SemaDecl.cpp revision baf86955a9a390f2643a1ea9806832eb4a92f716
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = cast<FunctionType>(OldQType);
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  bool RequiresAdjustment = false;
1148  if (OldTypeInfo.getCC() != CC_Default &&
1149      NewTypeInfo.getCC() == CC_Default) {
1150    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1151    RequiresAdjustment = true;
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1166    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1167    RequiresAdjustment = true;
1168  }
1169
1170  // Merge regparm attribute.
1171  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1172    if (NewTypeInfo.getRegParm()) {
1173      Diag(New->getLocation(), diag::err_regparm_mismatch)
1174        << NewType->getRegParmType()
1175        << OldType->getRegParmType();
1176      Diag(Old->getLocation(), diag::note_previous_declaration);
1177      return true;
1178    }
1179
1180    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1181    RequiresAdjustment = true;
1182  }
1183
1184  if (RequiresAdjustment) {
1185    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1186    New->setType(QualType(NewType, 0));
1187    NewQType = Context.getCanonicalType(New->getType());
1188  }
1189
1190  if (getLangOptions().CPlusPlus) {
1191    // (C++98 13.1p2):
1192    //   Certain function declarations cannot be overloaded:
1193    //     -- Function declarations that differ only in the return type
1194    //        cannot be overloaded.
1195    QualType OldReturnType = OldType->getResultType();
1196    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1197    QualType ResQT;
1198    if (OldReturnType != NewReturnType) {
1199      if (NewReturnType->isObjCObjectPointerType()
1200          && OldReturnType->isObjCObjectPointerType())
1201        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1202      if (ResQT.isNull()) {
1203        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1204        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1205        return true;
1206      }
1207      else
1208        NewQType = ResQT;
1209    }
1210
1211    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1212    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1213    if (OldMethod && NewMethod) {
1214      // Preserve triviality.
1215      NewMethod->setTrivial(OldMethod->isTrivial());
1216
1217      bool isFriend = NewMethod->getFriendObjectKind();
1218
1219      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1220        //    -- Member function declarations with the same name and the
1221        //       same parameter types cannot be overloaded if any of them
1222        //       is a static member function declaration.
1223        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1224          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1225          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1226          return true;
1227        }
1228
1229        // C++ [class.mem]p1:
1230        //   [...] A member shall not be declared twice in the
1231        //   member-specification, except that a nested class or member
1232        //   class template can be declared and then later defined.
1233        unsigned NewDiag;
1234        if (isa<CXXConstructorDecl>(OldMethod))
1235          NewDiag = diag::err_constructor_redeclared;
1236        else if (isa<CXXDestructorDecl>(NewMethod))
1237          NewDiag = diag::err_destructor_redeclared;
1238        else if (isa<CXXConversionDecl>(NewMethod))
1239          NewDiag = diag::err_conv_function_redeclared;
1240        else
1241          NewDiag = diag::err_member_redeclared;
1242
1243        Diag(New->getLocation(), NewDiag);
1244        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1245
1246      // Complain if this is an explicit declaration of a special
1247      // member that was initially declared implicitly.
1248      //
1249      // As an exception, it's okay to befriend such methods in order
1250      // to permit the implicit constructor/destructor/operator calls.
1251      } else if (OldMethod->isImplicit()) {
1252        if (isFriend) {
1253          NewMethod->setImplicit();
1254        } else {
1255          Diag(NewMethod->getLocation(),
1256               diag::err_definition_of_implicitly_declared_member)
1257            << New << getSpecialMember(OldMethod);
1258          return true;
1259        }
1260      }
1261    }
1262
1263    // (C++98 8.3.5p3):
1264    //   All declarations for a function shall agree exactly in both the
1265    //   return type and the parameter-type-list.
1266    // We also want to respect all the extended bits except noreturn.
1267
1268    // noreturn should now match unless the old type info didn't have it.
1269    QualType OldQTypeForComparison = OldQType;
1270    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1271      assert(OldQType == QualType(OldType, 0));
1272      const FunctionType *OldTypeForComparison
1273        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1274      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1275      assert(OldQTypeForComparison.isCanonical());
1276    }
1277
1278    if (OldQTypeForComparison == NewQType)
1279      return MergeCompatibleFunctionDecls(New, Old);
1280
1281    // Fall through for conflicting redeclarations and redefinitions.
1282  }
1283
1284  // C: Function types need to be compatible, not identical. This handles
1285  // duplicate function decls like "void f(int); void f(enum X);" properly.
1286  if (!getLangOptions().CPlusPlus &&
1287      Context.typesAreCompatible(OldQType, NewQType)) {
1288    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1289    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1290    const FunctionProtoType *OldProto = 0;
1291    if (isa<FunctionNoProtoType>(NewFuncType) &&
1292        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1293      // The old declaration provided a function prototype, but the
1294      // new declaration does not. Merge in the prototype.
1295      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1296      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1297                                                 OldProto->arg_type_end());
1298      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1299                                         ParamTypes.data(), ParamTypes.size(),
1300                                         OldProto->getExtProtoInfo());
1301      New->setType(NewQType);
1302      New->setHasInheritedPrototype();
1303
1304      // Synthesize a parameter for each argument type.
1305      llvm::SmallVector<ParmVarDecl*, 16> Params;
1306      for (FunctionProtoType::arg_type_iterator
1307             ParamType = OldProto->arg_type_begin(),
1308             ParamEnd = OldProto->arg_type_end();
1309           ParamType != ParamEnd; ++ParamType) {
1310        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1311                                                 SourceLocation(), 0,
1312                                                 *ParamType, /*TInfo=*/0,
1313                                                 SC_None, SC_None,
1314                                                 0);
1315        Param->setImplicit();
1316        Params.push_back(Param);
1317      }
1318
1319      New->setParams(Params.data(), Params.size());
1320    }
1321
1322    return MergeCompatibleFunctionDecls(New, Old);
1323  }
1324
1325  // GNU C permits a K&R definition to follow a prototype declaration
1326  // if the declared types of the parameters in the K&R definition
1327  // match the types in the prototype declaration, even when the
1328  // promoted types of the parameters from the K&R definition differ
1329  // from the types in the prototype. GCC then keeps the types from
1330  // the prototype.
1331  //
1332  // If a variadic prototype is followed by a non-variadic K&R definition,
1333  // the K&R definition becomes variadic.  This is sort of an edge case, but
1334  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1335  // C99 6.9.1p8.
1336  if (!getLangOptions().CPlusPlus &&
1337      Old->hasPrototype() && !New->hasPrototype() &&
1338      New->getType()->getAs<FunctionProtoType>() &&
1339      Old->getNumParams() == New->getNumParams()) {
1340    llvm::SmallVector<QualType, 16> ArgTypes;
1341    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1342    const FunctionProtoType *OldProto
1343      = Old->getType()->getAs<FunctionProtoType>();
1344    const FunctionProtoType *NewProto
1345      = New->getType()->getAs<FunctionProtoType>();
1346
1347    // Determine whether this is the GNU C extension.
1348    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1349                                               NewProto->getResultType());
1350    bool LooseCompatible = !MergedReturn.isNull();
1351    for (unsigned Idx = 0, End = Old->getNumParams();
1352         LooseCompatible && Idx != End; ++Idx) {
1353      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1354      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1355      if (Context.typesAreCompatible(OldParm->getType(),
1356                                     NewProto->getArgType(Idx))) {
1357        ArgTypes.push_back(NewParm->getType());
1358      } else if (Context.typesAreCompatible(OldParm->getType(),
1359                                            NewParm->getType(),
1360                                            /*CompareUnqualified=*/true)) {
1361        GNUCompatibleParamWarning Warn
1362          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1363        Warnings.push_back(Warn);
1364        ArgTypes.push_back(NewParm->getType());
1365      } else
1366        LooseCompatible = false;
1367    }
1368
1369    if (LooseCompatible) {
1370      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1371        Diag(Warnings[Warn].NewParm->getLocation(),
1372             diag::ext_param_promoted_not_compatible_with_prototype)
1373          << Warnings[Warn].PromotedType
1374          << Warnings[Warn].OldParm->getType();
1375        if (Warnings[Warn].OldParm->getLocation().isValid())
1376          Diag(Warnings[Warn].OldParm->getLocation(),
1377               diag::note_previous_declaration);
1378      }
1379
1380      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1381                                           ArgTypes.size(),
1382                                           OldProto->getExtProtoInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  // C++ [class.mem]p1:
1472  //   A member shall not be declared twice in the member-specification [...]
1473  //
1474  // Here, we need only consider static data members.
1475  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1476    Diag(New->getLocation(), diag::err_duplicate_member)
1477      << New->getIdentifier();
1478    Diag(Old->getLocation(), diag::note_previous_declaration);
1479    New->setInvalidDecl();
1480  }
1481
1482  MergeDeclAttributes(New, Old, Context);
1483
1484  // Merge the types
1485  QualType MergedT;
1486  if (getLangOptions().CPlusPlus) {
1487    if (Context.hasSameType(New->getType(), Old->getType()))
1488      MergedT = New->getType();
1489    // C++ [basic.link]p10:
1490    //   [...] the types specified by all declarations referring to a given
1491    //   object or function shall be identical, except that declarations for an
1492    //   array object can specify array types that differ by the presence or
1493    //   absence of a major array bound (8.3.4).
1494    else if (Old->getType()->isIncompleteArrayType() &&
1495             New->getType()->isArrayType()) {
1496      CanQual<ArrayType> OldArray
1497        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1498      CanQual<ArrayType> NewArray
1499        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1500      if (OldArray->getElementType() == NewArray->getElementType())
1501        MergedT = New->getType();
1502    } else if (Old->getType()->isArrayType() &&
1503             New->getType()->isIncompleteArrayType()) {
1504      CanQual<ArrayType> OldArray
1505        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1506      CanQual<ArrayType> NewArray
1507        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1508      if (OldArray->getElementType() == NewArray->getElementType())
1509        MergedT = Old->getType();
1510    } else if (New->getType()->isObjCObjectPointerType()
1511               && Old->getType()->isObjCObjectPointerType()) {
1512        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1513    }
1514  } else {
1515    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1516  }
1517  if (MergedT.isNull()) {
1518    Diag(New->getLocation(), diag::err_redefinition_different_type)
1519      << New->getDeclName();
1520    Diag(Old->getLocation(), diag::note_previous_definition);
1521    return New->setInvalidDecl();
1522  }
1523  New->setType(MergedT);
1524
1525  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1526  if (New->getStorageClass() == SC_Static &&
1527      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1528    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1529    Diag(Old->getLocation(), diag::note_previous_definition);
1530    return New->setInvalidDecl();
1531  }
1532  // C99 6.2.2p4:
1533  //   For an identifier declared with the storage-class specifier
1534  //   extern in a scope in which a prior declaration of that
1535  //   identifier is visible,23) if the prior declaration specifies
1536  //   internal or external linkage, the linkage of the identifier at
1537  //   the later declaration is the same as the linkage specified at
1538  //   the prior declaration. If no prior declaration is visible, or
1539  //   if the prior declaration specifies no linkage, then the
1540  //   identifier has external linkage.
1541  if (New->hasExternalStorage() && Old->hasLinkage())
1542    /* Okay */;
1543  else if (New->getStorageClass() != SC_Static &&
1544           Old->getStorageClass() == SC_Static) {
1545    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1546    Diag(Old->getLocation(), diag::note_previous_definition);
1547    return New->setInvalidDecl();
1548  }
1549
1550  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1551
1552  // FIXME: The test for external storage here seems wrong? We still
1553  // need to check for mismatches.
1554  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1555      // Don't complain about out-of-line definitions of static members.
1556      !(Old->getLexicalDeclContext()->isRecord() &&
1557        !New->getLexicalDeclContext()->isRecord())) {
1558    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1559    Diag(Old->getLocation(), diag::note_previous_definition);
1560    return New->setInvalidDecl();
1561  }
1562
1563  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1564    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1565    Diag(Old->getLocation(), diag::note_previous_definition);
1566  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  }
1570
1571  // C++ doesn't have tentative definitions, so go right ahead and check here.
1572  const VarDecl *Def;
1573  if (getLangOptions().CPlusPlus &&
1574      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1575      (Def = Old->getDefinition())) {
1576    Diag(New->getLocation(), diag::err_redefinition)
1577      << New->getDeclName();
1578    Diag(Def->getLocation(), diag::note_previous_definition);
1579    New->setInvalidDecl();
1580    return;
1581  }
1582  // c99 6.2.2 P4.
1583  // For an identifier declared with the storage-class specifier extern in a
1584  // scope in which a prior declaration of that identifier is visible, if
1585  // the prior declaration specifies internal or external linkage, the linkage
1586  // of the identifier at the later declaration is the same as the linkage
1587  // specified at the prior declaration.
1588  // FIXME. revisit this code.
1589  if (New->hasExternalStorage() &&
1590      Old->getLinkage() == InternalLinkage &&
1591      New->getDeclContext() == Old->getDeclContext())
1592    New->setStorageClass(Old->getStorageClass());
1593
1594  // Keep a chain of previous declarations.
1595  New->setPreviousDeclaration(Old);
1596
1597  // Inherit access appropriately.
1598  New->setAccess(Old->getAccess());
1599}
1600
1601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1602/// no declarator (e.g. "struct foo;") is parsed.
1603Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1604                                            DeclSpec &DS) {
1605  // FIXME: Error on inline/virtual/explicit
1606  // FIXME: Warn on useless __thread
1607  // FIXME: Warn on useless const/volatile
1608  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1609  // FIXME: Warn on useless attributes
1610  Decl *TagD = 0;
1611  TagDecl *Tag = 0;
1612  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1613      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1614      DS.getTypeSpecType() == DeclSpec::TST_union ||
1615      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1616    TagD = DS.getRepAsDecl();
1617
1618    if (!TagD) // We probably had an error
1619      return 0;
1620
1621    // Note that the above type specs guarantee that the
1622    // type rep is a Decl, whereas in many of the others
1623    // it's a Type.
1624    Tag = dyn_cast<TagDecl>(TagD);
1625  }
1626
1627  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1628    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1629    // or incomplete types shall not be restrict-qualified."
1630    if (TypeQuals & DeclSpec::TQ_restrict)
1631      Diag(DS.getRestrictSpecLoc(),
1632           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1633           << DS.getSourceRange();
1634  }
1635
1636  if (DS.isFriendSpecified()) {
1637    // If we're dealing with a decl but not a TagDecl, assume that
1638    // whatever routines created it handled the friendship aspect.
1639    if (TagD && !Tag)
1640      return 0;
1641    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1642  }
1643
1644  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1645    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1646
1647    if (!Record->getDeclName() && Record->isDefinition() &&
1648        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1649      if (getLangOptions().CPlusPlus ||
1650          Record->getDeclContext()->isRecord())
1651        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1652
1653      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1654        << DS.getSourceRange();
1655    }
1656  }
1657
1658  // Check for Microsoft C extension: anonymous struct.
1659  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1660      CurContext->isRecord() &&
1661      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1662    // Handle 2 kinds of anonymous struct:
1663    //   struct STRUCT;
1664    // and
1665    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1666    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1667    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1668        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1669         DS.getRepAsType().get()->isStructureType())) {
1670      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1671        << DS.getSourceRange();
1672      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1673    }
1674  }
1675
1676  if (getLangOptions().CPlusPlus &&
1677      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1678    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1679      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1680          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1681        Diag(Enum->getLocation(), diag::ext_no_declarators)
1682          << DS.getSourceRange();
1683
1684  if (!DS.isMissingDeclaratorOk() &&
1685      DS.getTypeSpecType() != DeclSpec::TST_error) {
1686    // Warn about typedefs of enums without names, since this is an
1687    // extension in both Microsoft and GNU.
1688    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1689        Tag && isa<EnumDecl>(Tag)) {
1690      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1691        << DS.getSourceRange();
1692      return Tag;
1693    }
1694
1695    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1696      << DS.getSourceRange();
1697  }
1698
1699  return TagD;
1700}
1701
1702/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1703/// builds a statement for it and returns it so it is evaluated.
1704StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1705  StmtResult R;
1706  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1707    Expr *Exp = DS.getRepAsExpr();
1708    QualType Ty = Exp->getType();
1709    if (Ty->isPointerType()) {
1710      do
1711        Ty = Ty->getAs<PointerType>()->getPointeeType();
1712      while (Ty->isPointerType());
1713    }
1714    if (Ty->isVariableArrayType()) {
1715      R = ActOnExprStmt(MakeFullExpr(Exp));
1716    }
1717  }
1718  return R;
1719}
1720
1721/// We are trying to inject an anonymous member into the given scope;
1722/// check if there's an existing declaration that can't be overloaded.
1723///
1724/// \return true if this is a forbidden redeclaration
1725static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1726                                         Scope *S,
1727                                         DeclContext *Owner,
1728                                         DeclarationName Name,
1729                                         SourceLocation NameLoc,
1730                                         unsigned diagnostic) {
1731  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1732                 Sema::ForRedeclaration);
1733  if (!SemaRef.LookupName(R, S)) return false;
1734
1735  if (R.getAsSingle<TagDecl>())
1736    return false;
1737
1738  // Pick a representative declaration.
1739  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1740  assert(PrevDecl && "Expected a non-null Decl");
1741
1742  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1743    return false;
1744
1745  SemaRef.Diag(NameLoc, diagnostic) << Name;
1746  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1747
1748  return true;
1749}
1750
1751/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1752/// anonymous struct or union AnonRecord into the owning context Owner
1753/// and scope S. This routine will be invoked just after we realize
1754/// that an unnamed union or struct is actually an anonymous union or
1755/// struct, e.g.,
1756///
1757/// @code
1758/// union {
1759///   int i;
1760///   float f;
1761/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1762///    // f into the surrounding scope.x
1763/// @endcode
1764///
1765/// This routine is recursive, injecting the names of nested anonymous
1766/// structs/unions into the owning context and scope as well.
1767static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1768                                                DeclContext *Owner,
1769                                                RecordDecl *AnonRecord,
1770                                                AccessSpecifier AS,
1771                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1772                                                      bool MSAnonStruct) {
1773  unsigned diagKind
1774    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1775                            : diag::err_anonymous_struct_member_redecl;
1776
1777  bool Invalid = false;
1778
1779  // Look every FieldDecl and IndirectFieldDecl with a name.
1780  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1781                               DEnd = AnonRecord->decls_end();
1782       D != DEnd; ++D) {
1783    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1784        cast<NamedDecl>(*D)->getDeclName()) {
1785      ValueDecl *VD = cast<ValueDecl>(*D);
1786      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1787                                       VD->getLocation(), diagKind)) {
1788        // C++ [class.union]p2:
1789        //   The names of the members of an anonymous union shall be
1790        //   distinct from the names of any other entity in the
1791        //   scope in which the anonymous union is declared.
1792        Invalid = true;
1793      } else {
1794        // C++ [class.union]p2:
1795        //   For the purpose of name lookup, after the anonymous union
1796        //   definition, the members of the anonymous union are
1797        //   considered to have been defined in the scope in which the
1798        //   anonymous union is declared.
1799        unsigned OldChainingSize = Chaining.size();
1800        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1801          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1802               PE = IF->chain_end(); PI != PE; ++PI)
1803            Chaining.push_back(*PI);
1804        else
1805          Chaining.push_back(VD);
1806
1807        assert(Chaining.size() >= 2);
1808        NamedDecl **NamedChain =
1809          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1810        for (unsigned i = 0; i < Chaining.size(); i++)
1811          NamedChain[i] = Chaining[i];
1812
1813        IndirectFieldDecl* IndirectField =
1814          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1815                                    VD->getIdentifier(), VD->getType(),
1816                                    NamedChain, Chaining.size());
1817
1818        IndirectField->setAccess(AS);
1819        IndirectField->setImplicit();
1820        SemaRef.PushOnScopeChains(IndirectField, S);
1821
1822        // That includes picking up the appropriate access specifier.
1823        if (AS != AS_none) IndirectField->setAccess(AS);
1824
1825        Chaining.resize(OldChainingSize);
1826      }
1827    }
1828  }
1829
1830  return Invalid;
1831}
1832
1833/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1834/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1835/// illegal input values are mapped to SC_None.
1836static StorageClass
1837StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1838  switch (StorageClassSpec) {
1839  case DeclSpec::SCS_unspecified:    return SC_None;
1840  case DeclSpec::SCS_extern:         return SC_Extern;
1841  case DeclSpec::SCS_static:         return SC_Static;
1842  case DeclSpec::SCS_auto:           return SC_Auto;
1843  case DeclSpec::SCS_register:       return SC_Register;
1844  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1845    // Illegal SCSs map to None: error reporting is up to the caller.
1846  case DeclSpec::SCS_mutable:        // Fall through.
1847  case DeclSpec::SCS_typedef:        return SC_None;
1848  }
1849  llvm_unreachable("unknown storage class specifier");
1850}
1851
1852/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1853/// a StorageClass. Any error reporting is up to the caller:
1854/// illegal input values are mapped to SC_None.
1855static StorageClass
1856StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1857  switch (StorageClassSpec) {
1858  case DeclSpec::SCS_unspecified:    return SC_None;
1859  case DeclSpec::SCS_extern:         return SC_Extern;
1860  case DeclSpec::SCS_static:         return SC_Static;
1861  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1862    // Illegal SCSs map to None: error reporting is up to the caller.
1863  case DeclSpec::SCS_auto:           // Fall through.
1864  case DeclSpec::SCS_mutable:        // Fall through.
1865  case DeclSpec::SCS_register:       // Fall through.
1866  case DeclSpec::SCS_typedef:        return SC_None;
1867  }
1868  llvm_unreachable("unknown storage class specifier");
1869}
1870
1871/// BuildAnonymousStructOrUnion - Handle the declaration of an
1872/// anonymous structure or union. Anonymous unions are a C++ feature
1873/// (C++ [class.union]) and a GNU C extension; anonymous structures
1874/// are a GNU C and GNU C++ extension.
1875Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1876                                             AccessSpecifier AS,
1877                                             RecordDecl *Record) {
1878  DeclContext *Owner = Record->getDeclContext();
1879
1880  // Diagnose whether this anonymous struct/union is an extension.
1881  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1882    Diag(Record->getLocation(), diag::ext_anonymous_union);
1883  else if (!Record->isUnion())
1884    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1885
1886  // C and C++ require different kinds of checks for anonymous
1887  // structs/unions.
1888  bool Invalid = false;
1889  if (getLangOptions().CPlusPlus) {
1890    const char* PrevSpec = 0;
1891    unsigned DiagID;
1892    // C++ [class.union]p3:
1893    //   Anonymous unions declared in a named namespace or in the
1894    //   global namespace shall be declared static.
1895    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1896        (isa<TranslationUnitDecl>(Owner) ||
1897         (isa<NamespaceDecl>(Owner) &&
1898          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1899      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1900      Invalid = true;
1901
1902      // Recover by adding 'static'.
1903      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1904                             PrevSpec, DiagID);
1905    }
1906    // C++ [class.union]p3:
1907    //   A storage class is not allowed in a declaration of an
1908    //   anonymous union in a class scope.
1909    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1910             isa<RecordDecl>(Owner)) {
1911      Diag(DS.getStorageClassSpecLoc(),
1912           diag::err_anonymous_union_with_storage_spec);
1913      Invalid = true;
1914
1915      // Recover by removing the storage specifier.
