &&
1978             New->getType()->isIncompleteArrayType()) {
1979      CanQual<ArrayType> OldArray
1980        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1981      CanQual<ArrayType> NewArray
1982        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1983      if (OldArray->getElementType() == NewArray->getElementType())
1984        MergedT = Old->getType();
1985    } else if (New->getType()->isObjCObjectPointerType()
1986               && Old->getType()->isObjCObjectPointerType()) {
1987        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1988                                                        Old->getType());
1989    }
1990  } else {
1991    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1992  }
1993  if (MergedT.isNull()) {
1994    Diag(New->getLocation(), diag::err_redefinition_different_type)
1995      << New->getDeclName();
1996    Diag(Old->getLocation(), diag::note_previous_definition);
1997    return New->setInvalidDecl();
1998  }
1999  New->setType(MergedT);
2000}
2001
2002/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2003/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2004/// situation, merging decls or emitting diagnostics as appropriate.
2005///
2006/// Tentative definition rules (C99 6.9.2p2) are checked by
2007/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2008/// definitions here, since the initializer hasn't been attached.
2009///
2010void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2011  // If the new decl is already invalid, don't do any other checking.
2012  if (New->isInvalidDecl())
2013    return;
2014
2015  // Verify the old decl was also a variable.
2016  VarDecl *Old = 0;
2017  if (!Previous.isSingleResult() ||
2018      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2019    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2020      << New->getDeclName();
2021    Diag(Previous.getRepresentativeDecl()->getLocation(),
2022         diag::note_previous_definition);
2023    return New->setInvalidDecl();
2024  }
2025
2026  // C++ [class.mem]p1:
2027  //   A member shall not be declared twice in the member-specification [...]
2028  //
2029  // Here, we need only consider static data members.
2030  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2031    Diag(New->getLocation(), diag::err_duplicate_member)
2032      << New->getIdentifier();
2033    Diag(Old->getLocation(), diag::note_previous_declaration);
2034    New->setInvalidDecl();
2035  }
2036
2037  mergeDeclAttributes(New, Old, Context);
2038
2039  // Merge the types.
2040  MergeVarDeclTypes(New, Old);
2041  if (New->isInvalidDecl())
2042    return;
2043
2044  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2045  if (New->getStorageClass() == SC_Static &&
2046      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2047    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2048    Diag(Old->getLocation(), diag::note_previous_definition);
2049    return New->setInvalidDecl();
2050  }
2051  // C99 6.2.2p4:
2052  //   For an identifier declared with the storage-class specifier
2053  //   extern in a scope in which a prior declaration of that
2054  //   identifier is visible,23) if the prior declaration specifies
2055  //   internal or external linkage, the linkage of the identifier at
2056  //   the later declaration is the same as the linkage specified at
2057  //   the prior declaration. If no prior declaration is visible, or
2058  //   if the prior declaration specifies no linkage, then the
2059  //   identifier has external linkage.
2060  if (New->hasExternalStorage() && Old->hasLinkage())
2061    /* Okay */;
2062  else if (New->getStorageClass() != SC_Static &&
2063           Old->getStorageClass() == SC_Static) {
2064    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2065    Diag(Old->getLocation(), diag::note_previous_definition);
2066    return New->setInvalidDecl();
2067  }
2068
2069  // Check if extern is followed by non-extern and vice-versa.
2070  if (New->hasExternalStorage() &&
2071      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2072    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2073    Diag(Old->getLocation(), diag::note_previous_definition);
2074    return New->setInvalidDecl();
2075  }
2076  if (Old->hasExternalStorage() &&
2077      !New->hasLinkage() && New->isLocalVarDecl()) {
2078    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2079    Diag(Old->getLocation(), diag::note_previous_definition);
2080    return New->setInvalidDecl();
2081  }
2082
2083  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2084
2085  // FIXME: The test for external storage here seems wrong? We still
2086  // need to check for mismatches.
2087  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2088      // Don't complain about out-of-line definitions of static members.
2089      !(Old->getLexicalDeclContext()->isRecord() &&
2090        !New->getLexicalDeclContext()->isRecord())) {
2091    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2092    Diag(Old->getLocation(), diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2097    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2098    Diag(Old->getLocation(), diag::note_previous_definition);
2099  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2100    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2101    Diag(Old->getLocation(), diag::note_previous_definition);
2102  }
2103
2104  // C++ doesn't have tentative definitions, so go right ahead and check here.
2105  const VarDecl *Def;
2106  if (getLangOptions().CPlusPlus &&
2107      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2108      (Def = Old->getDefinition())) {
2109    Diag(New->getLocation(), diag::err_redefinition)
2110      << New->getDeclName();
2111    Diag(Def->getLocation(), diag::note_previous_definition);
2112    New->setInvalidDecl();
2113    return;
2114  }
2115  // c99 6.2.2 P4.
2116  // For an identifier declared with the storage-class specifier extern in a
2117  // scope in which a prior declaration of that identifier is visible, if
2118  // the prior declaration specifies internal or external linkage, the linkage
2119  // of the identifier at the later declaration is the same as the linkage
2120  // specified at the prior declaration.
2121  // FIXME. revisit this code.
2122  if (New->hasExternalStorage() &&
2123      Old->getLinkage() == InternalLinkage &&
2124      New->getDeclContext() == Old->getDeclContext())
2125    New->setStorageClass(Old->getStorageClass());
2126
2127  // Keep a chain of previous declarations.
2128  New->setPreviousDeclaration(Old);
2129
2130  // Inherit access appropriately.
2131  New->setAccess(Old->getAccess());
2132}
2133
2134/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2135/// no declarator (e.g. "struct foo;") is parsed.
2136Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2137                                       DeclSpec &DS) {
2138  return ParsedFreeStandingDeclSpec(S, AS, DS,
2139                                    MultiTemplateParamsArg(*this, 0, 0));
2140}
2141
2142/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2143/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2144/// parameters to cope with template friend declarations.
2145Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2146                                       DeclSpec &DS,
2147                                       MultiTemplateParamsArg TemplateParams) {
2148  Decl *TagD = 0;
2149  TagDecl *Tag = 0;
2150  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2151      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2152      DS.getTypeSpecType() == DeclSpec::TST_union ||
2153      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2154    TagD = DS.getRepAsDecl();
2155
2156    if (!TagD) // We probably had an error
2157      return 0;
2158
2159    // Note that the above type specs guarantee that the
2160    // type rep is a Decl, whereas in many of the others
2161    // it's a Type.
2162    Tag = dyn_cast<TagDecl>(TagD);
2163  }
2164
2165  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2166    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2167    // or incomplete types shall not be restrict-qualified."
2168    if (TypeQuals & DeclSpec::TQ_restrict)
2169      Diag(DS.getRestrictSpecLoc(),
2170           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2171           << DS.getSourceRange();
2172  }
2173
2174  if (DS.isFriendSpecified()) {
2175    // If we're dealing with a decl but not a TagDecl, assume that
2176    // whatever routines created it handled the friendship aspect.
2177    if (TagD && !Tag)
2178      return 0;
2179    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2180  }
2181
2182  // Track whether we warned about the fact that there aren't any
2183  // declarators.
2184  bool emittedWarning = false;
2185
2186  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2187    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2188
2189    if (!Record->getDeclName() && Record->isDefinition() &&
2190        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2191      if (getLangOptions().CPlusPlus ||
2192          Record->getDeclContext()->isRecord())
2193        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2194
2195      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2196        << DS.getSourceRange();
2197      emittedWarning = true;
2198    }
2199  }
2200
2201  // Check for Microsoft C extension: anonymous struct.
2202  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2203      CurContext->isRecord() &&
2204      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2205    // Handle 2 kinds of anonymous struct:
2206    //   struct STRUCT;
2207    // and
2208    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2209    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2210    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2211        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2212         DS.getRepAsType().get()->isStructureType())) {
2213      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2214        << DS.getSourceRange();
2215      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2216    }
2217  }
2218
2219  if (getLangOptions().CPlusPlus &&
2220      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2221    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2222      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2223          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2224        Diag(Enum->getLocation(), diag::ext_no_declarators)
2225          << DS.getSourceRange();
2226        emittedWarning = true;
2227      }
2228
2229  // Skip all the checks below if we have a type error.
2230  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2231
2232  if (!DS.isMissingDeclaratorOk()) {
2233    // Warn about typedefs of enums without names, since this is an
2234    // extension in both Microsoft and GNU.
2235    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2236        Tag && isa<EnumDecl>(Tag)) {
2237      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2238        << DS.getSourceRange();
2239      return Tag;
2240    }
2241
2242    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2243      << DS.getSourceRange();
2244    emittedWarning = true;
2245  }
2246
2247  // We're going to complain about a bunch of spurious specifiers;
2248  // only do this if we're declaring a tag, because otherwise we
2249  // should be getting diag::ext_no_declarators.
2250  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2251    return TagD;
2252
2253  // Note that a linkage-specification sets a storage class, but
2254  // 'extern "C" struct foo;' is actually valid and not theoretically
2255  // useless.
2256  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2257    if (!DS.isExternInLinkageSpec())
2258      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2259        << DeclSpec::getSpecifierName(scs);
2260
2261  if (DS.isThreadSpecified())
2262    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2263  if (DS.getTypeQualifiers()) {
2264    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2265      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2266    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2267      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2268    // Restrict is covered above.
2269  }
2270  if (DS.isInlineSpecified())
2271    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2272  if (DS.isVirtualSpecified())
2273    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2274  if (DS.isExplicitSpecified())
2275    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2276
2277  // FIXME: Warn on useless attributes
2278
2279  return TagD;
2280}
2281
2282/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2283/// builds a statement for it and returns it so it is evaluated.
2284StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2285  StmtResult R;
2286  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2287    Expr *Exp = DS.getRepAsExpr();
2288    QualType Ty = Exp->getType();
2289    if (Ty->isPointerType()) {
2290      do
2291        Ty = Ty->getAs<PointerType>()->getPointeeType();
2292      while (Ty->isPointerType());
2293    }
2294    if (Ty->isVariableArrayType()) {
2295      R = ActOnExprStmt(MakeFullExpr(Exp));
2296    }
2297  }
2298  return R;
2299}
2300
2301/// We are trying to inject an anonymous member into the given scope;
2302/// check if there's an existing declaration that can't be overloaded.
2303///
2304/// \return true if this is a forbidden redeclaration
2305static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2306                                         Scope *S,
2307                                         DeclContext *Owner,
2308                                         DeclarationName Name,
2309                                         SourceLocation NameLoc,
2310                                         unsigned diagnostic) {
2311  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2312                 Sema::ForRedeclaration);
2313  if (!SemaRef.LookupName(R, S)) return false;
2314
2315  if (R.getAsSingle<TagDecl>())
2316    return false;
2317
2318  // Pick a representative declaration.
2319  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2320  assert(PrevDecl && "Expected a non-null Decl");
2321
2322  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2323    return false;
2324
2325  SemaRef.Diag(NameLoc, diagnostic) << Name;
2326  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2327
2328  return true;
2329}
2330
2331/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2332/// anonymous struct or union AnonRecord into the owning context Owner
2333/// and scope S. This routine will be invoked just after we realize
2334/// that an unnamed union or struct is actually an anonymous union or
2335/// struct, e.g.,
2336///
2337/// @code
2338/// union {
2339///   int i;
2340///   float f;
2341/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2342///    // f into the surrounding scope.x
2343/// @endcode
2344///
2345/// This routine is recursive, injecting the names of nested anonymous
2346/// structs/unions into the owning context and scope as well.
2347static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2348                                                DeclContext *Owner,
2349                                                RecordDecl *AnonRecord,
2350                                                AccessSpecifier AS,
2351                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2352                                                      bool MSAnonStruct) {
2353  unsigned diagKind
2354    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2355                            : diag::err_anonymous_struct_member_redecl;
2356
2357  bool Invalid = false;
2358
2359  // Look every FieldDecl and IndirectFieldDecl with a name.
2360  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2361                               DEnd = AnonRecord->decls_end();
2362       D != DEnd; ++D) {
2363    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2364        cast<NamedDecl>(*D)->getDeclName()) {
2365      ValueDecl *VD = cast<ValueDecl>(*D);
2366      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2367                                       VD->getLocation(), diagKind)) {
2368        // C++ [class.union]p2:
2369        //   The names of the members of an anonymous union shall be
2370        //   distinct from the names of any other entity in the
2371        //   scope in which the anonymous union is declared.
2372        Invalid = true;
2373      } else {
2374        // C++ [class.union]p2:
2375        //   For the purpose of name lookup, after the anonymous union
2376        //   definition, the members of the anonymous union are
2377        //   considered to have been defined in the scope in which the
2378        //   anonymous union is declared.
2379        unsigned OldChainingSize = Chaining.size();
2380        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2381          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2382               PE = IF->chain_end(); PI != PE; ++PI)
2383            Chaining.push_back(*PI);
2384        else
2385          Chaining.push_back(VD);
2386
2387        assert(Chaining.size() >= 2);
2388        NamedDecl **NamedChain =
2389          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2390        for (unsigned i = 0; i < Chaining.size(); i++)
2391          NamedChain[i] = Chaining[i];
2392
2393        IndirectFieldDecl* IndirectField =
2394          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2395                                    VD->getIdentifier(), VD->getType(),
2396                                    NamedChain, Chaining.size());
2397
2398        IndirectField->setAccess(AS);
2399        IndirectField->setImplicit();
2400        SemaRef.PushOnScopeChains(IndirectField, S);
2401
2402        // That includes picking up the appropriate access specifier.
2403        if (AS != AS_none) IndirectField->setAccess(AS);
2404
2405        Chaining.resize(OldChainingSize);
2406      }
2407    }
2408  }
2409
2410  return Invalid;
2411}
2412
2413/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2414/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2415/// illegal input values are mapped to SC_None.
2416static StorageClass
2417StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2418  switch (StorageClassSpec) {
2419  case DeclSpec::SCS_unspecified:    return SC_None;
2420  case DeclSpec::SCS_extern:         return SC_Extern;
2421  case DeclSpec::SCS_static:         return SC_Static;
2422  case DeclSpec::SCS_auto:           return SC_Auto;
2423  case DeclSpec::SCS_register:       return SC_Register;
2424  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2425    // Illegal SCSs map to None: error reporting is up to the caller.
2426  case DeclSpec::SCS_mutable:        // Fall through.
2427  case DeclSpec::SCS_typedef:        return SC_None;
2428  }
2429  llvm_unreachable("unknown storage class specifier");
2430}
2431
2432/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2433/// a StorageClass. Any error reporting is up to the caller:
2434/// illegal input values are mapped to SC_None.
2435static StorageClass
2436StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2437  switch (StorageClassSpec) {
2438  case DeclSpec::SCS_unspecified:    return SC_None;
2439  case DeclSpec::SCS_extern:         return SC_Extern;
2440  case DeclSpec::SCS_static:         return SC_Static;
2441  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2442    // Illegal SCSs map to None: error reporting is up to the caller.
2443  case DeclSpec::SCS_auto:           // Fall through.
2444  case DeclSpec::SCS_mutable:        // Fall through.
2445  case DeclSpec::SCS_register:       // Fall through.
2446  case DeclSpec::SCS_typedef:        return SC_None;
2447  }
2448  llvm_unreachable("unknown storage class specifier");
2449}
2450
2451/// BuildAnonymousStructOrUnion - Handle the declaration of an
2452/// anonymous structure or union. Anonymous unions are a C++ feature
2453/// (C++ [class.union]) and a GNU C extension; anonymous structures
2454/// are a GNU C and GNU C++ extension.
2455Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2456                                             AccessSpecifier AS,
2457                                             RecordDecl *Record) {
2458  DeclContext *Owner = Record->getDeclContext();
2459
2460  // Diagnose whether this anonymous struct/union is an extension.
2461  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2462    Diag(Record->getLocation(), diag::ext_anonymous_union);
2463  else if (!Record->isUnion())
2464    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2465
2466  // C and C++ require different kinds of checks for anonymous
2467  // structs/unions.
2468  bool Invalid = false;
2469  if (getLangOptions().CPlusPlus) {
2470    const char* PrevSpec = 0;
2471    unsigned DiagID;
2472    // C++ [class.union]p3:
2473    //   Anonymous unions declared in a named namespace or in the
2474    //   global namespace shall be declared static.
2475    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2476        (isa<TranslationUnitDecl>(Owner) ||
2477         (isa<NamespaceDecl>(Owner) &&
2478          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2479      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2480      Invalid = true;
2481
2482      // Recover by adding 'static'.
2483      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2484                             PrevSpec, DiagID, getLangOptions());
2485    }
2486    // C++ [class.union]p3:
2487    //   A storage class is not allowed in a declaration of an
2488    //   anonymous union in a class scope.
2489    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2490             isa<RecordDecl>(Owner)) {
2491      Diag(DS.getStorageClassSpecLoc(),
2492           diag::err_anonymous_union_with_storage_spec);
2493      Invalid = true;
2494
2495      // Recover by removing the storage specifier.
2496      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2497                             PrevSpec, DiagID, getLangOptions());
2498    }
2499
2500    // Ignore const/volatile/restrict qualifiers.
2501    if (DS.getTypeQualifiers()) {
2502      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2503        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2504          << Record->isUnion() << 0
2505          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2506      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2507        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2508          << Record->isUnion() << 1
2509          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2510      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2511        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2512          << Record->isUnion() << 2
2513          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2514
2515      DS.ClearTypeQualifiers();
2516    }
2517
2518    // C++ [class.union]p2:
2519    //   The member-specification of an anonymous union shall only
2520    //   define non-static data members. [Note: nested types and
2521    //   functions cannot be declared within an anonymous union. ]
2522    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2523                                 MemEnd = Record->decls_end();
2524         Mem != MemEnd; ++Mem) {
2525      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2526        // C++ [class.union]p3:
2527        //   An anonymous union shall not have private or protected
2528        //   members (clause 11).
2529        assert(FD->getAccess() != AS_none);
2530        if (FD->getAccess() != AS_public) {
2531          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2532            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2533          Invalid = true;
2534        }
2535
2536        if (CheckNontrivialField(FD))
2537          Invalid = true;
2538      } else if ((*Mem)->isImplicit()) {
2539        // Any implicit members are fine.
2540      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2541        // This is a type that showed up in an
2542        // elaborated-type-specifier inside the anonymous struct or
2543        // union, but which actually declares a type outside of the
2544        // anonymous struct or union. It's okay.
2545      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2546        if (!MemRecord->isAnonymousStructOrUnion() &&
2547            MemRecord->getDeclName()) {
2548          // Visual C++ allows type definition in anonymous struct or union.
2549          if (getLangOptions().Microsoft)
2550            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2551              << (int)Record->isUnion();
2552          else {
2553            // This is a nested type declaration.
2554            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2555              << (int)Record->isUnion();
2556            Invalid = true;
2557          }
2558        }
2559      } else if (isa<AccessSpecDecl>(*Mem)) {
2560        // Any access specifier is fine.
2561      } else {
2562        // We have something that isn't a non-static data
2563        // member. Complain about it.
2564        unsigned DK = diag::err_anonymous_record_bad_member;
2565        if (isa<TypeDecl>(*Mem))
2566          DK = diag::err_anonymous_record_with_type;
2567        else if (isa<FunctionDecl>(*Mem))
2568          DK = diag::err_anonymous_record_with_function;
2569        else if (isa<VarDecl>(*Mem))
2570          DK = diag::err_anonymous_record_with_static;
2571
2572        // Visual C++ allows type definition in anonymous struct or union.
2573        if (getLangOptions().Microsoft &&
2574            DK == diag::err_anonymous_record_with_type)
2575          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2576            << (int)Record->isUnion();
2577        else {
2578          Diag((*Mem)->getLocation(), DK)
2579              << (int)Record->isUnion();
2580          Invalid = true;
2581        }
2582      }
2583    }
2584  }
2585
2586  if (!Record->isUnion() && !Owner->isRecord()) {
2587    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2588      << (int)getLangOptions().CPlusPlus;
2589    Invalid = true;
2590  }
2591
2592  // Mock up a declarator.
2593  Declarator Dc(DS, Declarator::TypeNameContext);
2594  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2595  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2596
2597  // Create a declaration for this anonymous struct/union.
2598  NamedDecl *Anon = 0;
2599  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2600    Anon = FieldDecl::Create(Context, OwningClass,
2601                             DS.getSourceRange().getBegin(),
2602                             Record->getLocation(),
2603                             /*IdentifierInfo=*/0,
2604                             Context.getTypeDeclType(Record),
2605                             TInfo,
2606                             /*BitWidth=*/0, /*Mutable=*/false);
2607    Anon->setAccess(AS);
2608    if (getLangOptions().CPlusPlus)
2609      FieldCollector->Add(cast<FieldDecl>(Anon));
2610  } else {
2611    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2612    assert(SCSpec != DeclSpec::SCS_typedef &&
2613           "Parser allowed 'typedef' as storage class VarDecl.");
2614    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2615    if (SCSpec == DeclSpec::SCS_mutable) {
2616      // mutable can only appear on non-static class members, so it's always
2617      // an error here
2618      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2619      Invalid = true;
2620      SC = SC_None;
2621    }
2622    SCSpec = DS.getStorageClassSpecAsWritten();
2623    VarDecl::StorageClass SCAsWritten
2624      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2625
2626    Anon = VarDecl::Create(Context, Owner,
2627                           DS.getSourceRange().getBegin(),
2628                           Record->getLocation(), /*IdentifierInfo=*/0,
2629                           Context.getTypeDeclType(Record),
2630                           TInfo, SC, SCAsWritten);
2631  }
2632  Anon->setImplicit();
2633
2634  // Add the anonymous struct/union object to the current
2635  // context. We'll be referencing this object when we refer to one of
2636  // its members.
2637  Owner->addDecl(Anon);
2638
2639  // Inject the members of the anonymous struct/union into the owning
2640  // context and into the identifier resolver chain for name lookup
2641  // purposes.
2642  llvm::SmallVector<NamedDecl*, 2> Chain;
2643  Chain.push_back(Anon);
2644
2645  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2646                                          Chain, false))
2647    Invalid = true;
2648
2649  // Mark this as an anonymous struct/union type. Note that we do not
2650  // do this until after we have already checked and injected the
2651  // members of this anonymous struct/union type, because otherwise
2652  // the members could be injected twice: once by DeclContext when it
2653  // builds its lookup table, and once by
2654  // InjectAnonymousStructOrUnionMembers.
2655  Record->setAnonymousStructOrUnion(true);
2656
2657  if (Invalid)
2658    Anon->setInvalidDecl();
2659
2660  return Anon;
2661}
2662
2663/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2664/// Microsoft C anonymous structure.
2665/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2666/// Example:
2667///
2668/// struct A { int a; };
2669/// struct B { struct A; int b; };
2670///
2671/// void foo() {
2672///   B var;
2673///   var.a = 3;
2674/// }
2675///
2676Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2677                                           RecordDecl *Record) {
2678
2679  // If there is no Record, get the record via the typedef.
2680  if (!Record)
2681    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2682
2683  // Mock up a declarator.
2684  Declarator Dc(DS, Declarator::TypeNameContext);
2685  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2686  assert(TInfo && "couldn't build declarator info for anonymous struct");
2687
2688  // Create a declaration for this anonymous struct.
2689  NamedDecl* Anon = FieldDecl::Create(Context,
2690                             cast<RecordDecl>(CurContext),
2691                             DS.getSourceRange().getBegin(),
2692                             DS.getSourceRange().getBegin(),
2693                             /*IdentifierInfo=*/0,
2694                             Context.getTypeDeclType(Record),
2695                             TInfo,
2696                             /*BitWidth=*/0, /*Mutable=*/false);
2697  Anon->setImplicit();
2698
2699  // Add the anonymous struct object to the current context.
2700  CurContext->addDecl(Anon);
2701
2702  // Inject the members of the anonymous struct into the current
2703  // context and into the identifier resolver chain for name lookup
2704  // purposes.
2705  llvm::SmallVector<NamedDecl*, 2> Chain;
2706  Chain.push_back(Anon);
2707
2708  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2709                                          Record->getDefinition(),
2710                                          AS_none, Chain, true))
2711    Anon->setInvalidDecl();
2712
2713  return Anon;
2714}
2715
2716/// GetNameForDeclarator - Determine the full declaration name for the
2717/// given Declarator.
2718DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2719  return GetNameFromUnqualifiedId(D.getName());
2720}
2721
2722/// \brief Retrieves the declaration name from a parsed unqualified-id.
2723DeclarationNameInfo
2724Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2725  DeclarationNameInfo NameInfo;
2726  NameInfo.setLoc(Name.StartLocation);
2727
2728  switch (Name.getKind()) {
2729
2730  case UnqualifiedId::IK_Identifier:
2731    NameInfo.setName(Name.Identifier);
2732    NameInfo.setLoc(Name.StartLocation);
2733    return NameInfo;
2734
2735  case UnqualifiedId::IK_OperatorFunctionId:
2736    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2737                                           Name.OperatorFunctionId.Operator));
2738    NameInfo.setLoc(Name.StartLocation);
2739    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2740      = Name.OperatorFunctionId.SymbolLocations[0];
2741    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2742      = Name.EndLocation.getRawEncoding();
2743    return NameInfo;
2744
2745  case UnqualifiedId::IK_LiteralOperatorId:
2746    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2747                                                           Name.Identifier));
2748    NameInfo.setLoc(Name.StartLocation);
2749    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2750    return NameInfo;
2751
2752  case UnqualifiedId::IK_ConversionFunctionId: {
2753    TypeSourceInfo *TInfo;
2754    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2755    if (Ty.isNull())
2756      return DeclarationNameInfo();
2757    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2758                                               Context.getCanonicalType(Ty)));
2759    NameInfo.setLoc(Name.StartLocation);
2760    NameInfo.setNamedTypeInfo(TInfo);
2761    return NameInfo;
2762  }
2763
2764  case UnqualifiedId::IK_ConstructorName: {
2765    TypeSourceInfo *TInfo;
2766    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2767    if (Ty.isNull())
2768      return DeclarationNameInfo();
2769    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2770                                              Context.getCanonicalType(Ty)));
2771    NameInfo.setLoc(Name.StartLocation);
2772    NameInfo.setNamedTypeInfo(TInfo);
2773    return NameInfo;
2774  }
2775
2776  case UnqualifiedId::IK_ConstructorTemplateId: {
2777    // In well-formed code, we can only have a constructor
2778    // template-id that refers to the current context, so go there
2779    // to find the actual type being constructed.
2780    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2781    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2782      return DeclarationNameInfo();
2783
2784    // Determine the type of the class being constructed.
2785    QualType CurClassType = Context.getTypeDeclType(CurClass);
2786
2787    // FIXME: Check two things: that the template-id names the same type as
2788    // CurClassType, and that the template-id does not occur when the name
2789    // was qualified.
2790
2791    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2792                                    Context.getCanonicalType(CurClassType)));
2793    NameInfo.setLoc(Name.StartLocation);
2794    // FIXME: should we retrieve TypeSourceInfo?
2795    NameInfo.setNamedTypeInfo(0);
2796    return NameInfo;
2797  }
2798
2799  case UnqualifiedId::IK_DestructorName: {
2800    TypeSourceInfo *TInfo;
2801    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2802    if (Ty.isNull())
2803      return DeclarationNameInfo();
2804    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2805                                              Context.getCanonicalType(Ty)));
2806    NameInfo.setLoc(Name.StartLocation);
2807    NameInfo.setNamedTypeInfo(TInfo);
2808    return NameInfo;
2809  }
2810
2811  case UnqualifiedId::IK_TemplateId: {
2812    TemplateName TName = Name.TemplateId->Template.get();
2813    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2814    return Context.getNameForTemplate(TName, TNameLoc);
2815  }
2816
2817  } // switch (Name.getKind())
2818
2819  assert(false && "Unknown name kind");
2820  return DeclarationNameInfo();
2821}
2822
2823/// isNearlyMatchingFunction - Determine whether the C++ functions
2824/// Declaration and Definition are "nearly" matching. This heuristic
2825/// is used to improve diagnostics in the case where an out-of-line
2826/// function definition doesn't match any declaration within
2827/// the class or namespace.
