SemaDecl.cpp revision b5352cf949898cd42c8c5bc96a17a831b61ac2e5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result
89    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::AmbiguousBaseSubobjectTypes:
98  case LookupResult::AmbiguousBaseSubobjects:
99  case LookupResult::AmbiguousReference: {
100    // Look to see if we have a type anywhere in the list of results.
101    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
102         Res != ResEnd; ++Res) {
103      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
104        if (!IIDecl ||
105            (*Res)->getLocation().getRawEncoding() <
106              IIDecl->getLocation().getRawEncoding())
107          IIDecl = *Res;
108      }
109    }
110
111    if (!IIDecl) {
112      // None of the entities we found is a type, so there is no way
113      // to even assume that the result is a type. In this case, don't
114      // complain about the ambiguity. The parser will either try to
115      // perform this lookup again (e.g., as an object name), which
116      // will produce the ambiguity, or will complain that it expected
117      // a type name.
118      Result.Destroy();
119      return 0;
120    }
121
122    // We found a type within the ambiguous lookup; diagnose the
123    // ambiguity and then return that type. This might be the right
124    // answer, or it might not be, but it suppresses any attempt to
125    // perform the name lookup again.
126    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
127    break;
128  }
129
130  case LookupResult::Found:
131    IIDecl = Result.getAsDecl();
132    break;
133  }
134
135  if (IIDecl) {
136    QualType T;
137
138    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
139      // Check whether we can use this type
140      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
141
142      if (getLangOptions().CPlusPlus) {
143        // C++ [temp.local]p2:
144        //   Within the scope of a class template specialization or
145        //   partial specialization, when the injected-class-name is
146        //   not followed by a <, it is equivalent to the
147        //   injected-class-name followed by the template-argument s
148        //   of the class template specialization or partial
149        //   specialization enclosed in <>.
150        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
151          if (RD->isInjectedClassName())
152            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
153              T = Template->getInjectedClassNameType(Context);
154      }
155
156      if (T.isNull())
157        T = Context.getTypeDeclType(TD);
158    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
159      // Check whether we can use this interface.
160      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
161
162      T = Context.getObjCInterfaceType(IDecl);
163    } else
164      return 0;
165
166    if (SS)
167      T = getQualifiedNameType(*SS, T);
168
169    return T.getAsOpaquePtr();
170  }
171
172  return 0;
173}
174
175/// isTagName() - This method is called *for error recovery purposes only*
176/// to determine if the specified name is a valid tag name ("struct foo").  If
177/// so, this returns the TST for the tag corresponding to it (TST_enum,
178/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
179/// where the user forgot to specify the tag.
180DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
181  // Do a tag name lookup in this scope.
182  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196
197// Determines the context to return to after temporarily entering a
198// context.  This depends in an unnecessarily complicated way on the
199// exact ordering of callbacks from the parser.
200DeclContext *Sema::getContainingDC(DeclContext *DC) {
201
202  // Functions defined inline within classes aren't parsed until we've
203  // finished parsing the top-level class, so the top-level class is
204  // the context we'll need to return to.
205  if (isa<FunctionDecl>(DC)) {
206    DC = DC->getLexicalParent();
207
208    // A function not defined within a class will always return to its
209    // lexical context.
210    if (!isa<CXXRecordDecl>(DC))
211      return DC;
212
213    // A C++ inline method/friend is parsed *after* the topmost class
214    // it was declared in is fully parsed ("complete");  the topmost
215    // class is the context we need to return to.
216    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
217      DC = RD;
218
219    // Return the declaration context of the topmost class the inline method is
220    // declared in.
221    return DC;
222  }
223
224  if (isa<ObjCMethodDecl>(DC))
225    return Context.getTranslationUnitDecl();
226
227  return DC->getLexicalParent();
228}
229
230void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
231  assert(getContainingDC(DC) == CurContext &&
232      "The next DeclContext should be lexically contained in the current one.");
233  CurContext = DC;
234  S->setEntity(DC);
235}
236
237void Sema::PopDeclContext() {
238  assert(CurContext && "DeclContext imbalance!");
239
240  CurContext = getContainingDC(CurContext);
241}
242
243/// EnterDeclaratorContext - Used when we must lookup names in the context
244/// of a declarator's nested name specifier.
245void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
246  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
247  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
248  CurContext = DC;
249  assert(CurContext && "No context?");
250  S->setEntity(CurContext);
251}
252
253void Sema::ExitDeclaratorContext(Scope *S) {
254  S->setEntity(PreDeclaratorDC);
255  PreDeclaratorDC = 0;
256
257  // Reset CurContext to the nearest enclosing context.
258  while (!S->getEntity() && S->getParent())
259    S = S->getParent();
260  CurContext = static_cast<DeclContext*>(S->getEntity());
261  assert(CurContext && "No context?");
262}
263
264/// \brief Determine whether we allow overloading of the function
265/// PrevDecl with another declaration.
266///
267/// This routine determines whether overloading is possible, not
268/// whether some new function is actually an overload. It will return
269/// true in C++ (where we can always provide overloads) or, as an
270/// extension, in C when the previous function is already an
271/// overloaded function declaration or has the "overloadable"
272/// attribute.
273static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
274  if (Context.getLangOptions().CPlusPlus)
275    return true;
276
277  if (isa<OverloadedFunctionDecl>(PrevDecl))
278    return true;
279
280  return PrevDecl->getAttr<OverloadableAttr>() != 0;
281}
282
283/// Add this decl to the scope shadowed decl chains.
284void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
285  // Move up the scope chain until we find the nearest enclosing
286  // non-transparent context. The declaration will be introduced into this
287  // scope.
288  while (S->getEntity() &&
289         ((DeclContext *)S->getEntity())->isTransparentContext())
290    S = S->getParent();
291
292  // Add scoped declarations into their context, so that they can be
293  // found later. Declarations without a context won't be inserted
294  // into any context.
295  if (AddToContext)
296    CurContext->addDecl(D);
297
298  // Out-of-line function and variable definitions should not be pushed into
299  // scope.
300  if ((isa<FunctionTemplateDecl>(D) &&
301       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
302      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
303      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
304    return;
305
306  S->AddDecl(DeclPtrTy::make(D));
307
308  // C++ [basic.scope]p4:
309  //   -- exactly one declaration shall declare a class name or
310  //   enumeration name that is not a typedef name and the other
311  //   declarations shall all refer to the same object or
312  //   enumerator, or all refer to functions and function templates;
313  //   in this case the class name or enumeration name is hidden.
314  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
315    // We are pushing the name of a tag (enum or class).
316    if (CurContext->getLookupContext()
317          == TD->getDeclContext()->getLookupContext()) {
318      // We're pushing the tag into the current context, which might
319      // require some reshuffling in the identifier resolver.
320      IdentifierResolver::iterator
321        I = IdResolver.begin(TD->getDeclName()),
322        IEnd = IdResolver.end();
323      NamedDecl *ID = *I;
324      if (I != IEnd && isDeclInScope(ID, CurContext, S)) {
325        NamedDecl *PrevDecl = *I;
326        for (; I != IEnd && isDeclInScope(ID, CurContext, S);
327             PrevDecl = *I, ++I) {
328          if (TD->declarationReplaces(*I)) {
329            // This is a redeclaration. Remove it from the chain and
330            // break out, so that we'll add in the shadowed
331            // declaration.
332            S->RemoveDecl(DeclPtrTy::make(*I));
333            if (PrevDecl == *I) {
334              IdResolver.RemoveDecl(*I);
335              IdResolver.AddDecl(TD);
336              return;
337            } else {
338              IdResolver.RemoveDecl(*I);
339              break;
340            }
341          }
342        }
343
344        // There is already a declaration with the same name in the same
345        // scope, which is not a tag declaration. It must be found
346        // before we find the new declaration, so insert the new
347        // declaration at the end of the chain.
348        IdResolver.AddShadowedDecl(TD, PrevDecl);
349
350        return;
351      }
352    }
353  } else if ((isa<FunctionDecl>(D) &&
354              AllowOverloadingOfFunction(D, Context)) ||
355             isa<FunctionTemplateDecl>(D)) {
356    // We are pushing the name of a function or function template,
357    // which might be an overloaded name.
358    IdentifierResolver::iterator Redecl
359      = std::find_if(IdResolver.begin(D->getDeclName()),
360                     IdResolver.end(),
361                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
362                                  D));
363    if (Redecl != IdResolver.end() &&
364        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
365      // There is already a declaration of a function on our
366      // IdResolver chain. Replace it with this declaration.
367      S->RemoveDecl(DeclPtrTy::make(*Redecl));
368      IdResolver.RemoveDecl(*Redecl);
369    }
370  } else if (isa<ObjCInterfaceDecl>(D)) {
371    // We're pushing an Objective-C interface into the current
372    // context. If there is already an alias declaration, remove it first.
373    for (IdentifierResolver::iterator
374           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
375         I != IEnd; ++I) {
376      if (isa<ObjCCompatibleAliasDecl>(*I)) {
377        S->RemoveDecl(DeclPtrTy::make(*I));
378        IdResolver.RemoveDecl(*I);
379        break;
380      }
381    }
382  }
383
384  IdResolver.AddDecl(D);
385}
386
387bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
388  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
389    // Look inside the overload set to determine if any of the declarations
390    // are in scope. (Possibly) build a new overload set containing only
391    // those declarations that are in scope.
392    OverloadedFunctionDecl *NewOvl = 0;
393    bool FoundInScope = false;
394    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
395         FEnd = Ovl->function_end();
396         F != FEnd; ++F) {
397      NamedDecl *FD = F->get();
398      if (!isDeclInScope(FD, Ctx, S)) {
399        if (!NewOvl && F != Ovl->function_begin()) {
400          NewOvl = OverloadedFunctionDecl::Create(Context,
401                                                  F->get()->getDeclContext(),
402                                                  F->get()->getDeclName());
403          D = NewOvl;
404          for (OverloadedFunctionDecl::function_iterator
405               First = Ovl->function_begin();
406               First != F; ++First)
407            NewOvl->addOverload(*First);
408        }
409      } else {
410        FoundInScope = true;
411        if (NewOvl)
412          NewOvl->addOverload(*F);
413      }
414    }
415
416    return FoundInScope;
417  }
418
419  return IdResolver.isDeclInScope(D, Ctx, Context, S);
420}
421
422void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
423  if (S->decl_empty()) return;
424  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
425         "Scope shouldn't contain decls!");
426
427  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
428       I != E; ++I) {
429    Decl *TmpD = (*I).getAs<Decl>();
430    assert(TmpD && "This decl didn't get pushed??");
431
432    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
433    NamedDecl *D = cast<NamedDecl>(TmpD);
434
435    if (!D->getDeclName()) continue;
436
437    // Diagnose unused variables in this scope.
438    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
439        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
440        D->getDeclContext()->isFunctionOrMethod())
441	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
442
443    // Remove this name from our lexical scope.
444    IdResolver.RemoveDecl(D);
445  }
446}
447
448/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
449/// return 0 if one not found.
450ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
451  // The third "scope" argument is 0 since we aren't enabling lazy built-in
452  // creation from this context.
453  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
454
455  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
456}
457
458/// getNonFieldDeclScope - Retrieves the innermost scope, starting
459/// from S, where a non-field would be declared. This routine copes
460/// with the difference between C and C++ scoping rules in structs and
461/// unions. For example, the following code is well-formed in C but
462/// ill-formed in C++:
463/// @code
464/// struct S6 {
465///   enum { BAR } e;
466/// };
467///
468/// void test_S6() {
469///   struct S6 a;
470///   a.e = BAR;
471/// }
472/// @endcode
473/// For the declaration of BAR, this routine will return a different
474/// scope. The scope S will be the scope of the unnamed enumeration
475/// within S6. In C++, this routine will return the scope associated
476/// with S6, because the enumeration's scope is a transparent
477/// context but structures can contain non-field names. In C, this
478/// routine will return the translation unit scope, since the
479/// enumeration's scope is a transparent context and structures cannot
480/// contain non-field names.
481Scope *Sema::getNonFieldDeclScope(Scope *S) {
482  while (((S->getFlags() & Scope::DeclScope) == 0) ||
483         (S->getEntity() &&
484          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
485         (S->isClassScope() && !getLangOptions().CPlusPlus))
486    S = S->getParent();
487  return S;
488}
489
490void Sema::InitBuiltinVaListType() {
491  if (!Context.getBuiltinVaListType().isNull())
492    return;
493
494  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
495  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
496  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
497  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
498}
499
500/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
501/// file scope.  lazily create a decl for it. ForRedeclaration is true
502/// if we're creating this built-in in anticipation of redeclaring the
503/// built-in.
504NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
505                                     Scope *S, bool ForRedeclaration,
506                                     SourceLocation Loc) {
507  Builtin::ID BID = (Builtin::ID)bid;
508
509  if (Context.BuiltinInfo.hasVAListUse(BID))
510    InitBuiltinVaListType();
511
512  ASTContext::GetBuiltinTypeError Error;
513  QualType R = Context.GetBuiltinType(BID, Error);
514  switch (Error) {
515  case ASTContext::GE_None:
516    // Okay
517    break;
518
519  case ASTContext::GE_Missing_stdio:
520    if (ForRedeclaration)
521      Diag(Loc, diag::err_implicit_decl_requires_stdio)
522        << Context.BuiltinInfo.GetName(BID);
523    return 0;
524
525  case ASTContext::GE_Missing_setjmp:
526    if (ForRedeclaration)
527      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
528        << Context.BuiltinInfo.GetName(BID);
529    return 0;
530  }
531
532  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
533    Diag(Loc, diag::ext_implicit_lib_function_decl)
534      << Context.BuiltinInfo.GetName(BID)
535      << R;
536    if (Context.BuiltinInfo.getHeaderName(BID) &&
537        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
538          != Diagnostic::Ignored)
539      Diag(Loc, diag::note_please_include_header)
540        << Context.BuiltinInfo.getHeaderName(BID)
541        << Context.BuiltinInfo.GetName(BID);
542  }
543
544  FunctionDecl *New = FunctionDecl::Create(Context,
545                                           Context.getTranslationUnitDecl(),
546                                           Loc, II, R, /*DInfo=*/0,
547                                           FunctionDecl::Extern, false,
548                                           /*hasPrototype=*/true);
549  New->setImplicit();
550
551  // Create Decl objects for each parameter, adding them to the
552  // FunctionDecl.
553  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
554    llvm::SmallVector<ParmVarDecl*, 16> Params;
555    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
556      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
557                                           FT->getArgType(i), /*DInfo=*/0,
558                                           VarDecl::None, 0));
559    New->setParams(Context, Params.data(), Params.size());
560  }
561
562  AddKnownFunctionAttributes(New);
563
564  // TUScope is the translation-unit scope to insert this function into.
565  // FIXME: This is hideous. We need to teach PushOnScopeChains to
566  // relate Scopes to DeclContexts, and probably eliminate CurContext
567  // entirely, but we're not there yet.
568  DeclContext *SavedContext = CurContext;
569  CurContext = Context.getTranslationUnitDecl();
570  PushOnScopeChains(New, TUScope);
571  CurContext = SavedContext;
572  return New;
573}
574
575/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
576/// same name and scope as a previous declaration 'Old'.  Figure out
577/// how to resolve this situation, merging decls or emitting
578/// diagnostics as appropriate. If there was an error, set New to be invalid.
579///
580void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
581  // If either decl is known invalid already, set the new one to be invalid and
582  // don't bother doing any merging checks.
583  if (New->isInvalidDecl() || OldD->isInvalidDecl())
584    return New->setInvalidDecl();
585
586  // Allow multiple definitions for ObjC built-in typedefs.
587  // FIXME: Verify the underlying types are equivalent!
588  if (getLangOptions().ObjC1) {
589    const IdentifierInfo *TypeID = New->getIdentifier();
590    switch (TypeID->getLength()) {
591    default: break;
592    case 2:
593      if (!TypeID->isStr("id"))
594        break;
595      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
596      // Install the built-in type for 'id', ignoring the current definition.
597      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
598      return;
599    case 5:
600      if (!TypeID->isStr("Class"))
601        break;
602      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
603      // Install the built-in type for 'Class', ignoring the current definition.
604      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
605      return;
606    case 3:
607      if (!TypeID->isStr("SEL"))
608        break;
609      Context.setObjCSelType(Context.getTypeDeclType(New));
610      return;
611    case 8:
612      if (!TypeID->isStr("Protocol"))
613        break;
614      Context.setObjCProtoType(New->getUnderlyingType());
615      return;
616    }
617    // Fall through - the typedef name was not a builtin type.
618  }
619  // Verify the old decl was also a type.
620  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
621  if (!Old) {
622    Diag(New->getLocation(), diag::err_redefinition_different_kind)
623      << New->getDeclName();
624    if (OldD->getLocation().isValid())
625      Diag(OldD->getLocation(), diag::note_previous_definition);
626    return New->setInvalidDecl();
627  }
628
629  // Determine the "old" type we'll use for checking and diagnostics.
630  QualType OldType;
631  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
632    OldType = OldTypedef->getUnderlyingType();
633  else
634    OldType = Context.getTypeDeclType(Old);
635
636  // If the typedef types are not identical, reject them in all languages and
637  // with any extensions enabled.
638
639  if (OldType != New->getUnderlyingType() &&
640      Context.getCanonicalType(OldType) !=
641      Context.getCanonicalType(New->getUnderlyingType())) {
642    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
643      << New->getUnderlyingType() << OldType;
644    if (Old->getLocation().isValid())
645      Diag(Old->getLocation(), diag::note_previous_definition);
646    return New->setInvalidDecl();
647  }
648
649  if (getLangOptions().Microsoft)
650    return;
651
652  // C++ [dcl.typedef]p2:
653  //   In a given non-class scope, a typedef specifier can be used to
654  //   redefine the name of any type declared in that scope to refer
655  //   to the type to which it already refers.
656  if (getLangOptions().CPlusPlus) {
657    if (!isa<CXXRecordDecl>(CurContext))
658      return;
659    Diag(New->getLocation(), diag::err_redefinition)
660      << New->getDeclName();
661    Diag(Old->getLocation(), diag::note_previous_definition);
662    return New->setInvalidDecl();
663  }
664
665  // If we have a redefinition of a typedef in C, emit a warning.  This warning
666  // is normally mapped to an error, but can be controlled with
667  // -Wtypedef-redefinition.  If either the original or the redefinition is
668  // in a system header, don't emit this for compatibility with GCC.
669  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
670      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
671       Context.getSourceManager().isInSystemHeader(New->getLocation())))
672    return;
673
674  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
675    << New->getDeclName();
676  Diag(Old->getLocation(), diag::note_previous_definition);
677  return;
678}
679
680/// DeclhasAttr - returns true if decl Declaration already has the target
681/// attribute.
682static bool
683DeclHasAttr(const Decl *decl, const Attr *target) {
684  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
685    if (attr->getKind() == target->getKind())
686      return true;
687
688  return false;
689}
690
691/// MergeAttributes - append attributes from the Old decl to the New one.
692static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
693  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
694    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
695      Attr *NewAttr = attr->clone(C);
696      NewAttr->setInherited(true);
697      New->addAttr(NewAttr);
698    }
699  }
700}
701
702/// Used in MergeFunctionDecl to keep track of function parameters in
703/// C.
704struct GNUCompatibleParamWarning {
705  ParmVarDecl *OldParm;
706  ParmVarDecl *NewParm;
707  QualType PromotedType;
708};
709
710/// MergeFunctionDecl - We just parsed a function 'New' from
711/// declarator D which has the same name and scope as a previous
712/// declaration 'Old'.  Figure out how to resolve this situation,
713/// merging decls or emitting diagnostics as appropriate.
714///
715/// In C++, New and Old must be declarations that are not
716/// overloaded. Use IsOverload to determine whether New and Old are
717/// overloaded, and to select the Old declaration that New should be
718/// merged with.
719///
720/// Returns true if there was an error, false otherwise.
721bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
722  assert(!isa<OverloadedFunctionDecl>(OldD) &&
723         "Cannot merge with an overloaded function declaration");
724
725  // Verify the old decl was also a function.
726  FunctionDecl *Old = 0;
727  if (FunctionTemplateDecl *OldFunctionTemplate
728        = dyn_cast<FunctionTemplateDecl>(OldD))
729    Old = OldFunctionTemplate->getTemplatedDecl();
730  else
731    Old = dyn_cast<FunctionDecl>(OldD);
732  if (!Old) {
733    Diag(New->getLocation(), diag::err_redefinition_different_kind)
734      << New->getDeclName();
735    Diag(OldD->getLocation(), diag::note_previous_definition);
736    return true;
737  }
738
739  // Determine whether the previous declaration was a definition,
740  // implicit declaration, or a declaration.
741  diag::kind PrevDiag;
742  if (Old->isThisDeclarationADefinition())
743    PrevDiag = diag::note_previous_definition;
744  else if (Old->isImplicit())
745    PrevDiag = diag::note_previous_implicit_declaration;
746  else
747    PrevDiag = diag::note_previous_declaration;
748
749  QualType OldQType = Context.getCanonicalType(Old->getType());
750  QualType NewQType = Context.getCanonicalType(New->getType());
751
752  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
753      New->getStorageClass() == FunctionDecl::Static &&
754      Old->getStorageClass() != FunctionDecl::Static) {
755    Diag(New->getLocation(), diag::err_static_non_static)
756      << New;
757    Diag(Old->getLocation(), PrevDiag);
758    return true;
759  }
760
761  if (getLangOptions().CPlusPlus) {
762    // (C++98 13.1p2):
763    //   Certain function declarations cannot be overloaded:
764    //     -- Function declarations that differ only in the return type
765    //        cannot be overloaded.
766    QualType OldReturnType
767      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
768    QualType NewReturnType
769      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
770    if (OldReturnType != NewReturnType) {
771      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
772      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
773      return true;
774    }
775
776    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
777    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
778    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
779        NewMethod->getLexicalDeclContext()->isRecord()) {
780      //    -- Member function declarations with the same name and the
781      //       same parameter types cannot be overloaded if any of them
782      //       is a static member function declaration.
783      if (OldMethod->isStatic() || NewMethod->isStatic()) {
784        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
785        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
786        return true;
787      }
788
789      // C++ [class.mem]p1:
790      //   [...] A member shall not be declared twice in the
791      //   member-specification, except that a nested class or member
792      //   class template can be declared and then later defined.
793      unsigned NewDiag;
794      if (isa<CXXConstructorDecl>(OldMethod))
795        NewDiag = diag::err_constructor_redeclared;
796      else if (isa<CXXDestructorDecl>(NewMethod))
797        NewDiag = diag::err_destructor_redeclared;
798      else if (isa<CXXConversionDecl>(NewMethod))
799        NewDiag = diag::err_conv_function_redeclared;
800      else
801        NewDiag = diag::err_member_redeclared;
802
803      Diag(New->getLocation(), NewDiag);
804      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
805    }
806
807    // (C++98 8.3.5p3):
808    //   All declarations for a function shall agree exactly in both the
809    //   return type and the parameter-type-list.
