SemaDecl.cpp revision a83f7ed3de1ce98d633dfb6bb223bb7711893dce
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS))
75    return 0;
76
77  LookupResult Result
78    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
79
80  NamedDecl *IIDecl = 0;
81  switch (Result.getKind()) {
82  case LookupResult::NotFound:
83  case LookupResult::FoundOverloaded:
84    return 0;
85
86  case LookupResult::AmbiguousBaseSubobjectTypes:
87  case LookupResult::AmbiguousBaseSubobjects:
88  case LookupResult::AmbiguousReference: {
89    // Look to see if we have a type anywhere in the list of results.
90    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
91         Res != ResEnd; ++Res) {
92      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
93        if (!IIDecl ||
94            (*Res)->getLocation().getRawEncoding() <
95              IIDecl->getLocation().getRawEncoding())
96          IIDecl = *Res;
97      }
98    }
99
100    if (!IIDecl) {
101      // None of the entities we found is a type, so there is no way
102      // to even assume that the result is a type. In this case, don't
103      // complain about the ambiguity. The parser will either try to
104      // perform this lookup again (e.g., as an object name), which
105      // will produce the ambiguity, or will complain that it expected
106      // a type name.
107      Result.Destroy();
108      return 0;
109    }
110
111    // We found a type within the ambiguous lookup; diagnose the
112    // ambiguity and then return that type. This might be the right
113    // answer, or it might not be, but it suppresses any attempt to
114    // perform the name lookup again.
115    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
116    break;
117  }
118
119  case LookupResult::Found:
120    IIDecl = Result.getAsDecl();
121    break;
122  }
123
124  if (IIDecl) {
125    QualType T;
126
127    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
128      // Check whether we can use this type
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      if (getLangOptions().CPlusPlus) {
132        // C++ [temp.local]p2:
133        //   Within the scope of a class template specialization or
134        //   partial specialization, when the injected-class-name is
135        //   not followed by a <, it is equivalent to the
136        //   injected-class-name followed by the template-argument s
137        //   of the class template specialization or partial
138        //   specialization enclosed in <>.
139        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
140          if (RD->isInjectedClassName())
141            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
142              T = Template->getInjectedClassNameType(Context);
143      }
144
145      if (T.isNull())
146        T = Context.getTypeDeclType(TD);
147    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
148      // Check whether we can use this interface.
149      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151      T = Context.getObjCInterfaceType(IDecl);
152    } else
153      return 0;
154
155    if (SS)
156      T = getQualifiedNameType(*SS, T);
157
158    return T.getAsOpaquePtr();
159  }
160
161  return 0;
162}
163
164/// isTagName() - This method is called *for error recovery purposes only*
165/// to determine if the specified name is a valid tag name ("struct foo").  If
166/// so, this returns the TST for the tag corresponding to it (TST_enum,
167/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
168/// where the user forgot to specify the tag.
169DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
170  // Do a tag name lookup in this scope.
171  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
172  if (R.getKind() == LookupResult::Found)
173    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
174      switch (TD->getTagKind()) {
175      case TagDecl::TK_struct: return DeclSpec::TST_struct;
176      case TagDecl::TK_union:  return DeclSpec::TST_union;
177      case TagDecl::TK_class:  return DeclSpec::TST_class;
178      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
179      }
180    }
181
182  return DeclSpec::TST_unspecified;
183}
184
185
186
187DeclContext *Sema::getContainingDC(DeclContext *DC) {
188  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
189    // A C++ out-of-line method will return to the file declaration context.
190    if (MD->isOutOfLine())
191      return MD->getLexicalDeclContext();
192
193    // A C++ inline method is parsed *after* the topmost class it was declared
194    // in is fully parsed (it's "complete").
195    // The parsing of a C++ inline method happens at the declaration context of
196    // the topmost (non-nested) class it is lexically declared in.
197    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
198    DC = MD->getParent();
199    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
200      DC = RD;
201
202    // Return the declaration context of the topmost class the inline method is
203    // declared in.
204    return DC;
205  }
206
207  if (isa<ObjCMethodDecl>(DC))
208    return Context.getTranslationUnitDecl();
209
210  return DC->getLexicalParent();
211}
212
213void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
214  assert(getContainingDC(DC) == CurContext &&
215      "The next DeclContext should be lexically contained in the current one.");
216  CurContext = DC;
217  S->setEntity(DC);
218}
219
220void Sema::PopDeclContext() {
221  assert(CurContext && "DeclContext imbalance!");
222
223  CurContext = getContainingDC(CurContext);
224}
225
226/// EnterDeclaratorContext - Used when we must lookup names in the context
227/// of a declarator's nested name specifier.
228void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
229  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
230  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
231  CurContext = DC;
232  assert(CurContext && "No context?");
233  S->setEntity(CurContext);
234}
235
236void Sema::ExitDeclaratorContext(Scope *S) {
237  S->setEntity(PreDeclaratorDC);
238  PreDeclaratorDC = 0;
239
240  // Reset CurContext to the nearest enclosing context.
241  while (!S->getEntity() && S->getParent())
242    S = S->getParent();
243  CurContext = static_cast<DeclContext*>(S->getEntity());
244  assert(CurContext && "No context?");
245}
246
247/// \brief Determine whether we allow overloading of the function
248/// PrevDecl with another declaration.
249///
250/// This routine determines whether overloading is possible, not
251/// whether some new function is actually an overload. It will return
252/// true in C++ (where we can always provide overloads) or, as an
253/// extension, in C when the previous function is already an
254/// overloaded function declaration or has the "overloadable"
255/// attribute.
256static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
257  if (Context.getLangOptions().CPlusPlus)
258    return true;
259
260  if (isa<OverloadedFunctionDecl>(PrevDecl))
261    return true;
262
263  return PrevDecl->getAttr<OverloadableAttr>() != 0;
264}
265
266/// Add this decl to the scope shadowed decl chains.
267void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
268  // Move up the scope chain until we find the nearest enclosing
269  // non-transparent context. The declaration will be introduced into this
270  // scope.
271  while (S->getEntity() &&
272         ((DeclContext *)S->getEntity())->isTransparentContext())
273    S = S->getParent();
274
275  S->AddDecl(DeclPtrTy::make(D));
276
277  // Add scoped declarations into their context, so that they can be
278  // found later. Declarations without a context won't be inserted
279  // into any context.
280  CurContext->addDecl(D);
281
282  // C++ [basic.scope]p4:
283  //   -- exactly one declaration shall declare a class name or
284  //   enumeration name that is not a typedef name and the other
285  //   declarations shall all refer to the same object or
286  //   enumerator, or all refer to functions and function templates;
287  //   in this case the class name or enumeration name is hidden.
288  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
289    // We are pushing the name of a tag (enum or class).
290    if (CurContext->getLookupContext()
291          == TD->getDeclContext()->getLookupContext()) {
292      // We're pushing the tag into the current context, which might
293      // require some reshuffling in the identifier resolver.
294      IdentifierResolver::iterator
295        I = IdResolver.begin(TD->getDeclName()),
296        IEnd = IdResolver.end();
297      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
298        NamedDecl *PrevDecl = *I;
299        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
300             PrevDecl = *I, ++I) {
301          if (TD->declarationReplaces(*I)) {
302            // This is a redeclaration. Remove it from the chain and
303            // break out, so that we'll add in the shadowed
304            // declaration.
305            S->RemoveDecl(DeclPtrTy::make(*I));
306            if (PrevDecl == *I) {
307              IdResolver.RemoveDecl(*I);
308              IdResolver.AddDecl(TD);
309              return;
310            } else {
311              IdResolver.RemoveDecl(*I);
312              break;
313            }
314          }
315        }
316
317        // There is already a declaration with the same name in the same
318        // scope, which is not a tag declaration. It must be found
319        // before we find the new declaration, so insert the new
320        // declaration at the end of the chain.
321        IdResolver.AddShadowedDecl(TD, PrevDecl);
322
323        return;
324      }
325    }
326  } else if ((isa<FunctionDecl>(D) &&
327              AllowOverloadingOfFunction(D, Context)) ||
328             isa<FunctionTemplateDecl>(D)) {
329    // We are pushing the name of a function or function template,
330    // which might be an overloaded name.
331    IdentifierResolver::iterator Redecl
332      = std::find_if(IdResolver.begin(D->getDeclName()),
333                     IdResolver.end(),
334                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
335                                  D));
336    if (Redecl != IdResolver.end() &&
337        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
338      // There is already a declaration of a function on our
339      // IdResolver chain. Replace it with this declaration.
340      S->RemoveDecl(DeclPtrTy::make(*Redecl));
341      IdResolver.RemoveDecl(*Redecl);
342    }
343  } else if (isa<ObjCInterfaceDecl>(D)) {
344    // We're pushing an Objective-C interface into the current
345    // context. If there is already an alias declaration, remove it first.
346    for (IdentifierResolver::iterator
347           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
348         I != IEnd; ++I) {
349      if (isa<ObjCCompatibleAliasDecl>(*I)) {
350        S->RemoveDecl(DeclPtrTy::make(*I));
351        IdResolver.RemoveDecl(*I);
352        break;
353      }
354    }
355  }
356
357  IdResolver.AddDecl(D);
358}
359
360void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
361  if (S->decl_empty()) return;
362  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
363	 "Scope shouldn't contain decls!");
364
365  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
366       I != E; ++I) {
367    Decl *TmpD = (*I).getAs<Decl>();
368    assert(TmpD && "This decl didn't get pushed??");
369
370    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
371    NamedDecl *D = cast<NamedDecl>(TmpD);
372
373    if (!D->getDeclName()) continue;
374
375    // Remove this name from our lexical scope.
376    IdResolver.RemoveDecl(D);
377  }
378}
379
380/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
381/// return 0 if one not found.
382ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
383  // The third "scope" argument is 0 since we aren't enabling lazy built-in
384  // creation from this context.
385  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
386
387  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
388}
389
390/// getNonFieldDeclScope - Retrieves the innermost scope, starting
391/// from S, where a non-field would be declared. This routine copes
392/// with the difference between C and C++ scoping rules in structs and
393/// unions. For example, the following code is well-formed in C but
394/// ill-formed in C++:
395/// @code
396/// struct S6 {
397///   enum { BAR } e;
398/// };
399///
400/// void test_S6() {
401///   struct S6 a;
402///   a.e = BAR;
403/// }
404/// @endcode
405/// For the declaration of BAR, this routine will return a different
406/// scope. The scope S will be the scope of the unnamed enumeration
407/// within S6. In C++, this routine will return the scope associated
408/// with S6, because the enumeration's scope is a transparent
409/// context but structures can contain non-field names. In C, this
410/// routine will return the translation unit scope, since the
411/// enumeration's scope is a transparent context and structures cannot
412/// contain non-field names.
413Scope *Sema::getNonFieldDeclScope(Scope *S) {
414  while (((S->getFlags() & Scope::DeclScope) == 0) ||
415         (S->getEntity() &&
416          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
417         (S->isClassScope() && !getLangOptions().CPlusPlus))
418    S = S->getParent();
419  return S;
420}
421
422void Sema::InitBuiltinVaListType() {
423  if (!Context.getBuiltinVaListType().isNull())
424    return;
425
426  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
427  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
428  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
429  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
430}
431
432/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
433/// file scope.  lazily create a decl for it. ForRedeclaration is true
434/// if we're creating this built-in in anticipation of redeclaring the
435/// built-in.
436NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
437                                     Scope *S, bool ForRedeclaration,
438                                     SourceLocation Loc) {
439  Builtin::ID BID = (Builtin::ID)bid;
440
441  if (Context.BuiltinInfo.hasVAListUse(BID))
442    InitBuiltinVaListType();
443
444  ASTContext::GetBuiltinTypeError Error;
445  QualType R = Context.GetBuiltinType(BID, Error);
446  switch (Error) {
447  case ASTContext::GE_None:
448    // Okay
449    break;
450
451  case ASTContext::GE_Missing_stdio:
452    if (ForRedeclaration)
453      Diag(Loc, diag::err_implicit_decl_requires_stdio)
454        << Context.BuiltinInfo.GetName(BID);
455    return 0;
456
457  case ASTContext::GE_Missing_setjmp:
458    if (ForRedeclaration)
459      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
460        << Context.BuiltinInfo.GetName(BID);
461    return 0;
462  }
463
464  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
465    Diag(Loc, diag::ext_implicit_lib_function_decl)
466      << Context.BuiltinInfo.GetName(BID)
467      << R;
468    if (Context.BuiltinInfo.getHeaderName(BID) &&
469        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
470          != Diagnostic::Ignored)
471      Diag(Loc, diag::note_please_include_header)
472        << Context.BuiltinInfo.getHeaderName(BID)
473        << Context.BuiltinInfo.GetName(BID);
474  }
475
476  FunctionDecl *New = FunctionDecl::Create(Context,
477                                           Context.getTranslationUnitDecl(),
478                                           Loc, II, R,
479                                           FunctionDecl::Extern, false,
480                                           /*hasPrototype=*/true);
481  New->setImplicit();
482
483  // Create Decl objects for each parameter, adding them to the
484  // FunctionDecl.
485  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
486    llvm::SmallVector<ParmVarDecl*, 16> Params;
487    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
488      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
489                                           FT->getArgType(i), VarDecl::None, 0));
490    New->setParams(Context, Params.data(), Params.size());
491  }
492
493  AddKnownFunctionAttributes(New);
494
495  // TUScope is the translation-unit scope to insert this function into.
496  // FIXME: This is hideous. We need to teach PushOnScopeChains to
497  // relate Scopes to DeclContexts, and probably eliminate CurContext
498  // entirely, but we're not there yet.
499  DeclContext *SavedContext = CurContext;
500  CurContext = Context.getTranslationUnitDecl();
501  PushOnScopeChains(New, TUScope);
502  CurContext = SavedContext;
503  return New;
504}
505
506/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
507/// everything from the standard library is defined.
508NamespaceDecl *Sema::GetStdNamespace() {
509  if (!StdNamespace) {
510    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
511    DeclContext *Global = Context.getTranslationUnitDecl();
512    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
513    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
514  }
515  return StdNamespace;
516}
517
518/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
519/// same name and scope as a previous declaration 'Old'.  Figure out
520/// how to resolve this situation, merging decls or emitting
521/// diagnostics as appropriate. If there was an error, set New to be invalid.
522///
523void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
524  // If either decl is known invalid already, set the new one to be invalid and
525  // don't bother doing any merging checks.
526  if (New->isInvalidDecl() || OldD->isInvalidDecl())
527    return New->setInvalidDecl();
528
529  // Allow multiple definitions for ObjC built-in typedefs.
530  // FIXME: Verify the underlying types are equivalent!
531  if (getLangOptions().ObjC1) {
532    const IdentifierInfo *TypeID = New->getIdentifier();
533    switch (TypeID->getLength()) {
534    default: break;
535    case 2:
536      if (!TypeID->isStr("id"))
537        break;
538      // Install the built-in type for 'id', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
540      return;
541    case 5:
542      if (!TypeID->isStr("Class"))
543        break;
544      // Install the built-in type for 'Class', ignoring the current definition.
545      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
546      return;
547    case 3:
548      if (!TypeID->isStr("SEL"))
549        break;
550      Context.setObjCSelType(Context.getTypeDeclType(New));
551      return;
552    case 8:
553      if (!TypeID->isStr("Protocol"))
554        break;
555      Context.setObjCProtoType(New->getUnderlyingType());
556      return;
557    }
558    // Fall through - the typedef name was not a builtin type.
559  }
560  // Verify the old decl was also a type.
561  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
562  if (!Old) {
563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
564      << New->getDeclName();
565    if (OldD->getLocation().isValid())
566      Diag(OldD->getLocation(), diag::note_previous_definition);
567    return New->setInvalidDecl();
568  }
569
570  // Determine the "old" type we'll use for checking and diagnostics.
571  QualType OldType;
572  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
573    OldType = OldTypedef->getUnderlyingType();
574  else
575    OldType = Context.getTypeDeclType(Old);
576
577  // If the typedef types are not identical, reject them in all languages and
578  // with any extensions enabled.
579
580  if (OldType != New->getUnderlyingType() &&
581      Context.getCanonicalType(OldType) !=
582      Context.getCanonicalType(New->getUnderlyingType())) {
583    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
584      << New->getUnderlyingType() << OldType;
585    if (Old->getLocation().isValid())
586      Diag(Old->getLocation(), diag::note_previous_definition);
587    return New->setInvalidDecl();
588  }
589
590  if (getLangOptions().Microsoft)
591    return;
592
593  // C++ [dcl.typedef]p2:
594  //   In a given non-class scope, a typedef specifier can be used to
595  //   redefine the name of any type declared in that scope to refer
596  //   to the type to which it already refers.
597  if (getLangOptions().CPlusPlus) {
598    if (!isa<CXXRecordDecl>(CurContext))
599      return;
600    Diag(New->getLocation(), diag::err_redefinition)
601      << New->getDeclName();
602    Diag(Old->getLocation(), diag::note_previous_definition);
603    return New->setInvalidDecl();
604  }
605
606  // If we have a redefinition of a typedef in C, emit a warning.  This warning
607  // is normally mapped to an error, but can be controlled with
608  // -Wtypedef-redefinition.  If either the original or the redefinition is
609  // in a system header, don't emit this for compatibility with GCC.
610  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
611      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
612       Context.getSourceManager().isInSystemHeader(New->getLocation())))
613    return;
614
615  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
616    << New->getDeclName();
617  Diag(Old->getLocation(), diag::note_previous_definition);
618  return;
619}
620
621/// DeclhasAttr - returns true if decl Declaration already has the target
622/// attribute.
623static bool
624DeclHasAttr(const Decl *decl, const Attr *target) {
625  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
626    if (attr->getKind() == target->getKind())
627      return true;
628
629  return false;
630}
631
632/// MergeAttributes - append attributes from the Old decl to the New one.
633static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
634  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
635    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
636      Attr *NewAttr = attr->clone(C);
637      NewAttr->setInherited(true);
638      New->addAttr(NewAttr);
639    }
640  }
641}
642
643/// Used in MergeFunctionDecl to keep track of function parameters in
644/// C.
645struct GNUCompatibleParamWarning {
646  ParmVarDecl *OldParm;
647  ParmVarDecl *NewParm;
648  QualType PromotedType;
649};
650
651/// MergeFunctionDecl - We just parsed a function 'New' from
652/// declarator D which has the same name and scope as a previous
653/// declaration 'Old'.  Figure out how to resolve this situation,
654/// merging decls or emitting diagnostics as appropriate.
655///
656/// In C++, New and Old must be declarations that are not
657/// overloaded. Use IsOverload to determine whether New and Old are
658/// overloaded, and to select the Old declaration that New should be
659/// merged with.
660///
661/// Returns true if there was an error, false otherwise.
662bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
663  assert(!isa<OverloadedFunctionDecl>(OldD) &&
664         "Cannot merge with an overloaded function declaration");
665
666  // Verify the old decl was also a function.
667  FunctionDecl *Old = 0;
668  if (FunctionTemplateDecl *OldFunctionTemplate
669        = dyn_cast<FunctionTemplateDecl>(OldD))
670    Old = OldFunctionTemplate->getTemplatedDecl();
671  else
672    Old = dyn_cast<FunctionDecl>(OldD);
673  if (!Old) {
674    Diag(New->getLocation(), diag::err_redefinition_different_kind)
675      << New->getDeclName();
676    Diag(OldD->getLocation(), diag::note_previous_definition);
677    return true;
678  }
679
680  // Determine whether the previous declaration was a definition,
681  // implicit declaration, or a declaration.
682  diag::kind PrevDiag;
683  if (Old->isThisDeclarationADefinition())
684    PrevDiag = diag::note_previous_definition;
685  else if (Old->isImplicit())
686    PrevDiag = diag::note_previous_implicit_declaration;
687  else
688    PrevDiag = diag::note_previous_declaration;
689
690  QualType OldQType = Context.getCanonicalType(Old->getType());
691  QualType NewQType = Context.getCanonicalType(New->getType());
692
693  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
694      New->getStorageClass() == FunctionDecl::Static &&
695      Old->getStorageClass() != FunctionDecl::Static) {
696    Diag(New->getLocation(), diag::err_static_non_static)
697      << New;
698    Diag(Old->getLocation(), PrevDiag);
699    return true;
700  }
701
702  if (getLangOptions().CPlusPlus) {
703    // (C++98 13.1p2):
704    //   Certain function declarations cannot be overloaded:
705    //     -- Function declarations that differ only in the return type
706    //        cannot be overloaded.
707    QualType OldReturnType
708      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
709    QualType NewReturnType
710      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
711    if (OldReturnType != NewReturnType) {
712      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
713      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
714      return true;
715    }
716
717    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
718    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
719    if (OldMethod && NewMethod &&
720        NewMethod->getLexicalDeclContext()->isRecord()) {
721      //    -- Member function declarations with the same name and the
722      //       same parameter types cannot be overloaded if any of them
723      //       is a static member function declaration.
724      if (OldMethod->isStatic() || NewMethod->isStatic()) {
725        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
726        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
727        return true;
728      }
729
730      // C++ [class.mem]p1:
731      //   [...] A member shall not be declared twice in the
732      //   member-specification, except that a nested class or member
733      //   class template can be declared and then later defined.