2828static bool isNearlyMatchingFunction(ASTContext &Context,
2829                                     FunctionDecl *Declaration,
2830                                     FunctionDecl *Definition) {
2831  if (Declaration->param_size() != Definition->param_size())
2832    return false;
2833  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2834    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2835    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2836
2837    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2838                                        DefParamTy.getNonReferenceType()))
2839      return false;
2840  }
2841
2842  return true;
2843}
2844
2845/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2846/// declarator needs to be rebuilt in the current instantiation.
2847/// Any bits of declarator which appear before the name are valid for
2848/// consideration here.  That's specifically the type in the decl spec
2849/// and the base type in any member-pointer chunks.
2850static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2851                                                    DeclarationName Name) {
2852  // The types we specifically need to rebuild are:
2853  //   - typenames, typeofs, and decltypes
2854  //   - types which will become injected class names
2855  // Of course, we also need to rebuild any type referencing such a
2856  // type.  It's safest to just say "dependent", but we call out a
2857  // few cases here.
2858
2859  DeclSpec &DS = D.getMutableDeclSpec();
2860  switch (DS.getTypeSpecType()) {
2861  case DeclSpec::TST_typename:
2862  case DeclSpec::TST_typeofType:
2863  case DeclSpec::TST_decltype: {
2864    // Grab the type from the parser.
2865    TypeSourceInfo *TSI = 0;
2866    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2867    if (T.isNull() || !T->isDependentType()) break;
2868
2869    // Make sure there's a type source info.  This isn't really much
2870    // of a waste; most dependent types should have type source info
2871    // attached already.
2872    if (!TSI)
2873      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2874
2875    // Rebuild the type in the current instantiation.
2876    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2877    if (!TSI) return true;
2878
2879    // Store the new type back in the decl spec.
2880    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2881    DS.UpdateTypeRep(LocType);
2882    break;
2883  }
2884
2885  case DeclSpec::TST_typeofExpr: {
2886    Expr *E = DS.getRepAsExpr();
2887    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2888    if (Result.isInvalid()) return true;
2889    DS.UpdateExprRep(Result.get());
2890    break;
2891  }
2892
2893  default:
2894    // Nothing to do for these decl specs.
2895    break;
2896  }
2897
2898  // It doesn't matter what order we do this in.
2899  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2900    DeclaratorChunk &Chunk = D.getTypeObject(I);
2901
2902    // The only type information in the declarator which can come
2903    // before the declaration name is the base type of a member
2904    // pointer.
2905    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2906      continue;
2907
2908    // Rebuild the scope specifier in-place.
2909    CXXScopeSpec &SS = Chunk.Mem.Scope();
2910    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2911      return true;
2912  }
2913
2914  return false;
2915}
2916
2917Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2918  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2919}
2920
2921/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2922///   If T is the name of a class, then each of the following shall have a
2923///   name different from T:
2924///     - every static data member of class T;
2925///     - every member function of class T
2926///     - every member of class T that is itself a type;
2927/// \returns true if the declaration name violates these rules.
2928bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2929                                   DeclarationNameInfo NameInfo) {
2930  DeclarationName Name = NameInfo.getName();
2931
2932  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2933    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2934      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2935      return true;
2936    }
2937
2938  return false;
2939}
2940
2941Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2942                             MultiTemplateParamsArg TemplateParamLists,
2943                             bool IsFunctionDefinition,
2944                             SourceLocation DefaultLoc) {
2945  // TODO: consider using NameInfo for diagnostic.
2946  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2947  DeclarationName Name = NameInfo.getName();
2948
2949  // All of these full declarators require an identifier.  If it doesn't have
2950  // one, the ParsedFreeStandingDeclSpec action should be used.
2951  if (!Name) {
2952    if (!D.isInvalidType())  // Reject this if we think it is valid.
2953      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2954           diag::err_declarator_need_ident)
2955        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2956    return 0;
2957  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2958    return 0;
2959
2960  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2961  // we find one that is.
2962  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2963         (S->getFlags() & Scope::TemplateParamScope) != 0)
2964    S = S->getParent();
2965
2966  DeclContext *DC = CurContext;
2967  if (D.getCXXScopeSpec().isInvalid())
2968    D.setInvalidType();
2969  else if (D.getCXXScopeSpec().isSet()) {
2970    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2971                                        UPPC_DeclarationQualifier))
2972      return 0;
2973
2974    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2975    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2976    if (!DC) {
2977      // If we could not compute the declaration context, it's because the
2978      // declaration context is dependent but does not refer to a class,
2979      // class template, or class template partial specialization. Complain
2980      // and return early, to avoid the coming semantic disaster.
2981      Diag(D.getIdentifierLoc(),
2982           diag::err_template_qualified_declarator_no_match)
2983        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2984        << D.getCXXScopeSpec().getRange();
2985      return 0;
2986    }
2987    bool IsDependentContext = DC->isDependentContext();
2988
2989    if (!IsDependentContext &&
2990        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2991      return 0;
2992
2993    if (isa<CXXRecordDecl>(DC)) {
2994      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2995        Diag(D.getIdentifierLoc(),
2996             diag::err_member_def_undefined_record)
2997          << Name << DC << D.getCXXScopeSpec().getRange();
2998        D.setInvalidType();
2999      } else if (isa<CXXRecordDecl>(CurContext) &&
3000                 !D.getDeclSpec().isFriendSpecified()) {
3001        // The user provided a superfluous scope specifier inside a class
3002        // definition:
3003        //
3004        // class X {
3005        //   void X::f();
3006        // };
3007        if (CurContext->Equals(DC))
3008          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3009            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3010        else
3011          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3012            << Name << D.getCXXScopeSpec().getRange();
3013
3014        // Pretend that this qualifier was not here.
3015        D.getCXXScopeSpec().clear();
3016      }
3017    }
3018
3019    // Check whether we need to rebuild the type of the given
3020    // declaration in the current instantiation.
3021    if (EnteringContext && IsDependentContext &&
3022        TemplateParamLists.size() != 0) {
3023      ContextRAII SavedContext(*this, DC);
3024      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3025        D.setInvalidType();
3026    }
3027  }
3028
3029  if (DiagnoseClassNameShadow(DC, NameInfo))
3030    // If this is a typedef, we'll end up spewing multiple diagnostics.
3031    // Just return early; it's safer.
3032    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3033      return 0;
3034
3035  NamedDecl *New;
3036
3037  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3038  QualType R = TInfo->getType();
3039
3040  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3041                                      UPPC_DeclarationType))
3042    D.setInvalidType();
3043
3044  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3045                        ForRedeclaration);
3046
3047  // See if this is a redefinition of a variable in the same scope.
3048  if (!D.getCXXScopeSpec().isSet()) {
3049    bool IsLinkageLookup = false;
3050
3051    // If the declaration we're planning to build will be a function
3052    // or object with linkage, then look for another declaration with
3053    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3054    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3055      /* Do nothing*/;
3056    else if (R->isFunctionType()) {
3057      if (CurContext->isFunctionOrMethod() ||
3058          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3059        IsLinkageLookup = true;
3060    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3061      IsLinkageLookup = true;
3062    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3063             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3064      IsLinkageLookup = true;
3065
3066    if (IsLinkageLookup)
3067      Previous.clear(LookupRedeclarationWithLinkage);
3068
3069    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3070  } else { // Something like "int foo::x;"
3071    LookupQualifiedName(Previous, DC);
3072
3073    // Don't consider using declarations as previous declarations for
3074    // out-of-line members.
3075    RemoveUsingDecls(Previous);
3076
3077    // C++ 7.3.1.2p2:
3078    // Members (including explicit specializations of templates) of a named
3079    // namespace can also be defined outside that namespace by explicit
3080    // qualification of the name being defined, provided that the entity being
3081    // defined was already declared in the namespace and the definition appears
3082    // after the point of declaration in a namespace that encloses the
3083    // declarations namespace.
3084    //
3085    // Note that we only check the context at this point. We don't yet
3086    // have enough information to make sure that PrevDecl is actually
3087    // the declaration we want to match. For example, given:
3088    //
3089    //   class X {
3090    //     void f();
3091    //     void f(float);
3092    //   };
3093    //
3094    //   void X::f(int) { } // ill-formed
3095    //
3096    // In this case, PrevDecl will point to the overload set
3097    // containing the two f's declared in X, but neither of them
3098    // matches.
3099
3100    // First check whether we named the global scope.
3101    if (isa<TranslationUnitDecl>(DC)) {
3102      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3103        << Name << D.getCXXScopeSpec().getRange();
3104    } else {
3105      DeclContext *Cur = CurContext;
3106      while (isa<LinkageSpecDecl>(Cur))
3107        Cur = Cur->getParent();
3108      if (!Cur->Encloses(DC)) {
3109        // The qualifying scope doesn't enclose the original declaration.
3110        // Emit diagnostic based on current scope.
3111        SourceLocation L = D.getIdentifierLoc();
3112        SourceRange R = D.getCXXScopeSpec().getRange();
3113        if (isa<FunctionDecl>(Cur))
3114          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3115        else
3116          Diag(L, diag::err_invalid_declarator_scope)
3117            << Name << cast<NamedDecl>(DC) << R;
3118        D.setInvalidType();
3119      }
3120    }
3121  }
3122
3123  if (Previous.isSingleResult() &&
3124      Previous.getFoundDecl()->isTemplateParameter()) {
3125    // Maybe we will complain about the shadowed template parameter.
3126    if (!D.isInvalidType())
3127      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3128                                          Previous.getFoundDecl()))
3129        D.setInvalidType();
3130
3131    // Just pretend that we didn't see the previous declaration.
3132    Previous.clear();
3133  }
3134
3135  // In C++, the previous declaration we find might be a tag type
3136  // (class or enum). In this case, the new declaration will hide the
3137  // tag type. Note that this does does not apply if we're declaring a
3138  // typedef (C++ [dcl.typedef]p4).
3139  if (Previous.isSingleTagDecl() &&
3140      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3141    Previous.clear();
3142
3143  bool Redeclaration = false;
3144  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3145    if (DefaultLoc.isValid())
3146      Diag(DefaultLoc, diag::err_default_special_members);
3147
3148    if (TemplateParamLists.size()) {
3149      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3150      return 0;
3151    }
3152
3153    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3154  } else if (R->isFunctionType()) {
3155    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3156                                  move(TemplateParamLists),
3157                                  IsFunctionDefinition, Redeclaration,
3158                                  DefaultLoc);
3159  } else {
3160    assert(!DefaultLoc.isValid() && "We should have caught this in a caller");
3161    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3162                                  move(TemplateParamLists),
3163                                  Redeclaration);
3164  }
3165
3166  if (New == 0)
3167    return 0;
3168
3169  // If this has an identifier and is not an invalid redeclaration or
3170  // function template specialization, add it to the scope stack.
3171  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3172    PushOnScopeChains(New, S);
3173
3174  return New;
3175}
3176
3177/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3178/// types into constant array types in certain situations which would otherwise
3179/// be errors (for GCC compatibility).
3180static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3181                                                    ASTContext &Context,
3182                                                    bool &SizeIsNegative,
3183                                                    llvm::APSInt &Oversized) {
3184  // This method tries to turn a variable array into a constant
3185  // array even when the size isn't an ICE.  This is necessary
3186  // for compatibility with code that depends on gcc's buggy
3187  // constant expression folding, like struct {char x[(int)(char*)2];}
3188  SizeIsNegative = false;
3189  Oversized = 0;
3190
3191  if (T->isDependentType())
3192    return QualType();
3193
3194  QualifierCollector Qs;
3195  const Type *Ty = Qs.strip(T);
3196
3197  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3198    QualType Pointee = PTy->getPointeeType();
3199    QualType FixedType =
3200        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3201                                            Oversized);
3202    if (FixedType.isNull()) return FixedType;
3203    FixedType = Context.getPointerType(FixedType);
3204    return Qs.apply(Context, FixedType);
3205  }
3206  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3207    QualType Inner = PTy->getInnerType();
3208    QualType FixedType =
3209        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3210                                            Oversized);
3211    if (FixedType.isNull()) return FixedType;
3212    FixedType = Context.getParenType(FixedType);
3213    return Qs.apply(Context, FixedType);
3214  }
3215
3216  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3217  if (!VLATy)
3218    return QualType();
3219  // FIXME: We should probably handle this case
3220  if (VLATy->getElementType()->isVariablyModifiedType())
3221    return QualType();
3222
3223  Expr::EvalResult EvalResult;
3224  if (!VLATy->getSizeExpr() ||
3225      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3226      !EvalResult.Val.isInt())
3227    return QualType();
3228
3229  // Check whether the array size is negative.
3230  llvm::APSInt &Res = EvalResult.Val.getInt();
3231  if (Res.isSigned() && Res.isNegative()) {
3232    SizeIsNegative = true;
3233    return QualType();
3234  }
3235
3236  // Check whether the array is too large to be addressed.
3237  unsigned ActiveSizeBits
3238    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3239                                              Res);
3240  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3241    Oversized = Res;
3242    return QualType();
3243  }
3244
3245  return Context.getConstantArrayType(VLATy->getElementType(),
3246                                      Res, ArrayType::Normal, 0);
3247}
3248
3249/// \brief Register the given locally-scoped external C declaration so
3250/// that it can be found later for redeclarations
3251void
3252Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3253                                       const LookupResult &Previous,
3254                                       Scope *S) {
3255  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3256         "Decl is not a locally-scoped decl!");
3257  // Note that we have a locally-scoped external with this name.
3258  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3259
3260  if (!Previous.isSingleResult())
3261    return;
3262
3263  NamedDecl *PrevDecl = Previous.getFoundDecl();
3264
3265  // If there was a previous declaration of this variable, it may be
3266  // in our identifier chain. Update the identifier chain with the new
3267  // declaration.
3268  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3269    // The previous declaration was found on the identifer resolver
3270    // chain, so remove it from its scope.
3271    while (S && !S->isDeclScope(PrevDecl))
3272      S = S->getParent();
3273
3274    if (S)
3275      S->RemoveDecl(PrevDecl);
3276  }
3277}
3278
3279/// \brief Diagnose function specifiers on a declaration of an identifier that
3280/// does not identify a function.
3281void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3282  // FIXME: We should probably indicate the identifier in question to avoid
3283  // confusion for constructs like "inline int a(), b;"
3284  if (D.getDeclSpec().isInlineSpecified())
3285    Diag(D.getDeclSpec().getInlineSpecLoc(),
3286         diag::err_inline_non_function);
3287
3288  if (D.getDeclSpec().isVirtualSpecified())
3289    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3290         diag::err_virtual_non_function);
3291
3292  if (D.getDeclSpec().isExplicitSpecified())
3293    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3294         diag::err_explicit_non_function);
3295}
3296
3297NamedDecl*
3298Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3299                             QualType R,  TypeSourceInfo *TInfo,
3300                             LookupResult &Previous, bool &Redeclaration) {
3301  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3302  if (D.getCXXScopeSpec().isSet()) {
3303    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3304      << D.getCXXScopeSpec().getRange();
3305    D.setInvalidType();
3306    // Pretend we didn't see the scope specifier.
3307    DC = CurContext;
3308    Previous.clear();
3309  }
3310
3311  if (getLangOptions().CPlusPlus) {
3312    // Check that there are no default arguments (C++ only).
3313    CheckExtraCXXDefaultArguments(D);
3314  }
3315
3316  DiagnoseFunctionSpecifiers(D);
3317
3318  if (D.getDeclSpec().isThreadSpecified())
3319    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3320
3321  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3322    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3323      << D.getName().getSourceRange();
3324    return 0;
3325  }
3326
3327  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3328  if (!NewTD) return 0;
3329
3330  // Handle attributes prior to checking for duplicates in MergeVarDecl
3331  ProcessDeclAttributes(S, NewTD, D);
3332
3333  CheckTypedefForVariablyModifiedType(S, NewTD);
3334
3335  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3336}
3337
3338void
3339Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3340  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3341  // then it shall have block scope.
3342  // Note that variably modified types must be fixed before merging the decl so
3343  // that redeclarations will match.
3344  QualType T = NewTD->getUnderlyingType();
3345  if (T->isVariablyModifiedType()) {
3346    getCurFunction()->setHasBranchProtectedScope();
3347
3348    if (S->getFnParent() == 0) {
3349      bool SizeIsNegative;
3350      llvm::APSInt Oversized;
3351      QualType FixedTy =
3352          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3353                                              Oversized);
3354      if (!FixedTy.isNull()) {
3355        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3356        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3357      } else {
3358        if (SizeIsNegative)
3359          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3360        else if (T->isVariableArrayType())
3361          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3362        else if (Oversized.getBoolValue())
3363          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3364        else
3365          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3366        NewTD->setInvalidDecl();
3367      }
3368    }
3369  }
3370}
3371
3372
3373/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3374/// declares a typedef-name, either using the 'typedef' type specifier or via
3375/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3376NamedDecl*
3377Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3378                           LookupResult &Previous, bool &Redeclaration) {
3379  // Merge the decl with the existing one if appropriate. If the decl is
3380  // in an outer scope, it isn't the same thing.
3381  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3382                       /*ExplicitInstantiationOrSpecialization=*/false);
3383  if (!Previous.empty()) {
3384    Redeclaration = true;
3385    MergeTypedefNameDecl(NewTD, Previous);
3386  }
3387
3388  // If this is the C FILE type, notify the AST context.
3389  if (IdentifierInfo *II = NewTD->getIdentifier())
3390    if (!NewTD->isInvalidDecl() &&
3391        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3392      if (II->isStr("FILE"))
3393        Context.setFILEDecl(NewTD);
3394      else if (II->isStr("jmp_buf"))
3395        Context.setjmp_bufDecl(NewTD);
3396      else if (II->isStr("sigjmp_buf"))
3397        Context.setsigjmp_bufDecl(NewTD);
3398      else if (II->isStr("__builtin_va_list"))
3399        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3400    }
3401
3402  return NewTD;
3403}
3404
3405/// \brief Determines whether the given declaration is an out-of-scope
3406/// previous declaration.
3407///
3408/// This routine should be invoked when name lookup has found a
3409/// previous declaration (PrevDecl) that is not in the scope where a
3410/// new declaration by the same name is being introduced. If the new
3411/// declaration occurs in a local scope, previous declarations with
3412/// linkage may still be considered previous declarations (C99
3413/// 6.2.2p4-5, C++ [basic.link]p6).
3414///
3415/// \param PrevDecl the previous declaration found by name
3416/// lookup
3417///
3418/// \param DC the context in which the new declaration is being
3419/// declared.
3420///
3421/// \returns true if PrevDecl is an out-of-scope previous declaration
3422/// for a new delcaration with the same name.
3423static bool
3424isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3425                                ASTContext &Context) {
3426  if (!PrevDecl)
3427    return false;
3428
3429  if (!PrevDecl->hasLinkage())
3430    return false;
3431
3432  if (Context.getLangOptions().CPlusPlus) {
3433    // C++ [basic.link]p6:
3434    //   If there is a visible declaration of an entity with linkage
3435    //   having the same name and type, ignoring entities declared
3436    //   outside the innermost enclosing namespace scope, the block
3437    //   scope declaration declares that same entity and receives the
3438    //   linkage of the previous declaration.
3439    DeclContext *OuterContext = DC->getRedeclContext();
3440    if (!OuterContext->isFunctionOrMethod())
3441      // This rule only applies to block-scope declarations.
3442      return false;
3443
3444    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3445    if (PrevOuterContext->isRecord())
3446      // We found a member function: ignore it.
3447      return false;
3448
3449    // Find the innermost enclosing namespace for the new and
3450    // previous declarations.
3451    OuterContext = OuterContext->getEnclosingNamespaceContext();
3452    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3453
3454    // The previous declaration is in a different namespace, so it
3455    // isn't the same function.
3456    if (!OuterContext->Equals(PrevOuterContext))
3457      return false;
3458  }
3459
3460  return true;
3461}
3462
3463static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3464  CXXScopeSpec &SS = D.getCXXScopeSpec();
3465  if (!SS.isSet()) return;
3466  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3467}
3468
3469NamedDecl*
3470Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3471                              QualType R, TypeSourceInfo *TInfo,
3472                              LookupResult &Previous,
3473                              MultiTemplateParamsArg TemplateParamLists,
3474                              bool &Redeclaration) {
3475  DeclarationName Name = GetNameForDeclarator(D).getName();
3476
3477  // Check that there are no default arguments (C++ only).
3478  if (getLangOptions().CPlusPlus)
3479    CheckExtraCXXDefaultArguments(D);
3480
3481  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3482  assert(SCSpec != DeclSpec::SCS_typedef &&
3483         "Parser allowed 'typedef' as storage class VarDecl.");
3484  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3485  if (SCSpec == DeclSpec::SCS_mutable) {
3486    // mutable can only appear on non-static class members, so it's always
3487    // an error here
3488    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3489    D.setInvalidType();
3490    SC = SC_None;
3491  }
3492  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3493  VarDecl::StorageClass SCAsWritten
3494    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3495
3496  IdentifierInfo *II = Name.getAsIdentifierInfo();
3497  if (!II) {
3498    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3499      << Name.getAsString();
3500    return 0;
3501  }
3502
3503  DiagnoseFunctionSpecifiers(D);
3504
3505  if (!DC->isRecord() && S->getFnParent() == 0) {
3506    // C99 6.9p2: The storage-class specifiers auto and register shall not
3507    // appear in the declaration specifiers in an external declaration.
3508    if (SC == SC_Auto || SC == SC_Register) {
3509
3510      // If this is a register variable with an asm label specified, then this
3511      // is a GNU extension.
3512      if (SC == SC_Register && D.getAsmLabel())
3513        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3514      else
3515        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3516      D.setInvalidType();
3517    }
3518  }
3519
3520  bool isExplicitSpecialization = false;
3521  VarDecl *NewVD;
3522  if (!getLangOptions().CPlusPlus) {
3523    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3524                            D.getIdentifierLoc(), II,
3525                            R, TInfo, SC, SCAsWritten);
3526
3527    if (D.isInvalidType())
3528      NewVD->setInvalidDecl();
3529  } else {
3530    if (DC->isRecord() && !CurContext->isRecord()) {
3531      // This is an out-of-line definition of a static data member.
3532      if (SC == SC_Static) {
3533        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3534             diag::err_static_out_of_line)
3535          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3536      } else if (SC == SC_None)
3537        SC = SC_Static;
3538    }
3539    if (SC == SC_Static) {
3540      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3541        if (RD->isLocalClass())
3542          Diag(D.getIdentifierLoc(),
3543               diag::err_static_data_member_not_allowed_in_local_class)
3544            << Name << RD->getDeclName();
3545
3546        // C++ [class.union]p1: If a union contains a static data member,
3547        // the program is ill-formed.
3548        //
3549        // We also disallow static data members in anonymous structs.
3550        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3551          Diag(D.getIdentifierLoc(),
3552               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3553            << Name << RD->isUnion();
3554      }
3555    }
3556
3557    // Match up the template parameter lists with the scope specifier, then
3558    // determine whether we have a template or a template specialization.
3559    isExplicitSpecialization = false;
3560    bool Invalid = false;
3561    if (TemplateParameterList *TemplateParams
3562        = MatchTemplateParametersToScopeSpecifier(
3563                                  D.getDeclSpec().getSourceRange().getBegin(),
3564                                                  D.getIdentifierLoc(),
3565                                                  D.getCXXScopeSpec(),
3566                                                  TemplateParamLists.get(),
3567                                                  TemplateParamLists.size(),
3568                                                  /*never a friend*/ false,
3569                                                  isExplicitSpecialization,
3570                                                  Invalid)) {
3571      if (TemplateParams->size() > 0) {
3572        // There is no such thing as a variable template.
3573        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3574          << II
3575          << SourceRange(TemplateParams->getTemplateLoc(),
3576                         TemplateParams->getRAngleLoc());
3577        return 0;
3578      } else {
3579        // There is an extraneous 'template<>' for this variable. Complain
3580        // about it, but allow the declaration of the variable.
3581        Diag(TemplateParams->getTemplateLoc(),
3582             diag::err_template_variable_noparams)
3583          << II
3584          << SourceRange(TemplateParams->getTemplateLoc(),
3585                         TemplateParams->getRAngleLoc());
3586      }
3587    }
3588
3589    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3590                            D.getIdentifierLoc(), II,
3591                            R, TInfo, SC, SCAsWritten);
3592
3593    // If this decl has an auto type in need of deduction, make a note of the
3594    // Decl so we can diagnose uses of it in its own initializer.
3595    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3596        R->getContainedAutoType())
3597      ParsingInitForAutoVars.insert(NewVD);
3598
3599    if (D.isInvalidType() || Invalid)
3600      NewVD->setInvalidDecl();
3601
3602    SetNestedNameSpecifier(NewVD, D);
3603
3604    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3605      NewVD->setTemplateParameterListsInfo(Context,
3606                                           TemplateParamLists.size(),
3607                                           TemplateParamLists.release());
3608    }
3609  }
3610
3611  if (D.getDeclSpec().isThreadSpecified()) {
3612    if (NewVD->hasLocalStorage())
3613      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3614    else if (!Context.Target.isTLSSupported())
3615      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3616    else
3617      NewVD->setThreadSpecified(true);
3618  }
3619
3620  // Set the lexical context. If the declarator has a C++ scope specifier, the
3621  // lexical context will be different from the semantic context.
3622  NewVD->setLexicalDeclContext(CurContext);
3623
3624  // Handle attributes prior to checking for duplicates in MergeVarDecl
3625  ProcessDeclAttributes(S, NewVD, D);
3626
3627  // Handle GNU asm-label extension (encoded as an attribute).
3628  if (Expr *E = (Expr*)D.getAsmLabel()) {
3629    // The parser guarantees this is a string.
3630    StringLiteral *SE = cast<StringLiteral>(E);
3631    llvm::StringRef Label = SE->getString();
3632    if (S->getFnParent() != 0) {
3633      switch (SC) {
3634      case SC_None:
3635      case SC_Auto:
3636        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3637        break;
3638      case SC_Register:
3639        if (!Context.Target.isValidGCCRegisterName(Label))
3640          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3641        break;
3642      case SC_Static:
3643      case SC_Extern:
3644      case SC_PrivateExtern:
3645        break;
3646      }
3647    }
3648
3649    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3650                                                Context, Label));
3651  }
3652
3653  // Diagnose shadowed variables before filtering for scope.
3654  if (!D.getCXXScopeSpec().isSet())
3655    CheckShadow(S, NewVD, Previous);
3656
3657  // Don't consider existing declarations that are in a different
3658  // scope and are out-of-semantic-context declarations (if the new
3659  // declaration has linkage).
3660  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3661                       isExplicitSpecialization);
3662
3663  if (!getLangOptions().CPlusPlus)
3664    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3665  else {
3666    // Merge the decl with the existing one if appropriate.
3667    if (!Previous.empty()) {
3668      if (Previous.isSingleResult() &&
3669          isa<FieldDecl>(Previous.getFoundDecl()) &&
3670          D.getCXXScopeSpec().isSet()) {
3671        // The user tried to define a non-static data member
3672        // out-of-line (C++ [dcl.meaning]p1).
3673        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3674          << D.getCXXScopeSpec().getRange();
3675        Previous.clear();
3676        NewVD->setInvalidDecl();
3677      }
3678    } else if (D.getCXXScopeSpec().isSet()) {
3679      // No previous declaration in the qualifying scope.
3680      Diag(D.getIdentifierLoc(), diag::err_no_member)
3681        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3682        << D.getCXXScopeSpec().getRange();
3683      NewVD->setInvalidDecl();
3684    }
3685
3686    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3687
3688    // This is an explicit specialization of a static data member. Check it.