810    if (OldQType == NewQType)
811      return MergeCompatibleFunctionDecls(New, Old);
812
813    // Fall through for conflicting redeclarations and redefinitions.
814  }
815
816  // C: Function types need to be compatible, not identical. This handles
817  // duplicate function decls like "void f(int); void f(enum X);" properly.
818  if (!getLangOptions().CPlusPlus &&
819      Context.typesAreCompatible(OldQType, NewQType)) {
820    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
821    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
822    const FunctionProtoType *OldProto = 0;
823    if (isa<FunctionNoProtoType>(NewFuncType) &&
824        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
825      // The old declaration provided a function prototype, but the
826      // new declaration does not. Merge in the prototype.
827      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
828      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
829                                                 OldProto->arg_type_end());
830      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
831                                         ParamTypes.data(), ParamTypes.size(),
832                                         OldProto->isVariadic(),
833                                         OldProto->getTypeQuals());
834      New->setType(NewQType);
835      New->setHasInheritedPrototype();
836
837      // Synthesize a parameter for each argument type.
838      llvm::SmallVector<ParmVarDecl*, 16> Params;
839      for (FunctionProtoType::arg_type_iterator
840             ParamType = OldProto->arg_type_begin(),
841             ParamEnd = OldProto->arg_type_end();
842           ParamType != ParamEnd; ++ParamType) {
843        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
844                                                 SourceLocation(), 0,
845                                                 *ParamType, /*DInfo=*/0,
846                                                 VarDecl::None, 0);
847        Param->setImplicit();
848        Params.push_back(Param);
849      }
850
851      New->setParams(Context, Params.data(), Params.size());
852    }
853
854    return MergeCompatibleFunctionDecls(New, Old);
855  }
856
857  // GNU C permits a K&R definition to follow a prototype declaration
858  // if the declared types of the parameters in the K&R definition
859  // match the types in the prototype declaration, even when the
860  // promoted types of the parameters from the K&R definition differ
861  // from the types in the prototype. GCC then keeps the types from
862  // the prototype.
863  //
864  // If a variadic prototype is followed by a non-variadic K&R definition,
865  // the K&R definition becomes variadic.  This is sort of an edge case, but
866  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
867  // C99 6.9.1p8.
868  if (!getLangOptions().CPlusPlus &&
869      Old->hasPrototype() && !New->hasPrototype() &&
870      New->getType()->getAs<FunctionProtoType>() &&
871      Old->getNumParams() == New->getNumParams()) {
872    llvm::SmallVector<QualType, 16> ArgTypes;
873    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
874    const FunctionProtoType *OldProto
875      = Old->getType()->getAs<FunctionProtoType>();
876    const FunctionProtoType *NewProto
877      = New->getType()->getAs<FunctionProtoType>();
878
879    // Determine whether this is the GNU C extension.
880    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
881                                               NewProto->getResultType());
882    bool LooseCompatible = !MergedReturn.isNull();
883    for (unsigned Idx = 0, End = Old->getNumParams();
884         LooseCompatible && Idx != End; ++Idx) {
885      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
886      ParmVarDecl *NewParm = New->getParamDecl(Idx);
887      if (Context.typesAreCompatible(OldParm->getType(),
888                                     NewProto->getArgType(Idx))) {
889        ArgTypes.push_back(NewParm->getType());
890      } else if (Context.typesAreCompatible(OldParm->getType(),
891                                            NewParm->getType())) {
892        GNUCompatibleParamWarning Warn
893          = { OldParm, NewParm, NewProto->getArgType(Idx) };
894        Warnings.push_back(Warn);
895        ArgTypes.push_back(NewParm->getType());
896      } else
897        LooseCompatible = false;
898    }
899
900    if (LooseCompatible) {
901      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
902        Diag(Warnings[Warn].NewParm->getLocation(),
903             diag::ext_param_promoted_not_compatible_with_prototype)
904          << Warnings[Warn].PromotedType
905          << Warnings[Warn].OldParm->getType();
906        Diag(Warnings[Warn].OldParm->getLocation(),
907             diag::note_previous_declaration);
908      }
909
910      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
911                                           ArgTypes.size(),
912                                           OldProto->isVariadic(), 0));
913      return MergeCompatibleFunctionDecls(New, Old);
914    }
915
916    // Fall through to diagnose conflicting types.
917  }
918
919  // A function that has already been declared has been redeclared or defined
920  // with a different type- show appropriate diagnostic
921  if (unsigned BuiltinID = Old->getBuiltinID()) {
922    // The user has declared a builtin function with an incompatible
923    // signature.
924    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
925      // The function the user is redeclaring is a library-defined
926      // function like 'malloc' or 'printf'. Warn about the
927      // redeclaration, then pretend that we don't know about this
928      // library built-in.
929      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
930      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
931        << Old << Old->getType();
932      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
933      Old->setInvalidDecl();
934      return false;
935    }
936
937    PrevDiag = diag::note_previous_builtin_declaration;
938  }
939
940  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
941  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
942  return true;
943}
944
945/// \brief Completes the merge of two function declarations that are
946/// known to be compatible.
947///
948/// This routine handles the merging of attributes and other
949/// properties of function declarations form the old declaration to
950/// the new declaration, once we know that New is in fact a
951/// redeclaration of Old.
952///
953/// \returns false
954bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
955  // Merge the attributes
956  MergeAttributes(New, Old, Context);
957
958  // Merge the storage class.
959  if (Old->getStorageClass() != FunctionDecl::Extern &&
960      Old->getStorageClass() != FunctionDecl::None)
961    New->setStorageClass(Old->getStorageClass());
962
963  // Merge "pure" flag.
964  if (Old->isPure())
965    New->setPure();
966
967  // Merge the "deleted" flag.
968  if (Old->isDeleted())
969    New->setDeleted();
970
971  if (getLangOptions().CPlusPlus)
972    return MergeCXXFunctionDecl(New, Old);
973
974  return false;
975}
976
977/// MergeVarDecl - We just parsed a variable 'New' which has the same name
978/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
979/// situation, merging decls or emitting diagnostics as appropriate.
980///
981/// Tentative definition rules (C99 6.9.2p2) are checked by
982/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
983/// definitions here, since the initializer hasn't been attached.
984///
985void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
986  // If either decl is invalid, make sure the new one is marked invalid and
987  // don't do any other checking.
988  if (New->isInvalidDecl() || OldD->isInvalidDecl())
989    return New->setInvalidDecl();
990
991  // Verify the old decl was also a variable.
992  VarDecl *Old = dyn_cast<VarDecl>(OldD);
993  if (!Old) {
994    Diag(New->getLocation(), diag::err_redefinition_different_kind)
995      << New->getDeclName();
996    Diag(OldD->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999
1000  MergeAttributes(New, Old, Context);
1001
1002  // Merge the types
1003  QualType MergedT;
1004  if (getLangOptions().CPlusPlus) {
1005    if (Context.hasSameType(New->getType(), Old->getType()))
1006      MergedT = New->getType();
1007    // C++ [basic.types]p7:
1008    //   [...] The declared type of an array object might be an array of
1009    //   unknown size and therefore be incomplete at one point in a
1010    //   translation unit and complete later on; [...]
1011    else if (Old->getType()->isIncompleteArrayType() &&
1012             New->getType()->isArrayType()) {
1013      CanQual<ArrayType> OldArray
1014        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1015      CanQual<ArrayType> NewArray
1016        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1017      if (OldArray->getElementType() == NewArray->getElementType())
1018        MergedT = New->getType();
1019    }
1020  } else {
1021    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1022  }
1023  if (MergedT.isNull()) {
1024    Diag(New->getLocation(), diag::err_redefinition_different_type)
1025      << New->getDeclName();
1026    Diag(Old->getLocation(), diag::note_previous_definition);
1027    return New->setInvalidDecl();
1028  }
1029  New->setType(MergedT);
1030
1031  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1032  if (New->getStorageClass() == VarDecl::Static &&
1033      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1034    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1035    Diag(Old->getLocation(), diag::note_previous_definition);
1036    return New->setInvalidDecl();
1037  }
1038  // C99 6.2.2p4:
1039  //   For an identifier declared with the storage-class specifier
1040  //   extern in a scope in which a prior declaration of that
1041  //   identifier is visible,23) if the prior declaration specifies
1042  //   internal or external linkage, the linkage of the identifier at
1043  //   the later declaration is the same as the linkage specified at
1044  //   the prior declaration. If no prior declaration is visible, or
1045  //   if the prior declaration specifies no linkage, then the
1046  //   identifier has external linkage.
1047  if (New->hasExternalStorage() && Old->hasLinkage())
1048    /* Okay */;
1049  else if (New->getStorageClass() != VarDecl::Static &&
1050           Old->getStorageClass() == VarDecl::Static) {
1051    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1052    Diag(Old->getLocation(), diag::note_previous_definition);
1053    return New->setInvalidDecl();
1054  }
1055
1056  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1057
1058  // FIXME: The test for external storage here seems wrong? We still
1059  // need to check for mismatches.
1060  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1061      // Don't complain about out-of-line definitions of static members.
1062      !(Old->getLexicalDeclContext()->isRecord() &&
1063        !New->getLexicalDeclContext()->isRecord())) {
1064    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1065    Diag(Old->getLocation(), diag::note_previous_definition);
1066    return New->setInvalidDecl();
1067  }
1068
1069  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1070    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1071    Diag(Old->getLocation(), diag::note_previous_definition);
1072  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1073    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1074    Diag(Old->getLocation(), diag::note_previous_definition);
1075  }
1076
1077  // Keep a chain of previous declarations.
1078  New->setPreviousDeclaration(Old);
1079}
1080
1081/// CheckFallThrough - Check that we don't fall off the end of a
1082/// Statement that should return a value.
1083///
1084/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1085/// MaybeFallThrough iff we might or might not fall off the end and
1086/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1087/// that functions not marked noreturn will return.
1088Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1089  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1090
1091  // FIXME: They should never return 0, fix that, delete this code.
1092  if (cfg == 0)
1093    return NeverFallThrough;
1094  // The CFG leaves in dead things, and we don't want to dead code paths to
1095  // confuse us, so we mark all live things first.
1096  std::queue<CFGBlock*> workq;
1097  llvm::BitVector live(cfg->getNumBlockIDs());
1098  // Prep work queue
1099  workq.push(&cfg->getEntry());
1100  // Solve
1101  while (!workq.empty()) {
1102    CFGBlock *item = workq.front();
1103    workq.pop();
1104    live.set(item->getBlockID());
1105    for (CFGBlock::succ_iterator I=item->succ_begin(),
1106           E=item->succ_end();
1107         I != E;
1108         ++I) {
1109      if ((*I) && !live[(*I)->getBlockID()]) {
1110        live.set((*I)->getBlockID());
1111        workq.push(*I);
1112      }
1113    }
1114  }
1115
1116  // Now we know what is live, we check the live precessors of the exit block
1117  // and look for fall through paths, being careful to ignore normal returns,
1118  // and exceptional paths.
1119  bool HasLiveReturn = false;
1120  bool HasFakeEdge = false;
1121  bool HasPlainEdge = false;
1122  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1123         E = cfg->getExit().pred_end();
1124       I != E;
1125       ++I) {
1126    CFGBlock& B = **I;
1127    if (!live[B.getBlockID()])
1128      continue;
1129    if (B.size() == 0) {
1130      // A labeled empty statement, or the entry block...
1131      HasPlainEdge = true;
1132      continue;
1133    }
1134    Stmt *S = B[B.size()-1];
1135    if (isa<ReturnStmt>(S)) {
1136      HasLiveReturn = true;
1137      continue;
1138    }
1139    if (isa<ObjCAtThrowStmt>(S)) {
1140      HasFakeEdge = true;
1141      continue;
1142    }
1143    if (isa<CXXThrowExpr>(S)) {
1144      HasFakeEdge = true;
1145      continue;
1146    }
1147    bool NoReturnEdge = false;
1148    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1149      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1150      if (CEE->getType().getNoReturnAttr()) {
1151        NoReturnEdge = true;
1152        HasFakeEdge = true;
1153      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1154        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1155          if (FD->hasAttr<NoReturnAttr>()) {
1156            NoReturnEdge = true;
1157            HasFakeEdge = true;
1158          }
1159        }
1160      }
1161    }
1162    // FIXME: Add noreturn message sends.
1163    if (NoReturnEdge == false)
1164      HasPlainEdge = true;
1165  }
1166  if (!HasPlainEdge)
1167    return NeverFallThrough;
1168  if (HasFakeEdge || HasLiveReturn)
1169    return MaybeFallThrough;
1170  // This says AlwaysFallThrough for calls to functions that are not marked
1171  // noreturn, that don't return.  If people would like this warning to be more
1172  // accurate, such functions should be marked as noreturn.
1173  return AlwaysFallThrough;
1174}
1175
1176/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1177/// function that should return a value.  Check that we don't fall off the end
1178/// of a noreturn function.  We assume that functions and blocks not marked
1179/// noreturn will return.
1180void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1181  // FIXME: Would be nice if we had a better way to control cascading errors,
1182  // but for now, avoid them.  The problem is that when Parse sees:
1183  //   int foo() { return a; }
1184  // The return is eaten and the Sema code sees just:
1185  //   int foo() { }
1186  // which this code would then warn about.
1187  if (getDiagnostics().hasErrorOccurred())
1188    return;
1189  bool ReturnsVoid = false;
1190  bool HasNoReturn = false;
1191  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1192    // If the result type of the function is a dependent type, we don't know
1193    // whether it will be void or not, so don't
1194    if (FD->getResultType()->isDependentType())
1195      return;
1196    if (FD->getResultType()->isVoidType())
1197      ReturnsVoid = true;
1198    if (FD->hasAttr<NoReturnAttr>())
1199      HasNoReturn = true;
1200  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1201    if (MD->getResultType()->isVoidType())
1202      ReturnsVoid = true;
1203    if (MD->hasAttr<NoReturnAttr>())
1204      HasNoReturn = true;
1205  }
1206
1207  // Short circuit for compilation speed.
1208  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1209       == Diagnostic::Ignored || ReturnsVoid)
1210      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1211          == Diagnostic::Ignored || !HasNoReturn)
1212      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1213          == Diagnostic::Ignored || !ReturnsVoid))
1214    return;
1215  // FIXME: Function try block
1216  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1217    switch (CheckFallThrough(Body)) {
1218    case MaybeFallThrough:
1219      if (HasNoReturn)
1220        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1221      else if (!ReturnsVoid)
1222        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1223      break;
1224    case AlwaysFallThrough:
1225      if (HasNoReturn)
1226        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1227      else if (!ReturnsVoid)
1228        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1229      break;
1230    case NeverFallThrough:
1231      if (ReturnsVoid)
1232        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1233      break;
1234    }
1235  }
1236}
1237
1238/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1239/// that should return a value.  Check that we don't fall off the end of a
1240/// noreturn block.  We assume that functions and blocks not marked noreturn
1241/// will return.
1242void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1243  // FIXME: Would be nice if we had a better way to control cascading errors,
1244  // but for now, avoid them.  The problem is that when Parse sees:
1245  //   int foo() { return a; }
1246  // The return is eaten and the Sema code sees just:
1247  //   int foo() { }
1248  // which this code would then warn about.
1249  if (getDiagnostics().hasErrorOccurred())
1250    return;
1251  bool ReturnsVoid = false;
1252  bool HasNoReturn = false;
1253  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1254    if (FT->getResultType()->isVoidType())
1255      ReturnsVoid = true;
1256    if (FT->getNoReturnAttr())
1257      HasNoReturn = true;
1258  }
1259
1260  // Short circuit for compilation speed.
1261  if (ReturnsVoid
1262      && !HasNoReturn
1263      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1264          == Diagnostic::Ignored || !ReturnsVoid))
1265    return;
1266  // FIXME: Funtion try block
1267  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1268    switch (CheckFallThrough(Body)) {
1269    case MaybeFallThrough:
1270      if (HasNoReturn)
1271        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1272      else if (!ReturnsVoid)
1273        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1274      break;
1275    case AlwaysFallThrough:
1276      if (HasNoReturn)
1277        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1278      else if (!ReturnsVoid)
1279        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1280      break;
1281    case NeverFallThrough:
1282      if (ReturnsVoid)
1283        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1284      break;
1285    }
1286  }
1287}
1288
1289/// CheckParmsForFunctionDef - Check that the parameters of the given
1290/// function are appropriate for the definition of a function. This
1291/// takes care of any checks that cannot be performed on the
1292/// declaration itself, e.g., that the types of each of the function
1293/// parameters are complete.
1294bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1295  bool HasInvalidParm = false;
1296  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1297    ParmVarDecl *Param = FD->getParamDecl(p);
1298
1299    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1300    // function declarator that is part of a function definition of
1301    // that function shall not have incomplete type.
1302    //
1303    // This is also C++ [dcl.fct]p6.
1304    if (!Param->isInvalidDecl() &&
1305        RequireCompleteType(Param->getLocation(), Param->getType(),
1306                               diag::err_typecheck_decl_incomplete_type)) {
1307      Param->setInvalidDecl();
1308      HasInvalidParm = true;
1309    }
1310
1311    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1312    // declaration of each parameter shall include an identifier.
1313    if (Param->getIdentifier() == 0 &&
1314        !Param->isImplicit() &&
1315        !getLangOptions().CPlusPlus)
1316      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1317  }
1318
1319  return HasInvalidParm;
1320}
1321
1322/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1323/// no declarator (e.g. "struct foo;") is parsed.
1324Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1325  // FIXME: Error on auto/register at file scope
1326  // FIXME: Error on inline/virtual/explicit
1327  // FIXME: Error on invalid restrict
1328  // FIXME: Warn on useless __thread
1329  // FIXME: Warn on useless const/volatile
1330  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1331  // FIXME: Warn on useless attributes
1332  Decl *TagD = 0;
1333  TagDecl *Tag = 0;
1334  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1335      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1336      DS.getTypeSpecType() == DeclSpec::TST_union ||
1337      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1338    TagD = static_cast<Decl *>(DS.getTypeRep());
1339
1340    if (!TagD) // We probably had an error
1341      return DeclPtrTy();
1342
1343    // Note that the above type specs guarantee that the
1344    // type rep is a Decl, whereas in many of the others
1345    // it's a Type.
1346    Tag = dyn_cast<TagDecl>(TagD);
1347  }
1348
1349  if (DS.isFriendSpecified()) {
1350    // If we're dealing with a class template decl, assume that the
1351    // template routines are handling it.
1352    if (TagD && isa<ClassTemplateDecl>(TagD))
1353      return DeclPtrTy();
1354    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1355  }
1356
1357  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1358    if (!Record->getDeclName() && Record->isDefinition() &&
1359        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1360      if (getLangOptions().CPlusPlus ||
1361          Record->getDeclContext()->isRecord())
1362        return BuildAnonymousStructOrUnion(S, DS, Record);
1363
1364      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1365        << DS.getSourceRange();
1366    }
1367
1368    // Microsoft allows unnamed struct/union fields. Don't complain
1369    // about them.
1370    // FIXME: Should we support Microsoft's extensions in this area?
1371    if (Record->getDeclName() && getLangOptions().Microsoft)
1372      return DeclPtrTy::make(Tag);
1373  }
1374
1375  if (!DS.isMissingDeclaratorOk() &&
1376      DS.getTypeSpecType() != DeclSpec::TST_error) {
1377    // Warn about typedefs of enums without names, since this is an
1378    // extension in both Microsoft an GNU.
1379    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1380        Tag && isa<EnumDecl>(Tag)) {
1381      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1382        << DS.getSourceRange();
1383      return DeclPtrTy::make(Tag);
1384    }
1385
1386    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1387      << DS.getSourceRange();
1388    return DeclPtrTy();
1389  }
1390
1391  return DeclPtrTy::make(Tag);
1392}
1393
1394/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1395/// anonymous struct or union AnonRecord into the owning context Owner
1396/// and scope S. This routine will be invoked just after we realize
1397/// that an unnamed union or struct is actually an anonymous union or
1398/// struct, e.g.,
1399///
1400/// @code
1401/// union {
1402///   int i;
1403///   float f;
1404/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1405///    // f into the surrounding scope.x
1406/// @endcode
1407///
1408/// This routine is recursive, injecting the names of nested anonymous
1409/// structs/unions into the owning context and scope as well.
1410bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1411                                               RecordDecl *AnonRecord) {
1412  bool Invalid = false;
1413  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1414                               FEnd = AnonRecord->field_end();
1415       F != FEnd; ++F) {
1416    if ((*F)->getDeclName()) {
1417      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1418                                                LookupOrdinaryName, true);
1419      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1420        // C++ [class.union]p2:
1421        //   The names of the members of an anonymous union shall be
1422        //   distinct from the names of any other entity in the
1423        //   scope in which the anonymous union is declared.
1424        unsigned diagKind
1425          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1426                                 : diag::err_anonymous_struct_member_redecl;
1427        Diag((*F)->getLocation(), diagKind)
1428          << (*F)->getDeclName();
1429        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1430        Invalid = true;
1431      } else {
1432        // C++ [class.union]p2:
1433        //   For the purpose of name lookup, after the anonymous union
1434        //   definition, the members of the anonymous union are
1435        //   considered to have been defined in the scope in which the
1436        //   anonymous union is declared.
1437        Owner->makeDeclVisibleInContext(*F);
1438        S->AddDecl(DeclPtrTy::make(*F));
1439        IdResolver.AddDecl(*F);
1440      }
1441    } else if (const RecordType *InnerRecordType
1442                 = (*F)->getType()->getAs<RecordType>()) {
1443      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1444      if (InnerRecord->isAnonymousStructOrUnion())
1445        Invalid = Invalid ||
1446          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1447    }
1448  }
1449
1450  return Invalid;
1451}
1452
1453/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1454/// anonymous structure or union. Anonymous unions are a C++ feature
1455/// (C++ [class.union]) and a GNU C extension; anonymous structures
1456/// are a GNU C and GNU C++ extension.
1457Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1458                                                  RecordDecl *Record) {
1459  DeclContext *Owner = Record->getDeclContext();
1460
1461  // Diagnose whether this anonymous struct/union is an extension.
1462  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1463    Diag(Record->getLocation(), diag::ext_anonymous_union);
1464  else if (!Record->isUnion())
1465    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1466
1467  // C and C++ require different kinds of checks for anonymous
1468  // structs/unions.
1469  bool Invalid = false;
1470  if (getLangOptions().CPlusPlus) {
1471    const char* PrevSpec = 0;
1472    unsigned DiagID;
1473    // C++ [class.union]p3:
1474    //   Anonymous unions declared in a named namespace or in the
1475    //   global namespace shall be declared static.