1916      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1917                             PrevSpec, DiagID);
1918    }
1919
1920    // C++ [class.union]p2:
1921    //   The member-specification of an anonymous union shall only
1922    //   define non-static data members. [Note: nested types and
1923    //   functions cannot be declared within an anonymous union. ]
1924    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1925                                 MemEnd = Record->decls_end();
1926         Mem != MemEnd; ++Mem) {
1927      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1928        // C++ [class.union]p3:
1929        //   An anonymous union shall not have private or protected
1930        //   members (clause 11).
1931        assert(FD->getAccess() != AS_none);
1932        if (FD->getAccess() != AS_public) {
1933          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1934            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1935          Invalid = true;
1936        }
1937
1938        if (CheckNontrivialField(FD))
1939          Invalid = true;
1940      } else if ((*Mem)->isImplicit()) {
1941        // Any implicit members are fine.
1942      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1943        // This is a type that showed up in an
1944        // elaborated-type-specifier inside the anonymous struct or
1945        // union, but which actually declares a type outside of the
1946        // anonymous struct or union. It's okay.
1947      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1948        if (!MemRecord->isAnonymousStructOrUnion() &&
1949            MemRecord->getDeclName()) {
1950          // Visual C++ allows type definition in anonymous struct or union.
1951          if (getLangOptions().Microsoft)
1952            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1953              << (int)Record->isUnion();
1954          else {
1955            // This is a nested type declaration.
1956            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1957              << (int)Record->isUnion();
1958            Invalid = true;
1959          }
1960        }
1961      } else if (isa<AccessSpecDecl>(*Mem)) {
1962        // Any access specifier is fine.
1963      } else {
1964        // We have something that isn't a non-static data
1965        // member. Complain about it.
1966        unsigned DK = diag::err_anonymous_record_bad_member;
1967        if (isa<TypeDecl>(*Mem))
1968          DK = diag::err_anonymous_record_with_type;
1969        else if (isa<FunctionDecl>(*Mem))
1970          DK = diag::err_anonymous_record_with_function;
1971        else if (isa<VarDecl>(*Mem))
1972          DK = diag::err_anonymous_record_with_static;
1973
1974        // Visual C++ allows type definition in anonymous struct or union.
1975        if (getLangOptions().Microsoft &&
1976            DK == diag::err_anonymous_record_with_type)
1977          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1978            << (int)Record->isUnion();
1979        else {
1980          Diag((*Mem)->getLocation(), DK)
1981              << (int)Record->isUnion();
1982          Invalid = true;
1983        }
1984      }
1985    }
1986  }
1987
1988  if (!Record->isUnion() && !Owner->isRecord()) {
1989    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1990      << (int)getLangOptions().CPlusPlus;
1991    Invalid = true;
1992  }
1993
1994  // Mock up a declarator.
1995  Declarator Dc(DS, Declarator::TypeNameContext);
1996  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1997  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1998
1999  // Create a declaration for this anonymous struct/union.
2000  NamedDecl *Anon = 0;
2001  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2002    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2003                             /*IdentifierInfo=*/0,
2004                             Context.getTypeDeclType(Record),
2005                             TInfo,
2006                             /*BitWidth=*/0, /*Mutable=*/false);
2007    Anon->setAccess(AS);
2008    if (getLangOptions().CPlusPlus)
2009      FieldCollector->Add(cast<FieldDecl>(Anon));
2010  } else {
2011    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2012    assert(SCSpec != DeclSpec::SCS_typedef &&
2013           "Parser allowed 'typedef' as storage class VarDecl.");
2014    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2015    if (SCSpec == DeclSpec::SCS_mutable) {
2016      // mutable can only appear on non-static class members, so it's always
2017      // an error here
2018      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2019      Invalid = true;
2020      SC = SC_None;
2021    }
2022    SCSpec = DS.getStorageClassSpecAsWritten();
2023    VarDecl::StorageClass SCAsWritten
2024      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2025
2026    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2027                           /*IdentifierInfo=*/0,
2028                           Context.getTypeDeclType(Record),
2029                           TInfo, SC, SCAsWritten);
2030  }
2031  Anon->setImplicit();
2032
2033  // Add the anonymous struct/union object to the current
2034  // context. We'll be referencing this object when we refer to one of
2035  // its members.
2036  Owner->addDecl(Anon);
2037
2038  // Inject the members of the anonymous struct/union into the owning
2039  // context and into the identifier resolver chain for name lookup
2040  // purposes.
2041  llvm::SmallVector<NamedDecl*, 2> Chain;
2042  Chain.push_back(Anon);
2043
2044  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2045                                          Chain, false))
2046    Invalid = true;
2047
2048  // Mark this as an anonymous struct/union type. Note that we do not
2049  // do this until after we have already checked and injected the
2050  // members of this anonymous struct/union type, because otherwise
2051  // the members could be injected twice: once by DeclContext when it
2052  // builds its lookup table, and once by
2053  // InjectAnonymousStructOrUnionMembers.
2054  Record->setAnonymousStructOrUnion(true);
2055
2056  if (Invalid)
2057    Anon->setInvalidDecl();
2058
2059  return Anon;
2060}
2061
2062/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2063/// Microsoft C anonymous structure.
2064/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2065/// Example:
2066///
2067/// struct A { int a; };
2068/// struct B { struct A; int b; };
2069///
2070/// void foo() {
2071///   B var;
2072///   var.a = 3;
2073/// }
2074///
2075Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2076                                           RecordDecl *Record) {
2077
2078  // If there is no Record, get the record via the typedef.
2079  if (!Record)
2080    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2081
2082  // Mock up a declarator.
2083  Declarator Dc(DS, Declarator::TypeNameContext);
2084  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2085  assert(TInfo && "couldn't build declarator info for anonymous struct");
2086
2087  // Create a declaration for this anonymous struct.
2088  NamedDecl* Anon = FieldDecl::Create(Context,
2089                             cast<RecordDecl>(CurContext),
2090                             DS.getSourceRange().getBegin(),
2091                             /*IdentifierInfo=*/0,
2092                             Context.getTypeDeclType(Record),
2093                             TInfo,
2094                             /*BitWidth=*/0, /*Mutable=*/false);
2095  Anon->setImplicit();
2096
2097  // Add the anonymous struct object to the current context.
2098  CurContext->addDecl(Anon);
2099
2100  // Inject the members of the anonymous struct into the current
2101  // context and into the identifier resolver chain for name lookup
2102  // purposes.
2103  llvm::SmallVector<NamedDecl*, 2> Chain;
2104  Chain.push_back(Anon);
2105
2106  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2107                                          Record->getDefinition(),
2108                                          AS_none, Chain, true))
2109    Anon->setInvalidDecl();
2110
2111  return Anon;
2112}
2113
2114/// GetNameForDeclarator - Determine the full declaration name for the
2115/// given Declarator.
2116DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2117  return GetNameFromUnqualifiedId(D.getName());
2118}
2119
2120/// \brief Retrieves the declaration name from a parsed unqualified-id.
2121DeclarationNameInfo
2122Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2123  DeclarationNameInfo NameInfo;
2124  NameInfo.setLoc(Name.StartLocation);
2125
2126  switch (Name.getKind()) {
2127
2128  case UnqualifiedId::IK_Identifier:
2129    NameInfo.setName(Name.Identifier);
2130    NameInfo.setLoc(Name.StartLocation);
2131    return NameInfo;
2132
2133  case UnqualifiedId::IK_OperatorFunctionId:
2134    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2135                                           Name.OperatorFunctionId.Operator));
2136    NameInfo.setLoc(Name.StartLocation);
2137    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2138      = Name.OperatorFunctionId.SymbolLocations[0];
2139    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2140      = Name.EndLocation.getRawEncoding();
2141    return NameInfo;
2142
2143  case UnqualifiedId::IK_LiteralOperatorId:
2144    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2145                                                           Name.Identifier));
2146    NameInfo.setLoc(Name.StartLocation);
2147    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2148    return NameInfo;
2149
2150  case UnqualifiedId::IK_ConversionFunctionId: {
2151    TypeSourceInfo *TInfo;
2152    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2153    if (Ty.isNull())
2154      return DeclarationNameInfo();
2155    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2156                                               Context.getCanonicalType(Ty)));
2157    NameInfo.setLoc(Name.StartLocation);
2158    NameInfo.setNamedTypeInfo(TInfo);
2159    return NameInfo;
2160  }
2161
2162  case UnqualifiedId::IK_ConstructorName: {
2163    TypeSourceInfo *TInfo;
2164    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2165    if (Ty.isNull())
2166      return DeclarationNameInfo();
2167    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2168                                              Context.getCanonicalType(Ty)));
2169    NameInfo.setLoc(Name.StartLocation);
2170    NameInfo.setNamedTypeInfo(TInfo);
2171    return NameInfo;
2172  }
2173
2174  case UnqualifiedId::IK_ConstructorTemplateId: {
2175    // In well-formed code, we can only have a constructor
2176    // template-id that refers to the current context, so go there
2177    // to find the actual type being constructed.
2178    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2179    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2180      return DeclarationNameInfo();
2181
2182    // Determine the type of the class being constructed.
2183    QualType CurClassType = Context.getTypeDeclType(CurClass);
2184
2185    // FIXME: Check two things: that the template-id names the same type as
2186    // CurClassType, and that the template-id does not occur when the name
2187    // was qualified.
2188
2189    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2190                                    Context.getCanonicalType(CurClassType)));
2191    NameInfo.setLoc(Name.StartLocation);
2192    // FIXME: should we retrieve TypeSourceInfo?
2193    NameInfo.setNamedTypeInfo(0);
2194    return NameInfo;
2195  }
2196
2197  case UnqualifiedId::IK_DestructorName: {
2198    TypeSourceInfo *TInfo;
2199    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2200    if (Ty.isNull())
2201      return DeclarationNameInfo();
2202    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2203                                              Context.getCanonicalType(Ty)));
2204    NameInfo.setLoc(Name.StartLocation);
2205    NameInfo.setNamedTypeInfo(TInfo);
2206    return NameInfo;
2207  }
2208
2209  case UnqualifiedId::IK_TemplateId: {
2210    TemplateName TName = Name.TemplateId->Template.get();
2211    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2212    return Context.getNameForTemplate(TName, TNameLoc);
2213  }
2214
2215  } // switch (Name.getKind())
2216
2217  assert(false && "Unknown name kind");
2218  return DeclarationNameInfo();
2219}
2220
2221/// isNearlyMatchingFunction - Determine whether the C++ functions
2222/// Declaration and Definition are "nearly" matching. This heuristic
2223/// is used to improve diagnostics in the case where an out-of-line
2224/// function definition doesn't match any declaration within
2225/// the class or namespace.
2226static bool isNearlyMatchingFunction(ASTContext &Context,
2227                                     FunctionDecl *Declaration,
2228                                     FunctionDecl *Definition) {
2229  if (Declaration->param_size() != Definition->param_size())
2230    return false;
2231  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2232    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2233    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2234
2235    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2236                                        DefParamTy.getNonReferenceType()))
2237      return false;
2238  }
2239
2240  return true;
2241}
2242
2243/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2244/// declarator needs to be rebuilt in the current instantiation.
2245/// Any bits of declarator which appear before the name are valid for
2246/// consideration here.  That's specifically the type in the decl spec
2247/// and the base type in any member-pointer chunks.
2248static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2249                                                    DeclarationName Name) {
2250  // The types we specifically need to rebuild are:
2251  //   - typenames, typeofs, and decltypes
2252  //   - types which will become injected class names
2253  // Of course, we also need to rebuild any type referencing such a
2254  // type.  It's safest to just say "dependent", but we call out a
2255  // few cases here.
2256
2257  DeclSpec &DS = D.getMutableDeclSpec();
2258  switch (DS.getTypeSpecType()) {
2259  case DeclSpec::TST_typename:
2260  case DeclSpec::TST_typeofType:
2261  case DeclSpec::TST_decltype: {
2262    // Grab the type from the parser.
2263    TypeSourceInfo *TSI = 0;
2264    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2265    if (T.isNull() || !T->isDependentType()) break;
2266
2267    // Make sure there's a type source info.  This isn't really much
2268    // of a waste; most dependent types should have type source info
2269    // attached already.
2270    if (!TSI)
2271      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2272
2273    // Rebuild the type in the current instantiation.
2274    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2275    if (!TSI) return true;
2276
2277    // Store the new type back in the decl spec.
2278    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2279    DS.UpdateTypeRep(LocType);
2280    break;
2281  }
2282
2283  case DeclSpec::TST_typeofExpr: {
2284    Expr *E = DS.getRepAsExpr();
2285    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2286    if (Result.isInvalid()) return true;
2287    DS.UpdateExprRep(Result.get());
2288    break;
2289  }
2290
2291  default:
2292    // Nothing to do for these decl specs.
2293    break;
2294  }
2295
2296  // It doesn't matter what order we do this in.
2297  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2298    DeclaratorChunk &Chunk = D.getTypeObject(I);
2299
2300    // The only type information in the declarator which can come
2301    // before the declaration name is the base type of a member
2302    // pointer.
2303    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2304      continue;
2305
2306    // Rebuild the scope specifier in-place.
2307    CXXScopeSpec &SS = Chunk.Mem.Scope();
2308    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2309      return true;
2310  }
2311
2312  return false;
2313}
2314
2315Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2316  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2317}
2318
2319Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2320                             MultiTemplateParamsArg TemplateParamLists,
2321                             bool IsFunctionDefinition) {
2322  // TODO: consider using NameInfo for diagnostic.
2323  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2324  DeclarationName Name = NameInfo.getName();
2325
2326  // All of these full declarators require an identifier.  If it doesn't have
2327  // one, the ParsedFreeStandingDeclSpec action should be used.
2328  if (!Name) {
2329    if (!D.isInvalidType())  // Reject this if we think it is valid.
2330      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2331           diag::err_declarator_need_ident)
2332        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2333    return 0;
2334  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2335    return 0;
2336
2337  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2338  // we find one that is.
2339  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2340         (S->getFlags() & Scope::TemplateParamScope) != 0)
2341    S = S->getParent();
2342
2343  DeclContext *DC = CurContext;
2344  if (D.getCXXScopeSpec().isInvalid())
2345    D.setInvalidType();
2346  else if (D.getCXXScopeSpec().isSet()) {
2347    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2348                                        UPPC_DeclarationQualifier))
2349      return 0;
2350
2351    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2352    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2353    if (!DC) {
2354      // If we could not compute the declaration context, it's because the
2355      // declaration context is dependent but does not refer to a class,
2356      // class template, or class template partial specialization. Complain
2357      // and return early, to avoid the coming semantic disaster.
2358      Diag(D.getIdentifierLoc(),
2359           diag::err_template_qualified_declarator_no_match)
2360        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2361        << D.getCXXScopeSpec().getRange();
2362      return 0;
2363    }
2364
2365    bool IsDependentContext = DC->isDependentContext();
2366
2367    if (!IsDependentContext &&
2368        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2369      return 0;
2370
2371    if (isa<CXXRecordDecl>(DC)) {
2372      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2373        Diag(D.getIdentifierLoc(),
2374             diag::err_member_def_undefined_record)
2375          << Name << DC << D.getCXXScopeSpec().getRange();
2376        D.setInvalidType();
2377      } else if (isa<CXXRecordDecl>(CurContext) &&
2378                 !D.getDeclSpec().isFriendSpecified()) {
2379        // The user provided a superfluous scope specifier inside a class
2380        // definition:
2381        //
2382        // class X {
2383        //   void X::f();
2384        // };
2385        if (CurContext->Equals(DC))
2386          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2387            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2388        else
2389          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2390            << Name << D.getCXXScopeSpec().getRange();
2391
2392        // Pretend that this qualifier was not here.
2393        D.getCXXScopeSpec().clear();
2394      }
2395    }
2396
2397    // Check whether we need to rebuild the type of the given
2398    // declaration in the current instantiation.
2399    if (EnteringContext && IsDependentContext &&
2400        TemplateParamLists.size() != 0) {
2401      ContextRAII SavedContext(*this, DC);
2402      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2403        D.setInvalidType();
2404    }
2405  }
2406
2407  // C++ [class.mem]p13:
2408  //   If T is the name of a class, then each of the following shall have a
2409  //   name different from T:
2410  //     - every static data member of class T;
2411  //     - every member function of class T
2412  //     - every member of class T that is itself a type;
2413  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2414    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2415      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2416        << Name;
2417
2418      // If this is a typedef, we'll end up spewing multiple diagnostics.
2419      // Just return early; it's safer.
2420      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2421        return 0;
2422    }
2423
2424  NamedDecl *New;
2425
2426  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2427  QualType R = TInfo->getType();
2428
2429  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2430                                      UPPC_DeclarationType))
2431    D.setInvalidType();
2432
2433  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2434                        ForRedeclaration);
2435
2436  // See if this is a redefinition of a variable in the same scope.
2437  if (!D.getCXXScopeSpec().isSet()) {
2438    bool IsLinkageLookup = false;
2439
2440    // If the declaration we're planning to build will be a function
2441    // or object with linkage, then look for another declaration with
2442    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2443    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2444      /* Do nothing*/;
2445    else if (R->isFunctionType()) {
2446      if (CurContext->isFunctionOrMethod() ||
2447          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2448        IsLinkageLookup = true;
2449    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2450      IsLinkageLookup = true;
2451    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2452             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2453      IsLinkageLookup = true;
2454
2455    if (IsLinkageLookup)
2456      Previous.clear(LookupRedeclarationWithLinkage);
2457
2458    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2459  } else { // Something like "int foo::x;"
2460    LookupQualifiedName(Previous, DC);
2461
2462    // Don't consider using declarations as previous declarations for
2463    // out-of-line members.
2464    RemoveUsingDecls(Previous);
2465
2466    // C++ 7.3.1.2p2:
2467    // Members (including explicit specializations of templates) of a named
2468    // namespace can also be defined outside that namespace by explicit
2469    // qualification of the name being defined, provided that the entity being
2470    // defined was already declared in the namespace and the definition appears
2471    // after the point of declaration in a namespace that encloses the
2472    // declarations namespace.
2473    //
2474    // Note that we only check the context at this point. We don't yet
2475    // have enough information to make sure that PrevDecl is actually
2476    // the declaration we want to match. For example, given:
2477    //
2478    //   class X {
2479    //     void f();
2480    //     void f(float);
2481    //   };
2482    //
2483    //   void X::f(int) { } // ill-formed
2484    //
2485    // In this case, PrevDecl will point to the overload set
2486    // containing the two f's declared in X, but neither of them
2487    // matches.
2488
2489    // First check whether we named the global scope.
2490    if (isa<TranslationUnitDecl>(DC)) {
2491      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2492        << Name << D.getCXXScopeSpec().getRange();
2493    } else {
2494      DeclContext *Cur = CurContext;
2495      while (isa<LinkageSpecDecl>(Cur))
2496        Cur = Cur->getParent();
2497      if (!Cur->Encloses(DC)) {
2498        // The qualifying scope doesn't enclose the original declaration.
2499        // Emit diagnostic based on current scope.
2500        SourceLocation L = D.getIdentifierLoc();
2501        SourceRange R = D.getCXXScopeSpec().getRange();
2502        if (isa<FunctionDecl>(Cur))
2503          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2504        else
2505          Diag(L, diag::err_invalid_declarator_scope)
2506            << Name << cast<NamedDecl>(DC) << R;
2507        D.setInvalidType();
2508      }
2509    }
2510  }
2511
2512  if (Previous.isSingleResult() &&
2513      Previous.getFoundDecl()->isTemplateParameter()) {
2514    // Maybe we will complain about the shadowed template parameter.
2515    if (!D.isInvalidType())
2516      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2517                                          Previous.getFoundDecl()))
2518        D.setInvalidType();
2519
2520    // Just pretend that we didn't see the previous declaration.
2521    Previous.clear();
2522  }
2523
2524  // In C++, the previous declaration we find might be a tag type
2525  // (class or enum). In this case, the new declaration will hide the
2526  // tag type. Note that this does does not apply if we're declaring a
2527  // typedef (C++ [dcl.typedef]p4).
2528  if (Previous.isSingleTagDecl() &&
2529      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2530    Previous.clear();
2531
2532  bool Redeclaration = false;
2533  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2534    if (TemplateParamLists.size()) {
2535      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2536      return 0;
2537    }
2538
2539    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2540  } else if (R->isFunctionType()) {
2541    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2542                                  move(TemplateParamLists),
2543                                  IsFunctionDefinition, Redeclaration);
2544  } else {
2545    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2546                                  move(TemplateParamLists),
2547                                  Redeclaration);
2548  }
2549
2550  if (New == 0)
2551    return 0;
2552
2553  // If this has an identifier and is not an invalid redeclaration or
2554  // function template specialization, add it to the scope stack.
2555  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2556    PushOnScopeChains(New, S);
2557
2558  return New;
2559}
2560
2561/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2562/// types into constant array types in certain situations which would otherwise
2563/// be errors (for GCC compatibility).
2564static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2565                                                    ASTContext &Context,
2566                                                    bool &SizeIsNegative,
2567                                                    llvm::APSInt &Oversized) {
2568  // This method tries to turn a variable array into a constant
2569  // array even when the size isn't an ICE.  This is necessary
2570  // for compatibility with code that depends on gcc's buggy
2571  // constant expression folding, like struct {char x[(int)(char*)2];}
2572  SizeIsNegative = false;
2573  Oversized = 0;
2574
2575  if (T->isDependentType())
2576    return QualType();
2577
2578  QualifierCollector Qs;
2579  const Type *Ty = Qs.strip(T);
2580
2581  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2582    QualType Pointee = PTy->getPointeeType();
2583    QualType FixedType =
2584        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2585                                            Oversized);
2586    if (FixedType.isNull()) return FixedType;
2587    FixedType = Context.getPointerType(FixedType);
2588    return Qs.apply(Context, FixedType);
2589  }
2590  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2591    QualType Inner = PTy->getInnerType();
2592    QualType FixedType =
2593        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2594                                            Oversized);
2595    if (FixedType.isNull()) return FixedType;
2596    FixedType = Context.getParenType(FixedType);
2597    return Qs.apply(Context, FixedType);
2598  }
2599
2600  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2601  if (!VLATy)
2602    return QualType();
2603  // FIXME: We should probably handle this case
2604  if (VLATy->getElementType()->isVariablyModifiedType())
2605    return QualType();
2606
2607  Expr::EvalResult EvalResult;
2608  if (!VLATy->getSizeExpr() ||
2609      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2610      !EvalResult.Val.isInt())
2611    return QualType();
2612
2613  // Check whether the array size is negative.
2614  llvm::APSInt &Res = EvalResult.Val.getInt();
2615  if (Res.isSigned() && Res.isNegative()) {
2616    SizeIsNegative = true;
2617    return QualType();
2618  }
2619
2620  // Check whether the array is too large to be addressed.
2621  unsigned ActiveSizeBits
2622    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2623                                              Res);
2624  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2625    Oversized = Res;
2626    return QualType();
2627  }
2628
2629  return Context.getConstantArrayType(VLATy->getElementType(),
2630                                      Res, ArrayType::Normal, 0);
2631}
2632
2633/// \brief Register the given locally-scoped external C declaration so
2634/// that it can be found later for redeclarations
2635void
2636Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2637                                       const LookupResult &Previous,
2638                                       Scope *S) {
2639  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2640         "Decl is not a locally-scoped decl!");
2641  // Note that we have a locally-scoped external with this name.
2642  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2643
2644  if (!Previous.isSingleResult())
2645    return;
2646
2647  NamedDecl *PrevDecl = Previous.getFoundDecl();
2648
2649  // If there was a previous declaration of this variable, it may be
2650  // in our identifier chain. Update the identifier chain with the new
2651  // declaration.