3689    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3690        CheckMemberSpecialization(NewVD, Previous))
3691      NewVD->setInvalidDecl();
3692  }
3693
3694  // attributes declared post-definition are currently ignored
3695  // FIXME: This should be handled in attribute merging, not
3696  // here.
3697  if (Previous.isSingleResult()) {
3698    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3699    if (Def && (Def = Def->getDefinition()) &&
3700        Def != NewVD && D.hasAttributes()) {
3701      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3702      Diag(Def->getLocation(), diag::note_previous_definition);
3703    }
3704  }
3705
3706  // If this is a locally-scoped extern C variable, update the map of
3707  // such variables.
3708  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3709      !NewVD->isInvalidDecl())
3710    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3711
3712  // If there's a #pragma GCC visibility in scope, and this isn't a class
3713  // member, set the visibility of this variable.
3714  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3715    AddPushedVisibilityAttribute(NewVD);
3716
3717  MarkUnusedFileScopedDecl(NewVD);
3718
3719  return NewVD;
3720}
3721
3722/// \brief Diagnose variable or built-in function shadowing.  Implements
3723/// -Wshadow.
3724///
3725/// This method is called whenever a VarDecl is added to a "useful"
3726/// scope.
3727///
3728/// \param S the scope in which the shadowing name is being declared
3729/// \param R the lookup of the name
3730///
3731void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3732  // Return if warning is ignored.
3733  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3734        Diagnostic::Ignored)
3735    return;
3736
3737  // Don't diagnose declarations at file scope.
3738  if (D->hasGlobalStorage())
3739    return;
3740
3741  DeclContext *NewDC = D->getDeclContext();
3742
3743  // Only diagnose if we're shadowing an unambiguous field or variable.
3744  if (R.getResultKind() != LookupResult::Found)
3745    return;
3746
3747  NamedDecl* ShadowedDecl = R.getFoundDecl();
3748  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3749    return;
3750
3751  // Fields are not shadowed by variables in C++ static methods.
3752  if (isa<FieldDecl>(ShadowedDecl))
3753    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3754      if (MD->isStatic())
3755        return;
3756
3757  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3758    if (shadowedVar->isExternC()) {
3759      // For shadowing external vars, make sure that we point to the global
3760      // declaration, not a locally scoped extern declaration.
3761      for (VarDecl::redecl_iterator
3762             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3763           I != E; ++I)
3764        if (I->isFileVarDecl()) {
3765          ShadowedDecl = *I;
3766          break;
3767        }
3768    }
3769
3770  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3771
3772  // Only warn about certain kinds of shadowing for class members.
3773  if (NewDC && NewDC->isRecord()) {
3774    // In particular, don't warn about shadowing non-class members.
3775    if (!OldDC->isRecord())
3776      return;
3777
3778    // TODO: should we warn about static data members shadowing
3779    // static data members from base classes?
3780
3781    // TODO: don't diagnose for inaccessible shadowed members.
3782    // This is hard to do perfectly because we might friend the
3783    // shadowing context, but that's just a false negative.
3784  }
3785
3786  // Determine what kind of declaration we're shadowing.
3787  unsigned Kind;
3788  if (isa<RecordDecl>(OldDC)) {
3789    if (isa<FieldDecl>(ShadowedDecl))
3790      Kind = 3; // field
3791    else
3792      Kind = 2; // static data member
3793  } else if (OldDC->isFileContext())
3794    Kind = 1; // global
3795  else
3796    Kind = 0; // local
3797
3798  DeclarationName Name = R.getLookupName();
3799
3800  // Emit warning and note.
3801  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3802  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3803}
3804
3805/// \brief Check -Wshadow without the advantage of a previous lookup.
3806void Sema::CheckShadow(Scope *S, VarDecl *D) {
3807  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3808        Diagnostic::Ignored)
3809    return;
3810
3811  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3812                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3813  LookupName(R, S);
3814  CheckShadow(S, D, R);
3815}
3816
3817/// \brief Perform semantic checking on a newly-created variable
3818/// declaration.
3819///
3820/// This routine performs all of the type-checking required for a
3821/// variable declaration once it has been built. It is used both to
3822/// check variables after they have been parsed and their declarators
3823/// have been translated into a declaration, and to check variables
3824/// that have been instantiated from a template.
3825///
3826/// Sets NewVD->isInvalidDecl() if an error was encountered.
3827void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3828                                    LookupResult &Previous,
3829                                    bool &Redeclaration) {
3830  // If the decl is already known invalid, don't check it.
3831  if (NewVD->isInvalidDecl())
3832    return;
3833
3834  QualType T = NewVD->getType();
3835
3836  if (T->isObjCObjectType()) {
3837    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3838    return NewVD->setInvalidDecl();
3839  }
3840
3841  // Emit an error if an address space was applied to decl with local storage.
3842  // This includes arrays of objects with address space qualifiers, but not
3843  // automatic variables that point to other address spaces.
3844  // ISO/IEC TR 18037 S5.1.2
3845  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3846    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3847    return NewVD->setInvalidDecl();
3848  }
3849
3850  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3851      && !NewVD->hasAttr<BlocksAttr>())
3852    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3853
3854  bool isVM = T->isVariablyModifiedType();
3855  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3856      NewVD->hasAttr<BlocksAttr>())
3857    getCurFunction()->setHasBranchProtectedScope();
3858
3859  if ((isVM && NewVD->hasLinkage()) ||
3860      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3861    bool SizeIsNegative;
3862    llvm::APSInt Oversized;
3863    QualType FixedTy =
3864        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3865                                            Oversized);
3866
3867    if (FixedTy.isNull() && T->isVariableArrayType()) {
3868      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3869      // FIXME: This won't give the correct result for
3870      // int a[10][n];
3871      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3872
3873      if (NewVD->isFileVarDecl())
3874        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3875        << SizeRange;
3876      else if (NewVD->getStorageClass() == SC_Static)
3877        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3878        << SizeRange;
3879      else
3880        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3881        << SizeRange;
3882      return NewVD->setInvalidDecl();
3883    }
3884
3885    if (FixedTy.isNull()) {
3886      if (NewVD->isFileVarDecl())
3887        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3888      else
3889        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3890      return NewVD->setInvalidDecl();
3891    }
3892
3893    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3894    NewVD->setType(FixedTy);
3895  }
3896
3897  if (Previous.empty() && NewVD->isExternC()) {
3898    // Since we did not find anything by this name and we're declaring
3899    // an extern "C" variable, look for a non-visible extern "C"
3900    // declaration with the same name.
3901    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3902      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3903    if (Pos != LocallyScopedExternalDecls.end())
3904      Previous.addDecl(Pos->second);
3905  }
3906
3907  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3908    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3909      << T;
3910    return NewVD->setInvalidDecl();
3911  }
3912
3913  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3914    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3915    return NewVD->setInvalidDecl();
3916  }
3917
3918  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3919    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3920    return NewVD->setInvalidDecl();
3921  }
3922
3923  // Function pointers and references cannot have qualified function type, only
3924  // function pointer-to-members can do that.
3925  QualType Pointee;
3926  unsigned PtrOrRef = 0;
3927  if (const PointerType *Ptr = T->getAs<PointerType>())
3928    Pointee = Ptr->getPointeeType();
3929  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3930    Pointee = Ref->getPointeeType();
3931    PtrOrRef = 1;
3932  }
3933  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3934      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3935    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3936        << PtrOrRef;
3937    return NewVD->setInvalidDecl();
3938  }
3939
3940  if (!Previous.empty()) {
3941    Redeclaration = true;
3942    MergeVarDecl(NewVD, Previous);
3943  }
3944}
3945
3946/// \brief Data used with FindOverriddenMethod
3947struct FindOverriddenMethodData {
3948  Sema *S;
3949  CXXMethodDecl *Method;
3950};
3951
3952/// \brief Member lookup function that determines whether a given C++
3953/// method overrides a method in a base class, to be used with
3954/// CXXRecordDecl::lookupInBases().
3955static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3956                                 CXXBasePath &Path,
3957                                 void *UserData) {
3958  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3959
3960  FindOverriddenMethodData *Data
3961    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3962
3963  DeclarationName Name = Data->Method->getDeclName();
3964
3965  // FIXME: Do we care about other names here too?
3966  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3967    // We really want to find the base class destructor here.
3968    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3969    CanQualType CT = Data->S->Context.getCanonicalType(T);
3970
3971    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3972  }
3973
3974  for (Path.Decls = BaseRecord->lookup(Name);
3975       Path.Decls.first != Path.Decls.second;
3976       ++Path.Decls.first) {
3977    NamedDecl *D = *Path.Decls.first;
3978    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3979      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3980        return true;
3981    }
3982  }
3983
3984  return false;
3985}
3986
3987/// AddOverriddenMethods - See if a method overrides any in the base classes,
3988/// and if so, check that it's a valid override and remember it.
3989bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3990  // Look for virtual methods in base classes that this method might override.
3991  CXXBasePaths Paths;
3992  FindOverriddenMethodData Data;
3993  Data.Method = MD;
3994  Data.S = this;
3995  bool AddedAny = false;
3996  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3997    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3998         E = Paths.found_decls_end(); I != E; ++I) {
3999      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4000        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4001            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4002            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4003          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4004          AddedAny = true;
4005        }
4006      }
4007    }
4008  }
4009
4010  return AddedAny;
4011}
4012
4013static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4014  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4015                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4016  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4017  assert(!Prev.isAmbiguous() &&
4018         "Cannot have an ambiguity in previous-declaration lookup");
4019  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4020       Func != FuncEnd; ++Func) {
4021    if (isa<FunctionDecl>(*Func) &&
4022        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4023      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4024  }
4025}
4026
4027NamedDecl*
4028Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4029                              QualType R, TypeSourceInfo *TInfo,
4030                              LookupResult &Previous,
4031                              MultiTemplateParamsArg TemplateParamLists,
4032                              bool IsFunctionDefinition, bool &Redeclaration,
4033                              SourceLocation DefaultLoc) {
4034  assert(R.getTypePtr()->isFunctionType());
4035
4036  // TODO: consider using NameInfo for diagnostic.
4037  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4038  DeclarationName Name = NameInfo.getName();
4039  FunctionDecl::StorageClass SC = SC_None;
4040  switch (D.getDeclSpec().getStorageClassSpec()) {
4041  default: assert(0 && "Unknown storage class!");
4042  case DeclSpec::SCS_auto:
4043  case DeclSpec::SCS_register:
4044  case DeclSpec::SCS_mutable:
4045    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4046         diag::err_typecheck_sclass_func);
4047    D.setInvalidType();
4048    break;
4049  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4050  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4051  case DeclSpec::SCS_static: {
4052    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4053      // C99 6.7.1p5:
4054      //   The declaration of an identifier for a function that has
4055      //   block scope shall have no explicit storage-class specifier
4056      //   other than extern
4057      // See also (C++ [dcl.stc]p4).
4058      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4059           diag::err_static_block_func);
4060      SC = SC_None;
4061    } else
4062      SC = SC_Static;
4063    break;
4064  }
4065  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4066  }
4067
4068  if (D.getDeclSpec().isThreadSpecified())
4069    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4070
4071  // Do not allow returning a objc interface by-value.
4072  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4073    Diag(D.getIdentifierLoc(),
4074         diag::err_object_cannot_be_passed_returned_by_value) << 0
4075    << R->getAs<FunctionType>()->getResultType();
4076    D.setInvalidType();
4077  }
4078
4079  FunctionDecl *NewFD;
4080  bool isInline = D.getDeclSpec().isInlineSpecified();
4081  bool isFriend = false;
4082  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4083  FunctionDecl::StorageClass SCAsWritten
4084    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4085  FunctionTemplateDecl *FunctionTemplate = 0;
4086  bool isExplicitSpecialization = false;
4087  bool isFunctionTemplateSpecialization = false;
4088
4089  if (!getLangOptions().CPlusPlus) {
4090    assert(!DefaultLoc.isValid() && "Defaulted functions are a C++ feature");
4091
4092    // Determine whether the function was written with a
4093    // prototype. This true when:
4094    //   - there is a prototype in the declarator, or
4095    //   - the type R of the function is some kind of typedef or other reference
4096    //     to a type name (which eventually refers to a function type).
4097    bool HasPrototype =
4098    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4099    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4100
4101    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4102                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4103                                 HasPrototype);
4104    if (D.isInvalidType())
4105      NewFD->setInvalidDecl();
4106
4107    // Set the lexical context.
4108    NewFD->setLexicalDeclContext(CurContext);
4109    // Filter out previous declarations that don't match the scope.
4110    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4111                         /*ExplicitInstantiationOrSpecialization=*/false);
4112  } else {
4113    isFriend = D.getDeclSpec().isFriendSpecified();
4114    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4115    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4116    bool isVirtualOkay = false;
4117
4118    // Check that the return type is not an abstract class type.
4119    // For record types, this is done by the AbstractClassUsageDiagnoser once
4120    // the class has been completely parsed.
4121    if (!DC->isRecord() &&
4122      RequireNonAbstractType(D.getIdentifierLoc(),
4123                             R->getAs<FunctionType>()->getResultType(),
4124                             diag::err_abstract_type_in_decl,
4125                             AbstractReturnType))
4126      D.setInvalidType();
4127
4128    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4129      // This is a C++ constructor declaration.
4130      assert(DC->isRecord() &&
4131             "Constructors can only be declared in a member context");
4132
4133      R = CheckConstructorDeclarator(D, R, SC);
4134
4135      // Create the new declaration
4136      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4137                                         Context,
4138                                         cast<CXXRecordDecl>(DC),
4139                                         D.getSourceRange().getBegin(),
4140                                         NameInfo, R, TInfo,
4141                                         isExplicit, isInline,
4142                                         /*isImplicitlyDeclared=*/false);
4143
4144      NewFD = NewCD;
4145    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4146      // This is a C++ destructor declaration.
4147      if (DC->isRecord()) {
4148        R = CheckDestructorDeclarator(D, R, SC);
4149
4150        NewFD = CXXDestructorDecl::Create(Context,
4151                                          cast<CXXRecordDecl>(DC),
4152                                          D.getSourceRange().getBegin(),
4153                                          NameInfo, R, TInfo,
4154                                          isInline,
4155                                          /*isImplicitlyDeclared=*/false);
4156        isVirtualOkay = true;
4157      } else {
4158        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4159
4160        // Create a FunctionDecl to satisfy the function definition parsing
4161        // code path.
4162        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4163                                     D.getIdentifierLoc(), Name, R, TInfo,
4164                                     SC, SCAsWritten, isInline,
4165                                     /*hasPrototype=*/true);
4166        D.setInvalidType();
4167      }
4168    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4169      if (!DC->isRecord()) {
4170        Diag(D.getIdentifierLoc(),
4171             diag::err_conv_function_not_member);
4172        return 0;
4173      }
4174
4175      CheckConversionDeclarator(D, R, SC);
4176      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4177                                        D.getSourceRange().getBegin(),
4178                                        NameInfo, R, TInfo,
4179                                        isInline, isExplicit,
4180                                        SourceLocation());
4181
4182      isVirtualOkay = true;
4183    } else if (DC->isRecord()) {
4184      // If the of the function is the same as the name of the record, then this
4185      // must be an invalid constructor that has a return type.
4186      // (The parser checks for a return type and makes the declarator a
4187      // constructor if it has no return type).
4188      // must have an invalid constructor that has a return type
4189      if (Name.getAsIdentifierInfo() &&
4190          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4191        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4192          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4193          << SourceRange(D.getIdentifierLoc());
4194        return 0;
4195      }
4196
4197      bool isStatic = SC == SC_Static;
4198
4199      // [class.free]p1:
4200      // Any allocation function for a class T is a static member
4201      // (even if not explicitly declared static).
4202      if (Name.getCXXOverloadedOperator() == OO_New ||
4203          Name.getCXXOverloadedOperator() == OO_Array_New)
4204        isStatic = true;
4205
4206      // [class.free]p6 Any deallocation function for a class X is a static member
4207      // (even if not explicitly declared static).
4208      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4209          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4210        isStatic = true;
4211
4212      // This is a C++ method declaration.
4213      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4214                                               Context, cast<CXXRecordDecl>(DC),
4215                                               D.getSourceRange().getBegin(),
4216                                               NameInfo, R, TInfo,
4217                                               isStatic, SCAsWritten, isInline,
4218                                               SourceLocation());
4219      NewFD = NewMD;
4220
4221      isVirtualOkay = !isStatic;
4222    } else {
4223      if (DefaultLoc.isValid())
4224        Diag(DefaultLoc, diag::err_default_special_members);
4225
4226      // Determine whether the function was written with a
4227      // prototype. This true when:
4228      //   - we're in C++ (where every function has a prototype),
4229      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4230                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4231                                   true/*HasPrototype*/);
4232    }
4233
4234    if (isFriend && !isInline && IsFunctionDefinition) {
4235      // C++ [class.friend]p5
4236      //   A function can be defined in a friend declaration of a
4237      //   class . . . . Such a function is implicitly inline.
4238      NewFD->setImplicitlyInline();
4239    }
4240
4241    SetNestedNameSpecifier(NewFD, D);
4242    isExplicitSpecialization = false;
4243    isFunctionTemplateSpecialization = false;
4244    if (D.isInvalidType())
4245      NewFD->setInvalidDecl();
4246
4247    // Set the lexical context. If the declarator has a C++
4248    // scope specifier, or is the object of a friend declaration, the
4249    // lexical context will be different from the semantic context.
4250    NewFD->setLexicalDeclContext(CurContext);
4251
4252    // Match up the template parameter lists with the scope specifier, then
4253    // determine whether we have a template or a template specialization.
4254    bool Invalid = false;
4255    if (TemplateParameterList *TemplateParams
4256          = MatchTemplateParametersToScopeSpecifier(
4257                                  D.getDeclSpec().getSourceRange().getBegin(),
4258                                  D.getIdentifierLoc(),
4259                                  D.getCXXScopeSpec(),
4260                                  TemplateParamLists.get(),
4261                                  TemplateParamLists.size(),
4262                                  isFriend,
4263                                  isExplicitSpecialization,
4264                                  Invalid)) {
4265      if (TemplateParams->size() > 0) {
4266        // This is a function template
4267
4268        // Check that we can declare a template here.
4269        if (CheckTemplateDeclScope(S, TemplateParams))
4270          return 0;
4271
4272        // A destructor cannot be a template.
4273        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4274          Diag(NewFD->getLocation(), diag::err_destructor_template);
4275          return 0;
4276        }
4277
4278        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4279                                                        NewFD->getLocation(),
4280                                                        Name, TemplateParams,
4281                                                        NewFD);
4282        FunctionTemplate->setLexicalDeclContext(CurContext);
4283        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4284
4285        // For source fidelity, store the other template param lists.
4286        if (TemplateParamLists.size() > 1) {
4287          NewFD->setTemplateParameterListsInfo(Context,
4288                                               TemplateParamLists.size() - 1,
4289                                               TemplateParamLists.release());
4290        }
4291      } else {
4292        // This is a function template specialization.
4293        isFunctionTemplateSpecialization = true;
4294        // For source fidelity, store all the template param lists.
4295        NewFD->setTemplateParameterListsInfo(Context,
4296                                             TemplateParamLists.size(),
4297                                             TemplateParamLists.release());
4298
4299        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4300        if (isFriend) {
4301          // We want to remove the "template<>", found here.
4302          SourceRange RemoveRange = TemplateParams->getSourceRange();
4303
4304          // If we remove the template<> and the name is not a
4305          // template-id, we're actually silently creating a problem:
4306          // the friend declaration will refer to an untemplated decl,
4307          // and clearly the user wants a template specialization.  So
4308          // we need to insert '<>' after the name.
4309          SourceLocation InsertLoc;
4310          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4311            InsertLoc = D.getName().getSourceRange().getEnd();
4312            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4313          }
4314
4315          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4316            << Name << RemoveRange
4317            << FixItHint::CreateRemoval(RemoveRange)
4318            << FixItHint::CreateInsertion(InsertLoc, "<>");
4319        }
4320      }
4321    }
4322    else {
4323      // All template param lists were matched against the scope specifier:
4324      // this is NOT (an explicit specialization of) a template.
4325      if (TemplateParamLists.size() > 0)
4326        // For source fidelity, store all the template param lists.
4327        NewFD->setTemplateParameterListsInfo(Context,
4328                                             TemplateParamLists.size(),
4329                                             TemplateParamLists.release());
4330    }
4331
4332    if (Invalid) {
4333      NewFD->setInvalidDecl();
4334      if (FunctionTemplate)
4335        FunctionTemplate->setInvalidDecl();
4336    }
4337
4338    // C++ [dcl.fct.spec]p5:
4339    //   The virtual specifier shall only be used in declarations of
4340    //   nonstatic class member functions that appear within a
4341    //   member-specification of a class declaration; see 10.3.
4342    //
4343    if (isVirtual && !NewFD->isInvalidDecl()) {
4344      if (!isVirtualOkay) {
4345        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4346             diag::err_virtual_non_function);
4347      } else if (!CurContext->isRecord()) {
4348        // 'virtual' was specified outside of the class.
4349        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4350             diag::err_virtual_out_of_class)
4351          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4352      } else if (NewFD->getDescribedFunctionTemplate()) {
4353        // C++ [temp.mem]p3:
4354        //  A member function template shall not be virtual.
4355        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4356             diag::err_virtual_member_function_template)
4357          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4358      } else {
4359        // Okay: Add virtual to the method.
4360        NewFD->setVirtualAsWritten(true);
4361      }
4362    }
4363
4364    // C++ [dcl.fct.spec]p3:
4365    //  The inline specifier shall not appear on a block scope function declaration.
4366    if (isInline && !NewFD->isInvalidDecl()) {
4367      if (CurContext->isFunctionOrMethod()) {
4368        // 'inline' is not allowed on block scope function declaration.
4369        Diag(D.getDeclSpec().getInlineSpecLoc(),
4370             diag::err_inline_declaration_block_scope) << Name
4371          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4372      }
4373    }
4374
4375    // C++ [dcl.fct.spec]p6:
4376    //  The explicit specifier shall be used only in the declaration of a
4377    //  constructor or conversion function within its class definition; see 12.3.1
4378    //  and 12.3.2.
4379    if (isExplicit && !NewFD->isInvalidDecl()) {
4380      if (!CurContext->isRecord()) {
4381        // 'explicit' was specified outside of the class.
4382        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4383             diag::err_explicit_out_of_class)
4384          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4385      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4386                 !isa<CXXConversionDecl>(NewFD)) {
4387        // 'explicit' was specified on a function that wasn't a constructor
4388        // or conversion function.
4389        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4390             diag::err_explicit_non_ctor_or_conv_function)
4391          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4392      }
4393    }
4394
4395    // Filter out previous declarations that don't match the scope.
4396    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4397                         isExplicitSpecialization ||
4398                         isFunctionTemplateSpecialization);
4399
4400    if (isFriend) {
4401      // For now, claim that the objects have no previous declaration.
4402      if (FunctionTemplate) {
4403        FunctionTemplate->setObjectOfFriendDecl(false);
4404        FunctionTemplate->setAccess(AS_public);
4405      }
4406      NewFD->setObjectOfFriendDecl(false);
4407      NewFD->setAccess(AS_public);
4408    }
4409
4410    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4411      // A method is implicitly inline if it's defined in its class
4412      // definition.
4413      NewFD->setImplicitlyInline();
4414    }
4415
4416    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4417        !CurContext->isRecord()) {
4418      // C++ [class.static]p1:
4419      //   A data or function member of a class may be declared static
4420      //   in a class definition, in which case it is a static member of
4421      //   the class.
4422
4423      // Complain about the 'static' specifier if it's on an out-of-line
4424      // member function definition.
4425      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4426           diag::err_static_out_of_line)
4427        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4428    }
4429  }
4430
4431  // Handle GNU asm-label extension (encoded as an attribute).
4432  if (Expr *E = (Expr*) D.getAsmLabel()) {
4433    // The parser guarantees this is a string.
4434    StringLiteral *SE = cast<StringLiteral>(E);
4435    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4436                                                SE->getString()));
4437  }
4438
4439  // Copy the parameter declarations from the declarator D to the function
4440  // declaration NewFD, if they are available.  First scavenge them into Params.
4441  llvm::SmallVector<ParmVarDecl*, 16> Params;
4442  if (D.isFunctionDeclarator()) {
4443    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4444
4445    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4446    // function that takes no arguments, not a function that takes a
4447    // single void argument.
4448    // We let through "const void" here because Sema::GetTypeForDeclarator
4449    // already checks for that case.
4450    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4451        FTI.ArgInfo[0].Param &&
4452        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4453      // Empty arg list, don't push any params.
4454      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4455
4456      // In C++, the empty parameter-type-list must be spelled "void"; a
4457      // typedef of void is not permitted.
4458      if (getLangOptions().CPlusPlus &&
4459          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4460        bool IsTypeAlias = false;
4461        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4462          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4463        else if (const TemplateSpecializationType *TST =
4464                   Param->getType()->getAs<TemplateSpecializationType>())
4465          IsTypeAlias = TST->isTypeAlias();
4466        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4467          << IsTypeAlias;
4468      }
4469    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4470      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4471        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4472        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4473        Param->setDeclContext(NewFD);
4474        Params.push_back(Param);
4475
4476        if (Param->isInvalidDecl())
4477          NewFD->setInvalidDecl();
4478      }
4479    }
4480
4481  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4482    // When we're declaring a function with a typedef, typeof, etc as in the
4483    // following example, we'll need to synthesize (unnamed)
4484    // parameters for use in the declaration.
4485    //
4486    // @code
4487    // typedef void fn(int);
4488    // fn f;
4489    // @endcode
4490
4491    // Synthesize a parameter for each argument type.
4492    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4493         AE = FT->arg_type_end(); AI != AE; ++AI) {
4494      ParmVarDecl *Param =
4495        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4496      Param->setScopeInfo(0, Params.size());
4497      Params.push_back(Param);
4498    }
4499  } else {
4500    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4501           "Should not need args for typedef of non-prototype fn");
4502  }
4503  // Finally, we know we have the right number of parameters, install them.
4504  NewFD->setParams(Params.data(), Params.size());
4505
4506  // Process the non-inheritable attributes on this declaration.
4507  ProcessDeclAttributes(S, NewFD, D,
4508                        /*NonInheritable=*/true, /*Inheritable=*/false);
4509
4510  if (!getLangOptions().CPlusPlus) {
4511    // Perform semantic checking on the function declaration.
4512    bool isExplctSpecialization=false;
4513    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4514                             Redeclaration);
4515    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4516            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4517           "previous declaration set still overloaded");
4518  } else {
4519    // If the declarator is a template-id, translate the parser's template
4520    // argument list into our AST format.
4521    bool HasExplicitTemplateArgs = false;
4522    TemplateArgumentListInfo TemplateArgs;
4523    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4524      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4525      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4526      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4527      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4528                                         TemplateId->getTemplateArgs(),
4529                                         TemplateId->NumArgs);
4530      translateTemplateArguments(TemplateArgsPtr,
4531                                 TemplateArgs);
4532      TemplateArgsPtr.release();
4533
4534      HasExplicitTemplateArgs = true;
4535
4536      if (FunctionTemplate) {
4537        // Function template with explicit template arguments.
4538        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4539          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4540
4541        HasExplicitTemplateArgs = false;
4542      } else if (!isFunctionTemplateSpecialization &&
4543                 !D.getDeclSpec().isFriendSpecified()) {
4544        // We have encountered something that the user meant to be a
4545        // specialization (because it has explicitly-specified template
4546        // arguments) but that was not introduced with a "template<>" (or had
4547        // too few of them).