1476    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1477        (isa<TranslationUnitDecl>(Owner) ||
1478         (isa<NamespaceDecl>(Owner) &&
1479          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1480      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1481      Invalid = true;
1482
1483      // Recover by adding 'static'.
1484      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1485                             PrevSpec, DiagID);
1486    }
1487    // C++ [class.union]p3:
1488    //   A storage class is not allowed in a declaration of an
1489    //   anonymous union in a class scope.
1490    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1491             isa<RecordDecl>(Owner)) {
1492      Diag(DS.getStorageClassSpecLoc(),
1493           diag::err_anonymous_union_with_storage_spec);
1494      Invalid = true;
1495
1496      // Recover by removing the storage specifier.
1497      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1498                             PrevSpec, DiagID);
1499    }
1500
1501    // C++ [class.union]p2:
1502    //   The member-specification of an anonymous union shall only
1503    //   define non-static data members. [Note: nested types and
1504    //   functions cannot be declared within an anonymous union. ]
1505    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1506                                 MemEnd = Record->decls_end();
1507         Mem != MemEnd; ++Mem) {
1508      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1509        // C++ [class.union]p3:
1510        //   An anonymous union shall not have private or protected
1511        //   members (clause 11).
1512        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1513          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1514            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1515          Invalid = true;
1516        }
1517      } else if ((*Mem)->isImplicit()) {
1518        // Any implicit members are fine.
1519      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1520        // This is a type that showed up in an
1521        // elaborated-type-specifier inside the anonymous struct or
1522        // union, but which actually declares a type outside of the
1523        // anonymous struct or union. It's okay.
1524      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1525        if (!MemRecord->isAnonymousStructOrUnion() &&
1526            MemRecord->getDeclName()) {
1527          // This is a nested type declaration.
1528          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1529            << (int)Record->isUnion();
1530          Invalid = true;
1531        }
1532      } else {
1533        // We have something that isn't a non-static data
1534        // member. Complain about it.
1535        unsigned DK = diag::err_anonymous_record_bad_member;
1536        if (isa<TypeDecl>(*Mem))
1537          DK = diag::err_anonymous_record_with_type;
1538        else if (isa<FunctionDecl>(*Mem))
1539          DK = diag::err_anonymous_record_with_function;
1540        else if (isa<VarDecl>(*Mem))
1541          DK = diag::err_anonymous_record_with_static;
1542        Diag((*Mem)->getLocation(), DK)
1543            << (int)Record->isUnion();
1544          Invalid = true;
1545      }
1546    }
1547  }
1548
1549  if (!Record->isUnion() && !Owner->isRecord()) {
1550    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1551      << (int)getLangOptions().CPlusPlus;
1552    Invalid = true;
1553  }
1554
1555  // Create a declaration for this anonymous struct/union.
1556  NamedDecl *Anon = 0;
1557  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1558    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1559                             /*IdentifierInfo=*/0,
1560                             Context.getTypeDeclType(Record),
1561                             // FIXME: Type source info.
1562                             /*DInfo=*/0,
1563                             /*BitWidth=*/0, /*Mutable=*/false);
1564    Anon->setAccess(AS_public);
1565    if (getLangOptions().CPlusPlus)
1566      FieldCollector->Add(cast<FieldDecl>(Anon));
1567  } else {
1568    VarDecl::StorageClass SC;
1569    switch (DS.getStorageClassSpec()) {
1570    default: assert(0 && "Unknown storage class!");
1571    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1572    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1573    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1574    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1575    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1576    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1577    case DeclSpec::SCS_mutable:
1578      // mutable can only appear on non-static class members, so it's always
1579      // an error here
1580      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1581      Invalid = true;
1582      SC = VarDecl::None;
1583      break;
1584    }
1585
1586    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1587                           /*IdentifierInfo=*/0,
1588                           Context.getTypeDeclType(Record),
1589                           // FIXME: Type source info.
1590                           /*DInfo=*/0,
1591                           SC);
1592  }
1593  Anon->setImplicit();
1594
1595  // Add the anonymous struct/union object to the current
1596  // context. We'll be referencing this object when we refer to one of
1597  // its members.
1598  Owner->addDecl(Anon);
1599
1600  // Inject the members of the anonymous struct/union into the owning
1601  // context and into the identifier resolver chain for name lookup
1602  // purposes.
1603  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1604    Invalid = true;
1605
1606  // Mark this as an anonymous struct/union type. Note that we do not
1607  // do this until after we have already checked and injected the
1608  // members of this anonymous struct/union type, because otherwise
1609  // the members could be injected twice: once by DeclContext when it
1610  // builds its lookup table, and once by
1611  // InjectAnonymousStructOrUnionMembers.
1612  Record->setAnonymousStructOrUnion(true);
1613
1614  if (Invalid)
1615    Anon->setInvalidDecl();
1616
1617  return DeclPtrTy::make(Anon);
1618}
1619
1620
1621/// GetNameForDeclarator - Determine the full declaration name for the
1622/// given Declarator.
1623DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1624  switch (D.getKind()) {
1625  case Declarator::DK_Abstract:
1626    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1627    return DeclarationName();
1628
1629  case Declarator::DK_Normal:
1630    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1631    return DeclarationName(D.getIdentifier());
1632
1633  case Declarator::DK_Constructor: {
1634    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1635    return Context.DeclarationNames.getCXXConstructorName(
1636                                                Context.getCanonicalType(Ty));
1637  }
1638
1639  case Declarator::DK_Destructor: {
1640    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1641    return Context.DeclarationNames.getCXXDestructorName(
1642                                                Context.getCanonicalType(Ty));
1643  }
1644
1645  case Declarator::DK_Conversion: {
1646    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1647    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1648    return Context.DeclarationNames.getCXXConversionFunctionName(
1649                                                Context.getCanonicalType(Ty));
1650  }
1651
1652  case Declarator::DK_Operator:
1653    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1654    return Context.DeclarationNames.getCXXOperatorName(
1655                                                D.getOverloadedOperator());
1656
1657  case Declarator::DK_TemplateId: {
1658    TemplateName Name
1659      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1660    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1661      return Template->getDeclName();
1662    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1663      return Ovl->getDeclName();
1664
1665    return DeclarationName();
1666  }
1667  }
1668
1669  assert(false && "Unknown name kind");
1670  return DeclarationName();
1671}
1672
1673/// isNearlyMatchingFunction - Determine whether the C++ functions
1674/// Declaration and Definition are "nearly" matching. This heuristic
1675/// is used to improve diagnostics in the case where an out-of-line
1676/// function definition doesn't match any declaration within
1677/// the class or namespace.
1678static bool isNearlyMatchingFunction(ASTContext &Context,
1679                                     FunctionDecl *Declaration,
1680                                     FunctionDecl *Definition) {
1681  if (Declaration->param_size() != Definition->param_size())
1682    return false;
1683  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1684    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1685    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1686
1687    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1688    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1689    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1690      return false;
1691  }
1692
1693  return true;
1694}
1695
1696Sema::DeclPtrTy
1697Sema::HandleDeclarator(Scope *S, Declarator &D,
1698                       MultiTemplateParamsArg TemplateParamLists,
1699                       bool IsFunctionDefinition) {
1700  DeclarationName Name = GetNameForDeclarator(D);
1701
1702  // All of these full declarators require an identifier.  If it doesn't have
1703  // one, the ParsedFreeStandingDeclSpec action should be used.
1704  if (!Name) {
1705    if (!D.isInvalidType())  // Reject this if we think it is valid.
1706      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1707           diag::err_declarator_need_ident)
1708        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1709    return DeclPtrTy();
1710  }
1711
1712  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1713  // we find one that is.
1714  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1715         (S->getFlags() & Scope::TemplateParamScope) != 0)
1716    S = S->getParent();
1717
1718  // If this is an out-of-line definition of a member of a class template
1719  // or class template partial specialization, we may need to rebuild the
1720  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1721  // for more information.
1722  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1723  // handle expressions properly.
1724  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1725  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1726      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1727      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1728       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1729       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1730       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1731    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1732      // FIXME: Preserve type source info.
1733      QualType T = GetTypeFromParser(DS.getTypeRep());
1734      EnterDeclaratorContext(S, DC);
1735      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1736      ExitDeclaratorContext(S);
1737      if (T.isNull())
1738        return DeclPtrTy();
1739      DS.UpdateTypeRep(T.getAsOpaquePtr());
1740    }
1741  }
1742
1743  DeclContext *DC;
1744  NamedDecl *PrevDecl;
1745  NamedDecl *New;
1746
1747  DeclaratorInfo *DInfo = 0;
1748  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1749
1750  // See if this is a redefinition of a variable in the same scope.
1751  if (D.getCXXScopeSpec().isInvalid()) {
1752    DC = CurContext;
1753    PrevDecl = 0;
1754    D.setInvalidType();
1755  } else if (!D.getCXXScopeSpec().isSet()) {
1756    LookupNameKind NameKind = LookupOrdinaryName;
1757
1758    // If the declaration we're planning to build will be a function
1759    // or object with linkage, then look for another declaration with
1760    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1761    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1762      /* Do nothing*/;
1763    else if (R->isFunctionType()) {
1764      if (CurContext->isFunctionOrMethod() ||
1765          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1766        NameKind = LookupRedeclarationWithLinkage;
1767    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1768      NameKind = LookupRedeclarationWithLinkage;
1769    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1770             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1771      NameKind = LookupRedeclarationWithLinkage;
1772
1773    DC = CurContext;
1774    PrevDecl = LookupName(S, Name, NameKind, true,
1775                          NameKind == LookupRedeclarationWithLinkage,
1776                          D.getIdentifierLoc());
1777  } else { // Something like "int foo::x;"
1778    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1779
1780    if (!DC) {
1781      // If we could not compute the declaration context, it's because the
1782      // declaration context is dependent but does not refer to a class,
1783      // class template, or class template partial specialization. Complain
1784      // and return early, to avoid the coming semantic disaster.
1785      Diag(D.getIdentifierLoc(),
1786           diag::err_template_qualified_declarator_no_match)
1787        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1788        << D.getCXXScopeSpec().getRange();
1789      return DeclPtrTy();
1790    }
1791
1792    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1793
1794    // C++ 7.3.1.2p2:
1795    // Members (including explicit specializations of templates) of a named
1796    // namespace can also be defined outside that namespace by explicit
1797    // qualification of the name being defined, provided that the entity being
1798    // defined was already declared in the namespace and the definition appears
1799    // after the point of declaration in a namespace that encloses the
1800    // declarations namespace.
1801    //
1802    // Note that we only check the context at this point. We don't yet
1803    // have enough information to make sure that PrevDecl is actually
1804    // the declaration we want to match. For example, given:
1805    //
1806    //   class X {
1807    //     void f();
1808    //     void f(float);
1809    //   };
1810    //
1811    //   void X::f(int) { } // ill-formed
1812    //
1813    // In this case, PrevDecl will point to the overload set
1814    // containing the two f's declared in X, but neither of them
1815    // matches.
1816
1817    // First check whether we named the global scope.
1818    if (isa<TranslationUnitDecl>(DC)) {
1819      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1820        << Name << D.getCXXScopeSpec().getRange();
1821    } else if (!CurContext->Encloses(DC)) {
1822      // The qualifying scope doesn't enclose the original declaration.
1823      // Emit diagnostic based on current scope.
1824      SourceLocation L = D.getIdentifierLoc();
1825      SourceRange R = D.getCXXScopeSpec().getRange();
1826      if (isa<FunctionDecl>(CurContext))
1827        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1828      else
1829        Diag(L, diag::err_invalid_declarator_scope)
1830          << Name << cast<NamedDecl>(DC) << R;
1831      D.setInvalidType();
1832    }
1833  }
1834
1835  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1836    // Maybe we will complain about the shadowed template parameter.
1837    if (!D.isInvalidType())
1838      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1839        D.setInvalidType();
1840
1841    // Just pretend that we didn't see the previous declaration.
1842    PrevDecl = 0;
1843  }
1844
1845  // In C++, the previous declaration we find might be a tag type
1846  // (class or enum). In this case, the new declaration will hide the
1847  // tag type. Note that this does does not apply if we're declaring a
1848  // typedef (C++ [dcl.typedef]p4).
1849  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1850      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1851    PrevDecl = 0;
1852
1853  bool Redeclaration = false;
1854  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1855    if (TemplateParamLists.size()) {
1856      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1857      return DeclPtrTy();
1858    }
1859
1860    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1861  } else if (R->isFunctionType()) {
1862    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1863                                  move(TemplateParamLists),
1864                                  IsFunctionDefinition, Redeclaration);
1865  } else {
1866    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1867                                  move(TemplateParamLists),
1868                                  Redeclaration);
1869  }
1870
1871  if (New == 0)
1872    return DeclPtrTy();
1873
1874  // If this has an identifier and is not an invalid redeclaration or
1875  // function template specialization, add it to the scope stack.
1876  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1877      !(isa<FunctionDecl>(New) &&
1878        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1879    PushOnScopeChains(New, S);
1880
1881  return DeclPtrTy::make(New);
1882}
1883
1884/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1885/// types into constant array types in certain situations which would otherwise
1886/// be errors (for GCC compatibility).
1887static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1888                                                    ASTContext &Context,
1889                                                    bool &SizeIsNegative) {
1890  // This method tries to turn a variable array into a constant
1891  // array even when the size isn't an ICE.  This is necessary
1892  // for compatibility with code that depends on gcc's buggy
1893  // constant expression folding, like struct {char x[(int)(char*)2];}
1894  SizeIsNegative = false;
1895
1896  QualifierCollector Qs;
1897  const Type *Ty = Qs.strip(T);
1898
1899  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1900    QualType Pointee = PTy->getPointeeType();
1901    QualType FixedType =
1902        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1903    if (FixedType.isNull()) return FixedType;
1904    FixedType = Context.getPointerType(FixedType);
1905    return Qs.apply(FixedType);
1906  }
1907
1908  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1909  if (!VLATy)
1910    return QualType();
1911  // FIXME: We should probably handle this case
1912  if (VLATy->getElementType()->isVariablyModifiedType())
1913    return QualType();
1914
1915  Expr::EvalResult EvalResult;
1916  if (!VLATy->getSizeExpr() ||
1917      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1918      !EvalResult.Val.isInt())
1919    return QualType();
1920
1921  llvm::APSInt &Res = EvalResult.Val.getInt();
1922  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1923    Expr* ArySizeExpr = VLATy->getSizeExpr();
1924    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1925    // so as to transfer ownership to the ConstantArrayWithExpr.
1926    // Alternatively, we could "clone" it (how?).
1927    // Since we don't know how to do things above, we just use the
1928    // very same Expr*.
1929    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1930                                                Res, ArySizeExpr,
1931                                                ArrayType::Normal, 0,
1932                                                VLATy->getBracketsRange());
1933  }
1934
1935  SizeIsNegative = true;
1936  return QualType();
1937}
1938
1939/// \brief Register the given locally-scoped external C declaration so
1940/// that it can be found later for redeclarations
1941void
1942Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1943                                       Scope *S) {
1944  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1945         "Decl is not a locally-scoped decl!");
1946  // Note that we have a locally-scoped external with this name.
1947  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1948
1949  if (!PrevDecl)
1950    return;
1951
1952  // If there was a previous declaration of this variable, it may be
1953  // in our identifier chain. Update the identifier chain with the new
1954  // declaration.
1955  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1956    // The previous declaration was found on the identifer resolver
1957    // chain, so remove it from its scope.
1958    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1959      S = S->getParent();
1960
1961    if (S)
1962      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1963  }
1964}
1965
1966/// \brief Diagnose function specifiers on a declaration of an identifier that
1967/// does not identify a function.
1968void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1969  // FIXME: We should probably indicate the identifier in question to avoid
1970  // confusion for constructs like "inline int a(), b;"
1971  if (D.getDeclSpec().isInlineSpecified())
1972    Diag(D.getDeclSpec().getInlineSpecLoc(),
1973         diag::err_inline_non_function);
1974
1975  if (D.getDeclSpec().isVirtualSpecified())
1976    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1977         diag::err_virtual_non_function);
1978
1979  if (D.getDeclSpec().isExplicitSpecified())
1980    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1981         diag::err_explicit_non_function);
1982}
1983
1984NamedDecl*
1985Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1986                             QualType R,  DeclaratorInfo *DInfo,
1987                             NamedDecl* PrevDecl, bool &Redeclaration) {
1988  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1989  if (D.getCXXScopeSpec().isSet()) {
1990    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1991      << D.getCXXScopeSpec().getRange();
1992    D.setInvalidType();
1993    // Pretend we didn't see the scope specifier.
1994    DC = 0;
1995  }
1996
1997  if (getLangOptions().CPlusPlus) {
1998    // Check that there are no default arguments (C++ only).
1999    CheckExtraCXXDefaultArguments(D);
2000  }
2001
2002  DiagnoseFunctionSpecifiers(D);
2003
2004  if (D.getDeclSpec().isThreadSpecified())
2005    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2006
2007  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
2008  if (!NewTD) return 0;
2009
2010  if (D.isInvalidType())
2011    NewTD->setInvalidDecl();
2012
2013  // Handle attributes prior to checking for duplicates in MergeVarDecl
2014  ProcessDeclAttributes(S, NewTD, D);
2015  // Merge the decl with the existing one if appropriate. If the decl is
2016  // in an outer scope, it isn't the same thing.
2017  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2018    Redeclaration = true;
2019    MergeTypeDefDecl(NewTD, PrevDecl);
2020  }
2021
2022  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2023  // then it shall have block scope.
2024  QualType T = NewTD->getUnderlyingType();
2025  if (T->isVariablyModifiedType()) {
2026    CurFunctionNeedsScopeChecking = true;
2027
2028    if (S->getFnParent() == 0) {
2029      bool SizeIsNegative;
2030      QualType FixedTy =
2031          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2032      if (!FixedTy.isNull()) {
2033        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2034        NewTD->setUnderlyingType(FixedTy);
2035      } else {
2036        if (SizeIsNegative)
2037          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2038        else if (T->isVariableArrayType())
2039          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2040        else
2041          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2042        NewTD->setInvalidDecl();
2043      }
2044    }
2045  }
2046
2047  // If this is the C FILE type, notify the AST context.
2048  if (IdentifierInfo *II = NewTD->getIdentifier())
2049    if (!NewTD->isInvalidDecl() &&
2050        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2051      if (II->isStr("FILE"))
2052        Context.setFILEDecl(NewTD);
2053      else if (II->isStr("jmp_buf"))
2054        Context.setjmp_bufDecl(NewTD);
2055      else if (II->isStr("sigjmp_buf"))
2056        Context.setsigjmp_bufDecl(NewTD);
2057    }
2058
2059  return NewTD;
2060}
2061
2062/// \brief Determines whether the given declaration is an out-of-scope
2063/// previous declaration.
2064///
2065/// This routine should be invoked when name lookup has found a
2066/// previous declaration (PrevDecl) that is not in the scope where a
2067/// new declaration by the same name is being introduced. If the new
2068/// declaration occurs in a local scope, previous declarations with
2069/// linkage may still be considered previous declarations (C99
2070/// 6.2.2p4-5, C++ [basic.link]p6).
2071///
2072/// \param PrevDecl the previous declaration found by name
2073/// lookup
2074///
2075/// \param DC the context in which the new declaration is being
2076/// declared.
2077///
2078/// \returns true if PrevDecl is an out-of-scope previous declaration
2079/// for a new delcaration with the same name.
2080static bool
2081isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2082                                ASTContext &Context) {
2083  if (!PrevDecl)
2084    return 0;
2085
2086  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2087  // case we need to check each of the overloaded functions.
2088  if (!PrevDecl->hasLinkage())
2089    return false;
2090
2091  if (Context.getLangOptions().CPlusPlus) {
2092    // C++ [basic.link]p6:
2093    //   If there is a visible declaration of an entity with linkage
2094    //   having the same name and type, ignoring entities declared
2095    //   outside the innermost enclosing namespace scope, the block
2096    //   scope declaration declares that same entity and receives the
2097    //   linkage of the previous declaration.
2098    DeclContext *OuterContext = DC->getLookupContext();
2099    if (!OuterContext->isFunctionOrMethod())
2100      // This rule only applies to block-scope declarations.
2101      return false;
2102    else {
2103      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2104      if (PrevOuterContext->isRecord())
2105        // We found a member function: ignore it.
2106        return false;
2107      else {
2108        // Find the innermost enclosing namespace for the new and
2109        // previous declarations.
2110        while (!OuterContext->isFileContext())
2111          OuterContext = OuterContext->getParent();
2112        while (!PrevOuterContext->isFileContext())
2113          PrevOuterContext = PrevOuterContext->getParent();
2114
2115        // The previous declaration is in a different namespace, so it
2116        // isn't the same function.
2117        if (OuterContext->getPrimaryContext() !=
2118            PrevOuterContext->getPrimaryContext())
2119          return false;
2120      }
2121    }
2122  }
2123
2124  return true;
2125}
2126
2127NamedDecl*
2128Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2129                              QualType R, DeclaratorInfo *DInfo,
2130                              NamedDecl* PrevDecl,
2131                              MultiTemplateParamsArg TemplateParamLists,
2132                              bool &Redeclaration) {
2133  DeclarationName Name = GetNameForDeclarator(D);
2134
2135  // Check that there are no default arguments (C++ only).
2136  if (getLangOptions().CPlusPlus)
2137    CheckExtraCXXDefaultArguments(D);
2138
2139  VarDecl *NewVD;
2140  VarDecl::StorageClass SC;
2141  switch (D.getDeclSpec().getStorageClassSpec()) {
2142  default: assert(0 && "Unknown storage class!");
2143  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2144  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2145  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2146  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2147  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2148  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2149  case DeclSpec::SCS_mutable:
2150    // mutable can only appear on non-static class members, so it's always
2151    // an error here
2152    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2153    D.setInvalidType();
2154    SC = VarDecl::None;
2155    break;
2156  }
2157
2158  IdentifierInfo *II = Name.getAsIdentifierInfo();
2159  if (!II) {
2160    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2161      << Name.getAsString();
2162    return 0;
2163  }
2164
2165  DiagnoseFunctionSpecifiers(D);
2166
2167  if (!DC->isRecord() && S->getFnParent() == 0) {
2168    // C99 6.9p2: The storage-class specifiers auto and register shall not
2169    // appear in the declaration specifiers in an external declaration.
2170    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2171
2172      // If this is a register variable with an asm label specified, then this
2173      // is a GNU extension.
2174      if (SC == VarDecl::Register && D.getAsmLabel())
2175        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2176      else
2177        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2178      D.setInvalidType();
2179    }
2180  }
2181  if (DC->isRecord() && !CurContext->isRecord()) {
2182    // This is an out-of-line definition of a static data member.