734      unsigned NewDiag;
735      if (isa<CXXConstructorDecl>(OldMethod))
736        NewDiag = diag::err_constructor_redeclared;
737      else if (isa<CXXDestructorDecl>(NewMethod))
738        NewDiag = diag::err_destructor_redeclared;
739      else if (isa<CXXConversionDecl>(NewMethod))
740        NewDiag = diag::err_conv_function_redeclared;
741      else
742        NewDiag = diag::err_member_redeclared;
743
744      Diag(New->getLocation(), NewDiag);
745      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746    }
747
748    // (C++98 8.3.5p3):
749    //   All declarations for a function shall agree exactly in both the
750    //   return type and the parameter-type-list.
751    if (OldQType == NewQType)
752      return MergeCompatibleFunctionDecls(New, Old);
753
754    // Fall through for conflicting redeclarations and redefinitions.
755  }
756
757  // C: Function types need to be compatible, not identical. This handles
758  // duplicate function decls like "void f(int); void f(enum X);" properly.
759  if (!getLangOptions().CPlusPlus &&
760      Context.typesAreCompatible(OldQType, NewQType)) {
761    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
762    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
763    const FunctionProtoType *OldProto = 0;
764    if (isa<FunctionNoProtoType>(NewFuncType) &&
765        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
766      // The old declaration provided a function prototype, but the
767      // new declaration does not. Merge in the prototype.
768      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
769      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
770                                                 OldProto->arg_type_end());
771      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
772                                         ParamTypes.data(), ParamTypes.size(),
773                                         OldProto->isVariadic(),
774                                         OldProto->getTypeQuals());
775      New->setType(NewQType);
776      New->setHasInheritedPrototype();
777
778      // Synthesize a parameter for each argument type.
779      llvm::SmallVector<ParmVarDecl*, 16> Params;
780      for (FunctionProtoType::arg_type_iterator
781             ParamType = OldProto->arg_type_begin(),
782             ParamEnd = OldProto->arg_type_end();
783           ParamType != ParamEnd; ++ParamType) {
784        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
785                                                 SourceLocation(), 0,
786                                                 *ParamType, VarDecl::None,
787                                                 0);
788        Param->setImplicit();
789        Params.push_back(Param);
790      }
791
792      New->setParams(Context, Params.data(), Params.size());
793    }
794
795    return MergeCompatibleFunctionDecls(New, Old);
796  }
797
798  // GNU C permits a K&R definition to follow a prototype declaration
799  // if the declared types of the parameters in the K&R definition
800  // match the types in the prototype declaration, even when the
801  // promoted types of the parameters from the K&R definition differ
802  // from the types in the prototype. GCC then keeps the types from
803  // the prototype.
804  //
805  // If a variadic prototype is followed by a non-variadic K&R definition,
806  // the K&R definition becomes variadic.  This is sort of an edge case, but
807  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
808  // C99 6.9.1p8.
809  if (!getLangOptions().CPlusPlus &&
810      Old->hasPrototype() && !New->hasPrototype() &&
811      New->getType()->getAsFunctionProtoType() &&
812      Old->getNumParams() == New->getNumParams()) {
813    llvm::SmallVector<QualType, 16> ArgTypes;
814    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
815    const FunctionProtoType *OldProto
816      = Old->getType()->getAsFunctionProtoType();
817    const FunctionProtoType *NewProto
818      = New->getType()->getAsFunctionProtoType();
819
820    // Determine whether this is the GNU C extension.
821    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
822                                               NewProto->getResultType());
823    bool LooseCompatible = !MergedReturn.isNull();
824    for (unsigned Idx = 0, End = Old->getNumParams();
825         LooseCompatible && Idx != End; ++Idx) {
826      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
827      ParmVarDecl *NewParm = New->getParamDecl(Idx);
828      if (Context.typesAreCompatible(OldParm->getType(),
829                                     NewProto->getArgType(Idx))) {
830        ArgTypes.push_back(NewParm->getType());
831      } else if (Context.typesAreCompatible(OldParm->getType(),
832                                            NewParm->getType())) {
833        GNUCompatibleParamWarning Warn
834          = { OldParm, NewParm, NewProto->getArgType(Idx) };
835        Warnings.push_back(Warn);
836        ArgTypes.push_back(NewParm->getType());
837      } else
838        LooseCompatible = false;
839    }
840
841    if (LooseCompatible) {
842      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
843        Diag(Warnings[Warn].NewParm->getLocation(),
844             diag::ext_param_promoted_not_compatible_with_prototype)
845          << Warnings[Warn].PromotedType
846          << Warnings[Warn].OldParm->getType();
847        Diag(Warnings[Warn].OldParm->getLocation(),
848             diag::note_previous_declaration);
849      }
850
851      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
852                                           ArgTypes.size(),
853                                           OldProto->isVariadic(), 0));
854      return MergeCompatibleFunctionDecls(New, Old);
855    }
856
857    // Fall through to diagnose conflicting types.
858  }
859
860  // A function that has already been declared has been redeclared or defined
861  // with a different type- show appropriate diagnostic
862  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
863    // The user has declared a builtin function with an incompatible
864    // signature.
865    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
866      // The function the user is redeclaring is a library-defined
867      // function like 'malloc' or 'printf'. Warn about the
868      // redeclaration, then pretend that we don't know about this
869      // library built-in.
870      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
871      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
872        << Old << Old->getType();
873      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
874      Old->setInvalidDecl();
875      return false;
876    }
877
878    PrevDiag = diag::note_previous_builtin_declaration;
879  }
880
881  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
882  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
883  return true;
884}
885
886/// \brief Completes the merge of two function declarations that are
887/// known to be compatible.
888///
889/// This routine handles the merging of attributes and other
890/// properties of function declarations form the old declaration to
891/// the new declaration, once we know that New is in fact a
892/// redeclaration of Old.
893///
894/// \returns false
895bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
896  // Merge the attributes
897  MergeAttributes(New, Old, Context);
898
899  // Merge the storage class.
900  if (Old->getStorageClass() != FunctionDecl::Extern)
901    New->setStorageClass(Old->getStorageClass());
902
903  // Merge "inline"
904  if (Old->isInline())
905    New->setInline(true);
906
907  // If this function declaration by itself qualifies as a C99 inline
908  // definition (C99 6.7.4p6), but the previous definition did not,
909  // then the function is not a C99 inline definition.
910  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
911    New->setC99InlineDefinition(false);
912  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
913    // Mark all preceding definitions as not being C99 inline definitions.
914    for (const FunctionDecl *Prev = Old; Prev;
915         Prev = Prev->getPreviousDeclaration())
916      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
917  }
918
919  // Merge "pure" flag.
920  if (Old->isPure())
921    New->setPure();
922
923  // Merge the "deleted" flag.
924  if (Old->isDeleted())
925    New->setDeleted();
926
927  if (getLangOptions().CPlusPlus)
928    return MergeCXXFunctionDecl(New, Old);
929
930  return false;
931}
932
933/// MergeVarDecl - We just parsed a variable 'New' which has the same name
934/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
935/// situation, merging decls or emitting diagnostics as appropriate.
936///
937/// Tentative definition rules (C99 6.9.2p2) are checked by
938/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
939/// definitions here, since the initializer hasn't been attached.
940///
941void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
942  // If either decl is invalid, make sure the new one is marked invalid and
943  // don't do any other checking.
944  if (New->isInvalidDecl() || OldD->isInvalidDecl())
945    return New->setInvalidDecl();
946
947  // Verify the old decl was also a variable.
948  VarDecl *Old = dyn_cast<VarDecl>(OldD);
949  if (!Old) {
950    Diag(New->getLocation(), diag::err_redefinition_different_kind)
951      << New->getDeclName();
952    Diag(OldD->getLocation(), diag::note_previous_definition);
953    return New->setInvalidDecl();
954  }
955
956  MergeAttributes(New, Old, Context);
957
958  // Merge the types
959  QualType MergedT;
960  if (getLangOptions().CPlusPlus) {
961    if (Context.hasSameType(New->getType(), Old->getType()))
962      MergedT = New->getType();
963  } else {
964    MergedT = Context.mergeTypes(New->getType(), Old->getType());
965  }
966  if (MergedT.isNull()) {
967    Diag(New->getLocation(), diag::err_redefinition_different_type)
968      << New->getDeclName();
969    Diag(Old->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972  New->setType(MergedT);
973
974  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
975  if (New->getStorageClass() == VarDecl::Static &&
976      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
977    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981  // C99 6.2.2p4:
982  //   For an identifier declared with the storage-class specifier
983  //   extern in a scope in which a prior declaration of that
984  //   identifier is visible,23) if the prior declaration specifies
985  //   internal or external linkage, the linkage of the identifier at
986  //   the later declaration is the same as the linkage specified at
987  //   the prior declaration. If no prior declaration is visible, or
988  //   if the prior declaration specifies no linkage, then the
989  //   identifier has external linkage.
990  if (New->hasExternalStorage() && Old->hasLinkage())
991    /* Okay */;
992  else if (New->getStorageClass() != VarDecl::Static &&
993           Old->getStorageClass() == VarDecl::Static) {
994    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
995    Diag(Old->getLocation(), diag::note_previous_definition);
996    return New->setInvalidDecl();
997  }
998
999  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1000
1001  // FIXME: The test for external storage here seems wrong? We still
1002  // need to check for mismatches.
1003  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1004      // Don't complain about out-of-line definitions of static members.
1005      !(Old->getLexicalDeclContext()->isRecord() &&
1006        !New->getLexicalDeclContext()->isRecord())) {
1007    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009    return New->setInvalidDecl();
1010  }
1011
1012  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1013    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1016    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1017    Diag(Old->getLocation(), diag::note_previous_definition);
1018  }
1019
1020  // Keep a chain of previous declarations.
1021  New->setPreviousDeclaration(Old);
1022}
1023
1024/// CheckFallThrough - Check that we don't fall off the end of a
1025/// Statement that should return a value.
1026///
1027/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1028/// MaybeFallThrough iff we might or might not fall off the end and
1029/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1030/// that functions not marked noreturn will return.
1031Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1032  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1033
1034  // FIXME: They should never return 0, fix that, delete this code.
1035  if (cfg == 0)
1036    return NeverFallThrough;
1037  // The CFG leaves in dead things, and we don't want to dead code paths to
1038  // confuse us, so we mark all live things first.
1039  std::queue<CFGBlock*> workq;
1040  llvm::BitVector live(cfg->getNumBlockIDs());
1041  // Prep work queue
1042  workq.push(&cfg->getEntry());
1043  // Solve
1044  while (!workq.empty()) {
1045    CFGBlock *item = workq.front();
1046    workq.pop();
1047    live.set(item->getBlockID());
1048    for (CFGBlock::succ_iterator I=item->succ_begin(),
1049           E=item->succ_end();
1050         I != E;
1051         ++I) {
1052      if ((*I) && !live[(*I)->getBlockID()]) {
1053        live.set((*I)->getBlockID());
1054        workq.push(*I);
1055      }
1056    }
1057  }
1058
1059  // Now we know what is live, we check the live precessors of the exit block
1060  // and look for fall through paths, being careful to ignore normal returns,
1061  // and exceptional paths.
1062  bool HasLiveReturn = false;
1063  bool HasFakeEdge = false;
1064  bool HasPlainEdge = false;
1065  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1066         E = cfg->getExit().pred_end();
1067       I != E;
1068       ++I) {
1069    CFGBlock& B = **I;
1070    if (!live[B.getBlockID()])
1071      continue;
1072    if (B.size() == 0) {
1073      // A labeled empty statement, or the entry block...
1074      HasPlainEdge = true;
1075      continue;
1076    }
1077    Stmt *S = B[B.size()-1];
1078    if (isa<ReturnStmt>(S)) {
1079      HasLiveReturn = true;
1080      continue;
1081    }
1082    if (isa<ObjCAtThrowStmt>(S)) {
1083      HasFakeEdge = true;
1084      continue;
1085    }
1086    if (isa<CXXThrowExpr>(S)) {
1087      HasFakeEdge = true;
1088      continue;
1089    }
1090    bool NoReturnEdge = false;
1091    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1092      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1093      if (CEE->getType().getNoReturnAttr()) {
1094        NoReturnEdge = true;
1095        HasFakeEdge = true;
1096      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1097        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1098          if (FD->hasAttr<NoReturnAttr>()) {
1099            NoReturnEdge = true;
1100            HasFakeEdge = true;
1101          }
1102        }
1103      }
1104    }
1105    // FIXME: Add noreturn message sends.
1106    if (NoReturnEdge == false)
1107      HasPlainEdge = true;
1108  }
1109  if (!HasPlainEdge)
1110    return NeverFallThrough;
1111  if (HasFakeEdge || HasLiveReturn)
1112    return MaybeFallThrough;
1113  // This says AlwaysFallThrough for calls to functions that are not marked
1114  // noreturn, that don't return.  If people would like this warning to be more
1115  // accurate, such functions should be marked as noreturn.
1116  return AlwaysFallThrough;
1117}
1118
1119/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1120/// function that should return a value.  Check that we don't fall off the end
1121/// of a noreturn function.  We assume that functions and blocks not marked
1122/// noreturn will return.
1123void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1124  // FIXME: Would be nice if we had a better way to control cascading errors,
1125  // but for now, avoid them.  The problem is that when Parse sees:
1126  //   int foo() { return a; }
1127  // The return is eaten and the Sema code sees just:
1128  //   int foo() { }
1129  // which this code would then warn about.
1130  if (getDiagnostics().hasErrorOccurred())
1131    return;
1132  bool ReturnsVoid = false;
1133  bool HasNoReturn = false;
1134  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1135    if (FD->getResultType()->isVoidType())
1136      ReturnsVoid = true;
1137    if (FD->hasAttr<NoReturnAttr>())
1138      HasNoReturn = true;
1139  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1140    if (MD->getResultType()->isVoidType())
1141      ReturnsVoid = true;
1142    if (MD->hasAttr<NoReturnAttr>())
1143      HasNoReturn = true;
1144  }
1145
1146  // Short circuit for compilation speed.
1147  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1148       == Diagnostic::Ignored || ReturnsVoid)
1149      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1150          == Diagnostic::Ignored || !HasNoReturn)
1151      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1152          == Diagnostic::Ignored || !ReturnsVoid))
1153    return;
1154  // FIXME: Funtion try block
1155  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1156    switch (CheckFallThrough(Body)) {
1157    case MaybeFallThrough:
1158      if (HasNoReturn)
1159        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1160      else if (!ReturnsVoid)
1161        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1162      break;
1163    case AlwaysFallThrough:
1164      if (HasNoReturn)
1165        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1166      else if (!ReturnsVoid)
1167        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1168      break;
1169    case NeverFallThrough:
1170      if (ReturnsVoid)
1171        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1172      break;
1173    }
1174  }
1175}
1176
1177/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1178/// that should return a value.  Check that we don't fall off the end of a
1179/// noreturn block.  We assume that functions and blocks not marked noreturn
1180/// will return.
1181void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1182  // FIXME: Would be nice if we had a better way to control cascading errors,
1183  // but for now, avoid them.  The problem is that when Parse sees:
1184  //   int foo() { return a; }
1185  // The return is eaten and the Sema code sees just:
1186  //   int foo() { }
1187  // which this code would then warn about.
1188  if (getDiagnostics().hasErrorOccurred())
1189    return;
1190  bool ReturnsVoid = false;
1191  bool HasNoReturn = false;
1192  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1193    if (FT->getResultType()->isVoidType())
1194      ReturnsVoid = true;
1195    if (FT->getNoReturnAttr())
1196      HasNoReturn = true;
1197  }
1198
1199  // Short circuit for compilation speed.
1200  if (ReturnsVoid
1201      && !HasNoReturn
1202      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1203          == Diagnostic::Ignored || !ReturnsVoid))
1204    return;
1205  // FIXME: Funtion try block
1206  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1207    switch (CheckFallThrough(Body)) {
1208    case MaybeFallThrough:
1209      if (HasNoReturn)
1210        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1211      else if (!ReturnsVoid)
1212        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1213      break;
1214    case AlwaysFallThrough:
1215      if (HasNoReturn)
1216        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1217      else if (!ReturnsVoid)
1218        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1219      break;
1220    case NeverFallThrough:
1221      if (ReturnsVoid)
1222        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1223      break;
1224    }
1225  }
1226}
1227
1228/// CheckParmsForFunctionDef - Check that the parameters of the given
1229/// function are appropriate for the definition of a function. This
1230/// takes care of any checks that cannot be performed on the
1231/// declaration itself, e.g., that the types of each of the function
1232/// parameters are complete.
1233bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1234  bool HasInvalidParm = false;
1235  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1236    ParmVarDecl *Param = FD->getParamDecl(p);
1237
1238    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1239    // function declarator that is part of a function definition of
1240    // that function shall not have incomplete type.
1241    //
1242    // This is also C++ [dcl.fct]p6.
1243    if (!Param->isInvalidDecl() &&
1244        RequireCompleteType(Param->getLocation(), Param->getType(),
1245                               diag::err_typecheck_decl_incomplete_type)) {
1246      Param->setInvalidDecl();
1247      HasInvalidParm = true;
1248    }
1249
1250    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1251    // declaration of each parameter shall include an identifier.
1252    if (Param->getIdentifier() == 0 &&
1253        !Param->isImplicit() &&
1254        !getLangOptions().CPlusPlus)
1255      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1256  }
1257
1258  return HasInvalidParm;
1259}
1260
1261/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1262/// no declarator (e.g. "struct foo;") is parsed.
1263Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1264  // FIXME: Error on auto/register at file scope
1265  // FIXME: Error on inline/virtual/explicit
1266  // FIXME: Error on invalid restrict
1267  // FIXME: Warn on useless __thread
1268  // FIXME: Warn on useless const/volatile
1269  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1270  // FIXME: Warn on useless attributes
1271  TagDecl *Tag = 0;
1272  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1273      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1274      DS.getTypeSpecType() == DeclSpec::TST_union ||
1275      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1276    if (!DS.getTypeRep()) // We probably had an error
1277      return DeclPtrTy();
1278
1279    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1280  }
1281
1282  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1283    if (!Record->getDeclName() && Record->isDefinition() &&
1284        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1285      if (getLangOptions().CPlusPlus ||
1286          Record->getDeclContext()->isRecord())
1287        return BuildAnonymousStructOrUnion(S, DS, Record);
1288
1289      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1290        << DS.getSourceRange();
1291    }
1292
1293    // Microsoft allows unnamed struct/union fields. Don't complain
1294    // about them.
1295    // FIXME: Should we support Microsoft's extensions in this area?
1296    if (Record->getDeclName() && getLangOptions().Microsoft)
1297      return DeclPtrTy::make(Tag);
1298  }
1299
1300  if (!DS.isMissingDeclaratorOk() &&
1301      DS.getTypeSpecType() != DeclSpec::TST_error) {
1302    // Warn about typedefs of enums without names, since this is an
1303    // extension in both Microsoft an GNU.
1304    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1305        Tag && isa<EnumDecl>(Tag)) {
1306      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1307        << DS.getSourceRange();
1308      return DeclPtrTy::make(Tag);
1309    }
1310
1311    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1312      << DS.getSourceRange();
1313    return DeclPtrTy();
1314  }
1315
1316  return DeclPtrTy::make(Tag);
1317}
1318
1319/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1320/// anonymous struct or union AnonRecord into the owning context Owner
1321/// and scope S. This routine will be invoked just after we realize
1322/// that an unnamed union or struct is actually an anonymous union or
1323/// struct, e.g.,
1324///
1325/// @code
1326/// union {
1327///   int i;
1328///   float f;
1329/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1330///    // f into the surrounding scope.x
1331/// @endcode
1332///
1333/// This routine is recursive, injecting the names of nested anonymous
1334/// structs/unions into the owning context and scope as well.
1335bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1336                                               RecordDecl *AnonRecord) {
1337  bool Invalid = false;
1338  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1339                               FEnd = AnonRecord->field_end();
1340       F != FEnd; ++F) {
1341    if ((*F)->getDeclName()) {
1342      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1343                                                LookupOrdinaryName, true);
1344      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1345        // C++ [class.union]p2:
1346        //   The names of the members of an anonymous union shall be
1347        //   distinct from the names of any other entity in the
1348        //   scope in which the anonymous union is declared.
1349        unsigned diagKind
1350          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1351                                 : diag::err_anonymous_struct_member_redecl;
1352        Diag((*F)->getLocation(), diagKind)
1353          << (*F)->getDeclName();
1354        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1355        Invalid = true;
1356      } else {
1357        // C++ [class.union]p2:
1358        //   For the purpose of name lookup, after the anonymous union
1359        //   definition, the members of the anonymous union are
1360        //   considered to have been defined in the scope in which the
1361        //   anonymous union is declared.
1362        Owner->makeDeclVisibleInContext(*F);
1363        S->AddDecl(DeclPtrTy::make(*F));
1364        IdResolver.AddDecl(*F);
1365      }
1366    } else if (const RecordType *InnerRecordType
1367                 = (*F)->getType()->getAs<RecordType>()) {
1368      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1369      if (InnerRecord->isAnonymousStructOrUnion())
1370        Invalid = Invalid ||
1371          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1372    }
1373  }
1374
1375  return Invalid;
1376}
1377
1378/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1379/// anonymous structure or union. Anonymous unions are a C++ feature
1380/// (C++ [class.union]) and a GNU C extension; anonymous structures
1381/// are a GNU C and GNU C++ extension.