4548        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4549          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4550          << FixItHint::CreateInsertion(
4551                                        D.getDeclSpec().getSourceRange().getBegin(),
4552                                                  "template<> ");
4553        isFunctionTemplateSpecialization = true;
4554      } else {
4555        // "friend void foo<>(int);" is an implicit specialization decl.
4556        isFunctionTemplateSpecialization = true;
4557      }
4558    } else if (isFriend && isFunctionTemplateSpecialization) {
4559      // This combination is only possible in a recovery case;  the user
4560      // wrote something like:
4561      //   template <> friend void foo(int);
4562      // which we're recovering from as if the user had written:
4563      //   friend void foo<>(int);
4564      // Go ahead and fake up a template id.
4565      HasExplicitTemplateArgs = true;
4566        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4567      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4568    }
4569
4570    // If it's a friend (and only if it's a friend), it's possible
4571    // that either the specialized function type or the specialized
4572    // template is dependent, and therefore matching will fail.  In
4573    // this case, don't check the specialization yet.
4574    if (isFunctionTemplateSpecialization && isFriend &&
4575        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4576      assert(HasExplicitTemplateArgs &&
4577             "friend function specialization without template args");
4578      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4579                                                       Previous))
4580        NewFD->setInvalidDecl();
4581    } else if (isFunctionTemplateSpecialization) {
4582      if (CurContext->isDependentContext() && CurContext->isRecord()
4583          && !isFriend) {
4584        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4585          << NewFD->getDeclName();
4586        NewFD->setInvalidDecl();
4587        return 0;
4588      } else if (CheckFunctionTemplateSpecialization(NewFD,
4589                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4590                                                     Previous))
4591        NewFD->setInvalidDecl();
4592    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4593      if (CheckMemberSpecialization(NewFD, Previous))
4594          NewFD->setInvalidDecl();
4595    }
4596
4597    // Perform semantic checking on the function declaration.
4598    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4599                             Redeclaration);
4600
4601    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4602            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4603           "previous declaration set still overloaded");
4604
4605    NamedDecl *PrincipalDecl = (FunctionTemplate
4606                                ? cast<NamedDecl>(FunctionTemplate)
4607                                : NewFD);
4608
4609    if (isFriend && Redeclaration) {
4610      AccessSpecifier Access = AS_public;
4611      if (!NewFD->isInvalidDecl())
4612        Access = NewFD->getPreviousDeclaration()->getAccess();
4613
4614      NewFD->setAccess(Access);
4615      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4616
4617      PrincipalDecl->setObjectOfFriendDecl(true);
4618    }
4619
4620    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4621        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4622      PrincipalDecl->setNonMemberOperator();
4623
4624    // If we have a function template, check the template parameter
4625    // list. This will check and merge default template arguments.
4626    if (FunctionTemplate) {
4627      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4628      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4629                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4630                            D.getDeclSpec().isFriendSpecified()
4631                              ? (IsFunctionDefinition
4632                                   ? TPC_FriendFunctionTemplateDefinition
4633                                   : TPC_FriendFunctionTemplate)
4634                              : (D.getCXXScopeSpec().isSet() &&
4635                                 DC && DC->isRecord() &&
4636                                 DC->isDependentContext())
4637                                  ? TPC_ClassTemplateMember
4638                                  : TPC_FunctionTemplate);
4639    }
4640
4641    if (NewFD->isInvalidDecl()) {
4642      // Ignore all the rest of this.
4643    } else if (!Redeclaration) {
4644      // Fake up an access specifier if it's supposed to be a class member.
4645      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4646        NewFD->setAccess(AS_public);
4647
4648      // Qualified decls generally require a previous declaration.
4649      if (D.getCXXScopeSpec().isSet()) {
4650        // ...with the major exception of templated-scope or
4651        // dependent-scope friend declarations.
4652
4653        // TODO: we currently also suppress this check in dependent
4654        // contexts because (1) the parameter depth will be off when
4655        // matching friend templates and (2) we might actually be
4656        // selecting a friend based on a dependent factor.  But there
4657        // are situations where these conditions don't apply and we
4658        // can actually do this check immediately.
4659        if (isFriend &&
4660            (TemplateParamLists.size() ||
4661             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4662             CurContext->isDependentContext())) {
4663              // ignore these
4664            } else {
4665              // The user tried to provide an out-of-line definition for a
4666              // function that is a member of a class or namespace, but there
4667              // was no such member function declared (C++ [class.mfct]p2,
4668              // C++ [namespace.memdef]p2). For example:
4669              //
4670              // class X {
4671              //   void f() const;
4672              // };
4673              //
4674              // void X::f() { } // ill-formed
4675              //
4676              // Complain about this problem, and attempt to suggest close
4677              // matches (e.g., those that differ only in cv-qualifiers and
4678              // whether the parameter types are references).
4679              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4680              << Name << DC << D.getCXXScopeSpec().getRange();
4681              NewFD->setInvalidDecl();
4682
4683              DiagnoseInvalidRedeclaration(*this, NewFD);
4684            }
4685
4686        // Unqualified local friend declarations are required to resolve
4687        // to something.
4688        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4689          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4690          NewFD->setInvalidDecl();
4691          DiagnoseInvalidRedeclaration(*this, NewFD);
4692        }
4693
4694    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4695               !isFriend && !isFunctionTemplateSpecialization &&
4696               !isExplicitSpecialization && !DefaultLoc.isValid()) {
4697      // An out-of-line member function declaration must also be a
4698      // definition (C++ [dcl.meaning]p1).
4699      // Note that this is not the case for explicit specializations of
4700      // function templates or member functions of class templates, per
4701      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4702      // for compatibility with old SWIG code which likes to generate them.
4703      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4704        << D.getCXXScopeSpec().getRange();
4705    }
4706  }
4707
4708
4709  // Handle attributes. We need to have merged decls when handling attributes
4710  // (for example to check for conflicts, etc).
4711  // FIXME: This needs to happen before we merge declarations. Then,
4712  // let attribute merging cope with attribute conflicts.
4713  ProcessDeclAttributes(S, NewFD, D,
4714                        /*NonInheritable=*/false, /*Inheritable=*/true);
4715
4716  // attributes declared post-definition are currently ignored
4717  // FIXME: This should happen during attribute merging
4718  if (Redeclaration && Previous.isSingleResult()) {
4719    const FunctionDecl *Def;
4720    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4721    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4722      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4723      Diag(Def->getLocation(), diag::note_previous_definition);
4724    }
4725  }
4726
4727  AddKnownFunctionAttributes(NewFD);
4728
4729  if (NewFD->hasAttr<OverloadableAttr>() &&
4730      !NewFD->getType()->getAs<FunctionProtoType>()) {
4731    Diag(NewFD->getLocation(),
4732         diag::err_attribute_overloadable_no_prototype)
4733      << NewFD;
4734
4735    // Turn this into a variadic function with no parameters.
4736    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4737    FunctionProtoType::ExtProtoInfo EPI;
4738    EPI.Variadic = true;
4739    EPI.ExtInfo = FT->getExtInfo();
4740
4741    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4742    NewFD->setType(R);
4743  }
4744
4745  // If there's a #pragma GCC visibility in scope, and this isn't a class
4746  // member, set the visibility of this function.
4747  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4748    AddPushedVisibilityAttribute(NewFD);
4749
4750  // If this is a locally-scoped extern C function, update the
4751  // map of such names.
4752  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4753      && !NewFD->isInvalidDecl())
4754    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4755
4756  // Set this FunctionDecl's range up to the right paren.
4757  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4758
4759  if (getLangOptions().CPlusPlus) {
4760    if (FunctionTemplate) {
4761      if (NewFD->isInvalidDecl())
4762        FunctionTemplate->setInvalidDecl();
4763      return FunctionTemplate;
4764    }
4765  }
4766
4767  MarkUnusedFileScopedDecl(NewFD);
4768
4769  if (getLangOptions().CUDA)
4770    if (IdentifierInfo *II = NewFD->getIdentifier())
4771      if (!NewFD->isInvalidDecl() &&
4772          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4773        if (II->isStr("cudaConfigureCall")) {
4774          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4775            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4776
4777          Context.setcudaConfigureCallDecl(NewFD);
4778        }
4779      }
4780
4781  // Check explicitly defaulted methods
4782  // FIXME: This could be made better through CXXSpecialMember if it did
4783  // default constructors (which it should rather than any constructor).
4784  if (NewFD && DefaultLoc.isValid() && getLangOptions().CPlusPlus) {
4785    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD)) {
4786      if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(MD)) {
4787        if (CD->isDefaultConstructor() || CD->isCopyOrMoveConstructor()) {
4788          CD->setDefaulted();
4789          CD->setExplicitlyDefaulted();
4790          if (CD != CD->getCanonicalDecl() && CD->isDefaultConstructor())
4791            CheckExplicitlyDefaultedDefaultConstructor(CD);
4792          // FIXME: Do copy/move ctors here.
4793        } else {
4794          Diag(DefaultLoc, diag::err_default_special_members);
4795        }
4796      } else if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
4797        DD->setDefaulted();
4798        DD->setExplicitlyDefaulted();
4799        // FIXME: Add a checking method
4800      } else if (MD->isCopyAssignmentOperator() /* ||
4801                 MD->isMoveAssignmentOperator() */) {
4802        MD->setDefaulted();
4803        MD->setExplicitlyDefaulted();
4804        // FIXME: Add a checking method
4805      } else {
4806        Diag(DefaultLoc, diag::err_default_special_members);
4807      }
4808    }
4809  }
4810
4811  return NewFD;
4812}
4813
4814/// \brief Perform semantic checking of a new function declaration.
4815///
4816/// Performs semantic analysis of the new function declaration
4817/// NewFD. This routine performs all semantic checking that does not
4818/// require the actual declarator involved in the declaration, and is
4819/// used both for the declaration of functions as they are parsed
4820/// (called via ActOnDeclarator) and for the declaration of functions
4821/// that have been instantiated via C++ template instantiation (called
4822/// via InstantiateDecl).
4823///
4824/// \param IsExplicitSpecialiation whether this new function declaration is
4825/// an explicit specialization of the previous declaration.
4826///
4827/// This sets NewFD->isInvalidDecl() to true if there was an error.
4828void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4829                                    LookupResult &Previous,
4830                                    bool IsExplicitSpecialization,
4831                                    bool &Redeclaration) {
4832  // If NewFD is already known erroneous, don't do any of this checking.
4833  if (NewFD->isInvalidDecl()) {
4834    // If this is a class member, mark the class invalid immediately.
4835    // This avoids some consistency errors later.
4836    if (isa<CXXMethodDecl>(NewFD))
4837      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4838
4839    return;
4840  }
4841
4842  if (NewFD->getResultType()->isVariablyModifiedType()) {
4843    // Functions returning a variably modified type violate C99 6.7.5.2p2
4844    // because all functions have linkage.
4845    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4846    return NewFD->setInvalidDecl();
4847  }
4848
4849  if (NewFD->isMain())
4850    CheckMain(NewFD);
4851
4852  // Check for a previous declaration of this name.
4853  if (Previous.empty() && NewFD->isExternC()) {
4854    // Since we did not find anything by this name and we're declaring
4855    // an extern "C" function, look for a non-visible extern "C"
4856    // declaration with the same name.
4857    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4858      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4859    if (Pos != LocallyScopedExternalDecls.end())
4860      Previous.addDecl(Pos->second);
4861  }
4862
4863  // Merge or overload the declaration with an existing declaration of
4864  // the same name, if appropriate.
4865  if (!Previous.empty()) {
4866    // Determine whether NewFD is an overload of PrevDecl or
4867    // a declaration that requires merging. If it's an overload,
4868    // there's no more work to do here; we'll just add the new
4869    // function to the scope.
4870
4871    NamedDecl *OldDecl = 0;
4872    if (!AllowOverloadingOfFunction(Previous, Context)) {
4873      Redeclaration = true;
4874      OldDecl = Previous.getFoundDecl();
4875    } else {
4876      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4877                            /*NewIsUsingDecl*/ false)) {
4878      case Ovl_Match:
4879        Redeclaration = true;
4880        break;
4881
4882      case Ovl_NonFunction:
4883        Redeclaration = true;
4884        break;
4885
4886      case Ovl_Overload:
4887        Redeclaration = false;
4888        break;
4889      }
4890
4891      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4892        // If a function name is overloadable in C, then every function
4893        // with that name must be marked "overloadable".
4894        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4895          << Redeclaration << NewFD;
4896        NamedDecl *OverloadedDecl = 0;
4897        if (Redeclaration)
4898          OverloadedDecl = OldDecl;
4899        else if (!Previous.empty())
4900          OverloadedDecl = Previous.getRepresentativeDecl();
4901        if (OverloadedDecl)
4902          Diag(OverloadedDecl->getLocation(),
4903               diag::note_attribute_overloadable_prev_overload);
4904        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4905                                                        Context));
4906      }
4907    }
4908
4909    if (Redeclaration) {
4910      // NewFD and OldDecl represent declarations that need to be
4911      // merged.
4912      if (MergeFunctionDecl(NewFD, OldDecl))
4913        return NewFD->setInvalidDecl();
4914
4915      Previous.clear();
4916      Previous.addDecl(OldDecl);
4917
4918      if (FunctionTemplateDecl *OldTemplateDecl
4919                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4920        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4921        FunctionTemplateDecl *NewTemplateDecl
4922          = NewFD->getDescribedFunctionTemplate();
4923        assert(NewTemplateDecl && "Template/non-template mismatch");
4924        if (CXXMethodDecl *Method
4925              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4926          Method->setAccess(OldTemplateDecl->getAccess());
4927          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4928        }
4929
4930        // If this is an explicit specialization of a member that is a function
4931        // template, mark it as a member specialization.
4932        if (IsExplicitSpecialization &&
4933            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4934          NewTemplateDecl->setMemberSpecialization();
4935          assert(OldTemplateDecl->isMemberSpecialization());
4936        }
4937      } else {
4938        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4939          NewFD->setAccess(OldDecl->getAccess());
4940        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4941      }
4942    }
4943  }
4944
4945  // Semantic checking for this function declaration (in isolation).
4946  if (getLangOptions().CPlusPlus) {
4947    // C++-specific checks.
4948    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4949      CheckConstructor(Constructor);
4950    } else if (CXXDestructorDecl *Destructor =
4951                dyn_cast<CXXDestructorDecl>(NewFD)) {
4952      CXXRecordDecl *Record = Destructor->getParent();
4953      QualType ClassType = Context.getTypeDeclType(Record);
4954
4955      // FIXME: Shouldn't we be able to perform this check even when the class
4956      // type is dependent? Both gcc and edg can handle that.
4957      if (!ClassType->isDependentType()) {
4958        DeclarationName Name
4959          = Context.DeclarationNames.getCXXDestructorName(
4960                                        Context.getCanonicalType(ClassType));
4961        if (NewFD->getDeclName() != Name) {
4962          Diag(NewFD->getLocation(), diag::err_destructor_name);
4963          return NewFD->setInvalidDecl();
4964        }
4965      }
4966    } else if (CXXConversionDecl *Conversion
4967               = dyn_cast<CXXConversionDecl>(NewFD)) {
4968      ActOnConversionDeclarator(Conversion);
4969    }
4970
4971    // Find any virtual functions that this function overrides.
4972    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4973      if (!Method->isFunctionTemplateSpecialization() &&
4974          !Method->getDescribedFunctionTemplate()) {
4975        if (AddOverriddenMethods(Method->getParent(), Method)) {
4976          // If the function was marked as "static", we have a problem.
4977          if (NewFD->getStorageClass() == SC_Static) {
4978            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4979              << NewFD->getDeclName();
4980            for (CXXMethodDecl::method_iterator
4981                      Overridden = Method->begin_overridden_methods(),
4982                   OverriddenEnd = Method->end_overridden_methods();
4983                 Overridden != OverriddenEnd;
4984                 ++Overridden) {
4985              Diag((*Overridden)->getLocation(),
4986                   diag::note_overridden_virtual_function);
4987            }
4988          }
4989        }
4990      }
4991    }
4992
4993    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4994    if (NewFD->isOverloadedOperator() &&
4995        CheckOverloadedOperatorDeclaration(NewFD))
4996      return NewFD->setInvalidDecl();
4997
4998    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4999    if (NewFD->getLiteralIdentifier() &&
5000        CheckLiteralOperatorDeclaration(NewFD))
5001      return NewFD->setInvalidDecl();
5002
5003    // In C++, check default arguments now that we have merged decls. Unless
5004    // the lexical context is the class, because in this case this is done
5005    // during delayed parsing anyway.
5006    if (!CurContext->isRecord())
5007      CheckCXXDefaultArguments(NewFD);
5008
5009    // If this function declares a builtin function, check the type of this
5010    // declaration against the expected type for the builtin.
5011    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5012      ASTContext::GetBuiltinTypeError Error;
5013      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5014      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5015        // The type of this function differs from the type of the builtin,
5016        // so forget about the builtin entirely.
5017        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5018      }
5019    }
5020  }
5021}
5022
5023void Sema::CheckMain(FunctionDecl* FD) {
5024  // C++ [basic.start.main]p3:  A program that declares main to be inline
5025  //   or static is ill-formed.
5026  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5027  //   shall not appear in a declaration of main.
5028  // static main is not an error under C99, but we should warn about it.
5029  bool isInline = FD->isInlineSpecified();
5030  bool isStatic = FD->getStorageClass() == SC_Static;
5031  if (isInline || isStatic) {
5032    unsigned diagID = diag::warn_unusual_main_decl;
5033    if (isInline || getLangOptions().CPlusPlus)
5034      diagID = diag::err_unusual_main_decl;
5035
5036    int which = isStatic + (isInline << 1) - 1;
5037    Diag(FD->getLocation(), diagID) << which;
5038  }
5039
5040  QualType T = FD->getType();
5041  assert(T->isFunctionType() && "function decl is not of function type");
5042  const FunctionType* FT = T->getAs<FunctionType>();
5043
5044  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5045    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5046    FD->setInvalidDecl(true);
5047  }
5048
5049  // Treat protoless main() as nullary.
5050  if (isa<FunctionNoProtoType>(FT)) return;
5051
5052  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5053  unsigned nparams = FTP->getNumArgs();
5054  assert(FD->getNumParams() == nparams);
5055
5056  bool HasExtraParameters = (nparams > 3);
5057
5058  // Darwin passes an undocumented fourth argument of type char**.  If
5059  // other platforms start sprouting these, the logic below will start
5060  // getting shifty.
5061  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5062    HasExtraParameters = false;
5063
5064  if (HasExtraParameters) {
5065    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5066    FD->setInvalidDecl(true);
5067    nparams = 3;
5068  }
5069
5070  // FIXME: a lot of the following diagnostics would be improved
5071  // if we had some location information about types.
5072
5073  QualType CharPP =
5074    Context.getPointerType(Context.getPointerType(Context.CharTy));
5075  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5076
5077  for (unsigned i = 0; i < nparams; ++i) {
5078    QualType AT = FTP->getArgType(i);
5079
5080    bool mismatch = true;
5081
5082    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5083      mismatch = false;
5084    else if (Expected[i] == CharPP) {
5085      // As an extension, the following forms are okay:
5086      //   char const **
5087      //   char const * const *
5088      //   char * const *
5089
5090      QualifierCollector qs;
5091      const PointerType* PT;
5092      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5093          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5094          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5095        qs.removeConst();
5096        mismatch = !qs.empty();
5097      }
5098    }
5099
5100    if (mismatch) {
5101      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5102      // TODO: suggest replacing given type with expected type
5103      FD->setInvalidDecl(true);
5104    }
5105  }
5106
5107  if (nparams == 1 && !FD->isInvalidDecl()) {
5108    Diag(FD->getLocation(), diag::warn_main_one_arg);
5109  }
5110
5111  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5112    Diag(FD->getLocation(), diag::err_main_template_decl);
5113    FD->setInvalidDecl();
5114  }
5115}
5116
5117bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5118  // FIXME: Need strict checking.  In C89, we need to check for
5119  // any assignment, increment, decrement, function-calls, or
5120  // commas outside of a sizeof.  In C99, it's the same list,
5121  // except that the aforementioned are allowed in unevaluated
5122  // expressions.  Everything else falls under the
5123  // "may accept other forms of constant expressions" exception.
5124  // (We never end up here for C++, so the constant expression
5125  // rules there don't matter.)
5126  if (Init->isConstantInitializer(Context, false))
5127    return false;
5128  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5129    << Init->getSourceRange();
5130  return true;
5131}
5132
5133namespace {
5134  // Visits an initialization expression to see if OrigDecl is evaluated in
5135  // its own initialization and throws a warning if it does.
5136  class SelfReferenceChecker
5137      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5138    Sema &S;
5139    Decl *OrigDecl;
5140
5141  public:
5142    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5143
5144    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5145                                                    S(S), OrigDecl(OrigDecl) { }
5146
5147    void VisitExpr(Expr *E) {
5148      if (isa<ObjCMessageExpr>(*E)) return;
5149      Inherited::VisitExpr(E);
5150    }
5151
5152    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5153      CheckForSelfReference(E);
5154      Inherited::VisitImplicitCastExpr(E);
5155    }
5156
5157    void CheckForSelfReference(ImplicitCastExpr *E) {
5158      if (E->getCastKind() != CK_LValueToRValue) return;
5159      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5160      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5161      if (!DRE) return;
5162      Decl* ReferenceDecl = DRE->getDecl();
5163      if (OrigDecl != ReferenceDecl) return;
5164      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5165                          Sema::NotForRedeclaration);
5166      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5167        << Result.getLookupName() << OrigDecl->getLocation()
5168        << SubExpr->getSourceRange();
5169    }
5170  };
5171}
5172
5173/// AddInitializerToDecl - Adds the initializer Init to the
5174/// declaration dcl. If DirectInit is true, this is C++ direct
5175/// initialization rather than copy initialization.
5176void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5177                                bool DirectInit, bool TypeMayContainAuto) {
5178  // If there is no declaration, there was an error parsing it.  Just ignore
5179  // the initializer.
5180  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5181    return;
5182
5183  // Check for self-references within variable initializers.
5184  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5185    // Variables declared within a function/method body are handled
5186    // by a dataflow analysis.
5187    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5188      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5189  }
5190  else {
5191    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5192  }
5193
5194  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5195    // With declarators parsed the way they are, the parser cannot
5196    // distinguish between a normal initializer and a pure-specifier.
5197    // Thus this grotesque test.
5198    IntegerLiteral *IL;
5199    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5200        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5201      CheckPureMethod(Method, Init->getSourceRange());
5202    else {
5203      Diag(Method->getLocation(), diag::err_member_function_initialization)
5204        << Method->getDeclName() << Init->getSourceRange();
5205      Method->setInvalidDecl();
5206    }
5207    return;
5208  }
5209
5210  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5211  if (!VDecl) {
5212    if (getLangOptions().CPlusPlus &&
5213        RealDecl->getLexicalDeclContext()->isRecord() &&
5214        isa<NamedDecl>(RealDecl))
5215      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5216    else
5217      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5218    RealDecl->setInvalidDecl();
5219    return;
5220  }
5221
5222  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5223  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5224    TypeSourceInfo *DeducedType = 0;
5225    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5226      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5227        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5228        << Init->getSourceRange();
5229    if (!DeducedType) {
5230      RealDecl->setInvalidDecl();
5231      return;
5232    }
5233    VDecl->setTypeSourceInfo(DeducedType);
5234    VDecl->setType(DeducedType->getType());
5235
5236    // If this is a redeclaration, check that the type we just deduced matches
5237    // the previously declared type.
5238    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5239      MergeVarDeclTypes(VDecl, Old);
5240  }
5241
5242
5243  // A definition must end up with a complete type, which means it must be
5244  // complete with the restriction that an array type might be completed by the
5245  // initializer; note that later code assumes this restriction.
5246  QualType BaseDeclType = VDecl->getType();
5247  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5248    BaseDeclType = Array->getElementType();
5249  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5250                          diag::err_typecheck_decl_incomplete_type)) {
5251    RealDecl->setInvalidDecl();
5252    return;
5253  }
5254
5255  // The variable can not have an abstract class type.
5256  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5257                             diag::err_abstract_type_in_decl,
5258                             AbstractVariableType))
5259    VDecl->setInvalidDecl();
5260
5261  const VarDecl *Def;
5262  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5263    Diag(VDecl->getLocation(), diag::err_redefinition)
5264      << VDecl->getDeclName();
5265    Diag(Def->getLocation(), diag::note_previous_definition);
5266    VDecl->setInvalidDecl();
5267    return;
5268  }
5269
5270  const VarDecl* PrevInit = 0;
5271  if (getLangOptions().CPlusPlus) {
5272    // C++ [class.static.data]p4
5273    //   If a static data member is of const integral or const
5274    //   enumeration type, its declaration in the class definition can
5275    //   specify a constant-initializer which shall be an integral
5276    //   constant expression (5.19). In that case, the member can appear
5277    //   in integral constant expressions. The member shall still be
5278    //   defined in a namespace scope if it is used in the program and the
5279    //   namespace scope definition shall not contain an initializer.
5280    //
5281    // We already performed a redefinition check above, but for static
5282    // data members we also need to check whether there was an in-class
5283    // declaration with an initializer.
5284    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5285      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5286      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5287      return;
5288    }
5289
5290    if (VDecl->hasLocalStorage())
5291      getCurFunction()->setHasBranchProtectedScope();
5292
5293    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5294      VDecl->setInvalidDecl();
5295      return;
5296    }
5297  }
5298
5299  // Capture the variable that is being initialized and the style of
5300  // initialization.
5301  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5302
5303  // FIXME: Poor source location information.
5304  InitializationKind Kind
5305    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5306                                                   Init->getLocStart(),
5307                                                   Init->getLocEnd())
5308                : InitializationKind::CreateCopy(VDecl->getLocation(),
5309                                                 Init->getLocStart());
5310
5311  // Get the decls type and save a reference for later, since
5312  // CheckInitializerTypes may change it.
5313  QualType DclT = VDecl->getType(), SavT = DclT;
5314  if (VDecl->isLocalVarDecl()) {
5315    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5316      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5317      VDecl->setInvalidDecl();
5318    } else if (!VDecl->isInvalidDecl()) {
5319      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5320      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5321                                                MultiExprArg(*this, &Init, 1),
5322                                                &DclT);
5323      if (Result.isInvalid()) {
5324        VDecl->setInvalidDecl();
5325        return;
5326      }
5327
5328      Init = Result.takeAs<Expr>();
5329
5330      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5331      // Don't check invalid declarations to avoid emitting useless diagnostics.
5332      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5333        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5334          CheckForConstantInitializer(Init, DclT);
5335      }
5336    }
5337  } else if (VDecl->isStaticDataMember() &&
5338             VDecl->getLexicalDeclContext()->isRecord()) {
5339    // This is an in-class initialization for a static data member, e.g.,
5340    //
5341    // struct S {
5342    //   static const int value = 17;
5343    // };
5344
5345    // Try to perform the initialization regardless.
5346    if (!VDecl->isInvalidDecl()) {
5347      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5348      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5349                                          MultiExprArg(*this, &Init, 1),
5350                                          &DclT);
5351      if (Result.isInvalid()) {
5352        VDecl->setInvalidDecl();
5353        return;
5354      }
5355
5356      Init = Result.takeAs<Expr>();
5357    }
5358
5359    // C++ [class.mem]p4:
5360    //   A member-declarator can contain a constant-initializer only
5361    //   if it declares a static member (9.4) of const integral or
5362    //   const enumeration type, see 9.4.2.
5363    QualType T = VDecl->getType();
5364
5365    // Do nothing on dependent types.
5366    if (T->isDependentType()) {
5367
5368    // Require constness.
5369    } else if (!T.isConstQualified()) {
5370      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5371        << Init->getSourceRange();
5372      VDecl->setInvalidDecl();
5373
5374    // We allow integer constant expressions in all cases.