2183    if (SC == VarDecl::Static) {
2184      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2185           diag::err_static_out_of_line)
2186        << CodeModificationHint::CreateRemoval(
2187                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2188    } else if (SC == VarDecl::None)
2189      SC = VarDecl::Static;
2190  }
2191  if (SC == VarDecl::Static) {
2192    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2193      if (RD->isLocalClass())
2194        Diag(D.getIdentifierLoc(),
2195             diag::err_static_data_member_not_allowed_in_local_class)
2196          << Name << RD->getDeclName();
2197    }
2198  }
2199
2200  // Match up the template parameter lists with the scope specifier, then
2201  // determine whether we have a template or a template specialization.
2202  bool isExplicitSpecialization = false;
2203  if (TemplateParameterList *TemplateParams
2204        = MatchTemplateParametersToScopeSpecifier(
2205                                  D.getDeclSpec().getSourceRange().getBegin(),
2206                                                  D.getCXXScopeSpec(),
2207                        (TemplateParameterList**)TemplateParamLists.get(),
2208                                                   TemplateParamLists.size(),
2209                                                  isExplicitSpecialization)) {
2210    if (TemplateParams->size() > 0) {
2211      // There is no such thing as a variable template.
2212      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2213        << II
2214        << SourceRange(TemplateParams->getTemplateLoc(),
2215                       TemplateParams->getRAngleLoc());
2216      return 0;
2217    } else {
2218      // There is an extraneous 'template<>' for this variable. Complain
2219      // about it, but allow the declaration of the variable.
2220      Diag(TemplateParams->getTemplateLoc(),
2221           diag::err_template_variable_noparams)
2222        << II
2223        << SourceRange(TemplateParams->getTemplateLoc(),
2224                       TemplateParams->getRAngleLoc());
2225
2226      isExplicitSpecialization = true;
2227    }
2228  }
2229
2230  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2231                          II, R, DInfo, SC);
2232
2233  if (D.isInvalidType())
2234    NewVD->setInvalidDecl();
2235
2236  if (D.getDeclSpec().isThreadSpecified()) {
2237    if (NewVD->hasLocalStorage())
2238      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2239    else if (!Context.Target.isTLSSupported())
2240      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2241    else
2242      NewVD->setThreadSpecified(true);
2243  }
2244
2245  // Set the lexical context. If the declarator has a C++ scope specifier, the
2246  // lexical context will be different from the semantic context.
2247  NewVD->setLexicalDeclContext(CurContext);
2248
2249  // Handle attributes prior to checking for duplicates in MergeVarDecl
2250  ProcessDeclAttributes(S, NewVD, D);
2251
2252  // Handle GNU asm-label extension (encoded as an attribute).
2253  if (Expr *E = (Expr*) D.getAsmLabel()) {
2254    // The parser guarantees this is a string.
2255    StringLiteral *SE = cast<StringLiteral>(E);
2256    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2257                                                        SE->getByteLength())));
2258  }
2259
2260  // If name lookup finds a previous declaration that is not in the
2261  // same scope as the new declaration, this may still be an
2262  // acceptable redeclaration.
2263  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2264      !(NewVD->hasLinkage() &&
2265        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2266    PrevDecl = 0;
2267
2268  // Merge the decl with the existing one if appropriate.
2269  if (PrevDecl) {
2270    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2271      // The user tried to define a non-static data member
2272      // out-of-line (C++ [dcl.meaning]p1).
2273      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2274        << D.getCXXScopeSpec().getRange();
2275      PrevDecl = 0;
2276      NewVD->setInvalidDecl();
2277    }
2278  } else if (D.getCXXScopeSpec().isSet()) {
2279    // No previous declaration in the qualifying scope.
2280    NestedNameSpecifier *NNS =
2281      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2282    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2283                          D.getCXXScopeSpec().getRange());
2284    NewVD->setInvalidDecl();
2285  }
2286
2287  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2288
2289  // This is an explicit specialization of a static data member. Check it.
2290  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2291      CheckMemberSpecialization(NewVD, PrevDecl))
2292    NewVD->setInvalidDecl();
2293
2294  // attributes declared post-definition are currently ignored
2295  if (PrevDecl) {
2296    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2297    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2298      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2299      Diag(Def->getLocation(), diag::note_previous_definition);
2300    }
2301  }
2302
2303  // If this is a locally-scoped extern C variable, update the map of
2304  // such variables.
2305  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2306      !NewVD->isInvalidDecl())
2307    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2308
2309  return NewVD;
2310}
2311
2312/// \brief Perform semantic checking on a newly-created variable
2313/// declaration.
2314///
2315/// This routine performs all of the type-checking required for a
2316/// variable declaration once it has been built. It is used both to
2317/// check variables after they have been parsed and their declarators
2318/// have been translated into a declaration, and to check variables
2319/// that have been instantiated from a template.
2320///
2321/// Sets NewVD->isInvalidDecl() if an error was encountered.
2322void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2323                                    bool &Redeclaration) {
2324  // If the decl is already known invalid, don't check it.
2325  if (NewVD->isInvalidDecl())
2326    return;
2327
2328  QualType T = NewVD->getType();
2329
2330  if (T->isObjCInterfaceType()) {
2331    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2332    return NewVD->setInvalidDecl();
2333  }
2334
2335  // The variable can not have an abstract class type.
2336  if (RequireNonAbstractType(NewVD->getLocation(), T,
2337                             diag::err_abstract_type_in_decl,
2338                             AbstractVariableType))
2339    return NewVD->setInvalidDecl();
2340
2341  // Emit an error if an address space was applied to decl with local storage.
2342  // This includes arrays of objects with address space qualifiers, but not
2343  // automatic variables that point to other address spaces.
2344  // ISO/IEC TR 18037 S5.1.2
2345  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2346    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2347    return NewVD->setInvalidDecl();
2348  }
2349
2350  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2351      && !NewVD->hasAttr<BlocksAttr>())
2352    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2353
2354  bool isVM = T->isVariablyModifiedType();
2355  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2356      NewVD->hasAttr<BlocksAttr>())
2357    CurFunctionNeedsScopeChecking = true;
2358
2359  if ((isVM && NewVD->hasLinkage()) ||
2360      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2361    bool SizeIsNegative;
2362    QualType FixedTy =
2363        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2364
2365    if (FixedTy.isNull() && T->isVariableArrayType()) {
2366      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2367      // FIXME: This won't give the correct result for
2368      // int a[10][n];
2369      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2370
2371      if (NewVD->isFileVarDecl())
2372        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2373        << SizeRange;
2374      else if (NewVD->getStorageClass() == VarDecl::Static)
2375        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2376        << SizeRange;
2377      else
2378        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2379        << SizeRange;
2380      return NewVD->setInvalidDecl();
2381    }
2382
2383    if (FixedTy.isNull()) {
2384      if (NewVD->isFileVarDecl())
2385        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2386      else
2387        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2388      return NewVD->setInvalidDecl();
2389    }
2390
2391    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2392    NewVD->setType(FixedTy);
2393  }
2394
2395  if (!PrevDecl && NewVD->isExternC()) {
2396    // Since we did not find anything by this name and we're declaring
2397    // an extern "C" variable, look for a non-visible extern "C"
2398    // declaration with the same name.
2399    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2400      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2401    if (Pos != LocallyScopedExternalDecls.end())
2402      PrevDecl = Pos->second;
2403  }
2404
2405  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2406    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2407      << T;
2408    return NewVD->setInvalidDecl();
2409  }
2410
2411  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2412    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2413    return NewVD->setInvalidDecl();
2414  }
2415
2416  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2417    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2418    return NewVD->setInvalidDecl();
2419  }
2420
2421  if (PrevDecl) {
2422    Redeclaration = true;
2423    MergeVarDecl(NewVD, PrevDecl);
2424  }
2425}
2426
2427static bool isUsingDecl(Decl *D) {
2428  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2429}
2430
2431/// \brief Data used with FindOverriddenMethod
2432struct FindOverriddenMethodData {
2433  Sema *S;
2434  CXXMethodDecl *Method;
2435};
2436
2437/// \brief Member lookup function that determines whether a given C++
2438/// method overrides a method in a base class, to be used with
2439/// CXXRecordDecl::lookupInBases().
2440static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2441                                 CXXBasePath &Path,
2442                                 void *UserData) {
2443  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2444
2445  FindOverriddenMethodData *Data
2446    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2447  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2448       Path.Decls.first != Path.Decls.second;
2449       ++Path.Decls.first) {
2450    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2451      OverloadedFunctionDecl::function_iterator MatchedDecl;
2452      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2453        return true;
2454    }
2455  }
2456
2457  return false;
2458}
2459
2460NamedDecl*
2461Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2462                              QualType R, DeclaratorInfo *DInfo,
2463                              NamedDecl* PrevDecl,
2464                              MultiTemplateParamsArg TemplateParamLists,
2465                              bool IsFunctionDefinition, bool &Redeclaration) {
2466  assert(R.getTypePtr()->isFunctionType());
2467
2468  DeclarationName Name = GetNameForDeclarator(D);
2469  FunctionDecl::StorageClass SC = FunctionDecl::None;
2470  switch (D.getDeclSpec().getStorageClassSpec()) {
2471  default: assert(0 && "Unknown storage class!");
2472  case DeclSpec::SCS_auto:
2473  case DeclSpec::SCS_register:
2474  case DeclSpec::SCS_mutable:
2475    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2476         diag::err_typecheck_sclass_func);
2477    D.setInvalidType();
2478    break;
2479  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2480  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2481  case DeclSpec::SCS_static: {
2482    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2483      // C99 6.7.1p5:
2484      //   The declaration of an identifier for a function that has
2485      //   block scope shall have no explicit storage-class specifier
2486      //   other than extern
2487      // See also (C++ [dcl.stc]p4).
2488      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2489           diag::err_static_block_func);
2490      SC = FunctionDecl::None;
2491    } else
2492      SC = FunctionDecl::Static;
2493    break;
2494  }
2495  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2496  }
2497
2498  if (D.getDeclSpec().isThreadSpecified())
2499    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2500
2501  bool isFriend = D.getDeclSpec().isFriendSpecified();
2502  bool isInline = D.getDeclSpec().isInlineSpecified();
2503  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2504  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2505
2506  // Check that the return type is not an abstract class type.
2507  // For record types, this is done by the AbstractClassUsageDiagnoser once
2508  // the class has been completely parsed.
2509  if (!DC->isRecord() &&
2510      RequireNonAbstractType(D.getIdentifierLoc(),
2511                             R->getAs<FunctionType>()->getResultType(),
2512                             diag::err_abstract_type_in_decl,
2513                             AbstractReturnType))
2514    D.setInvalidType();
2515
2516  // Do not allow returning a objc interface by-value.
2517  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2518    Diag(D.getIdentifierLoc(),
2519         diag::err_object_cannot_be_passed_returned_by_value) << 0
2520      << R->getAs<FunctionType>()->getResultType();
2521    D.setInvalidType();
2522  }
2523
2524  bool isVirtualOkay = false;
2525  FunctionDecl *NewFD;
2526
2527  if (isFriend) {
2528    // DC is the namespace in which the function is being declared.
2529    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2530           "friend function being created in a non-namespace context");
2531
2532    // C++ [class.friend]p5
2533    //   A function can be defined in a friend declaration of a
2534    //   class . . . . Such a function is implicitly inline.
2535    isInline |= IsFunctionDefinition;
2536  }
2537
2538  if (D.getKind() == Declarator::DK_Constructor) {
2539    // This is a C++ constructor declaration.
2540    assert(DC->isRecord() &&
2541           "Constructors can only be declared in a member context");
2542
2543    R = CheckConstructorDeclarator(D, R, SC);
2544
2545    // Create the new declaration
2546    NewFD = CXXConstructorDecl::Create(Context,
2547                                       cast<CXXRecordDecl>(DC),
2548                                       D.getIdentifierLoc(), Name, R, DInfo,
2549                                       isExplicit, isInline,
2550                                       /*isImplicitlyDeclared=*/false);
2551  } else if (D.getKind() == Declarator::DK_Destructor) {
2552    // This is a C++ destructor declaration.
2553    if (DC->isRecord()) {
2554      R = CheckDestructorDeclarator(D, SC);
2555
2556      NewFD = CXXDestructorDecl::Create(Context,
2557                                        cast<CXXRecordDecl>(DC),
2558                                        D.getIdentifierLoc(), Name, R,
2559                                        isInline,
2560                                        /*isImplicitlyDeclared=*/false);
2561
2562      isVirtualOkay = true;
2563    } else {
2564      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2565
2566      // Create a FunctionDecl to satisfy the function definition parsing
2567      // code path.
2568      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2569                                   Name, R, DInfo, SC, isInline,
2570                                   /*hasPrototype=*/true);
2571      D.setInvalidType();
2572    }
2573  } else if (D.getKind() == Declarator::DK_Conversion) {
2574    if (!DC->isRecord()) {
2575      Diag(D.getIdentifierLoc(),
2576           diag::err_conv_function_not_member);
2577      return 0;
2578    }
2579
2580    CheckConversionDeclarator(D, R, SC);
2581    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2582                                      D.getIdentifierLoc(), Name, R, DInfo,
2583                                      isInline, isExplicit);
2584
2585    isVirtualOkay = true;
2586  } else if (DC->isRecord()) {
2587    // If the of the function is the same as the name of the record, then this
2588    // must be an invalid constructor that has a return type.
2589    // (The parser checks for a return type and makes the declarator a
2590    // constructor if it has no return type).
2591    // must have an invalid constructor that has a return type
2592    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2593      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2594        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2595        << SourceRange(D.getIdentifierLoc());
2596      return 0;
2597    }
2598
2599    // This is a C++ method declaration.
2600    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2601                                  D.getIdentifierLoc(), Name, R, DInfo,
2602                                  (SC == FunctionDecl::Static), isInline);
2603
2604    isVirtualOkay = (SC != FunctionDecl::Static);
2605  } else {
2606    // Determine whether the function was written with a
2607    // prototype. This true when:
2608    //   - we're in C++ (where every function has a prototype),
2609    //   - there is a prototype in the declarator, or
2610    //   - the type R of the function is some kind of typedef or other reference
2611    //     to a type name (which eventually refers to a function type).
2612    bool HasPrototype =
2613       getLangOptions().CPlusPlus ||
2614       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2615       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2616
2617    NewFD = FunctionDecl::Create(Context, DC,
2618                                 D.getIdentifierLoc(),
2619                                 Name, R, DInfo, SC, isInline, HasPrototype);
2620  }
2621
2622  if (D.isInvalidType())
2623    NewFD->setInvalidDecl();
2624
2625  // Set the lexical context. If the declarator has a C++
2626  // scope specifier, or is the object of a friend declaration, the
2627  // lexical context will be different from the semantic context.
2628  NewFD->setLexicalDeclContext(CurContext);
2629
2630  if (isFriend)
2631    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2632
2633  // Match up the template parameter lists with the scope specifier, then
2634  // determine whether we have a template or a template specialization.
2635  FunctionTemplateDecl *FunctionTemplate = 0;
2636  bool isExplicitSpecialization = false;
2637  bool isFunctionTemplateSpecialization = false;
2638  if (TemplateParameterList *TemplateParams
2639        = MatchTemplateParametersToScopeSpecifier(
2640                                  D.getDeclSpec().getSourceRange().getBegin(),
2641                                  D.getCXXScopeSpec(),
2642                           (TemplateParameterList**)TemplateParamLists.get(),
2643                                                  TemplateParamLists.size(),
2644                                                  isExplicitSpecialization)) {
2645    if (TemplateParams->size() > 0) {
2646      // This is a function template
2647
2648      // Check that we can declare a template here.
2649      if (CheckTemplateDeclScope(S, TemplateParams))
2650        return 0;
2651
2652      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2653                                                      NewFD->getLocation(),
2654                                                      Name, TemplateParams,
2655                                                      NewFD);
2656      FunctionTemplate->setLexicalDeclContext(CurContext);
2657      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2658    } else {
2659      // This is a function template specialization.
2660      isFunctionTemplateSpecialization = true;
2661    }
2662
2663    // FIXME: Free this memory properly.
2664    TemplateParamLists.release();
2665  }
2666
2667  // C++ [dcl.fct.spec]p5:
2668  //   The virtual specifier shall only be used in declarations of
2669  //   nonstatic class member functions that appear within a
2670  //   member-specification of a class declaration; see 10.3.
2671  //
2672  if (isVirtual && !NewFD->isInvalidDecl()) {
2673    if (!isVirtualOkay) {
2674       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2675           diag::err_virtual_non_function);
2676    } else if (!CurContext->isRecord()) {
2677      // 'virtual' was specified outside of the class.
2678      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2679        << CodeModificationHint::CreateRemoval(
2680                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2681    } else {
2682      // Okay: Add virtual to the method.
2683      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2684      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2685      CurClass->setAggregate(false);
2686      CurClass->setPOD(false);
2687      CurClass->setEmpty(false);
2688      CurClass->setPolymorphic(true);
2689      CurClass->setHasTrivialConstructor(false);
2690      CurClass->setHasTrivialCopyConstructor(false);
2691      CurClass->setHasTrivialCopyAssignment(false);
2692    }
2693  }
2694
2695  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2696    // Look for virtual methods in base classes that this method might override.
2697    CXXBasePaths Paths;
2698    FindOverriddenMethodData Data;
2699    Data.Method = NewMD;
2700    Data.S = this;
2701    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2702                                                Paths)) {
2703      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2704           E = Paths.found_decls_end(); I != E; ++I) {
2705        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2706          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2707              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2708            NewMD->addOverriddenMethod(OldMD);
2709        }
2710      }
2711    }
2712  }
2713
2714  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2715      !CurContext->isRecord()) {
2716    // C++ [class.static]p1:
2717    //   A data or function member of a class may be declared static
2718    //   in a class definition, in which case it is a static member of
2719    //   the class.
2720
2721    // Complain about the 'static' specifier if it's on an out-of-line
2722    // member function definition.
2723    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2724         diag::err_static_out_of_line)
2725      << CodeModificationHint::CreateRemoval(
2726                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2727  }
2728
2729  // Handle GNU asm-label extension (encoded as an attribute).
2730  if (Expr *E = (Expr*) D.getAsmLabel()) {
2731    // The parser guarantees this is a string.
2732    StringLiteral *SE = cast<StringLiteral>(E);
2733    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2734                                                        SE->getByteLength())));
2735  }
2736
2737  // Copy the parameter declarations from the declarator D to the function
2738  // declaration NewFD, if they are available.  First scavenge them into Params.
2739  llvm::SmallVector<ParmVarDecl*, 16> Params;
2740  if (D.getNumTypeObjects() > 0) {
2741    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2742
2743    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2744    // function that takes no arguments, not a function that takes a
2745    // single void argument.
2746    // We let through "const void" here because Sema::GetTypeForDeclarator
2747    // already checks for that case.
2748    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2749        FTI.ArgInfo[0].Param &&
2750        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2751      // Empty arg list, don't push any params.
2752      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2753
2754      // In C++, the empty parameter-type-list must be spelled "void"; a
2755      // typedef of void is not permitted.
2756      if (getLangOptions().CPlusPlus &&
2757          Param->getType().getUnqualifiedType() != Context.VoidTy)
2758        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2759      // FIXME: Leaks decl?
2760    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2761      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2762        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2763        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2764        Param->setDeclContext(NewFD);
2765        Params.push_back(Param);
2766      }
2767    }
2768
2769  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2770    // When we're declaring a function with a typedef, typeof, etc as in the
2771    // following example, we'll need to synthesize (unnamed)
2772    // parameters for use in the declaration.
2773    //
2774    // @code
2775    // typedef void fn(int);
2776    // fn f;
2777    // @endcode
2778
2779    // Synthesize a parameter for each argument type.
2780    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2781         AE = FT->arg_type_end(); AI != AE; ++AI) {
2782      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2783                                               SourceLocation(), 0,
2784                                               *AI, /*DInfo=*/0,
2785                                               VarDecl::None, 0);
2786      Param->setImplicit();
2787      Params.push_back(Param);
2788    }
2789  } else {
2790    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2791           "Should not need args for typedef of non-prototype fn");
2792  }
2793  // Finally, we know we have the right number of parameters, install them.
2794  NewFD->setParams(Context, Params.data(), Params.size());
2795
2796  // If name lookup finds a previous declaration that is not in the
2797  // same scope as the new declaration, this may still be an
2798  // acceptable redeclaration.
2799  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2800      !(NewFD->hasLinkage() &&
2801        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2802    PrevDecl = 0;
2803
2804  // If the declarator is a template-id, translate the parser's template
2805  // argument list into our AST format.
2806  bool HasExplicitTemplateArgs = false;
2807  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2808  SourceLocation LAngleLoc, RAngleLoc;
2809  if (D.getKind() == Declarator::DK_TemplateId) {
2810    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2811    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2812                                       TemplateId->getTemplateArgs(),
2813                                       TemplateId->getTemplateArgIsType(),
2814                                       TemplateId->NumArgs);
2815    translateTemplateArguments(TemplateArgsPtr,
2816                               TemplateId->getTemplateArgLocations(),
2817                               TemplateArgs);
2818    TemplateArgsPtr.release();
2819
2820    HasExplicitTemplateArgs = true;
2821    LAngleLoc = TemplateId->LAngleLoc;
2822    RAngleLoc = TemplateId->RAngleLoc;
2823
2824    if (FunctionTemplate) {
2825      // FIXME: Diagnose function template with explicit template
2826      // arguments.
2827      HasExplicitTemplateArgs = false;
2828    } else if (!isFunctionTemplateSpecialization &&
2829               !D.getDeclSpec().isFriendSpecified()) {
2830      // We have encountered something that the user meant to be a
2831      // specialization (because it has explicitly-specified template
2832      // arguments) but that was not introduced with a "template<>" (or had
2833      // too few of them).
2834      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2835        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2836        << CodeModificationHint::CreateInsertion(
2837                                   D.getDeclSpec().getSourceRange().getBegin(),
2838                                                 "template<> ");
2839      isFunctionTemplateSpecialization = true;
2840    }
2841  }
2842
2843  if (isFunctionTemplateSpecialization) {
2844      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2845                                              LAngleLoc, TemplateArgs.data(),
2846                                              TemplateArgs.size(), RAngleLoc,
2847                                              PrevDecl))
2848        NewFD->setInvalidDecl();
2849  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2850             CheckMemberSpecialization(NewFD, PrevDecl))
2851    NewFD->setInvalidDecl();
2852
2853  // Perform semantic checking on the function declaration.
2854  bool OverloadableAttrRequired = false; // FIXME: HACK!
2855  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2856                           /*FIXME:*/OverloadableAttrRequired);
2857
2858  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2859    // An out-of-line member function declaration must also be a
2860    // definition (C++ [dcl.meaning]p1).
2861    // Note that this is not the case for explicit specializations of
2862    // function templates or member functions of class templates, per
2863    // C++ [temp.expl.spec]p2.