2652  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2653    // The previous declaration was found on the identifer resolver
2654    // chain, so remove it from its scope.
2655    while (S && !S->isDeclScope(PrevDecl))
2656      S = S->getParent();
2657
2658    if (S)
2659      S->RemoveDecl(PrevDecl);
2660  }
2661}
2662
2663/// \brief Diagnose function specifiers on a declaration of an identifier that
2664/// does not identify a function.
2665void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2666  // FIXME: We should probably indicate the identifier in question to avoid
2667  // confusion for constructs like "inline int a(), b;"
2668  if (D.getDeclSpec().isInlineSpecified())
2669    Diag(D.getDeclSpec().getInlineSpecLoc(),
2670         diag::err_inline_non_function);
2671
2672  if (D.getDeclSpec().isVirtualSpecified())
2673    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2674         diag::err_virtual_non_function);
2675
2676  if (D.getDeclSpec().isExplicitSpecified())
2677    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2678         diag::err_explicit_non_function);
2679}
2680
2681NamedDecl*
2682Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2683                             QualType R,  TypeSourceInfo *TInfo,
2684                             LookupResult &Previous, bool &Redeclaration) {
2685  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2686  if (D.getCXXScopeSpec().isSet()) {
2687    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2688      << D.getCXXScopeSpec().getRange();
2689    D.setInvalidType();
2690    // Pretend we didn't see the scope specifier.
2691    DC = CurContext;
2692    Previous.clear();
2693  }
2694
2695  if (getLangOptions().CPlusPlus) {
2696    // Check that there are no default arguments (C++ only).
2697    CheckExtraCXXDefaultArguments(D);
2698  }
2699
2700  DiagnoseFunctionSpecifiers(D);
2701
2702  if (D.getDeclSpec().isThreadSpecified())
2703    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2704
2705  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2706    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2707      << D.getName().getSourceRange();
2708    return 0;
2709  }
2710
2711  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2712  if (!NewTD) return 0;
2713
2714  // Handle attributes prior to checking for duplicates in MergeVarDecl
2715  ProcessDeclAttributes(S, NewTD, D);
2716
2717  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2718  // then it shall have block scope.
2719  // Note that variably modified types must be fixed before merging the decl so
2720  // that redeclarations will match.
2721  QualType T = NewTD->getUnderlyingType();
2722  if (T->isVariablyModifiedType()) {
2723    getCurFunction()->setHasBranchProtectedScope();
2724
2725    if (S->getFnParent() == 0) {
2726      bool SizeIsNegative;
2727      llvm::APSInt Oversized;
2728      QualType FixedTy =
2729          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2730                                              Oversized);
2731      if (!FixedTy.isNull()) {
2732        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2733        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2734      } else {
2735        if (SizeIsNegative)
2736          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2737        else if (T->isVariableArrayType())
2738          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2739        else if (Oversized.getBoolValue())
2740          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2741            << Oversized.toString(10);
2742        else
2743          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2744        NewTD->setInvalidDecl();
2745      }
2746    }
2747  }
2748
2749  // Merge the decl with the existing one if appropriate. If the decl is
2750  // in an outer scope, it isn't the same thing.
2751  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2752  if (!Previous.empty()) {
2753    Redeclaration = true;
2754    MergeTypeDefDecl(NewTD, Previous);
2755  }
2756
2757  // If this is the C FILE type, notify the AST context.
2758  if (IdentifierInfo *II = NewTD->getIdentifier())
2759    if (!NewTD->isInvalidDecl() &&
2760        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2761      if (II->isStr("FILE"))
2762        Context.setFILEDecl(NewTD);
2763      else if (II->isStr("jmp_buf"))
2764        Context.setjmp_bufDecl(NewTD);
2765      else if (II->isStr("sigjmp_buf"))
2766        Context.setsigjmp_bufDecl(NewTD);
2767      else if (II->isStr("__builtin_va_list"))
2768        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2769    }
2770
2771  return NewTD;
2772}
2773
2774/// \brief Determines whether the given declaration is an out-of-scope
2775/// previous declaration.
2776///
2777/// This routine should be invoked when name lookup has found a
2778/// previous declaration (PrevDecl) that is not in the scope where a
2779/// new declaration by the same name is being introduced. If the new
2780/// declaration occurs in a local scope, previous declarations with
2781/// linkage may still be considered previous declarations (C99
2782/// 6.2.2p4-5, C++ [basic.link]p6).
2783///
2784/// \param PrevDecl the previous declaration found by name
2785/// lookup
2786///
2787/// \param DC the context in which the new declaration is being
2788/// declared.
2789///
2790/// \returns true if PrevDecl is an out-of-scope previous declaration
2791/// for a new delcaration with the same name.
2792static bool
2793isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2794                                ASTContext &Context) {
2795  if (!PrevDecl)
2796    return false;
2797
2798  if (!PrevDecl->hasLinkage())
2799    return false;
2800
2801  if (Context.getLangOptions().CPlusPlus) {
2802    // C++ [basic.link]p6:
2803    //   If there is a visible declaration of an entity with linkage
2804    //   having the same name and type, ignoring entities declared
2805    //   outside the innermost enclosing namespace scope, the block
2806    //   scope declaration declares that same entity and receives the
2807    //   linkage of the previous declaration.
2808    DeclContext *OuterContext = DC->getRedeclContext();
2809    if (!OuterContext->isFunctionOrMethod())
2810      // This rule only applies to block-scope declarations.
2811      return false;
2812
2813    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2814    if (PrevOuterContext->isRecord())
2815      // We found a member function: ignore it.
2816      return false;
2817
2818    // Find the innermost enclosing namespace for the new and
2819    // previous declarations.
2820    OuterContext = OuterContext->getEnclosingNamespaceContext();
2821    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2822
2823    // The previous declaration is in a different namespace, so it
2824    // isn't the same function.
2825    if (!OuterContext->Equals(PrevOuterContext))
2826      return false;
2827  }
2828
2829  return true;
2830}
2831
2832static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2833  CXXScopeSpec &SS = D.getCXXScopeSpec();
2834  if (!SS.isSet()) return;
2835  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2836                       SS.getRange());
2837}
2838
2839NamedDecl*
2840Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2841                              QualType R, TypeSourceInfo *TInfo,
2842                              LookupResult &Previous,
2843                              MultiTemplateParamsArg TemplateParamLists,
2844                              bool &Redeclaration) {
2845  DeclarationName Name = GetNameForDeclarator(D).getName();
2846
2847  // Check that there are no default arguments (C++ only).
2848  if (getLangOptions().CPlusPlus)
2849    CheckExtraCXXDefaultArguments(D);
2850
2851  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2852  assert(SCSpec != DeclSpec::SCS_typedef &&
2853         "Parser allowed 'typedef' as storage class VarDecl.");
2854  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2855  if (SCSpec == DeclSpec::SCS_mutable) {
2856    // mutable can only appear on non-static class members, so it's always
2857    // an error here
2858    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2859    D.setInvalidType();
2860    SC = SC_None;
2861  }
2862  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2863  VarDecl::StorageClass SCAsWritten
2864    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2865
2866  IdentifierInfo *II = Name.getAsIdentifierInfo();
2867  if (!II) {
2868    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2869      << Name.getAsString();
2870    return 0;
2871  }
2872
2873  DiagnoseFunctionSpecifiers(D);
2874
2875  if (!DC->isRecord() && S->getFnParent() == 0) {
2876    // C99 6.9p2: The storage-class specifiers auto and register shall not
2877    // appear in the declaration specifiers in an external declaration.
2878    if (SC == SC_Auto || SC == SC_Register) {
2879
2880      // If this is a register variable with an asm label specified, then this
2881      // is a GNU extension.
2882      if (SC == SC_Register && D.getAsmLabel())
2883        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2884      else
2885        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2886      D.setInvalidType();
2887    }
2888  }
2889
2890  bool isExplicitSpecialization;
2891  VarDecl *NewVD;
2892  if (!getLangOptions().CPlusPlus) {
2893      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2894                              II, R, TInfo, SC, SCAsWritten);
2895
2896    if (D.isInvalidType())
2897      NewVD->setInvalidDecl();
2898  } else {
2899    if (DC->isRecord() && !CurContext->isRecord()) {
2900      // This is an out-of-line definition of a static data member.
2901      if (SC == SC_Static) {
2902        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2903             diag::err_static_out_of_line)
2904          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2905      } else if (SC == SC_None)
2906        SC = SC_Static;
2907    }
2908    if (SC == SC_Static) {
2909      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2910        if (RD->isLocalClass())
2911          Diag(D.getIdentifierLoc(),
2912               diag::err_static_data_member_not_allowed_in_local_class)
2913            << Name << RD->getDeclName();
2914
2915        // C++ [class.union]p1: If a union contains a static data member,
2916        // the program is ill-formed.
2917        //
2918        // We also disallow static data members in anonymous structs.
2919        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2920          Diag(D.getIdentifierLoc(),
2921               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2922            << Name << RD->isUnion();
2923      }
2924    }
2925
2926    // Match up the template parameter lists with the scope specifier, then
2927    // determine whether we have a template or a template specialization.
2928    isExplicitSpecialization = false;
2929    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2930    bool Invalid = false;
2931    if (TemplateParameterList *TemplateParams
2932        = MatchTemplateParametersToScopeSpecifier(
2933                                                  D.getDeclSpec().getSourceRange().getBegin(),
2934                                                  D.getCXXScopeSpec(),
2935                                                  TemplateParamLists.get(),
2936                                                  TemplateParamLists.size(),
2937                                                  /*never a friend*/ false,
2938                                                  isExplicitSpecialization,
2939                                                  Invalid)) {
2940      // All but one template parameter lists have been matching.
2941      --NumMatchedTemplateParamLists;
2942
2943      if (TemplateParams->size() > 0) {
2944        // There is no such thing as a variable template.
2945        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2946          << II
2947          << SourceRange(TemplateParams->getTemplateLoc(),
2948                         TemplateParams->getRAngleLoc());
2949        return 0;
2950      } else {
2951        // There is an extraneous 'template<>' for this variable. Complain
2952        // about it, but allow the declaration of the variable.
2953        Diag(TemplateParams->getTemplateLoc(),
2954             diag::err_template_variable_noparams)
2955          << II
2956          << SourceRange(TemplateParams->getTemplateLoc(),
2957                         TemplateParams->getRAngleLoc());
2958
2959        isExplicitSpecialization = true;
2960      }
2961    }
2962
2963    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2964                            II, R, TInfo, SC, SCAsWritten);
2965
2966    if (D.isInvalidType() || Invalid)
2967      NewVD->setInvalidDecl();
2968
2969    SetNestedNameSpecifier(NewVD, D);
2970
2971    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2972      NewVD->setTemplateParameterListsInfo(Context,
2973                                           NumMatchedTemplateParamLists,
2974                                           TemplateParamLists.release());
2975    }
2976  }
2977
2978  if (D.getDeclSpec().isThreadSpecified()) {
2979    if (NewVD->hasLocalStorage())
2980      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2981    else if (!Context.Target.isTLSSupported())
2982      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2983    else
2984      NewVD->setThreadSpecified(true);
2985  }
2986
2987  // Set the lexical context. If the declarator has a C++ scope specifier, the
2988  // lexical context will be different from the semantic context.
2989  NewVD->setLexicalDeclContext(CurContext);
2990
2991  // Handle attributes prior to checking for duplicates in MergeVarDecl
2992  ProcessDeclAttributes(S, NewVD, D);
2993
2994  // Handle GNU asm-label extension (encoded as an attribute).
2995  if (Expr *E = (Expr*)D.getAsmLabel()) {
2996    // The parser guarantees this is a string.
2997    StringLiteral *SE = cast<StringLiteral>(E);
2998    llvm::StringRef Label = SE->getString();
2999    if (S->getFnParent() != 0 &&
3000        !Context.Target.isValidGCCRegisterName(Label))
3001      Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3002    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3003                                                Context, Label));
3004  }
3005
3006  // Diagnose shadowed variables before filtering for scope.
3007  if (!D.getCXXScopeSpec().isSet())
3008    CheckShadow(S, NewVD, Previous);
3009
3010  // Don't consider existing declarations that are in a different
3011  // scope and are out-of-semantic-context declarations (if the new
3012  // declaration has linkage).
3013  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3014
3015  if (!getLangOptions().CPlusPlus)
3016    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3017  else {
3018    // Merge the decl with the existing one if appropriate.
3019    if (!Previous.empty()) {
3020      if (Previous.isSingleResult() &&
3021          isa<FieldDecl>(Previous.getFoundDecl()) &&
3022          D.getCXXScopeSpec().isSet()) {
3023        // The user tried to define a non-static data member
3024        // out-of-line (C++ [dcl.meaning]p1).
3025        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3026          << D.getCXXScopeSpec().getRange();
3027        Previous.clear();
3028        NewVD->setInvalidDecl();
3029      }
3030    } else if (D.getCXXScopeSpec().isSet()) {
3031      // No previous declaration in the qualifying scope.
3032      Diag(D.getIdentifierLoc(), diag::err_no_member)
3033        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3034        << D.getCXXScopeSpec().getRange();
3035      NewVD->setInvalidDecl();
3036    }
3037
3038    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3039
3040    // This is an explicit specialization of a static data member. Check it.
3041    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3042        CheckMemberSpecialization(NewVD, Previous))
3043      NewVD->setInvalidDecl();
3044    // For variables declared as __block which require copy construction,
3045    // must capture copy initialization expression here.
3046    if (!NewVD->isInvalidDecl() && NewVD->hasAttr<BlocksAttr>()) {
3047      QualType T = NewVD->getType();
3048      if (!T->isDependentType() && !T->isReferenceType() &&
3049          T->getAs<RecordType>() && !T->isUnionType()) {
3050        Expr *E = new (Context) DeclRefExpr(NewVD, T,
3051                                            VK_LValue, SourceLocation());
3052        ExprResult Res = PerformCopyInitialization(
3053                InitializedEntity::InitializeBlock(NewVD->getLocation(),
3054                                                   T, false),
3055                SourceLocation(),
3056                Owned(E));
3057        if (!Res.isInvalid()) {
3058          Res = MaybeCreateExprWithCleanups(Res);
3059          Expr *Init = Res.takeAs<Expr>();
3060          Context.setBlockVarCopyInits(NewVD, Init);
3061        }
3062      }
3063    }
3064  }
3065
3066  // attributes declared post-definition are currently ignored
3067  // FIXME: This should be handled in attribute merging, not
3068  // here.
3069  if (Previous.isSingleResult()) {
3070    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3071    if (Def && (Def = Def->getDefinition()) &&
3072        Def != NewVD && D.hasAttributes()) {
3073      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3074      Diag(Def->getLocation(), diag::note_previous_definition);
3075    }
3076  }
3077
3078  // If this is a locally-scoped extern C variable, update the map of
3079  // such variables.
3080  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3081      !NewVD->isInvalidDecl())
3082    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3083
3084  // If there's a #pragma GCC visibility in scope, and this isn't a class
3085  // member, set the visibility of this variable.
3086  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3087    AddPushedVisibilityAttribute(NewVD);
3088
3089  MarkUnusedFileScopedDecl(NewVD);
3090
3091  return NewVD;
3092}
3093
3094/// \brief Diagnose variable or built-in function shadowing.  Implements
3095/// -Wshadow.
3096///
3097/// This method is called whenever a VarDecl is added to a "useful"
3098/// scope.
3099///
3100/// \param S the scope in which the shadowing name is being declared
3101/// \param R the lookup of the name
3102///
3103void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3104  // Return if warning is ignored.
3105  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3106        Diagnostic::Ignored)
3107    return;
3108
3109  // Don't diagnose declarations at file scope.  The scope might not
3110  // have a DeclContext if (e.g.) we're parsing a function prototype.
3111  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3112  if (NewDC && NewDC->isFileContext())
3113    return;
3114
3115  // Only diagnose if we're shadowing an unambiguous field or variable.
3116  if (R.getResultKind() != LookupResult::Found)
3117    return;
3118
3119  NamedDecl* ShadowedDecl = R.getFoundDecl();
3120  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3121    return;
3122
3123  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3124
3125  // Only warn about certain kinds of shadowing for class members.
3126  if (NewDC && NewDC->isRecord()) {
3127    // In particular, don't warn about shadowing non-class members.
3128    if (!OldDC->isRecord())
3129      return;
3130
3131    // TODO: should we warn about static data members shadowing
3132    // static data members from base classes?
3133
3134    // TODO: don't diagnose for inaccessible shadowed members.
3135    // This is hard to do perfectly because we might friend the
3136    // shadowing context, but that's just a false negative.
3137  }
3138
3139  // Determine what kind of declaration we're shadowing.
3140  unsigned Kind;
3141  if (isa<RecordDecl>(OldDC)) {
3142    if (isa<FieldDecl>(ShadowedDecl))
3143      Kind = 3; // field
3144    else
3145      Kind = 2; // static data member
3146  } else if (OldDC->isFileContext())
3147    Kind = 1; // global
3148  else
3149    Kind = 0; // local
3150
3151  DeclarationName Name = R.getLookupName();
3152
3153  // Emit warning and note.
3154  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3155  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3156}
3157
3158/// \brief Check -Wshadow without the advantage of a previous lookup.
3159void Sema::CheckShadow(Scope *S, VarDecl *D) {
3160  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3161        Diagnostic::Ignored)
3162    return;
3163
3164  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3165                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3166  LookupName(R, S);
3167  CheckShadow(S, D, R);
3168}
3169
3170/// \brief Perform semantic checking on a newly-created variable
3171/// declaration.
3172///
3173/// This routine performs all of the type-checking required for a
3174/// variable declaration once it has been built. It is used both to
3175/// check variables after they have been parsed and their declarators
3176/// have been translated into a declaration, and to check variables
3177/// that have been instantiated from a template.
3178///
3179/// Sets NewVD->isInvalidDecl() if an error was encountered.
3180void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3181                                    LookupResult &Previous,
3182                                    bool &Redeclaration) {
3183  // If the decl is already known invalid, don't check it.
3184  if (NewVD->isInvalidDecl())
3185    return;
3186
3187  QualType T = NewVD->getType();
3188
3189  if (T->isObjCObjectType()) {
3190    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3191    return NewVD->setInvalidDecl();
3192  }
3193
3194  // Emit an error if an address space was applied to decl with local storage.
3195  // This includes arrays of objects with address space qualifiers, but not
3196  // automatic variables that point to other address spaces.
3197  // ISO/IEC TR 18037 S5.1.2
3198  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3199    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3200    return NewVD->setInvalidDecl();
3201  }
3202
3203  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3204      && !NewVD->hasAttr<BlocksAttr>())
3205    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3206
3207  bool isVM = T->isVariablyModifiedType();
3208  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3209      NewVD->hasAttr<BlocksAttr>())
3210    getCurFunction()->setHasBranchProtectedScope();
3211
3212  if ((isVM && NewVD->hasLinkage()) ||
3213      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3214    bool SizeIsNegative;
3215    llvm::APSInt Oversized;
3216    QualType FixedTy =
3217        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3218                                            Oversized);
3219
3220    if (FixedTy.isNull() && T->isVariableArrayType()) {
3221      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3222      // FIXME: This won't give the correct result for
3223      // int a[10][n];
3224      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3225
3226      if (NewVD->isFileVarDecl())
3227        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3228        << SizeRange;
3229      else if (NewVD->getStorageClass() == SC_Static)
3230        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3231        << SizeRange;
3232      else
3233        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3234        << SizeRange;
3235      return NewVD->setInvalidDecl();
3236    }
3237
3238    if (FixedTy.isNull()) {
3239      if (NewVD->isFileVarDecl())
3240        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3241      else
3242        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3243      return NewVD->setInvalidDecl();
3244    }
3245
3246    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3247    NewVD->setType(FixedTy);
3248  }
3249
3250  if (Previous.empty() && NewVD->isExternC()) {
3251    // Since we did not find anything by this name and we're declaring
3252    // an extern "C" variable, look for a non-visible extern "C"
3253    // declaration with the same name.
3254    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3255      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3256    if (Pos != LocallyScopedExternalDecls.end())
3257      Previous.addDecl(Pos->second);
3258  }
3259
3260  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3261    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3262      << T;
3263    return NewVD->setInvalidDecl();
3264  }
3265
3266  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3267    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3268    return NewVD->setInvalidDecl();
3269  }
3270
3271  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3272    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3273    return NewVD->setInvalidDecl();
3274  }
3275
3276  // Function pointers and references cannot have qualified function type, only
3277  // function pointer-to-members can do that.
3278  QualType Pointee;
3279  unsigned PtrOrRef = 0;
3280  if (const PointerType *Ptr = T->getAs<PointerType>())
3281    Pointee = Ptr->getPointeeType();
3282  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3283    Pointee = Ref->getPointeeType();
3284    PtrOrRef = 1;
3285  }
3286  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3287      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3288    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3289        << PtrOrRef;
3290    return NewVD->setInvalidDecl();
3291  }
3292
3293  if (!Previous.empty()) {
3294    Redeclaration = true;
3295    MergeVarDecl(NewVD, Previous);
3296  }
3297}
3298
3299/// \brief Data used with FindOverriddenMethod
3300struct FindOverriddenMethodData {
3301  Sema *S;
3302  CXXMethodDecl *Method;
3303};
3304
3305/// \brief Member lookup function that determines whether a given C++
3306/// method overrides a method in a base class, to be used with
3307/// CXXRecordDecl::lookupInBases().
3308static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3309                                 CXXBasePath &Path,
3310                                 void *UserData) {
3311  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3312
3313  FindOverriddenMethodData *Data
3314    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3315
3316  DeclarationName Name = Data->Method->getDeclName();
3317
3318  // FIXME: Do we care about other names here too?
3319  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3320    // We really want to find the base class destructor here.
3321    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3322    CanQualType CT = Data->S->Context.getCanonicalType(T);
3323
3324    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3325  }
3326
3327  for (Path.Decls = BaseRecord->lookup(Name);
3328       Path.Decls.first != Path.Decls.second;
3329       ++Path.Decls.first) {
3330    NamedDecl *D = *Path.Decls.first;
3331    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3332      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3333        return true;
3334    }
3335  }
3336
3337  return false;
3338}
3339
3340/// AddOverriddenMethods - See if a method overrides any in the base classes,
3341/// and if so, check that it's a valid override and remember it.
3342bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3343  // Look for virtual methods in base classes that this method might override.
3344  CXXBasePaths Paths;
3345  FindOverriddenMethodData Data;
3346  Data.Method = MD;
3347  Data.S = this;
3348  bool AddedAny = false;
3349  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3350    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3351         E = Paths.found_decls_end(); I != E; ++I) {
3352      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3353        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3354            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3355            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3356          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3357          AddedAny = true;
3358        }
3359      }
3360    }
3361  }
3362
3363  return AddedAny;
3364}
3365
3366static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3367  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3368                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3369  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3370  assert(!Prev.isAmbiguous() &&
3371         "Cannot have an ambiguity in previous-declaration lookup");
3372  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3373       Func != FuncEnd; ++Func) {
3374    if (isa<FunctionDecl>(*Func) &&
3375        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3376      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3377  }
3378}
3379
3380/// CheckClassMemberNameAttributes - Check for class member name checking
3381/// attributes according to [dcl.attr.override]
3382static void
3383CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3384  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3385  if (!MD || !MD->isVirtual())
3386    return;
3387
3388  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3389  bool HasOverriddenMethods =
3390    MD->begin_overridden_methods() != MD->end_overridden_methods();
3391
3392  /// C++ [dcl.attr.override]p2:
3393  ///   If a virtual member function f is marked override and does not override
3394  ///   a member function of a base class the program is ill-formed.