5375    } else if (T->isIntegralOrEnumerationType()) {
5376      if (!Init->isValueDependent()) {
5377        // Check whether the expression is a constant expression.
5378        llvm::APSInt Value;
5379        SourceLocation Loc;
5380        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5381          Diag(Loc, diag::err_in_class_initializer_non_constant)
5382            << Init->getSourceRange();
5383          VDecl->setInvalidDecl();
5384        }
5385      }
5386
5387    // We allow floating-point constants as an extension in C++03, and
5388    // C++0x has far more complicated rules that we don't really
5389    // implement fully.
5390    } else {
5391      bool Allowed = false;
5392      if (getLangOptions().CPlusPlus0x) {
5393        Allowed = T->isLiteralType();
5394      } else if (T->isFloatingType()) { // also permits complex, which is ok
5395        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5396          << T << Init->getSourceRange();
5397        Allowed = true;
5398      }
5399
5400      if (!Allowed) {
5401        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5402          << T << Init->getSourceRange();
5403        VDecl->setInvalidDecl();
5404
5405      // TODO: there are probably expressions that pass here that shouldn't.
5406      } else if (!Init->isValueDependent() &&
5407                 !Init->isConstantInitializer(Context, false)) {
5408        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5409          << Init->getSourceRange();
5410        VDecl->setInvalidDecl();
5411      }
5412    }
5413  } else if (VDecl->isFileVarDecl()) {
5414    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5415        (!getLangOptions().CPlusPlus ||
5416         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5417      Diag(VDecl->getLocation(), diag::warn_extern_init);
5418    if (!VDecl->isInvalidDecl()) {
5419      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5420      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5421                                                MultiExprArg(*this, &Init, 1),
5422                                                &DclT);
5423      if (Result.isInvalid()) {
5424        VDecl->setInvalidDecl();
5425        return;
5426      }
5427
5428      Init = Result.takeAs<Expr>();
5429    }
5430
5431    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5432    // Don't check invalid declarations to avoid emitting useless diagnostics.
5433    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5434      // C99 6.7.8p4. All file scoped initializers need to be constant.
5435      CheckForConstantInitializer(Init, DclT);
5436    }
5437  }
5438  // If the type changed, it means we had an incomplete type that was
5439  // completed by the initializer. For example:
5440  //   int ary[] = { 1, 3, 5 };
5441  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5442  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5443    VDecl->setType(DclT);
5444    Init->setType(DclT);
5445  }
5446
5447
5448  // If this variable is a local declaration with record type, make sure it
5449  // doesn't have a flexible member initialization.  We only support this as a
5450  // global/static definition.
5451  if (VDecl->hasLocalStorage())
5452    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5453      if (RT->getDecl()->hasFlexibleArrayMember()) {
5454        // Check whether the initializer tries to initialize the flexible
5455        // array member itself to anything other than an empty initializer list.
5456        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5457          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5458                                         RT->getDecl()->field_end()) - 1;
5459          if (Index < ILE->getNumInits() &&
5460              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5461                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5462            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5463            VDecl->setInvalidDecl();
5464          }
5465        }
5466      }
5467
5468  // Check any implicit conversions within the expression.
5469  CheckImplicitConversions(Init, VDecl->getLocation());
5470
5471  Init = MaybeCreateExprWithCleanups(Init);
5472  // Attach the initializer to the decl.
5473  VDecl->setInit(Init);
5474
5475  CheckCompleteVariableDeclaration(VDecl);
5476}
5477
5478/// ActOnInitializerError - Given that there was an error parsing an
5479/// initializer for the given declaration, try to return to some form
5480/// of sanity.
5481void Sema::ActOnInitializerError(Decl *D) {
5482  // Our main concern here is re-establishing invariants like "a
5483  // variable's type is either dependent or complete".
5484  if (!D || D->isInvalidDecl()) return;
5485
5486  VarDecl *VD = dyn_cast<VarDecl>(D);
5487  if (!VD) return;
5488
5489  // Auto types are meaningless if we can't make sense of the initializer.
5490  if (ParsingInitForAutoVars.count(D)) {
5491    D->setInvalidDecl();
5492    return;
5493  }
5494
5495  QualType Ty = VD->getType();
5496  if (Ty->isDependentType()) return;
5497
5498  // Require a complete type.
5499  if (RequireCompleteType(VD->getLocation(),
5500                          Context.getBaseElementType(Ty),
5501                          diag::err_typecheck_decl_incomplete_type)) {
5502    VD->setInvalidDecl();
5503    return;
5504  }
5505
5506  // Require an abstract type.
5507  if (RequireNonAbstractType(VD->getLocation(), Ty,
5508                             diag::err_abstract_type_in_decl,
5509                             AbstractVariableType)) {
5510    VD->setInvalidDecl();
5511    return;
5512  }
5513
5514  // Don't bother complaining about constructors or destructors,
5515  // though.
5516}
5517
5518void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5519                                  bool TypeMayContainAuto) {
5520  // If there is no declaration, there was an error parsing it. Just ignore it.
5521  if (RealDecl == 0)
5522    return;
5523
5524  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5525    QualType Type = Var->getType();
5526
5527    // C++0x [dcl.spec.auto]p3
5528    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5529      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5530        << Var->getDeclName() << Type;
5531      Var->setInvalidDecl();
5532      return;
5533    }
5534
5535    switch (Var->isThisDeclarationADefinition()) {
5536    case VarDecl::Definition:
5537      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5538        break;
5539
5540      // We have an out-of-line definition of a static data member
5541      // that has an in-class initializer, so we type-check this like
5542      // a declaration.
5543      //
5544      // Fall through
5545
5546    case VarDecl::DeclarationOnly:
5547      // It's only a declaration.
5548
5549      // Block scope. C99 6.7p7: If an identifier for an object is
5550      // declared with no linkage (C99 6.2.2p6), the type for the
5551      // object shall be complete.
5552      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5553          !Var->getLinkage() && !Var->isInvalidDecl() &&
5554          RequireCompleteType(Var->getLocation(), Type,
5555                              diag::err_typecheck_decl_incomplete_type))
5556        Var->setInvalidDecl();
5557
5558      // Make sure that the type is not abstract.
5559      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5560          RequireNonAbstractType(Var->getLocation(), Type,
5561                                 diag::err_abstract_type_in_decl,
5562                                 AbstractVariableType))
5563        Var->setInvalidDecl();
5564      return;
5565
5566    case VarDecl::TentativeDefinition:
5567      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5568      // object that has file scope without an initializer, and without a
5569      // storage-class specifier or with the storage-class specifier "static",
5570      // constitutes a tentative definition. Note: A tentative definition with
5571      // external linkage is valid (C99 6.2.2p5).
5572      if (!Var->isInvalidDecl()) {
5573        if (const IncompleteArrayType *ArrayT
5574                                    = Context.getAsIncompleteArrayType(Type)) {
5575          if (RequireCompleteType(Var->getLocation(),
5576                                  ArrayT->getElementType(),
5577                                  diag::err_illegal_decl_array_incomplete_type))
5578            Var->setInvalidDecl();
5579        } else if (Var->getStorageClass() == SC_Static) {
5580          // C99 6.9.2p3: If the declaration of an identifier for an object is
5581          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5582          // declared type shall not be an incomplete type.
5583          // NOTE: code such as the following
5584          //     static struct s;
5585          //     struct s { int a; };
5586          // is accepted by gcc. Hence here we issue a warning instead of
5587          // an error and we do not invalidate the static declaration.
5588          // NOTE: to avoid multiple warnings, only check the first declaration.
5589          if (Var->getPreviousDeclaration() == 0)
5590            RequireCompleteType(Var->getLocation(), Type,
5591                                diag::ext_typecheck_decl_incomplete_type);
5592        }
5593      }
5594
5595      // Record the tentative definition; we're done.
5596      if (!Var->isInvalidDecl())
5597        TentativeDefinitions.push_back(Var);
5598      return;
5599    }
5600
5601    // Provide a specific diagnostic for uninitialized variable
5602    // definitions with incomplete array type.
5603    if (Type->isIncompleteArrayType()) {
5604      Diag(Var->getLocation(),
5605           diag::err_typecheck_incomplete_array_needs_initializer);
5606      Var->setInvalidDecl();
5607      return;
5608    }
5609
5610    // Provide a specific diagnostic for uninitialized variable
5611    // definitions with reference type.
5612    if (Type->isReferenceType()) {
5613      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5614        << Var->getDeclName()
5615        << SourceRange(Var->getLocation(), Var->getLocation());
5616      Var->setInvalidDecl();
5617      return;
5618    }
5619
5620    // Do not attempt to type-check the default initializer for a
5621    // variable with dependent type.
5622    if (Type->isDependentType())
5623      return;
5624
5625    if (Var->isInvalidDecl())
5626      return;
5627
5628    if (RequireCompleteType(Var->getLocation(),
5629                            Context.getBaseElementType(Type),
5630                            diag::err_typecheck_decl_incomplete_type)) {
5631      Var->setInvalidDecl();
5632      return;
5633    }
5634
5635    // The variable can not have an abstract class type.
5636    if (RequireNonAbstractType(Var->getLocation(), Type,
5637                               diag::err_abstract_type_in_decl,
5638                               AbstractVariableType)) {
5639      Var->setInvalidDecl();
5640      return;
5641    }
5642
5643    const RecordType *Record
5644      = Context.getBaseElementType(Type)->getAs<RecordType>();
5645    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5646        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5647      // C++03 [dcl.init]p9:
5648      //   If no initializer is specified for an object, and the
5649      //   object is of (possibly cv-qualified) non-POD class type (or
5650      //   array thereof), the object shall be default-initialized; if
5651      //   the object is of const-qualified type, the underlying class
5652      //   type shall have a user-declared default
5653      //   constructor. Otherwise, if no initializer is specified for
5654      //   a non- static object, the object and its subobjects, if
5655      //   any, have an indeterminate initial value); if the object
5656      //   or any of its subobjects are of const-qualified type, the
5657      //   program is ill-formed.
5658      // C++0x [dcl.init]p11:
5659      //   If no initializer is specified for an object, the object is
5660      //   default-intialized; [...].
5661    } else {
5662      // Check for jumps past the implicit initializer.  C++0x
5663      // clarifies that this applies to a "variable with automatic
5664      // storage duration", not a "local variable".
5665      // C++0x [stmt.dcl]p3
5666      //   A program that jumps from a point where a variable with automatic
5667      //   storage duration is not ins cope to a point where it is in scope is
5668      //   ill-formed unless the variable has scalar type, class type with a
5669      //   trivial defautl constructor and a trivial destructor, a cv-qualified
5670      //   version of one of these types, or an array of one of the preceding
5671      //   types and is declared without an initializer.
5672      if (getLangOptions().CPlusPlus && Var->hasLocalStorage() && Record) {
5673        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5674        if (!getLangOptions().CPlusPlus0x ||
5675            !CXXRecord->hasTrivialDefaultConstructor() ||
5676            !CXXRecord->hasTrivialDestructor())
5677          getCurFunction()->setHasBranchProtectedScope();
5678      }
5679
5680      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5681      InitializationKind Kind
5682        = InitializationKind::CreateDefault(Var->getLocation());
5683
5684      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5685      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5686                                        MultiExprArg(*this, 0, 0));
5687      if (Init.isInvalid())
5688        Var->setInvalidDecl();
5689      else if (Init.get())
5690        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5691    }
5692
5693    CheckCompleteVariableDeclaration(Var);
5694  }
5695}
5696
5697void Sema::ActOnCXXForRangeDecl(Decl *D) {
5698  VarDecl *VD = dyn_cast<VarDecl>(D);
5699  if (!VD) {
5700    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5701    D->setInvalidDecl();
5702    return;
5703  }
5704
5705  VD->setCXXForRangeDecl(true);
5706
5707  // for-range-declaration cannot be given a storage class specifier.
5708  int Error = -1;
5709  switch (VD->getStorageClassAsWritten()) {
5710  case SC_None:
5711    break;
5712  case SC_Extern:
5713    Error = 0;
5714    break;
5715  case SC_Static:
5716    Error = 1;
5717    break;
5718  case SC_PrivateExtern:
5719    Error = 2;
5720    break;
5721  case SC_Auto:
5722    Error = 3;
5723    break;
5724  case SC_Register:
5725    Error = 4;
5726    break;
5727  }
5728  // FIXME: constexpr isn't allowed here.
5729  //if (DS.isConstexprSpecified())
5730  //  Error = 5;
5731  if (Error != -1) {
5732    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5733      << VD->getDeclName() << Error;
5734    D->setInvalidDecl();
5735  }
5736}
5737
5738void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5739  if (var->isInvalidDecl()) return;
5740
5741  // All the following checks are C++ only.
5742  if (!getLangOptions().CPlusPlus) return;
5743
5744  QualType baseType = Context.getBaseElementType(var->getType());
5745  if (baseType->isDependentType()) return;
5746
5747  // __block variables might require us to capture a copy-initializer.
5748  if (var->hasAttr<BlocksAttr>()) {
5749    // It's currently invalid to ever have a __block variable with an
5750    // array type; should we diagnose that here?
5751
5752    // Regardless, we don't want to ignore array nesting when
5753    // constructing this copy.
5754    QualType type = var->getType();
5755
5756    if (type->isStructureOrClassType()) {
5757      SourceLocation poi = var->getLocation();
5758      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5759      ExprResult result =
5760        PerformCopyInitialization(
5761                        InitializedEntity::InitializeBlock(poi, type, false),
5762                                  poi, Owned(varRef));
5763      if (!result.isInvalid()) {
5764        result = MaybeCreateExprWithCleanups(result);
5765        Expr *init = result.takeAs<Expr>();
5766        Context.setBlockVarCopyInits(var, init);
5767      }
5768    }
5769  }
5770
5771  // Check for global constructors.
5772  if (!var->getDeclContext()->isDependentContext() &&
5773      var->hasGlobalStorage() &&
5774      !var->isStaticLocal() &&
5775      var->getInit() &&
5776      !var->getInit()->isConstantInitializer(Context,
5777                                             baseType->isReferenceType()))
5778    Diag(var->getLocation(), diag::warn_global_constructor)
5779      << var->getInit()->getSourceRange();
5780
5781  // Require the destructor.
5782  if (const RecordType *recordType = baseType->getAs<RecordType>())
5783    FinalizeVarWithDestructor(var, recordType);
5784}
5785
5786/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5787/// any semantic actions necessary after any initializer has been attached.
5788void
5789Sema::FinalizeDeclaration(Decl *ThisDecl) {
5790  // Note that we are no longer parsing the initializer for this declaration.
5791  ParsingInitForAutoVars.erase(ThisDecl);
5792}
5793
5794Sema::DeclGroupPtrTy
5795Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5796                              Decl **Group, unsigned NumDecls) {
5797  llvm::SmallVector<Decl*, 8> Decls;
5798
5799  if (DS.isTypeSpecOwned())
5800    Decls.push_back(DS.getRepAsDecl());
5801
5802  for (unsigned i = 0; i != NumDecls; ++i)
5803    if (Decl *D = Group[i])
5804      Decls.push_back(D);
5805
5806  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5807                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5808}
5809
5810/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5811/// group, performing any necessary semantic checking.
5812Sema::DeclGroupPtrTy
5813Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5814                           bool TypeMayContainAuto) {
5815  // C++0x [dcl.spec.auto]p7:
5816  //   If the type deduced for the template parameter U is not the same in each
5817  //   deduction, the program is ill-formed.
5818  // FIXME: When initializer-list support is added, a distinction is needed
5819  // between the deduced type U and the deduced type which 'auto' stands for.
5820  //   auto a = 0, b = { 1, 2, 3 };
5821  // is legal because the deduced type U is 'int' in both cases.
5822  if (TypeMayContainAuto && NumDecls > 1) {
5823    QualType Deduced;
5824    CanQualType DeducedCanon;
5825    VarDecl *DeducedDecl = 0;
5826    for (unsigned i = 0; i != NumDecls; ++i) {
5827      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5828        AutoType *AT = D->getType()->getContainedAutoType();
5829        // Don't reissue diagnostics when instantiating a template.
5830        if (AT && D->isInvalidDecl())
5831          break;
5832        if (AT && AT->isDeduced()) {
5833          QualType U = AT->getDeducedType();
5834          CanQualType UCanon = Context.getCanonicalType(U);
5835          if (Deduced.isNull()) {
5836            Deduced = U;
5837            DeducedCanon = UCanon;
5838            DeducedDecl = D;
5839          } else if (DeducedCanon != UCanon) {
5840            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5841                 diag::err_auto_different_deductions)
5842              << Deduced << DeducedDecl->getDeclName()
5843              << U << D->getDeclName()
5844              << DeducedDecl->getInit()->getSourceRange()
5845              << D->getInit()->getSourceRange();
5846            D->setInvalidDecl();
5847            break;
5848          }
5849        }
5850      }
5851    }
5852  }
5853
5854  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5855}
5856
5857
5858/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5859/// to introduce parameters into function prototype scope.
5860Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5861  const DeclSpec &DS = D.getDeclSpec();
5862
5863  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5864  VarDecl::StorageClass StorageClass = SC_None;
5865  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5866  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5867    StorageClass = SC_Register;
5868    StorageClassAsWritten = SC_Register;
5869  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5870    Diag(DS.getStorageClassSpecLoc(),
5871         diag::err_invalid_storage_class_in_func_decl);
5872    D.getMutableDeclSpec().ClearStorageClassSpecs();
5873  }
5874
5875  if (D.getDeclSpec().isThreadSpecified())
5876    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5877
5878  DiagnoseFunctionSpecifiers(D);
5879
5880  TagDecl *OwnedDecl = 0;
5881  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5882  QualType parmDeclType = TInfo->getType();
5883
5884  if (getLangOptions().CPlusPlus) {
5885    // Check that there are no default arguments inside the type of this
5886    // parameter.
5887    CheckExtraCXXDefaultArguments(D);
5888
5889    if (OwnedDecl && OwnedDecl->isDefinition()) {
5890      // C++ [dcl.fct]p6:
5891      //   Types shall not be defined in return or parameter types.
5892      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5893        << Context.getTypeDeclType(OwnedDecl);
5894    }
5895
5896    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5897    if (D.getCXXScopeSpec().isSet()) {
5898      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5899        << D.getCXXScopeSpec().getRange();
5900      D.getCXXScopeSpec().clear();
5901    }
5902  }
5903
5904  // Ensure we have a valid name
5905  IdentifierInfo *II = 0;
5906  if (D.hasName()) {
5907    II = D.getIdentifier();
5908    if (!II) {
5909      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5910        << GetNameForDeclarator(D).getName().getAsString();
5911      D.setInvalidType(true);
5912    }
5913  }
5914
5915  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5916  if (II) {
5917    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5918                   ForRedeclaration);
5919    LookupName(R, S);
5920    if (R.isSingleResult()) {
5921      NamedDecl *PrevDecl = R.getFoundDecl();
5922      if (PrevDecl->isTemplateParameter()) {
5923        // Maybe we will complain about the shadowed template parameter.
5924        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5925        // Just pretend that we didn't see the previous declaration.
5926        PrevDecl = 0;
5927      } else if (S->isDeclScope(PrevDecl)) {
5928        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5929        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5930
5931        // Recover by removing the name
5932        II = 0;
5933        D.SetIdentifier(0, D.getIdentifierLoc());
5934        D.setInvalidType(true);
5935      }
5936    }
5937  }
5938
5939  // Temporarily put parameter variables in the translation unit, not
5940  // the enclosing context.  This prevents them from accidentally
5941  // looking like class members in C++.
5942  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5943                                    D.getSourceRange().getBegin(),
5944                                    D.getIdentifierLoc(), II,
5945                                    parmDeclType, TInfo,
5946                                    StorageClass, StorageClassAsWritten);
5947
5948  if (D.isInvalidType())
5949    New->setInvalidDecl();
5950
5951  assert(S->isFunctionPrototypeScope());
5952  assert(S->getFunctionPrototypeDepth() >= 1);
5953  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5954                    S->getNextFunctionPrototypeIndex());
5955
5956  // Add the parameter declaration into this scope.
5957  S->AddDecl(New);
5958  if (II)
5959    IdResolver.AddDecl(New);
5960
5961  ProcessDeclAttributes(S, New, D);
5962
5963  if (New->hasAttr<BlocksAttr>()) {
5964    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5965  }
5966  return New;
5967}
5968
5969/// \brief Synthesizes a variable for a parameter arising from a
5970/// typedef.
5971ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5972                                              SourceLocation Loc,
5973                                              QualType T) {
5974  /* FIXME: setting StartLoc == Loc.
5975     Would it be worth to modify callers so as to provide proper source
5976     location for the unnamed parameters, embedding the parameter's type? */
5977  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5978                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5979                                           SC_None, SC_None, 0);
5980  Param->setImplicit();
5981  return Param;
5982}
5983
5984void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5985                                    ParmVarDecl * const *ParamEnd) {
5986  // Don't diagnose unused-parameter errors in template instantiations; we
5987  // will already have done so in the template itself.
5988  if (!ActiveTemplateInstantiations.empty())
5989    return;
5990
5991  for (; Param != ParamEnd; ++Param) {
5992    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5993        !(*Param)->hasAttr<UnusedAttr>()) {
5994      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5995        << (*Param)->getDeclName();
5996    }
5997  }
5998}
5999
6000void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6001                                                  ParmVarDecl * const *ParamEnd,
6002                                                  QualType ReturnTy,
6003                                                  NamedDecl *D) {
6004  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6005    return;
6006
6007  // Warn if the return value is pass-by-value and larger than the specified
6008  // threshold.
6009  if (ReturnTy->isPODType()) {
6010    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6011    if (Size > LangOpts.NumLargeByValueCopy)
6012      Diag(D->getLocation(), diag::warn_return_value_size)
6013          << D->getDeclName() << Size;
6014  }
6015
6016  // Warn if any parameter is pass-by-value and larger than the specified
6017  // threshold.
6018  for (; Param != ParamEnd; ++Param) {
6019    QualType T = (*Param)->getType();
6020    if (!T->isPODType())
6021      continue;
6022    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6023    if (Size > LangOpts.NumLargeByValueCopy)
6024      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6025          << (*Param)->getDeclName() << Size;
6026  }
6027}
6028
6029ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6030                                  SourceLocation NameLoc, IdentifierInfo *Name,
6031                                  QualType T, TypeSourceInfo *TSInfo,
6032                                  VarDecl::StorageClass StorageClass,
6033                                  VarDecl::StorageClass StorageClassAsWritten) {
6034  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6035                                         adjustParameterType(T), TSInfo,
6036                                         StorageClass, StorageClassAsWritten,
6037                                         0);
6038
6039  // Parameters can not be abstract class types.
6040  // For record types, this is done by the AbstractClassUsageDiagnoser once
6041  // the class has been completely parsed.
6042  if (!CurContext->isRecord() &&
6043      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6044                             AbstractParamType))
6045    New->setInvalidDecl();
6046
6047  // Parameter declarators cannot be interface types. All ObjC objects are
6048  // passed by reference.
6049  if (T->isObjCObjectType()) {
6050    Diag(NameLoc,
6051         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6052    New->setInvalidDecl();
6053  }
6054
6055  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6056  // duration shall not be qualified by an address-space qualifier."
6057  // Since all parameters have automatic store duration, they can not have
6058  // an address space.
6059  if (T.getAddressSpace() != 0) {
6060    Diag(NameLoc, diag::err_arg_with_address_space);
6061    New->setInvalidDecl();
6062  }
6063
6064  return New;
6065}
6066
6067void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6068                                           SourceLocation LocAfterDecls) {
6069  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6070
6071  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6072  // for a K&R function.
6073  if (!FTI.hasPrototype) {
6074    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6075      --i;
6076      if (FTI.ArgInfo[i].Param == 0) {
6077        llvm::SmallString<256> Code;
6078        llvm::raw_svector_ostream(Code) << "  int "
6079                                        << FTI.ArgInfo[i].Ident->getName()
6080                                        << ";\n";
6081        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6082          << FTI.ArgInfo[i].Ident
6083          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6084
6085        // Implicitly declare the argument as type 'int' for lack of a better
6086        // type.
6087        AttributeFactory attrs;
6088        DeclSpec DS(attrs);
6089        const char* PrevSpec; // unused
6090        unsigned DiagID; // unused
6091        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6092                           PrevSpec, DiagID);
6093        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6094        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6095        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6096      }
6097    }
6098  }
6099}
6100
6101Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6102                                         Declarator &D) {
6103  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6104  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6105  Scope *ParentScope = FnBodyScope->getParent();
6106
6107  Decl *DP = HandleDeclarator(ParentScope, D,
6108                              MultiTemplateParamsArg(*this),
6109                              /*IsFunctionDefinition=*/true);
6110  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6111}
6112
6113static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6114  // Don't warn about invalid declarations.
6115  if (FD->isInvalidDecl())
6116    return false;
6117
6118  // Or declarations that aren't global.
6119  if (!FD->isGlobal())
6120    return false;
6121
6122  // Don't warn about C++ member functions.
6123  if (isa<CXXMethodDecl>(FD))
6124    return false;
6125
6126  // Don't warn about 'main'.
6127  if (FD->isMain())
6128    return false;
6129
6130  // Don't warn about inline functions.
6131  if (FD->isInlined())
6132    return false;
6133
6134  // Don't warn about function templates.
6135  if (FD->getDescribedFunctionTemplate())
6136    return false;
6137
6138  // Don't warn about function template specializations.
6139  if (FD->isFunctionTemplateSpecialization())
6140    return false;
6141
6142  bool MissingPrototype = true;
6143  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6144       Prev; Prev = Prev->getPreviousDeclaration()) {
6145    // Ignore any declarations that occur in function or method
6146    // scope, because they aren't visible from the header.
6147    if (Prev->getDeclContext()->isFunctionOrMethod())
6148      continue;
6149
6150    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6151    break;
6152  }
6153
6154  return MissingPrototype;
6155}
6156
6157void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6158  // Don't complain if we're in GNU89 mode and the previous definition
6159  // was an extern inline function.
6160  const FunctionDecl *Definition;
6161  if (FD->isDefined(Definition) &&
6162      !canRedefineFunction(Definition, getLangOptions())) {
6163    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6164        Definition->getStorageClass() == SC_Extern)
6165      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6166        << FD->getDeclName() << getLangOptions().CPlusPlus;
6167    else
6168      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6169    Diag(Definition->getLocation(), diag::note_previous_definition);
6170  }
6171}
6172
6173Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6174  // Clear the last template instantiation error context.
6175  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6176
6177  if (!D)
6178    return D;
6179  FunctionDecl *FD = 0;
6180
6181  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6182    FD = FunTmpl->getTemplatedDecl();
6183  else
6184    FD = cast<FunctionDecl>(D);
6185
6186  // Enter a new function scope
6187  PushFunctionScope();
6188
6189  // See if this is a redefinition.
6190  if (!FD->isLateTemplateParsed())
6191    CheckForFunctionRedefinition(FD);
6192
6193  // Builtin functions cannot be defined.
6194  if (unsigned BuiltinID = FD->getBuiltinID()) {
6195    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6196      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6197      FD->setInvalidDecl();
6198    }
6199  }
6200
6201  // The return type of a function definition must be complete
6202  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6203  QualType ResultType = FD->getResultType();
6204  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6205      !FD->isInvalidDecl() &&
6206      RequireCompleteType(FD->getLocation(), ResultType,
6207                          diag::err_func_def_incomplete_result))
6208    FD->setInvalidDecl();
6209
6210  // GNU warning -Wmissing-prototypes:
6211  //   Warn if a global function is defined without a previous
6212  //   prototype declaration. This warning is issued even if the
6213  //   definition itself provides a prototype. The aim is to detect
6214  //   global functions that fail to be declared in header files.