2864    if (!IsFunctionDefinition && !isFriend &&
2865        NewFD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
2866      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2867        << D.getCXXScopeSpec().getRange();
2868      NewFD->setInvalidDecl();
2869    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2870      // The user tried to provide an out-of-line definition for a
2871      // function that is a member of a class or namespace, but there
2872      // was no such member function declared (C++ [class.mfct]p2,
2873      // C++ [namespace.memdef]p2). For example:
2874      //
2875      // class X {
2876      //   void f() const;
2877      // };
2878      //
2879      // void X::f() { } // ill-formed
2880      //
2881      // Complain about this problem, and attempt to suggest close
2882      // matches (e.g., those that differ only in cv-qualifiers and
2883      // whether the parameter types are references).
2884      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2885        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2886      NewFD->setInvalidDecl();
2887
2888      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2889                                              true);
2890      assert(!Prev.isAmbiguous() &&
2891             "Cannot have an ambiguity in previous-declaration lookup");
2892      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2893           Func != FuncEnd; ++Func) {
2894        if (isa<FunctionDecl>(*Func) &&
2895            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2896          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2897      }
2898
2899      PrevDecl = 0;
2900    }
2901  }
2902
2903  // Handle attributes. We need to have merged decls when handling attributes
2904  // (for example to check for conflicts, etc).
2905  // FIXME: This needs to happen before we merge declarations. Then,
2906  // let attribute merging cope with attribute conflicts.
2907  ProcessDeclAttributes(S, NewFD, D);
2908
2909  // attributes declared post-definition are currently ignored
2910  if (Redeclaration && PrevDecl) {
2911    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2912    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2913      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2914      Diag(Def->getLocation(), diag::note_previous_definition);
2915    }
2916  }
2917
2918  AddKnownFunctionAttributes(NewFD);
2919
2920  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2921    // If a function name is overloadable in C, then every function
2922    // with that name must be marked "overloadable".
2923    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2924      << Redeclaration << NewFD;
2925    if (PrevDecl)
2926      Diag(PrevDecl->getLocation(),
2927           diag::note_attribute_overloadable_prev_overload);
2928    NewFD->addAttr(::new (Context) OverloadableAttr());
2929  }
2930
2931  // If this is a locally-scoped extern C function, update the
2932  // map of such names.
2933  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2934      && !NewFD->isInvalidDecl())
2935    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2936
2937  // Set this FunctionDecl's range up to the right paren.
2938  NewFD->setLocEnd(D.getSourceRange().getEnd());
2939
2940  if (FunctionTemplate && NewFD->isInvalidDecl())
2941    FunctionTemplate->setInvalidDecl();
2942
2943  if (FunctionTemplate)
2944    return FunctionTemplate;
2945
2946  return NewFD;
2947}
2948
2949/// \brief Perform semantic checking of a new function declaration.
2950///
2951/// Performs semantic analysis of the new function declaration
2952/// NewFD. This routine performs all semantic checking that does not
2953/// require the actual declarator involved in the declaration, and is
2954/// used both for the declaration of functions as they are parsed
2955/// (called via ActOnDeclarator) and for the declaration of functions
2956/// that have been instantiated via C++ template instantiation (called
2957/// via InstantiateDecl).
2958///
2959/// This sets NewFD->isInvalidDecl() to true if there was an error.
2960void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2961                                    bool &Redeclaration,
2962                                    bool &OverloadableAttrRequired) {
2963  // If NewFD is already known erroneous, don't do any of this checking.
2964  if (NewFD->isInvalidDecl())
2965    return;
2966
2967  if (NewFD->getResultType()->isVariablyModifiedType()) {
2968    // Functions returning a variably modified type violate C99 6.7.5.2p2
2969    // because all functions have linkage.
2970    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2971    return NewFD->setInvalidDecl();
2972  }
2973
2974  if (NewFD->isMain())
2975    CheckMain(NewFD);
2976
2977  // Check for a previous declaration of this name.
2978  if (!PrevDecl && NewFD->isExternC()) {
2979    // Since we did not find anything by this name and we're declaring
2980    // an extern "C" function, look for a non-visible extern "C"
2981    // declaration with the same name.
2982    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2983      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2984    if (Pos != LocallyScopedExternalDecls.end())
2985      PrevDecl = Pos->second;
2986  }
2987
2988  // Merge or overload the declaration with an existing declaration of
2989  // the same name, if appropriate.
2990  if (PrevDecl) {
2991    // Determine whether NewFD is an overload of PrevDecl or
2992    // a declaration that requires merging. If it's an overload,
2993    // there's no more work to do here; we'll just add the new
2994    // function to the scope.
2995    OverloadedFunctionDecl::function_iterator MatchedDecl;
2996
2997    if (!getLangOptions().CPlusPlus &&
2998        AllowOverloadingOfFunction(PrevDecl, Context)) {
2999      OverloadableAttrRequired = true;
3000
3001      // Functions marked "overloadable" must have a prototype (that
3002      // we can't get through declaration merging).
3003      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3004        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3005          << NewFD;
3006        Redeclaration = true;
3007
3008        // Turn this into a variadic function with no parameters.
3009        QualType R = Context.getFunctionType(
3010                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3011                       0, 0, true, 0);
3012        NewFD->setType(R);
3013        return NewFD->setInvalidDecl();
3014      }
3015    }
3016
3017    if (PrevDecl &&
3018        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3019         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3020      Redeclaration = true;
3021      Decl *OldDecl = PrevDecl;
3022
3023      // If PrevDecl was an overloaded function, extract the
3024      // FunctionDecl that matched.
3025      if (isa<OverloadedFunctionDecl>(PrevDecl))
3026        OldDecl = *MatchedDecl;
3027
3028      // NewFD and OldDecl represent declarations that need to be
3029      // merged.
3030      if (MergeFunctionDecl(NewFD, OldDecl))
3031        return NewFD->setInvalidDecl();
3032
3033      if (FunctionTemplateDecl *OldTemplateDecl
3034            = dyn_cast<FunctionTemplateDecl>(OldDecl))
3035        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3036      else {
3037        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3038          NewFD->setAccess(OldDecl->getAccess());
3039        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3040      }
3041    }
3042  }
3043
3044  // Semantic checking for this function declaration (in isolation).
3045  if (getLangOptions().CPlusPlus) {
3046    // C++-specific checks.
3047    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3048      CheckConstructor(Constructor);
3049    } else if (isa<CXXDestructorDecl>(NewFD)) {
3050      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3051      QualType ClassType = Context.getTypeDeclType(Record);
3052      if (!ClassType->isDependentType()) {
3053        DeclarationName Name
3054          = Context.DeclarationNames.getCXXDestructorName(
3055                                        Context.getCanonicalType(ClassType));
3056        if (NewFD->getDeclName() != Name) {
3057          Diag(NewFD->getLocation(), diag::err_destructor_name);
3058          return NewFD->setInvalidDecl();
3059        }
3060      }
3061      Record->setUserDeclaredDestructor(true);
3062      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3063      // user-defined destructor.
3064      Record->setPOD(false);
3065
3066      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3067      // declared destructor.
3068      // FIXME: C++0x: don't do this for "= default" destructors
3069      Record->setHasTrivialDestructor(false);
3070    } else if (CXXConversionDecl *Conversion
3071               = dyn_cast<CXXConversionDecl>(NewFD))
3072      ActOnConversionDeclarator(Conversion);
3073
3074    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3075    if (NewFD->isOverloadedOperator() &&
3076        CheckOverloadedOperatorDeclaration(NewFD))
3077      return NewFD->setInvalidDecl();
3078
3079    // In C++, check default arguments now that we have merged decls. Unless
3080    // the lexical context is the class, because in this case this is done
3081    // during delayed parsing anyway.
3082    if (!CurContext->isRecord())
3083      CheckCXXDefaultArguments(NewFD);
3084  }
3085}
3086
3087void Sema::CheckMain(FunctionDecl* FD) {
3088  // C++ [basic.start.main]p3:  A program that declares main to be inline
3089  //   or static is ill-formed.
3090  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3091  //   shall not appear in a declaration of main.
3092  // static main is not an error under C99, but we should warn about it.
3093  bool isInline = FD->isInline();
3094  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3095  if (isInline || isStatic) {
3096    unsigned diagID = diag::warn_unusual_main_decl;
3097    if (isInline || getLangOptions().CPlusPlus)
3098      diagID = diag::err_unusual_main_decl;
3099
3100    int which = isStatic + (isInline << 1) - 1;
3101    Diag(FD->getLocation(), diagID) << which;
3102  }
3103
3104  QualType T = FD->getType();
3105  assert(T->isFunctionType() && "function decl is not of function type");
3106  const FunctionType* FT = T->getAs<FunctionType>();
3107
3108  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3109    // TODO: add a replacement fixit to turn the return type into 'int'.
3110    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3111    FD->setInvalidDecl(true);
3112  }
3113
3114  // Treat protoless main() as nullary.
3115  if (isa<FunctionNoProtoType>(FT)) return;
3116
3117  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3118  unsigned nparams = FTP->getNumArgs();
3119  assert(FD->getNumParams() == nparams);
3120
3121  if (nparams > 3) {
3122    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3123    FD->setInvalidDecl(true);
3124    nparams = 3;
3125  }
3126
3127  // FIXME: a lot of the following diagnostics would be improved
3128  // if we had some location information about types.
3129
3130  QualType CharPP =
3131    Context.getPointerType(Context.getPointerType(Context.CharTy));
3132  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3133
3134  for (unsigned i = 0; i < nparams; ++i) {
3135    QualType AT = FTP->getArgType(i);
3136
3137    bool mismatch = true;
3138
3139    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3140      mismatch = false;
3141    else if (Expected[i] == CharPP) {
3142      // As an extension, the following forms are okay:
3143      //   char const **
3144      //   char const * const *
3145      //   char * const *
3146
3147      QualifierCollector qs;
3148      const PointerType* PT;
3149      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3150          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3151          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3152        qs.removeConst();
3153        mismatch = !qs.empty();
3154      }
3155    }
3156
3157    if (mismatch) {
3158      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3159      // TODO: suggest replacing given type with expected type
3160      FD->setInvalidDecl(true);
3161    }
3162  }
3163
3164  if (nparams == 1 && !FD->isInvalidDecl()) {
3165    Diag(FD->getLocation(), diag::warn_main_one_arg);
3166  }
3167}
3168
3169bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3170  // FIXME: Need strict checking.  In C89, we need to check for
3171  // any assignment, increment, decrement, function-calls, or
3172  // commas outside of a sizeof.  In C99, it's the same list,
3173  // except that the aforementioned are allowed in unevaluated
3174  // expressions.  Everything else falls under the
3175  // "may accept other forms of constant expressions" exception.
3176  // (We never end up here for C++, so the constant expression
3177  // rules there don't matter.)
3178  if (Init->isConstantInitializer(Context))
3179    return false;
3180  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3181    << Init->getSourceRange();
3182  return true;
3183}
3184
3185void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3186  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3187}
3188
3189/// AddInitializerToDecl - Adds the initializer Init to the
3190/// declaration dcl. If DirectInit is true, this is C++ direct
3191/// initialization rather than copy initialization.
3192void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3193  Decl *RealDecl = dcl.getAs<Decl>();
3194  // If there is no declaration, there was an error parsing it.  Just ignore
3195  // the initializer.
3196  if (RealDecl == 0)
3197    return;
3198
3199  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3200    // With declarators parsed the way they are, the parser cannot
3201    // distinguish between a normal initializer and a pure-specifier.
3202    // Thus this grotesque test.
3203    IntegerLiteral *IL;
3204    Expr *Init = static_cast<Expr *>(init.get());
3205    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3206        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3207      if (Method->isVirtualAsWritten()) {
3208        Method->setPure();
3209
3210        // A class is abstract if at least one function is pure virtual.
3211        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3212      } else if (!Method->isInvalidDecl()) {
3213        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3214          << Method->getDeclName() << Init->getSourceRange();
3215        Method->setInvalidDecl();
3216      }
3217    } else {
3218      Diag(Method->getLocation(), diag::err_member_function_initialization)
3219        << Method->getDeclName() << Init->getSourceRange();
3220      Method->setInvalidDecl();
3221    }
3222    return;
3223  }
3224
3225  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3226  if (!VDecl) {
3227    if (getLangOptions().CPlusPlus &&
3228        RealDecl->getLexicalDeclContext()->isRecord() &&
3229        isa<NamedDecl>(RealDecl))
3230      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3231        << cast<NamedDecl>(RealDecl)->getDeclName();
3232    else
3233      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3234    RealDecl->setInvalidDecl();
3235    return;
3236  }
3237
3238  if (!VDecl->getType()->isArrayType() &&
3239      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3240                          diag::err_typecheck_decl_incomplete_type)) {
3241    RealDecl->setInvalidDecl();
3242    return;
3243  }
3244
3245  const VarDecl *Def = 0;
3246  if (VDecl->getDefinition(Def)) {
3247    Diag(VDecl->getLocation(), diag::err_redefinition)
3248      << VDecl->getDeclName();
3249    Diag(Def->getLocation(), diag::note_previous_definition);
3250    VDecl->setInvalidDecl();
3251    return;
3252  }
3253
3254  // Take ownership of the expression, now that we're sure we have somewhere
3255  // to put it.
3256  Expr *Init = init.takeAs<Expr>();
3257  assert(Init && "missing initializer");
3258
3259  // Get the decls type and save a reference for later, since
3260  // CheckInitializerTypes may change it.
3261  QualType DclT = VDecl->getType(), SavT = DclT;
3262  if (VDecl->isBlockVarDecl()) {
3263    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3264      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3265      VDecl->setInvalidDecl();
3266    } else if (!VDecl->isInvalidDecl()) {
3267      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3268                                VDecl->getDeclName(), DirectInit))
3269        VDecl->setInvalidDecl();
3270
3271      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3272      // Don't check invalid declarations to avoid emitting useless diagnostics.
3273      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3274        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3275          CheckForConstantInitializer(Init, DclT);
3276      }
3277    }
3278  } else if (VDecl->isStaticDataMember() &&
3279             VDecl->getLexicalDeclContext()->isRecord()) {
3280    // This is an in-class initialization for a static data member, e.g.,
3281    //
3282    // struct S {
3283    //   static const int value = 17;
3284    // };
3285
3286    // Attach the initializer
3287    VDecl->setInit(Context, Init);
3288
3289    // C++ [class.mem]p4:
3290    //   A member-declarator can contain a constant-initializer only
3291    //   if it declares a static member (9.4) of const integral or
3292    //   const enumeration type, see 9.4.2.
3293    QualType T = VDecl->getType();
3294    if (!T->isDependentType() &&
3295        (!Context.getCanonicalType(T).isConstQualified() ||
3296         !T->isIntegralType())) {
3297      Diag(VDecl->getLocation(), diag::err_member_initialization)
3298        << VDecl->getDeclName() << Init->getSourceRange();
3299      VDecl->setInvalidDecl();
3300    } else {
3301      // C++ [class.static.data]p4:
3302      //   If a static data member is of const integral or const
3303      //   enumeration type, its declaration in the class definition
3304      //   can specify a constant-initializer which shall be an
3305      //   integral constant expression (5.19).
3306      if (!Init->isTypeDependent() &&
3307          !Init->getType()->isIntegralType()) {
3308        // We have a non-dependent, non-integral or enumeration type.
3309        Diag(Init->getSourceRange().getBegin(),
3310             diag::err_in_class_initializer_non_integral_type)
3311          << Init->getType() << Init->getSourceRange();
3312        VDecl->setInvalidDecl();
3313      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3314        // Check whether the expression is a constant expression.
3315        llvm::APSInt Value;
3316        SourceLocation Loc;
3317        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3318          Diag(Loc, diag::err_in_class_initializer_non_constant)
3319            << Init->getSourceRange();
3320          VDecl->setInvalidDecl();
3321        } else if (!VDecl->getType()->isDependentType())
3322          ImpCastExprToType(Init, VDecl->getType());
3323      }
3324    }
3325  } else if (VDecl->isFileVarDecl()) {
3326    if (VDecl->getStorageClass() == VarDecl::Extern)
3327      Diag(VDecl->getLocation(), diag::warn_extern_init);
3328    if (!VDecl->isInvalidDecl())
3329      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3330                                VDecl->getDeclName(), DirectInit))
3331        VDecl->setInvalidDecl();
3332
3333    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3334    // Don't check invalid declarations to avoid emitting useless diagnostics.
3335    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3336      // C99 6.7.8p4. All file scoped initializers need to be constant.
3337      CheckForConstantInitializer(Init, DclT);
3338    }
3339  }
3340  // If the type changed, it means we had an incomplete type that was
3341  // completed by the initializer. For example:
3342  //   int ary[] = { 1, 3, 5 };
3343  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3344  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3345    VDecl->setType(DclT);
3346    Init->setType(DclT);
3347  }
3348
3349  Init = MaybeCreateCXXExprWithTemporaries(Init,
3350                                           /*ShouldDestroyTemporaries=*/true);
3351  // Attach the initializer to the decl.
3352  VDecl->setInit(Context, Init);
3353
3354  // If the previous declaration of VDecl was a tentative definition,
3355  // remove it from the set of tentative definitions.
3356  if (VDecl->getPreviousDeclaration() &&
3357      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3358    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3359    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3360  }
3361
3362  return;
3363}
3364
3365void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3366                                  bool TypeContainsUndeducedAuto) {
3367  Decl *RealDecl = dcl.getAs<Decl>();
3368
3369  // If there is no declaration, there was an error parsing it. Just ignore it.
3370  if (RealDecl == 0)
3371    return;
3372
3373  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3374    QualType Type = Var->getType();
3375
3376    // Record tentative definitions.
3377    if (Var->isTentativeDefinition(Context)) {
3378      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3379        InsertPair =
3380           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3381
3382      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3383      // want the second one in the map.
3384      InsertPair.first->second = Var;
3385
3386      // However, for the list, we don't care about the order, just make sure
3387      // that there are no dupes for a given declaration name.
3388      if (InsertPair.second)
3389        TentativeDefinitionList.push_back(Var->getDeclName());
3390    }
3391
3392    // C++ [dcl.init.ref]p3:
3393    //   The initializer can be omitted for a reference only in a
3394    //   parameter declaration (8.3.5), in the declaration of a
3395    //   function return type, in the declaration of a class member
3396    //   within its class declaration (9.2), and where the extern
3397    //   specifier is explicitly used.
3398    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3399      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3400        << Var->getDeclName()
3401        << SourceRange(Var->getLocation(), Var->getLocation());
3402      Var->setInvalidDecl();
3403      return;
3404    }
3405
3406    // C++0x [dcl.spec.auto]p3
3407    if (TypeContainsUndeducedAuto) {
3408      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3409        << Var->getDeclName() << Type;
3410      Var->setInvalidDecl();
3411      return;
3412    }
3413
3414    // C++ [temp.expl.spec]p15:
3415    //   An explicit specialization of a static data member of a template is a
3416    //   definition if the declaration includes an initializer; otherwise, it
3417    //   is a declaration.
3418    if (Var->isStaticDataMember() &&
3419        Var->getInstantiatedFromStaticDataMember() &&
3420        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3421      return;
3422
3423    // C++ [dcl.init]p9:
3424    //   If no initializer is specified for an object, and the object
3425    //   is of (possibly cv-qualified) non-POD class type (or array
3426    //   thereof), the object shall be default-initialized; if the
3427    //   object is of const-qualified type, the underlying class type
3428    //   shall have a user-declared default constructor.
3429    //
3430    // FIXME: Diagnose the "user-declared default constructor" bit.
3431    if (getLangOptions().CPlusPlus) {
3432      QualType InitType = Type;
3433      if (const ArrayType *Array = Context.getAsArrayType(Type))
3434        InitType = Array->getElementType();
3435      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3436          InitType->isRecordType() && !InitType->isDependentType()) {
3437        if (!RequireCompleteType(Var->getLocation(), InitType,
3438                                 diag::err_invalid_incomplete_type_use)) {
3439          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3440
3441          CXXConstructorDecl *Constructor
3442            = PerformInitializationByConstructor(InitType,
3443                                                 MultiExprArg(*this, 0, 0),
3444                                                 Var->getLocation(),
3445                                               SourceRange(Var->getLocation(),
3446                                                           Var->getLocation()),
3447                                                 Var->getDeclName(),
3448                                                 IK_Default,
3449                                                 ConstructorArgs);
3450
3451          // FIXME: Location info for the variable initialization?
3452          if (!Constructor)
3453            Var->setInvalidDecl();
3454          else {
3455            // FIXME: Cope with initialization of arrays
3456            if (!Constructor->isTrivial() &&
3457                InitializeVarWithConstructor(Var, Constructor, InitType,
3458                                             move_arg(ConstructorArgs)))
3459              Var->setInvalidDecl();
3460
3461            FinalizeVarWithDestructor(Var, InitType);
3462          }
3463        } else {
3464          Var->setInvalidDecl();
3465        }
3466      }
3467    }
3468
3469#if 0
3470    // FIXME: Temporarily disabled because we are not properly parsing
3471    // linkage specifications on declarations, e.g.,
3472    //
3473    //   extern "C" const CGPoint CGPointerZero;
3474    //
3475    // C++ [dcl.init]p9:
3476    //
3477    //     If no initializer is specified for an object, and the
3478    //     object is of (possibly cv-qualified) non-POD class type (or
3479    //     array thereof), the object shall be default-initialized; if
3480    //     the object is of const-qualified type, the underlying class
3481    //     type shall have a user-declared default
3482    //     constructor. Otherwise, if no initializer is specified for
3483    //     an object, the object and its subobjects, if any, have an
3484    //     indeterminate initial value; if the object or any of its
3485    //     subobjects are of const-qualified type, the program is
3486    //     ill-formed.
3487    //
3488    // This isn't technically an error in C, so we don't diagnose it.
3489    //
3490    // FIXME: Actually perform the POD/user-defined default
3491    // constructor check.
3492    if (getLangOptions().CPlusPlus &&
3493        Context.getCanonicalType(Type).isConstQualified() &&
3494        !Var->hasExternalStorage())
3495      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3496        << Var->getName()
3497        << SourceRange(Var->getLocation(), Var->getLocation());
3498#endif
3499  }
3500}
3501
3502Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3503                                                   DeclPtrTy *Group,
3504                                                   unsigned NumDecls) {
3505  llvm::SmallVector<Decl*, 8> Decls;
3506
3507  if (DS.isTypeSpecOwned())
3508    Decls.push_back((Decl*)DS.getTypeRep());
3509
3510  for (unsigned i = 0; i != NumDecls; ++i)
3511    if (Decl *D = Group[i].getAs<Decl>())
3512      Decls.push_back(D);
3513
3514  // Perform semantic analysis that depends on having fully processed both
3515  // the declarator and initializer.