1382Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1383                                                  RecordDecl *Record) {
1384  DeclContext *Owner = Record->getDeclContext();
1385
1386  // Diagnose whether this anonymous struct/union is an extension.
1387  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1388    Diag(Record->getLocation(), diag::ext_anonymous_union);
1389  else if (!Record->isUnion())
1390    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1391
1392  // C and C++ require different kinds of checks for anonymous
1393  // structs/unions.
1394  bool Invalid = false;
1395  if (getLangOptions().CPlusPlus) {
1396    const char* PrevSpec = 0;
1397    // C++ [class.union]p3:
1398    //   Anonymous unions declared in a named namespace or in the
1399    //   global namespace shall be declared static.
1400    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1401        (isa<TranslationUnitDecl>(Owner) ||
1402         (isa<NamespaceDecl>(Owner) &&
1403          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1404      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1405      Invalid = true;
1406
1407      // Recover by adding 'static'.
1408      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1409    }
1410    // C++ [class.union]p3:
1411    //   A storage class is not allowed in a declaration of an
1412    //   anonymous union in a class scope.
1413    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1414             isa<RecordDecl>(Owner)) {
1415      Diag(DS.getStorageClassSpecLoc(),
1416           diag::err_anonymous_union_with_storage_spec);
1417      Invalid = true;
1418
1419      // Recover by removing the storage specifier.
1420      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1421                             PrevSpec);
1422    }
1423
1424    // C++ [class.union]p2:
1425    //   The member-specification of an anonymous union shall only
1426    //   define non-static data members. [Note: nested types and
1427    //   functions cannot be declared within an anonymous union. ]
1428    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1429                                 MemEnd = Record->decls_end();
1430         Mem != MemEnd; ++Mem) {
1431      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1432        // C++ [class.union]p3:
1433        //   An anonymous union shall not have private or protected
1434        //   members (clause 11).
1435        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1436          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1437            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1438          Invalid = true;
1439        }
1440      } else if ((*Mem)->isImplicit()) {
1441        // Any implicit members are fine.
1442      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1443        // This is a type that showed up in an
1444        // elaborated-type-specifier inside the anonymous struct or
1445        // union, but which actually declares a type outside of the
1446        // anonymous struct or union. It's okay.
1447      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1448        if (!MemRecord->isAnonymousStructOrUnion() &&
1449            MemRecord->getDeclName()) {
1450          // This is a nested type declaration.
1451          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1452            << (int)Record->isUnion();
1453          Invalid = true;
1454        }
1455      } else {
1456        // We have something that isn't a non-static data
1457        // member. Complain about it.
1458        unsigned DK = diag::err_anonymous_record_bad_member;
1459        if (isa<TypeDecl>(*Mem))
1460          DK = diag::err_anonymous_record_with_type;
1461        else if (isa<FunctionDecl>(*Mem))
1462          DK = diag::err_anonymous_record_with_function;
1463        else if (isa<VarDecl>(*Mem))
1464          DK = diag::err_anonymous_record_with_static;
1465        Diag((*Mem)->getLocation(), DK)
1466            << (int)Record->isUnion();
1467          Invalid = true;
1468      }
1469    }
1470  }
1471
1472  if (!Record->isUnion() && !Owner->isRecord()) {
1473    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1474      << (int)getLangOptions().CPlusPlus;
1475    Invalid = true;
1476  }
1477
1478  // Create a declaration for this anonymous struct/union.
1479  NamedDecl *Anon = 0;
1480  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1481    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1482                             /*IdentifierInfo=*/0,
1483                             Context.getTypeDeclType(Record),
1484                             /*BitWidth=*/0, /*Mutable=*/false,
1485                             DS.getSourceRange().getBegin());
1486    Anon->setAccess(AS_public);
1487    if (getLangOptions().CPlusPlus)
1488      FieldCollector->Add(cast<FieldDecl>(Anon));
1489  } else {
1490    VarDecl::StorageClass SC;
1491    switch (DS.getStorageClassSpec()) {
1492    default: assert(0 && "Unknown storage class!");
1493    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1494    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1495    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1496    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1497    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1498    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1499    case DeclSpec::SCS_mutable:
1500      // mutable can only appear on non-static class members, so it's always
1501      // an error here
1502      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1503      Invalid = true;
1504      SC = VarDecl::None;
1505      break;
1506    }
1507
1508    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1509                           /*IdentifierInfo=*/0,
1510                           Context.getTypeDeclType(Record),
1511                           SC, DS.getSourceRange().getBegin());
1512  }
1513  Anon->setImplicit();
1514
1515  // Add the anonymous struct/union object to the current
1516  // context. We'll be referencing this object when we refer to one of
1517  // its members.
1518  Owner->addDecl(Anon);
1519
1520  // Inject the members of the anonymous struct/union into the owning
1521  // context and into the identifier resolver chain for name lookup
1522  // purposes.
1523  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1524    Invalid = true;
1525
1526  // Mark this as an anonymous struct/union type. Note that we do not
1527  // do this until after we have already checked and injected the
1528  // members of this anonymous struct/union type, because otherwise
1529  // the members could be injected twice: once by DeclContext when it
1530  // builds its lookup table, and once by
1531  // InjectAnonymousStructOrUnionMembers.
1532  Record->setAnonymousStructOrUnion(true);
1533
1534  if (Invalid)
1535    Anon->setInvalidDecl();
1536
1537  return DeclPtrTy::make(Anon);
1538}
1539
1540
1541/// GetNameForDeclarator - Determine the full declaration name for the
1542/// given Declarator.
1543DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1544  switch (D.getKind()) {
1545  case Declarator::DK_Abstract:
1546    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1547    return DeclarationName();
1548
1549  case Declarator::DK_Normal:
1550    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1551    return DeclarationName(D.getIdentifier());
1552
1553  case Declarator::DK_Constructor: {
1554    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1555    Ty = Context.getCanonicalType(Ty);
1556    return Context.DeclarationNames.getCXXConstructorName(Ty);
1557  }
1558
1559  case Declarator::DK_Destructor: {
1560    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1561    Ty = Context.getCanonicalType(Ty);
1562    return Context.DeclarationNames.getCXXDestructorName(Ty);
1563  }
1564
1565  case Declarator::DK_Conversion: {
1566    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1567    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1568    Ty = Context.getCanonicalType(Ty);
1569    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1570  }
1571
1572  case Declarator::DK_Operator:
1573    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1574    return Context.DeclarationNames.getCXXOperatorName(
1575                                                D.getOverloadedOperator());
1576  }
1577
1578  assert(false && "Unknown name kind");
1579  return DeclarationName();
1580}
1581
1582/// isNearlyMatchingFunction - Determine whether the C++ functions
1583/// Declaration and Definition are "nearly" matching. This heuristic
1584/// is used to improve diagnostics in the case where an out-of-line
1585/// function definition doesn't match any declaration within
1586/// the class or namespace.
1587static bool isNearlyMatchingFunction(ASTContext &Context,
1588                                     FunctionDecl *Declaration,
1589                                     FunctionDecl *Definition) {
1590  if (Declaration->param_size() != Definition->param_size())
1591    return false;
1592  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1593    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1594    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1595
1596    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1597    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1598    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1599      return false;
1600  }
1601
1602  return true;
1603}
1604
1605Sema::DeclPtrTy
1606Sema::HandleDeclarator(Scope *S, Declarator &D,
1607                       MultiTemplateParamsArg TemplateParamLists,
1608                       bool IsFunctionDefinition) {
1609  DeclarationName Name = GetNameForDeclarator(D);
1610
1611  // All of these full declarators require an identifier.  If it doesn't have
1612  // one, the ParsedFreeStandingDeclSpec action should be used.
1613  if (!Name) {
1614    if (!D.isInvalidType())  // Reject this if we think it is valid.
1615      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1616           diag::err_declarator_need_ident)
1617        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1618    return DeclPtrTy();
1619  }
1620
1621  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1622  // we find one that is.
1623  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1624         (S->getFlags() & Scope::TemplateParamScope) != 0)
1625    S = S->getParent();
1626
1627  DeclContext *DC;
1628  NamedDecl *PrevDecl;
1629  NamedDecl *New;
1630
1631  QualType R = GetTypeForDeclarator(D, S);
1632
1633  // See if this is a redefinition of a variable in the same scope.
1634  if (D.getCXXScopeSpec().isInvalid()) {
1635    DC = CurContext;
1636    PrevDecl = 0;
1637    D.setInvalidType();
1638  } else if (!D.getCXXScopeSpec().isSet()) {
1639    LookupNameKind NameKind = LookupOrdinaryName;
1640
1641    // If the declaration we're planning to build will be a function
1642    // or object with linkage, then look for another declaration with
1643    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1644    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1645      /* Do nothing*/;
1646    else if (R->isFunctionType()) {
1647      if (CurContext->isFunctionOrMethod() ||
1648          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1649        NameKind = LookupRedeclarationWithLinkage;
1650    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1651      NameKind = LookupRedeclarationWithLinkage;
1652    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1653             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1654      NameKind = LookupRedeclarationWithLinkage;
1655
1656    DC = CurContext;
1657    PrevDecl = LookupName(S, Name, NameKind, true,
1658                          NameKind == LookupRedeclarationWithLinkage,
1659                          D.getIdentifierLoc());
1660  } else { // Something like "int foo::x;"
1661    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1662    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1663    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1664
1665    // C++ 7.3.1.2p2:
1666    // Members (including explicit specializations of templates) of a named
1667    // namespace can also be defined outside that namespace by explicit
1668    // qualification of the name being defined, provided that the entity being
1669    // defined was already declared in the namespace and the definition appears
1670    // after the point of declaration in a namespace that encloses the
1671    // declarations namespace.
1672    //
1673    // Note that we only check the context at this point. We don't yet
1674    // have enough information to make sure that PrevDecl is actually
1675    // the declaration we want to match. For example, given:
1676    //
1677    //   class X {
1678    //     void f();
1679    //     void f(float);
1680    //   };
1681    //
1682    //   void X::f(int) { } // ill-formed
1683    //
1684    // In this case, PrevDecl will point to the overload set
1685    // containing the two f's declared in X, but neither of them
1686    // matches.
1687
1688    // First check whether we named the global scope.
1689    if (isa<TranslationUnitDecl>(DC)) {
1690      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1691        << Name << D.getCXXScopeSpec().getRange();
1692    } else if (!CurContext->Encloses(DC)) {
1693      // The qualifying scope doesn't enclose the original declaration.
1694      // Emit diagnostic based on current scope.
1695      SourceLocation L = D.getIdentifierLoc();
1696      SourceRange R = D.getCXXScopeSpec().getRange();
1697      if (isa<FunctionDecl>(CurContext))
1698        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1699      else
1700        Diag(L, diag::err_invalid_declarator_scope)
1701          << Name << cast<NamedDecl>(DC) << R;
1702      D.setInvalidType();
1703    }
1704  }
1705
1706  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1707    // Maybe we will complain about the shadowed template parameter.
1708    if (!D.isInvalidType())
1709      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1710        D.setInvalidType();
1711
1712    // Just pretend that we didn't see the previous declaration.
1713    PrevDecl = 0;
1714  }
1715
1716  // In C++, the previous declaration we find might be a tag type
1717  // (class or enum). In this case, the new declaration will hide the
1718  // tag type. Note that this does does not apply if we're declaring a
1719  // typedef (C++ [dcl.typedef]p4).
1720  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1721      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1722    PrevDecl = 0;
1723
1724  bool Redeclaration = false;
1725  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1726    if (TemplateParamLists.size()) {
1727      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1728      return DeclPtrTy();
1729    }
1730
1731    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1732  } else if (R->isFunctionType()) {
1733    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1734                                  move(TemplateParamLists),
1735                                  IsFunctionDefinition, Redeclaration);
1736  } else {
1737    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1738                                  move(TemplateParamLists),
1739                                  Redeclaration);
1740  }
1741
1742  if (New == 0)
1743    return DeclPtrTy();
1744
1745  // If this has an identifier and is not an invalid redeclaration,
1746  // add it to the scope stack.
1747  if (Name && !(Redeclaration && New->isInvalidDecl()))
1748    PushOnScopeChains(New, S);
1749
1750  return DeclPtrTy::make(New);
1751}
1752
1753/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1754/// types into constant array types in certain situations which would otherwise
1755/// be errors (for GCC compatibility).
1756static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1757                                                    ASTContext &Context,
1758                                                    bool &SizeIsNegative) {
1759  // This method tries to turn a variable array into a constant
1760  // array even when the size isn't an ICE.  This is necessary
1761  // for compatibility with code that depends on gcc's buggy
1762  // constant expression folding, like struct {char x[(int)(char*)2];}
1763  SizeIsNegative = false;
1764
1765  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1766    QualType Pointee = PTy->getPointeeType();
1767    QualType FixedType =
1768        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1769    if (FixedType.isNull()) return FixedType;
1770    FixedType = Context.getPointerType(FixedType);
1771    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1772    return FixedType;
1773  }
1774
1775  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1776  if (!VLATy)
1777    return QualType();
1778  // FIXME: We should probably handle this case
1779  if (VLATy->getElementType()->isVariablyModifiedType())
1780    return QualType();
1781
1782  Expr::EvalResult EvalResult;
1783  if (!VLATy->getSizeExpr() ||
1784      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1785      !EvalResult.Val.isInt())
1786    return QualType();
1787
1788  llvm::APSInt &Res = EvalResult.Val.getInt();
1789  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1790    Expr* ArySizeExpr = VLATy->getSizeExpr();
1791    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1792    // so as to transfer ownership to the ConstantArrayWithExpr.
1793    // Alternatively, we could "clone" it (how?).
1794    // Since we don't know how to do things above, we just use the
1795    // very same Expr*.
1796    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1797                                                Res, ArySizeExpr,
1798                                                ArrayType::Normal, 0,
1799                                                VLATy->getBracketsRange());
1800  }
1801
1802  SizeIsNegative = true;
1803  return QualType();
1804}
1805
1806/// \brief Register the given locally-scoped external C declaration so
1807/// that it can be found later for redeclarations
1808void
1809Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1810                                       Scope *S) {
1811  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1812         "Decl is not a locally-scoped decl!");
1813  // Note that we have a locally-scoped external with this name.
1814  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1815
1816  if (!PrevDecl)
1817    return;
1818
1819  // If there was a previous declaration of this variable, it may be
1820  // in our identifier chain. Update the identifier chain with the new
1821  // declaration.
1822  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1823    // The previous declaration was found on the identifer resolver
1824    // chain, so remove it from its scope.
1825    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1826      S = S->getParent();
1827
1828    if (S)
1829      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1830  }
1831}
1832
1833/// \brief Diagnose function specifiers on a declaration of an identifier that
1834/// does not identify a function.
1835void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1836  // FIXME: We should probably indicate the identifier in question to avoid
1837  // confusion for constructs like "inline int a(), b;"
1838  if (D.getDeclSpec().isInlineSpecified())
1839    Diag(D.getDeclSpec().getInlineSpecLoc(),
1840         diag::err_inline_non_function);
1841
1842  if (D.getDeclSpec().isVirtualSpecified())
1843    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1844         diag::err_virtual_non_function);
1845
1846  if (D.getDeclSpec().isExplicitSpecified())
1847    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1848         diag::err_explicit_non_function);
1849}
1850
1851NamedDecl*
1852Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1853                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1854  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1855  if (D.getCXXScopeSpec().isSet()) {
1856    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1857      << D.getCXXScopeSpec().getRange();
1858    D.setInvalidType();
1859    // Pretend we didn't see the scope specifier.
1860    DC = 0;
1861  }
1862
1863  if (getLangOptions().CPlusPlus) {
1864    // Check that there are no default arguments (C++ only).
1865    CheckExtraCXXDefaultArguments(D);
1866  }
1867
1868  DiagnoseFunctionSpecifiers(D);
1869
1870  if (D.getDeclSpec().isThreadSpecified())
1871    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1872
1873  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1874  if (!NewTD) return 0;
1875
1876  if (D.isInvalidType())
1877    NewTD->setInvalidDecl();
1878
1879  // Handle attributes prior to checking for duplicates in MergeVarDecl
1880  ProcessDeclAttributes(S, NewTD, D);
1881  // Merge the decl with the existing one if appropriate. If the decl is
1882  // in an outer scope, it isn't the same thing.
1883  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1884    Redeclaration = true;
1885    MergeTypeDefDecl(NewTD, PrevDecl);
1886  }
1887
1888  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1889  // then it shall have block scope.
1890  QualType T = NewTD->getUnderlyingType();
1891  if (T->isVariablyModifiedType()) {
1892    CurFunctionNeedsScopeChecking = true;
1893
1894    if (S->getFnParent() == 0) {
1895      bool SizeIsNegative;
1896      QualType FixedTy =
1897          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1898      if (!FixedTy.isNull()) {
1899        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1900        NewTD->setUnderlyingType(FixedTy);
1901      } else {
1902        if (SizeIsNegative)
1903          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1904        else if (T->isVariableArrayType())
1905          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1906        else
1907          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1908        NewTD->setInvalidDecl();
1909      }
1910    }
1911  }
1912
1913  // If this is the C FILE type, notify the AST context.
1914  if (IdentifierInfo *II = NewTD->getIdentifier())
1915    if (!NewTD->isInvalidDecl() &&
1916        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1917      if (II->isStr("FILE"))
1918        Context.setFILEDecl(NewTD);
1919      else if (II->isStr("jmp_buf"))
1920        Context.setjmp_bufDecl(NewTD);
1921      else if (II->isStr("sigjmp_buf"))
1922        Context.setsigjmp_bufDecl(NewTD);
1923    }
1924
1925  return NewTD;
1926}
1927
1928/// \brief Determines whether the given declaration is an out-of-scope
1929/// previous declaration.
1930///
1931/// This routine should be invoked when name lookup has found a
1932/// previous declaration (PrevDecl) that is not in the scope where a
1933/// new declaration by the same name is being introduced. If the new
1934/// declaration occurs in a local scope, previous declarations with
1935/// linkage may still be considered previous declarations (C99
1936/// 6.2.2p4-5, C++ [basic.link]p6).
1937///
1938/// \param PrevDecl the previous declaration found by name
1939/// lookup
1940///
1941/// \param DC the context in which the new declaration is being
1942/// declared.
1943///
1944/// \returns true if PrevDecl is an out-of-scope previous declaration
1945/// for a new delcaration with the same name.
1946static bool
1947isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1948                                ASTContext &Context) {
1949  if (!PrevDecl)
1950    return 0;
1951
1952  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1953  // case we need to check each of the overloaded functions.
1954  if (!PrevDecl->hasLinkage())
1955    return false;
1956
1957  if (Context.getLangOptions().CPlusPlus) {
1958    // C++ [basic.link]p6:
1959    //   If there is a visible declaration of an entity with linkage
1960    //   having the same name and type, ignoring entities declared
1961    //   outside the innermost enclosing namespace scope, the block
1962    //   scope declaration declares that same entity and receives the
1963    //   linkage of the previous declaration.
1964    DeclContext *OuterContext = DC->getLookupContext();
1965    if (!OuterContext->isFunctionOrMethod())
1966      // This rule only applies to block-scope declarations.
1967      return false;
1968    else {
1969      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1970      if (PrevOuterContext->isRecord())
1971        // We found a member function: ignore it.
1972        return false;
1973      else {
1974        // Find the innermost enclosing namespace for the new and
1975        // previous declarations.
1976        while (!OuterContext->isFileContext())
1977          OuterContext = OuterContext->getParent();
1978        while (!PrevOuterContext->isFileContext())
1979          PrevOuterContext = PrevOuterContext->getParent();
1980
1981        // The previous declaration is in a different namespace, so it
1982        // isn't the same function.
1983        if (OuterContext->getPrimaryContext() !=
1984            PrevOuterContext->getPrimaryContext())
1985          return false;
1986      }
1987    }
1988  }
1989
1990  return true;
1991}
1992
1993NamedDecl*
1994Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1995                              QualType R,NamedDecl* PrevDecl,
1996                              MultiTemplateParamsArg TemplateParamLists,
1997                              bool &Redeclaration) {
1998  DeclarationName Name = GetNameForDeclarator(D);
1999
2000  // Check that there are no default arguments (C++ only).
2001  if (getLangOptions().CPlusPlus)
2002    CheckExtraCXXDefaultArguments(D);
2003
2004  VarDecl *NewVD;
2005  VarDecl::StorageClass SC;
2006  switch (D.getDeclSpec().getStorageClassSpec()) {
2007  default: assert(0 && "Unknown storage class!");
2008  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2009  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2010  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2011  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2012  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2013  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2014  case DeclSpec::SCS_mutable:
2015    // mutable can only appear on non-static class members, so it's always
2016    // an error here
2017    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2018    D.setInvalidType();
2019    SC = VarDecl::None;
2020    break;
2021  }
2022
2023  IdentifierInfo *II = Name.getAsIdentifierInfo();
2024  if (!II) {
2025    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2026      << Name.getAsString();
2027    return 0;
2028  }
2029
2030  DiagnoseFunctionSpecifiers(D);
2031
2032  if (!DC->isRecord() && S->getFnParent() == 0) {
2033    // C99 6.9p2: The storage-class specifiers auto and register shall not
2034    // appear in the declaration specifiers in an external declaration.