6215  if (ShouldWarnAboutMissingPrototype(FD))
6216    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6217
6218  if (FnBodyScope)
6219    PushDeclContext(FnBodyScope, FD);
6220
6221  // Check the validity of our function parameters
6222  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6223                           /*CheckParameterNames=*/true);
6224
6225  // Introduce our parameters into the function scope
6226  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6227    ParmVarDecl *Param = FD->getParamDecl(p);
6228    Param->setOwningFunction(FD);
6229
6230    // If this has an identifier, add it to the scope stack.
6231    if (Param->getIdentifier() && FnBodyScope) {
6232      CheckShadow(FnBodyScope, Param);
6233
6234      PushOnScopeChains(Param, FnBodyScope);
6235    }
6236  }
6237
6238  // Checking attributes of current function definition
6239  // dllimport attribute.
6240  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6241  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6242    // dllimport attribute cannot be directly applied to definition.
6243    // Microsoft accepts dllimport for functions defined within class scope.
6244    if (!DA->isInherited() &&
6245        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6246      Diag(FD->getLocation(),
6247           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6248        << "dllimport";
6249      FD->setInvalidDecl();
6250      return FD;
6251    }
6252
6253    // Visual C++ appears to not think this is an issue, so only issue
6254    // a warning when Microsoft extensions are disabled.
6255    if (!LangOpts.Microsoft) {
6256      // If a symbol previously declared dllimport is later defined, the
6257      // attribute is ignored in subsequent references, and a warning is
6258      // emitted.
6259      Diag(FD->getLocation(),
6260           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6261        << FD->getName() << "dllimport";
6262    }
6263  }
6264  return FD;
6265}
6266
6267/// \brief Given the set of return statements within a function body,
6268/// compute the variables that are subject to the named return value
6269/// optimization.
6270///
6271/// Each of the variables that is subject to the named return value
6272/// optimization will be marked as NRVO variables in the AST, and any
6273/// return statement that has a marked NRVO variable as its NRVO candidate can
6274/// use the named return value optimization.
6275///
6276/// This function applies a very simplistic algorithm for NRVO: if every return
6277/// statement in the function has the same NRVO candidate, that candidate is
6278/// the NRVO variable.
6279///
6280/// FIXME: Employ a smarter algorithm that accounts for multiple return
6281/// statements and the lifetimes of the NRVO candidates. We should be able to
6282/// find a maximal set of NRVO variables.
6283static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6284  ReturnStmt **Returns = Scope->Returns.data();
6285
6286  const VarDecl *NRVOCandidate = 0;
6287  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6288    if (!Returns[I]->getNRVOCandidate())
6289      return;
6290
6291    if (!NRVOCandidate)
6292      NRVOCandidate = Returns[I]->getNRVOCandidate();
6293    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6294      return;
6295  }
6296
6297  if (NRVOCandidate)
6298    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6299}
6300
6301Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6302  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6303}
6304
6305Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6306                                    bool IsInstantiation) {
6307  FunctionDecl *FD = 0;
6308  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6309  if (FunTmpl)
6310    FD = FunTmpl->getTemplatedDecl();
6311  else
6312    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6313
6314  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6315  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6316
6317  if (FD) {
6318    FD->setBody(Body);
6319    if (FD->isMain()) {
6320      // C and C++ allow for main to automagically return 0.
6321      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6322      FD->setHasImplicitReturnZero(true);
6323      WP.disableCheckFallThrough();
6324    }
6325
6326    // MSVC permits the use of pure specifier (=0) on function definition,
6327    // defined at class scope, warn about this non standard construct.
6328    if (getLangOptions().Microsoft && FD->isPure())
6329      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6330
6331    if (!FD->isInvalidDecl()) {
6332      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6333      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6334                                             FD->getResultType(), FD);
6335
6336      // If this is a constructor, we need a vtable.
6337      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6338        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6339
6340      ComputeNRVO(Body, getCurFunction());
6341    }
6342
6343    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6344  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6345    assert(MD == getCurMethodDecl() && "Method parsing confused");
6346    MD->setBody(Body);
6347    if (Body)
6348      MD->setEndLoc(Body->getLocEnd());
6349    if (!MD->isInvalidDecl()) {
6350      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6351      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6352                                             MD->getResultType(), MD);
6353    }
6354  } else {
6355    return 0;
6356  }
6357
6358  // Verify and clean out per-function state.
6359  if (Body) {
6360    // C++ constructors that have function-try-blocks can't have return
6361    // statements in the handlers of that block. (C++ [except.handle]p14)
6362    // Verify this.
6363    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6364      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6365
6366    // Verify that that gotos and switch cases don't jump into scopes illegally.
6367    // Verify that that gotos and switch cases don't jump into scopes illegally.
6368    if (getCurFunction()->NeedsScopeChecking() &&
6369        !dcl->isInvalidDecl() &&
6370        !hasAnyErrorsInThisFunction())
6371      DiagnoseInvalidJumps(Body);
6372
6373    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6374      if (!Destructor->getParent()->isDependentType())
6375        CheckDestructor(Destructor);
6376
6377      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6378                                             Destructor->getParent());
6379    }
6380
6381    // If any errors have occurred, clear out any temporaries that may have
6382    // been leftover. This ensures that these temporaries won't be picked up for
6383    // deletion in some later function.
6384    if (PP.getDiagnostics().hasErrorOccurred() ||
6385        PP.getDiagnostics().getSuppressAllDiagnostics())
6386      ExprTemporaries.clear();
6387    else if (!isa<FunctionTemplateDecl>(dcl)) {
6388      // Since the body is valid, issue any analysis-based warnings that are
6389      // enabled.
6390      ActivePolicy = &WP;
6391    }
6392
6393    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6394  }
6395
6396  if (!IsInstantiation)
6397    PopDeclContext();
6398
6399  PopFunctionOrBlockScope(ActivePolicy, dcl);
6400
6401  // If any errors have occurred, clear out any temporaries that may have
6402  // been leftover. This ensures that these temporaries won't be picked up for
6403  // deletion in some later function.
6404  if (getDiagnostics().hasErrorOccurred())
6405    ExprTemporaries.clear();
6406
6407  return dcl;
6408}
6409
6410/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6411/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6412NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6413                                          IdentifierInfo &II, Scope *S) {
6414  // Before we produce a declaration for an implicitly defined
6415  // function, see whether there was a locally-scoped declaration of
6416  // this name as a function or variable. If so, use that
6417  // (non-visible) declaration, and complain about it.
6418  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6419    = LocallyScopedExternalDecls.find(&II);
6420  if (Pos != LocallyScopedExternalDecls.end()) {
6421    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6422    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6423    return Pos->second;
6424  }
6425
6426  // Extension in C99.  Legal in C90, but warn about it.
6427  if (II.getName().startswith("__builtin_"))
6428    Diag(Loc, diag::warn_builtin_unknown) << &II;
6429  else if (getLangOptions().C99)
6430    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6431  else
6432    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6433
6434  // Set a Declarator for the implicit definition: int foo();
6435  const char *Dummy;
6436  AttributeFactory attrFactory;
6437  DeclSpec DS(attrFactory);
6438  unsigned DiagID;
6439  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6440  (void)Error; // Silence warning.
6441  assert(!Error && "Error setting up implicit decl!");
6442  Declarator D(DS, Declarator::BlockContext);
6443  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6444                                             0, 0, true, SourceLocation(),
6445                                             EST_None, SourceLocation(),
6446                                             0, 0, 0, 0, Loc, Loc, D),
6447                DS.getAttributes(),
6448                SourceLocation());
6449  D.SetIdentifier(&II, Loc);
6450
6451  // Insert this function into translation-unit scope.
6452
6453  DeclContext *PrevDC = CurContext;
6454  CurContext = Context.getTranslationUnitDecl();
6455
6456  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6457  FD->setImplicit();
6458
6459  CurContext = PrevDC;
6460
6461  AddKnownFunctionAttributes(FD);
6462
6463  return FD;
6464}
6465
6466/// \brief Adds any function attributes that we know a priori based on
6467/// the declaration of this function.
6468///
6469/// These attributes can apply both to implicitly-declared builtins
6470/// (like __builtin___printf_chk) or to library-declared functions
6471/// like NSLog or printf.
6472void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6473  if (FD->isInvalidDecl())
6474    return;
6475
6476  // If this is a built-in function, map its builtin attributes to
6477  // actual attributes.
6478  if (unsigned BuiltinID = FD->getBuiltinID()) {
6479    // Handle printf-formatting attributes.
6480    unsigned FormatIdx;
6481    bool HasVAListArg;
6482    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6483      if (!FD->getAttr<FormatAttr>())
6484        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6485                                                "printf", FormatIdx+1,
6486                                               HasVAListArg ? 0 : FormatIdx+2));
6487    }
6488    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6489                                             HasVAListArg)) {
6490     if (!FD->getAttr<FormatAttr>())
6491       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6492                                              "scanf", FormatIdx+1,
6493                                              HasVAListArg ? 0 : FormatIdx+2));
6494    }
6495
6496    // Mark const if we don't care about errno and that is the only
6497    // thing preventing the function from being const. This allows
6498    // IRgen to use LLVM intrinsics for such functions.
6499    if (!getLangOptions().MathErrno &&
6500        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6501      if (!FD->getAttr<ConstAttr>())
6502        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6503    }
6504
6505    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6506      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6507    if (Context.BuiltinInfo.isConst(BuiltinID))
6508      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6509  }
6510
6511  IdentifierInfo *Name = FD->getIdentifier();
6512  if (!Name)
6513    return;
6514  if ((!getLangOptions().CPlusPlus &&
6515       FD->getDeclContext()->isTranslationUnit()) ||
6516      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6517       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6518       LinkageSpecDecl::lang_c)) {
6519    // Okay: this could be a libc/libm/Objective-C function we know
6520    // about.
6521  } else
6522    return;
6523
6524  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6525    // FIXME: NSLog and NSLogv should be target specific
6526    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6527      // FIXME: We known better than our headers.
6528      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6529    } else
6530      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6531                                             "printf", 1,
6532                                             Name->isStr("NSLogv") ? 0 : 2));
6533  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6534    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6535    // target-specific builtins, perhaps?
6536    if (!FD->getAttr<FormatAttr>())
6537      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6538                                             "printf", 2,
6539                                             Name->isStr("vasprintf") ? 0 : 3));
6540  }
6541}
6542
6543TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6544                                    TypeSourceInfo *TInfo) {
6545  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6546  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6547
6548  if (!TInfo) {
6549    assert(D.isInvalidType() && "no declarator info for valid type");
6550    TInfo = Context.getTrivialTypeSourceInfo(T);
6551  }
6552
6553  // Scope manipulation handled by caller.
6554  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6555                                           D.getSourceRange().getBegin(),
6556                                           D.getIdentifierLoc(),
6557                                           D.getIdentifier(),
6558                                           TInfo);
6559
6560  // Bail out immediately if we have an invalid declaration.
6561  if (D.isInvalidType()) {
6562    NewTD->setInvalidDecl();
6563    return NewTD;
6564  }
6565
6566  // C++ [dcl.typedef]p8:
6567  //   If the typedef declaration defines an unnamed class (or
6568  //   enum), the first typedef-name declared by the declaration
6569  //   to be that class type (or enum type) is used to denote the
6570  //   class type (or enum type) for linkage purposes only.
6571  // We need to check whether the type was declared in the declaration.
6572  switch (D.getDeclSpec().getTypeSpecType()) {
6573  case TST_enum:
6574  case TST_struct:
6575  case TST_union:
6576  case TST_class: {
6577    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6578
6579    // Do nothing if the tag is not anonymous or already has an
6580    // associated typedef (from an earlier typedef in this decl group).
6581    if (tagFromDeclSpec->getIdentifier()) break;
6582    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6583
6584    // A well-formed anonymous tag must always be a TUK_Definition.
6585    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6586
6587    // The type must match the tag exactly;  no qualifiers allowed.
6588    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6589      break;
6590
6591    // Otherwise, set this is the anon-decl typedef for the tag.
6592    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6593    break;
6594  }
6595
6596  default:
6597    break;
6598  }
6599
6600  return NewTD;
6601}
6602
6603
6604/// \brief Determine whether a tag with a given kind is acceptable
6605/// as a redeclaration of the given tag declaration.
6606///
6607/// \returns true if the new tag kind is acceptable, false otherwise.
6608bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6609                                        TagTypeKind NewTag,
6610                                        SourceLocation NewTagLoc,
6611                                        const IdentifierInfo &Name) {
6612  // C++ [dcl.type.elab]p3:
6613  //   The class-key or enum keyword present in the
6614  //   elaborated-type-specifier shall agree in kind with the
6615  //   declaration to which the name in the elaborated-type-specifier
6616  //   refers. This rule also applies to the form of
6617  //   elaborated-type-specifier that declares a class-name or
6618  //   friend class since it can be construed as referring to the
6619  //   definition of the class. Thus, in any
6620  //   elaborated-type-specifier, the enum keyword shall be used to
6621  //   refer to an enumeration (7.2), the union class-key shall be
6622  //   used to refer to a union (clause 9), and either the class or
6623  //   struct class-key shall be used to refer to a class (clause 9)
6624  //   declared using the class or struct class-key.
6625  TagTypeKind OldTag = Previous->getTagKind();
6626  if (OldTag == NewTag)
6627    return true;
6628
6629  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6630      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6631    // Warn about the struct/class tag mismatch.
6632    bool isTemplate = false;
6633    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6634      isTemplate = Record->getDescribedClassTemplate();
6635
6636    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6637      << (NewTag == TTK_Class)
6638      << isTemplate << &Name
6639      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6640                              OldTag == TTK_Class? "class" : "struct");
6641    Diag(Previous->getLocation(), diag::note_previous_use);
6642    return true;
6643  }
6644  return false;
6645}
6646
6647/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6648/// former case, Name will be non-null.  In the later case, Name will be null.
6649/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6650/// reference/declaration/definition of a tag.
6651Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6652                     SourceLocation KWLoc, CXXScopeSpec &SS,
6653                     IdentifierInfo *Name, SourceLocation NameLoc,
6654                     AttributeList *Attr, AccessSpecifier AS,
6655                     MultiTemplateParamsArg TemplateParameterLists,
6656                     bool &OwnedDecl, bool &IsDependent,
6657                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6658                     TypeResult UnderlyingType) {
6659  // If this is not a definition, it must have a name.
6660  assert((Name != 0 || TUK == TUK_Definition) &&
6661         "Nameless record must be a definition!");
6662  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6663
6664  OwnedDecl = false;
6665  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6666
6667  // FIXME: Check explicit specializations more carefully.
6668  bool isExplicitSpecialization = false;
6669  bool Invalid = false;
6670
6671  // We only need to do this matching if we have template parameters
6672  // or a scope specifier, which also conveniently avoids this work
6673  // for non-C++ cases.
6674  if (TemplateParameterLists.size() > 0 ||
6675      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6676    if (TemplateParameterList *TemplateParams
6677          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6678                                                TemplateParameterLists.get(),
6679                                                TemplateParameterLists.size(),
6680                                                    TUK == TUK_Friend,
6681                                                    isExplicitSpecialization,
6682                                                    Invalid)) {
6683      if (TemplateParams->size() > 0) {
6684        // This is a declaration or definition of a class template (which may
6685        // be a member of another template).
6686
6687        if (Invalid)
6688          return 0;
6689
6690        OwnedDecl = false;
6691        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6692                                               SS, Name, NameLoc, Attr,
6693                                               TemplateParams, AS,
6694                                           TemplateParameterLists.size() - 1,
6695                 (TemplateParameterList**) TemplateParameterLists.release());
6696        return Result.get();
6697      } else {
6698        // The "template<>" header is extraneous.
6699        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6700          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6701        isExplicitSpecialization = true;
6702      }
6703    }
6704  }
6705
6706  // Figure out the underlying type if this a enum declaration. We need to do
6707  // this early, because it's needed to detect if this is an incompatible
6708  // redeclaration.
6709  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6710
6711  if (Kind == TTK_Enum) {
6712    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6713      // No underlying type explicitly specified, or we failed to parse the
6714      // type, default to int.
6715      EnumUnderlying = Context.IntTy.getTypePtr();
6716    else if (UnderlyingType.get()) {
6717      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6718      // integral type; any cv-qualification is ignored.
6719      TypeSourceInfo *TI = 0;
6720      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6721      EnumUnderlying = TI;
6722
6723      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6724
6725      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6726        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6727          << T;
6728        // Recover by falling back to int.
6729        EnumUnderlying = Context.IntTy.getTypePtr();
6730      }
6731
6732      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6733                                          UPPC_FixedUnderlyingType))
6734        EnumUnderlying = Context.IntTy.getTypePtr();
6735
6736    } else if (getLangOptions().Microsoft)
6737      // Microsoft enums are always of int type.
6738      EnumUnderlying = Context.IntTy.getTypePtr();
6739  }
6740
6741  DeclContext *SearchDC = CurContext;
6742  DeclContext *DC = CurContext;
6743  bool isStdBadAlloc = false;
6744
6745  RedeclarationKind Redecl = ForRedeclaration;
6746  if (TUK == TUK_Friend || TUK == TUK_Reference)
6747    Redecl = NotForRedeclaration;
6748
6749  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6750
6751  if (Name && SS.isNotEmpty()) {
6752    // We have a nested-name tag ('struct foo::bar').
6753
6754    // Check for invalid 'foo::'.
6755    if (SS.isInvalid()) {
6756      Name = 0;
6757      goto CreateNewDecl;
6758    }
6759
6760    // If this is a friend or a reference to a class in a dependent
6761    // context, don't try to make a decl for it.
6762    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6763      DC = computeDeclContext(SS, false);
6764      if (!DC) {
6765        IsDependent = true;
6766        return 0;
6767      }
6768    } else {
6769      DC = computeDeclContext(SS, true);
6770      if (!DC) {
6771        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6772          << SS.getRange();
6773        return 0;
6774      }
6775    }
6776
6777    if (RequireCompleteDeclContext(SS, DC))
6778      return 0;
6779
6780    SearchDC = DC;
6781    // Look-up name inside 'foo::'.
6782    LookupQualifiedName(Previous, DC);
6783
6784    if (Previous.isAmbiguous())
6785      return 0;
6786
6787    if (Previous.empty()) {
6788      // Name lookup did not find anything. However, if the
6789      // nested-name-specifier refers to the current instantiation,
6790      // and that current instantiation has any dependent base
6791      // classes, we might find something at instantiation time: treat
6792      // this as a dependent elaborated-type-specifier.
6793      // But this only makes any sense for reference-like lookups.
6794      if (Previous.wasNotFoundInCurrentInstantiation() &&
6795          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6796        IsDependent = true;
6797        return 0;
6798      }
6799
6800      // A tag 'foo::bar' must already exist.
6801      Diag(NameLoc, diag::err_not_tag_in_scope)
6802        << Kind << Name << DC << SS.getRange();
6803      Name = 0;
6804      Invalid = true;
6805      goto CreateNewDecl;
6806    }
6807  } else if (Name) {
6808    // If this is a named struct, check to see if there was a previous forward
6809    // declaration or definition.
6810    // FIXME: We're looking into outer scopes here, even when we
6811    // shouldn't be. Doing so can result in ambiguities that we
6812    // shouldn't be diagnosing.
6813    LookupName(Previous, S);
6814
6815    if (Previous.isAmbiguous() &&
6816        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6817      LookupResult::Filter F = Previous.makeFilter();
6818      while (F.hasNext()) {
6819        NamedDecl *ND = F.next();
6820        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6821          F.erase();
6822      }
6823      F.done();
6824    }
6825
6826    // Note:  there used to be some attempt at recovery here.
6827    if (Previous.isAmbiguous())
6828      return 0;
6829
6830    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6831      // FIXME: This makes sure that we ignore the contexts associated
6832      // with C structs, unions, and enums when looking for a matching
6833      // tag declaration or definition. See the similar lookup tweak
6834      // in Sema::LookupName; is there a better way to deal with this?
6835      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6836        SearchDC = SearchDC->getParent();
6837    }
6838  } else if (S->isFunctionPrototypeScope()) {
6839    // If this is an enum declaration in function prototype scope, set its
6840    // initial context to the translation unit.
6841    SearchDC = Context.getTranslationUnitDecl();
6842  }
6843
6844  if (Previous.isSingleResult() &&
6845      Previous.getFoundDecl()->isTemplateParameter()) {
6846    // Maybe we will complain about the shadowed template parameter.
6847    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6848    // Just pretend that we didn't see the previous declaration.
6849    Previous.clear();
6850  }
6851
6852  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6853      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6854    // This is a declaration of or a reference to "std::bad_alloc".
6855    isStdBadAlloc = true;
6856
6857    if (Previous.empty() && StdBadAlloc) {
6858      // std::bad_alloc has been implicitly declared (but made invisible to
6859      // name lookup). Fill in this implicit declaration as the previous
6860      // declaration, so that the declarations get chained appropriately.
6861      Previous.addDecl(getStdBadAlloc());
6862    }
6863  }
6864
6865  // If we didn't find a previous declaration, and this is a reference
6866  // (or friend reference), move to the correct scope.  In C++, we
6867  // also need to do a redeclaration lookup there, just in case
6868  // there's a shadow friend decl.
6869  if (Name && Previous.empty() &&
6870      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6871    if (Invalid) goto CreateNewDecl;
6872    assert(SS.isEmpty());
6873
6874    if (TUK == TUK_Reference) {
6875      // C++ [basic.scope.pdecl]p5:
6876      //   -- for an elaborated-type-specifier of the form
6877      //
6878      //          class-key identifier
6879      //
6880      //      if the elaborated-type-specifier is used in the
6881      //      decl-specifier-seq or parameter-declaration-clause of a
6882      //      function defined in namespace scope, the identifier is
6883      //      declared as a class-name in the namespace that contains
6884      //      the declaration; otherwise, except as a friend
6885      //      declaration, the identifier is declared in the smallest
6886      //      non-class, non-function-prototype scope that contains the
6887      //      declaration.
6888      //
6889      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6890      // C structs and unions.
6891      //
6892      // It is an error in C++ to declare (rather than define) an enum
6893      // type, including via an elaborated type specifier.  We'll
6894      // diagnose that later; for now, declare the enum in the same
6895      // scope as we would have picked for any other tag type.
6896      //
6897      // GNU C also supports this behavior as part of its incomplete
6898      // enum types extension, while GNU C++ does not.
6899      //
6900      // Find the context where we'll be declaring the tag.
6901      // FIXME: We would like to maintain the current DeclContext as the
6902      // lexical context,
6903      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6904        SearchDC = SearchDC->getParent();
6905
6906      // Find the scope where we'll be declaring the tag.
6907      while (S->isClassScope() ||
6908             (getLangOptions().CPlusPlus &&
6909              S->isFunctionPrototypeScope()) ||
6910             ((S->getFlags() & Scope::DeclScope) == 0) ||
6911             (S->getEntity() &&
6912              ((DeclContext *)S->getEntity())->isTransparentContext()))
6913        S = S->getParent();
6914    } else {
6915      assert(TUK == TUK_Friend);
6916      // C++ [namespace.memdef]p3:
6917      //   If a friend declaration in a non-local class first declares a
6918      //   class or function, the friend class or function is a member of
6919      //   the innermost enclosing namespace.
6920      SearchDC = SearchDC->getEnclosingNamespaceContext();
6921    }
6922
6923    // In C++, we need to do a redeclaration lookup to properly
6924    // diagnose some problems.
6925    if (getLangOptions().CPlusPlus) {
6926      Previous.setRedeclarationKind(ForRedeclaration);
6927      LookupQualifiedName(Previous, SearchDC);
6928    }
6929  }
6930
6931  if (!Previous.empty()) {
6932    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6933
6934    // It's okay to have a tag decl in the same scope as a typedef
6935    // which hides a tag decl in the same scope.  Finding this
6936    // insanity with a redeclaration lookup can only actually happen
6937    // in C++.
6938    //
6939    // This is also okay for elaborated-type-specifiers, which is
6940    // technically forbidden by the current standard but which is
6941    // okay according to the likely resolution of an open issue;
6942    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6943    if (getLangOptions().CPlusPlus) {
6944      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6945        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6946          TagDecl *Tag = TT->getDecl();
6947          if (Tag->getDeclName() == Name &&
6948              Tag->getDeclContext()->getRedeclContext()
6949                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6950            PrevDecl = Tag;
6951            Previous.clear();
6952            Previous.addDecl(Tag);
6953            Previous.resolveKind();
6954          }
6955        }
6956      }
6957    }
6958
6959    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6960      // If this is a use of a previous tag, or if the tag is already declared
6961      // in the same scope (so that the definition/declaration completes or
6962      // rementions the tag), reuse the decl.
6963      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6964          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6965        // Make sure that this wasn't declared as an enum and now used as a
6966        // struct or something similar.
6967        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6968          bool SafeToContinue
6969            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6970               Kind != TTK_Enum);
6971          if (SafeToContinue)
6972            Diag(KWLoc, diag::err_use_with_wrong_tag)
6973              << Name
6974              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6975                                              PrevTagDecl->getKindName());
6976          else
6977            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6978          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6979
6980          if (SafeToContinue)
6981            Kind = PrevTagDecl->getTagKind();
6982          else {
6983            // Recover by making this an anonymous redefinition.
6984            Name = 0;
6985            Previous.clear();
6986            Invalid = true;
6987          }
6988        }
6989
6990        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6991          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6992
6993          // All conflicts with previous declarations are recovered by
6994          // returning the previous declaration.
6995          if (ScopedEnum != PrevEnum->isScoped()) {
6996            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6997              << PrevEnum->isScoped();
6998            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6999            return PrevTagDecl;
7000          }
7001          else if (EnumUnderlying && PrevEnum->isFixed()) {
7002            QualType T;
7003            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7004                T = TI->getType();
7005            else
7006                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7007
7008            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7009              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7010                   diag::err_enum_redeclare_type_mismatch)
7011                << T
7012                << PrevEnum->getIntegerType();
7013              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7014              return PrevTagDecl;
7015            }
7016          }
7017          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7018            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7019              << PrevEnum->isFixed();
7020            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7021            return PrevTagDecl;
7022          }
7023        }
7024
7025        if (!Invalid) {
7026          // If this is a use, just return the declaration we found.
7027
7028          // FIXME: In the future, return a variant or some other clue
7029          // for the consumer of this Decl to know it doesn't own it.
7030          // For our current ASTs this shouldn't be a problem, but will
7031          // need to be changed with DeclGroups.
7032          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
7033              TUK == TUK_Friend)
7034            return PrevTagDecl;
7035
7036          // Diagnose attempts to redefine a tag.
7037          if (TUK == TUK_Definition) {
7038            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7039              // If we're defining a specialization and the previous definition
7040              // is from an implicit instantiation, don't emit an error
7041              // here; we'll catch this in the general case below.
7042              if (!isExplicitSpecialization ||
7043                  !isa<CXXRecordDecl>(Def) ||
7044                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7045                                               == TSK_ExplicitSpecialization) {
7046                Diag(NameLoc, diag::err_redefinition) << Name;
7047                Diag(Def->getLocation(), diag::note_previous_definition);
7048                // If this is a redefinition, recover by making this
7049                // struct be anonymous, which will make any later
7050                // references get the previous definition.
7051                Name = 0;
7052                Previous.clear();
7053                Invalid = true;
7054              }
7055            } else {
7056              // If the type is currently being defined, complain
7057              // about a nested redefinition.
7058              const TagType *Tag
7059                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7060              if (Tag->isBeingDefined()) {
7061                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7062                Diag(PrevTagDecl->getLocation(),
7063                     diag::note_previous_definition);
7064                Name = 0;
7065                Previous.clear();
7066                Invalid = true;
7067              }
7068            }
7069
7070            // Okay, this is definition of a previously declared or referenced
7071            // tag PrevDecl. We're going to create a new Decl for it.
7072          }
7073        }
7074        // If we get here we have (another) forward declaration or we
7075        // have a definition.  Just create a new decl.