3516  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3517    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3518    if (!IDecl)
3519      continue;
3520    QualType T = IDecl->getType();
3521
3522    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3523    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3524    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3525      if (!IDecl->isInvalidDecl() &&
3526          RequireCompleteType(IDecl->getLocation(), T,
3527                              diag::err_typecheck_decl_incomplete_type))
3528        IDecl->setInvalidDecl();
3529    }
3530    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3531    // object that has file scope without an initializer, and without a
3532    // storage-class specifier or with the storage-class specifier "static",
3533    // constitutes a tentative definition. Note: A tentative definition with
3534    // external linkage is valid (C99 6.2.2p5).
3535    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3536      if (const IncompleteArrayType *ArrayT
3537          = Context.getAsIncompleteArrayType(T)) {
3538        if (RequireCompleteType(IDecl->getLocation(),
3539                                ArrayT->getElementType(),
3540                                diag::err_illegal_decl_array_incomplete_type))
3541          IDecl->setInvalidDecl();
3542      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3543        // C99 6.9.2p3: If the declaration of an identifier for an object is
3544        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3545        // declared type shall not be an incomplete type.
3546        // NOTE: code such as the following
3547        //     static struct s;
3548        //     struct s { int a; };
3549        // is accepted by gcc. Hence here we issue a warning instead of
3550        // an error and we do not invalidate the static declaration.
3551        // NOTE: to avoid multiple warnings, only check the first declaration.
3552        if (IDecl->getPreviousDeclaration() == 0)
3553          RequireCompleteType(IDecl->getLocation(), T,
3554                              diag::ext_typecheck_decl_incomplete_type);
3555      }
3556    }
3557  }
3558  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3559                                                   Decls.data(), Decls.size()));
3560}
3561
3562
3563/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3564/// to introduce parameters into function prototype scope.
3565Sema::DeclPtrTy
3566Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3567  const DeclSpec &DS = D.getDeclSpec();
3568
3569  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3570  VarDecl::StorageClass StorageClass = VarDecl::None;
3571  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3572    StorageClass = VarDecl::Register;
3573  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3574    Diag(DS.getStorageClassSpecLoc(),
3575         diag::err_invalid_storage_class_in_func_decl);
3576    D.getMutableDeclSpec().ClearStorageClassSpecs();
3577  }
3578
3579  if (D.getDeclSpec().isThreadSpecified())
3580    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3581
3582  DiagnoseFunctionSpecifiers(D);
3583
3584  // Check that there are no default arguments inside the type of this
3585  // parameter (C++ only).
3586  if (getLangOptions().CPlusPlus)
3587    CheckExtraCXXDefaultArguments(D);
3588
3589  DeclaratorInfo *DInfo = 0;
3590  TagDecl *OwnedDecl = 0;
3591  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3592                                               &OwnedDecl);
3593
3594  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3595    // C++ [dcl.fct]p6:
3596    //   Types shall not be defined in return or parameter types.
3597    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3598      << Context.getTypeDeclType(OwnedDecl);
3599  }
3600
3601  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3602  // Can this happen for params?  We already checked that they don't conflict
3603  // among each other.  Here they can only shadow globals, which is ok.
3604  IdentifierInfo *II = D.getIdentifier();
3605  if (II) {
3606    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3607      if (PrevDecl->isTemplateParameter()) {
3608        // Maybe we will complain about the shadowed template parameter.
3609        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3610        // Just pretend that we didn't see the previous declaration.
3611        PrevDecl = 0;
3612      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3613        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3614
3615        // Recover by removing the name
3616        II = 0;
3617        D.SetIdentifier(0, D.getIdentifierLoc());
3618      }
3619    }
3620  }
3621
3622  // Parameters can not be abstract class types.
3623  // For record types, this is done by the AbstractClassUsageDiagnoser once
3624  // the class has been completely parsed.
3625  if (!CurContext->isRecord() &&
3626      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3627                             diag::err_abstract_type_in_decl,
3628                             AbstractParamType))
3629    D.setInvalidType(true);
3630
3631  QualType T = adjustParameterType(parmDeclType);
3632
3633  ParmVarDecl *New;
3634  if (T == parmDeclType) // parameter type did not need adjustment
3635    New = ParmVarDecl::Create(Context, CurContext,
3636                              D.getIdentifierLoc(), II,
3637                              parmDeclType, DInfo, StorageClass,
3638                              0);
3639  else // keep track of both the adjusted and unadjusted types
3640    New = OriginalParmVarDecl::Create(Context, CurContext,
3641                                      D.getIdentifierLoc(), II, T, DInfo,
3642                                      parmDeclType, StorageClass, 0);
3643
3644  if (D.isInvalidType())
3645    New->setInvalidDecl();
3646
3647  // Parameter declarators cannot be interface types. All ObjC objects are
3648  // passed by reference.
3649  if (T->isObjCInterfaceType()) {
3650    Diag(D.getIdentifierLoc(),
3651         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3652    New->setInvalidDecl();
3653  }
3654
3655  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3656  if (D.getCXXScopeSpec().isSet()) {
3657    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3658      << D.getCXXScopeSpec().getRange();
3659    New->setInvalidDecl();
3660  }
3661
3662  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3663  // duration shall not be qualified by an address-space qualifier."
3664  // Since all parameters have automatic store duration, they can not have
3665  // an address space.
3666  if (T.getAddressSpace() != 0) {
3667    Diag(D.getIdentifierLoc(),
3668         diag::err_arg_with_address_space);
3669    New->setInvalidDecl();
3670  }
3671
3672
3673  // Add the parameter declaration into this scope.
3674  S->AddDecl(DeclPtrTy::make(New));
3675  if (II)
3676    IdResolver.AddDecl(New);
3677
3678  ProcessDeclAttributes(S, New, D);
3679
3680  if (New->hasAttr<BlocksAttr>()) {
3681    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3682  }
3683  return DeclPtrTy::make(New);
3684}
3685
3686void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3687                                           SourceLocation LocAfterDecls) {
3688  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3689         "Not a function declarator!");
3690  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3691
3692  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3693  // for a K&R function.
3694  if (!FTI.hasPrototype) {
3695    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3696      --i;
3697      if (FTI.ArgInfo[i].Param == 0) {
3698        std::string Code = "  int ";
3699        Code += FTI.ArgInfo[i].Ident->getName();
3700        Code += ";\n";
3701        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3702          << FTI.ArgInfo[i].Ident
3703          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3704
3705        // Implicitly declare the argument as type 'int' for lack of a better
3706        // type.
3707        DeclSpec DS;
3708        const char* PrevSpec; // unused
3709        unsigned DiagID; // unused
3710        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3711                           PrevSpec, DiagID);
3712        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3713        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3714        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3715      }
3716    }
3717  }
3718}
3719
3720Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3721                                              Declarator &D) {
3722  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3723  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3724         "Not a function declarator!");
3725  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3726
3727  if (FTI.hasPrototype) {
3728    // FIXME: Diagnose arguments without names in C.
3729  }
3730
3731  Scope *ParentScope = FnBodyScope->getParent();
3732
3733  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3734                                  MultiTemplateParamsArg(*this),
3735                                  /*IsFunctionDefinition=*/true);
3736  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3737}
3738
3739Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3740  if (!D)
3741    return D;
3742  FunctionDecl *FD = 0;
3743
3744  if (FunctionTemplateDecl *FunTmpl
3745        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3746    FD = FunTmpl->getTemplatedDecl();
3747  else
3748    FD = cast<FunctionDecl>(D.getAs<Decl>());
3749
3750  CurFunctionNeedsScopeChecking = false;
3751
3752  // See if this is a redefinition.
3753  const FunctionDecl *Definition;
3754  if (FD->getBody(Definition)) {
3755    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3756    Diag(Definition->getLocation(), diag::note_previous_definition);
3757  }
3758
3759  // Builtin functions cannot be defined.
3760  if (unsigned BuiltinID = FD->getBuiltinID()) {
3761    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3762      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3763      FD->setInvalidDecl();
3764    }
3765  }
3766
3767  // The return type of a function definition must be complete
3768  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3769  QualType ResultType = FD->getResultType();
3770  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3771      !FD->isInvalidDecl() &&
3772      RequireCompleteType(FD->getLocation(), ResultType,
3773                          diag::err_func_def_incomplete_result))
3774    FD->setInvalidDecl();
3775
3776  // GNU warning -Wmissing-prototypes:
3777  //   Warn if a global function is defined without a previous
3778  //   prototype declaration. This warning is issued even if the
3779  //   definition itself provides a prototype. The aim is to detect
3780  //   global functions that fail to be declared in header files.
3781  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3782      !FD->isMain()) {
3783    bool MissingPrototype = true;
3784    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3785         Prev; Prev = Prev->getPreviousDeclaration()) {
3786      // Ignore any declarations that occur in function or method
3787      // scope, because they aren't visible from the header.
3788      if (Prev->getDeclContext()->isFunctionOrMethod())
3789        continue;
3790
3791      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3792      break;
3793    }
3794
3795    if (MissingPrototype)
3796      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3797  }
3798
3799  if (FnBodyScope)
3800    PushDeclContext(FnBodyScope, FD);
3801
3802  // Check the validity of our function parameters
3803  CheckParmsForFunctionDef(FD);
3804
3805  // Introduce our parameters into the function scope
3806  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3807    ParmVarDecl *Param = FD->getParamDecl(p);
3808    Param->setOwningFunction(FD);
3809
3810    // If this has an identifier, add it to the scope stack.
3811    if (Param->getIdentifier() && FnBodyScope)
3812      PushOnScopeChains(Param, FnBodyScope);
3813  }
3814
3815  // Checking attributes of current function definition
3816  // dllimport attribute.
3817  if (FD->getAttr<DLLImportAttr>() &&
3818      (!FD->getAttr<DLLExportAttr>())) {
3819    // dllimport attribute cannot be applied to definition.
3820    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3821      Diag(FD->getLocation(),
3822           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3823        << "dllimport";
3824      FD->setInvalidDecl();
3825      return DeclPtrTy::make(FD);
3826    } else {
3827      // If a symbol previously declared dllimport is later defined, the
3828      // attribute is ignored in subsequent references, and a warning is
3829      // emitted.
3830      Diag(FD->getLocation(),
3831           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3832        << FD->getNameAsCString() << "dllimport";
3833    }
3834  }
3835  return DeclPtrTy::make(FD);
3836}
3837
3838Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3839  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3840}
3841
3842Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3843                                              bool IsInstantiation) {
3844  Decl *dcl = D.getAs<Decl>();
3845  Stmt *Body = BodyArg.takeAs<Stmt>();
3846
3847  FunctionDecl *FD = 0;
3848  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3849  if (FunTmpl)
3850    FD = FunTmpl->getTemplatedDecl();
3851  else
3852    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3853
3854  if (FD) {
3855    FD->setBody(Body);
3856    if (FD->isMain())
3857      // C and C++ allow for main to automagically return 0.
3858      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3859      FD->setHasImplicitReturnZero(true);
3860    else
3861      CheckFallThroughForFunctionDef(FD, Body);
3862
3863    if (!FD->isInvalidDecl())
3864      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3865
3866    // C++ [basic.def.odr]p2:
3867    //   [...] A virtual member function is used if it is not pure. [...]
3868    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3869      if (Method->isVirtual() && !Method->isPure())
3870        MarkDeclarationReferenced(Method->getLocation(), Method);
3871
3872    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3873  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3874    assert(MD == getCurMethodDecl() && "Method parsing confused");
3875    MD->setBody(Body);
3876    CheckFallThroughForFunctionDef(MD, Body);
3877    MD->setEndLoc(Body->getLocEnd());
3878
3879    if (!MD->isInvalidDecl())
3880      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3881  } else {
3882    Body->Destroy(Context);
3883    return DeclPtrTy();
3884  }
3885  if (!IsInstantiation)
3886    PopDeclContext();
3887
3888  // Verify and clean out per-function state.
3889
3890  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3891
3892  // Check goto/label use.
3893  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3894       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3895    LabelStmt *L = I->second;
3896
3897    // Verify that we have no forward references left.  If so, there was a goto
3898    // or address of a label taken, but no definition of it.  Label fwd
3899    // definitions are indicated with a null substmt.
3900    if (L->getSubStmt() != 0)
3901      continue;
3902
3903    // Emit error.
3904    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3905
3906    // At this point, we have gotos that use the bogus label.  Stitch it into
3907    // the function body so that they aren't leaked and that the AST is well
3908    // formed.
3909    if (Body == 0) {
3910      // The whole function wasn't parsed correctly, just delete this.
3911      L->Destroy(Context);
3912      continue;
3913    }
3914
3915    // Otherwise, the body is valid: we want to stitch the label decl into the
3916    // function somewhere so that it is properly owned and so that the goto
3917    // has a valid target.  Do this by creating a new compound stmt with the
3918    // label in it.
3919
3920    // Give the label a sub-statement.
3921    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3922
3923    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3924                               cast<CXXTryStmt>(Body)->getTryBlock() :
3925                               cast<CompoundStmt>(Body);
3926    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3927    Elements.push_back(L);
3928    Compound->setStmts(Context, &Elements[0], Elements.size());
3929  }
3930  FunctionLabelMap.clear();
3931
3932  if (!Body) return D;
3933
3934  // Verify that that gotos and switch cases don't jump into scopes illegally.
3935  if (CurFunctionNeedsScopeChecking)
3936    DiagnoseInvalidJumps(Body);
3937
3938  // C++ constructors that have function-try-blocks can't have return
3939  // statements in the handlers of that block. (C++ [except.handle]p14)
3940  // Verify this.
3941  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3942    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3943
3944  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3945    computeBaseOrMembersToDestroy(Destructor);
3946  return D;
3947}
3948
3949/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3950/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3951NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3952                                          IdentifierInfo &II, Scope *S) {
3953  // Before we produce a declaration for an implicitly defined
3954  // function, see whether there was a locally-scoped declaration of
3955  // this name as a function or variable. If so, use that
3956  // (non-visible) declaration, and complain about it.
3957  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3958    = LocallyScopedExternalDecls.find(&II);
3959  if (Pos != LocallyScopedExternalDecls.end()) {
3960    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3961    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3962    return Pos->second;
3963  }
3964
3965  // Extension in C99.  Legal in C90, but warn about it.
3966  static const unsigned int BuiltinLen = strlen("__builtin_");
3967  if (II.getLength() > BuiltinLen &&
3968      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3969    Diag(Loc, diag::warn_builtin_unknown) << &II;
3970  else if (getLangOptions().C99)
3971    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3972  else
3973    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3974
3975  // Set a Declarator for the implicit definition: int foo();
3976  const char *Dummy;
3977  DeclSpec DS;
3978  unsigned DiagID;
3979  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3980  Error = Error; // Silence warning.
3981  assert(!Error && "Error setting up implicit decl!");
3982  Declarator D(DS, Declarator::BlockContext);
3983  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3984                                             0, 0, false, SourceLocation(),
3985                                             false, 0,0,0, Loc, Loc, D),
3986                SourceLocation());
3987  D.SetIdentifier(&II, Loc);
3988
3989  // Insert this function into translation-unit scope.
3990
3991  DeclContext *PrevDC = CurContext;
3992  CurContext = Context.getTranslationUnitDecl();
3993
3994  FunctionDecl *FD =
3995 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3996  FD->setImplicit();
3997
3998  CurContext = PrevDC;
3999
4000  AddKnownFunctionAttributes(FD);
4001
4002  return FD;
4003}
4004
4005/// \brief Adds any function attributes that we know a priori based on
4006/// the declaration of this function.
4007///
4008/// These attributes can apply both to implicitly-declared builtins
4009/// (like __builtin___printf_chk) or to library-declared functions
4010/// like NSLog or printf.
4011void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4012  if (FD->isInvalidDecl())
4013    return;
4014
4015  // If this is a built-in function, map its builtin attributes to
4016  // actual attributes.
4017  if (unsigned BuiltinID = FD->getBuiltinID()) {
4018    // Handle printf-formatting attributes.
4019    unsigned FormatIdx;
4020    bool HasVAListArg;
4021    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4022      if (!FD->getAttr<FormatAttr>())
4023        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4024                                             HasVAListArg ? 0 : FormatIdx + 2));
4025    }
4026
4027    // Mark const if we don't care about errno and that is the only
4028    // thing preventing the function from being const. This allows
4029    // IRgen to use LLVM intrinsics for such functions.
4030    if (!getLangOptions().MathErrno &&
4031        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4032      if (!FD->getAttr<ConstAttr>())
4033        FD->addAttr(::new (Context) ConstAttr());
4034    }
4035
4036    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4037      FD->addAttr(::new (Context) NoReturnAttr());
4038  }
4039
4040  IdentifierInfo *Name = FD->getIdentifier();
4041  if (!Name)
4042    return;
4043  if ((!getLangOptions().CPlusPlus &&
4044       FD->getDeclContext()->isTranslationUnit()) ||
4045      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4046       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4047       LinkageSpecDecl::lang_c)) {
4048    // Okay: this could be a libc/libm/Objective-C function we know
4049    // about.
4050  } else
4051    return;
4052
4053  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4054    // FIXME: NSLog and NSLogv should be target specific
4055    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4056      // FIXME: We known better than our headers.
4057      const_cast<FormatAttr *>(Format)->setType("printf");
4058    } else
4059      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4060                                             Name->isStr("NSLogv") ? 0 : 2));
4061  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4062    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4063    // target-specific builtins, perhaps?
4064    if (!FD->getAttr<FormatAttr>())
4065      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4066                                             Name->isStr("vasprintf") ? 0 : 3));
4067  }
4068}
4069
4070TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4071  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4072  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4073
4074  // Scope manipulation handled by caller.
4075  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4076                                           D.getIdentifierLoc(),
4077                                           D.getIdentifier(),
4078                                           T);
4079
4080  if (const TagType *TT = T->getAs<TagType>()) {
4081    TagDecl *TD = TT->getDecl();
4082
4083    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4084    // keep track of the TypedefDecl.
4085    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4086      TD->setTypedefForAnonDecl(NewTD);
4087  }
4088
4089  if (D.isInvalidType())
4090    NewTD->setInvalidDecl();
4091  return NewTD;
4092}
4093
4094
4095/// \brief Determine whether a tag with a given kind is acceptable
4096/// as a redeclaration of the given tag declaration.
4097///
4098/// \returns true if the new tag kind is acceptable, false otherwise.
4099bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4100                                        TagDecl::TagKind NewTag,
4101                                        SourceLocation NewTagLoc,
4102                                        const IdentifierInfo &Name) {
4103  // C++ [dcl.type.elab]p3:
4104  //   The class-key or enum keyword present in the
4105  //   elaborated-type-specifier shall agree in kind with the
4106  //   declaration to which the name in theelaborated-type-specifier
4107  //   refers. This rule also applies to the form of
4108  //   elaborated-type-specifier that declares a class-name or
4109  //   friend class since it can be construed as referring to the
4110  //   definition of the class. Thus, in any
4111  //   elaborated-type-specifier, the enum keyword shall be used to
4112  //   refer to an enumeration (7.2), the union class-keyshall be
4113  //   used to refer to a union (clause 9), and either the class or
4114  //   struct class-key shall be used to refer to a class (clause 9)
4115  //   declared using the class or struct class-key.
4116  TagDecl::TagKind OldTag = Previous->getTagKind();
4117  if (OldTag == NewTag)
4118    return true;
4119
4120  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4121      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4122    // Warn about the struct/class tag mismatch.
4123    bool isTemplate = false;
4124    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4125      isTemplate = Record->getDescribedClassTemplate();
4126
4127    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4128      << (NewTag == TagDecl::TK_class)
4129      << isTemplate << &Name
4130      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4131                              OldTag == TagDecl::TK_class? "class" : "struct");
4132    Diag(Previous->getLocation(), diag::note_previous_use);
4133    return true;
4134  }
4135  return false;
4136}
4137
4138/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4139/// former case, Name will be non-null.  In the later case, Name will be null.
4140/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4141/// reference/declaration/definition of a tag.
4142Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4143                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4144                               IdentifierInfo *Name, SourceLocation NameLoc,
4145                               AttributeList *Attr, AccessSpecifier AS,
4146                               MultiTemplateParamsArg TemplateParameterLists,
4147                               bool &OwnedDecl, bool &IsDependent) {
4148  // If this is not a definition, it must have a name.
4149  assert((Name != 0 || TUK == TUK_Definition) &&
4150         "Nameless record must be a definition!");
4151
4152  OwnedDecl = false;
4153  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4154
4155  // FIXME: Check explicit specializations more carefully.
4156  bool isExplicitSpecialization = false;
4157  if (TUK != TUK_Reference) {
4158    if (TemplateParameterList *TemplateParams
4159          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4160                        (TemplateParameterList**)TemplateParameterLists.get(),
4161                                              TemplateParameterLists.size(),
4162                                                    isExplicitSpecialization)) {
4163      if (TemplateParams->size() > 0) {
4164        // This is a declaration or definition of a class template (which may
4165        // be a member of another template).
4166        OwnedDecl = false;
4167        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4168                                               SS, Name, NameLoc, Attr,
4169                                               TemplateParams,
4170                                               AS);
4171        TemplateParameterLists.release();
4172        return Result.get();
4173      } else {
4174        // The "template<>" header is extraneous.
4175        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4176          << ElaboratedType::getNameForTagKind(Kind) << Name;
4177        isExplicitSpecialization = true;
4178      }
4179    }
4180
4181    TemplateParameterLists.release();
4182  }
4183
4184  DeclContext *SearchDC = CurContext;
4185  DeclContext *DC = CurContext;
4186  NamedDecl *PrevDecl = 0;
4187  bool isStdBadAlloc = false;
4188  bool Invalid = false;
4189
4190  if (Name && SS.isNotEmpty()) {
4191    // We have a nested-name tag ('struct foo::bar').
4192
4193    // Check for invalid 'foo::'.
4194    if (SS.isInvalid()) {
4195      Name = 0;
4196      goto CreateNewDecl;
4197    }
4198
4199    // If this is a friend or a reference to a class in a dependent
4200    // context, don't try to make a decl for it.
4201    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4202      DC = computeDeclContext(SS, false);
4203      if (!DC) {
4204        IsDependent = true;
4205        return DeclPtrTy();
4206      }
4207    }
4208
4209    if (RequireCompleteDeclContext(SS))
4210      return DeclPtrTy::make((Decl *)0);
4211
4212    DC = computeDeclContext(SS, true);
4213    SearchDC = DC;
4214    // Look-up name inside 'foo::'.
4215    PrevDecl
4216      = dyn_cast_or_null<TagDecl>(
4217               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4218
4219    // A tag 'foo::bar' must already exist.
4220    if (PrevDecl == 0) {
4221      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4222      Name = 0;
4223      Invalid = true;
4224      goto CreateNewDecl;
4225    }
4226  } else if (Name) {
4227    // If this is a named struct, check to see if there was a previous forward
4228    // declaration or definition.