3395  if (HasOverrideAttr && !HasOverriddenMethods) {
3396    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3397      << MD->getDeclName();
3398    return;
3399  }
3400
3401  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3402    return;
3403
3404  /// C++ [dcl.attr.override]p6:
3405  ///   In a class definition marked base_check, if a virtual member function
3406  ///    that is neither implicitly-declared nor a destructor overrides a
3407  ///    member function of a base class and it is not marked override, the
3408  ///    program is ill-formed.
3409  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3410      !isa<CXXDestructorDecl>(MD)) {
3411    llvm::SmallVector<const CXXMethodDecl*, 4>
3412      OverriddenMethods(MD->begin_overridden_methods(),
3413                        MD->end_overridden_methods());
3414
3415    SemaRef.Diag(MD->getLocation(),
3416                 diag::err_function_overriding_without_override)
3417      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3418
3419    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3420      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3421                   diag::note_overridden_virtual_function);
3422  }
3423}
3424
3425NamedDecl*
3426Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3427                              QualType R, TypeSourceInfo *TInfo,
3428                              LookupResult &Previous,
3429                              MultiTemplateParamsArg TemplateParamLists,
3430                              bool IsFunctionDefinition, bool &Redeclaration) {
3431  assert(R.getTypePtr()->isFunctionType());
3432
3433  // TODO: consider using NameInfo for diagnostic.
3434  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3435  DeclarationName Name = NameInfo.getName();
3436  FunctionDecl::StorageClass SC = SC_None;
3437  switch (D.getDeclSpec().getStorageClassSpec()) {
3438  default: assert(0 && "Unknown storage class!");
3439  case DeclSpec::SCS_auto:
3440  case DeclSpec::SCS_register:
3441  case DeclSpec::SCS_mutable:
3442    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3443         diag::err_typecheck_sclass_func);
3444    D.setInvalidType();
3445    break;
3446  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3447  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3448  case DeclSpec::SCS_static: {
3449    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3450      // C99 6.7.1p5:
3451      //   The declaration of an identifier for a function that has
3452      //   block scope shall have no explicit storage-class specifier
3453      //   other than extern
3454      // See also (C++ [dcl.stc]p4).
3455      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3456           diag::err_static_block_func);
3457      SC = SC_None;
3458    } else
3459      SC = SC_Static;
3460    break;
3461  }
3462  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3463  }
3464
3465  if (D.getDeclSpec().isThreadSpecified())
3466    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3467
3468  // Do not allow returning a objc interface by-value.
3469  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3470    Diag(D.getIdentifierLoc(),
3471         diag::err_object_cannot_be_passed_returned_by_value) << 0
3472    << R->getAs<FunctionType>()->getResultType();
3473    D.setInvalidType();
3474  }
3475
3476  FunctionDecl *NewFD;
3477  bool isInline = D.getDeclSpec().isInlineSpecified();
3478  bool isFriend = false;
3479  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3480  FunctionDecl::StorageClass SCAsWritten
3481    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3482  FunctionTemplateDecl *FunctionTemplate = 0;
3483  bool isExplicitSpecialization = false;
3484  bool isFunctionTemplateSpecialization = false;
3485  unsigned NumMatchedTemplateParamLists = 0;
3486
3487  if (!getLangOptions().CPlusPlus) {
3488    // Determine whether the function was written with a
3489    // prototype. This true when:
3490    //   - there is a prototype in the declarator, or
3491    //   - the type R of the function is some kind of typedef or other reference
3492    //     to a type name (which eventually refers to a function type).
3493    bool HasPrototype =
3494    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3495    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3496
3497    NewFD = FunctionDecl::Create(Context, DC,
3498                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3499                                 HasPrototype);
3500    if (D.isInvalidType())
3501      NewFD->setInvalidDecl();
3502
3503    // Set the lexical context.
3504    NewFD->setLexicalDeclContext(CurContext);
3505    // Filter out previous declarations that don't match the scope.
3506    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3507  } else {
3508    isFriend = D.getDeclSpec().isFriendSpecified();
3509    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3510    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3511    bool isVirtualOkay = false;
3512
3513    // Check that the return type is not an abstract class type.
3514    // For record types, this is done by the AbstractClassUsageDiagnoser once
3515    // the class has been completely parsed.
3516    if (!DC->isRecord() &&
3517      RequireNonAbstractType(D.getIdentifierLoc(),
3518                             R->getAs<FunctionType>()->getResultType(),
3519                             diag::err_abstract_type_in_decl,
3520                             AbstractReturnType))
3521      D.setInvalidType();
3522
3523
3524    if (isFriend) {
3525      // C++ [class.friend]p5
3526      //   A function can be defined in a friend declaration of a
3527      //   class . . . . Such a function is implicitly inline.
3528      isInline |= IsFunctionDefinition;
3529    }
3530
3531    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3532      // This is a C++ constructor declaration.
3533      assert(DC->isRecord() &&
3534             "Constructors can only be declared in a member context");
3535
3536      R = CheckConstructorDeclarator(D, R, SC);
3537
3538      // Create the new declaration
3539      NewFD = CXXConstructorDecl::Create(Context,
3540                                         cast<CXXRecordDecl>(DC),
3541                                         NameInfo, R, TInfo,
3542                                         isExplicit, isInline,
3543                                         /*isImplicitlyDeclared=*/false);
3544    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3545      // This is a C++ destructor declaration.
3546      if (DC->isRecord()) {
3547        R = CheckDestructorDeclarator(D, R, SC);
3548
3549        NewFD = CXXDestructorDecl::Create(Context,
3550                                          cast<CXXRecordDecl>(DC),
3551                                          NameInfo, R, TInfo,
3552                                          isInline,
3553                                          /*isImplicitlyDeclared=*/false);
3554        isVirtualOkay = true;
3555      } else {
3556        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3557
3558        // Create a FunctionDecl to satisfy the function definition parsing
3559        // code path.
3560        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3561                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3562                                     /*hasPrototype=*/true);
3563        D.setInvalidType();
3564      }
3565    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3566      if (!DC->isRecord()) {
3567        Diag(D.getIdentifierLoc(),
3568             diag::err_conv_function_not_member);
3569        return 0;
3570      }
3571
3572      CheckConversionDeclarator(D, R, SC);
3573      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3574                                        NameInfo, R, TInfo,
3575                                        isInline, isExplicit);
3576
3577      isVirtualOkay = true;
3578    } else if (DC->isRecord()) {
3579      // If the of the function is the same as the name of the record, then this
3580      // must be an invalid constructor that has a return type.
3581      // (The parser checks for a return type and makes the declarator a
3582      // constructor if it has no return type).
3583      // must have an invalid constructor that has a return type
3584      if (Name.getAsIdentifierInfo() &&
3585          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3586        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3587          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3588          << SourceRange(D.getIdentifierLoc());
3589        return 0;
3590      }
3591
3592      bool isStatic = SC == SC_Static;
3593
3594      // [class.free]p1:
3595      // Any allocation function for a class T is a static member
3596      // (even if not explicitly declared static).
3597      if (Name.getCXXOverloadedOperator() == OO_New ||
3598          Name.getCXXOverloadedOperator() == OO_Array_New)
3599        isStatic = true;
3600
3601      // [class.free]p6 Any deallocation function for a class X is a static member
3602      // (even if not explicitly declared static).
3603      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3604          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3605        isStatic = true;
3606
3607      // This is a C++ method declaration.
3608      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3609                                    NameInfo, R, TInfo,
3610                                    isStatic, SCAsWritten, isInline);
3611
3612      isVirtualOkay = !isStatic;
3613    } else {
3614      // Determine whether the function was written with a
3615      // prototype. This true when:
3616      //   - we're in C++ (where every function has a prototype),
3617      NewFD = FunctionDecl::Create(Context, DC,
3618                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3619                                   true/*HasPrototype*/);
3620    }
3621    SetNestedNameSpecifier(NewFD, D);
3622    isExplicitSpecialization = false;
3623    isFunctionTemplateSpecialization = false;
3624    NumMatchedTemplateParamLists = TemplateParamLists.size();
3625    if (D.isInvalidType())
3626      NewFD->setInvalidDecl();
3627
3628    // Set the lexical context. If the declarator has a C++
3629    // scope specifier, or is the object of a friend declaration, the
3630    // lexical context will be different from the semantic context.
3631    NewFD->setLexicalDeclContext(CurContext);
3632
3633    // Match up the template parameter lists with the scope specifier, then
3634    // determine whether we have a template or a template specialization.
3635    bool Invalid = false;
3636    if (TemplateParameterList *TemplateParams
3637        = MatchTemplateParametersToScopeSpecifier(
3638                                  D.getDeclSpec().getSourceRange().getBegin(),
3639                                  D.getCXXScopeSpec(),
3640                                  TemplateParamLists.get(),
3641                                  TemplateParamLists.size(),
3642                                  isFriend,
3643                                  isExplicitSpecialization,
3644                                  Invalid)) {
3645          // All but one template parameter lists have been matching.
3646          --NumMatchedTemplateParamLists;
3647
3648          if (TemplateParams->size() > 0) {
3649            // This is a function template
3650
3651            // Check that we can declare a template here.
3652            if (CheckTemplateDeclScope(S, TemplateParams))
3653              return 0;
3654
3655            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3656                                                      NewFD->getLocation(),
3657                                                      Name, TemplateParams,
3658                                                      NewFD);
3659            FunctionTemplate->setLexicalDeclContext(CurContext);
3660            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3661          } else {
3662            // This is a function template specialization.
3663            isFunctionTemplateSpecialization = true;
3664
3665            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3666            if (isFriend && isFunctionTemplateSpecialization) {
3667              // We want to remove the "template<>", found here.
3668              SourceRange RemoveRange = TemplateParams->getSourceRange();
3669
3670              // If we remove the template<> and the name is not a
3671              // template-id, we're actually silently creating a problem:
3672              // the friend declaration will refer to an untemplated decl,
3673              // and clearly the user wants a template specialization.  So
3674              // we need to insert '<>' after the name.
3675              SourceLocation InsertLoc;
3676              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3677                InsertLoc = D.getName().getSourceRange().getEnd();
3678                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3679              }
3680
3681              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3682              << Name << RemoveRange
3683              << FixItHint::CreateRemoval(RemoveRange)
3684              << FixItHint::CreateInsertion(InsertLoc, "<>");
3685            }
3686          }
3687        }
3688
3689    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3690      NewFD->setTemplateParameterListsInfo(Context,
3691                                           NumMatchedTemplateParamLists,
3692                                           TemplateParamLists.release());
3693    }
3694
3695    if (Invalid) {
3696      NewFD->setInvalidDecl();
3697      if (FunctionTemplate)
3698        FunctionTemplate->setInvalidDecl();
3699    }
3700
3701    // C++ [dcl.fct.spec]p5:
3702    //   The virtual specifier shall only be used in declarations of
3703    //   nonstatic class member functions that appear within a
3704    //   member-specification of a class declaration; see 10.3.
3705    //
3706    if (isVirtual && !NewFD->isInvalidDecl()) {
3707      if (!isVirtualOkay) {
3708        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3709             diag::err_virtual_non_function);
3710      } else if (!CurContext->isRecord()) {
3711        // 'virtual' was specified outside of the class.
3712        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3713          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3714      } else {
3715        // Okay: Add virtual to the method.
3716        NewFD->setVirtualAsWritten(true);
3717      }
3718    }
3719
3720    // C++ [dcl.fct.spec]p3:
3721    //  The inline specifier shall not appear on a block scope function declaration.
3722    if (isInline && !NewFD->isInvalidDecl()) {
3723      if (CurContext->isFunctionOrMethod()) {
3724        // 'inline' is not allowed on block scope function declaration.
3725        Diag(D.getDeclSpec().getInlineSpecLoc(),
3726             diag::err_inline_declaration_block_scope) << Name
3727          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3728      }
3729    }
3730
3731    // C++ [dcl.fct.spec]p6:
3732    //  The explicit specifier shall be used only in the declaration of a
3733    //  constructor or conversion function within its class definition; see 12.3.1
3734    //  and 12.3.2.
3735    if (isExplicit && !NewFD->isInvalidDecl()) {
3736      if (!CurContext->isRecord()) {
3737        // 'explicit' was specified outside of the class.
3738        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3739             diag::err_explicit_out_of_class)
3740          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3741      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3742                 !isa<CXXConversionDecl>(NewFD)) {
3743        // 'explicit' was specified on a function that wasn't a constructor
3744        // or conversion function.
3745        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3746             diag::err_explicit_non_ctor_or_conv_function)
3747          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3748      }
3749    }
3750
3751    // Filter out previous declarations that don't match the scope.
3752    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3753
3754    if (isFriend) {
3755      // For now, claim that the objects have no previous declaration.
3756      if (FunctionTemplate) {
3757        FunctionTemplate->setObjectOfFriendDecl(false);
3758        FunctionTemplate->setAccess(AS_public);
3759      }
3760      NewFD->setObjectOfFriendDecl(false);
3761      NewFD->setAccess(AS_public);
3762    }
3763
3764    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3765      // A method is implicitly inline if it's defined in its class
3766      // definition.
3767      NewFD->setImplicitlyInline();
3768    }
3769
3770    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3771        !CurContext->isRecord()) {
3772      // C++ [class.static]p1:
3773      //   A data or function member of a class may be declared static
3774      //   in a class definition, in which case it is a static member of
3775      //   the class.
3776
3777      // Complain about the 'static' specifier if it's on an out-of-line
3778      // member function definition.
3779      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3780           diag::err_static_out_of_line)
3781        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3782    }
3783  }
3784
3785  // Handle GNU asm-label extension (encoded as an attribute).
3786  if (Expr *E = (Expr*) D.getAsmLabel()) {
3787    // The parser guarantees this is a string.
3788    StringLiteral *SE = cast<StringLiteral>(E);
3789    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3790                                                SE->getString()));
3791  }
3792
3793  // Copy the parameter declarations from the declarator D to the function
3794  // declaration NewFD, if they are available.  First scavenge them into Params.
3795  llvm::SmallVector<ParmVarDecl*, 16> Params;
3796  if (D.isFunctionDeclarator()) {
3797    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3798
3799    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3800    // function that takes no arguments, not a function that takes a
3801    // single void argument.
3802    // We let through "const void" here because Sema::GetTypeForDeclarator
3803    // already checks for that case.
3804    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3805        FTI.ArgInfo[0].Param &&
3806        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3807      // Empty arg list, don't push any params.
3808      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3809
3810      // In C++, the empty parameter-type-list must be spelled "void"; a
3811      // typedef of void is not permitted.
3812      if (getLangOptions().CPlusPlus &&
3813          Param->getType().getUnqualifiedType() != Context.VoidTy)
3814        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3815    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3816      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3817        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3818        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3819        Param->setDeclContext(NewFD);
3820        Params.push_back(Param);
3821
3822        if (Param->isInvalidDecl())
3823          NewFD->setInvalidDecl();
3824      }
3825    }
3826
3827  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3828    // When we're declaring a function with a typedef, typeof, etc as in the
3829    // following example, we'll need to synthesize (unnamed)
3830    // parameters for use in the declaration.
3831    //
3832    // @code
3833    // typedef void fn(int);
3834    // fn f;
3835    // @endcode
3836
3837    // Synthesize a parameter for each argument type.
3838    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3839         AE = FT->arg_type_end(); AI != AE; ++AI) {
3840      ParmVarDecl *Param =
3841        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3842      Params.push_back(Param);
3843    }
3844  } else {
3845    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3846           "Should not need args for typedef of non-prototype fn");
3847  }
3848  // Finally, we know we have the right number of parameters, install them.
3849  NewFD->setParams(Params.data(), Params.size());
3850
3851  bool OverloadableAttrRequired=false; // FIXME: HACK!
3852  if (!getLangOptions().CPlusPlus) {
3853    // Perform semantic checking on the function declaration.
3854    bool isExplctSpecialization=false;
3855    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3856                             Redeclaration,
3857                             /*FIXME:*/OverloadableAttrRequired);
3858    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3859            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3860           "previous declaration set still overloaded");
3861  } else {
3862    // If the declarator is a template-id, translate the parser's template
3863    // argument list into our AST format.
3864    bool HasExplicitTemplateArgs = false;
3865    TemplateArgumentListInfo TemplateArgs;
3866    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3867      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3868      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3869      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3870      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3871                                         TemplateId->getTemplateArgs(),
3872                                         TemplateId->NumArgs);
3873      translateTemplateArguments(TemplateArgsPtr,
3874                                 TemplateArgs);
3875      TemplateArgsPtr.release();
3876
3877      HasExplicitTemplateArgs = true;
3878
3879      if (FunctionTemplate) {
3880        // FIXME: Diagnose function template with explicit template
3881        // arguments.
3882        HasExplicitTemplateArgs = false;
3883      } else if (!isFunctionTemplateSpecialization &&
3884                 !D.getDeclSpec().isFriendSpecified()) {
3885        // We have encountered something that the user meant to be a
3886        // specialization (because it has explicitly-specified template
3887        // arguments) but that was not introduced with a "template<>" (or had
3888        // too few of them).
3889        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3890          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3891          << FixItHint::CreateInsertion(
3892                                        D.getDeclSpec().getSourceRange().getBegin(),
3893                                                  "template<> ");
3894        isFunctionTemplateSpecialization = true;
3895      } else {
3896        // "friend void foo<>(int);" is an implicit specialization decl.
3897        isFunctionTemplateSpecialization = true;
3898      }
3899    } else if (isFriend && isFunctionTemplateSpecialization) {
3900      // This combination is only possible in a recovery case;  the user
3901      // wrote something like:
3902      //   template <> friend void foo(int);
3903      // which we're recovering from as if the user had written:
3904      //   friend void foo<>(int);
3905      // Go ahead and fake up a template id.
3906      HasExplicitTemplateArgs = true;
3907        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3908      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3909    }
3910
3911    // If it's a friend (and only if it's a friend), it's possible
3912    // that either the specialized function type or the specialized
3913    // template is dependent, and therefore matching will fail.  In
3914    // this case, don't check the specialization yet.
3915    if (isFunctionTemplateSpecialization && isFriend &&
3916        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3917      assert(HasExplicitTemplateArgs &&
3918             "friend function specialization without template args");
3919      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3920                                                       Previous))
3921        NewFD->setInvalidDecl();
3922    } else if (isFunctionTemplateSpecialization) {
3923      if (CheckFunctionTemplateSpecialization(NewFD,
3924                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3925                                              Previous))
3926        NewFD->setInvalidDecl();
3927    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3928      if (CheckMemberSpecialization(NewFD, Previous))
3929          NewFD->setInvalidDecl();
3930    }
3931
3932    // Perform semantic checking on the function declaration.
3933    bool flag_c_overloaded=false; // unused for c++
3934    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3935                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3936
3937    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3938            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3939           "previous declaration set still overloaded");
3940
3941    NamedDecl *PrincipalDecl = (FunctionTemplate
3942                                ? cast<NamedDecl>(FunctionTemplate)
3943                                : NewFD);
3944
3945    if (isFriend && Redeclaration) {
3946      AccessSpecifier Access = AS_public;
3947      if (!NewFD->isInvalidDecl())
3948        Access = NewFD->getPreviousDeclaration()->getAccess();
3949
3950      NewFD->setAccess(Access);
3951      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3952
3953      PrincipalDecl->setObjectOfFriendDecl(true);
3954    }
3955
3956    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3957        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3958      PrincipalDecl->setNonMemberOperator();
3959
3960    // If we have a function template, check the template parameter
3961    // list. This will check and merge default template arguments.
3962    if (FunctionTemplate) {
3963      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3964      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3965                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3966                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3967                                                  : TPC_FunctionTemplate);
3968    }
3969
3970    if (NewFD->isInvalidDecl()) {
3971      // Ignore all the rest of this.
3972    } else if (!Redeclaration) {
3973      // Fake up an access specifier if it's supposed to be a class member.
3974      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3975        NewFD->setAccess(AS_public);
3976
3977      // Qualified decls generally require a previous declaration.
3978      if (D.getCXXScopeSpec().isSet()) {
3979        // ...with the major exception of templated-scope or
3980        // dependent-scope friend declarations.
3981
3982        // TODO: we currently also suppress this check in dependent
3983        // contexts because (1) the parameter depth will be off when
3984        // matching friend templates and (2) we might actually be
3985        // selecting a friend based on a dependent factor.  But there
3986        // are situations where these conditions don't apply and we
3987        // can actually do this check immediately.
3988        if (isFriend &&
3989            (NumMatchedTemplateParamLists ||
3990             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3991             CurContext->isDependentContext())) {
3992              // ignore these
3993            } else {
3994              // The user tried to provide an out-of-line definition for a
3995              // function that is a member of a class or namespace, but there
3996              // was no such member function declared (C++ [class.mfct]p2,
3997              // C++ [namespace.memdef]p2). For example:
3998              //
3999              // class X {
4000              //   void f() const;
4001              // };
4002              //
4003              // void X::f() { } // ill-formed
4004              //
4005              // Complain about this problem, and attempt to suggest close
4006              // matches (e.g., those that differ only in cv-qualifiers and
4007              // whether the parameter types are references).
4008              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4009              << Name << DC << D.getCXXScopeSpec().getRange();
4010              NewFD->setInvalidDecl();
4011
4012              DiagnoseInvalidRedeclaration(*this, NewFD);
4013            }
4014
4015        // Unqualified local friend declarations are required to resolve
4016        // to something.
4017        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4018          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4019          NewFD->setInvalidDecl();
4020          DiagnoseInvalidRedeclaration(*this, NewFD);
4021        }
4022
4023    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4024               !isFriend && !isFunctionTemplateSpecialization &&
4025               !isExplicitSpecialization) {
4026      // An out-of-line member function declaration must also be a
4027      // definition (C++ [dcl.meaning]p1).
4028      // Note that this is not the case for explicit specializations of
4029      // function templates or member functions of class templates, per
4030      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4031      // for compatibility with old SWIG code which likes to generate them.
4032      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4033        << D.getCXXScopeSpec().getRange();
4034    }
4035  }
4036
4037
4038  // Handle attributes. We need to have merged decls when handling attributes
4039  // (for example to check for conflicts, etc).
4040  // FIXME: This needs to happen before we merge declarations. Then,
4041  // let attribute merging cope with attribute conflicts.
4042  ProcessDeclAttributes(S, NewFD, D);
4043
4044  // attributes declared post-definition are currently ignored
4045  // FIXME: This should happen during attribute merging
4046  if (Redeclaration && Previous.isSingleResult()) {
4047    const FunctionDecl *Def;
4048    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4049    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4050      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4051      Diag(Def->getLocation(), diag::note_previous_definition);
4052    }
4053  }
4054
4055  AddKnownFunctionAttributes(NewFD);
4056
4057  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4058    // If a function name is overloadable in C, then every function
4059    // with that name must be marked "overloadable".
4060    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4061      << Redeclaration << NewFD;
4062    if (!Previous.empty())
4063      Diag(Previous.getRepresentativeDecl()->getLocation(),
4064           diag::note_attribute_overloadable_prev_overload);
4065    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4066  }
4067
4068  if (NewFD->hasAttr<OverloadableAttr>() &&
4069      !NewFD->getType()->getAs<FunctionProtoType>()) {
4070    Diag(NewFD->getLocation(),
4071         diag::err_attribute_overloadable_no_prototype)
4072      << NewFD;
4073
4074    // Turn this into a variadic function with no parameters.