7076
7077      } else {
7078        // If we get here, this is a definition of a new tag type in a nested
7079        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7080        // new decl/type.  We set PrevDecl to NULL so that the entities
7081        // have distinct types.
7082        Previous.clear();
7083      }
7084      // If we get here, we're going to create a new Decl. If PrevDecl
7085      // is non-NULL, it's a definition of the tag declared by
7086      // PrevDecl. If it's NULL, we have a new definition.
7087
7088
7089    // Otherwise, PrevDecl is not a tag, but was found with tag
7090    // lookup.  This is only actually possible in C++, where a few
7091    // things like templates still live in the tag namespace.
7092    } else {
7093      assert(getLangOptions().CPlusPlus);
7094
7095      // Use a better diagnostic if an elaborated-type-specifier
7096      // found the wrong kind of type on the first
7097      // (non-redeclaration) lookup.
7098      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7099          !Previous.isForRedeclaration()) {
7100        unsigned Kind = 0;
7101        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7102        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7103        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7104        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7105        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7106        Invalid = true;
7107
7108      // Otherwise, only diagnose if the declaration is in scope.
7109      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7110                                isExplicitSpecialization)) {
7111        // do nothing
7112
7113      // Diagnose implicit declarations introduced by elaborated types.
7114      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7115        unsigned Kind = 0;
7116        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7117        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7118        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7119        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7120        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7121        Invalid = true;
7122
7123      // Otherwise it's a declaration.  Call out a particularly common
7124      // case here.
7125      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7126        unsigned Kind = 0;
7127        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7128        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7129          << Name << Kind << TND->getUnderlyingType();
7130        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7131        Invalid = true;
7132
7133      // Otherwise, diagnose.
7134      } else {
7135        // The tag name clashes with something else in the target scope,
7136        // issue an error and recover by making this tag be anonymous.
7137        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7138        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7139        Name = 0;
7140        Invalid = true;
7141      }
7142
7143      // The existing declaration isn't relevant to us; we're in a
7144      // new scope, so clear out the previous declaration.
7145      Previous.clear();
7146    }
7147  }
7148
7149CreateNewDecl:
7150
7151  TagDecl *PrevDecl = 0;
7152  if (Previous.isSingleResult())
7153    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7154
7155  // If there is an identifier, use the location of the identifier as the
7156  // location of the decl, otherwise use the location of the struct/union
7157  // keyword.
7158  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7159
7160  // Otherwise, create a new declaration. If there is a previous
7161  // declaration of the same entity, the two will be linked via
7162  // PrevDecl.
7163  TagDecl *New;
7164
7165  bool IsForwardReference = false;
7166  if (Kind == TTK_Enum) {
7167    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7168    // enum X { A, B, C } D;    D should chain to X.
7169    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7170                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7171                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7172    // If this is an undefined enum, warn.
7173    if (TUK != TUK_Definition && !Invalid) {
7174      TagDecl *Def;
7175      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7176        // C++0x: 7.2p2: opaque-enum-declaration.
7177        // Conflicts are diagnosed above. Do nothing.
7178      }
7179      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7180        Diag(Loc, diag::ext_forward_ref_enum_def)
7181          << New;
7182        Diag(Def->getLocation(), diag::note_previous_definition);
7183      } else {
7184        unsigned DiagID = diag::ext_forward_ref_enum;
7185        if (getLangOptions().Microsoft)
7186          DiagID = diag::ext_ms_forward_ref_enum;
7187        else if (getLangOptions().CPlusPlus)
7188          DiagID = diag::err_forward_ref_enum;
7189        Diag(Loc, DiagID);
7190
7191        // If this is a forward-declared reference to an enumeration, make a
7192        // note of it; we won't actually be introducing the declaration into
7193        // the declaration context.
7194        if (TUK == TUK_Reference)
7195          IsForwardReference = true;
7196      }
7197    }
7198
7199    if (EnumUnderlying) {
7200      EnumDecl *ED = cast<EnumDecl>(New);
7201      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7202        ED->setIntegerTypeSourceInfo(TI);
7203      else
7204        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7205      ED->setPromotionType(ED->getIntegerType());
7206    }
7207
7208  } else {
7209    // struct/union/class
7210
7211    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7212    // struct X { int A; } D;    D should chain to X.
7213    if (getLangOptions().CPlusPlus) {
7214      // FIXME: Look for a way to use RecordDecl for simple structs.
7215      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7216                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7217
7218      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7219        StdBadAlloc = cast<CXXRecordDecl>(New);
7220    } else
7221      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7222                               cast_or_null<RecordDecl>(PrevDecl));
7223  }
7224
7225  // Maybe add qualifier info.
7226  if (SS.isNotEmpty()) {
7227    if (SS.isSet()) {
7228      New->setQualifierInfo(SS.getWithLocInContext(Context));
7229      if (TemplateParameterLists.size() > 0) {
7230        New->setTemplateParameterListsInfo(Context,
7231                                           TemplateParameterLists.size(),
7232                    (TemplateParameterList**) TemplateParameterLists.release());
7233      }
7234    }
7235    else
7236      Invalid = true;
7237  }
7238
7239  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7240    // Add alignment attributes if necessary; these attributes are checked when
7241    // the ASTContext lays out the structure.
7242    //
7243    // It is important for implementing the correct semantics that this
7244    // happen here (in act on tag decl). The #pragma pack stack is
7245    // maintained as a result of parser callbacks which can occur at
7246    // many points during the parsing of a struct declaration (because
7247    // the #pragma tokens are effectively skipped over during the
7248    // parsing of the struct).
7249    AddAlignmentAttributesForRecord(RD);
7250
7251    AddMsStructLayoutForRecord(RD);
7252  }
7253
7254  // If this is a specialization of a member class (of a class template),
7255  // check the specialization.
7256  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7257    Invalid = true;
7258
7259  if (Invalid)
7260    New->setInvalidDecl();
7261
7262  if (Attr)
7263    ProcessDeclAttributeList(S, New, Attr);
7264
7265  // If we're declaring or defining a tag in function prototype scope
7266  // in C, note that this type can only be used within the function.
7267  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7268    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7269
7270  // Set the lexical context. If the tag has a C++ scope specifier, the
7271  // lexical context will be different from the semantic context.
7272  New->setLexicalDeclContext(CurContext);
7273
7274  // Mark this as a friend decl if applicable.
7275  if (TUK == TUK_Friend)
7276    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7277
7278  // Set the access specifier.
7279  if (!Invalid && SearchDC->isRecord())
7280    SetMemberAccessSpecifier(New, PrevDecl, AS);
7281
7282  if (TUK == TUK_Definition)
7283    New->startDefinition();
7284
7285  // If this has an identifier, add it to the scope stack.
7286  if (TUK == TUK_Friend) {
7287    // We might be replacing an existing declaration in the lookup tables;
7288    // if so, borrow its access specifier.
7289    if (PrevDecl)
7290      New->setAccess(PrevDecl->getAccess());
7291
7292    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7293    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7294    if (Name) // can be null along some error paths
7295      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7296        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7297  } else if (Name) {
7298    S = getNonFieldDeclScope(S);
7299    PushOnScopeChains(New, S, !IsForwardReference);
7300    if (IsForwardReference)
7301      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7302
7303  } else {
7304    CurContext->addDecl(New);
7305  }
7306
7307  // If this is the C FILE type, notify the AST context.
7308  if (IdentifierInfo *II = New->getIdentifier())
7309    if (!New->isInvalidDecl() &&
7310        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7311        II->isStr("FILE"))
7312      Context.setFILEDecl(New);
7313
7314  OwnedDecl = true;
7315  return New;
7316}
7317
7318void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7319  AdjustDeclIfTemplate(TagD);
7320  TagDecl *Tag = cast<TagDecl>(TagD);
7321
7322  // Enter the tag context.
7323  PushDeclContext(S, Tag);
7324}
7325
7326void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7327                                           SourceLocation FinalLoc,
7328                                           SourceLocation LBraceLoc) {
7329  AdjustDeclIfTemplate(TagD);
7330  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7331
7332  FieldCollector->StartClass();
7333
7334  if (!Record->getIdentifier())
7335    return;
7336
7337  if (FinalLoc.isValid())
7338    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7339
7340  // C++ [class]p2:
7341  //   [...] The class-name is also inserted into the scope of the
7342  //   class itself; this is known as the injected-class-name. For
7343  //   purposes of access checking, the injected-class-name is treated
7344  //   as if it were a public member name.
7345  CXXRecordDecl *InjectedClassName
7346    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7347                            Record->getLocStart(), Record->getLocation(),
7348                            Record->getIdentifier(),
7349                            /*PrevDecl=*/0,
7350                            /*DelayTypeCreation=*/true);
7351  Context.getTypeDeclType(InjectedClassName, Record);
7352  InjectedClassName->setImplicit();
7353  InjectedClassName->setAccess(AS_public);
7354  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7355      InjectedClassName->setDescribedClassTemplate(Template);
7356  PushOnScopeChains(InjectedClassName, S);
7357  assert(InjectedClassName->isInjectedClassName() &&
7358         "Broken injected-class-name");
7359}
7360
7361void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7362                                    SourceLocation RBraceLoc) {
7363  AdjustDeclIfTemplate(TagD);
7364  TagDecl *Tag = cast<TagDecl>(TagD);
7365  Tag->setRBraceLoc(RBraceLoc);
7366
7367  if (isa<CXXRecordDecl>(Tag))
7368    FieldCollector->FinishClass();
7369
7370  // Exit this scope of this tag's definition.
7371  PopDeclContext();
7372
7373  // Notify the consumer that we've defined a tag.
7374  Consumer.HandleTagDeclDefinition(Tag);
7375}
7376
7377void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7378  AdjustDeclIfTemplate(TagD);
7379  TagDecl *Tag = cast<TagDecl>(TagD);
7380  Tag->setInvalidDecl();
7381
7382  // We're undoing ActOnTagStartDefinition here, not
7383  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7384  // the FieldCollector.
7385
7386  PopDeclContext();
7387}
7388
7389// Note that FieldName may be null for anonymous bitfields.
7390bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7391                          QualType FieldTy, const Expr *BitWidth,
7392                          bool *ZeroWidth) {
7393  // Default to true; that shouldn't confuse checks for emptiness
7394  if (ZeroWidth)
7395    *ZeroWidth = true;
7396
7397  // C99 6.7.2.1p4 - verify the field type.
7398  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7399  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7400    // Handle incomplete types with specific error.
7401    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7402      return true;
7403    if (FieldName)
7404      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7405        << FieldName << FieldTy << BitWidth->getSourceRange();
7406    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7407      << FieldTy << BitWidth->getSourceRange();
7408  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7409                                             UPPC_BitFieldWidth))
7410    return true;
7411
7412  // If the bit-width is type- or value-dependent, don't try to check
7413  // it now.
7414  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7415    return false;
7416
7417  llvm::APSInt Value;
7418  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7419    return true;
7420
7421  if (Value != 0 && ZeroWidth)
7422    *ZeroWidth = false;
7423
7424  // Zero-width bitfield is ok for anonymous field.
7425  if (Value == 0 && FieldName)
7426    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7427
7428  if (Value.isSigned() && Value.isNegative()) {
7429    if (FieldName)
7430      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7431               << FieldName << Value.toString(10);
7432    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7433      << Value.toString(10);
7434  }
7435
7436  if (!FieldTy->isDependentType()) {
7437    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7438    if (Value.getZExtValue() > TypeSize) {
7439      if (!getLangOptions().CPlusPlus) {
7440        if (FieldName)
7441          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7442            << FieldName << (unsigned)Value.getZExtValue()
7443            << (unsigned)TypeSize;
7444
7445        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7446          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7447      }
7448
7449      if (FieldName)
7450        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7451          << FieldName << (unsigned)Value.getZExtValue()
7452          << (unsigned)TypeSize;
7453      else
7454        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7455          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7456    }
7457  }
7458
7459  return false;
7460}
7461
7462/// ActOnField - Each field of a struct/union/class is passed into this in order
7463/// to create a FieldDecl object for it.
7464Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7465                                 SourceLocation DeclStart,
7466                                 Declarator &D, ExprTy *BitfieldWidth) {
7467  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7468                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7469                               AS_public);
7470  return Res;
7471}
7472
7473/// HandleField - Analyze a field of a C struct or a C++ data member.
7474///
7475FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7476                             SourceLocation DeclStart,
7477                             Declarator &D, Expr *BitWidth,
7478                             AccessSpecifier AS) {
7479  IdentifierInfo *II = D.getIdentifier();
7480  SourceLocation Loc = DeclStart;
7481  if (II) Loc = D.getIdentifierLoc();
7482
7483  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7484  QualType T = TInfo->getType();
7485  if (getLangOptions().CPlusPlus) {
7486    CheckExtraCXXDefaultArguments(D);
7487
7488    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7489                                        UPPC_DataMemberType)) {
7490      D.setInvalidType();
7491      T = Context.IntTy;
7492      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7493    }
7494  }
7495
7496  DiagnoseFunctionSpecifiers(D);
7497
7498  if (D.getDeclSpec().isThreadSpecified())
7499    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7500
7501  // Check to see if this name was declared as a member previously
7502  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7503  LookupName(Previous, S);
7504  assert((Previous.empty() || Previous.isOverloadedResult() ||
7505          Previous.isSingleResult())
7506    && "Lookup of member name should be either overloaded, single or null");
7507
7508  // If the name is overloaded then get any declaration else get the single result
7509  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7510    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7511
7512  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7513    // Maybe we will complain about the shadowed template parameter.
7514    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7515    // Just pretend that we didn't see the previous declaration.
7516    PrevDecl = 0;
7517  }
7518
7519  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7520    PrevDecl = 0;
7521
7522  bool Mutable
7523    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7524  SourceLocation TSSL = D.getSourceRange().getBegin();
7525  FieldDecl *NewFD
7526    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7527                     AS, PrevDecl, &D);
7528
7529  if (NewFD->isInvalidDecl())
7530    Record->setInvalidDecl();
7531
7532  if (NewFD->isInvalidDecl() && PrevDecl) {
7533    // Don't introduce NewFD into scope; there's already something
7534    // with the same name in the same scope.
7535  } else if (II) {
7536    PushOnScopeChains(NewFD, S);
7537  } else
7538    Record->addDecl(NewFD);
7539
7540  return NewFD;
7541}
7542
7543/// \brief Build a new FieldDecl and check its well-formedness.
7544///
7545/// This routine builds a new FieldDecl given the fields name, type,
7546/// record, etc. \p PrevDecl should refer to any previous declaration
7547/// with the same name and in the same scope as the field to be
7548/// created.
7549///
7550/// \returns a new FieldDecl.
7551///
7552/// \todo The Declarator argument is a hack. It will be removed once
7553FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7554                                TypeSourceInfo *TInfo,
7555                                RecordDecl *Record, SourceLocation Loc,
7556                                bool Mutable, Expr *BitWidth,
7557                                SourceLocation TSSL,
7558                                AccessSpecifier AS, NamedDecl *PrevDecl,
7559                                Declarator *D) {
7560  IdentifierInfo *II = Name.getAsIdentifierInfo();
7561  bool InvalidDecl = false;
7562  if (D) InvalidDecl = D->isInvalidType();
7563
7564  // If we receive a broken type, recover by assuming 'int' and
7565  // marking this declaration as invalid.
7566  if (T.isNull()) {
7567    InvalidDecl = true;
7568    T = Context.IntTy;
7569  }
7570
7571  QualType EltTy = Context.getBaseElementType(T);
7572  if (!EltTy->isDependentType() &&
7573      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7574    // Fields of incomplete type force their record to be invalid.
7575    Record->setInvalidDecl();
7576    InvalidDecl = true;
7577  }
7578
7579  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7580  // than a variably modified type.
7581  if (!InvalidDecl && T->isVariablyModifiedType()) {
7582    bool SizeIsNegative;
7583    llvm::APSInt Oversized;
7584    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7585                                                           SizeIsNegative,
7586                                                           Oversized);
7587    if (!FixedTy.isNull()) {
7588      Diag(Loc, diag::warn_illegal_constant_array_size);
7589      T = FixedTy;
7590    } else {
7591      if (SizeIsNegative)
7592        Diag(Loc, diag::err_typecheck_negative_array_size);
7593      else if (Oversized.getBoolValue())
7594        Diag(Loc, diag::err_array_too_large)
7595          << Oversized.toString(10);
7596      else
7597        Diag(Loc, diag::err_typecheck_field_variable_size);
7598      InvalidDecl = true;
7599    }
7600  }
7601
7602  // Fields can not have abstract class types
7603  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7604                                             diag::err_abstract_type_in_decl,
7605                                             AbstractFieldType))
7606    InvalidDecl = true;
7607
7608  bool ZeroWidth = false;
7609  // If this is declared as a bit-field, check the bit-field.
7610  if (!InvalidDecl && BitWidth &&
7611      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7612    InvalidDecl = true;
7613    BitWidth = 0;
7614    ZeroWidth = false;
7615  }
7616
7617  // Check that 'mutable' is consistent with the type of the declaration.
7618  if (!InvalidDecl && Mutable) {
7619    unsigned DiagID = 0;
7620    if (T->isReferenceType())
7621      DiagID = diag::err_mutable_reference;
7622    else if (T.isConstQualified())
7623      DiagID = diag::err_mutable_const;
7624
7625    if (DiagID) {
7626      SourceLocation ErrLoc = Loc;
7627      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7628        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7629      Diag(ErrLoc, DiagID);
7630      Mutable = false;
7631      InvalidDecl = true;
7632    }
7633  }
7634
7635  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7636                                       BitWidth, Mutable);
7637  if (InvalidDecl)
7638    NewFD->setInvalidDecl();
7639
7640  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7641    Diag(Loc, diag::err_duplicate_member) << II;
7642    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7643    NewFD->setInvalidDecl();
7644  }
7645
7646  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7647    if (Record->isUnion()) {
7648      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7649        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7650        if (RDecl->getDefinition()) {
7651          // C++ [class.union]p1: An object of a class with a non-trivial
7652          // constructor, a non-trivial copy constructor, a non-trivial
7653          // destructor, or a non-trivial copy assignment operator
7654          // cannot be a member of a union, nor can an array of such
7655          // objects.
7656          // TODO: C++0x alters this restriction significantly.
7657          if (CheckNontrivialField(NewFD))
7658            NewFD->setInvalidDecl();
7659        }
7660      }
7661
7662      // C++ [class.union]p1: If a union contains a member of reference type,
7663      // the program is ill-formed.
7664      if (EltTy->isReferenceType()) {
7665        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7666          << NewFD->getDeclName() << EltTy;
7667        NewFD->setInvalidDecl();
7668      }
7669    }
7670  }
7671
7672  // FIXME: We need to pass in the attributes given an AST
7673  // representation, not a parser representation.
7674  if (D)
7675    // FIXME: What to pass instead of TUScope?
7676    ProcessDeclAttributes(TUScope, NewFD, *D);
7677
7678  if (T.isObjCGCWeak())
7679    Diag(Loc, diag::warn_attribute_weak_on_field);
7680
7681  NewFD->setAccess(AS);
7682  return NewFD;
7683}
7684
7685bool Sema::CheckNontrivialField(FieldDecl *FD) {
7686  assert(FD);
7687  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7688
7689  if (FD->isInvalidDecl())
7690    return true;
7691
7692  QualType EltTy = Context.getBaseElementType(FD->getType());
7693  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7694    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7695    if (RDecl->getDefinition()) {
7696      // We check for copy constructors before constructors
7697      // because otherwise we'll never get complaints about
7698      // copy constructors.
7699
7700      CXXSpecialMember member = CXXInvalid;
7701      if (!RDecl->hasTrivialCopyConstructor())
7702        member = CXXCopyConstructor;
7703      else if (!RDecl->hasTrivialDefaultConstructor())
7704        member = CXXDefaultConstructor;
7705      else if (!RDecl->hasTrivialCopyAssignment())
7706        member = CXXCopyAssignment;
7707      else if (!RDecl->hasTrivialDestructor())
7708        member = CXXDestructor;
7709
7710      if (member != CXXInvalid) {
7711        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7712              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7713        DiagnoseNontrivial(RT, member);
7714        return true;
7715      }
7716    }
7717  }
7718
7719  return false;
7720}
7721
7722/// DiagnoseNontrivial - Given that a class has a non-trivial
7723/// special member, figure out why.
7724void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7725  QualType QT(T, 0U);
7726  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7727
7728  // Check whether the member was user-declared.
7729  switch (member) {
7730  case CXXInvalid:
7731    break;
7732
7733  case CXXDefaultConstructor:
7734    if (RD->hasUserDeclaredConstructor()) {
7735      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7736      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7737        const FunctionDecl *body = 0;
7738        ci->hasBody(body);
7739        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7740          SourceLocation CtorLoc = ci->getLocation();
7741          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7742          return;
7743        }
7744      }
7745
7746      assert(0 && "found no user-declared constructors");
7747      return;
7748    }
7749    break;
7750
7751  case CXXCopyConstructor:
7752    if (RD->hasUserDeclaredCopyConstructor()) {
7753      SourceLocation CtorLoc =
7754        RD->getCopyConstructor(Context, 0)->getLocation();
7755      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7756      return;
7757    }
7758    break;
7759
7760  case CXXCopyAssignment:
7761    if (RD->hasUserDeclaredCopyAssignment()) {
7762      // FIXME: this should use the location of the copy
7763      // assignment, not the type.
7764      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7765      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7766      return;
7767    }
7768    break;
7769
7770  case CXXDestructor:
7771    if (RD->hasUserDeclaredDestructor()) {
7772      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7773      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7774      return;
7775    }
7776    break;
7777  }
7778
7779  typedef CXXRecordDecl::base_class_iterator base_iter;
7780
7781  // Virtual bases and members inhibit trivial copying/construction,
7782  // but not trivial destruction.
7783  if (member != CXXDestructor) {
7784    // Check for virtual bases.  vbases includes indirect virtual bases,
7785    // so we just iterate through the direct bases.
7786    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7787      if (bi->isVirtual()) {
7788        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7789        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7790        return;
7791      }
7792
7793    // Check for virtual methods.
7794    typedef CXXRecordDecl::method_iterator meth_iter;
7795    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7796         ++mi) {
7797      if (mi->isVirtual()) {
7798        SourceLocation MLoc = mi->getSourceRange().getBegin();
7799        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7800        return;
7801      }
7802    }
7803  }
7804
7805  bool (CXXRecordDecl::*hasTrivial)() const;
7806  switch (member) {
7807  case CXXDefaultConstructor:
7808    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7809  case CXXCopyConstructor:
7810    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7811  case CXXCopyAssignment:
7812    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7813  case CXXDestructor:
7814    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7815  default:
7816    assert(0 && "unexpected special member"); return;
7817  }
7818
7819  // Check for nontrivial bases (and recurse).
7820  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7821    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7822    assert(BaseRT && "Don't know how to handle dependent bases");
7823    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7824    if (!(BaseRecTy->*hasTrivial)()) {
7825      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7826      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7827      DiagnoseNontrivial(BaseRT, member);
7828      return;
7829    }
7830  }
7831
7832  // Check for nontrivial members (and recurse).
7833  typedef RecordDecl::field_iterator field_iter;
7834  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7835       ++fi) {
7836    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7837    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7838      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7839
7840      if (!(EltRD->*hasTrivial)()) {
7841        SourceLocation FLoc = (*fi)->getLocation();
7842        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7843        DiagnoseNontrivial(EltRT, member);
7844        return;
7845      }
7846    }
7847  }
7848
7849  assert(0 && "found no explanation for non-trivial member");
7850}
7851
7852/// TranslateIvarVisibility - Translate visibility from a token ID to an
7853///  AST enum value.
7854static ObjCIvarDecl::AccessControl
7855TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7856  switch (ivarVisibility) {
7857  default: assert(0 && "Unknown visitibility kind");
7858  case tok::objc_private: return ObjCIvarDecl::Private;
7859  case tok::objc_public: return ObjCIvarDecl::Public;
7860  case tok::objc_protected: return ObjCIvarDecl::Protected;
7861  case tok::objc_package: return ObjCIvarDecl::Package;
7862  }
7863}
7864
7865/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7866/// in order to create an IvarDecl object for it.
7867Decl *Sema::ActOnIvar(Scope *S,
7868                                SourceLocation DeclStart,
7869                                Decl *IntfDecl,
7870                                Declarator &D, ExprTy *BitfieldWidth,
7871                                tok::ObjCKeywordKind Visibility) {
7872
7873  IdentifierInfo *II = D.getIdentifier();
7874  Expr *BitWidth = (Expr*)BitfieldWidth;
7875  SourceLocation Loc = DeclStart;
7876  if (II) Loc = D.getIdentifierLoc();
7877
7878  // FIXME: Unnamed fields can be handled in various different ways, for
7879  // example, unnamed unions inject all members into the struct namespace!
7880
7881  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7882  QualType T = TInfo->getType();
7883
7884  if (BitWidth) {
7885    // 6.7.2.1p3, 6.7.2.1p4
7886    if (VerifyBitField(Loc, II, T, BitWidth)) {
7887      D.setInvalidType();
7888      BitWidth = 0;
7889    }
7890  } else {
7891    // Not a bitfield.
7892
7893    // validate II.
7894
7895  }
7896  if (T->isReferenceType()) {
7897    Diag(Loc, diag::err_ivar_reference_type);
7898    D.setInvalidType();
7899  }
7900  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7901  // than a variably modified type.
7902  else if (T->isVariablyModifiedType()) {
7903    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7904    D.setInvalidType();
7905  }
7906
7907  // Get the visibility (access control) for this ivar.
7908  ObjCIvarDecl::AccessControl ac =
7909    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7910                                        : ObjCIvarDecl::None;
7911  // Must set ivar's DeclContext to its enclosing interface.
7912  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7913  ObjCContainerDecl *EnclosingContext;
7914  if (ObjCImplementationDecl *IMPDecl =
7915      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7916    if (!LangOpts.ObjCNonFragileABI2) {
7917    // Case of ivar declared in an implementation. Context is that of its class.
7918      EnclosingContext = IMPDecl->getClassInterface();
7919      assert(EnclosingContext && "Implementation has no class interface!");
7920    }
7921    else
7922      EnclosingContext = EnclosingDecl;
7923  } else {
7924    if (ObjCCategoryDecl *CDecl =
7925        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7926      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7927        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7928        return 0;
7929      }
7930    }
7931    EnclosingContext = EnclosingDecl;
7932  }
7933
7934  // Construct the decl.
7935  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7936                                             DeclStart, Loc, II, T,
7937                                             TInfo, ac, (Expr *)BitfieldWidth);
7938
7939  if (II) {
7940    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7941                                           ForRedeclaration);
7942    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7943        && !isa<TagDecl>(PrevDecl)) {
7944      Diag(Loc, diag::err_duplicate_member) << II;
7945      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7946      NewID->setInvalidDecl();
7947    }
7948  }
7949
7950  // Process attributes attached to the ivar.
7951  ProcessDeclAttributes(S, NewID, D);
7952
7953  if (D.isInvalidType())
7954    NewID->setInvalidDecl();
7955
7956  if (II) {
7957    // FIXME: When interfaces are DeclContexts, we'll need to add
7958    // these to the interface.
7959    S->AddDecl(NewID);
7960    IdResolver.AddDecl(NewID);
7961  }
7962
7963  return NewID;
7964}
7965
7966/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7967/// class and class extensions. For every class @interface and class
7968/// extension @interface, if the last ivar is a bitfield of any type,
7969/// then add an implicit `char :0` ivar to the end of that interface.
7970void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7971                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7972  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7973    return;
7974
7975  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7976  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7977
7978  if (!Ivar->isBitField())
7979    return;
7980  uint64_t BitFieldSize =
7981    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7982  if (BitFieldSize == 0)
7983    return;
7984  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7985  if (!ID) {
7986    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7987      if (!CD->IsClassExtension())
7988        return;
7989    }
7990    // No need to add this to end of @implementation.