4229    // FIXME: We're looking into outer scopes here, even when we
4230    // shouldn't be. Doing so can result in ambiguities that we
4231    // shouldn't be diagnosing.
4232    LookupResult R = LookupName(S, Name, LookupTagName,
4233                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4234    if (R.isAmbiguous()) {
4235      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4236      // FIXME: This is not best way to recover from case like:
4237      //
4238      // struct S s;
4239      //
4240      // causes needless "incomplete type" error later.
4241      Name = 0;
4242      PrevDecl = 0;
4243      Invalid = true;
4244    } else
4245      PrevDecl = R;
4246
4247    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4248      // FIXME: This makes sure that we ignore the contexts associated
4249      // with C structs, unions, and enums when looking for a matching
4250      // tag declaration or definition. See the similar lookup tweak
4251      // in Sema::LookupName; is there a better way to deal with this?
4252      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4253        SearchDC = SearchDC->getParent();
4254    }
4255  }
4256
4257  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4258    // Maybe we will complain about the shadowed template parameter.
4259    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4260    // Just pretend that we didn't see the previous declaration.
4261    PrevDecl = 0;
4262  }
4263
4264  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4265      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4266    // This is a declaration of or a reference to "std::bad_alloc".
4267    isStdBadAlloc = true;
4268
4269    if (!PrevDecl && StdBadAlloc) {
4270      // std::bad_alloc has been implicitly declared (but made invisible to
4271      // name lookup). Fill in this implicit declaration as the previous
4272      // declaration, so that the declarations get chained appropriately.
4273      PrevDecl = StdBadAlloc;
4274    }
4275  }
4276
4277  if (PrevDecl) {
4278    // Check whether the previous declaration is usable.
4279    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4280
4281    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4282      // If this is a use of a previous tag, or if the tag is already declared
4283      // in the same scope (so that the definition/declaration completes or
4284      // rementions the tag), reuse the decl.
4285      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4286          isDeclInScope(PrevDecl, SearchDC, S)) {
4287        // Make sure that this wasn't declared as an enum and now used as a
4288        // struct or something similar.
4289        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4290          bool SafeToContinue
4291            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4292               Kind != TagDecl::TK_enum);
4293          if (SafeToContinue)
4294            Diag(KWLoc, diag::err_use_with_wrong_tag)
4295              << Name
4296              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4297                                                  PrevTagDecl->getKindName());
4298          else
4299            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4300          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4301
4302          if (SafeToContinue)
4303            Kind = PrevTagDecl->getTagKind();
4304          else {
4305            // Recover by making this an anonymous redefinition.
4306            Name = 0;
4307            PrevDecl = 0;
4308            Invalid = true;
4309          }
4310        }
4311
4312        if (!Invalid) {
4313          // If this is a use, just return the declaration we found.
4314
4315          // FIXME: In the future, return a variant or some other clue
4316          // for the consumer of this Decl to know it doesn't own it.
4317          // For our current ASTs this shouldn't be a problem, but will
4318          // need to be changed with DeclGroups.
4319          if (TUK == TUK_Reference || TUK == TUK_Friend)
4320            return DeclPtrTy::make(PrevDecl);
4321
4322          // Diagnose attempts to redefine a tag.
4323          if (TUK == TUK_Definition) {
4324            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4325              Diag(NameLoc, diag::err_redefinition) << Name;
4326              Diag(Def->getLocation(), diag::note_previous_definition);
4327              // If this is a redefinition, recover by making this
4328              // struct be anonymous, which will make any later
4329              // references get the previous definition.
4330              Name = 0;
4331              PrevDecl = 0;
4332              Invalid = true;
4333            } else {
4334              // If the type is currently being defined, complain
4335              // about a nested redefinition.
4336              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4337              if (Tag->isBeingDefined()) {
4338                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4339                Diag(PrevTagDecl->getLocation(),
4340                     diag::note_previous_definition);
4341                Name = 0;
4342                PrevDecl = 0;
4343                Invalid = true;
4344              }
4345            }
4346
4347            // Okay, this is definition of a previously declared or referenced
4348            // tag PrevDecl. We're going to create a new Decl for it.
4349          }
4350        }
4351        // If we get here we have (another) forward declaration or we
4352        // have a definition.  Just create a new decl.
4353
4354      } else {
4355        // If we get here, this is a definition of a new tag type in a nested
4356        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4357        // new decl/type.  We set PrevDecl to NULL so that the entities
4358        // have distinct types.
4359        PrevDecl = 0;
4360      }
4361      // If we get here, we're going to create a new Decl. If PrevDecl
4362      // is non-NULL, it's a definition of the tag declared by
4363      // PrevDecl. If it's NULL, we have a new definition.
4364    } else {
4365      // PrevDecl is a namespace, template, or anything else
4366      // that lives in the IDNS_Tag identifier namespace.
4367      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4368        // The tag name clashes with a namespace name, issue an error and
4369        // recover by making this tag be anonymous.
4370        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4371        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4372        Name = 0;
4373        PrevDecl = 0;
4374        Invalid = true;
4375      } else {
4376        // The existing declaration isn't relevant to us; we're in a
4377        // new scope, so clear out the previous declaration.
4378        PrevDecl = 0;
4379      }
4380    }
4381  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4382             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4383    // C++ [basic.scope.pdecl]p5:
4384    //   -- for an elaborated-type-specifier of the form
4385    //
4386    //          class-key identifier
4387    //
4388    //      if the elaborated-type-specifier is used in the
4389    //      decl-specifier-seq or parameter-declaration-clause of a
4390    //      function defined in namespace scope, the identifier is
4391    //      declared as a class-name in the namespace that contains
4392    //      the declaration; otherwise, except as a friend
4393    //      declaration, the identifier is declared in the smallest
4394    //      non-class, non-function-prototype scope that contains the
4395    //      declaration.
4396    //
4397    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4398    // C structs and unions.
4399    //
4400    // GNU C also supports this behavior as part of its incomplete
4401    // enum types extension, while GNU C++ does not.
4402    //
4403    // Find the context where we'll be declaring the tag.
4404    // FIXME: We would like to maintain the current DeclContext as the
4405    // lexical context,
4406    while (SearchDC->isRecord())
4407      SearchDC = SearchDC->getParent();
4408
4409    // Find the scope where we'll be declaring the tag.
4410    while (S->isClassScope() ||
4411           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4412           ((S->getFlags() & Scope::DeclScope) == 0) ||
4413           (S->getEntity() &&
4414            ((DeclContext *)S->getEntity())->isTransparentContext()))
4415      S = S->getParent();
4416
4417  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4418    // C++ [namespace.memdef]p3:
4419    //   If a friend declaration in a non-local class first declares a
4420    //   class or function, the friend class or function is a member of
4421    //   the innermost enclosing namespace.
4422    while (!SearchDC->isFileContext())
4423      SearchDC = SearchDC->getParent();
4424
4425    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4426    while (S->getEntity() != SearchDC)
4427      S = S->getParent();
4428  }
4429
4430CreateNewDecl:
4431
4432  // If there is an identifier, use the location of the identifier as the
4433  // location of the decl, otherwise use the location of the struct/union
4434  // keyword.
4435  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4436
4437  // Otherwise, create a new declaration. If there is a previous
4438  // declaration of the same entity, the two will be linked via
4439  // PrevDecl.
4440  TagDecl *New;
4441
4442  if (Kind == TagDecl::TK_enum) {
4443    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4444    // enum X { A, B, C } D;    D should chain to X.
4445    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4446                           cast_or_null<EnumDecl>(PrevDecl));
4447    // If this is an undefined enum, warn.
4448    if (TUK != TUK_Definition && !Invalid)  {
4449      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4450                                              : diag::ext_forward_ref_enum;
4451      Diag(Loc, DK);
4452    }
4453  } else {
4454    // struct/union/class
4455
4456    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4457    // struct X { int A; } D;    D should chain to X.
4458    if (getLangOptions().CPlusPlus) {
4459      // FIXME: Look for a way to use RecordDecl for simple structs.
4460      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4461                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4462
4463      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4464        StdBadAlloc = cast<CXXRecordDecl>(New);
4465    } else
4466      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4467                               cast_or_null<RecordDecl>(PrevDecl));
4468  }
4469
4470  if (Kind != TagDecl::TK_enum) {
4471    // Handle #pragma pack: if the #pragma pack stack has non-default
4472    // alignment, make up a packed attribute for this decl. These
4473    // attributes are checked when the ASTContext lays out the
4474    // structure.
4475    //
4476    // It is important for implementing the correct semantics that this
4477    // happen here (in act on tag decl). The #pragma pack stack is
4478    // maintained as a result of parser callbacks which can occur at
4479    // many points during the parsing of a struct declaration (because
4480    // the #pragma tokens are effectively skipped over during the
4481    // parsing of the struct).
4482    if (unsigned Alignment = getPragmaPackAlignment())
4483      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4484  }
4485
4486  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4487    // C++ [dcl.typedef]p3:
4488    //   [...] Similarly, in a given scope, a class or enumeration
4489    //   shall not be declared with the same name as a typedef-name
4490    //   that is declared in that scope and refers to a type other
4491    //   than the class or enumeration itself.
4492    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4493    TypedefDecl *PrevTypedef = 0;
4494    if (Lookup.getKind() == LookupResult::Found)
4495      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4496
4497    NamedDecl *PrevTypedefNamed = PrevTypedef;
4498    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4499        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4500          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4501      Diag(Loc, diag::err_tag_definition_of_typedef)
4502        << Context.getTypeDeclType(New)
4503        << PrevTypedef->getUnderlyingType();
4504      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4505      Invalid = true;
4506    }
4507  }
4508
4509  // If this is a specialization of a member class (of a class template),
4510  // check the specialization.
4511  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4512    Invalid = true;
4513
4514  if (Invalid)
4515    New->setInvalidDecl();
4516
4517  if (Attr)
4518    ProcessDeclAttributeList(S, New, Attr);
4519
4520  // If we're declaring or defining a tag in function prototype scope
4521  // in C, note that this type can only be used within the function.
4522  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4523    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4524
4525  // Set the lexical context. If the tag has a C++ scope specifier, the
4526  // lexical context will be different from the semantic context.
4527  New->setLexicalDeclContext(CurContext);
4528
4529  // Mark this as a friend decl if applicable.
4530  if (TUK == TUK_Friend)
4531    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4532
4533  // Set the access specifier.
4534  if (!Invalid && TUK != TUK_Friend)
4535    SetMemberAccessSpecifier(New, PrevDecl, AS);
4536
4537  if (TUK == TUK_Definition)
4538    New->startDefinition();
4539
4540  // If this has an identifier, add it to the scope stack.
4541  if (TUK == TUK_Friend) {
4542    // We might be replacing an existing declaration in the lookup tables;
4543    // if so, borrow its access specifier.
4544    if (PrevDecl)
4545      New->setAccess(PrevDecl->getAccess());
4546
4547    // Friend tag decls are visible in fairly strange ways.
4548    if (!CurContext->isDependentContext()) {
4549      DeclContext *DC = New->getDeclContext()->getLookupContext();
4550      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4551      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4552        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4553    }
4554  } else if (Name) {
4555    S = getNonFieldDeclScope(S);
4556    PushOnScopeChains(New, S);
4557  } else {
4558    CurContext->addDecl(New);
4559  }
4560
4561  // If this is the C FILE type, notify the AST context.
4562  if (IdentifierInfo *II = New->getIdentifier())
4563    if (!New->isInvalidDecl() &&
4564        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4565        II->isStr("FILE"))
4566      Context.setFILEDecl(New);
4567
4568  OwnedDecl = true;
4569  return DeclPtrTy::make(New);
4570}
4571
4572void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4573  AdjustDeclIfTemplate(TagD);
4574  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4575
4576  // Enter the tag context.
4577  PushDeclContext(S, Tag);
4578
4579  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4580    FieldCollector->StartClass();
4581
4582    if (Record->getIdentifier()) {
4583      // C++ [class]p2:
4584      //   [...] The class-name is also inserted into the scope of the
4585      //   class itself; this is known as the injected-class-name. For
4586      //   purposes of access checking, the injected-class-name is treated
4587      //   as if it were a public member name.
4588      CXXRecordDecl *InjectedClassName
4589        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4590                                CurContext, Record->getLocation(),
4591                                Record->getIdentifier(),
4592                                Record->getTagKeywordLoc(),
4593                                Record);
4594      InjectedClassName->setImplicit();
4595      InjectedClassName->setAccess(AS_public);
4596      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4597        InjectedClassName->setDescribedClassTemplate(Template);
4598      PushOnScopeChains(InjectedClassName, S);
4599      assert(InjectedClassName->isInjectedClassName() &&
4600             "Broken injected-class-name");
4601    }
4602  }
4603}
4604
4605void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4606                                    SourceLocation RBraceLoc) {
4607  AdjustDeclIfTemplate(TagD);
4608  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4609  Tag->setRBraceLoc(RBraceLoc);
4610
4611  if (isa<CXXRecordDecl>(Tag))
4612    FieldCollector->FinishClass();
4613
4614  // Exit this scope of this tag's definition.
4615  PopDeclContext();
4616
4617  // Notify the consumer that we've defined a tag.
4618  Consumer.HandleTagDeclDefinition(Tag);
4619}
4620
4621// Note that FieldName may be null for anonymous bitfields.
4622bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4623                          QualType FieldTy, const Expr *BitWidth,
4624                          bool *ZeroWidth) {
4625  // Default to true; that shouldn't confuse checks for emptiness
4626  if (ZeroWidth)
4627    *ZeroWidth = true;
4628
4629  // C99 6.7.2.1p4 - verify the field type.
4630  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4631  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4632    // Handle incomplete types with specific error.
4633    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4634      return true;
4635    if (FieldName)
4636      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4637        << FieldName << FieldTy << BitWidth->getSourceRange();
4638    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4639      << FieldTy << BitWidth->getSourceRange();
4640  }
4641
4642  // If the bit-width is type- or value-dependent, don't try to check
4643  // it now.
4644  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4645    return false;
4646
4647  llvm::APSInt Value;
4648  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4649    return true;
4650
4651  if (Value != 0 && ZeroWidth)
4652    *ZeroWidth = false;
4653
4654  // Zero-width bitfield is ok for anonymous field.
4655  if (Value == 0 && FieldName)
4656    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4657
4658  if (Value.isSigned() && Value.isNegative()) {
4659    if (FieldName)
4660      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4661               << FieldName << Value.toString(10);
4662    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4663      << Value.toString(10);
4664  }
4665
4666  if (!FieldTy->isDependentType()) {
4667    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4668    if (Value.getZExtValue() > TypeSize) {
4669      if (FieldName)
4670        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4671          << FieldName << (unsigned)TypeSize;
4672      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4673        << (unsigned)TypeSize;
4674    }
4675  }
4676
4677  return false;
4678}
4679
4680/// ActOnField - Each field of a struct/union/class is passed into this in order
4681/// to create a FieldDecl object for it.
4682Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4683                                 SourceLocation DeclStart,
4684                                 Declarator &D, ExprTy *BitfieldWidth) {
4685  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4686                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4687                               AS_public);
4688  return DeclPtrTy::make(Res);
4689}
4690
4691/// HandleField - Analyze a field of a C struct or a C++ data member.
4692///
4693FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4694                             SourceLocation DeclStart,
4695                             Declarator &D, Expr *BitWidth,
4696                             AccessSpecifier AS) {
4697  IdentifierInfo *II = D.getIdentifier();
4698  SourceLocation Loc = DeclStart;
4699  if (II) Loc = D.getIdentifierLoc();
4700
4701  DeclaratorInfo *DInfo = 0;
4702  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4703  if (getLangOptions().CPlusPlus)
4704    CheckExtraCXXDefaultArguments(D);
4705
4706  DiagnoseFunctionSpecifiers(D);
4707
4708  if (D.getDeclSpec().isThreadSpecified())
4709    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4710
4711  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4712
4713  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4714    // Maybe we will complain about the shadowed template parameter.
4715    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4716    // Just pretend that we didn't see the previous declaration.
4717    PrevDecl = 0;
4718  }
4719
4720  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4721    PrevDecl = 0;
4722
4723  bool Mutable
4724    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4725  SourceLocation TSSL = D.getSourceRange().getBegin();
4726  FieldDecl *NewFD
4727    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4728                     AS, PrevDecl, &D);
4729  if (NewFD->isInvalidDecl() && PrevDecl) {
4730    // Don't introduce NewFD into scope; there's already something
4731    // with the same name in the same scope.
4732  } else if (II) {
4733    PushOnScopeChains(NewFD, S);
4734  } else
4735    Record->addDecl(NewFD);
4736
4737  return NewFD;
4738}
4739
4740/// \brief Build a new FieldDecl and check its well-formedness.
4741///
4742/// This routine builds a new FieldDecl given the fields name, type,
4743/// record, etc. \p PrevDecl should refer to any previous declaration
4744/// with the same name and in the same scope as the field to be
4745/// created.
4746///
4747/// \returns a new FieldDecl.
4748///
4749/// \todo The Declarator argument is a hack. It will be removed once
4750FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4751                                DeclaratorInfo *DInfo,
4752                                RecordDecl *Record, SourceLocation Loc,
4753                                bool Mutable, Expr *BitWidth,
4754                                SourceLocation TSSL,
4755                                AccessSpecifier AS, NamedDecl *PrevDecl,
4756                                Declarator *D) {
4757  IdentifierInfo *II = Name.getAsIdentifierInfo();
4758  bool InvalidDecl = false;
4759  if (D) InvalidDecl = D->isInvalidType();
4760
4761  // If we receive a broken type, recover by assuming 'int' and
4762  // marking this declaration as invalid.
4763  if (T.isNull()) {
4764    InvalidDecl = true;
4765    T = Context.IntTy;
4766  }
4767
4768  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4769  // than a variably modified type.
4770  if (T->isVariablyModifiedType()) {
4771    bool SizeIsNegative;
4772    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4773                                                           SizeIsNegative);
4774    if (!FixedTy.isNull()) {
4775      Diag(Loc, diag::warn_illegal_constant_array_size);
4776      T = FixedTy;
4777    } else {
4778      if (SizeIsNegative)
4779        Diag(Loc, diag::err_typecheck_negative_array_size);
4780      else
4781        Diag(Loc, diag::err_typecheck_field_variable_size);
4782      InvalidDecl = true;
4783    }
4784  }
4785
4786  // Fields can not have abstract class types
4787  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4788                             AbstractFieldType))
4789    InvalidDecl = true;
4790
4791  bool ZeroWidth = false;
4792  // If this is declared as a bit-field, check the bit-field.
4793  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4794    InvalidDecl = true;
4795    DeleteExpr(BitWidth);
4796    BitWidth = 0;
4797    ZeroWidth = false;
4798  }
4799
4800  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4801                                       BitWidth, Mutable);
4802  if (InvalidDecl)
4803    NewFD->setInvalidDecl();
4804
4805  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4806    Diag(Loc, diag::err_duplicate_member) << II;
4807    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4808    NewFD->setInvalidDecl();
4809  }
4810
4811  if (getLangOptions().CPlusPlus) {
4812    QualType EltTy = Context.getBaseElementType(T);
4813
4814    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4815
4816    if (!T->isPODType())
4817      CXXRecord->setPOD(false);
4818    if (!ZeroWidth)
4819      CXXRecord->setEmpty(false);
4820
4821    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4822      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4823
4824      if (!RDecl->hasTrivialConstructor())
4825        CXXRecord->setHasTrivialConstructor(false);
4826      if (!RDecl->hasTrivialCopyConstructor())
4827        CXXRecord->setHasTrivialCopyConstructor(false);
4828      if (!RDecl->hasTrivialCopyAssignment())
4829        CXXRecord->setHasTrivialCopyAssignment(false);
4830      if (!RDecl->hasTrivialDestructor())
4831        CXXRecord->setHasTrivialDestructor(false);
4832
4833      // C++ 9.5p1: An object of a class with a non-trivial
4834      // constructor, a non-trivial copy constructor, a non-trivial
4835      // destructor, or a non-trivial copy assignment operator
4836      // cannot be a member of a union, nor can an array of such
4837      // objects.
4838      // TODO: C++0x alters this restriction significantly.
4839      if (Record->isUnion()) {
4840        // We check for copy constructors before constructors
4841        // because otherwise we'll never get complaints about
4842        // copy constructors.
4843
4844        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4845
4846        CXXSpecialMember member;
4847        if (!RDecl->hasTrivialCopyConstructor())
4848          member = CXXCopyConstructor;
4849        else if (!RDecl->hasTrivialConstructor())
4850          member = CXXDefaultConstructor;
4851        else if (!RDecl->hasTrivialCopyAssignment())
4852          member = CXXCopyAssignment;
4853        else if (!RDecl->hasTrivialDestructor())
4854          member = CXXDestructor;
4855        else
4856          member = invalid;
4857
4858        if (member != invalid) {
4859          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4860          DiagnoseNontrivial(RT, member);
4861          NewFD->setInvalidDecl();
4862        }
4863      }
4864    }
4865  }
4866
4867  // FIXME: We need to pass in the attributes given an AST
4868  // representation, not a parser representation.
4869  if (D)
4870    // FIXME: What to pass instead of TUScope?
4871    ProcessDeclAttributes(TUScope, NewFD, *D);
4872
4873  if (T.isObjCGCWeak())
4874    Diag(Loc, diag::warn_attribute_weak_on_field);
4875
4876  NewFD->setAccess(AS);
4877
4878  // C++ [dcl.init.aggr]p1:
4879  //   An aggregate is an array or a class (clause 9) with [...] no
4880  //   private or protected non-static data members (clause 11).
4881  // A POD must be an aggregate.
4882  if (getLangOptions().CPlusPlus &&
4883      (AS == AS_private || AS == AS_protected)) {
4884    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4885    CXXRecord->setAggregate(false);
4886    CXXRecord->setPOD(false);
4887  }
4888
4889  return NewFD;
4890}
4891
4892/// DiagnoseNontrivial - Given that a class has a non-trivial
4893/// special member, figure out why.
4894void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4895  QualType QT(T, 0U);
4896  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4897
4898  // Check whether the member was user-declared.
4899  switch (member) {
4900  case CXXDefaultConstructor:
4901    if (RD->hasUserDeclaredConstructor()) {
4902      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4903      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4904        if (!ci->isImplicitlyDefined(Context)) {
4905          SourceLocation CtorLoc = ci->getLocation();
4906          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4907          return;
4908        }
4909
4910      assert(0 && "found no user-declared constructors");
4911      return;
4912    }
4913    break;
4914
4915  case CXXCopyConstructor:
4916    if (RD->hasUserDeclaredCopyConstructor()) {
4917      SourceLocation CtorLoc =
4918        RD->getCopyConstructor(Context, 0)->getLocation();
4919      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4920      return;
4921    }
4922    break;
4923
4924  case CXXCopyAssignment:
4925    if (RD->hasUserDeclaredCopyAssignment()) {
4926      // FIXME: this should use the location of the copy
4927      // assignment, not the type.