4075    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4076    FunctionProtoType::ExtProtoInfo EPI;
4077    EPI.Variadic = true;
4078    EPI.ExtInfo = FT->getExtInfo();
4079
4080    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4081    NewFD->setType(R);
4082  }
4083
4084  // If there's a #pragma GCC visibility in scope, and this isn't a class
4085  // member, set the visibility of this function.
4086  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4087    AddPushedVisibilityAttribute(NewFD);
4088
4089  // If this is a locally-scoped extern C function, update the
4090  // map of such names.
4091  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4092      && !NewFD->isInvalidDecl())
4093    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4094
4095  // Set this FunctionDecl's range up to the right paren.
4096  NewFD->setLocEnd(D.getSourceRange().getEnd());
4097
4098  if (getLangOptions().CPlusPlus) {
4099    if (FunctionTemplate) {
4100      if (NewFD->isInvalidDecl())
4101        FunctionTemplate->setInvalidDecl();
4102      return FunctionTemplate;
4103    }
4104    CheckClassMemberNameAttributes(*this, NewFD);
4105  }
4106
4107  MarkUnusedFileScopedDecl(NewFD);
4108  return NewFD;
4109}
4110
4111/// \brief Perform semantic checking of a new function declaration.
4112///
4113/// Performs semantic analysis of the new function declaration
4114/// NewFD. This routine performs all semantic checking that does not
4115/// require the actual declarator involved in the declaration, and is
4116/// used both for the declaration of functions as they are parsed
4117/// (called via ActOnDeclarator) and for the declaration of functions
4118/// that have been instantiated via C++ template instantiation (called
4119/// via InstantiateDecl).
4120///
4121/// \param IsExplicitSpecialiation whether this new function declaration is
4122/// an explicit specialization of the previous declaration.
4123///
4124/// This sets NewFD->isInvalidDecl() to true if there was an error.
4125void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4126                                    LookupResult &Previous,
4127                                    bool IsExplicitSpecialization,
4128                                    bool &Redeclaration,
4129                                    bool &OverloadableAttrRequired) {
4130  // If NewFD is already known erroneous, don't do any of this checking.
4131  if (NewFD->isInvalidDecl()) {
4132    // If this is a class member, mark the class invalid immediately.
4133    // This avoids some consistency errors later.
4134    if (isa<CXXMethodDecl>(NewFD))
4135      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4136
4137    return;
4138  }
4139
4140  if (NewFD->getResultType()->isVariablyModifiedType()) {
4141    // Functions returning a variably modified type violate C99 6.7.5.2p2
4142    // because all functions have linkage.
4143    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4144    return NewFD->setInvalidDecl();
4145  }
4146
4147  if (NewFD->isMain())
4148    CheckMain(NewFD);
4149
4150  // Check for a previous declaration of this name.
4151  if (Previous.empty() && NewFD->isExternC()) {
4152    // Since we did not find anything by this name and we're declaring
4153    // an extern "C" function, look for a non-visible extern "C"
4154    // declaration with the same name.
4155    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4156      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4157    if (Pos != LocallyScopedExternalDecls.end())
4158      Previous.addDecl(Pos->second);
4159  }
4160
4161  // Merge or overload the declaration with an existing declaration of
4162  // the same name, if appropriate.
4163  if (!Previous.empty()) {
4164    // Determine whether NewFD is an overload of PrevDecl or
4165    // a declaration that requires merging. If it's an overload,
4166    // there's no more work to do here; we'll just add the new
4167    // function to the scope.
4168
4169    NamedDecl *OldDecl = 0;
4170    if (!AllowOverloadingOfFunction(Previous, Context)) {
4171      Redeclaration = true;
4172      OldDecl = Previous.getFoundDecl();
4173    } else {
4174      if (!getLangOptions().CPlusPlus)
4175        OverloadableAttrRequired = true;
4176
4177      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4178                            /*NewIsUsingDecl*/ false)) {
4179      case Ovl_Match:
4180        Redeclaration = true;
4181        break;
4182
4183      case Ovl_NonFunction:
4184        Redeclaration = true;
4185        break;
4186
4187      case Ovl_Overload:
4188        Redeclaration = false;
4189        break;
4190      }
4191    }
4192
4193    if (Redeclaration) {
4194      // NewFD and OldDecl represent declarations that need to be
4195      // merged.
4196      if (MergeFunctionDecl(NewFD, OldDecl))
4197        return NewFD->setInvalidDecl();
4198
4199      Previous.clear();
4200      Previous.addDecl(OldDecl);
4201
4202      if (FunctionTemplateDecl *OldTemplateDecl
4203                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4204        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4205        FunctionTemplateDecl *NewTemplateDecl
4206          = NewFD->getDescribedFunctionTemplate();
4207        assert(NewTemplateDecl && "Template/non-template mismatch");
4208        if (CXXMethodDecl *Method
4209              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4210          Method->setAccess(OldTemplateDecl->getAccess());
4211          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4212        }
4213
4214        // If this is an explicit specialization of a member that is a function
4215        // template, mark it as a member specialization.
4216        if (IsExplicitSpecialization &&
4217            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4218          NewTemplateDecl->setMemberSpecialization();
4219          assert(OldTemplateDecl->isMemberSpecialization());
4220        }
4221      } else {
4222        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4223          NewFD->setAccess(OldDecl->getAccess());
4224        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4225      }
4226    }
4227  }
4228
4229  // Semantic checking for this function declaration (in isolation).
4230  if (getLangOptions().CPlusPlus) {
4231    // C++-specific checks.
4232    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4233      CheckConstructor(Constructor);
4234    } else if (CXXDestructorDecl *Destructor =
4235                dyn_cast<CXXDestructorDecl>(NewFD)) {
4236      CXXRecordDecl *Record = Destructor->getParent();
4237      QualType ClassType = Context.getTypeDeclType(Record);
4238
4239      // FIXME: Shouldn't we be able to perform this check even when the class
4240      // type is dependent? Both gcc and edg can handle that.
4241      if (!ClassType->isDependentType()) {
4242        DeclarationName Name
4243          = Context.DeclarationNames.getCXXDestructorName(
4244                                        Context.getCanonicalType(ClassType));
4245        if (NewFD->getDeclName() != Name) {
4246          Diag(NewFD->getLocation(), diag::err_destructor_name);
4247          return NewFD->setInvalidDecl();
4248        }
4249      }
4250    } else if (CXXConversionDecl *Conversion
4251               = dyn_cast<CXXConversionDecl>(NewFD)) {
4252      ActOnConversionDeclarator(Conversion);
4253    }
4254
4255    // Find any virtual functions that this function overrides.
4256    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4257      if (!Method->isFunctionTemplateSpecialization() &&
4258          !Method->getDescribedFunctionTemplate()) {
4259        if (AddOverriddenMethods(Method->getParent(), Method)) {
4260          // If the function was marked as "static", we have a problem.
4261          if (NewFD->getStorageClass() == SC_Static) {
4262            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4263              << NewFD->getDeclName();
4264            for (CXXMethodDecl::method_iterator
4265                      Overridden = Method->begin_overridden_methods(),
4266                   OverriddenEnd = Method->end_overridden_methods();
4267                 Overridden != OverriddenEnd;
4268                 ++Overridden) {
4269              Diag((*Overridden)->getLocation(),
4270                   diag::note_overridden_virtual_function);
4271            }
4272          }
4273        }
4274      }
4275    }
4276
4277    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4278    if (NewFD->isOverloadedOperator() &&
4279        CheckOverloadedOperatorDeclaration(NewFD))
4280      return NewFD->setInvalidDecl();
4281
4282    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4283    if (NewFD->getLiteralIdentifier() &&
4284        CheckLiteralOperatorDeclaration(NewFD))
4285      return NewFD->setInvalidDecl();
4286
4287    // In C++, check default arguments now that we have merged decls. Unless
4288    // the lexical context is the class, because in this case this is done
4289    // during delayed parsing anyway.
4290    if (!CurContext->isRecord())
4291      CheckCXXDefaultArguments(NewFD);
4292
4293    // If this function declares a builtin function, check the type of this
4294    // declaration against the expected type for the builtin.
4295    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4296      ASTContext::GetBuiltinTypeError Error;
4297      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4298      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4299        // The type of this function differs from the type of the builtin,
4300        // so forget about the builtin entirely.
4301        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4302      }
4303    }
4304  }
4305}
4306
4307void Sema::CheckMain(FunctionDecl* FD) {
4308  // C++ [basic.start.main]p3:  A program that declares main to be inline
4309  //   or static is ill-formed.
4310  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4311  //   shall not appear in a declaration of main.
4312  // static main is not an error under C99, but we should warn about it.
4313  bool isInline = FD->isInlineSpecified();
4314  bool isStatic = FD->getStorageClass() == SC_Static;
4315  if (isInline || isStatic) {
4316    unsigned diagID = diag::warn_unusual_main_decl;
4317    if (isInline || getLangOptions().CPlusPlus)
4318      diagID = diag::err_unusual_main_decl;
4319
4320    int which = isStatic + (isInline << 1) - 1;
4321    Diag(FD->getLocation(), diagID) << which;
4322  }
4323
4324  QualType T = FD->getType();
4325  assert(T->isFunctionType() && "function decl is not of function type");
4326  const FunctionType* FT = T->getAs<FunctionType>();
4327
4328  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4329    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4330    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4331    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4332                                          diag::err_main_returns_nonint);
4333    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4334      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4335                                        "int");
4336    }
4337    FD->setInvalidDecl(true);
4338  }
4339
4340  // Treat protoless main() as nullary.
4341  if (isa<FunctionNoProtoType>(FT)) return;
4342
4343  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4344  unsigned nparams = FTP->getNumArgs();
4345  assert(FD->getNumParams() == nparams);
4346
4347  bool HasExtraParameters = (nparams > 3);
4348
4349  // Darwin passes an undocumented fourth argument of type char**.  If
4350  // other platforms start sprouting these, the logic below will start
4351  // getting shifty.
4352  if (nparams == 4 &&
4353      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4354    HasExtraParameters = false;
4355
4356  if (HasExtraParameters) {
4357    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4358    FD->setInvalidDecl(true);
4359    nparams = 3;
4360  }
4361
4362  // FIXME: a lot of the following diagnostics would be improved
4363  // if we had some location information about types.
4364
4365  QualType CharPP =
4366    Context.getPointerType(Context.getPointerType(Context.CharTy));
4367  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4368
4369  for (unsigned i = 0; i < nparams; ++i) {
4370    QualType AT = FTP->getArgType(i);
4371
4372    bool mismatch = true;
4373
4374    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4375      mismatch = false;
4376    else if (Expected[i] == CharPP) {
4377      // As an extension, the following forms are okay:
4378      //   char const **
4379      //   char const * const *
4380      //   char * const *
4381
4382      QualifierCollector qs;
4383      const PointerType* PT;
4384      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4385          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4386          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4387        qs.removeConst();
4388        mismatch = !qs.empty();
4389      }
4390    }
4391
4392    if (mismatch) {
4393      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4394      // TODO: suggest replacing given type with expected type
4395      FD->setInvalidDecl(true);
4396    }
4397  }
4398
4399  if (nparams == 1 && !FD->isInvalidDecl()) {
4400    Diag(FD->getLocation(), diag::warn_main_one_arg);
4401  }
4402
4403  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4404    Diag(FD->getLocation(), diag::err_main_template_decl);
4405    FD->setInvalidDecl();
4406  }
4407}
4408
4409bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4410  // FIXME: Need strict checking.  In C89, we need to check for
4411  // any assignment, increment, decrement, function-calls, or
4412  // commas outside of a sizeof.  In C99, it's the same list,
4413  // except that the aforementioned are allowed in unevaluated
4414  // expressions.  Everything else falls under the
4415  // "may accept other forms of constant expressions" exception.
4416  // (We never end up here for C++, so the constant expression
4417  // rules there don't matter.)
4418  if (Init->isConstantInitializer(Context, false))
4419    return false;
4420  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4421    << Init->getSourceRange();
4422  return true;
4423}
4424
4425void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4426  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4427}
4428
4429/// AddInitializerToDecl - Adds the initializer Init to the
4430/// declaration dcl. If DirectInit is true, this is C++ direct
4431/// initialization rather than copy initialization.
4432void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4433  // If there is no declaration, there was an error parsing it.  Just ignore
4434  // the initializer.
4435  if (RealDecl == 0)
4436    return;
4437
4438  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4439    // With declarators parsed the way they are, the parser cannot
4440    // distinguish between a normal initializer and a pure-specifier.
4441    // Thus this grotesque test.
4442    IntegerLiteral *IL;
4443    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4444        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4445      CheckPureMethod(Method, Init->getSourceRange());
4446    else {
4447      Diag(Method->getLocation(), diag::err_member_function_initialization)
4448        << Method->getDeclName() << Init->getSourceRange();
4449      Method->setInvalidDecl();
4450    }
4451    return;
4452  }
4453
4454  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4455  if (!VDecl) {
4456    if (getLangOptions().CPlusPlus &&
4457        RealDecl->getLexicalDeclContext()->isRecord() &&
4458        isa<NamedDecl>(RealDecl))
4459      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4460    else
4461      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4462    RealDecl->setInvalidDecl();
4463    return;
4464  }
4465
4466
4467
4468  // A definition must end up with a complete type, which means it must be
4469  // complete with the restriction that an array type might be completed by the
4470  // initializer; note that later code assumes this restriction.
4471  QualType BaseDeclType = VDecl->getType();
4472  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4473    BaseDeclType = Array->getElementType();
4474  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4475                          diag::err_typecheck_decl_incomplete_type)) {
4476    RealDecl->setInvalidDecl();
4477    return;
4478  }
4479
4480  // The variable can not have an abstract class type.
4481  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4482                             diag::err_abstract_type_in_decl,
4483                             AbstractVariableType))
4484    VDecl->setInvalidDecl();
4485
4486  const VarDecl *Def;
4487  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4488    Diag(VDecl->getLocation(), diag::err_redefinition)
4489      << VDecl->getDeclName();
4490    Diag(Def->getLocation(), diag::note_previous_definition);
4491    VDecl->setInvalidDecl();
4492    return;
4493  }
4494
4495  const VarDecl* PrevInit = 0;
4496  if (getLangOptions().CPlusPlus) {
4497    // C++ [class.static.data]p4
4498    //   If a static data member is of const integral or const
4499    //   enumeration type, its declaration in the class definition can
4500    //   specify a constant-initializer which shall be an integral
4501    //   constant expression (5.19). In that case, the member can appear
4502    //   in integral constant expressions. The member shall still be
4503    //   defined in a namespace scope if it is used in the program and the
4504    //   namespace scope definition shall not contain an initializer.
4505    //
4506    // We already performed a redefinition check above, but for static
4507    // data members we also need to check whether there was an in-class
4508    // declaration with an initializer.
4509    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4510      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4511      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4512      return;
4513    }
4514
4515    if (VDecl->hasLocalStorage())
4516      getCurFunction()->setHasBranchProtectedScope();
4517
4518    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4519      VDecl->setInvalidDecl();
4520      return;
4521    }
4522  }
4523
4524  // Capture the variable that is being initialized and the style of
4525  // initialization.
4526  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4527
4528  // FIXME: Poor source location information.
4529  InitializationKind Kind
4530    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4531                                                   Init->getLocStart(),
4532                                                   Init->getLocEnd())
4533                : InitializationKind::CreateCopy(VDecl->getLocation(),
4534                                                 Init->getLocStart());
4535
4536  // Get the decls type and save a reference for later, since
4537  // CheckInitializerTypes may change it.
4538  QualType DclT = VDecl->getType(), SavT = DclT;
4539  if (VDecl->isLocalVarDecl()) {
4540    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4541      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4542      VDecl->setInvalidDecl();
4543    } else if (!VDecl->isInvalidDecl()) {
4544      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4545      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4546                                                MultiExprArg(*this, &Init, 1),
4547                                                &DclT);
4548      if (Result.isInvalid()) {
4549        VDecl->setInvalidDecl();
4550        return;
4551      }
4552
4553      Init = Result.takeAs<Expr>();
4554
4555      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4556      // Don't check invalid declarations to avoid emitting useless diagnostics.
4557      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4558        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4559          CheckForConstantInitializer(Init, DclT);
4560      }
4561    }
4562  } else if (VDecl->isStaticDataMember() &&
4563             VDecl->getLexicalDeclContext()->isRecord()) {
4564    // This is an in-class initialization for a static data member, e.g.,
4565    //
4566    // struct S {
4567    //   static const int value = 17;
4568    // };
4569
4570    // Try to perform the initialization regardless.
4571    if (!VDecl->isInvalidDecl()) {
4572      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4573      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4574                                          MultiExprArg(*this, &Init, 1),
4575                                          &DclT);
4576      if (Result.isInvalid()) {
4577        VDecl->setInvalidDecl();
4578        return;
4579      }
4580
4581      Init = Result.takeAs<Expr>();
4582    }
4583
4584    // C++ [class.mem]p4:
4585    //   A member-declarator can contain a constant-initializer only
4586    //   if it declares a static member (9.4) of const integral or
4587    //   const enumeration type, see 9.4.2.
4588    QualType T = VDecl->getType();
4589
4590    // Do nothing on dependent types.
4591    if (T->isDependentType()) {
4592
4593    // Require constness.
4594    } else if (!T.isConstQualified()) {
4595      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4596        << Init->getSourceRange();
4597      VDecl->setInvalidDecl();
4598
4599    // We allow integer constant expressions in all cases.
4600    } else if (T->isIntegralOrEnumerationType()) {
4601      if (!Init->isValueDependent()) {
4602        // Check whether the expression is a constant expression.
4603        llvm::APSInt Value;
4604        SourceLocation Loc;
4605        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4606          Diag(Loc, diag::err_in_class_initializer_non_constant)
4607            << Init->getSourceRange();
4608          VDecl->setInvalidDecl();
4609        }
4610      }
4611
4612    // We allow floating-point constants as an extension in C++03, and
4613    // C++0x has far more complicated rules that we don't really
4614    // implement fully.
4615    } else {
4616      bool Allowed = false;
4617      if (getLangOptions().CPlusPlus0x) {
4618        Allowed = T->isLiteralType();
4619      } else if (T->isFloatingType()) { // also permits complex, which is ok
4620        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4621          << T << Init->getSourceRange();
4622        Allowed = true;
4623      }
4624
4625      if (!Allowed) {
4626        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4627          << T << Init->getSourceRange();
4628        VDecl->setInvalidDecl();
4629
4630      // TODO: there are probably expressions that pass here that shouldn't.
4631      } else if (!Init->isValueDependent() &&
4632                 !Init->isConstantInitializer(Context, false)) {
4633        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4634          << Init->getSourceRange();
4635        VDecl->setInvalidDecl();
4636      }
4637    }
4638  } else if (VDecl->isFileVarDecl()) {
4639    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4640        (!getLangOptions().CPlusPlus ||
4641         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4642      Diag(VDecl->getLocation(), diag::warn_extern_init);
4643    if (!VDecl->isInvalidDecl()) {
4644      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4645      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4646                                                MultiExprArg(*this, &Init, 1),
4647                                                &DclT);
4648      if (Result.isInvalid()) {
4649        VDecl->setInvalidDecl();
4650        return;
4651      }
4652
4653      Init = Result.takeAs<Expr>();
4654    }
4655
4656    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4657    // Don't check invalid declarations to avoid emitting useless diagnostics.
4658    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4659      // C99 6.7.8p4. All file scoped initializers need to be constant.
4660      CheckForConstantInitializer(Init, DclT);
4661    }
4662  }
4663  // If the type changed, it means we had an incomplete type that was
4664  // completed by the initializer. For example:
4665  //   int ary[] = { 1, 3, 5 };
4666  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4667  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4668    VDecl->setType(DclT);
4669    Init->setType(DclT);
4670  }
4671
4672
4673  // If this variable is a local declaration with record type, make sure it
4674  // doesn't have a flexible member initialization.  We only support this as a
4675  // global/static definition.
4676  if (VDecl->hasLocalStorage())
4677    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4678      if (RT->getDecl()->hasFlexibleArrayMember()) {
4679        // Check whether the initializer tries to initialize the flexible
4680        // array member itself to anything other than an empty initializer list.
4681        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4682          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4683                                         RT->getDecl()->field_end()) - 1;
4684          if (Index < ILE->getNumInits() &&
4685              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4686                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4687            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4688            VDecl->setInvalidDecl();
4689          }
4690        }
4691      }
4692
4693  // Check any implicit conversions within the expression.
4694  CheckImplicitConversions(Init, VDecl->getLocation());
4695
4696  Init = MaybeCreateExprWithCleanups(Init);
4697  // Attach the initializer to the decl.
4698  VDecl->setInit(Init);
4699
4700  if (getLangOptions().CPlusPlus) {
4701    if (!VDecl->isInvalidDecl() &&
4702        !VDecl->getDeclContext()->isDependentContext() &&
4703        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4704        !Init->isConstantInitializer(Context,
4705                                     VDecl->getType()->isReferenceType()))
4706      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4707        << Init->getSourceRange();
4708
4709    // Make sure we mark the destructor as used if necessary.
4710    QualType InitType = VDecl->getType();
4711    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4712      InitType = Context.getBaseElementType(Array);
4713    if (const RecordType *Record = InitType->getAs<RecordType>())
4714      FinalizeVarWithDestructor(VDecl, Record);
4715  }
4716
4717  return;
4718}
4719
4720/// ActOnInitializerError - Given that there was an error parsing an
4721/// initializer for the given declaration, try to return to some form
4722/// of sanity.
4723void Sema::ActOnInitializerError(Decl *D) {
4724  // Our main concern here is re-establishing invariants like "a
4725  // variable's type is either dependent or complete".
4726  if (!D || D->isInvalidDecl()) return;
4727
4728  VarDecl *VD = dyn_cast<VarDecl>(D);
4729  if (!VD) return;
4730
4731  QualType Ty = VD->getType();
4732  if (Ty->isDependentType()) return;
4733
4734  // Require a complete type.
4735  if (RequireCompleteType(VD->getLocation(),
4736                          Context.getBaseElementType(Ty),
4737                          diag::err_typecheck_decl_incomplete_type)) {
4738    VD->setInvalidDecl();
4739    return;
4740  }
4741
4742  // Require an abstract type.
4743  if (RequireNonAbstractType(VD->getLocation(), Ty,
4744                             diag::err_abstract_type_in_decl,
4745                             AbstractVariableType)) {
4746    VD->setInvalidDecl();
4747    return;
4748  }
4749
4750  // Don't bother complaining about constructors or destructors,
4751  // though.
4752}
4753
4754void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4755                                  bool TypeContainsUndeducedAuto) {
4756  // If there is no declaration, there was an error parsing it. Just ignore it.
4757  if (RealDecl == 0)
4758    return;
4759
4760  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4761    QualType Type = Var->getType();
4762
4763    // C++0x [dcl.spec.auto]p3
4764    if (TypeContainsUndeducedAuto) {
4765      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4766        << Var->getDeclName() << Type;
4767      Var->setInvalidDecl();
4768      return;
4769    }
4770
4771    switch (Var->isThisDeclarationADefinition()) {
4772    case VarDecl::Definition:
4773      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4774        break;
4775
4776      // We have an out-of-line definition of a static data member
4777      // that has an in-class initializer, so we type-check this like
4778      // a declaration.