2035    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2036
2037      // If this is a register variable with an asm label specified, then this
2038      // is a GNU extension.
2039      if (SC == VarDecl::Register && D.getAsmLabel())
2040        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2041      else
2042        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2043      D.setInvalidType();
2044    }
2045  }
2046  if (DC->isRecord() && !CurContext->isRecord()) {
2047    // This is an out-of-line definition of a static data member.
2048    if (SC == VarDecl::Static) {
2049      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2050           diag::err_static_out_of_line)
2051        << CodeModificationHint::CreateRemoval(
2052                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2053    } else if (SC == VarDecl::None)
2054      SC = VarDecl::Static;
2055  }
2056  if (SC == VarDecl::Static) {
2057    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2058      if (RD->isLocalClass())
2059        Diag(D.getIdentifierLoc(),
2060             diag::err_static_data_member_not_allowed_in_local_class)
2061          << Name << RD->getDeclName();
2062    }
2063  }
2064
2065  // Check that we can declare a template here.
2066  if (TemplateParamLists.size() &&
2067      CheckTemplateDeclScope(S, TemplateParamLists))
2068    return 0;
2069
2070  // Match up the template parameter lists with the scope specifier, then
2071  // determine whether we have a template or a template specialization.
2072  if (TemplateParameterList *TemplateParams
2073      = MatchTemplateParametersToScopeSpecifier(
2074                                  D.getDeclSpec().getSourceRange().getBegin(),
2075                                                D.getCXXScopeSpec(),
2076                        (TemplateParameterList**)TemplateParamLists.get(),
2077                                                 TemplateParamLists.size())) {
2078    if (TemplateParams->size() > 0) {
2079      // There is no such thing as a variable template.
2080      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2081        << II
2082        << SourceRange(TemplateParams->getTemplateLoc(),
2083                       TemplateParams->getRAngleLoc());
2084      return 0;
2085    } else {
2086      // There is an extraneous 'template<>' for this variable. Complain
2087      // about it, but allow the declaration of the variable.
2088      Diag(TemplateParams->getTemplateLoc(),
2089           diag::err_template_variable_noparams)
2090        << II
2091        << SourceRange(TemplateParams->getTemplateLoc(),
2092                       TemplateParams->getRAngleLoc());
2093    }
2094  }
2095
2096  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2097                          II, R, SC,
2098                          // FIXME: Move to DeclGroup...
2099                          D.getDeclSpec().getSourceRange().getBegin());
2100
2101  if (D.isInvalidType())
2102    NewVD->setInvalidDecl();
2103
2104  if (D.getDeclSpec().isThreadSpecified()) {
2105    if (NewVD->hasLocalStorage())
2106      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2107    else if (!Context.Target.isTLSSupported())
2108      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2109    else
2110      NewVD->setThreadSpecified(true);
2111  }
2112
2113  // Set the lexical context. If the declarator has a C++ scope specifier, the
2114  // lexical context will be different from the semantic context.
2115  NewVD->setLexicalDeclContext(CurContext);
2116
2117  // Handle attributes prior to checking for duplicates in MergeVarDecl
2118  ProcessDeclAttributes(S, NewVD, D);
2119
2120  // Handle GNU asm-label extension (encoded as an attribute).
2121  if (Expr *E = (Expr*) D.getAsmLabel()) {
2122    // The parser guarantees this is a string.
2123    StringLiteral *SE = cast<StringLiteral>(E);
2124    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2125                                                        SE->getByteLength())));
2126  }
2127
2128  // If name lookup finds a previous declaration that is not in the
2129  // same scope as the new declaration, this may still be an
2130  // acceptable redeclaration.
2131  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2132      !(NewVD->hasLinkage() &&
2133        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2134    PrevDecl = 0;
2135
2136  // Merge the decl with the existing one if appropriate.
2137  if (PrevDecl) {
2138    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2139      // The user tried to define a non-static data member
2140      // out-of-line (C++ [dcl.meaning]p1).
2141      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2142        << D.getCXXScopeSpec().getRange();
2143      PrevDecl = 0;
2144      NewVD->setInvalidDecl();
2145    }
2146  } else if (D.getCXXScopeSpec().isSet()) {
2147    // No previous declaration in the qualifying scope.
2148    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2149      << Name << D.getCXXScopeSpec().getRange();
2150    NewVD->setInvalidDecl();
2151  }
2152
2153  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2154
2155  // attributes declared post-definition are currently ignored
2156  if (PrevDecl) {
2157    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2158    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2159      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2160      Diag(Def->getLocation(), diag::note_previous_definition);
2161    }
2162  }
2163
2164  // If this is a locally-scoped extern C variable, update the map of
2165  // such variables.
2166  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2167      !NewVD->isInvalidDecl())
2168    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2169
2170  return NewVD;
2171}
2172
2173/// \brief Perform semantic checking on a newly-created variable
2174/// declaration.
2175///
2176/// This routine performs all of the type-checking required for a
2177/// variable declaration once it has been built. It is used both to
2178/// check variables after they have been parsed and their declarators
2179/// have been translated into a declaration, and to check variables
2180/// that have been instantiated from a template.
2181///
2182/// Sets NewVD->isInvalidDecl() if an error was encountered.
2183void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2184                                    bool &Redeclaration) {
2185  // If the decl is already known invalid, don't check it.
2186  if (NewVD->isInvalidDecl())
2187    return;
2188
2189  QualType T = NewVD->getType();
2190
2191  if (T->isObjCInterfaceType()) {
2192    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2193    return NewVD->setInvalidDecl();
2194  }
2195
2196  // The variable can not have an abstract class type.
2197  if (RequireNonAbstractType(NewVD->getLocation(), T,
2198                             diag::err_abstract_type_in_decl,
2199                             AbstractVariableType))
2200    return NewVD->setInvalidDecl();
2201
2202  // Emit an error if an address space was applied to decl with local storage.
2203  // This includes arrays of objects with address space qualifiers, but not
2204  // automatic variables that point to other address spaces.
2205  // ISO/IEC TR 18037 S5.1.2
2206  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2207    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2208    return NewVD->setInvalidDecl();
2209  }
2210
2211  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2212      && !NewVD->hasAttr<BlocksAttr>())
2213    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2214
2215  bool isVM = T->isVariablyModifiedType();
2216  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2217      NewVD->hasAttr<BlocksAttr>())
2218    CurFunctionNeedsScopeChecking = true;
2219
2220  if ((isVM && NewVD->hasLinkage()) ||
2221      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2222    bool SizeIsNegative;
2223    QualType FixedTy =
2224        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2225
2226    if (FixedTy.isNull() && T->isVariableArrayType()) {
2227      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2228      // FIXME: This won't give the correct result for
2229      // int a[10][n];
2230      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2231
2232      if (NewVD->isFileVarDecl())
2233        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2234        << SizeRange;
2235      else if (NewVD->getStorageClass() == VarDecl::Static)
2236        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2237        << SizeRange;
2238      else
2239        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2240        << SizeRange;
2241      return NewVD->setInvalidDecl();
2242    }
2243
2244    if (FixedTy.isNull()) {
2245      if (NewVD->isFileVarDecl())
2246        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2247      else
2248        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2249      return NewVD->setInvalidDecl();
2250    }
2251
2252    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2253    NewVD->setType(FixedTy);
2254  }
2255
2256  if (!PrevDecl && NewVD->isExternC(Context)) {
2257    // Since we did not find anything by this name and we're declaring
2258    // an extern "C" variable, look for a non-visible extern "C"
2259    // declaration with the same name.
2260    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2261      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2262    if (Pos != LocallyScopedExternalDecls.end())
2263      PrevDecl = Pos->second;
2264  }
2265
2266  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2267    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2268      << T;
2269    return NewVD->setInvalidDecl();
2270  }
2271
2272  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2273    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2274    return NewVD->setInvalidDecl();
2275  }
2276
2277  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2278    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2279    return NewVD->setInvalidDecl();
2280  }
2281
2282  if (PrevDecl) {
2283    Redeclaration = true;
2284    MergeVarDecl(NewVD, PrevDecl);
2285  }
2286}
2287
2288NamedDecl*
2289Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2290                              QualType R, NamedDecl* PrevDecl,
2291                              MultiTemplateParamsArg TemplateParamLists,
2292                              bool IsFunctionDefinition, bool &Redeclaration) {
2293  assert(R.getTypePtr()->isFunctionType());
2294
2295  DeclarationName Name = GetNameForDeclarator(D);
2296  FunctionDecl::StorageClass SC = FunctionDecl::None;
2297  switch (D.getDeclSpec().getStorageClassSpec()) {
2298  default: assert(0 && "Unknown storage class!");
2299  case DeclSpec::SCS_auto:
2300  case DeclSpec::SCS_register:
2301  case DeclSpec::SCS_mutable:
2302    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2303         diag::err_typecheck_sclass_func);
2304    D.setInvalidType();
2305    break;
2306  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2307  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2308  case DeclSpec::SCS_static: {
2309    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2310      // C99 6.7.1p5:
2311      //   The declaration of an identifier for a function that has
2312      //   block scope shall have no explicit storage-class specifier
2313      //   other than extern
2314      // See also (C++ [dcl.stc]p4).
2315      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2316           diag::err_static_block_func);
2317      SC = FunctionDecl::None;
2318    } else
2319      SC = FunctionDecl::Static;
2320    break;
2321  }
2322  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2323  }
2324
2325  if (D.getDeclSpec().isThreadSpecified())
2326    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2327
2328  bool isInline = D.getDeclSpec().isInlineSpecified();
2329  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2330  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2331
2332  // Check that the return type is not an abstract class type.
2333  // For record types, this is done by the AbstractClassUsageDiagnoser once
2334  // the class has been completely parsed.
2335  if (!DC->isRecord() &&
2336      RequireNonAbstractType(D.getIdentifierLoc(),
2337                             R->getAsFunctionType()->getResultType(),
2338                             diag::err_abstract_type_in_decl,
2339                             AbstractReturnType))
2340    D.setInvalidType();
2341
2342  // Do not allow returning a objc interface by-value.
2343  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2344    Diag(D.getIdentifierLoc(),
2345         diag::err_object_cannot_be_passed_returned_by_value) << 0
2346      << R->getAsFunctionType()->getResultType();
2347    D.setInvalidType();
2348  }
2349
2350  // Check that we can declare a template here.
2351  if (TemplateParamLists.size() &&
2352      CheckTemplateDeclScope(S, TemplateParamLists))
2353    return 0;
2354
2355  bool isVirtualOkay = false;
2356  FunctionDecl *NewFD;
2357  if (D.getKind() == Declarator::DK_Constructor) {
2358    // This is a C++ constructor declaration.
2359    assert(DC->isRecord() &&
2360           "Constructors can only be declared in a member context");
2361
2362    R = CheckConstructorDeclarator(D, R, SC);
2363
2364    // Create the new declaration
2365    NewFD = CXXConstructorDecl::Create(Context,
2366                                       cast<CXXRecordDecl>(DC),
2367                                       D.getIdentifierLoc(), Name, R,
2368                                       isExplicit, isInline,
2369                                       /*isImplicitlyDeclared=*/false);
2370  } else if (D.getKind() == Declarator::DK_Destructor) {
2371    // This is a C++ destructor declaration.
2372    if (DC->isRecord()) {
2373      R = CheckDestructorDeclarator(D, SC);
2374
2375      NewFD = CXXDestructorDecl::Create(Context,
2376                                        cast<CXXRecordDecl>(DC),
2377                                        D.getIdentifierLoc(), Name, R,
2378                                        isInline,
2379                                        /*isImplicitlyDeclared=*/false);
2380
2381      isVirtualOkay = true;
2382    } else {
2383      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2384
2385      // Create a FunctionDecl to satisfy the function definition parsing
2386      // code path.
2387      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2388                                   Name, R, SC, isInline,
2389                                   /*hasPrototype=*/true,
2390                                   // FIXME: Move to DeclGroup...
2391                                   D.getDeclSpec().getSourceRange().getBegin());
2392      D.setInvalidType();
2393    }
2394  } else if (D.getKind() == Declarator::DK_Conversion) {
2395    if (!DC->isRecord()) {
2396      Diag(D.getIdentifierLoc(),
2397           diag::err_conv_function_not_member);
2398      return 0;
2399    }
2400
2401    CheckConversionDeclarator(D, R, SC);
2402    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2403                                      D.getIdentifierLoc(), Name, R,
2404                                      isInline, isExplicit);
2405
2406    isVirtualOkay = true;
2407  } else if (DC->isRecord()) {
2408    // If the of the function is the same as the name of the record, then this
2409    // must be an invalid constructor that has a return type.
2410    // (The parser checks for a return type and makes the declarator a
2411    // constructor if it has no return type).
2412    // must have an invalid constructor that has a return type
2413    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2414      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2415        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2416        << SourceRange(D.getIdentifierLoc());
2417      return 0;
2418    }
2419
2420    // This is a C++ method declaration.
2421    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2422                                  D.getIdentifierLoc(), Name, R,
2423                                  (SC == FunctionDecl::Static), isInline);
2424
2425    isVirtualOkay = (SC != FunctionDecl::Static);
2426  } else {
2427    // Determine whether the function was written with a
2428    // prototype. This true when:
2429    //   - we're in C++ (where every function has a prototype),
2430    //   - there is a prototype in the declarator, or
2431    //   - the type R of the function is some kind of typedef or other reference
2432    //     to a type name (which eventually refers to a function type).
2433    bool HasPrototype =
2434       getLangOptions().CPlusPlus ||
2435       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2436       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2437
2438    NewFD = FunctionDecl::Create(Context, DC,
2439                                 D.getIdentifierLoc(),
2440                                 Name, R, SC, isInline, HasPrototype,
2441                                 // FIXME: Move to DeclGroup...
2442                                 D.getDeclSpec().getSourceRange().getBegin());
2443  }
2444
2445  if (D.isInvalidType())
2446    NewFD->setInvalidDecl();
2447
2448  // Set the lexical context. If the declarator has a C++
2449  // scope specifier, the lexical context will be different
2450  // from the semantic context.
2451  NewFD->setLexicalDeclContext(CurContext);
2452
2453  // Match up the template parameter lists with the scope specifier, then
2454  // determine whether we have a template or a template specialization.
2455  FunctionTemplateDecl *FunctionTemplate = 0;
2456  if (TemplateParameterList *TemplateParams
2457        = MatchTemplateParametersToScopeSpecifier(
2458                                  D.getDeclSpec().getSourceRange().getBegin(),
2459                                  D.getCXXScopeSpec(),
2460                           (TemplateParameterList**)TemplateParamLists.get(),
2461                                                  TemplateParamLists.size())) {
2462    if (TemplateParams->size() > 0) {
2463      // This is a function template
2464      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2465                                                      NewFD->getLocation(),
2466                                                      Name, TemplateParams,
2467                                                      NewFD);
2468      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2469    } else {
2470      // FIXME: Handle function template specializations
2471    }
2472
2473    // FIXME: Free this memory properly.
2474    TemplateParamLists.release();
2475  }
2476
2477  // C++ [dcl.fct.spec]p5:
2478  //   The virtual specifier shall only be used in declarations of
2479  //   nonstatic class member functions that appear within a
2480  //   member-specification of a class declaration; see 10.3.
2481  //
2482  if (isVirtual && !NewFD->isInvalidDecl()) {
2483    if (!isVirtualOkay) {
2484       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2485           diag::err_virtual_non_function);
2486    } else if (!CurContext->isRecord()) {
2487      // 'virtual' was specified outside of the class.
2488      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2489        << CodeModificationHint::CreateRemoval(
2490                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2491    } else {
2492      // Okay: Add virtual to the method.
2493      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2494      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2495      CurClass->setAggregate(false);
2496      CurClass->setPOD(false);
2497      CurClass->setPolymorphic(true);
2498      CurClass->setHasTrivialConstructor(false);
2499      CurClass->setHasTrivialCopyConstructor(false);
2500      CurClass->setHasTrivialCopyAssignment(false);
2501    }
2502  }
2503
2504  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2505    // Look for virtual methods in base classes that this method might override.
2506
2507    BasePaths Paths;
2508    if (LookupInBases(cast<CXXRecordDecl>(DC),
2509                      MemberLookupCriteria(NewMD), Paths)) {
2510      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2511           E = Paths.found_decls_end(); I != E; ++I) {
2512        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2513          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2514              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2515            NewMD->addOverriddenMethod(OldMD);
2516        }
2517      }
2518    }
2519  }
2520
2521  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2522      !CurContext->isRecord()) {
2523    // C++ [class.static]p1:
2524    //   A data or function member of a class may be declared static
2525    //   in a class definition, in which case it is a static member of
2526    //   the class.
2527
2528    // Complain about the 'static' specifier if it's on an out-of-line
2529    // member function definition.
2530    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2531         diag::err_static_out_of_line)
2532      << CodeModificationHint::CreateRemoval(
2533                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2534  }
2535
2536  // Handle GNU asm-label extension (encoded as an attribute).
2537  if (Expr *E = (Expr*) D.getAsmLabel()) {
2538    // The parser guarantees this is a string.
2539    StringLiteral *SE = cast<StringLiteral>(E);
2540    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2541                                                        SE->getByteLength())));
2542  }
2543
2544  // Copy the parameter declarations from the declarator D to the function
2545  // declaration NewFD, if they are available.  First scavenge them into Params.
2546  llvm::SmallVector<ParmVarDecl*, 16> Params;
2547  if (D.getNumTypeObjects() > 0) {
2548    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2549
2550    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2551    // function that takes no arguments, not a function that takes a
2552    // single void argument.
2553    // We let through "const void" here because Sema::GetTypeForDeclarator
2554    // already checks for that case.
2555    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2556        FTI.ArgInfo[0].Param &&
2557        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2558      // Empty arg list, don't push any params.
2559      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2560
2561      // In C++, the empty parameter-type-list must be spelled "void"; a
2562      // typedef of void is not permitted.
2563      if (getLangOptions().CPlusPlus &&
2564          Param->getType().getUnqualifiedType() != Context.VoidTy)
2565        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2566      // FIXME: Leaks decl?
2567    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2568      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2569        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2570        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2571        Param->setDeclContext(NewFD);
2572        Params.push_back(Param);
2573      }
2574    }
2575
2576  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2577    // When we're declaring a function with a typedef, typeof, etc as in the
2578    // following example, we'll need to synthesize (unnamed)
2579    // parameters for use in the declaration.
2580    //
2581    // @code
2582    // typedef void fn(int);
2583    // fn f;
2584    // @endcode
2585
2586    // Synthesize a parameter for each argument type.
2587    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2588         AE = FT->arg_type_end(); AI != AE; ++AI) {
2589      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2590                                               SourceLocation(), 0,
2591                                               *AI, VarDecl::None, 0);
2592      Param->setImplicit();
2593      Params.push_back(Param);
2594    }
2595  } else {
2596    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2597           "Should not need args for typedef of non-prototype fn");
2598  }
2599  // Finally, we know we have the right number of parameters, install them.
2600  NewFD->setParams(Context, Params.data(), Params.size());
2601
2602  // If name lookup finds a previous declaration that is not in the
2603  // same scope as the new declaration, this may still be an
2604  // acceptable redeclaration.
2605  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2606      !(NewFD->hasLinkage() &&
2607        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2608    PrevDecl = 0;
2609
2610  // Perform semantic checking on the function declaration.
2611  bool OverloadableAttrRequired = false; // FIXME: HACK!
2612  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2613                           /*FIXME:*/OverloadableAttrRequired);
2614
2615  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2616    // An out-of-line member function declaration must also be a
2617    // definition (C++ [dcl.meaning]p1).
2618    if (!IsFunctionDefinition) {
2619      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2620        << D.getCXXScopeSpec().getRange();
2621      NewFD->setInvalidDecl();
2622    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2623      // The user tried to provide an out-of-line definition for a
2624      // function that is a member of a class or namespace, but there
2625      // was no such member function declared (C++ [class.mfct]p2,
2626      // C++ [namespace.memdef]p2). For example:
2627      //
2628      // class X {
2629      //   void f() const;
2630      // };
2631      //
2632      // void X::f() { } // ill-formed
2633      //
2634      // Complain about this problem, and attempt to suggest close
2635      // matches (e.g., those that differ only in cv-qualifiers and
2636      // whether the parameter types are references).
2637      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2638        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2639      NewFD->setInvalidDecl();
2640
2641      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2642                                              true);
2643      assert(!Prev.isAmbiguous() &&
2644             "Cannot have an ambiguity in previous-declaration lookup");
2645      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2646           Func != FuncEnd; ++Func) {
2647        if (isa<FunctionDecl>(*Func) &&
2648            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2649          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2650      }
2651
2652      PrevDecl = 0;
2653    }
2654  }
2655
2656  // Handle attributes. We need to have merged decls when handling attributes
2657  // (for example to check for conflicts, etc).