4928      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4929      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4930      return;
4931    }
4932    break;
4933
4934  case CXXDestructor:
4935    if (RD->hasUserDeclaredDestructor()) {
4936      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4937      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4938      return;
4939    }
4940    break;
4941  }
4942
4943  typedef CXXRecordDecl::base_class_iterator base_iter;
4944
4945  // Virtual bases and members inhibit trivial copying/construction,
4946  // but not trivial destruction.
4947  if (member != CXXDestructor) {
4948    // Check for virtual bases.  vbases includes indirect virtual bases,
4949    // so we just iterate through the direct bases.
4950    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4951      if (bi->isVirtual()) {
4952        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4953        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4954        return;
4955      }
4956
4957    // Check for virtual methods.
4958    typedef CXXRecordDecl::method_iterator meth_iter;
4959    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4960         ++mi) {
4961      if (mi->isVirtual()) {
4962        SourceLocation MLoc = mi->getSourceRange().getBegin();
4963        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4964        return;
4965      }
4966    }
4967  }
4968
4969  bool (CXXRecordDecl::*hasTrivial)() const;
4970  switch (member) {
4971  case CXXDefaultConstructor:
4972    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4973  case CXXCopyConstructor:
4974    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4975  case CXXCopyAssignment:
4976    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4977  case CXXDestructor:
4978    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4979  default:
4980    assert(0 && "unexpected special member"); return;
4981  }
4982
4983  // Check for nontrivial bases (and recurse).
4984  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4985    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4986    assert(BaseRT);
4987    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4988    if (!(BaseRecTy->*hasTrivial)()) {
4989      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4990      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4991      DiagnoseNontrivial(BaseRT, member);
4992      return;
4993    }
4994  }
4995
4996  // Check for nontrivial members (and recurse).
4997  typedef RecordDecl::field_iterator field_iter;
4998  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4999       ++fi) {
5000    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5001    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5002      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5003
5004      if (!(EltRD->*hasTrivial)()) {
5005        SourceLocation FLoc = (*fi)->getLocation();
5006        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5007        DiagnoseNontrivial(EltRT, member);
5008        return;
5009      }
5010    }
5011  }
5012
5013  assert(0 && "found no explanation for non-trivial member");
5014}
5015
5016/// TranslateIvarVisibility - Translate visibility from a token ID to an
5017///  AST enum value.
5018static ObjCIvarDecl::AccessControl
5019TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5020  switch (ivarVisibility) {
5021  default: assert(0 && "Unknown visitibility kind");
5022  case tok::objc_private: return ObjCIvarDecl::Private;
5023  case tok::objc_public: return ObjCIvarDecl::Public;
5024  case tok::objc_protected: return ObjCIvarDecl::Protected;
5025  case tok::objc_package: return ObjCIvarDecl::Package;
5026  }
5027}
5028
5029/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5030/// in order to create an IvarDecl object for it.
5031Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5032                                SourceLocation DeclStart,
5033                                DeclPtrTy IntfDecl,
5034                                Declarator &D, ExprTy *BitfieldWidth,
5035                                tok::ObjCKeywordKind Visibility) {
5036
5037  IdentifierInfo *II = D.getIdentifier();
5038  Expr *BitWidth = (Expr*)BitfieldWidth;
5039  SourceLocation Loc = DeclStart;
5040  if (II) Loc = D.getIdentifierLoc();
5041
5042  // FIXME: Unnamed fields can be handled in various different ways, for
5043  // example, unnamed unions inject all members into the struct namespace!
5044
5045  DeclaratorInfo *DInfo = 0;
5046  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5047
5048  if (BitWidth) {
5049    // 6.7.2.1p3, 6.7.2.1p4
5050    if (VerifyBitField(Loc, II, T, BitWidth)) {
5051      D.setInvalidType();
5052      DeleteExpr(BitWidth);
5053      BitWidth = 0;
5054    }
5055  } else {
5056    // Not a bitfield.
5057
5058    // validate II.
5059
5060  }
5061
5062  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5063  // than a variably modified type.
5064  if (T->isVariablyModifiedType()) {
5065    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5066    D.setInvalidType();
5067  }
5068
5069  // Get the visibility (access control) for this ivar.
5070  ObjCIvarDecl::AccessControl ac =
5071    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5072                                        : ObjCIvarDecl::None;
5073  // Must set ivar's DeclContext to its enclosing interface.
5074  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5075  DeclContext *EnclosingContext;
5076  if (ObjCImplementationDecl *IMPDecl =
5077      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5078    // Case of ivar declared in an implementation. Context is that of its class.
5079    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5080    assert(IDecl && "No class- ActOnIvar");
5081    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5082  } else
5083    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5084  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5085
5086  // Construct the decl.
5087  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5088                                             EnclosingContext, Loc, II, T,
5089                                             DInfo, ac, (Expr *)BitfieldWidth);
5090
5091  if (II) {
5092    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
5093    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5094        && !isa<TagDecl>(PrevDecl)) {
5095      Diag(Loc, diag::err_duplicate_member) << II;
5096      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5097      NewID->setInvalidDecl();
5098    }
5099  }
5100
5101  // Process attributes attached to the ivar.
5102  ProcessDeclAttributes(S, NewID, D);
5103
5104  if (D.isInvalidType())
5105    NewID->setInvalidDecl();
5106
5107  if (II) {
5108    // FIXME: When interfaces are DeclContexts, we'll need to add
5109    // these to the interface.
5110    S->AddDecl(DeclPtrTy::make(NewID));
5111    IdResolver.AddDecl(NewID);
5112  }
5113
5114  return DeclPtrTy::make(NewID);
5115}
5116
5117void Sema::ActOnFields(Scope* S,
5118                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5119                       DeclPtrTy *Fields, unsigned NumFields,
5120                       SourceLocation LBrac, SourceLocation RBrac,
5121                       AttributeList *Attr) {
5122  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5123  assert(EnclosingDecl && "missing record or interface decl");
5124
5125  // If the decl this is being inserted into is invalid, then it may be a
5126  // redeclaration or some other bogus case.  Don't try to add fields to it.
5127  if (EnclosingDecl->isInvalidDecl()) {
5128    // FIXME: Deallocate fields?
5129    return;
5130  }
5131
5132
5133  // Verify that all the fields are okay.
5134  unsigned NumNamedMembers = 0;
5135  llvm::SmallVector<FieldDecl*, 32> RecFields;
5136
5137  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5138  for (unsigned i = 0; i != NumFields; ++i) {
5139    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5140
5141    // Get the type for the field.
5142    Type *FDTy = FD->getType().getTypePtr();
5143
5144    if (!FD->isAnonymousStructOrUnion()) {
5145      // Remember all fields written by the user.
5146      RecFields.push_back(FD);
5147    }
5148
5149    // If the field is already invalid for some reason, don't emit more
5150    // diagnostics about it.
5151    if (FD->isInvalidDecl())
5152      continue;
5153
5154    // C99 6.7.2.1p2:
5155    //   A structure or union shall not contain a member with
5156    //   incomplete or function type (hence, a structure shall not
5157    //   contain an instance of itself, but may contain a pointer to
5158    //   an instance of itself), except that the last member of a
5159    //   structure with more than one named member may have incomplete
5160    //   array type; such a structure (and any union containing,
5161    //   possibly recursively, a member that is such a structure)
5162    //   shall not be a member of a structure or an element of an
5163    //   array.
5164    if (FDTy->isFunctionType()) {
5165      // Field declared as a function.
5166      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5167        << FD->getDeclName();
5168      FD->setInvalidDecl();
5169      EnclosingDecl->setInvalidDecl();
5170      continue;
5171    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5172               Record && Record->isStruct()) {
5173      // Flexible array member.
5174      if (NumNamedMembers < 1) {
5175        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5176          << FD->getDeclName();
5177        FD->setInvalidDecl();
5178        EnclosingDecl->setInvalidDecl();
5179        continue;
5180      }
5181      // Okay, we have a legal flexible array member at the end of the struct.
5182      if (Record)
5183        Record->setHasFlexibleArrayMember(true);
5184    } else if (!FDTy->isDependentType() &&
5185               RequireCompleteType(FD->getLocation(), FD->getType(),
5186                                   diag::err_field_incomplete)) {
5187      // Incomplete type
5188      FD->setInvalidDecl();
5189      EnclosingDecl->setInvalidDecl();
5190      continue;
5191    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5192      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5193        // If this is a member of a union, then entire union becomes "flexible".
5194        if (Record && Record->isUnion()) {
5195          Record->setHasFlexibleArrayMember(true);
5196        } else {
5197          // If this is a struct/class and this is not the last element, reject
5198          // it.  Note that GCC supports variable sized arrays in the middle of
5199          // structures.
5200          if (i != NumFields-1)
5201            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5202              << FD->getDeclName() << FD->getType();
5203          else {
5204            // We support flexible arrays at the end of structs in
5205            // other structs as an extension.
5206            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5207              << FD->getDeclName();
5208            if (Record)
5209              Record->setHasFlexibleArrayMember(true);
5210          }
5211        }
5212      }
5213      if (Record && FDTTy->getDecl()->hasObjectMember())
5214        Record->setHasObjectMember(true);
5215    } else if (FDTy->isObjCInterfaceType()) {
5216      /// A field cannot be an Objective-c object
5217      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5218      FD->setInvalidDecl();
5219      EnclosingDecl->setInvalidDecl();
5220      continue;
5221    } else if (getLangOptions().ObjC1 &&
5222               getLangOptions().getGCMode() != LangOptions::NonGC &&
5223               Record &&
5224               (FD->getType()->isObjCObjectPointerType() ||
5225                FD->getType().isObjCGCStrong()))
5226      Record->setHasObjectMember(true);
5227    // Keep track of the number of named members.
5228    if (FD->getIdentifier())
5229      ++NumNamedMembers;
5230  }
5231
5232  // Okay, we successfully defined 'Record'.
5233  if (Record) {
5234    Record->completeDefinition(Context);
5235  } else {
5236    ObjCIvarDecl **ClsFields =
5237      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5238    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5239      ID->setIVarList(ClsFields, RecFields.size(), Context);
5240      ID->setLocEnd(RBrac);
5241      // Add ivar's to class's DeclContext.
5242      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5243        ClsFields[i]->setLexicalDeclContext(ID);
5244        ID->addDecl(ClsFields[i]);
5245      }
5246      // Must enforce the rule that ivars in the base classes may not be
5247      // duplicates.
5248      if (ID->getSuperClass()) {
5249        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5250             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5251          ObjCIvarDecl* Ivar = (*IVI);
5252
5253          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5254            ObjCIvarDecl* prevIvar =
5255              ID->getSuperClass()->lookupInstanceVariable(II);
5256            if (prevIvar) {
5257              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5258              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5259            }
5260          }
5261        }
5262      }
5263    } else if (ObjCImplementationDecl *IMPDecl =
5264                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5265      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5266      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5267        // Ivar declared in @implementation never belongs to the implementation.
5268        // Only it is in implementation's lexical context.
5269        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5270      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5271    }
5272  }
5273
5274  if (Attr)
5275    ProcessDeclAttributeList(S, Record, Attr);
5276}
5277
5278EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5279                                          EnumConstantDecl *LastEnumConst,
5280                                          SourceLocation IdLoc,
5281                                          IdentifierInfo *Id,
5282                                          ExprArg val) {
5283  Expr *Val = (Expr *)val.get();
5284
5285  llvm::APSInt EnumVal(32);
5286  QualType EltTy;
5287  if (Val && !Val->isTypeDependent()) {
5288    // Make sure to promote the operand type to int.
5289    UsualUnaryConversions(Val);
5290    if (Val != val.get()) {
5291      val.release();
5292      val = Val;
5293    }
5294
5295    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5296    SourceLocation ExpLoc;
5297    if (!Val->isValueDependent() &&
5298        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5299      Val = 0;
5300    } else {
5301      EltTy = Val->getType();
5302    }
5303  }
5304
5305  if (!Val) {
5306    if (LastEnumConst) {
5307      // Assign the last value + 1.
5308      EnumVal = LastEnumConst->getInitVal();
5309      ++EnumVal;
5310
5311      // Check for overflow on increment.
5312      if (EnumVal < LastEnumConst->getInitVal())
5313        Diag(IdLoc, diag::warn_enum_value_overflow);
5314
5315      EltTy = LastEnumConst->getType();
5316    } else {
5317      // First value, set to zero.
5318      EltTy = Context.IntTy;
5319      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5320    }
5321  }
5322
5323  val.release();
5324  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5325                                  Val, EnumVal);
5326}
5327
5328
5329Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5330                                        DeclPtrTy lastEnumConst,
5331                                        SourceLocation IdLoc,
5332                                        IdentifierInfo *Id,
5333                                        SourceLocation EqualLoc, ExprTy *val) {
5334  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5335  EnumConstantDecl *LastEnumConst =
5336    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5337  Expr *Val = static_cast<Expr*>(val);
5338
5339  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5340  // we find one that is.
5341  S = getNonFieldDeclScope(S);
5342
5343  // Verify that there isn't already something declared with this name in this
5344  // scope.
5345  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5346  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5347    // Maybe we will complain about the shadowed template parameter.
5348    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5349    // Just pretend that we didn't see the previous declaration.
5350    PrevDecl = 0;
5351  }
5352
5353  if (PrevDecl) {
5354    // When in C++, we may get a TagDecl with the same name; in this case the
5355    // enum constant will 'hide' the tag.
5356    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5357           "Received TagDecl when not in C++!");
5358    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5359      if (isa<EnumConstantDecl>(PrevDecl))
5360        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5361      else
5362        Diag(IdLoc, diag::err_redefinition) << Id;
5363      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5364      if (Val) Val->Destroy(Context);
5365      return DeclPtrTy();
5366    }
5367  }
5368
5369  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5370                                            IdLoc, Id, Owned(Val));
5371
5372  // Register this decl in the current scope stack.
5373  if (New)
5374    PushOnScopeChains(New, S);
5375
5376  return DeclPtrTy::make(New);
5377}
5378
5379void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5380                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5381                         DeclPtrTy *Elements, unsigned NumElements,
5382                         Scope *S, AttributeList *Attr) {
5383  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5384  QualType EnumType = Context.getTypeDeclType(Enum);
5385
5386  if (Attr)
5387    ProcessDeclAttributeList(S, Enum, Attr);
5388
5389  // TODO: If the result value doesn't fit in an int, it must be a long or long
5390  // long value.  ISO C does not support this, but GCC does as an extension,
5391  // emit a warning.
5392  unsigned IntWidth = Context.Target.getIntWidth();
5393  unsigned CharWidth = Context.Target.getCharWidth();
5394  unsigned ShortWidth = Context.Target.getShortWidth();
5395
5396  // Verify that all the values are okay, compute the size of the values, and
5397  // reverse the list.
5398  unsigned NumNegativeBits = 0;
5399  unsigned NumPositiveBits = 0;
5400
5401  // Keep track of whether all elements have type int.
5402  bool AllElementsInt = true;
5403
5404  for (unsigned i = 0; i != NumElements; ++i) {
5405    EnumConstantDecl *ECD =
5406      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5407    if (!ECD) continue;  // Already issued a diagnostic.
5408
5409    // If the enum value doesn't fit in an int, emit an extension warning.
5410    const llvm::APSInt &InitVal = ECD->getInitVal();
5411    assert(InitVal.getBitWidth() >= IntWidth &&
5412           "Should have promoted value to int");
5413    if (InitVal.getBitWidth() > IntWidth) {
5414      llvm::APSInt V(InitVal);
5415      V.trunc(IntWidth);
5416      V.extend(InitVal.getBitWidth());
5417      if (V != InitVal)
5418        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5419          << InitVal.toString(10);
5420    }
5421
5422    // Keep track of the size of positive and negative values.
5423    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5424      NumPositiveBits = std::max(NumPositiveBits,
5425                                 (unsigned)InitVal.getActiveBits());
5426    else
5427      NumNegativeBits = std::max(NumNegativeBits,
5428                                 (unsigned)InitVal.getMinSignedBits());
5429
5430    // Keep track of whether every enum element has type int (very commmon).
5431    if (AllElementsInt)
5432      AllElementsInt = ECD->getType() == Context.IntTy;
5433  }
5434
5435  // Figure out the type that should be used for this enum.
5436  // FIXME: Support -fshort-enums.
5437  QualType BestType;
5438  unsigned BestWidth;
5439
5440  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5441
5442  if (NumNegativeBits) {
5443    // If there is a negative value, figure out the smallest integer type (of
5444    // int/long/longlong) that fits.
5445    // If it's packed, check also if it fits a char or a short.
5446    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5447        BestType = Context.SignedCharTy;
5448        BestWidth = CharWidth;
5449    } else if (Packed && NumNegativeBits <= ShortWidth &&
5450               NumPositiveBits < ShortWidth) {
5451        BestType = Context.ShortTy;
5452        BestWidth = ShortWidth;
5453    }
5454    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5455      BestType = Context.IntTy;
5456      BestWidth = IntWidth;
5457    } else {
5458      BestWidth = Context.Target.getLongWidth();
5459
5460      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5461        BestType = Context.LongTy;
5462      else {
5463        BestWidth = Context.Target.getLongLongWidth();
5464
5465        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5466          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5467        BestType = Context.LongLongTy;
5468      }
5469    }
5470  } else {
5471    // If there is no negative value, figure out which of uint, ulong, ulonglong
5472    // fits.
5473    // If it's packed, check also if it fits a char or a short.
5474    if (Packed && NumPositiveBits <= CharWidth) {
5475        BestType = Context.UnsignedCharTy;
5476        BestWidth = CharWidth;
5477    } else if (Packed && NumPositiveBits <= ShortWidth) {
5478        BestType = Context.UnsignedShortTy;
5479        BestWidth = ShortWidth;
5480    }
5481    else if (NumPositiveBits <= IntWidth) {
5482      BestType = Context.UnsignedIntTy;
5483      BestWidth = IntWidth;
5484    } else if (NumPositiveBits <=
5485               (BestWidth = Context.Target.getLongWidth())) {
5486      BestType = Context.UnsignedLongTy;
5487    } else {
5488      BestWidth = Context.Target.getLongLongWidth();
5489      assert(NumPositiveBits <= BestWidth &&
5490             "How could an initializer get larger than ULL?");
5491      BestType = Context.UnsignedLongLongTy;
5492    }
5493  }
5494
5495  // Loop over all of the enumerator constants, changing their types to match
5496  // the type of the enum if needed.
5497  for (unsigned i = 0; i != NumElements; ++i) {
5498    EnumConstantDecl *ECD =
5499      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5500    if (!ECD) continue;  // Already issued a diagnostic.
5501
5502    // Standard C says the enumerators have int type, but we allow, as an
5503    // extension, the enumerators to be larger than int size.  If each
5504    // enumerator value fits in an int, type it as an int, otherwise type it the
5505    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5506    // that X has type 'int', not 'unsigned'.
5507    if (ECD->getType() == Context.IntTy) {
5508      // Make sure the init value is signed.
5509      llvm::APSInt IV = ECD->getInitVal();
5510      IV.setIsSigned(true);
5511      ECD->setInitVal(IV);
5512
5513      if (getLangOptions().CPlusPlus)
5514        // C++ [dcl.enum]p4: Following the closing brace of an
5515        // enum-specifier, each enumerator has the type of its
5516        // enumeration.
5517        ECD->setType(EnumType);
5518      continue;  // Already int type.
5519    }
5520
5521    // Determine whether the value fits into an int.
5522    llvm::APSInt InitVal = ECD->getInitVal();
5523    bool FitsInInt;
5524    if (InitVal.isUnsigned() || !InitVal.isNegative())
5525      FitsInInt = InitVal.getActiveBits() < IntWidth;
5526    else
5527      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5528
5529    // If it fits into an integer type, force it.  Otherwise force it to match
5530    // the enum decl type.
5531    QualType NewTy;
5532    unsigned NewWidth;
5533    bool NewSign;
5534    if (FitsInInt) {
5535      NewTy = Context.IntTy;
5536      NewWidth = IntWidth;
5537      NewSign = true;
5538    } else if (ECD->getType() == BestType) {
5539      // Already the right type!
5540      if (getLangOptions().CPlusPlus)
5541        // C++ [dcl.enum]p4: Following the closing brace of an
5542        // enum-specifier, each enumerator has the type of its
5543        // enumeration.
5544        ECD->setType(EnumType);
5545      continue;
5546    } else {
5547      NewTy = BestType;
5548      NewWidth = BestWidth;
5549      NewSign = BestType->isSignedIntegerType();
5550    }
5551
5552    // Adjust the APSInt value.
5553    InitVal.extOrTrunc(NewWidth);
5554    InitVal.setIsSigned(NewSign);
5555    ECD->setInitVal(InitVal);
5556
5557    // Adjust the Expr initializer and type.
5558    if (ECD->getInitExpr())
5559      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5560                                                      CastExpr::CK_Unknown,
5561                                                      ECD->getInitExpr(),
5562                                                      /*isLvalue=*/false));
5563    if (getLangOptions().CPlusPlus)
5564      // C++ [dcl.enum]p4: Following the closing brace of an
5565      // enum-specifier, each enumerator has the type of its
5566      // enumeration.
5567      ECD->setType(EnumType);
5568    else
5569      ECD->setType(NewTy);
5570  }
5571
5572  Enum->completeDefinition(Context, BestType);
5573}
5574
5575Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5576                                            ExprArg expr) {
5577  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5578
5579  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5580                                                   Loc, AsmString);
5581  CurContext->addDecl(New);
5582  return DeclPtrTy::make(New);
5583}
5584
5585void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5586                             SourceLocation PragmaLoc,
5587                             SourceLocation NameLoc) {
5588  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5589
5590  if (PrevDecl) {
5591    PrevDecl->addAttr(::new (Context) WeakAttr());
5592  } else {
5593    (void)WeakUndeclaredIdentifiers.insert(
5594      std::pair<IdentifierInfo*,WeakInfo>
5595        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5596  }
5597}
5598
5599void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5600                                IdentifierInfo* AliasName,
5601                                SourceLocation PragmaLoc,
5602                                SourceLocation NameLoc,
5603                                SourceLocation AliasNameLoc) {
5604  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5605  WeakInfo W = WeakInfo(Name, NameLoc);
5606
5607  if (PrevDecl) {
5608    if (!PrevDecl->hasAttr<AliasAttr>())
5609      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5610        DeclApplyPragmaWeak(TUScope, ND, W);
5611  } else {
5612    (void)WeakUndeclaredIdentifiers.insert(
5613      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5614  }
5615}
5616