4779      //
4780      // Fall through
4781
4782    case VarDecl::DeclarationOnly:
4783      // It's only a declaration.
4784
4785      // Block scope. C99 6.7p7: If an identifier for an object is
4786      // declared with no linkage (C99 6.2.2p6), the type for the
4787      // object shall be complete.
4788      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4789          !Var->getLinkage() && !Var->isInvalidDecl() &&
4790          RequireCompleteType(Var->getLocation(), Type,
4791                              diag::err_typecheck_decl_incomplete_type))
4792        Var->setInvalidDecl();
4793
4794      // Make sure that the type is not abstract.
4795      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4796          RequireNonAbstractType(Var->getLocation(), Type,
4797                                 diag::err_abstract_type_in_decl,
4798                                 AbstractVariableType))
4799        Var->setInvalidDecl();
4800      return;
4801
4802    case VarDecl::TentativeDefinition:
4803      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4804      // object that has file scope without an initializer, and without a
4805      // storage-class specifier or with the storage-class specifier "static",
4806      // constitutes a tentative definition. Note: A tentative definition with
4807      // external linkage is valid (C99 6.2.2p5).
4808      if (!Var->isInvalidDecl()) {
4809        if (const IncompleteArrayType *ArrayT
4810                                    = Context.getAsIncompleteArrayType(Type)) {
4811          if (RequireCompleteType(Var->getLocation(),
4812                                  ArrayT->getElementType(),
4813                                  diag::err_illegal_decl_array_incomplete_type))
4814            Var->setInvalidDecl();
4815        } else if (Var->getStorageClass() == SC_Static) {
4816          // C99 6.9.2p3: If the declaration of an identifier for an object is
4817          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4818          // declared type shall not be an incomplete type.
4819          // NOTE: code such as the following
4820          //     static struct s;
4821          //     struct s { int a; };
4822          // is accepted by gcc. Hence here we issue a warning instead of
4823          // an error and we do not invalidate the static declaration.
4824          // NOTE: to avoid multiple warnings, only check the first declaration.
4825          if (Var->getPreviousDeclaration() == 0)
4826            RequireCompleteType(Var->getLocation(), Type,
4827                                diag::ext_typecheck_decl_incomplete_type);
4828        }
4829      }
4830
4831      // Record the tentative definition; we're done.
4832      if (!Var->isInvalidDecl())
4833        TentativeDefinitions.push_back(Var);
4834      return;
4835    }
4836
4837    // Provide a specific diagnostic for uninitialized variable
4838    // definitions with incomplete array type.
4839    if (Type->isIncompleteArrayType()) {
4840      Diag(Var->getLocation(),
4841           diag::err_typecheck_incomplete_array_needs_initializer);
4842      Var->setInvalidDecl();
4843      return;
4844    }
4845
4846    // Provide a specific diagnostic for uninitialized variable
4847    // definitions with reference type.
4848    if (Type->isReferenceType()) {
4849      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4850        << Var->getDeclName()
4851        << SourceRange(Var->getLocation(), Var->getLocation());
4852      Var->setInvalidDecl();
4853      return;
4854    }
4855
4856    // Do not attempt to type-check the default initializer for a
4857    // variable with dependent type.
4858    if (Type->isDependentType())
4859      return;
4860
4861    if (Var->isInvalidDecl())
4862      return;
4863
4864    if (RequireCompleteType(Var->getLocation(),
4865                            Context.getBaseElementType(Type),
4866                            diag::err_typecheck_decl_incomplete_type)) {
4867      Var->setInvalidDecl();
4868      return;
4869    }
4870
4871    // The variable can not have an abstract class type.
4872    if (RequireNonAbstractType(Var->getLocation(), Type,
4873                               diag::err_abstract_type_in_decl,
4874                               AbstractVariableType)) {
4875      Var->setInvalidDecl();
4876      return;
4877    }
4878
4879    const RecordType *Record
4880      = Context.getBaseElementType(Type)->getAs<RecordType>();
4881    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4882        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4883      // C++03 [dcl.init]p9:
4884      //   If no initializer is specified for an object, and the
4885      //   object is of (possibly cv-qualified) non-POD class type (or
4886      //   array thereof), the object shall be default-initialized; if
4887      //   the object is of const-qualified type, the underlying class
4888      //   type shall have a user-declared default
4889      //   constructor. Otherwise, if no initializer is specified for
4890      //   a non- static object, the object and its subobjects, if
4891      //   any, have an indeterminate initial value); if the object
4892      //   or any of its subobjects are of const-qualified type, the
4893      //   program is ill-formed.
4894      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4895    } else {
4896      // Check for jumps past the implicit initializer.  C++0x
4897      // clarifies that this applies to a "variable with automatic
4898      // storage duration", not a "local variable".
4899      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4900        getCurFunction()->setHasBranchProtectedScope();
4901
4902      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4903      InitializationKind Kind
4904        = InitializationKind::CreateDefault(Var->getLocation());
4905
4906      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4907      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4908                                        MultiExprArg(*this, 0, 0));
4909      if (Init.isInvalid())
4910        Var->setInvalidDecl();
4911      else if (Init.get()) {
4912        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4913
4914        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4915            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4916            !Var->getDeclContext()->isDependentContext() &&
4917            !Var->getInit()->isConstantInitializer(Context, false))
4918          Diag(Var->getLocation(), diag::warn_global_constructor);
4919      }
4920    }
4921
4922    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4923      FinalizeVarWithDestructor(Var, Record);
4924  }
4925}
4926
4927Sema::DeclGroupPtrTy
4928Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4929                              Decl **Group, unsigned NumDecls) {
4930  llvm::SmallVector<Decl*, 8> Decls;
4931
4932  if (DS.isTypeSpecOwned())
4933    Decls.push_back(DS.getRepAsDecl());
4934
4935  for (unsigned i = 0; i != NumDecls; ++i)
4936    if (Decl *D = Group[i])
4937      Decls.push_back(D);
4938
4939  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4940                                                   Decls.data(), Decls.size()));
4941}
4942
4943
4944/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4945/// to introduce parameters into function prototype scope.
4946Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4947  const DeclSpec &DS = D.getDeclSpec();
4948
4949  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4950  VarDecl::StorageClass StorageClass = SC_None;
4951  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4952  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4953    StorageClass = SC_Register;
4954    StorageClassAsWritten = SC_Register;
4955  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4956    Diag(DS.getStorageClassSpecLoc(),
4957         diag::err_invalid_storage_class_in_func_decl);
4958    D.getMutableDeclSpec().ClearStorageClassSpecs();
4959  }
4960
4961  if (D.getDeclSpec().isThreadSpecified())
4962    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4963
4964  DiagnoseFunctionSpecifiers(D);
4965
4966  TagDecl *OwnedDecl = 0;
4967  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4968  QualType parmDeclType = TInfo->getType();
4969
4970  if (getLangOptions().CPlusPlus) {
4971    // Check that there are no default arguments inside the type of this
4972    // parameter.
4973    CheckExtraCXXDefaultArguments(D);
4974
4975    if (OwnedDecl && OwnedDecl->isDefinition()) {
4976      // C++ [dcl.fct]p6:
4977      //   Types shall not be defined in return or parameter types.
4978      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4979        << Context.getTypeDeclType(OwnedDecl);
4980    }
4981
4982    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4983    if (D.getCXXScopeSpec().isSet()) {
4984      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4985        << D.getCXXScopeSpec().getRange();
4986      D.getCXXScopeSpec().clear();
4987    }
4988
4989    // FIXME: Variadic templates.
4990    if (D.hasEllipsis()) {
4991      Diag(D.getEllipsisLoc(), diag::err_function_parameter_pack_unsupported);
4992      D.setInvalidType();
4993    }
4994  }
4995
4996  // Ensure we have a valid name
4997  IdentifierInfo *II = 0;
4998  if (D.hasName()) {
4999    II = D.getIdentifier();
5000    if (!II) {
5001      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5002        << GetNameForDeclarator(D).getName().getAsString();
5003      D.setInvalidType(true);
5004    }
5005  }
5006
5007  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5008  if (II) {
5009    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5010                   ForRedeclaration);
5011    LookupName(R, S);
5012    if (R.isSingleResult()) {
5013      NamedDecl *PrevDecl = R.getFoundDecl();
5014      if (PrevDecl->isTemplateParameter()) {
5015        // Maybe we will complain about the shadowed template parameter.
5016        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5017        // Just pretend that we didn't see the previous declaration.
5018        PrevDecl = 0;
5019      } else if (S->isDeclScope(PrevDecl)) {
5020        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5021        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5022
5023        // Recover by removing the name
5024        II = 0;
5025        D.SetIdentifier(0, D.getIdentifierLoc());
5026        D.setInvalidType(true);
5027      }
5028    }
5029  }
5030
5031  // Temporarily put parameter variables in the translation unit, not
5032  // the enclosing context.  This prevents them from accidentally
5033  // looking like class members in C++.
5034  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5035                                    TInfo, parmDeclType, II,
5036                                    D.getIdentifierLoc(),
5037                                    StorageClass, StorageClassAsWritten);
5038
5039  if (D.isInvalidType())
5040    New->setInvalidDecl();
5041
5042  // Add the parameter declaration into this scope.
5043  S->AddDecl(New);
5044  if (II)
5045    IdResolver.AddDecl(New);
5046
5047  ProcessDeclAttributes(S, New, D);
5048
5049  if (New->hasAttr<BlocksAttr>()) {
5050    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5051  }
5052  return New;
5053}
5054
5055/// \brief Synthesizes a variable for a parameter arising from a
5056/// typedef.
5057ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5058                                              SourceLocation Loc,
5059                                              QualType T) {
5060  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5061                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5062                                           SC_None, SC_None, 0);
5063  Param->setImplicit();
5064  return Param;
5065}
5066
5067void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5068                                    ParmVarDecl * const *ParamEnd) {
5069  // Don't diagnose unused-parameter errors in template instantiations; we
5070  // will already have done so in the template itself.
5071  if (!ActiveTemplateInstantiations.empty())
5072    return;
5073
5074  for (; Param != ParamEnd; ++Param) {
5075    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5076        !(*Param)->hasAttr<UnusedAttr>()) {
5077      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5078        << (*Param)->getDeclName();
5079    }
5080  }
5081}
5082
5083void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5084                                                  ParmVarDecl * const *ParamEnd,
5085                                                  QualType ReturnTy,
5086                                                  NamedDecl *D) {
5087  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5088    return;
5089
5090  // Warn if the return value is pass-by-value and larger than the specified
5091  // threshold.
5092  if (ReturnTy->isPODType()) {
5093    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5094    if (Size > LangOpts.NumLargeByValueCopy)
5095      Diag(D->getLocation(), diag::warn_return_value_size)
5096          << D->getDeclName() << Size;
5097  }
5098
5099  // Warn if any parameter is pass-by-value and larger than the specified
5100  // threshold.
5101  for (; Param != ParamEnd; ++Param) {
5102    QualType T = (*Param)->getType();
5103    if (!T->isPODType())
5104      continue;
5105    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5106    if (Size > LangOpts.NumLargeByValueCopy)
5107      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5108          << (*Param)->getDeclName() << Size;
5109  }
5110}
5111
5112ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5113                                  TypeSourceInfo *TSInfo, QualType T,
5114                                  IdentifierInfo *Name,
5115                                  SourceLocation NameLoc,
5116                                  VarDecl::StorageClass StorageClass,
5117                                  VarDecl::StorageClass StorageClassAsWritten) {
5118  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5119                                         adjustParameterType(T), TSInfo,
5120                                         StorageClass, StorageClassAsWritten,
5121                                         0);
5122
5123  // Parameters can not be abstract class types.
5124  // For record types, this is done by the AbstractClassUsageDiagnoser once
5125  // the class has been completely parsed.
5126  if (!CurContext->isRecord() &&
5127      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5128                             AbstractParamType))
5129    New->setInvalidDecl();
5130
5131  // Parameter declarators cannot be interface types. All ObjC objects are
5132  // passed by reference.
5133  if (T->isObjCObjectType()) {
5134    Diag(NameLoc,
5135         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5136    New->setInvalidDecl();
5137  }
5138
5139  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5140  // duration shall not be qualified by an address-space qualifier."
5141  // Since all parameters have automatic store duration, they can not have
5142  // an address space.
5143  if (T.getAddressSpace() != 0) {
5144    Diag(NameLoc, diag::err_arg_with_address_space);
5145    New->setInvalidDecl();
5146  }
5147
5148  return New;
5149}
5150
5151void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5152                                           SourceLocation LocAfterDecls) {
5153  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5154
5155  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5156  // for a K&R function.
5157  if (!FTI.hasPrototype) {
5158    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5159      --i;
5160      if (FTI.ArgInfo[i].Param == 0) {
5161        llvm::SmallString<256> Code;
5162        llvm::raw_svector_ostream(Code) << "  int "
5163                                        << FTI.ArgInfo[i].Ident->getName()
5164                                        << ";\n";
5165        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5166          << FTI.ArgInfo[i].Ident
5167          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5168
5169        // Implicitly declare the argument as type 'int' for lack of a better
5170        // type.
5171        DeclSpec DS;
5172        const char* PrevSpec; // unused
5173        unsigned DiagID; // unused
5174        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5175                           PrevSpec, DiagID);
5176        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5177        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5178        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5179      }
5180    }
5181  }
5182}
5183
5184Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5185                                         Declarator &D) {
5186  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5187  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5188  Scope *ParentScope = FnBodyScope->getParent();
5189
5190  Decl *DP = HandleDeclarator(ParentScope, D,
5191                              MultiTemplateParamsArg(*this),
5192                              /*IsFunctionDefinition=*/true);
5193  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5194}
5195
5196static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5197  // Don't warn about invalid declarations.
5198  if (FD->isInvalidDecl())
5199    return false;
5200
5201  // Or declarations that aren't global.
5202  if (!FD->isGlobal())
5203    return false;
5204
5205  // Don't warn about C++ member functions.
5206  if (isa<CXXMethodDecl>(FD))
5207    return false;
5208
5209  // Don't warn about 'main'.
5210  if (FD->isMain())
5211    return false;
5212
5213  // Don't warn about inline functions.
5214  if (FD->isInlineSpecified())
5215    return false;
5216
5217  // Don't warn about function templates.
5218  if (FD->getDescribedFunctionTemplate())
5219    return false;
5220
5221  // Don't warn about function template specializations.
5222  if (FD->isFunctionTemplateSpecialization())
5223    return false;
5224
5225  bool MissingPrototype = true;
5226  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5227       Prev; Prev = Prev->getPreviousDeclaration()) {
5228    // Ignore any declarations that occur in function or method
5229    // scope, because they aren't visible from the header.
5230    if (Prev->getDeclContext()->isFunctionOrMethod())
5231      continue;
5232
5233    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5234    break;
5235  }
5236
5237  return MissingPrototype;
5238}
5239
5240Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5241  // Clear the last template instantiation error context.
5242  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5243
5244  if (!D)
5245    return D;
5246  FunctionDecl *FD = 0;
5247
5248  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5249    FD = FunTmpl->getTemplatedDecl();
5250  else
5251    FD = cast<FunctionDecl>(D);
5252
5253  // Enter a new function scope
5254  PushFunctionScope();
5255
5256  // See if this is a redefinition.
5257  // But don't complain if we're in GNU89 mode and the previous definition
5258  // was an extern inline function.
5259  const FunctionDecl *Definition;
5260  if (FD->hasBody(Definition) &&
5261      !canRedefineFunction(Definition, getLangOptions())) {
5262    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5263        Definition->getStorageClass() == SC_Extern)
5264      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5265        << FD->getDeclName() << getLangOptions().CPlusPlus;
5266    else
5267      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5268    Diag(Definition->getLocation(), diag::note_previous_definition);
5269  }
5270
5271  // Builtin functions cannot be defined.
5272  if (unsigned BuiltinID = FD->getBuiltinID()) {
5273    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5274      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5275      FD->setInvalidDecl();
5276    }
5277  }
5278
5279  // The return type of a function definition must be complete
5280  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5281  QualType ResultType = FD->getResultType();
5282  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5283      !FD->isInvalidDecl() &&
5284      RequireCompleteType(FD->getLocation(), ResultType,
5285                          diag::err_func_def_incomplete_result))
5286    FD->setInvalidDecl();
5287
5288  // GNU warning -Wmissing-prototypes:
5289  //   Warn if a global function is defined without a previous
5290  //   prototype declaration. This warning is issued even if the
5291  //   definition itself provides a prototype. The aim is to detect
5292  //   global functions that fail to be declared in header files.
5293  if (ShouldWarnAboutMissingPrototype(FD))
5294    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5295
5296  if (FnBodyScope)
5297    PushDeclContext(FnBodyScope, FD);
5298
5299  // Check the validity of our function parameters
5300  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5301                           /*CheckParameterNames=*/true);
5302
5303  // Introduce our parameters into the function scope
5304  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5305    ParmVarDecl *Param = FD->getParamDecl(p);
5306    Param->setOwningFunction(FD);
5307
5308    // If this has an identifier, add it to the scope stack.
5309    if (Param->getIdentifier() && FnBodyScope) {
5310      CheckShadow(FnBodyScope, Param);
5311
5312      PushOnScopeChains(Param, FnBodyScope);
5313    }
5314  }
5315
5316  // Checking attributes of current function definition
5317  // dllimport attribute.
5318  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5319  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5320    // dllimport attribute cannot be directly applied to definition.
5321    if (!DA->isInherited()) {
5322      Diag(FD->getLocation(),
5323           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5324        << "dllimport";
5325      FD->setInvalidDecl();
5326      return FD;
5327    }
5328
5329    // Visual C++ appears to not think this is an issue, so only issue
5330    // a warning when Microsoft extensions are disabled.
5331    if (!LangOpts.Microsoft) {
5332      // If a symbol previously declared dllimport is later defined, the
5333      // attribute is ignored in subsequent references, and a warning is
5334      // emitted.
5335      Diag(FD->getLocation(),
5336           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5337        << FD->getName() << "dllimport";
5338    }
5339  }
5340  return FD;
5341}
5342
5343/// \brief Given the set of return statements within a function body,
5344/// compute the variables that are subject to the named return value
5345/// optimization.
5346///
5347/// Each of the variables that is subject to the named return value
5348/// optimization will be marked as NRVO variables in the AST, and any
5349/// return statement that has a marked NRVO variable as its NRVO candidate can
5350/// use the named return value optimization.
5351///
5352/// This function applies a very simplistic algorithm for NRVO: if every return
5353/// statement in the function has the same NRVO candidate, that candidate is
5354/// the NRVO variable.
5355///
5356/// FIXME: Employ a smarter algorithm that accounts for multiple return
5357/// statements and the lifetimes of the NRVO candidates. We should be able to
5358/// find a maximal set of NRVO variables.
5359static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5360  ReturnStmt **Returns = Scope->Returns.data();
5361
5362  const VarDecl *NRVOCandidate = 0;
5363  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5364    if (!Returns[I]->getNRVOCandidate())
5365      return;
5366
5367    if (!NRVOCandidate)
5368      NRVOCandidate = Returns[I]->getNRVOCandidate();
5369    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5370      return;
5371  }
5372
5373  if (NRVOCandidate)
5374    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5375}
5376
5377Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5378  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5379}
5380
5381Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5382                                    bool IsInstantiation) {
5383  FunctionDecl *FD = 0;
5384  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5385  if (FunTmpl)
5386    FD = FunTmpl->getTemplatedDecl();
5387  else
5388    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5389
5390  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5391
5392  if (FD) {
5393    FD->setBody(Body);
5394    if (FD->isMain()) {
5395      // C and C++ allow for main to automagically return 0.
5396      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5397      FD->setHasImplicitReturnZero(true);
5398      WP.disableCheckFallThrough();
5399    }
5400
5401    if (!FD->isInvalidDecl()) {
5402      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5403      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5404                                             FD->getResultType(), FD);
5405
5406      // If this is a constructor, we need a vtable.
5407      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5408        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5409
5410      ComputeNRVO(Body, getCurFunction());
5411    }
5412
5413    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5414  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5415    assert(MD == getCurMethodDecl() && "Method parsing confused");
5416    MD->setBody(Body);
5417    MD->setEndLoc(Body->getLocEnd());
5418    if (!MD->isInvalidDecl()) {
5419      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5420      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5421                                             MD->getResultType(), MD);
5422    }
5423  } else {
5424    return 0;
5425  }
5426
5427  // Verify and clean out per-function state.
5428
5429  // Check goto/label use.
5430  FunctionScopeInfo *CurFn = getCurFunction();
5431  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5432         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5433    LabelStmt *L = I->second;
5434
5435    // Verify that we have no forward references left.  If so, there was a goto
5436    // or address of a label taken, but no definition of it.  Label fwd
5437    // definitions are indicated with a null substmt.
5438    if (L->getSubStmt() != 0) {
5439      if (!L->isUsed())
5440        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5441      continue;
5442    }
5443
5444    // Emit error.
5445    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5446
5447    // At this point, we have gotos that use the bogus label.  Stitch it into
5448    // the function body so that they aren't leaked and that the AST is well
5449    // formed.
5450    if (Body == 0) {
5451      // The whole function wasn't parsed correctly.
5452      continue;
5453    }
5454
5455    // Otherwise, the body is valid: we want to stitch the label decl into the
5456    // function somewhere so that it is properly owned and so that the goto
5457    // has a valid target.  Do this by creating a new compound stmt with the
5458    // label in it.
5459
5460    // Give the label a sub-statement.
5461    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5462
5463    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5464                               cast<CXXTryStmt>(Body)->getTryBlock() :
5465                               cast<CompoundStmt>(Body);
5466    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5467                                          Compound->body_end());
5468    Elements.push_back(L);
5469    Compound->setStmts(Context, Elements.data(), Elements.size());
5470  }
5471
5472  if (Body) {
5473    // C++ constructors that have function-try-blocks can't have return
5474    // statements in the handlers of that block. (C++ [except.handle]p14)
5475    // Verify this.
5476    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5477      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5478
5479    // Verify that that gotos and switch cases don't jump into scopes illegally.
5480    // Verify that that gotos and switch cases don't jump into scopes illegally.
5481    if (getCurFunction()->NeedsScopeChecking() &&
5482        !dcl->isInvalidDecl() &&
5483        !hasAnyErrorsInThisFunction())
5484      DiagnoseInvalidJumps(Body);
5485
5486    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5487      if (!Destructor->getParent()->isDependentType())
5488        CheckDestructor(Destructor);
5489
5490      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5491                                             Destructor->getParent());
5492    }
5493
5494    // If any errors have occurred, clear out any temporaries that may have
5495    // been leftover. This ensures that these temporaries won't be picked up for
5496    // deletion in some later function.
5497    if (PP.getDiagnostics().hasErrorOccurred())
5498      ExprTemporaries.clear();
5499    else if (!isa<FunctionTemplateDecl>(dcl)) {
5500      // Since the body is valid, issue any analysis-based warnings that are
5501      // enabled.
5502      QualType ResultType;
5503      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5504        AnalysisWarnings.IssueWarnings(WP, FD);
5505      } else {
5506        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5507        AnalysisWarnings.IssueWarnings(WP, MD);
5508      }
5509    }
5510
5511    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5512  }
5513
5514  if (!IsInstantiation)
5515    PopDeclContext();
5516
5517  PopFunctionOrBlockScope();
5518
5519  // If any errors have occurred, clear out any temporaries that may have
5520  // been leftover. This ensures that these temporaries won't be picked up for
5521  // deletion in some later function.