2658  // FIXME: This needs to happen before we merge declarations. Then,
2659  // let attribute merging cope with attribute conflicts.
2660  ProcessDeclAttributes(S, NewFD, D);
2661
2662  // attributes declared post-definition are currently ignored
2663  if (PrevDecl) {
2664    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2665    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2666      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2667      Diag(Def->getLocation(), diag::note_previous_definition);
2668    }
2669  }
2670
2671  AddKnownFunctionAttributes(NewFD);
2672
2673  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2674    // If a function name is overloadable in C, then every function
2675    // with that name must be marked "overloadable".
2676    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2677      << Redeclaration << NewFD;
2678    if (PrevDecl)
2679      Diag(PrevDecl->getLocation(),
2680           diag::note_attribute_overloadable_prev_overload);
2681    NewFD->addAttr(::new (Context) OverloadableAttr());
2682  }
2683
2684  // If this is a locally-scoped extern C function, update the
2685  // map of such names.
2686  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2687      && !NewFD->isInvalidDecl())
2688    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2689
2690  // Set this FunctionDecl's range up to the right paren.
2691  NewFD->setLocEnd(D.getSourceRange().getEnd());
2692
2693  if (FunctionTemplate && NewFD->isInvalidDecl())
2694    FunctionTemplate->setInvalidDecl();
2695
2696  if (FunctionTemplate)
2697    return FunctionTemplate;
2698
2699  return NewFD;
2700}
2701
2702/// \brief Perform semantic checking of a new function declaration.
2703///
2704/// Performs semantic analysis of the new function declaration
2705/// NewFD. This routine performs all semantic checking that does not
2706/// require the actual declarator involved in the declaration, and is
2707/// used both for the declaration of functions as they are parsed
2708/// (called via ActOnDeclarator) and for the declaration of functions
2709/// that have been instantiated via C++ template instantiation (called
2710/// via InstantiateDecl).
2711///
2712/// This sets NewFD->isInvalidDecl() to true if there was an error.
2713void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2714                                    bool &Redeclaration,
2715                                    bool &OverloadableAttrRequired) {
2716  // If NewFD is already known erroneous, don't do any of this checking.
2717  if (NewFD->isInvalidDecl())
2718    return;
2719
2720  if (NewFD->getResultType()->isVariablyModifiedType()) {
2721    // Functions returning a variably modified type violate C99 6.7.5.2p2
2722    // because all functions have linkage.
2723    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2724    return NewFD->setInvalidDecl();
2725  }
2726
2727  if (NewFD->isMain()) CheckMain(NewFD);
2728
2729  // Semantic checking for this function declaration (in isolation).
2730  if (getLangOptions().CPlusPlus) {
2731    // C++-specific checks.
2732    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2733      CheckConstructor(Constructor);
2734    } else if (isa<CXXDestructorDecl>(NewFD)) {
2735      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2736      QualType ClassType = Context.getTypeDeclType(Record);
2737      if (!ClassType->isDependentType()) {
2738        ClassType = Context.getCanonicalType(ClassType);
2739        DeclarationName Name
2740          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2741        if (NewFD->getDeclName() != Name) {
2742          Diag(NewFD->getLocation(), diag::err_destructor_name);
2743          return NewFD->setInvalidDecl();
2744        }
2745      }
2746      Record->setUserDeclaredDestructor(true);
2747      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2748      // user-defined destructor.
2749      Record->setPOD(false);
2750
2751      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2752      // declared destructor.
2753      // FIXME: C++0x: don't do this for "= default" destructors
2754      Record->setHasTrivialDestructor(false);
2755    } else if (CXXConversionDecl *Conversion
2756               = dyn_cast<CXXConversionDecl>(NewFD))
2757      ActOnConversionDeclarator(Conversion);
2758
2759    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2760    if (NewFD->isOverloadedOperator() &&
2761        CheckOverloadedOperatorDeclaration(NewFD))
2762      return NewFD->setInvalidDecl();
2763  }
2764
2765  // C99 6.7.4p6:
2766  //   [... ] For a function with external linkage, the following
2767  //   restrictions apply: [...] If all of the file scope declarations
2768  //   for a function in a translation unit include the inline
2769  //   function specifier without extern, then the definition in that
2770  //   translation unit is an inline definition. An inline definition
2771  //   does not provide an external definition for the function, and
2772  //   does not forbid an external definition in another translation
2773  //   unit.
2774  //
2775  // Here we determine whether this function, in isolation, would be a
2776  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2777  // previous declarations.
2778  if (NewFD->isInline() && getLangOptions().C99 &&
2779      NewFD->getStorageClass() == FunctionDecl::None &&
2780      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2781    NewFD->setC99InlineDefinition(true);
2782
2783  // Check for a previous declaration of this name.
2784  if (!PrevDecl && NewFD->isExternC(Context)) {
2785    // Since we did not find anything by this name and we're declaring
2786    // an extern "C" function, look for a non-visible extern "C"
2787    // declaration with the same name.
2788    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2789      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2790    if (Pos != LocallyScopedExternalDecls.end())
2791      PrevDecl = Pos->second;
2792  }
2793
2794  // Merge or overload the declaration with an existing declaration of
2795  // the same name, if appropriate.
2796  if (PrevDecl) {
2797    // Determine whether NewFD is an overload of PrevDecl or
2798    // a declaration that requires merging. If it's an overload,
2799    // there's no more work to do here; we'll just add the new
2800    // function to the scope.
2801    OverloadedFunctionDecl::function_iterator MatchedDecl;
2802
2803    if (!getLangOptions().CPlusPlus &&
2804        AllowOverloadingOfFunction(PrevDecl, Context)) {
2805      OverloadableAttrRequired = true;
2806
2807      // Functions marked "overloadable" must have a prototype (that
2808      // we can't get through declaration merging).
2809      if (!NewFD->getType()->getAsFunctionProtoType()) {
2810        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2811          << NewFD;
2812        Redeclaration = true;
2813
2814        // Turn this into a variadic function with no parameters.
2815        QualType R = Context.getFunctionType(
2816                       NewFD->getType()->getAsFunctionType()->getResultType(),
2817                       0, 0, true, 0);
2818        NewFD->setType(R);
2819        return NewFD->setInvalidDecl();
2820      }
2821    }
2822
2823    if (PrevDecl &&
2824        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2825         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2826        !isa<UsingDecl>(PrevDecl)) {
2827      Redeclaration = true;
2828      Decl *OldDecl = PrevDecl;
2829
2830      // If PrevDecl was an overloaded function, extract the
2831      // FunctionDecl that matched.
2832      if (isa<OverloadedFunctionDecl>(PrevDecl))
2833        OldDecl = *MatchedDecl;
2834
2835      // NewFD and OldDecl represent declarations that need to be
2836      // merged.
2837      if (MergeFunctionDecl(NewFD, OldDecl))
2838        return NewFD->setInvalidDecl();
2839
2840      if (FunctionTemplateDecl *OldTemplateDecl
2841            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2842        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2843      else {
2844        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2845          NewFD->setAccess(OldDecl->getAccess());
2846        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2847      }
2848    }
2849  }
2850
2851  // In C++, check default arguments now that we have merged decls. Unless
2852  // the lexical context is the class, because in this case this is done
2853  // during delayed parsing anyway.
2854  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2855    CheckCXXDefaultArguments(NewFD);
2856}
2857
2858void Sema::CheckMain(FunctionDecl* FD) {
2859  // C++ [basic.start.main]p3:  A program that declares main to be inline
2860  //   or static is ill-formed.
2861  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2862  //   shall not appear in a declaration of main.
2863  // static main is not an error under C99, but we should warn about it.
2864  bool isInline = FD->isInline();
2865  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2866  if (isInline || isStatic) {
2867    unsigned diagID = diag::warn_unusual_main_decl;
2868    if (isInline || getLangOptions().CPlusPlus)
2869      diagID = diag::err_unusual_main_decl;
2870
2871    int which = isStatic + (isInline << 1) - 1;
2872    Diag(FD->getLocation(), diagID) << which;
2873  }
2874
2875  QualType T = FD->getType();
2876  assert(T->isFunctionType() && "function decl is not of function type");
2877  const FunctionType* FT = T->getAsFunctionType();
2878
2879  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2880    // TODO: add a replacement fixit to turn the return type into 'int'.
2881    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2882    FD->setInvalidDecl(true);
2883  }
2884
2885  // Treat protoless main() as nullary.
2886  if (isa<FunctionNoProtoType>(FT)) return;
2887
2888  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2889  unsigned nparams = FTP->getNumArgs();
2890  assert(FD->getNumParams() == nparams);
2891
2892  if (nparams > 3) {
2893    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2894    FD->setInvalidDecl(true);
2895    nparams = 3;
2896  }
2897
2898  // FIXME: a lot of the following diagnostics would be improved
2899  // if we had some location information about types.
2900
2901  QualType CharPP =
2902    Context.getPointerType(Context.getPointerType(Context.CharTy));
2903  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2904
2905  for (unsigned i = 0; i < nparams; ++i) {
2906    QualType AT = FTP->getArgType(i);
2907
2908    bool mismatch = true;
2909
2910    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2911      mismatch = false;
2912    else if (Expected[i] == CharPP) {
2913      // As an extension, the following forms are okay:
2914      //   char const **
2915      //   char const * const *
2916      //   char * const *
2917
2918      QualifierSet qs;
2919      const PointerType* PT;
2920      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2921          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2922          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2923        qs.removeConst();
2924        mismatch = !qs.empty();
2925      }
2926    }
2927
2928    if (mismatch) {
2929      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2930      // TODO: suggest replacing given type with expected type
2931      FD->setInvalidDecl(true);
2932    }
2933  }
2934
2935  if (nparams == 1 && !FD->isInvalidDecl()) {
2936    Diag(FD->getLocation(), diag::warn_main_one_arg);
2937  }
2938}
2939
2940bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2941  // FIXME: Need strict checking.  In C89, we need to check for
2942  // any assignment, increment, decrement, function-calls, or
2943  // commas outside of a sizeof.  In C99, it's the same list,
2944  // except that the aforementioned are allowed in unevaluated
2945  // expressions.  Everything else falls under the
2946  // "may accept other forms of constant expressions" exception.
2947  // (We never end up here for C++, so the constant expression
2948  // rules there don't matter.)
2949  if (Init->isConstantInitializer(Context))
2950    return false;
2951  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2952    << Init->getSourceRange();
2953  return true;
2954}
2955
2956void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2957  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2958}
2959
2960/// AddInitializerToDecl - Adds the initializer Init to the
2961/// declaration dcl. If DirectInit is true, this is C++ direct
2962/// initialization rather than copy initialization.
2963void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2964  Decl *RealDecl = dcl.getAs<Decl>();
2965  // If there is no declaration, there was an error parsing it.  Just ignore
2966  // the initializer.
2967  if (RealDecl == 0)
2968    return;
2969
2970  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2971    // With declarators parsed the way they are, the parser cannot
2972    // distinguish between a normal initializer and a pure-specifier.
2973    // Thus this grotesque test.
2974    IntegerLiteral *IL;
2975    Expr *Init = static_cast<Expr *>(init.get());
2976    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2977        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2978      if (Method->isVirtualAsWritten()) {
2979        Method->setPure();
2980
2981        // A class is abstract if at least one function is pure virtual.
2982        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2983      } else if (!Method->isInvalidDecl()) {
2984        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2985          << Method->getDeclName() << Init->getSourceRange();
2986        Method->setInvalidDecl();
2987      }
2988    } else {
2989      Diag(Method->getLocation(), diag::err_member_function_initialization)
2990        << Method->getDeclName() << Init->getSourceRange();
2991      Method->setInvalidDecl();
2992    }
2993    return;
2994  }
2995
2996  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2997  if (!VDecl) {
2998    if (getLangOptions().CPlusPlus &&
2999        RealDecl->getLexicalDeclContext()->isRecord() &&
3000        isa<NamedDecl>(RealDecl))
3001      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3002        << cast<NamedDecl>(RealDecl)->getDeclName();
3003    else
3004      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3005    RealDecl->setInvalidDecl();
3006    return;
3007  }
3008
3009  if (!VDecl->getType()->isArrayType() &&
3010      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3011                          diag::err_typecheck_decl_incomplete_type)) {
3012    RealDecl->setInvalidDecl();
3013    return;
3014  }
3015
3016  const VarDecl *Def = 0;
3017  if (VDecl->getDefinition(Def)) {
3018    Diag(VDecl->getLocation(), diag::err_redefinition)
3019      << VDecl->getDeclName();
3020    Diag(Def->getLocation(), diag::note_previous_definition);
3021    VDecl->setInvalidDecl();
3022    return;
3023  }
3024
3025  // Take ownership of the expression, now that we're sure we have somewhere
3026  // to put it.
3027  Expr *Init = init.takeAs<Expr>();
3028  assert(Init && "missing initializer");
3029
3030  // Get the decls type and save a reference for later, since
3031  // CheckInitializerTypes may change it.
3032  QualType DclT = VDecl->getType(), SavT = DclT;
3033  if (VDecl->isBlockVarDecl()) {
3034    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3035      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3036      VDecl->setInvalidDecl();
3037    } else if (!VDecl->isInvalidDecl()) {
3038      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3039                                VDecl->getDeclName(), DirectInit))
3040        VDecl->setInvalidDecl();
3041
3042      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3043      // Don't check invalid declarations to avoid emitting useless diagnostics.
3044      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3045        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3046          CheckForConstantInitializer(Init, DclT);
3047      }
3048    }
3049  } else if (VDecl->isStaticDataMember() &&
3050             VDecl->getLexicalDeclContext()->isRecord()) {
3051    // This is an in-class initialization for a static data member, e.g.,
3052    //
3053    // struct S {
3054    //   static const int value = 17;
3055    // };
3056
3057    // Attach the initializer
3058    VDecl->setInit(Context, Init);
3059
3060    // C++ [class.mem]p4:
3061    //   A member-declarator can contain a constant-initializer only
3062    //   if it declares a static member (9.4) of const integral or
3063    //   const enumeration type, see 9.4.2.
3064    QualType T = VDecl->getType();
3065    if (!T->isDependentType() &&
3066        (!Context.getCanonicalType(T).isConstQualified() ||
3067         !T->isIntegralType())) {
3068      Diag(VDecl->getLocation(), diag::err_member_initialization)
3069        << VDecl->getDeclName() << Init->getSourceRange();
3070      VDecl->setInvalidDecl();
3071    } else {
3072      // C++ [class.static.data]p4:
3073      //   If a static data member is of const integral or const
3074      //   enumeration type, its declaration in the class definition
3075      //   can specify a constant-initializer which shall be an
3076      //   integral constant expression (5.19).
3077      if (!Init->isTypeDependent() &&
3078          !Init->getType()->isIntegralType()) {
3079        // We have a non-dependent, non-integral or enumeration type.
3080        Diag(Init->getSourceRange().getBegin(),
3081             diag::err_in_class_initializer_non_integral_type)
3082          << Init->getType() << Init->getSourceRange();
3083        VDecl->setInvalidDecl();
3084      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3085        // Check whether the expression is a constant expression.
3086        llvm::APSInt Value;
3087        SourceLocation Loc;
3088        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3089          Diag(Loc, diag::err_in_class_initializer_non_constant)
3090            << Init->getSourceRange();
3091          VDecl->setInvalidDecl();
3092        } else if (!VDecl->getType()->isDependentType())
3093          ImpCastExprToType(Init, VDecl->getType());
3094      }
3095    }
3096  } else if (VDecl->isFileVarDecl()) {
3097    if (VDecl->getStorageClass() == VarDecl::Extern)
3098      Diag(VDecl->getLocation(), diag::warn_extern_init);
3099    if (!VDecl->isInvalidDecl())
3100      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3101                                VDecl->getDeclName(), DirectInit))
3102        VDecl->setInvalidDecl();
3103
3104    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3105    // Don't check invalid declarations to avoid emitting useless diagnostics.
3106    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3107      // C99 6.7.8p4. All file scoped initializers need to be constant.
3108      CheckForConstantInitializer(Init, DclT);
3109    }
3110  }
3111  // If the type changed, it means we had an incomplete type that was
3112  // completed by the initializer. For example:
3113  //   int ary[] = { 1, 3, 5 };
3114  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3115  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3116    VDecl->setType(DclT);
3117    Init->setType(DclT);
3118  }
3119
3120  // Attach the initializer to the decl.
3121  VDecl->setInit(Context, Init);
3122
3123  // If the previous declaration of VDecl was a tentative definition,
3124  // remove it from the set of tentative definitions.
3125  if (VDecl->getPreviousDeclaration() &&
3126      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3127    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3128      = TentativeDefinitions.find(VDecl->getDeclName());
3129    assert(Pos != TentativeDefinitions.end() &&
3130           "Unrecorded tentative definition?");
3131    TentativeDefinitions.erase(Pos);
3132  }
3133
3134  return;
3135}
3136
3137void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3138                                  bool TypeContainsUndeducedAuto) {
3139  Decl *RealDecl = dcl.getAs<Decl>();
3140
3141  // If there is no declaration, there was an error parsing it. Just ignore it.
3142  if (RealDecl == 0)
3143    return;
3144
3145  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3146    QualType Type = Var->getType();
3147
3148    // Record tentative definitions.
3149    if (Var->isTentativeDefinition(Context))
3150      TentativeDefinitions[Var->getDeclName()] = Var;
3151
3152    // C++ [dcl.init.ref]p3:
3153    //   The initializer can be omitted for a reference only in a
3154    //   parameter declaration (8.3.5), in the declaration of a
3155    //   function return type, in the declaration of a class member
3156    //   within its class declaration (9.2), and where the extern
3157    //   specifier is explicitly used.
3158    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3159      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3160        << Var->getDeclName()
3161        << SourceRange(Var->getLocation(), Var->getLocation());
3162      Var->setInvalidDecl();
3163      return;
3164    }
3165
3166    // C++0x [dcl.spec.auto]p3
3167    if (TypeContainsUndeducedAuto) {
3168      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3169        << Var->getDeclName() << Type;
3170      Var->setInvalidDecl();
3171      return;
3172    }
3173
3174    // C++ [dcl.init]p9:
3175    //
3176    //   If no initializer is specified for an object, and the object
3177    //   is of (possibly cv-qualified) non-POD class type (or array
3178    //   thereof), the object shall be default-initialized; if the
3179    //   object is of const-qualified type, the underlying class type
3180    //   shall have a user-declared default constructor.
3181    if (getLangOptions().CPlusPlus) {
3182      QualType InitType = Type;
3183      if (const ArrayType *Array = Context.getAsArrayType(Type))
3184        InitType = Array->getElementType();
3185      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3186          InitType->isRecordType() && !InitType->isDependentType()) {
3187        CXXRecordDecl *RD =
3188          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3189        CXXConstructorDecl *Constructor = 0;
3190        if (!RequireCompleteType(Var->getLocation(), InitType,
3191                                    diag::err_invalid_incomplete_type_use))
3192          Constructor
3193            = PerformInitializationByConstructor(InitType, 0, 0,
3194                                                 Var->getLocation(),
3195                                               SourceRange(Var->getLocation(),
3196                                                           Var->getLocation()),
3197                                                 Var->getDeclName(),
3198                                                 IK_Default);
3199        if (!Constructor)
3200          Var->setInvalidDecl();
3201        else {
3202          if (!RD->hasTrivialConstructor())
3203            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3204          FinalizeVarWithDestructor(Var, InitType);
3205        }
3206      }
3207    }
3208
3209#if 0
3210    // FIXME: Temporarily disabled because we are not properly parsing
3211    // linkage specifications on declarations, e.g.,
3212    //
3213    //   extern "C" const CGPoint CGPointerZero;
3214    //
3215    // C++ [dcl.init]p9:
3216    //
3217    //     If no initializer is specified for an object, and the
3218    //     object is of (possibly cv-qualified) non-POD class type (or
3219    //     array thereof), the object shall be default-initialized; if
3220    //     the object is of const-qualified type, the underlying class
3221    //     type shall have a user-declared default
3222    //     constructor. Otherwise, if no initializer is specified for
3223    //     an object, the object and its subobjects, if any, have an
3224    //     indeterminate initial value; if the object or any of its
3225    //     subobjects are of const-qualified type, the program is
3226    //     ill-formed.
3227    //
3228    // This isn't technically an error in C, so we don't diagnose it.
3229    //
3230    // FIXME: Actually perform the POD/user-defined default
3231    // constructor check.
3232    if (getLangOptions().CPlusPlus &&
3233        Context.getCanonicalType(Type).isConstQualified() &&
3234        !Var->hasExternalStorage())
3235      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3236        << Var->getName()
3237        << SourceRange(Var->getLocation(), Var->getLocation());
3238#endif
3239  }
3240}
3241
3242Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3243                                                   DeclPtrTy *Group,
3244                                                   unsigned NumDecls) {
3245  llvm::SmallVector<Decl*, 8> Decls;
3246
3247  if (DS.isTypeSpecOwned())
3248    Decls.push_back((Decl*)DS.getTypeRep());
3249
3250  for (unsigned i = 0; i != NumDecls; ++i)
3251    if (Decl *D = Group[i].getAs<Decl>())
3252      Decls.push_back(D);
3253
3254  // Perform semantic analysis that depends on having fully processed both
3255  // the declarator and initializer.