7991    else
7992      return;
7993  }
7994  // All conditions are met. Add a new bitfield to the tail end of ivars.
7995  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7996  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7997
7998  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7999                              DeclLoc, DeclLoc, 0,
8000                              Context.CharTy,
8001                              Context.CreateTypeSourceInfo(Context.CharTy),
8002                              ObjCIvarDecl::Private, BW,
8003                              true);
8004  AllIvarDecls.push_back(Ivar);
8005}
8006
8007void Sema::ActOnFields(Scope* S,
8008                       SourceLocation RecLoc, Decl *EnclosingDecl,
8009                       Decl **Fields, unsigned NumFields,
8010                       SourceLocation LBrac, SourceLocation RBrac,
8011                       AttributeList *Attr) {
8012  assert(EnclosingDecl && "missing record or interface decl");
8013
8014  // If the decl this is being inserted into is invalid, then it may be a
8015  // redeclaration or some other bogus case.  Don't try to add fields to it.
8016  if (EnclosingDecl->isInvalidDecl()) {
8017    // FIXME: Deallocate fields?
8018    return;
8019  }
8020
8021
8022  // Verify that all the fields are okay.
8023  unsigned NumNamedMembers = 0;
8024  llvm::SmallVector<FieldDecl*, 32> RecFields;
8025
8026  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8027  for (unsigned i = 0; i != NumFields; ++i) {
8028    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8029
8030    // Get the type for the field.
8031    const Type *FDTy = FD->getType().getTypePtr();
8032
8033    if (!FD->isAnonymousStructOrUnion()) {
8034      // Remember all fields written by the user.
8035      RecFields.push_back(FD);
8036    }
8037
8038    // If the field is already invalid for some reason, don't emit more
8039    // diagnostics about it.
8040    if (FD->isInvalidDecl()) {
8041      EnclosingDecl->setInvalidDecl();
8042      continue;
8043    }
8044
8045    // C99 6.7.2.1p2:
8046    //   A structure or union shall not contain a member with
8047    //   incomplete or function type (hence, a structure shall not
8048    //   contain an instance of itself, but may contain a pointer to
8049    //   an instance of itself), except that the last member of a
8050    //   structure with more than one named member may have incomplete
8051    //   array type; such a structure (and any union containing,
8052    //   possibly recursively, a member that is such a structure)
8053    //   shall not be a member of a structure or an element of an
8054    //   array.
8055    if (FDTy->isFunctionType()) {
8056      // Field declared as a function.
8057      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8058        << FD->getDeclName();
8059      FD->setInvalidDecl();
8060      EnclosingDecl->setInvalidDecl();
8061      continue;
8062    } else if (FDTy->isIncompleteArrayType() && Record &&
8063               ((i == NumFields - 1 && !Record->isUnion()) ||
8064                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8065                 (i == NumFields - 1 || Record->isUnion())))) {
8066      // Flexible array member.
8067      // Microsoft and g++ is more permissive regarding flexible array.
8068      // It will accept flexible array in union and also
8069      // as the sole element of a struct/class.
8070      if (getLangOptions().Microsoft) {
8071        if (Record->isUnion())
8072          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8073            << FD->getDeclName();
8074        else if (NumFields == 1)
8075          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8076            << FD->getDeclName() << Record->getTagKind();
8077      } else if (getLangOptions().CPlusPlus) {
8078        if (Record->isUnion())
8079          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8080            << FD->getDeclName();
8081        else if (NumFields == 1)
8082          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8083            << FD->getDeclName() << Record->getTagKind();
8084      } else if (NumNamedMembers < 1) {
8085        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8086          << FD->getDeclName();
8087        FD->setInvalidDecl();
8088        EnclosingDecl->setInvalidDecl();
8089        continue;
8090      }
8091      if (!FD->getType()->isDependentType() &&
8092          !Context.getBaseElementType(FD->getType())->isPODType()) {
8093        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8094          << FD->getDeclName() << FD->getType();
8095        FD->setInvalidDecl();
8096        EnclosingDecl->setInvalidDecl();
8097        continue;
8098      }
8099      // Okay, we have a legal flexible array member at the end of the struct.
8100      if (Record)
8101        Record->setHasFlexibleArrayMember(true);
8102    } else if (!FDTy->isDependentType() &&
8103               RequireCompleteType(FD->getLocation(), FD->getType(),
8104                                   diag::err_field_incomplete)) {
8105      // Incomplete type
8106      FD->setInvalidDecl();
8107      EnclosingDecl->setInvalidDecl();
8108      continue;
8109    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8110      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8111        // If this is a member of a union, then entire union becomes "flexible".
8112        if (Record && Record->isUnion()) {
8113          Record->setHasFlexibleArrayMember(true);
8114        } else {
8115          // If this is a struct/class and this is not the last element, reject
8116          // it.  Note that GCC supports variable sized arrays in the middle of
8117          // structures.
8118          if (i != NumFields-1)
8119            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8120              << FD->getDeclName() << FD->getType();
8121          else {
8122            // We support flexible arrays at the end of structs in
8123            // other structs as an extension.
8124            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8125              << FD->getDeclName();
8126            if (Record)
8127              Record->setHasFlexibleArrayMember(true);
8128          }
8129        }
8130      }
8131      if (Record && FDTTy->getDecl()->hasObjectMember())
8132        Record->setHasObjectMember(true);
8133    } else if (FDTy->isObjCObjectType()) {
8134      /// A field cannot be an Objective-c object
8135      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8136      FD->setInvalidDecl();
8137      EnclosingDecl->setInvalidDecl();
8138      continue;
8139    } else if (getLangOptions().ObjC1 &&
8140               getLangOptions().getGCMode() != LangOptions::NonGC &&
8141               Record &&
8142               (FD->getType()->isObjCObjectPointerType() ||
8143                FD->getType().isObjCGCStrong()))
8144      Record->setHasObjectMember(true);
8145    else if (Context.getAsArrayType(FD->getType())) {
8146      QualType BaseType = Context.getBaseElementType(FD->getType());
8147      if (Record && BaseType->isRecordType() &&
8148          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8149        Record->setHasObjectMember(true);
8150    }
8151    // Keep track of the number of named members.
8152    if (FD->getIdentifier())
8153      ++NumNamedMembers;
8154  }
8155
8156  // Okay, we successfully defined 'Record'.
8157  if (Record) {
8158    bool Completed = false;
8159    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8160      if (!CXXRecord->isInvalidDecl()) {
8161        // Set access bits correctly on the directly-declared conversions.
8162        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8163        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8164             I != E; ++I)
8165          Convs->setAccess(I, (*I)->getAccess());
8166
8167        if (!CXXRecord->isDependentType()) {
8168          // Add any implicitly-declared members to this class.
8169          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8170
8171          // If we have virtual base classes, we may end up finding multiple
8172          // final overriders for a given virtual function. Check for this
8173          // problem now.
8174          if (CXXRecord->getNumVBases()) {
8175            CXXFinalOverriderMap FinalOverriders;
8176            CXXRecord->getFinalOverriders(FinalOverriders);
8177
8178            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8179                                             MEnd = FinalOverriders.end();
8180                 M != MEnd; ++M) {
8181              for (OverridingMethods::iterator SO = M->second.begin(),
8182                                            SOEnd = M->second.end();
8183                   SO != SOEnd; ++SO) {
8184                assert(SO->second.size() > 0 &&
8185                       "Virtual function without overridding functions?");
8186                if (SO->second.size() == 1)
8187                  continue;
8188
8189                // C++ [class.virtual]p2:
8190                //   In a derived class, if a virtual member function of a base
8191                //   class subobject has more than one final overrider the
8192                //   program is ill-formed.
8193                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8194                  << (NamedDecl *)M->first << Record;
8195                Diag(M->first->getLocation(),
8196                     diag::note_overridden_virtual_function);
8197                for (OverridingMethods::overriding_iterator
8198                          OM = SO->second.begin(),
8199                       OMEnd = SO->second.end();
8200                     OM != OMEnd; ++OM)
8201                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8202                    << (NamedDecl *)M->first << OM->Method->getParent();
8203
8204                Record->setInvalidDecl();
8205              }
8206            }
8207            CXXRecord->completeDefinition(&FinalOverriders);
8208            Completed = true;
8209          }
8210        }
8211      }
8212    }
8213
8214    if (!Completed)
8215      Record->completeDefinition();
8216  } else {
8217    ObjCIvarDecl **ClsFields =
8218      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8219    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8220      ID->setLocEnd(RBrac);
8221      // Add ivar's to class's DeclContext.
8222      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8223        ClsFields[i]->setLexicalDeclContext(ID);
8224        ID->addDecl(ClsFields[i]);
8225      }
8226      // Must enforce the rule that ivars in the base classes may not be
8227      // duplicates.
8228      if (ID->getSuperClass())
8229        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8230    } else if (ObjCImplementationDecl *IMPDecl =
8231                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8232      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8233      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8234        // Ivar declared in @implementation never belongs to the implementation.
8235        // Only it is in implementation's lexical context.
8236        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8237      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8238    } else if (ObjCCategoryDecl *CDecl =
8239                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8240      // case of ivars in class extension; all other cases have been
8241      // reported as errors elsewhere.
8242      // FIXME. Class extension does not have a LocEnd field.
8243      // CDecl->setLocEnd(RBrac);
8244      // Add ivar's to class extension's DeclContext.
8245      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8246        ClsFields[i]->setLexicalDeclContext(CDecl);
8247        CDecl->addDecl(ClsFields[i]);
8248      }
8249    }
8250  }
8251
8252  if (Attr)
8253    ProcessDeclAttributeList(S, Record, Attr);
8254
8255  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8256  // set the visibility of this record.
8257  if (Record && !Record->getDeclContext()->isRecord())
8258    AddPushedVisibilityAttribute(Record);
8259}
8260
8261/// \brief Determine whether the given integral value is representable within
8262/// the given type T.
8263static bool isRepresentableIntegerValue(ASTContext &Context,
8264                                        llvm::APSInt &Value,
8265                                        QualType T) {
8266  assert(T->isIntegralType(Context) && "Integral type required!");
8267  unsigned BitWidth = Context.getIntWidth(T);
8268
8269  if (Value.isUnsigned() || Value.isNonNegative()) {
8270    if (T->isSignedIntegerType())
8271      --BitWidth;
8272    return Value.getActiveBits() <= BitWidth;
8273  }
8274  return Value.getMinSignedBits() <= BitWidth;
8275}
8276
8277// \brief Given an integral type, return the next larger integral type
8278// (or a NULL type of no such type exists).
8279static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8280  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8281  // enum checking below.
8282  assert(T->isIntegralType(Context) && "Integral type required!");
8283  const unsigned NumTypes = 4;
8284  QualType SignedIntegralTypes[NumTypes] = {
8285    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8286  };
8287  QualType UnsignedIntegralTypes[NumTypes] = {
8288    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8289    Context.UnsignedLongLongTy
8290  };
8291
8292  unsigned BitWidth = Context.getTypeSize(T);
8293  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8294                                            : UnsignedIntegralTypes;
8295  for (unsigned I = 0; I != NumTypes; ++I)
8296    if (Context.getTypeSize(Types[I]) > BitWidth)
8297      return Types[I];
8298
8299  return QualType();
8300}
8301
8302EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8303                                          EnumConstantDecl *LastEnumConst,
8304                                          SourceLocation IdLoc,
8305                                          IdentifierInfo *Id,
8306                                          Expr *Val) {
8307  unsigned IntWidth = Context.Target.getIntWidth();
8308  llvm::APSInt EnumVal(IntWidth);
8309  QualType EltTy;
8310
8311  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8312    Val = 0;
8313
8314  if (Val) {
8315    if (Enum->isDependentType() || Val->isTypeDependent())
8316      EltTy = Context.DependentTy;
8317    else {
8318      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8319      SourceLocation ExpLoc;
8320      if (!Val->isValueDependent() &&
8321          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8322        Val = 0;
8323      } else {
8324        if (!getLangOptions().CPlusPlus) {
8325          // C99 6.7.2.2p2:
8326          //   The expression that defines the value of an enumeration constant
8327          //   shall be an integer constant expression that has a value
8328          //   representable as an int.
8329
8330          // Complain if the value is not representable in an int.
8331          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8332            Diag(IdLoc, diag::ext_enum_value_not_int)
8333              << EnumVal.toString(10) << Val->getSourceRange()
8334              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8335          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8336            // Force the type of the expression to 'int'.
8337            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8338          }
8339        }
8340
8341        if (Enum->isFixed()) {
8342          EltTy = Enum->getIntegerType();
8343
8344          // C++0x [dcl.enum]p5:
8345          //   ... if the initializing value of an enumerator cannot be
8346          //   represented by the underlying type, the program is ill-formed.
8347          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8348            if (getLangOptions().Microsoft) {
8349              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8350              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8351            } else
8352              Diag(IdLoc, diag::err_enumerator_too_large)
8353                << EltTy;
8354          } else
8355            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8356        }
8357        else {
8358          // C++0x [dcl.enum]p5:
8359          //   If the underlying type is not fixed, the type of each enumerator
8360          //   is the type of its initializing value:
8361          //     - If an initializer is specified for an enumerator, the
8362          //       initializing value has the same type as the expression.
8363          EltTy = Val->getType();
8364        }
8365      }
8366    }
8367  }
8368
8369  if (!Val) {
8370    if (Enum->isDependentType())
8371      EltTy = Context.DependentTy;
8372    else if (!LastEnumConst) {
8373      // C++0x [dcl.enum]p5:
8374      //   If the underlying type is not fixed, the type of each enumerator
8375      //   is the type of its initializing value:
8376      //     - If no initializer is specified for the first enumerator, the
8377      //       initializing value has an unspecified integral type.
8378      //
8379      // GCC uses 'int' for its unspecified integral type, as does
8380      // C99 6.7.2.2p3.
8381      if (Enum->isFixed()) {
8382        EltTy = Enum->getIntegerType();
8383      }
8384      else {
8385        EltTy = Context.IntTy;
8386      }
8387    } else {
8388      // Assign the last value + 1.
8389      EnumVal = LastEnumConst->getInitVal();
8390      ++EnumVal;
8391      EltTy = LastEnumConst->getType();
8392
8393      // Check for overflow on increment.
8394      if (EnumVal < LastEnumConst->getInitVal()) {
8395        // C++0x [dcl.enum]p5:
8396        //   If the underlying type is not fixed, the type of each enumerator
8397        //   is the type of its initializing value:
8398        //
8399        //     - Otherwise the type of the initializing value is the same as
8400        //       the type of the initializing value of the preceding enumerator
8401        //       unless the incremented value is not representable in that type,
8402        //       in which case the type is an unspecified integral type
8403        //       sufficient to contain the incremented value. If no such type
8404        //       exists, the program is ill-formed.
8405        QualType T = getNextLargerIntegralType(Context, EltTy);
8406        if (T.isNull() || Enum->isFixed()) {
8407          // There is no integral type larger enough to represent this
8408          // value. Complain, then allow the value to wrap around.
8409          EnumVal = LastEnumConst->getInitVal();
8410          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8411          ++EnumVal;
8412          if (Enum->isFixed())
8413            // When the underlying type is fixed, this is ill-formed.
8414            Diag(IdLoc, diag::err_enumerator_wrapped)
8415              << EnumVal.toString(10)
8416              << EltTy;
8417          else
8418            Diag(IdLoc, diag::warn_enumerator_too_large)
8419              << EnumVal.toString(10);
8420        } else {
8421          EltTy = T;
8422        }
8423
8424        // Retrieve the last enumerator's value, extent that type to the
8425        // type that is supposed to be large enough to represent the incremented
8426        // value, then increment.
8427        EnumVal = LastEnumConst->getInitVal();
8428        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8429        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8430        ++EnumVal;
8431
8432        // If we're not in C++, diagnose the overflow of enumerator values,
8433        // which in C99 means that the enumerator value is not representable in
8434        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8435        // permits enumerator values that are representable in some larger
8436        // integral type.
8437        if (!getLangOptions().CPlusPlus && !T.isNull())
8438          Diag(IdLoc, diag::warn_enum_value_overflow);
8439      } else if (!getLangOptions().CPlusPlus &&
8440                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8441        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8442        Diag(IdLoc, diag::ext_enum_value_not_int)
8443          << EnumVal.toString(10) << 1;
8444      }
8445    }
8446  }
8447
8448  if (!EltTy->isDependentType()) {
8449    // Make the enumerator value match the signedness and size of the
8450    // enumerator's type.
8451    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8452    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8453  }
8454
8455  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8456                                  Val, EnumVal);
8457}
8458
8459
8460Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8461                              SourceLocation IdLoc, IdentifierInfo *Id,
8462                              AttributeList *Attr,
8463                              SourceLocation EqualLoc, ExprTy *val) {
8464  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8465  EnumConstantDecl *LastEnumConst =
8466    cast_or_null<EnumConstantDecl>(lastEnumConst);
8467  Expr *Val = static_cast<Expr*>(val);
8468
8469  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8470  // we find one that is.
8471  S = getNonFieldDeclScope(S);
8472
8473  // Verify that there isn't already something declared with this name in this
8474  // scope.
8475  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8476                                         ForRedeclaration);
8477  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8478    // Maybe we will complain about the shadowed template parameter.
8479    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8480    // Just pretend that we didn't see the previous declaration.
8481    PrevDecl = 0;
8482  }
8483
8484  if (PrevDecl) {
8485    // When in C++, we may get a TagDecl with the same name; in this case the
8486    // enum constant will 'hide' the tag.
8487    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8488           "Received TagDecl when not in C++!");
8489    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8490      if (isa<EnumConstantDecl>(PrevDecl))
8491        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8492      else
8493        Diag(IdLoc, diag::err_redefinition) << Id;
8494      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8495      return 0;
8496    }
8497  }
8498
8499  // C++ [class.mem]p13:
8500  //   If T is the name of a class, then each of the following shall have a
8501  //   name different from T:
8502  //     - every enumerator of every member of class T that is an enumerated
8503  //       type
8504  if (CXXRecordDecl *Record
8505                      = dyn_cast<CXXRecordDecl>(
8506                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8507    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8508      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8509
8510  EnumConstantDecl *New =
8511    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8512
8513  if (New) {
8514    // Process attributes.
8515    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8516
8517    // Register this decl in the current scope stack.
8518    New->setAccess(TheEnumDecl->getAccess());
8519    PushOnScopeChains(New, S);
8520  }
8521
8522  return New;
8523}
8524
8525void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8526                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8527                         Decl **Elements, unsigned NumElements,
8528                         Scope *S, AttributeList *Attr) {
8529  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8530  QualType EnumType = Context.getTypeDeclType(Enum);
8531
8532  if (Attr)
8533    ProcessDeclAttributeList(S, Enum, Attr);
8534
8535  if (Enum->isDependentType()) {
8536    for (unsigned i = 0; i != NumElements; ++i) {
8537      EnumConstantDecl *ECD =
8538        cast_or_null<EnumConstantDecl>(Elements[i]);
8539      if (!ECD) continue;
8540
8541      ECD->setType(EnumType);
8542    }
8543
8544    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8545    return;
8546  }
8547
8548  // TODO: If the result value doesn't fit in an int, it must be a long or long
8549  // long value.  ISO C does not support this, but GCC does as an extension,
8550  // emit a warning.
8551  unsigned IntWidth = Context.Target.getIntWidth();
8552  unsigned CharWidth = Context.Target.getCharWidth();
8553  unsigned ShortWidth = Context.Target.getShortWidth();
8554
8555  // Verify that all the values are okay, compute the size of the values, and
8556  // reverse the list.
8557  unsigned NumNegativeBits = 0;
8558  unsigned NumPositiveBits = 0;
8559
8560  // Keep track of whether all elements have type int.
8561  bool AllElementsInt = true;
8562
8563  for (unsigned i = 0; i != NumElements; ++i) {
8564    EnumConstantDecl *ECD =
8565      cast_or_null<EnumConstantDecl>(Elements[i]);
8566    if (!ECD) continue;  // Already issued a diagnostic.
8567
8568    const llvm::APSInt &InitVal = ECD->getInitVal();
8569
8570    // Keep track of the size of positive and negative values.
8571    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8572      NumPositiveBits = std::max(NumPositiveBits,
8573                                 (unsigned)InitVal.getActiveBits());
8574    else
8575      NumNegativeBits = std::max(NumNegativeBits,
8576                                 (unsigned)InitVal.getMinSignedBits());
8577
8578    // Keep track of whether every enum element has type int (very commmon).
8579    if (AllElementsInt)
8580      AllElementsInt = ECD->getType() == Context.IntTy;
8581  }
8582
8583  // Figure out the type that should be used for this enum.
8584  QualType BestType;
8585  unsigned BestWidth;
8586
8587  // C++0x N3000 [conv.prom]p3:
8588  //   An rvalue of an unscoped enumeration type whose underlying
8589  //   type is not fixed can be converted to an rvalue of the first
8590  //   of the following types that can represent all the values of
8591  //   the enumeration: int, unsigned int, long int, unsigned long
8592  //   int, long long int, or unsigned long long int.
8593  // C99 6.4.4.3p2:
8594  //   An identifier declared as an enumeration constant has type int.
8595  // The C99 rule is modified by a gcc extension
8596  QualType BestPromotionType;
8597
8598  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8599  // -fshort-enums is the equivalent to specifying the packed attribute on all
8600  // enum definitions.
8601  if (LangOpts.ShortEnums)
8602    Packed = true;
8603
8604  if (Enum->isFixed()) {
8605    BestType = BestPromotionType = Enum->getIntegerType();
8606    // We don't need to set BestWidth, because BestType is going to be the type
8607    // of the enumerators, but we do anyway because otherwise some compilers
8608    // warn that it might be used uninitialized.
8609    BestWidth = CharWidth;
8610  }
8611  else if (NumNegativeBits) {
8612    // If there is a negative value, figure out the smallest integer type (of
8613    // int/long/longlong) that fits.
8614    // If it's packed, check also if it fits a char or a short.
8615    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8616      BestType = Context.SignedCharTy;
8617      BestWidth = CharWidth;
8618    } else if (Packed && NumNegativeBits <= ShortWidth &&
8619               NumPositiveBits < ShortWidth) {
8620      BestType = Context.ShortTy;
8621      BestWidth = ShortWidth;
8622    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8623      BestType = Context.IntTy;
8624      BestWidth = IntWidth;
8625    } else {
8626      BestWidth = Context.Target.getLongWidth();
8627
8628      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8629        BestType = Context.LongTy;
8630      } else {
8631        BestWidth = Context.Target.getLongLongWidth();
8632
8633        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8634          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8635        BestType = Context.LongLongTy;
8636      }
8637    }
8638    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8639  } else {
8640    // If there is no negative value, figure out the smallest type that fits
8641    // all of the enumerator values.
8642    // If it's packed, check also if it fits a char or a short.
8643    if (Packed && NumPositiveBits <= CharWidth) {
8644      BestType = Context.UnsignedCharTy;
8645      BestPromotionType = Context.IntTy;
8646      BestWidth = CharWidth;
8647    } else if (Packed && NumPositiveBits <= ShortWidth) {
8648      BestType = Context.UnsignedShortTy;
8649      BestPromotionType = Context.IntTy;
8650      BestWidth = ShortWidth;
8651    } else if (NumPositiveBits <= IntWidth) {
8652      BestType = Context.UnsignedIntTy;
8653      BestWidth = IntWidth;
8654      BestPromotionType
8655        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8656                           ? Context.UnsignedIntTy : Context.IntTy;
8657    } else if (NumPositiveBits <=
8658               (BestWidth = Context.Target.getLongWidth())) {
8659      BestType = Context.UnsignedLongTy;
8660      BestPromotionType
8661        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8662                           ? Context.UnsignedLongTy : Context.LongTy;
8663    } else {
8664      BestWidth = Context.Target.getLongLongWidth();
8665      assert(NumPositiveBits <= BestWidth &&
8666             "How could an initializer get larger than ULL?");
8667      BestType = Context.UnsignedLongLongTy;
8668      BestPromotionType
8669        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8670                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8671    }
8672  }
8673
8674  // Loop over all of the enumerator constants, changing their types to match
8675  // the type of the enum if needed.
8676  for (unsigned i = 0; i != NumElements; ++i) {
8677    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8678    if (!ECD) continue;  // Already issued a diagnostic.
8679
8680    // Standard C says the enumerators have int type, but we allow, as an
8681    // extension, the enumerators to be larger than int size.  If each
8682    // enumerator value fits in an int, type it as an int, otherwise type it the
8683    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8684    // that X has type 'int', not 'unsigned'.
8685
8686    // Determine whether the value fits into an int.
8687    llvm::APSInt InitVal = ECD->getInitVal();
8688
8689    // If it fits into an integer type, force it.  Otherwise force it to match
8690    // the enum decl type.
8691    QualType NewTy;
8692    unsigned NewWidth;
8693    bool NewSign;
8694    if (!getLangOptions().CPlusPlus &&
8695        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8696      NewTy = Context.IntTy;
8697      NewWidth = IntWidth;
8698      NewSign = true;
8699    } else if (ECD->getType() == BestType) {
8700      // Already the right type!
8701      if (getLangOptions().CPlusPlus)
8702        // C++ [dcl.enum]p4: Following the closing brace of an
8703        // enum-specifier, each enumerator has the type of its
8704        // enumeration.
8705        ECD->setType(EnumType);
8706      continue;
8707    } else {
8708      NewTy = BestType;
8709      NewWidth = BestWidth;
8710      NewSign = BestType->isSignedIntegerType();
8711    }
8712
8713    // Adjust the APSInt value.
8714    InitVal = InitVal.extOrTrunc(NewWidth);
8715    InitVal.setIsSigned(NewSign);
8716    ECD->setInitVal(InitVal);
8717
8718    // Adjust the Expr initializer and type.
8719    if (ECD->getInitExpr() &&
8720	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8721      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8722                                                CK_IntegralCast,
8723                                                ECD->getInitExpr(),
8724                                                /*base paths*/ 0,
8725                                                VK_RValue));
8726    if (getLangOptions().CPlusPlus)
8727      // C++ [dcl.enum]p4: Following the closing brace of an
8728      // enum-specifier, each enumerator has the type of its
8729      // enumeration.
8730      ECD->setType(EnumType);
8731    else
8732      ECD->setType(NewTy);
8733  }
8734
8735  Enum->completeDefinition(BestType, BestPromotionType,
8736                           NumPositiveBits, NumNegativeBits);
8737}
8738
8739Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8740                                  SourceLocation StartLoc,
8741                                  SourceLocation EndLoc) {
8742  StringLiteral *AsmString = cast<StringLiteral>(expr);
8743
8744  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8745                                                   AsmString, StartLoc,
8746                                                   EndLoc);
8747  CurContext->addDecl(New);
8748  return New;
8749}
8750
8751void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8752                             SourceLocation PragmaLoc,
8753                             SourceLocation NameLoc) {
8754  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8755
8756  if (PrevDecl) {
8757    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8758  } else {
8759    (void)WeakUndeclaredIdentifiers.insert(
8760      std::pair<IdentifierInfo*,WeakInfo>
8761        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8762  }
8763}
8764
8765void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8766                                IdentifierInfo* AliasName,
8767                                SourceLocation PragmaLoc,
8768                                SourceLocation NameLoc,
8769                                SourceLocation AliasNameLoc) {
8770  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8771                                    LookupOrdinaryName);
8772  WeakInfo W = WeakInfo(Name, NameLoc);
8773
8774  if (PrevDecl) {
8775    if (!PrevDecl->hasAttr<AliasAttr>())
8776      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8777        DeclApplyPragmaWeak(TUScope, ND, W);
8778  } else {
8779    (void)WeakUndeclaredIdentifiers.insert(
8780      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8781  }
8782}
8783