5522  if (getDiagnostics().hasErrorOccurred())
5523    ExprTemporaries.clear();
5524
5525  return dcl;
5526}
5527
5528/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5529/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5530NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5531                                          IdentifierInfo &II, Scope *S) {
5532  // Before we produce a declaration for an implicitly defined
5533  // function, see whether there was a locally-scoped declaration of
5534  // this name as a function or variable. If so, use that
5535  // (non-visible) declaration, and complain about it.
5536  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5537    = LocallyScopedExternalDecls.find(&II);
5538  if (Pos != LocallyScopedExternalDecls.end()) {
5539    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5540    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5541    return Pos->second;
5542  }
5543
5544  // Extension in C99.  Legal in C90, but warn about it.
5545  if (II.getName().startswith("__builtin_"))
5546    Diag(Loc, diag::warn_builtin_unknown) << &II;
5547  else if (getLangOptions().C99)
5548    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5549  else
5550    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5551
5552  // Set a Declarator for the implicit definition: int foo();
5553  const char *Dummy;
5554  DeclSpec DS;
5555  unsigned DiagID;
5556  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5557  (void)Error; // Silence warning.
5558  assert(!Error && "Error setting up implicit decl!");
5559  Declarator D(DS, Declarator::BlockContext);
5560  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5561                                             false, false, SourceLocation(), 0,
5562                                             0, 0, false, SourceLocation(),
5563                                             false, 0,0,0, Loc, Loc, D),
5564                SourceLocation());
5565  D.SetIdentifier(&II, Loc);
5566
5567  // Insert this function into translation-unit scope.
5568
5569  DeclContext *PrevDC = CurContext;
5570  CurContext = Context.getTranslationUnitDecl();
5571
5572  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5573  FD->setImplicit();
5574
5575  CurContext = PrevDC;
5576
5577  AddKnownFunctionAttributes(FD);
5578
5579  return FD;
5580}
5581
5582/// \brief Adds any function attributes that we know a priori based on
5583/// the declaration of this function.
5584///
5585/// These attributes can apply both to implicitly-declared builtins
5586/// (like __builtin___printf_chk) or to library-declared functions
5587/// like NSLog or printf.
5588void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5589  if (FD->isInvalidDecl())
5590    return;
5591
5592  // If this is a built-in function, map its builtin attributes to
5593  // actual attributes.
5594  if (unsigned BuiltinID = FD->getBuiltinID()) {
5595    // Handle printf-formatting attributes.
5596    unsigned FormatIdx;
5597    bool HasVAListArg;
5598    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5599      if (!FD->getAttr<FormatAttr>())
5600        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5601                                                "printf", FormatIdx+1,
5602                                               HasVAListArg ? 0 : FormatIdx+2));
5603    }
5604    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5605                                             HasVAListArg)) {
5606     if (!FD->getAttr<FormatAttr>())
5607       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5608                                              "scanf", FormatIdx+1,
5609                                              HasVAListArg ? 0 : FormatIdx+2));
5610    }
5611
5612    // Mark const if we don't care about errno and that is the only
5613    // thing preventing the function from being const. This allows
5614    // IRgen to use LLVM intrinsics for such functions.
5615    if (!getLangOptions().MathErrno &&
5616        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5617      if (!FD->getAttr<ConstAttr>())
5618        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5619    }
5620
5621    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5622      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5623    if (Context.BuiltinInfo.isConst(BuiltinID))
5624      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5625  }
5626
5627  IdentifierInfo *Name = FD->getIdentifier();
5628  if (!Name)
5629    return;
5630  if ((!getLangOptions().CPlusPlus &&
5631       FD->getDeclContext()->isTranslationUnit()) ||
5632      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5633       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5634       LinkageSpecDecl::lang_c)) {
5635    // Okay: this could be a libc/libm/Objective-C function we know
5636    // about.
5637  } else
5638    return;
5639
5640  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5641    // FIXME: NSLog and NSLogv should be target specific
5642    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5643      // FIXME: We known better than our headers.
5644      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5645    } else
5646      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5647                                             "printf", 1,
5648                                             Name->isStr("NSLogv") ? 0 : 2));
5649  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5650    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5651    // target-specific builtins, perhaps?
5652    if (!FD->getAttr<FormatAttr>())
5653      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5654                                             "printf", 2,
5655                                             Name->isStr("vasprintf") ? 0 : 3));
5656  }
5657}
5658
5659TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5660                                    TypeSourceInfo *TInfo) {
5661  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5662  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5663
5664  if (!TInfo) {
5665    assert(D.isInvalidType() && "no declarator info for valid type");
5666    TInfo = Context.getTrivialTypeSourceInfo(T);
5667  }
5668
5669  // Scope manipulation handled by caller.
5670  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5671                                           D.getIdentifierLoc(),
5672                                           D.getIdentifier(),
5673                                           TInfo);
5674
5675  if (const TagType *TT = T->getAs<TagType>()) {
5676    TagDecl *TD = TT->getDecl();
5677
5678    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5679    // keep track of the TypedefDecl.
5680    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5681      TD->setTypedefForAnonDecl(NewTD);
5682  }
5683
5684  if (D.isInvalidType())
5685    NewTD->setInvalidDecl();
5686  return NewTD;
5687}
5688
5689
5690/// \brief Determine whether a tag with a given kind is acceptable
5691/// as a redeclaration of the given tag declaration.
5692///
5693/// \returns true if the new tag kind is acceptable, false otherwise.
5694bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5695                                        TagTypeKind NewTag,
5696                                        SourceLocation NewTagLoc,
5697                                        const IdentifierInfo &Name) {
5698  // C++ [dcl.type.elab]p3:
5699  //   The class-key or enum keyword present in the
5700  //   elaborated-type-specifier shall agree in kind with the
5701  //   declaration to which the name in the elaborated-type-specifier
5702  //   refers. This rule also applies to the form of
5703  //   elaborated-type-specifier that declares a class-name or
5704  //   friend class since it can be construed as referring to the
5705  //   definition of the class. Thus, in any
5706  //   elaborated-type-specifier, the enum keyword shall be used to
5707  //   refer to an enumeration (7.2), the union class-key shall be
5708  //   used to refer to a union (clause 9), and either the class or
5709  //   struct class-key shall be used to refer to a class (clause 9)
5710  //   declared using the class or struct class-key.
5711  TagTypeKind OldTag = Previous->getTagKind();
5712  if (OldTag == NewTag)
5713    return true;
5714
5715  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5716      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5717    // Warn about the struct/class tag mismatch.
5718    bool isTemplate = false;
5719    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5720      isTemplate = Record->getDescribedClassTemplate();
5721
5722    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5723      << (NewTag == TTK_Class)
5724      << isTemplate << &Name
5725      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5726                              OldTag == TTK_Class? "class" : "struct");
5727    Diag(Previous->getLocation(), diag::note_previous_use);
5728    return true;
5729  }
5730  return false;
5731}
5732
5733/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5734/// former case, Name will be non-null.  In the later case, Name will be null.
5735/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5736/// reference/declaration/definition of a tag.
5737Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5738                     SourceLocation KWLoc, CXXScopeSpec &SS,
5739                     IdentifierInfo *Name, SourceLocation NameLoc,
5740                     AttributeList *Attr, AccessSpecifier AS,
5741                     MultiTemplateParamsArg TemplateParameterLists,
5742                     bool &OwnedDecl, bool &IsDependent,
5743                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5744                     TypeResult UnderlyingType) {
5745  // If this is not a definition, it must have a name.
5746  assert((Name != 0 || TUK == TUK_Definition) &&
5747         "Nameless record must be a definition!");
5748  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5749
5750  OwnedDecl = false;
5751  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5752
5753  // FIXME: Check explicit specializations more carefully.
5754  bool isExplicitSpecialization = false;
5755  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5756  bool Invalid = false;
5757
5758  // We only need to do this matching if we have template parameters
5759  // or a scope specifier, which also conveniently avoids this work
5760  // for non-C++ cases.
5761  if (NumMatchedTemplateParamLists ||
5762      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5763    if (TemplateParameterList *TemplateParams
5764          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5765                                                TemplateParameterLists.get(),
5766                                               TemplateParameterLists.size(),
5767                                                    TUK == TUK_Friend,
5768                                                    isExplicitSpecialization,
5769                                                    Invalid)) {
5770      // All but one template parameter lists have been matching.
5771      --NumMatchedTemplateParamLists;
5772
5773      if (TemplateParams->size() > 0) {
5774        // This is a declaration or definition of a class template (which may
5775        // be a member of another template).
5776        if (Invalid)
5777          return 0;
5778
5779        OwnedDecl = false;
5780        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5781                                               SS, Name, NameLoc, Attr,
5782                                               TemplateParams,
5783                                               AS);
5784        TemplateParameterLists.release();
5785        return Result.get();
5786      } else {
5787        // The "template<>" header is extraneous.
5788        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5789          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5790        isExplicitSpecialization = true;
5791      }
5792    }
5793  }
5794
5795  // Figure out the underlying type if this a enum declaration. We need to do
5796  // this early, because it's needed to detect if this is an incompatible
5797  // redeclaration.
5798  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5799
5800  if (Kind == TTK_Enum) {
5801    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5802      // No underlying type explicitly specified, or we failed to parse the
5803      // type, default to int.
5804      EnumUnderlying = Context.IntTy.getTypePtr();
5805    else if (UnderlyingType.get()) {
5806      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5807      // integral type; any cv-qualification is ignored.
5808      TypeSourceInfo *TI = 0;
5809      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5810      EnumUnderlying = TI;
5811
5812      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5813
5814      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5815        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5816          << T;
5817        // Recover by falling back to int.
5818        EnumUnderlying = Context.IntTy.getTypePtr();
5819      }
5820
5821      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5822                                          UPPC_FixedUnderlyingType))
5823        EnumUnderlying = Context.IntTy.getTypePtr();
5824
5825    } else if (getLangOptions().Microsoft)
5826      // Microsoft enums are always of int type.
5827      EnumUnderlying = Context.IntTy.getTypePtr();
5828  }
5829
5830  DeclContext *SearchDC = CurContext;
5831  DeclContext *DC = CurContext;
5832  bool isStdBadAlloc = false;
5833
5834  RedeclarationKind Redecl = ForRedeclaration;
5835  if (TUK == TUK_Friend || TUK == TUK_Reference)
5836    Redecl = NotForRedeclaration;
5837
5838  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5839
5840  if (Name && SS.isNotEmpty()) {
5841    // We have a nested-name tag ('struct foo::bar').
5842
5843    // Check for invalid 'foo::'.
5844    if (SS.isInvalid()) {
5845      Name = 0;
5846      goto CreateNewDecl;
5847    }
5848
5849    // If this is a friend or a reference to a class in a dependent
5850    // context, don't try to make a decl for it.
5851    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5852      DC = computeDeclContext(SS, false);
5853      if (!DC) {
5854        IsDependent = true;
5855        return 0;
5856      }
5857    } else {
5858      DC = computeDeclContext(SS, true);
5859      if (!DC) {
5860        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5861          << SS.getRange();
5862        return 0;
5863      }
5864    }
5865
5866    if (RequireCompleteDeclContext(SS, DC))
5867      return 0;
5868
5869    SearchDC = DC;
5870    // Look-up name inside 'foo::'.
5871    LookupQualifiedName(Previous, DC);
5872
5873    if (Previous.isAmbiguous())
5874      return 0;
5875
5876    if (Previous.empty()) {
5877      // Name lookup did not find anything. However, if the
5878      // nested-name-specifier refers to the current instantiation,
5879      // and that current instantiation has any dependent base
5880      // classes, we might find something at instantiation time: treat
5881      // this as a dependent elaborated-type-specifier.
5882      // But this only makes any sense for reference-like lookups.
5883      if (Previous.wasNotFoundInCurrentInstantiation() &&
5884          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5885        IsDependent = true;
5886        return 0;
5887      }
5888
5889      // A tag 'foo::bar' must already exist.
5890      Diag(NameLoc, diag::err_not_tag_in_scope)
5891        << Kind << Name << DC << SS.getRange();
5892      Name = 0;
5893      Invalid = true;
5894      goto CreateNewDecl;
5895    }
5896  } else if (Name) {
5897    // If this is a named struct, check to see if there was a previous forward
5898    // declaration or definition.
5899    // FIXME: We're looking into outer scopes here, even when we
5900    // shouldn't be. Doing so can result in ambiguities that we
5901    // shouldn't be diagnosing.
5902    LookupName(Previous, S);
5903
5904    // Note:  there used to be some attempt at recovery here.
5905    if (Previous.isAmbiguous())
5906      return 0;
5907
5908    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5909      // FIXME: This makes sure that we ignore the contexts associated
5910      // with C structs, unions, and enums when looking for a matching
5911      // tag declaration or definition. See the similar lookup tweak
5912      // in Sema::LookupName; is there a better way to deal with this?
5913      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5914        SearchDC = SearchDC->getParent();
5915    }
5916  } else if (S->isFunctionPrototypeScope()) {
5917    // If this is an enum declaration in function prototype scope, set its
5918    // initial context to the translation unit.
5919    SearchDC = Context.getTranslationUnitDecl();
5920  }
5921
5922  if (Previous.isSingleResult() &&
5923      Previous.getFoundDecl()->isTemplateParameter()) {
5924    // Maybe we will complain about the shadowed template parameter.
5925    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5926    // Just pretend that we didn't see the previous declaration.
5927    Previous.clear();
5928  }
5929
5930  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5931      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5932    // This is a declaration of or a reference to "std::bad_alloc".
5933    isStdBadAlloc = true;
5934
5935    if (Previous.empty() && StdBadAlloc) {
5936      // std::bad_alloc has been implicitly declared (but made invisible to
5937      // name lookup). Fill in this implicit declaration as the previous
5938      // declaration, so that the declarations get chained appropriately.
5939      Previous.addDecl(getStdBadAlloc());
5940    }
5941  }
5942
5943  // If we didn't find a previous declaration, and this is a reference
5944  // (or friend reference), move to the correct scope.  In C++, we
5945  // also need to do a redeclaration lookup there, just in case
5946  // there's a shadow friend decl.
5947  if (Name && Previous.empty() &&
5948      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5949    if (Invalid) goto CreateNewDecl;
5950    assert(SS.isEmpty());
5951
5952    if (TUK == TUK_Reference) {
5953      // C++ [basic.scope.pdecl]p5:
5954      //   -- for an elaborated-type-specifier of the form
5955      //
5956      //          class-key identifier
5957      //
5958      //      if the elaborated-type-specifier is used in the
5959      //      decl-specifier-seq or parameter-declaration-clause of a
5960      //      function defined in namespace scope, the identifier is
5961      //      declared as a class-name in the namespace that contains
5962      //      the declaration; otherwise, except as a friend
5963      //      declaration, the identifier is declared in the smallest
5964      //      non-class, non-function-prototype scope that contains the
5965      //      declaration.
5966      //
5967      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5968      // C structs and unions.
5969      //
5970      // It is an error in C++ to declare (rather than define) an enum
5971      // type, including via an elaborated type specifier.  We'll
5972      // diagnose that later; for now, declare the enum in the same
5973      // scope as we would have picked for any other tag type.
5974      //
5975      // GNU C also supports this behavior as part of its incomplete
5976      // enum types extension, while GNU C++ does not.
5977      //
5978      // Find the context where we'll be declaring the tag.
5979      // FIXME: We would like to maintain the current DeclContext as the
5980      // lexical context,
5981      while (SearchDC->isRecord())
5982        SearchDC = SearchDC->getParent();
5983
5984      // Find the scope where we'll be declaring the tag.
5985      while (S->isClassScope() ||
5986             (getLangOptions().CPlusPlus &&
5987              S->isFunctionPrototypeScope()) ||
5988             ((S->getFlags() & Scope::DeclScope) == 0) ||
5989             (S->getEntity() &&
5990              ((DeclContext *)S->getEntity())->isTransparentContext()))
5991        S = S->getParent();
5992    } else {
5993      assert(TUK == TUK_Friend);
5994      // C++ [namespace.memdef]p3:
5995      //   If a friend declaration in a non-local class first declares a
5996      //   class or function, the friend class or function is a member of
5997      //   the innermost enclosing namespace.
5998      SearchDC = SearchDC->getEnclosingNamespaceContext();
5999    }
6000
6001    // In C++, we need to do a redeclaration lookup to properly
6002    // diagnose some problems.
6003    if (getLangOptions().CPlusPlus) {
6004      Previous.setRedeclarationKind(ForRedeclaration);
6005      LookupQualifiedName(Previous, SearchDC);
6006    }
6007  }
6008
6009  if (!Previous.empty()) {
6010    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6011
6012    // It's okay to have a tag decl in the same scope as a typedef
6013    // which hides a tag decl in the same scope.  Finding this
6014    // insanity with a redeclaration lookup can only actually happen
6015    // in C++.
6016    //
6017    // This is also okay for elaborated-type-specifiers, which is
6018    // technically forbidden by the current standard but which is
6019    // okay according to the likely resolution of an open issue;
6020    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6021    if (getLangOptions().CPlusPlus) {
6022      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6023        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6024          TagDecl *Tag = TT->getDecl();
6025          if (Tag->getDeclName() == Name &&
6026              Tag->getDeclContext()->getRedeclContext()
6027                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6028            PrevDecl = Tag;
6029            Previous.clear();
6030            Previous.addDecl(Tag);
6031            Previous.resolveKind();
6032          }
6033        }
6034      }
6035    }
6036
6037    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6038      // If this is a use of a previous tag, or if the tag is already declared
6039      // in the same scope (so that the definition/declaration completes or
6040      // rementions the tag), reuse the decl.
6041      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6042          isDeclInScope(PrevDecl, SearchDC, S)) {
6043        // Make sure that this wasn't declared as an enum and now used as a
6044        // struct or something similar.
6045        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6046          bool SafeToContinue
6047            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6048               Kind != TTK_Enum);
6049          if (SafeToContinue)
6050            Diag(KWLoc, diag::err_use_with_wrong_tag)
6051              << Name
6052              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6053                                              PrevTagDecl->getKindName());
6054          else
6055            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6056          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6057
6058          if (SafeToContinue)
6059            Kind = PrevTagDecl->getTagKind();
6060          else {
6061            // Recover by making this an anonymous redefinition.
6062            Name = 0;
6063            Previous.clear();
6064            Invalid = true;
6065          }
6066        }
6067
6068        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6069          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6070
6071          // All conflicts with previous declarations are recovered by
6072          // returning the previous declaration.
6073          if (ScopedEnum != PrevEnum->isScoped()) {
6074            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6075              << PrevEnum->isScoped();
6076            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6077            return PrevTagDecl;
6078          }
6079          else if (EnumUnderlying && PrevEnum->isFixed()) {
6080            QualType T;
6081            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6082                T = TI->getType();
6083            else
6084                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6085
6086            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6087              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6088                   diag::err_enum_redeclare_type_mismatch)
6089                << T
6090                << PrevEnum->getIntegerType();
6091              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6092              return PrevTagDecl;
6093            }
6094          }
6095          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6096            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6097              << PrevEnum->isFixed();
6098            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6099            return PrevTagDecl;
6100          }
6101        }
6102
6103        if (!Invalid) {
6104          // If this is a use, just return the declaration we found.
6105
6106          // FIXME: In the future, return a variant or some other clue
6107          // for the consumer of this Decl to know it doesn't own it.
6108          // For our current ASTs this shouldn't be a problem, but will
6109          // need to be changed with DeclGroups.
6110          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6111              TUK == TUK_Friend)
6112            return PrevTagDecl;
6113
6114          // Diagnose attempts to redefine a tag.
6115          if (TUK == TUK_Definition) {
6116            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6117              // If we're defining a specialization and the previous definition
6118              // is from an implicit instantiation, don't emit an error
6119              // here; we'll catch this in the general case below.
6120              if (!isExplicitSpecialization ||
6121                  !isa<CXXRecordDecl>(Def) ||
6122                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6123                                               == TSK_ExplicitSpecialization) {
6124                Diag(NameLoc, diag::err_redefinition) << Name;
6125                Diag(Def->getLocation(), diag::note_previous_definition);
6126                // If this is a redefinition, recover by making this
6127                // struct be anonymous, which will make any later
6128                // references get the previous definition.
6129                Name = 0;
6130                Previous.clear();
6131                Invalid = true;
6132              }
6133            } else {
6134              // If the type is currently being defined, complain
6135              // about a nested redefinition.
6136              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6137              if (Tag->isBeingDefined()) {
6138                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6139                Diag(PrevTagDecl->getLocation(),
6140                     diag::note_previous_definition);
6141                Name = 0;
6142                Previous.clear();
6143                Invalid = true;
6144              }
6145            }
6146
6147            // Okay, this is definition of a previously declared or referenced
6148            // tag PrevDecl. We're going to create a new Decl for it.
6149          }
6150        }
6151        // If we get here we have (another) forward declaration or we
6152        // have a definition.  Just create a new decl.
6153
6154      } else {
6155        // If we get here, this is a definition of a new tag type in a nested
6156        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6157        // new decl/type.  We set PrevDecl to NULL so that the entities
6158        // have distinct types.
6159        Previous.clear();
6160      }
6161      // If we get here, we're going to create a new Decl. If PrevDecl
6162      // is non-NULL, it's a definition of the tag declared by
6163      // PrevDecl. If it's NULL, we have a new definition.
6164
6165
6166    // Otherwise, PrevDecl is not a tag, but was found with tag
6167    // lookup.  This is only actually possible in C++, where a few
6168    // things like templates still live in the tag namespace.
6169    } else {
6170      assert(getLangOptions().CPlusPlus);
6171
6172      // Use a better diagnostic if an elaborated-type-specifier
6173      // found the wrong kind of type on the first
6174      // (non-redeclaration) lookup.
6175      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6176          !Previous.isForRedeclaration()) {
6177        unsigned Kind = 0;
6178        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6179        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6180        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6181        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6182        Invalid = true;
6183
6184      // Otherwise, only diagnose if the declaration is in scope.
6185      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6186        // do nothing
6187
6188      // Diagnose implicit declarations introduced by elaborated types.
6189      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6190        unsigned Kind = 0;
6191        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6192        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6193        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6194        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6195        Invalid = true;
6196
6197      // Otherwise it's a declaration.  Call out a particularly common
6198      // case here.
6199      } else if (isa<TypedefDecl>(PrevDecl)) {
6200        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6201          << Name
6202          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6203        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6204        Invalid = true;
6205
6206      // Otherwise, diagnose.
6207      } else {
6208        // The tag name clashes with something else in the target scope,
6209        // issue an error and recover by making this tag be anonymous.
6210        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6211        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6212        Name = 0;
6213        Invalid = true;
6214      }
6215
6216      // The existing declaration isn't relevant to us; we're in a
6217      // new scope, so clear out the previous declaration.
6218      Previous.clear();
6219    }
6220  }
6221
6222CreateNewDecl:
6223
6224  TagDecl *PrevDecl = 0;
6225  if (Previous.isSingleResult())
6226    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6227
6228  // If there is an identifier, use the location of the identifier as the
6229  // location of the decl, otherwise use the location of the struct/union
6230  // keyword.
6231  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6232
6233  // Otherwise, create a new declaration. If there is a previous
6234  // declaration of the same entity, the two will be linked via
6235  // PrevDecl.
6236  TagDecl *New;
6237
6238  bool IsForwardReference = false;
6239  if (Kind == TTK_Enum) {
6240    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6241    // enum X { A, B, C } D;    D should chain to X.
6242    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6243                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6244                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6245    // If this is an undefined enum, warn.