3256  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3257    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3258    if (!IDecl)
3259      continue;
3260    QualType T = IDecl->getType();
3261
3262    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3263    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3264    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3265      if (!IDecl->isInvalidDecl() &&
3266          RequireCompleteType(IDecl->getLocation(), T,
3267                              diag::err_typecheck_decl_incomplete_type))
3268        IDecl->setInvalidDecl();
3269    }
3270    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3271    // object that has file scope without an initializer, and without a
3272    // storage-class specifier or with the storage-class specifier "static",
3273    // constitutes a tentative definition. Note: A tentative definition with
3274    // external linkage is valid (C99 6.2.2p5).
3275    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3276      if (const IncompleteArrayType *ArrayT
3277          = Context.getAsIncompleteArrayType(T)) {
3278        if (RequireCompleteType(IDecl->getLocation(),
3279                                ArrayT->getElementType(),
3280                                diag::err_illegal_decl_array_incomplete_type))
3281          IDecl->setInvalidDecl();
3282      }
3283      else if (IDecl->getStorageClass() == VarDecl::Static) {
3284        // C99 6.9.2p3: If the declaration of an identifier for an object is
3285        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3286        // declared type shall not be an incomplete type.
3287        // NOTE: code such as the following
3288        //     static struct s;
3289        //     struct s { int a; };
3290        // is accepted by gcc. Hence here we issue a warning instead of
3291        // an error and we do not invalidate the static declaration.
3292        // NOTE: to avoid multiple warnings, only check the first declaration.
3293        if (IDecl->getPreviousDeclaration() == 0)
3294          RequireCompleteType(IDecl->getLocation(), T,
3295                              diag::ext_typecheck_decl_incomplete_type);
3296      }
3297    }
3298  }
3299  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3300                                                   Decls.data(), Decls.size()));
3301}
3302
3303
3304/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3305/// to introduce parameters into function prototype scope.
3306Sema::DeclPtrTy
3307Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3308  const DeclSpec &DS = D.getDeclSpec();
3309
3310  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3311  VarDecl::StorageClass StorageClass = VarDecl::None;
3312  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3313    StorageClass = VarDecl::Register;
3314  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3315    Diag(DS.getStorageClassSpecLoc(),
3316         diag::err_invalid_storage_class_in_func_decl);
3317    D.getMutableDeclSpec().ClearStorageClassSpecs();
3318  }
3319
3320  if (D.getDeclSpec().isThreadSpecified())
3321    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3322
3323  DiagnoseFunctionSpecifiers(D);
3324
3325  // Check that there are no default arguments inside the type of this
3326  // parameter (C++ only).
3327  if (getLangOptions().CPlusPlus)
3328    CheckExtraCXXDefaultArguments(D);
3329
3330  TagDecl *OwnedDecl = 0;
3331  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3332
3333  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3334    // C++ [dcl.fct]p6:
3335    //   Types shall not be defined in return or parameter types.
3336    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3337      << Context.getTypeDeclType(OwnedDecl);
3338  }
3339
3340  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3341  // Can this happen for params?  We already checked that they don't conflict
3342  // among each other.  Here they can only shadow globals, which is ok.
3343  IdentifierInfo *II = D.getIdentifier();
3344  if (II) {
3345    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3346      if (PrevDecl->isTemplateParameter()) {
3347        // Maybe we will complain about the shadowed template parameter.
3348        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3349        // Just pretend that we didn't see the previous declaration.
3350        PrevDecl = 0;
3351      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3352        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3353
3354        // Recover by removing the name
3355        II = 0;
3356        D.SetIdentifier(0, D.getIdentifierLoc());
3357      }
3358    }
3359  }
3360
3361  // Parameters can not be abstract class types.
3362  // For record types, this is done by the AbstractClassUsageDiagnoser once
3363  // the class has been completely parsed.
3364  if (!CurContext->isRecord() &&
3365      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3366                             diag::err_abstract_type_in_decl,
3367                             AbstractParamType))
3368    D.setInvalidType(true);
3369
3370  QualType T = adjustParameterType(parmDeclType);
3371
3372  ParmVarDecl *New;
3373  if (T == parmDeclType) // parameter type did not need adjustment
3374    New = ParmVarDecl::Create(Context, CurContext,
3375                              D.getIdentifierLoc(), II,
3376                              parmDeclType, StorageClass,
3377                              0);
3378  else // keep track of both the adjusted and unadjusted types
3379    New = OriginalParmVarDecl::Create(Context, CurContext,
3380                                      D.getIdentifierLoc(), II, T,
3381                                      parmDeclType, StorageClass, 0);
3382
3383  if (D.isInvalidType())
3384    New->setInvalidDecl();
3385
3386  // Parameter declarators cannot be interface types. All ObjC objects are
3387  // passed by reference.
3388  if (T->isObjCInterfaceType()) {
3389    Diag(D.getIdentifierLoc(),
3390         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3391    New->setInvalidDecl();
3392  }
3393
3394  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3395  if (D.getCXXScopeSpec().isSet()) {
3396    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3397      << D.getCXXScopeSpec().getRange();
3398    New->setInvalidDecl();
3399  }
3400
3401  // Add the parameter declaration into this scope.
3402  S->AddDecl(DeclPtrTy::make(New));
3403  if (II)
3404    IdResolver.AddDecl(New);
3405
3406  ProcessDeclAttributes(S, New, D);
3407
3408  if (New->hasAttr<BlocksAttr>()) {
3409    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3410  }
3411  return DeclPtrTy::make(New);
3412}
3413
3414void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3415                                           SourceLocation LocAfterDecls) {
3416  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3417         "Not a function declarator!");
3418  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3419
3420  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3421  // for a K&R function.
3422  if (!FTI.hasPrototype) {
3423    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3424      --i;
3425      if (FTI.ArgInfo[i].Param == 0) {
3426        std::string Code = "  int ";
3427        Code += FTI.ArgInfo[i].Ident->getName();
3428        Code += ";\n";
3429        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3430          << FTI.ArgInfo[i].Ident
3431          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3432
3433        // Implicitly declare the argument as type 'int' for lack of a better
3434        // type.
3435        DeclSpec DS;
3436        const char* PrevSpec; // unused
3437        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3438                           PrevSpec);
3439        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3440        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3441        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3442      }
3443    }
3444  }
3445}
3446
3447Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3448                                              Declarator &D) {
3449  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3450  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3451         "Not a function declarator!");
3452  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3453
3454  if (FTI.hasPrototype) {
3455    // FIXME: Diagnose arguments without names in C.
3456  }
3457
3458  Scope *ParentScope = FnBodyScope->getParent();
3459
3460  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3461                                  MultiTemplateParamsArg(*this),
3462                                  /*IsFunctionDefinition=*/true);
3463  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3464}
3465
3466Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3467  if (!D)
3468    return D;
3469  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3470
3471  CurFunctionNeedsScopeChecking = false;
3472
3473  // See if this is a redefinition.
3474  const FunctionDecl *Definition;
3475  if (FD->getBody(Definition)) {
3476    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3477    Diag(Definition->getLocation(), diag::note_previous_definition);
3478  }
3479
3480  // Builtin functions cannot be defined.
3481  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3482    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3483      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3484      FD->setInvalidDecl();
3485    }
3486  }
3487
3488  // The return type of a function definition must be complete
3489  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3490  QualType ResultType = FD->getResultType();
3491  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3492      !FD->isInvalidDecl() &&
3493      RequireCompleteType(FD->getLocation(), ResultType,
3494                          diag::err_func_def_incomplete_result))
3495    FD->setInvalidDecl();
3496
3497  // GNU warning -Wmissing-prototypes:
3498  //   Warn if a global function is defined without a previous
3499  //   prototype declaration. This warning is issued even if the
3500  //   definition itself provides a prototype. The aim is to detect
3501  //   global functions that fail to be declared in header files.
3502  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3503      !FD->isMain()) {
3504    bool MissingPrototype = true;
3505    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3506         Prev; Prev = Prev->getPreviousDeclaration()) {
3507      // Ignore any declarations that occur in function or method
3508      // scope, because they aren't visible from the header.
3509      if (Prev->getDeclContext()->isFunctionOrMethod())
3510        continue;
3511
3512      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3513      break;
3514    }
3515
3516    if (MissingPrototype)
3517      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3518  }
3519
3520  if (FnBodyScope)
3521    PushDeclContext(FnBodyScope, FD);
3522
3523  // Check the validity of our function parameters
3524  CheckParmsForFunctionDef(FD);
3525
3526  // Introduce our parameters into the function scope
3527  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3528    ParmVarDecl *Param = FD->getParamDecl(p);
3529    Param->setOwningFunction(FD);
3530
3531    // If this has an identifier, add it to the scope stack.
3532    if (Param->getIdentifier() && FnBodyScope)
3533      PushOnScopeChains(Param, FnBodyScope);
3534  }
3535
3536  // Checking attributes of current function definition
3537  // dllimport attribute.
3538  if (FD->getAttr<DLLImportAttr>() &&
3539      (!FD->getAttr<DLLExportAttr>())) {
3540    // dllimport attribute cannot be applied to definition.
3541    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3542      Diag(FD->getLocation(),
3543           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3544        << "dllimport";
3545      FD->setInvalidDecl();
3546      return DeclPtrTy::make(FD);
3547    } else {
3548      // If a symbol previously declared dllimport is later defined, the
3549      // attribute is ignored in subsequent references, and a warning is
3550      // emitted.
3551      Diag(FD->getLocation(),
3552           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3553        << FD->getNameAsCString() << "dllimport";
3554    }
3555  }
3556  return DeclPtrTy::make(FD);
3557}
3558
3559Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3560  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3561}
3562
3563Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3564                                              bool IsInstantiation) {
3565  Decl *dcl = D.getAs<Decl>();
3566  Stmt *Body = BodyArg.takeAs<Stmt>();
3567  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3568    FD->setBody(Body);
3569    if (FD->isMain())
3570      // C and C++ allow for main to automagically return 0.
3571      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3572      FD->setHasImplicitReturnZero(true);
3573    else
3574      CheckFallThroughForFunctionDef(FD, Body);
3575
3576    if (!FD->isInvalidDecl())
3577      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3578
3579    // C++ [basic.def.odr]p2:
3580    //   [...] A virtual member function is used if it is not pure. [...]
3581    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3582      if (Method->isVirtual() && !Method->isPure())
3583        MarkDeclarationReferenced(Method->getLocation(), Method);
3584
3585    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3586  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3587    assert(MD == getCurMethodDecl() && "Method parsing confused");
3588    MD->setBody(Body);
3589    CheckFallThroughForFunctionDef(MD, Body);
3590    MD->setEndLoc(Body->getLocEnd());
3591
3592    if (!MD->isInvalidDecl())
3593      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3594  } else {
3595    Body->Destroy(Context);
3596    return DeclPtrTy();
3597  }
3598  if (!IsInstantiation)
3599    PopDeclContext();
3600
3601  // Verify and clean out per-function state.
3602
3603  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3604
3605  // Check goto/label use.
3606  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3607       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3608    LabelStmt *L = I->second;
3609
3610    // Verify that we have no forward references left.  If so, there was a goto
3611    // or address of a label taken, but no definition of it.  Label fwd
3612    // definitions are indicated with a null substmt.
3613    if (L->getSubStmt() != 0)
3614      continue;
3615
3616    // Emit error.
3617    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3618
3619    // At this point, we have gotos that use the bogus label.  Stitch it into
3620    // the function body so that they aren't leaked and that the AST is well
3621    // formed.
3622    if (Body == 0) {
3623      // The whole function wasn't parsed correctly, just delete this.
3624      L->Destroy(Context);
3625      continue;
3626    }
3627
3628    // Otherwise, the body is valid: we want to stitch the label decl into the
3629    // function somewhere so that it is properly owned and so that the goto
3630    // has a valid target.  Do this by creating a new compound stmt with the
3631    // label in it.
3632
3633    // Give the label a sub-statement.
3634    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3635
3636    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3637                               cast<CXXTryStmt>(Body)->getTryBlock() :
3638                               cast<CompoundStmt>(Body);
3639    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3640    Elements.push_back(L);
3641    Compound->setStmts(Context, &Elements[0], Elements.size());
3642  }
3643  FunctionLabelMap.clear();
3644
3645  if (!Body) return D;
3646
3647  // Verify that that gotos and switch cases don't jump into scopes illegally.
3648  if (CurFunctionNeedsScopeChecking)
3649    DiagnoseInvalidJumps(Body);
3650
3651  // C++ constructors that have function-try-blocks can't have return
3652  // statements in the handlers of that block. (C++ [except.handle]p14)
3653  // Verify this.
3654  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3655    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3656
3657  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3658    Destructor->computeBaseOrMembersToDestroy(Context);
3659  return D;
3660}
3661
3662/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3663/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3664NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3665                                          IdentifierInfo &II, Scope *S) {
3666  // Before we produce a declaration for an implicitly defined
3667  // function, see whether there was a locally-scoped declaration of
3668  // this name as a function or variable. If so, use that
3669  // (non-visible) declaration, and complain about it.
3670  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3671    = LocallyScopedExternalDecls.find(&II);
3672  if (Pos != LocallyScopedExternalDecls.end()) {
3673    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3674    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3675    return Pos->second;
3676  }
3677
3678  // Extension in C99.  Legal in C90, but warn about it.
3679  if (getLangOptions().C99)
3680    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3681  else
3682    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3683
3684  // FIXME: handle stuff like:
3685  // void foo() { extern float X(); }
3686  // void bar() { X(); }  <-- implicit decl for X in another scope.
3687
3688  // Set a Declarator for the implicit definition: int foo();
3689  const char *Dummy;
3690  DeclSpec DS;
3691  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3692  Error = Error; // Silence warning.
3693  assert(!Error && "Error setting up implicit decl!");
3694  Declarator D(DS, Declarator::BlockContext);
3695  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3696                                             0, 0, false, SourceLocation(),
3697                                             false, 0,0,0, Loc, D),
3698                SourceLocation());
3699  D.SetIdentifier(&II, Loc);
3700
3701  // Insert this function into translation-unit scope.
3702
3703  DeclContext *PrevDC = CurContext;
3704  CurContext = Context.getTranslationUnitDecl();
3705
3706  FunctionDecl *FD =
3707 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3708  FD->setImplicit();
3709
3710  CurContext = PrevDC;
3711
3712  AddKnownFunctionAttributes(FD);
3713
3714  return FD;
3715}
3716
3717/// \brief Adds any function attributes that we know a priori based on
3718/// the declaration of this function.
3719///
3720/// These attributes can apply both to implicitly-declared builtins
3721/// (like __builtin___printf_chk) or to library-declared functions
3722/// like NSLog or printf.
3723void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3724  if (FD->isInvalidDecl())
3725    return;
3726
3727  // If this is a built-in function, map its builtin attributes to
3728  // actual attributes.
3729  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3730    // Handle printf-formatting attributes.
3731    unsigned FormatIdx;
3732    bool HasVAListArg;
3733    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3734      if (!FD->getAttr<FormatAttr>())
3735        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3736                                             HasVAListArg ? 0 : FormatIdx + 2));
3737    }
3738
3739    // Mark const if we don't care about errno and that is the only
3740    // thing preventing the function from being const. This allows
3741    // IRgen to use LLVM intrinsics for such functions.
3742    if (!getLangOptions().MathErrno &&
3743        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3744      if (!FD->getAttr<ConstAttr>())
3745        FD->addAttr(::new (Context) ConstAttr());
3746    }
3747
3748    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3749      FD->addAttr(::new (Context) NoReturnAttr());
3750  }
3751
3752  IdentifierInfo *Name = FD->getIdentifier();
3753  if (!Name)
3754    return;
3755  if ((!getLangOptions().CPlusPlus &&
3756       FD->getDeclContext()->isTranslationUnit()) ||
3757      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3758       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3759       LinkageSpecDecl::lang_c)) {
3760    // Okay: this could be a libc/libm/Objective-C function we know
3761    // about.
3762  } else
3763    return;
3764
3765  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3766    // FIXME: NSLog and NSLogv should be target specific
3767    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3768      // FIXME: We known better than our headers.
3769      const_cast<FormatAttr *>(Format)->setType("printf");
3770    } else
3771      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3772                                             Name->isStr("NSLogv") ? 0 : 2));
3773  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3774    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3775    // target-specific builtins, perhaps?
3776    if (!FD->getAttr<FormatAttr>())
3777      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3778                                             Name->isStr("vasprintf") ? 0 : 3));
3779  }
3780}
3781
3782TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3783  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3784  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3785
3786  // Scope manipulation handled by caller.
3787  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3788                                           D.getIdentifierLoc(),
3789                                           D.getIdentifier(),
3790                                           T);
3791
3792  if (TagType *TT = dyn_cast<TagType>(T)) {
3793    TagDecl *TD = TT->getDecl();
3794
3795    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3796    // keep track of the TypedefDecl.
3797    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3798      TD->setTypedefForAnonDecl(NewTD);
3799  }
3800
3801  if (D.isInvalidType())
3802    NewTD->setInvalidDecl();
3803  return NewTD;
3804}
3805
3806
3807/// \brief Determine whether a tag with a given kind is acceptable
3808/// as a redeclaration of the given tag declaration.
3809///
3810/// \returns true if the new tag kind is acceptable, false otherwise.
3811bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3812                                        TagDecl::TagKind NewTag,
3813                                        SourceLocation NewTagLoc,
3814                                        const IdentifierInfo &Name) {
3815  // C++ [dcl.type.elab]p3:
3816  //   The class-key or enum keyword present in the
3817  //   elaborated-type-specifier shall agree in kind with the
3818  //   declaration to which the name in theelaborated-type-specifier
3819  //   refers. This rule also applies to the form of
3820  //   elaborated-type-specifier that declares a class-name or
3821  //   friend class since it can be construed as referring to the
3822  //   definition of the class. Thus, in any
3823  //   elaborated-type-specifier, the enum keyword shall be used to
3824  //   refer to an enumeration (7.2), the union class-keyshall be
3825  //   used to refer to a union (clause 9), and either the class or
3826  //   struct class-key shall be used to refer to a class (clause 9)
3827  //   declared using the class or struct class-key.
3828  TagDecl::TagKind OldTag = Previous->getTagKind();
3829  if (OldTag == NewTag)
3830    return true;
3831
3832  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3833      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3834    // Warn about the struct/class tag mismatch.
3835    bool isTemplate = false;
3836    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3837      isTemplate = Record->getDescribedClassTemplate();
3838
3839    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3840      << (NewTag == TagDecl::TK_class)
3841      << isTemplate << &Name
3842      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3843                              OldTag == TagDecl::TK_class? "class" : "struct");
3844    Diag(Previous->getLocation(), diag::note_previous_use);
3845    return true;
3846  }
3847  return false;
3848}
3849
3850/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3851/// former case, Name will be non-null.  In the later case, Name will be null.
3852/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3853/// reference/declaration/definition of a tag.
3854Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3855                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3856                               IdentifierInfo *Name, SourceLocation NameLoc,
3857                               AttributeList *Attr, AccessSpecifier AS,
3858                               MultiTemplateParamsArg TemplateParameterLists,
3859                               bool &OwnedDecl) {
3860  // If this is not a definition, it must have a name.
3861  assert((Name != 0 || TUK == TUK_Definition) &&
3862         "Nameless record must be a definition!");
3863
3864  OwnedDecl = false;
3865  TagDecl::TagKind Kind;
3866  switch (TagSpec) {
3867  default: assert(0 && "Unknown tag type!");
3868  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3869  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3870  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3871  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3872  }
3873
3874  if (TUK != TUK_Reference) {
3875    if (TemplateParameterList *TemplateParams
3876          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3877                        (TemplateParameterList**)TemplateParameterLists.get(),
3878                                              TemplateParameterLists.size())) {
3879      if (TemplateParams->size() > 0) {
3880        // This is a declaration or definition of a class template (which may
3881        // be a member of another template).
3882        OwnedDecl = false;
3883        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3884                                               SS, Name, NameLoc, Attr,
3885                                               move(TemplateParameterLists),
3886                                               AS);
3887        return Result.get();
3888      } else {
3889        // FIXME: diagnose the extraneous 'template<>', once we recover
3890        // slightly better in ParseTemplate.cpp from bogus template
3891        // parameters.
3892      }
3893    }
3894  }
3895
3896  DeclContext *SearchDC = CurContext;
3897  DeclContext *DC = CurContext;
3898  NamedDecl *PrevDecl = 0;
3899
3900  bool Invalid = false;
3901
3902  if (Name && SS.isNotEmpty()) {
3903    // We have a nested-name tag ('struct foo::bar').
3904
3905    // Check for invalid 'foo::'.
3906    if (SS.isInvalid()) {
3907      Name = 0;
3908      goto CreateNewDecl;
3909    }
3910
3911    if (RequireCompleteDeclContext(SS))
3912      return DeclPtrTy::make((Decl *)0);
3913
3914    DC = computeDeclContext(SS, true);
3915    SearchDC = DC;
3916    // Look-up name inside 'foo::'.
3917    PrevDecl
3918      = dyn_cast_or_null<TagDecl>(
3919               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3920
3921    // A tag 'foo::bar' must already exist.
3922    if (PrevDecl == 0) {
3923      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3924      Name = 0;
3925      Invalid = true;
3926      goto CreateNewDecl;
3927    }
3928  } else if (Name) {
3929    // If this is a named struct, check to see if there was a previous forward
3930    // declaration or definition.
3931    // FIXME: We're looking into outer scopes here, even when we
3932    // shouldn't be. Doing so can result in ambiguities that we
3933    // shouldn't be diagnosing.
3934    LookupResult R = LookupName(S, Name, LookupTagName,
3935                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3936    if (R.isAmbiguous()) {
3937      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3938      // FIXME: This is not best way to recover from case like:
3939      //
3940      // struct S s;
3941      //
3942      // causes needless "incomplete type" error later.
3943      Name = 0;
3944      PrevDecl = 0;
3945      Invalid = true;
3946    }
3947    else
3948      PrevDecl = R;
3949
3950    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
3951      // FIXME: This makes sure that we ignore the contexts associated
3952      // with C structs, unions, and enums when looking for a matching
3953      // tag declaration or definition. See the similar lookup tweak
3954      // in Sema::LookupName; is there a better way to deal with this?
3955      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3956        SearchDC = SearchDC->getParent();
3957    }
3958  }
3959
3960  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3961    // Maybe we will complain about the shadowed template parameter.
3962    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3963    // Just pretend that we didn't see the previous declaration.
3964    PrevDecl = 0;
3965  }
3966
3967  if (PrevDecl) {
3968    // Check whether the previous declaration is usable.
3969    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3970
3971    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3972      // If this is a use of a previous tag, or if the tag is already declared
3973      // in the same scope (so that the definition/declaration completes or
3974      // rementions the tag), reuse the decl.
3975      if (TUK == TUK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3976        // Make sure that this wasn't declared as an enum and now used as a
3977        // struct or something similar.
3978        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3979          bool SafeToContinue
3980            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3981               Kind != TagDecl::TK_enum);
3982          if (SafeToContinue)
3983            Diag(KWLoc, diag::err_use_with_wrong_tag)
3984              << Name
3985              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3986                                                  PrevTagDecl->getKindName());
3987          else
3988            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3989          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3990
3991          if (SafeToContinue)
3992            Kind = PrevTagDecl->getTagKind();
3993          else {
3994            // Recover by making this an anonymous redefinition.
3995            Name = 0;
3996            PrevDecl = 0;
3997            Invalid = true;
3998          }
3999        }
4000
4001        if (!Invalid) {
4002          // If this is a use, just return the declaration we found.
4003
4004          // FIXME: In the future, return a variant or some other clue
4005          // for the consumer of this Decl to know it doesn't own it.
4006          // For our current ASTs this shouldn't be a problem, but will
4007          // need to be changed with DeclGroups.
4008          if (TUK == TUK_Reference)
4009            return DeclPtrTy::make(PrevDecl);
4010
4011          // Diagnose attempts to redefine a tag.
4012          if (TUK == TUK_Definition) {
4013            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4014              Diag(NameLoc, diag::err_redefinition) << Name;
4015              Diag(Def->getLocation(), diag::note_previous_definition);
4016              // If this is a redefinition, recover by making this
4017              // struct be anonymous, which will make any later
4018              // references get the previous definition.
4019              Name = 0;
4020              PrevDecl = 0;
4021              Invalid = true;
4022            } else {
4023              // If the type is currently being defined, complain
4024              // about a nested redefinition.
4025              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4026              if (Tag->isBeingDefined()) {
4027                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4028                Diag(PrevTagDecl->getLocation(),
4029                     diag::note_previous_definition);
4030                Name = 0;
4031                PrevDecl = 0;
4032                Invalid = true;
4033              }
4034            }
4035
4036            // Okay, this is definition of a previously declared or referenced
4037            // tag PrevDecl. We're going to create a new Decl for it.
4038          }
4039        }
4040        // If we get here we have (another) forward declaration or we
4041        // have a definition.  Just create a new decl.
4042      } else {
4043        // If we get here, this is a definition of a new tag type in a nested
4044        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4045        // new decl/type.  We set PrevDecl to NULL so that the entities
4046        // have distinct types.
4047        PrevDecl = 0;
4048      }
4049      // If we get here, we're going to create a new Decl. If PrevDecl
4050      // is non-NULL, it's a definition of the tag declared by
4051      // PrevDecl. If it's NULL, we have a new definition.
4052    } else {
4053      // PrevDecl is a namespace, template, or anything else
4054      // that lives in the IDNS_Tag identifier namespace.
4055      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4056        // The tag name clashes with a namespace name, issue an error and
4057        // recover by making this tag be anonymous.
4058        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4059        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4060        Name = 0;
4061        PrevDecl = 0;
4062        Invalid = true;
4063      } else {
4064        // The existing declaration isn't relevant to us; we're in a
4065        // new scope, so clear out the previous declaration.
4066        PrevDecl = 0;
4067      }
4068    }
4069  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4070             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4071    // C++ [basic.scope.pdecl]p5:
4072    //   -- for an elaborated-type-specifier of the form
4073    //
4074    //          class-key identifier
4075    //
4076    //      if the elaborated-type-specifier is used in the
4077    //      decl-specifier-seq or parameter-declaration-clause of a
4078    //      function defined in namespace scope, the identifier is
4079    //      declared as a class-name in the namespace that contains
4080    //      the declaration; otherwise, except as a friend
4081    //      declaration, the identifier is declared in the smallest
4082    //      non-class, non-function-prototype scope that contains the
4083    //      declaration.
4084    //
4085    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4086    // C structs and unions.
4087    //
4088    // GNU C also supports this behavior as part of its incomplete
4089    // enum types extension, while GNU C++ does not.
4090    //
4091    // Find the context where we'll be declaring the tag.
4092    // FIXME: We would like to maintain the current DeclContext as the
4093    // lexical context,
4094    while (SearchDC->isRecord())
4095      SearchDC = SearchDC->getParent();
4096
4097    // Find the scope where we'll be declaring the tag.
4098    while (S->isClassScope() ||
4099           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4100           ((S->getFlags() & Scope::DeclScope) == 0) ||
4101           (S->getEntity() &&
4102            ((DeclContext *)S->getEntity())->isTransparentContext()))
4103      S = S->getParent();
4104  }
4105
4106CreateNewDecl:
4107
4108  // If there is an identifier, use the location of the identifier as the
4109  // location of the decl, otherwise use the location of the struct/union
4110  // keyword.
4111  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4112
4113  // Otherwise, create a new declaration. If there is a previous
4114  // declaration of the same entity, the two will be linked via
4115  // PrevDecl.
4116  TagDecl *New;
4117
4118  if (Kind == TagDecl::TK_enum) {
4119    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4120    // enum X { A, B, C } D;    D should chain to X.
4121    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4122                           cast_or_null<EnumDecl>(PrevDecl));
4123    // If this is an undefined enum, warn.
4124    if (TUK != TUK_Definition && !Invalid)  {
4125      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4126                                              : diag::ext_forward_ref_enum;
4127      Diag(Loc, DK);
4128    }
4129  } else {
4130    // struct/union/class
4131
4132    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4133    // struct X { int A; } D;    D should chain to X.
4134    if (getLangOptions().CPlusPlus)
4135      // FIXME: Look for a way to use RecordDecl for simple structs.
4136      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4137                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4138    else
4139      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4140                               cast_or_null<RecordDecl>(PrevDecl));
4141  }
4142
4143  if (Kind != TagDecl::TK_enum) {
4144    // Handle #pragma pack: if the #pragma pack stack has non-default
4145    // alignment, make up a packed attribute for this decl. These
4146    // attributes are checked when the ASTContext lays out the
4147    // structure.
4148    //
4149    // It is important for implementing the correct semantics that this
4150    // happen here (in act on tag decl). The #pragma pack stack is
4151    // maintained as a result of parser callbacks which can occur at
4152    // many points during the parsing of a struct declaration (because
4153    // the #pragma tokens are effectively skipped over during the
4154    // parsing of the struct).
4155    if (unsigned Alignment = getPragmaPackAlignment())
4156      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
4157  }
4158
4159  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4160    // C++ [dcl.typedef]p3:
4161    //   [...] Similarly, in a given scope, a class or enumeration
4162    //   shall not be declared with the same name as a typedef-name
4163    //   that is declared in that scope and refers to a type other
4164    //   than the class or enumeration itself.
4165    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4166    TypedefDecl *PrevTypedef = 0;
4167    if (Lookup.getKind() == LookupResult::Found)
4168      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4169
4170    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4171        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4172          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4173      Diag(Loc, diag::err_tag_definition_of_typedef)
4174        << Context.getTypeDeclType(New)
4175        << PrevTypedef->getUnderlyingType();
4176      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4177      Invalid = true;
4178    }
4179  }
4180
4181  if (Invalid)
4182    New->setInvalidDecl();
4183
4184  if (Attr)
4185    ProcessDeclAttributeList(S, New, Attr);
4186
4187  // If we're declaring or defining a tag in function prototype scope
4188  // in C, note that this type can only be used within the function.
4189  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4190    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4191
4192  // Set the lexical context. If the tag has a C++ scope specifier, the
4193  // lexical context will be different from the semantic context.
4194  New->setLexicalDeclContext(CurContext);
4195
4196  // Set the access specifier.
4197  if (!Invalid)
4198    SetMemberAccessSpecifier(New, PrevDecl, AS);
4199
4200  if (TUK == TUK_Definition)
4201    New->startDefinition();
4202
4203  // If this has an identifier, add it to the scope stack.
4204  if (Name) {
4205    S = getNonFieldDeclScope(S);
4206    PushOnScopeChains(New, S);
4207  } else {
4208    CurContext->addDecl(New);
4209  }
4210
4211  // If this is the C FILE type, notify the AST context.
4212  if (IdentifierInfo *II = New->getIdentifier())
4213    if (!New->isInvalidDecl() &&
4214        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4215        II->isStr("FILE"))
4216      Context.setFILEDecl(New);
4217
4218  OwnedDecl = true;
4219  return DeclPtrTy::make(New);
4220}
4221
4222void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4223  AdjustDeclIfTemplate(TagD);
4224  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4225
4226  // Enter the tag context.
4227  PushDeclContext(S, Tag);
4228
4229  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4230    FieldCollector->StartClass();
4231
4232    if (Record->getIdentifier()) {
4233      // C++ [class]p2:
4234      //   [...] The class-name is also inserted into the scope of the
4235      //   class itself; this is known as the injected-class-name. For
4236      //   purposes of access checking, the injected-class-name is treated
4237      //   as if it were a public member name.
4238      CXXRecordDecl *InjectedClassName
4239        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4240                                CurContext, Record->getLocation(),
4241                                Record->getIdentifier(),
4242                                Record->getTagKeywordLoc(),
4243                                Record);
4244      InjectedClassName->setImplicit();
4245      InjectedClassName->setAccess(AS_public);
4246      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4247        InjectedClassName->setDescribedClassTemplate(Template);
4248      PushOnScopeChains(InjectedClassName, S);
4249      assert(InjectedClassName->isInjectedClassName() &&
4250             "Broken injected-class-name");
4251    }
4252  }
4253}
4254
4255void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4256                                    SourceLocation RBraceLoc) {
4257  AdjustDeclIfTemplate(TagD);
4258  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4259  Tag->setRBraceLoc(RBraceLoc);
4260
4261  if (isa<CXXRecordDecl>(Tag))
4262    FieldCollector->FinishClass();
4263
4264  // Exit this scope of this tag's definition.
4265  PopDeclContext();
4266
4267  // Notify the consumer that we've defined a tag.
4268  Consumer.HandleTagDeclDefinition(Tag);
4269}
4270
4271// Note that FieldName may be null for anonymous bitfields.
4272bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4273                          QualType FieldTy, const Expr *BitWidth) {
4274
4275  // C99 6.7.2.1p4 - verify the field type.
4276  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4277  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4278    // Handle incomplete types with specific error.
4279    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4280      return true;
4281    if (FieldName)
4282      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4283        << FieldName << FieldTy << BitWidth->getSourceRange();
4284    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4285      << FieldTy << BitWidth->getSourceRange();
4286  }
4287
4288  // If the bit-width is type- or value-dependent, don't try to check
4289  // it now.
4290  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4291    return false;
4292
4293  llvm::APSInt Value;
4294  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4295    return true;
4296
4297  // Zero-width bitfield is ok for anonymous field.
4298  if (Value == 0 && FieldName)
4299    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4300
4301  if (Value.isSigned() && Value.isNegative()) {
4302    if (FieldName)
4303      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4304               << FieldName << Value.toString(10);
4305    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4306      << Value.toString(10);
4307  }
4308
4309  if (!FieldTy->isDependentType()) {
4310    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4311    if (Value.getZExtValue() > TypeSize) {
4312      if (FieldName)
4313        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4314          << FieldName << (unsigned)TypeSize;
4315      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4316        << (unsigned)TypeSize;
4317    }
4318  }
4319
4320  return false;
4321}
4322
4323/// ActOnField - Each field of a struct/union/class is passed into this in order
4324/// to create a FieldDecl object for it.
4325Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4326                                 SourceLocation DeclStart,
4327                                 Declarator &D, ExprTy *BitfieldWidth) {
4328  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4329                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4330                               AS_public);
4331  return DeclPtrTy::make(Res);
4332}
4333
4334/// HandleField - Analyze a field of a C struct or a C++ data member.
4335///
4336FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4337                             SourceLocation DeclStart,
4338                             Declarator &D, Expr *BitWidth,
4339                             AccessSpecifier AS) {
4340  IdentifierInfo *II = D.getIdentifier();
4341  SourceLocation Loc = DeclStart;
4342  if (II) Loc = D.getIdentifierLoc();
4343
4344  QualType T = GetTypeForDeclarator(D, S);
4345  if (getLangOptions().CPlusPlus)
4346    CheckExtraCXXDefaultArguments(D);
4347
4348  DiagnoseFunctionSpecifiers(D);
4349
4350  if (D.getDeclSpec().isThreadSpecified())
4351    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4352
4353  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4354
4355  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4356    // Maybe we will complain about the shadowed template parameter.
4357    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4358    // Just pretend that we didn't see the previous declaration.
4359    PrevDecl = 0;
4360  }
4361
4362  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4363    PrevDecl = 0;
4364
4365  bool Mutable
4366    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4367  SourceLocation TSSL = D.getSourceRange().getBegin();
4368  FieldDecl *NewFD
4369    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4370                     AS, PrevDecl, &D);
4371  if (NewFD->isInvalidDecl() && PrevDecl) {
4372    // Don't introduce NewFD into scope; there's already something
4373    // with the same name in the same scope.
4374  } else if (II) {
4375    PushOnScopeChains(NewFD, S);
4376  } else
4377    Record->addDecl(NewFD);
4378
4379  return NewFD;
4380}
4381
4382/// \brief Build a new FieldDecl and check its well-formedness.
4383///
4384/// This routine builds a new FieldDecl given the fields name, type,
4385/// record, etc. \p PrevDecl should refer to any previous declaration
4386/// with the same name and in the same scope as the field to be
4387/// created.
4388///
4389/// \returns a new FieldDecl.
4390///
4391/// \todo The Declarator argument is a hack. It will be removed once
4392FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4393                                RecordDecl *Record, SourceLocation Loc,
4394                                bool Mutable, Expr *BitWidth,
4395                                SourceLocation TSSL,
4396                                AccessSpecifier AS, NamedDecl *PrevDecl,
4397                                Declarator *D) {
4398  IdentifierInfo *II = Name.getAsIdentifierInfo();
4399  bool InvalidDecl = false;
4400  if (D) InvalidDecl = D->isInvalidType();
4401
4402  // If we receive a broken type, recover by assuming 'int' and
4403  // marking this declaration as invalid.
4404  if (T.isNull()) {
4405    InvalidDecl = true;
4406    T = Context.IntTy;
4407  }
4408
4409  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4410  // than a variably modified type.
4411  if (T->isVariablyModifiedType()) {
4412    bool SizeIsNegative;
4413    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4414                                                           SizeIsNegative);
4415    if (!FixedTy.isNull()) {
4416      Diag(Loc, diag::warn_illegal_constant_array_size);
4417      T = FixedTy;
4418    } else {
4419      if (SizeIsNegative)
4420        Diag(Loc, diag::err_typecheck_negative_array_size);
4421      else
4422        Diag(Loc, diag::err_typecheck_field_variable_size);
4423      InvalidDecl = true;
4424    }
4425  }
4426
4427  // Fields can not have abstract class types
4428  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4429                             AbstractFieldType))
4430    InvalidDecl = true;
4431
4432  // If this is declared as a bit-field, check the bit-field.
4433  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4434    InvalidDecl = true;
4435    DeleteExpr(BitWidth);
4436    BitWidth = 0;
4437  }
4438
4439  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4440                                       Mutable, TSSL);
4441  if (InvalidDecl)
4442    NewFD->setInvalidDecl();
4443
4444  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4445    Diag(Loc, diag::err_duplicate_member) << II;
4446    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4447    NewFD->setInvalidDecl();
4448  }
4449
4450  if (getLangOptions().CPlusPlus) {
4451    QualType EltTy = Context.getBaseElementType(T);
4452
4453    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4454      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4455
4456      if (!RDecl->hasTrivialConstructor())
4457        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4458      if (!RDecl->hasTrivialCopyConstructor())
4459        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4460      if (!RDecl->hasTrivialCopyAssignment())
4461        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4462      if (!RDecl->hasTrivialDestructor())
4463        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4464
4465      // C++ 9.5p1: An object of a class with a non-trivial
4466      // constructor, a non-trivial copy constructor, a non-trivial
4467      // destructor, or a non-trivial copy assignment operator
4468      // cannot be a member of a union, nor can an array of such
4469      // objects.
4470      // TODO: C++0x alters this restriction significantly.
4471      if (Record->isUnion()) {
4472        // We check for copy constructors before constructors
4473        // because otherwise we'll never get complaints about
4474        // copy constructors.
4475
4476        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4477
4478        CXXSpecialMember member;
4479        if (!RDecl->hasTrivialCopyConstructor())
4480          member = CXXCopyConstructor;
4481        else if (!RDecl->hasTrivialConstructor())
4482          member = CXXDefaultConstructor;
4483        else if (!RDecl->hasTrivialCopyAssignment())
4484          member = CXXCopyAssignment;
4485        else if (!RDecl->hasTrivialDestructor())
4486          member = CXXDestructor;
4487        else
4488          member = invalid;
4489
4490        if (member != invalid) {
4491          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4492          DiagnoseNontrivial(RT, member);
4493          NewFD->setInvalidDecl();
4494        }
4495      }
4496    }
4497  }
4498
4499  if (getLangOptions().CPlusPlus && !T->isPODType())
4500    cast<CXXRecordDecl>(Record)->setPOD(false);
4501
4502  // FIXME: We need to pass in the attributes given an AST
4503  // representation, not a parser representation.
4504  if (D)
4505    // FIXME: What to pass instead of TUScope?
4506    ProcessDeclAttributes(TUScope, NewFD, *D);
4507
4508  if (T.isObjCGCWeak())
4509    Diag(Loc, diag::warn_attribute_weak_on_field);
4510
4511  NewFD->setAccess(AS);
4512
4513  // C++ [dcl.init.aggr]p1:
4514  //   An aggregate is an array or a class (clause 9) with [...] no
4515  //   private or protected non-static data members (clause 11).
4516  // A POD must be an aggregate.
4517  if (getLangOptions().CPlusPlus &&
4518      (AS == AS_private || AS == AS_protected)) {
4519    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4520    CXXRecord->setAggregate(false);
4521    CXXRecord->setPOD(false);
4522  }
4523
4524  return NewFD;
4525}
4526
4527/// DiagnoseNontrivial - Given that a class has a non-trivial
4528/// special member, figure out why.
4529void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4530  QualType QT(T, 0U);
4531  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4532
4533  // Check whether the member was user-declared.
4534  switch (member) {
4535  case CXXDefaultConstructor:
4536    if (RD->hasUserDeclaredConstructor()) {
4537      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4538      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4539        if (!ci->isImplicitlyDefined(Context)) {
4540          SourceLocation CtorLoc = ci->getLocation();
4541          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4542          return;
4543        }
4544
4545      assert(0 && "found no user-declared constructors");
4546      return;
4547    }
4548    break;
4549
4550  case CXXCopyConstructor:
4551    if (RD->hasUserDeclaredCopyConstructor()) {
4552      SourceLocation CtorLoc =
4553        RD->getCopyConstructor(Context, 0)->getLocation();
4554      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4555      return;
4556    }
4557    break;
4558
4559  case CXXCopyAssignment:
4560    if (RD->hasUserDeclaredCopyAssignment()) {
4561      // FIXME: this should use the location of the copy
4562      // assignment, not the type.
4563      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4564      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4565      return;
4566    }
4567    break;
4568
4569  case CXXDestructor:
4570    if (RD->hasUserDeclaredDestructor()) {
4571      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4572      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4573      return;
4574    }
4575    break;
4576  }
4577
4578  typedef CXXRecordDecl::base_class_iterator base_iter;
4579
4580  // Virtual bases and members inhibit trivial copying/construction,
4581  // but not trivial destruction.
4582  if (member != CXXDestructor) {
4583    // Check for virtual bases.  vbases includes indirect virtual bases,
4584    // so we just iterate through the direct bases.
4585    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4586      if (bi->isVirtual()) {
4587        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4588        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4589        return;
4590      }
4591
4592    // Check for virtual methods.
4593    typedef CXXRecordDecl::method_iterator meth_iter;
4594    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4595         ++mi) {
4596      if (mi->isVirtual()) {
4597        SourceLocation MLoc = mi->getSourceRange().getBegin();
4598        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4599        return;
4600      }
4601    }
4602  }
4603
4604  bool (CXXRecordDecl::*hasTrivial)() const;
4605  switch (member) {
4606  case CXXDefaultConstructor:
4607    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4608  case CXXCopyConstructor:
4609    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4610  case CXXCopyAssignment:
4611    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4612  case CXXDestructor:
4613    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4614  default:
4615    assert(0 && "unexpected special member"); return;
4616  }
4617
4618  // Check for nontrivial bases (and recurse).
4619  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4620    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4621    assert(BaseRT);
4622    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4623    if (!(BaseRecTy->*hasTrivial)()) {
4624      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4625      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4626      DiagnoseNontrivial(BaseRT, member);
4627      return;
4628    }
4629  }
4630
4631  // Check for nontrivial members (and recurse).
4632  typedef RecordDecl::field_iterator field_iter;
4633  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4634       ++fi) {
4635    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4636    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4637      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4638
4639      if (!(EltRD->*hasTrivial)()) {
4640        SourceLocation FLoc = (*fi)->getLocation();
4641        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4642        DiagnoseNontrivial(EltRT, member);
4643        return;
4644      }
4645    }
4646  }
4647
4648  assert(0 && "found no explanation for non-trivial member");
4649}
4650
4651/// TranslateIvarVisibility - Translate visibility from a token ID to an
4652///  AST enum value.
4653static ObjCIvarDecl::AccessControl
4654TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4655  switch (ivarVisibility) {
4656  default: assert(0 && "Unknown visitibility kind");
4657  case tok::objc_private: return ObjCIvarDecl::Private;
4658  case tok::objc_public: return ObjCIvarDecl::Public;
4659  case tok::objc_protected: return ObjCIvarDecl::Protected;
4660  case tok::objc_package: return ObjCIvarDecl::Package;
4661  }
4662}
4663
4664/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4665/// in order to create an IvarDecl object for it.
4666Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4667                                SourceLocation DeclStart,
4668                                DeclPtrTy IntfDecl,
4669                                Declarator &D, ExprTy *BitfieldWidth,
4670                                tok::ObjCKeywordKind Visibility) {
4671
4672  IdentifierInfo *II = D.getIdentifier();
4673  Expr *BitWidth = (Expr*)BitfieldWidth;
4674  SourceLocation Loc = DeclStart;
4675  if (II) Loc = D.getIdentifierLoc();
4676
4677  // FIXME: Unnamed fields can be handled in various different ways, for
4678  // example, unnamed unions inject all members into the struct namespace!
4679
4680  QualType T = GetTypeForDeclarator(D, S);
4681
4682  if (BitWidth) {
4683    // 6.7.2.1p3, 6.7.2.1p4
4684    if (VerifyBitField(Loc, II, T, BitWidth)) {
4685      D.setInvalidType();
4686      DeleteExpr(BitWidth);
4687      BitWidth = 0;
4688    }
4689  } else {
4690    // Not a bitfield.
4691
4692    // validate II.
4693
4694  }
4695
4696  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4697  // than a variably modified type.
4698  if (T->isVariablyModifiedType()) {
4699    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4700    D.setInvalidType();
4701  }
4702
4703  // Get the visibility (access control) for this ivar.
4704  ObjCIvarDecl::AccessControl ac =
4705    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4706                                        : ObjCIvarDecl::None;
4707  // Must set ivar's DeclContext to its enclosing interface.
4708  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4709  DeclContext *EnclosingContext;
4710  if (ObjCImplementationDecl *IMPDecl =
4711      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4712    // Case of ivar declared in an implementation. Context is that of its class.
4713    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4714    assert(IDecl && "No class- ActOnIvar");
4715    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4716  }
4717  else
4718    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4719  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4720
4721  // Construct the decl.
4722  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4723                                             EnclosingContext, Loc, II, T,ac,
4724                                             (Expr *)BitfieldWidth);
4725
4726  if (II) {
4727    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4728    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4729        && !isa<TagDecl>(PrevDecl)) {
4730      Diag(Loc, diag::err_duplicate_member) << II;
4731      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4732      NewID->setInvalidDecl();
4733    }
4734  }
4735
4736  // Process attributes attached to the ivar.
4737  ProcessDeclAttributes(S, NewID, D);
4738
4739  if (D.isInvalidType())
4740    NewID->setInvalidDecl();
4741
4742  if (II) {
4743    // FIXME: When interfaces are DeclContexts, we'll need to add
4744    // these to the interface.
4745    S->AddDecl(DeclPtrTy::make(NewID));
4746    IdResolver.AddDecl(NewID);
4747  }
4748
4749  return DeclPtrTy::make(NewID);
4750}
4751
4752void Sema::ActOnFields(Scope* S,
4753                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4754                       DeclPtrTy *Fields, unsigned NumFields,
4755                       SourceLocation LBrac, SourceLocation RBrac,
4756                       AttributeList *Attr) {
4757  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4758  assert(EnclosingDecl && "missing record or interface decl");
4759
4760  // If the decl this is being inserted into is invalid, then it may be a
4761  // redeclaration or some other bogus case.  Don't try to add fields to it.
4762  if (EnclosingDecl->isInvalidDecl()) {
4763    // FIXME: Deallocate fields?
4764    return;
4765  }
4766
4767
4768  // Verify that all the fields are okay.
4769  unsigned NumNamedMembers = 0;
4770  llvm::SmallVector<FieldDecl*, 32> RecFields;
4771
4772  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4773  for (unsigned i = 0; i != NumFields; ++i) {
4774    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4775
4776    // Get the type for the field.
4777    Type *FDTy = FD->getType().getTypePtr();
4778
4779    if (!FD->isAnonymousStructOrUnion()) {
4780      // Remember all fields written by the user.
4781      RecFields.push_back(FD);
4782    }
4783
4784    // If the field is already invalid for some reason, don't emit more
4785    // diagnostics about it.
4786    if (FD->isInvalidDecl())
4787      continue;
4788
4789    // C99 6.7.2.1p2:
4790    //   A structure or union shall not contain a member with
4791    //   incomplete or function type (hence, a structure shall not
4792    //   contain an instance of itself, but may contain a pointer to
4793    //   an instance of itself), except that the last member of a
4794    //   structure with more than one named member may have incomplete
4795    //   array type; such a structure (and any union containing,
4796    //   possibly recursively, a member that is such a structure)
4797    //   shall not be a member of a structure or an element of an
4798    //   array.
4799    if (FDTy->isFunctionType()) {
4800      // Field declared as a function.
4801      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4802        << FD->getDeclName();
4803      FD->setInvalidDecl();
4804      EnclosingDecl->setInvalidDecl();
4805      continue;
4806    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4807               Record && Record->isStruct()) {
4808      // Flexible array member.
4809      if (NumNamedMembers < 1) {
4810        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4811          << FD->getDeclName();
4812        FD->setInvalidDecl();
4813        EnclosingDecl->setInvalidDecl();
4814        continue;
4815      }
4816      // Okay, we have a legal flexible array member at the end of the struct.
4817      if (Record)
4818        Record->setHasFlexibleArrayMember(true);
4819    } else if (!FDTy->isDependentType() &&
4820               RequireCompleteType(FD->getLocation(), FD->getType(),
4821                                   diag::err_field_incomplete)) {
4822      // Incomplete type
4823      FD->setInvalidDecl();
4824      EnclosingDecl->setInvalidDecl();
4825      continue;
4826    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4827      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4828        // If this is a member of a union, then entire union becomes "flexible".
4829        if (Record && Record->isUnion()) {
4830          Record->setHasFlexibleArrayMember(true);
4831        } else {
4832          // If this is a struct/class and this is not the last element, reject
4833          // it.  Note that GCC supports variable sized arrays in the middle of
4834          // structures.
4835          if (i != NumFields-1)
4836            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4837              << FD->getDeclName() << FD->getType();
4838          else {
4839            // We support flexible arrays at the end of structs in
4840            // other structs as an extension.
4841            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4842              << FD->getDeclName();
4843            if (Record)
4844              Record->setHasFlexibleArrayMember(true);
4845          }
4846        }
4847      }
4848      if (Record && FDTTy->getDecl()->hasObjectMember())
4849        Record->setHasObjectMember(true);
4850    } else if (FDTy->isObjCInterfaceType()) {
4851      /// A field cannot be an Objective-c object
4852      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4853      FD->setInvalidDecl();
4854      EnclosingDecl->setInvalidDecl();
4855      continue;
4856    }
4857    else if (getLangOptions().ObjC1 &&
4858             getLangOptions().getGCMode() != LangOptions::NonGC &&
4859             Record &&
4860             (FD->getType()->isObjCObjectPointerType() ||
4861              FD->getType().isObjCGCStrong()))
4862      Record->setHasObjectMember(true);
4863    // Keep track of the number of named members.
4864    if (FD->getIdentifier())
4865      ++NumNamedMembers;
4866  }
4867
4868  // Okay, we successfully defined 'Record'.
4869  if (Record) {
4870    Record->completeDefinition(Context);
4871  } else {
4872    ObjCIvarDecl **ClsFields =
4873      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4874    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4875      ID->setIVarList(ClsFields, RecFields.size(), Context);
4876      ID->setLocEnd(RBrac);
4877      // Add ivar's to class's DeclContext.
4878      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4879        ClsFields[i]->setLexicalDeclContext(ID);
4880        ID->addDecl(ClsFields[i]);
4881      }
4882      // Must enforce the rule that ivars in the base classes may not be
4883      // duplicates.
4884      if (ID->getSuperClass()) {
4885        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4886             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4887          ObjCIvarDecl* Ivar = (*IVI);
4888
4889          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4890            ObjCIvarDecl* prevIvar =
4891              ID->getSuperClass()->lookupInstanceVariable(II);
4892            if (prevIvar) {
4893              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4894              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4895            }
4896          }
4897        }
4898      }
4899    } else if (ObjCImplementationDecl *IMPDecl =
4900                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4901      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4902      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4903        // Ivar declared in @implementation never belongs to the implementation.
4904        // Only it is in implementation's lexical context.
4905        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4906      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4907    }
4908  }
4909
4910  if (Attr)
4911    ProcessDeclAttributeList(S, Record, Attr);
4912}
4913
4914EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4915                                          EnumConstantDecl *LastEnumConst,
4916                                          SourceLocation IdLoc,
4917                                          IdentifierInfo *Id,
4918                                          ExprArg val) {
4919  Expr *Val = (Expr *)val.get();
4920
4921  llvm::APSInt EnumVal(32);
4922  QualType EltTy;
4923  if (Val && !Val->isTypeDependent()) {
4924    // Make sure to promote the operand type to int.
4925    UsualUnaryConversions(Val);
4926    if (Val != val.get()) {
4927      val.release();
4928      val = Val;
4929    }
4930
4931    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4932    SourceLocation ExpLoc;
4933    if (!Val->isValueDependent() &&
4934        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4935      Val = 0;
4936    } else {
4937      EltTy = Val->getType();
4938    }
4939  }
4940
4941  if (!Val) {
4942    if (LastEnumConst) {
4943      // Assign the last value + 1.
4944      EnumVal = LastEnumConst->getInitVal();
4945      ++EnumVal;
4946
4947      // Check for overflow on increment.
4948      if (EnumVal < LastEnumConst->getInitVal())
4949        Diag(IdLoc, diag::warn_enum_value_overflow);
4950
4951      EltTy = LastEnumConst->getType();
4952    } else {
4953      // First value, set to zero.
4954      EltTy = Context.IntTy;
4955      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4956    }
4957  }
4958
4959  val.release();
4960  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4961                                  Val, EnumVal);
4962}
4963
4964
4965Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4966                                        DeclPtrTy lastEnumConst,
4967                                        SourceLocation IdLoc,
4968                                        IdentifierInfo *Id,
4969                                        SourceLocation EqualLoc, ExprTy *val) {
4970  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4971  EnumConstantDecl *LastEnumConst =
4972    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4973  Expr *Val = static_cast<Expr*>(val);
4974
4975  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4976  // we find one that is.
4977  S = getNonFieldDeclScope(S);
4978
4979  // Verify that there isn't already something declared with this name in this
4980  // scope.
4981  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4982  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4983    // Maybe we will complain about the shadowed template parameter.
4984    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4985    // Just pretend that we didn't see the previous declaration.
4986    PrevDecl = 0;
4987  }
4988
4989  if (PrevDecl) {
4990    // When in C++, we may get a TagDecl with the same name; in this case the
4991    // enum constant will 'hide' the tag.
4992    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4993           "Received TagDecl when not in C++!");
4994    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4995      if (isa<EnumConstantDecl>(PrevDecl))
4996        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4997      else
4998        Diag(IdLoc, diag::err_redefinition) << Id;
4999      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5000      if (Val) Val->Destroy(Context);
5001      return DeclPtrTy();
5002    }
5003  }
5004
5005  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5006                                            IdLoc, Id, Owned(Val));
5007
5008  // Register this decl in the current scope stack.
5009  if (New)
5010    PushOnScopeChains(New, S);
5011
5012  return DeclPtrTy::make(New);
5013}
5014
5015void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5016                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5017                         DeclPtrTy *Elements, unsigned NumElements) {
5018  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5019  QualType EnumType = Context.getTypeDeclType(Enum);
5020
5021  // TODO: If the result value doesn't fit in an int, it must be a long or long
5022  // long value.  ISO C does not support this, but GCC does as an extension,
5023  // emit a warning.
5024  unsigned IntWidth = Context.Target.getIntWidth();
5025
5026  // Verify that all the values are okay, compute the size of the values, and
5027  // reverse the list.
5028  unsigned NumNegativeBits = 0;
5029  unsigned NumPositiveBits = 0;
5030
5031  // Keep track of whether all elements have type int.
5032  bool AllElementsInt = true;
5033
5034  for (unsigned i = 0; i != NumElements; ++i) {
5035    EnumConstantDecl *ECD =
5036      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5037    if (!ECD) continue;  // Already issued a diagnostic.
5038
5039    // If the enum value doesn't fit in an int, emit an extension warning.
5040    const llvm::APSInt &InitVal = ECD->getInitVal();
5041    assert(InitVal.getBitWidth() >= IntWidth &&
5042           "Should have promoted value to int");
5043    if (InitVal.getBitWidth() > IntWidth) {
5044      llvm::APSInt V(InitVal);
5045      V.trunc(IntWidth);
5046      V.extend(InitVal.getBitWidth());
5047      if (V != InitVal)
5048        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5049          << InitVal.toString(10);
5050    }
5051
5052    // Keep track of the size of positive and negative values.
5053    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5054      NumPositiveBits = std::max(NumPositiveBits,
5055                                 (unsigned)InitVal.getActiveBits());
5056    else
5057      NumNegativeBits = std::max(NumNegativeBits,
5058                                 (unsigned)InitVal.getMinSignedBits());
5059
5060    // Keep track of whether every enum element has type int (very commmon).
5061    if (AllElementsInt)
5062      AllElementsInt = ECD->getType() == Context.IntTy;
5063  }
5064
5065  // Figure out the type that should be used for this enum.
5066  // FIXME: Support attribute(packed) on enums and -fshort-enums.
5067  QualType BestType;
5068  unsigned BestWidth;
5069
5070  if (NumNegativeBits) {
5071    // If there is a negative value, figure out the smallest integer type (of
5072    // int/long/longlong) that fits.
5073    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5074      BestType = Context.IntTy;
5075      BestWidth = IntWidth;
5076    } else {
5077      BestWidth = Context.Target.getLongWidth();
5078
5079      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5080        BestType = Context.LongTy;
5081      else {
5082        BestWidth = Context.Target.getLongLongWidth();
5083
5084        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5085          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5086        BestType = Context.LongLongTy;
5087      }
5088    }
5089  } else {
5090    // If there is no negative value, figure out which of uint, ulong, ulonglong
5091    // fits.
5092    if (NumPositiveBits <= IntWidth) {
5093      BestType = Context.UnsignedIntTy;
5094      BestWidth = IntWidth;
5095    } else if (NumPositiveBits <=
5096               (BestWidth = Context.Target.getLongWidth())) {
5097      BestType = Context.UnsignedLongTy;
5098    } else {
5099      BestWidth = Context.Target.getLongLongWidth();
5100      assert(NumPositiveBits <= BestWidth &&
5101             "How could an initializer get larger than ULL?");
5102      BestType = Context.UnsignedLongLongTy;
5103    }
5104  }
5105
5106  // Loop over all of the enumerator constants, changing their types to match
5107  // the type of the enum if needed.
5108  for (unsigned i = 0; i != NumElements; ++i) {
5109    EnumConstantDecl *ECD =
5110      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5111    if (!ECD) continue;  // Already issued a diagnostic.
5112
5113    // Standard C says the enumerators have int type, but we allow, as an
5114    // extension, the enumerators to be larger than int size.  If each
5115    // enumerator value fits in an int, type it as an int, otherwise type it the
5116    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5117    // that X has type 'int', not 'unsigned'.
5118    if (ECD->getType() == Context.IntTy) {
5119      // Make sure the init value is signed.
5120      llvm::APSInt IV = ECD->getInitVal();
5121      IV.setIsSigned(true);
5122      ECD->setInitVal(IV);
5123
5124      if (getLangOptions().CPlusPlus)
5125        // C++ [dcl.enum]p4: Following the closing brace of an
5126        // enum-specifier, each enumerator has the type of its
5127        // enumeration.
5128        ECD->setType(EnumType);
5129      continue;  // Already int type.
5130    }
5131
5132    // Determine whether the value fits into an int.
5133    llvm::APSInt InitVal = ECD->getInitVal();
5134    bool FitsInInt;
5135    if (InitVal.isUnsigned() || !InitVal.isNegative())
5136      FitsInInt = InitVal.getActiveBits() < IntWidth;
5137    else
5138      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5139
5140    // If it fits into an integer type, force it.  Otherwise force it to match
5141    // the enum decl type.
5142    QualType NewTy;
5143    unsigned NewWidth;
5144    bool NewSign;
5145    if (FitsInInt) {
5146      NewTy = Context.IntTy;
5147      NewWidth = IntWidth;
5148      NewSign = true;
5149    } else if (ECD->getType() == BestType) {
5150      // Already the right type!
5151      if (getLangOptions().CPlusPlus)
5152        // C++ [dcl.enum]p4: Following the closing brace of an
5153        // enum-specifier, each enumerator has the type of its
5154        // enumeration.
5155        ECD->setType(EnumType);
5156      continue;
5157    } else {
5158      NewTy = BestType;
5159      NewWidth = BestWidth;
5160      NewSign = BestType->isSignedIntegerType();
5161    }
5162
5163    // Adjust the APSInt value.
5164    InitVal.extOrTrunc(NewWidth);
5165    InitVal.setIsSigned(NewSign);
5166    ECD->setInitVal(InitVal);
5167
5168    // Adjust the Expr initializer and type.
5169    if (ECD->getInitExpr())
5170      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5171                                                      CastExpr::CK_Unknown,
5172                                                      ECD->getInitExpr(),
5173                                                      /*isLvalue=*/false));
5174    if (getLangOptions().CPlusPlus)
5175      // C++ [dcl.enum]p4: Following the closing brace of an
5176      // enum-specifier, each enumerator has the type of its
5177      // enumeration.
5178      ECD->setType(EnumType);
5179    else
5180      ECD->setType(NewTy);
5181  }
5182
5183  Enum->completeDefinition(Context, BestType);
5184}
5185
5186Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5187                                            ExprArg expr) {
5188  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5189
5190  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5191                                                   Loc, AsmString);
5192  CurContext->addDecl(New);
5193  return DeclPtrTy::make(New);
5194}
5195
5196void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5197                             SourceLocation PragmaLoc,
5198                             SourceLocation NameLoc) {
5199  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5200
5201  if (PrevDecl) {
5202    PrevDecl->addAttr(::new (Context) WeakAttr());
5203  } else {
5204    (void)WeakUndeclaredIdentifiers.insert(
5205      std::pair<IdentifierInfo*,WeakInfo>
5206        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5207  }
5208}
5209
5210void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5211                                IdentifierInfo* AliasName,
5212                                SourceLocation PragmaLoc,
5213                                SourceLocation NameLoc,
5214                                SourceLocation AliasNameLoc) {
5215  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5216  WeakInfo W = WeakInfo(Name, NameLoc);
5217
5218  if (PrevDecl) {
5219    if (!PrevDecl->hasAttr<AliasAttr>())
5220      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5221        DeclApplyPragmaWeak(TUScope, ND, W);
5222  } else {
5223    (void)WeakUndeclaredIdentifiers.insert(
5224      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5225  }
5226}
5227