6246    if (TUK != TUK_Definition && !Invalid) {
6247      TagDecl *Def;
6248      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6249        // C++0x: 7.2p2: opaque-enum-declaration.
6250        // Conflicts are diagnosed above. Do nothing.
6251      }
6252      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6253        Diag(Loc, diag::ext_forward_ref_enum_def)
6254          << New;
6255        Diag(Def->getLocation(), diag::note_previous_definition);
6256      } else {
6257        unsigned DiagID = diag::ext_forward_ref_enum;
6258        if (getLangOptions().Microsoft)
6259          DiagID = diag::ext_ms_forward_ref_enum;
6260        else if (getLangOptions().CPlusPlus)
6261          DiagID = diag::err_forward_ref_enum;
6262        Diag(Loc, DiagID);
6263
6264        // If this is a forward-declared reference to an enumeration, make a
6265        // note of it; we won't actually be introducing the declaration into
6266        // the declaration context.
6267        if (TUK == TUK_Reference)
6268          IsForwardReference = true;
6269      }
6270    }
6271
6272    if (EnumUnderlying) {
6273      EnumDecl *ED = cast<EnumDecl>(New);
6274      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6275        ED->setIntegerTypeSourceInfo(TI);
6276      else
6277        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6278      ED->setPromotionType(ED->getIntegerType());
6279    }
6280
6281  } else {
6282    // struct/union/class
6283
6284    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6285    // struct X { int A; } D;    D should chain to X.
6286    if (getLangOptions().CPlusPlus) {
6287      // FIXME: Look for a way to use RecordDecl for simple structs.
6288      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6289                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6290
6291      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6292        StdBadAlloc = cast<CXXRecordDecl>(New);
6293    } else
6294      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6295                               cast_or_null<RecordDecl>(PrevDecl));
6296  }
6297
6298  // Maybe add qualifier info.
6299  if (SS.isNotEmpty()) {
6300    if (SS.isSet()) {
6301      NestedNameSpecifier *NNS
6302        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6303      New->setQualifierInfo(NNS, SS.getRange());
6304      if (NumMatchedTemplateParamLists > 0) {
6305        New->setTemplateParameterListsInfo(Context,
6306                                           NumMatchedTemplateParamLists,
6307                    (TemplateParameterList**) TemplateParameterLists.release());
6308      }
6309    }
6310    else
6311      Invalid = true;
6312  }
6313
6314  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6315    // Add alignment attributes if necessary; these attributes are checked when
6316    // the ASTContext lays out the structure.
6317    //
6318    // It is important for implementing the correct semantics that this
6319    // happen here (in act on tag decl). The #pragma pack stack is
6320    // maintained as a result of parser callbacks which can occur at
6321    // many points during the parsing of a struct declaration (because
6322    // the #pragma tokens are effectively skipped over during the
6323    // parsing of the struct).
6324    AddAlignmentAttributesForRecord(RD);
6325  }
6326
6327  // If this is a specialization of a member class (of a class template),
6328  // check the specialization.
6329  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6330    Invalid = true;
6331
6332  if (Invalid)
6333    New->setInvalidDecl();
6334
6335  if (Attr)
6336    ProcessDeclAttributeList(S, New, Attr);
6337
6338  // If we're declaring or defining a tag in function prototype scope
6339  // in C, note that this type can only be used within the function.
6340  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6341    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6342
6343  // Set the lexical context. If the tag has a C++ scope specifier, the
6344  // lexical context will be different from the semantic context.
6345  New->setLexicalDeclContext(CurContext);
6346
6347  // Mark this as a friend decl if applicable.
6348  if (TUK == TUK_Friend)
6349    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6350
6351  // Set the access specifier.
6352  if (!Invalid && SearchDC->isRecord())
6353    SetMemberAccessSpecifier(New, PrevDecl, AS);
6354
6355  if (TUK == TUK_Definition)
6356    New->startDefinition();
6357
6358  // If this has an identifier, add it to the scope stack.
6359  if (TUK == TUK_Friend) {
6360    // We might be replacing an existing declaration in the lookup tables;
6361    // if so, borrow its access specifier.
6362    if (PrevDecl)
6363      New->setAccess(PrevDecl->getAccess());
6364
6365    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6366    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6367    if (Name) // can be null along some error paths
6368      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6369        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6370  } else if (Name) {
6371    S = getNonFieldDeclScope(S);
6372    PushOnScopeChains(New, S, !IsForwardReference);
6373    if (IsForwardReference)
6374      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6375
6376  } else {
6377    CurContext->addDecl(New);
6378  }
6379
6380  // If this is the C FILE type, notify the AST context.
6381  if (IdentifierInfo *II = New->getIdentifier())
6382    if (!New->isInvalidDecl() &&
6383        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6384        II->isStr("FILE"))
6385      Context.setFILEDecl(New);
6386
6387  OwnedDecl = true;
6388  return New;
6389}
6390
6391void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6392  AdjustDeclIfTemplate(TagD);
6393  TagDecl *Tag = cast<TagDecl>(TagD);
6394
6395  // Enter the tag context.
6396  PushDeclContext(S, Tag);
6397}
6398
6399void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6400                                           SourceLocation LBraceLoc) {
6401  AdjustDeclIfTemplate(TagD);
6402  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6403
6404  FieldCollector->StartClass();
6405
6406  if (!Record->getIdentifier())
6407    return;
6408
6409  // C++ [class]p2:
6410  //   [...] The class-name is also inserted into the scope of the
6411  //   class itself; this is known as the injected-class-name. For
6412  //   purposes of access checking, the injected-class-name is treated
6413  //   as if it were a public member name.
6414  CXXRecordDecl *InjectedClassName
6415    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6416                            CurContext, Record->getLocation(),
6417                            Record->getIdentifier(),
6418                            Record->getTagKeywordLoc(),
6419                            /*PrevDecl=*/0,
6420                            /*DelayTypeCreation=*/true);
6421  Context.getTypeDeclType(InjectedClassName, Record);
6422  InjectedClassName->setImplicit();
6423  InjectedClassName->setAccess(AS_public);
6424  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6425      InjectedClassName->setDescribedClassTemplate(Template);
6426  PushOnScopeChains(InjectedClassName, S);
6427  assert(InjectedClassName->isInjectedClassName() &&
6428         "Broken injected-class-name");
6429}
6430
6431void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6432                                    SourceLocation RBraceLoc) {
6433  AdjustDeclIfTemplate(TagD);
6434  TagDecl *Tag = cast<TagDecl>(TagD);
6435  Tag->setRBraceLoc(RBraceLoc);
6436
6437  if (isa<CXXRecordDecl>(Tag))
6438    FieldCollector->FinishClass();
6439
6440  // Exit this scope of this tag's definition.
6441  PopDeclContext();
6442
6443  // Notify the consumer that we've defined a tag.
6444  Consumer.HandleTagDeclDefinition(Tag);
6445}
6446
6447void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6448  AdjustDeclIfTemplate(TagD);
6449  TagDecl *Tag = cast<TagDecl>(TagD);
6450  Tag->setInvalidDecl();
6451
6452  // We're undoing ActOnTagStartDefinition here, not
6453  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6454  // the FieldCollector.
6455
6456  PopDeclContext();
6457}
6458
6459// Note that FieldName may be null for anonymous bitfields.
6460bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6461                          QualType FieldTy, const Expr *BitWidth,
6462                          bool *ZeroWidth) {
6463  // Default to true; that shouldn't confuse checks for emptiness
6464  if (ZeroWidth)
6465    *ZeroWidth = true;
6466
6467  // C99 6.7.2.1p4 - verify the field type.
6468  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6469  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6470    // Handle incomplete types with specific error.
6471    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6472      return true;
6473    if (FieldName)
6474      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6475        << FieldName << FieldTy << BitWidth->getSourceRange();
6476    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6477      << FieldTy << BitWidth->getSourceRange();
6478  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6479                                             UPPC_BitFieldWidth))
6480    return true;
6481
6482  // If the bit-width is type- or value-dependent, don't try to check
6483  // it now.
6484  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6485    return false;
6486
6487  llvm::APSInt Value;
6488  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6489    return true;
6490
6491  if (Value != 0 && ZeroWidth)
6492    *ZeroWidth = false;
6493
6494  // Zero-width bitfield is ok for anonymous field.
6495  if (Value == 0 && FieldName)
6496    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6497
6498  if (Value.isSigned() && Value.isNegative()) {
6499    if (FieldName)
6500      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6501               << FieldName << Value.toString(10);
6502    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6503      << Value.toString(10);
6504  }
6505
6506  if (!FieldTy->isDependentType()) {
6507    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6508    if (Value.getZExtValue() > TypeSize) {
6509      if (!getLangOptions().CPlusPlus) {
6510        if (FieldName)
6511          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6512            << FieldName << (unsigned)Value.getZExtValue()
6513            << (unsigned)TypeSize;
6514
6515        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6516          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6517      }
6518
6519      if (FieldName)
6520        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6521          << FieldName << (unsigned)Value.getZExtValue()
6522          << (unsigned)TypeSize;
6523      else
6524        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6525          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6526    }
6527  }
6528
6529  return false;
6530}
6531
6532/// ActOnField - Each field of a struct/union/class is passed into this in order
6533/// to create a FieldDecl object for it.
6534Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6535                                 SourceLocation DeclStart,
6536                                 Declarator &D, ExprTy *BitfieldWidth) {
6537  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6538                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6539                               AS_public);
6540  return Res;
6541}
6542
6543/// HandleField - Analyze a field of a C struct or a C++ data member.
6544///
6545FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6546                             SourceLocation DeclStart,
6547                             Declarator &D, Expr *BitWidth,
6548                             AccessSpecifier AS) {
6549  IdentifierInfo *II = D.getIdentifier();
6550  SourceLocation Loc = DeclStart;
6551  if (II) Loc = D.getIdentifierLoc();
6552
6553  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6554  QualType T = TInfo->getType();
6555  if (getLangOptions().CPlusPlus) {
6556    CheckExtraCXXDefaultArguments(D);
6557
6558    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6559                                        UPPC_DataMemberType)) {
6560      D.setInvalidType();
6561      T = Context.IntTy;
6562      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6563    }
6564  }
6565
6566  DiagnoseFunctionSpecifiers(D);
6567
6568  if (D.getDeclSpec().isThreadSpecified())
6569    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6570
6571  // Check to see if this name was declared as a member previously
6572  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6573  LookupName(Previous, S);
6574  assert((Previous.empty() || Previous.isOverloadedResult() ||
6575          Previous.isSingleResult())
6576    && "Lookup of member name should be either overloaded, single or null");
6577
6578  // If the name is overloaded then get any declaration else get the single result
6579  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6580    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6581
6582  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6583    // Maybe we will complain about the shadowed template parameter.
6584    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6585    // Just pretend that we didn't see the previous declaration.
6586    PrevDecl = 0;
6587  }
6588
6589  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6590    PrevDecl = 0;
6591
6592  bool Mutable
6593    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6594  SourceLocation TSSL = D.getSourceRange().getBegin();
6595  FieldDecl *NewFD
6596    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6597                     AS, PrevDecl, &D);
6598
6599  if (NewFD->isInvalidDecl())
6600    Record->setInvalidDecl();
6601
6602  if (NewFD->isInvalidDecl() && PrevDecl) {
6603    // Don't introduce NewFD into scope; there's already something
6604    // with the same name in the same scope.
6605  } else if (II) {
6606    PushOnScopeChains(NewFD, S);
6607  } else
6608    Record->addDecl(NewFD);
6609
6610  return NewFD;
6611}
6612
6613/// \brief Build a new FieldDecl and check its well-formedness.
6614///
6615/// This routine builds a new FieldDecl given the fields name, type,
6616/// record, etc. \p PrevDecl should refer to any previous declaration
6617/// with the same name and in the same scope as the field to be
6618/// created.
6619///
6620/// \returns a new FieldDecl.
6621///
6622/// \todo The Declarator argument is a hack. It will be removed once
6623FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6624                                TypeSourceInfo *TInfo,
6625                                RecordDecl *Record, SourceLocation Loc,
6626                                bool Mutable, Expr *BitWidth,
6627                                SourceLocation TSSL,
6628                                AccessSpecifier AS, NamedDecl *PrevDecl,
6629                                Declarator *D) {
6630  IdentifierInfo *II = Name.getAsIdentifierInfo();
6631  bool InvalidDecl = false;
6632  if (D) InvalidDecl = D->isInvalidType();
6633
6634  // If we receive a broken type, recover by assuming 'int' and
6635  // marking this declaration as invalid.
6636  if (T.isNull()) {
6637    InvalidDecl = true;
6638    T = Context.IntTy;
6639  }
6640
6641  QualType EltTy = Context.getBaseElementType(T);
6642  if (!EltTy->isDependentType() &&
6643      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6644    // Fields of incomplete type force their record to be invalid.
6645    Record->setInvalidDecl();
6646    InvalidDecl = true;
6647  }
6648
6649  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6650  // than a variably modified type.
6651  if (!InvalidDecl && T->isVariablyModifiedType()) {
6652    bool SizeIsNegative;
6653    llvm::APSInt Oversized;
6654    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6655                                                           SizeIsNegative,
6656                                                           Oversized);
6657    if (!FixedTy.isNull()) {
6658      Diag(Loc, diag::warn_illegal_constant_array_size);
6659      T = FixedTy;
6660    } else {
6661      if (SizeIsNegative)
6662        Diag(Loc, diag::err_typecheck_negative_array_size);
6663      else if (Oversized.getBoolValue())
6664        Diag(Loc, diag::err_array_too_large)
6665          << Oversized.toString(10);
6666      else
6667        Diag(Loc, diag::err_typecheck_field_variable_size);
6668      InvalidDecl = true;
6669    }
6670  }
6671
6672  // Fields can not have abstract class types
6673  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6674                                             diag::err_abstract_type_in_decl,
6675                                             AbstractFieldType))
6676    InvalidDecl = true;
6677
6678  bool ZeroWidth = false;
6679  // If this is declared as a bit-field, check the bit-field.
6680  if (!InvalidDecl && BitWidth &&
6681      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6682    InvalidDecl = true;
6683    BitWidth = 0;
6684    ZeroWidth = false;
6685  }
6686
6687  // Check that 'mutable' is consistent with the type of the declaration.
6688  if (!InvalidDecl && Mutable) {
6689    unsigned DiagID = 0;
6690    if (T->isReferenceType())
6691      DiagID = diag::err_mutable_reference;
6692    else if (T.isConstQualified())
6693      DiagID = diag::err_mutable_const;
6694
6695    if (DiagID) {
6696      SourceLocation ErrLoc = Loc;
6697      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6698        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6699      Diag(ErrLoc, DiagID);
6700      Mutable = false;
6701      InvalidDecl = true;
6702    }
6703  }
6704
6705  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6706                                       BitWidth, Mutable);
6707  if (InvalidDecl)
6708    NewFD->setInvalidDecl();
6709
6710  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6711    Diag(Loc, diag::err_duplicate_member) << II;
6712    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6713    NewFD->setInvalidDecl();
6714  }
6715
6716  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6717    if (Record->isUnion()) {
6718      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6719        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6720        if (RDecl->getDefinition()) {
6721          // C++ [class.union]p1: An object of a class with a non-trivial
6722          // constructor, a non-trivial copy constructor, a non-trivial
6723          // destructor, or a non-trivial copy assignment operator
6724          // cannot be a member of a union, nor can an array of such
6725          // objects.
6726          // TODO: C++0x alters this restriction significantly.
6727          if (CheckNontrivialField(NewFD))
6728            NewFD->setInvalidDecl();
6729        }
6730      }
6731
6732      // C++ [class.union]p1: If a union contains a member of reference type,
6733      // the program is ill-formed.
6734      if (EltTy->isReferenceType()) {
6735        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6736          << NewFD->getDeclName() << EltTy;
6737        NewFD->setInvalidDecl();
6738      }
6739    }
6740  }
6741
6742  // FIXME: We need to pass in the attributes given an AST
6743  // representation, not a parser representation.
6744  if (D)
6745    // FIXME: What to pass instead of TUScope?
6746    ProcessDeclAttributes(TUScope, NewFD, *D);
6747
6748  if (T.isObjCGCWeak())
6749    Diag(Loc, diag::warn_attribute_weak_on_field);
6750
6751  NewFD->setAccess(AS);
6752  return NewFD;
6753}
6754
6755bool Sema::CheckNontrivialField(FieldDecl *FD) {
6756  assert(FD);
6757  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6758
6759  if (FD->isInvalidDecl())
6760    return true;
6761
6762  QualType EltTy = Context.getBaseElementType(FD->getType());
6763  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6764    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6765    if (RDecl->getDefinition()) {
6766      // We check for copy constructors before constructors
6767      // because otherwise we'll never get complaints about
6768      // copy constructors.
6769
6770      CXXSpecialMember member = CXXInvalid;
6771      if (!RDecl->hasTrivialCopyConstructor())
6772        member = CXXCopyConstructor;
6773      else if (!RDecl->hasTrivialConstructor())
6774        member = CXXConstructor;
6775      else if (!RDecl->hasTrivialCopyAssignment())
6776        member = CXXCopyAssignment;
6777      else if (!RDecl->hasTrivialDestructor())
6778        member = CXXDestructor;
6779
6780      if (member != CXXInvalid) {
6781        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6782              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6783        DiagnoseNontrivial(RT, member);
6784        return true;
6785      }
6786    }
6787  }
6788
6789  return false;
6790}
6791
6792/// DiagnoseNontrivial - Given that a class has a non-trivial
6793/// special member, figure out why.
6794void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6795  QualType QT(T, 0U);
6796  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6797
6798  // Check whether the member was user-declared.
6799  switch (member) {
6800  case CXXInvalid:
6801    break;
6802
6803  case CXXConstructor:
6804    if (RD->hasUserDeclaredConstructor()) {
6805      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6806      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6807        const FunctionDecl *body = 0;
6808        ci->hasBody(body);
6809        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6810          SourceLocation CtorLoc = ci->getLocation();
6811          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6812          return;
6813        }
6814      }
6815
6816      assert(0 && "found no user-declared constructors");
6817      return;
6818    }
6819    break;
6820
6821  case CXXCopyConstructor:
6822    if (RD->hasUserDeclaredCopyConstructor()) {
6823      SourceLocation CtorLoc =
6824        RD->getCopyConstructor(Context, 0)->getLocation();
6825      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6826      return;
6827    }
6828    break;
6829
6830  case CXXCopyAssignment:
6831    if (RD->hasUserDeclaredCopyAssignment()) {
6832      // FIXME: this should use the location of the copy
6833      // assignment, not the type.
6834      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6835      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6836      return;
6837    }
6838    break;
6839
6840  case CXXDestructor:
6841    if (RD->hasUserDeclaredDestructor()) {
6842      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6843      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6844      return;
6845    }
6846    break;
6847  }
6848
6849  typedef CXXRecordDecl::base_class_iterator base_iter;
6850
6851  // Virtual bases and members inhibit trivial copying/construction,
6852  // but not trivial destruction.
6853  if (member != CXXDestructor) {
6854    // Check for virtual bases.  vbases includes indirect virtual bases,
6855    // so we just iterate through the direct bases.
6856    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6857      if (bi->isVirtual()) {
6858        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6859        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6860        return;
6861      }
6862
6863    // Check for virtual methods.
6864    typedef CXXRecordDecl::method_iterator meth_iter;
6865    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6866         ++mi) {
6867      if (mi->isVirtual()) {
6868        SourceLocation MLoc = mi->getSourceRange().getBegin();
6869        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6870        return;
6871      }
6872    }
6873  }
6874
6875  bool (CXXRecordDecl::*hasTrivial)() const;
6876  switch (member) {
6877  case CXXConstructor:
6878    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6879  case CXXCopyConstructor:
6880    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6881  case CXXCopyAssignment:
6882    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6883  case CXXDestructor:
6884    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6885  default:
6886    assert(0 && "unexpected special member"); return;
6887  }
6888
6889  // Check for nontrivial bases (and recurse).
6890  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6891    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6892    assert(BaseRT && "Don't know how to handle dependent bases");
6893    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6894    if (!(BaseRecTy->*hasTrivial)()) {
6895      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6896      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6897      DiagnoseNontrivial(BaseRT, member);
6898      return;
6899    }
6900  }
6901
6902  // Check for nontrivial members (and recurse).
6903  typedef RecordDecl::field_iterator field_iter;
6904  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6905       ++fi) {
6906    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6907    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6908      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6909
6910      if (!(EltRD->*hasTrivial)()) {
6911        SourceLocation FLoc = (*fi)->getLocation();
6912        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6913        DiagnoseNontrivial(EltRT, member);
6914        return;
6915      }
6916    }
6917  }
6918
6919  assert(0 && "found no explanation for non-trivial member");
6920}
6921
6922/// TranslateIvarVisibility - Translate visibility from a token ID to an
6923///  AST enum value.
6924static ObjCIvarDecl::AccessControl
6925TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6926  switch (ivarVisibility) {
6927  default: assert(0 && "Unknown visitibility kind");
6928  case tok::objc_private: return ObjCIvarDecl::Private;
6929  case tok::objc_public: return ObjCIvarDecl::Public;
6930  case tok::objc_protected: return ObjCIvarDecl::Protected;
6931  case tok::objc_package: return ObjCIvarDecl::Package;
6932  }
6933}
6934
6935/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6936/// in order to create an IvarDecl object for it.
6937Decl *Sema::ActOnIvar(Scope *S,
6938                                SourceLocation DeclStart,
6939                                Decl *IntfDecl,
6940                                Declarator &D, ExprTy *BitfieldWidth,
6941                                tok::ObjCKeywordKind Visibility) {
6942
6943  IdentifierInfo *II = D.getIdentifier();
6944  Expr *BitWidth = (Expr*)BitfieldWidth;
6945  SourceLocation Loc = DeclStart;
6946  if (II) Loc = D.getIdentifierLoc();
6947
6948  // FIXME: Unnamed fields can be handled in various different ways, for
6949  // example, unnamed unions inject all members into the struct namespace!
6950
6951  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6952  QualType T = TInfo->getType();
6953
6954  if (BitWidth) {
6955    // 6.7.2.1p3, 6.7.2.1p4
6956    if (VerifyBitField(Loc, II, T, BitWidth)) {
6957      D.setInvalidType();
6958      BitWidth = 0;
6959    }
6960  } else {
6961    // Not a bitfield.
6962
6963    // validate II.
6964
6965  }
6966  if (T->isReferenceType()) {
6967    Diag(Loc, diag::err_ivar_reference_type);
6968    D.setInvalidType();
6969  }
6970  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6971  // than a variably modified type.
6972  else if (T->isVariablyModifiedType()) {
6973    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6974    D.setInvalidType();
6975  }
6976
6977  // Get the visibility (access control) for this ivar.
6978  ObjCIvarDecl::AccessControl ac =
6979    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6980                                        : ObjCIvarDecl::None;
6981  // Must set ivar's DeclContext to its enclosing interface.
6982  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6983  ObjCContainerDecl *EnclosingContext;
6984  if (ObjCImplementationDecl *IMPDecl =
6985      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6986    if (!LangOpts.ObjCNonFragileABI2) {
6987    // Case of ivar declared in an implementation. Context is that of its class.
6988      EnclosingContext = IMPDecl->getClassInterface();
6989      assert(EnclosingContext && "Implementation has no class interface!");
6990    }
6991    else
6992      EnclosingContext = EnclosingDecl;
6993  } else {
6994    if (ObjCCategoryDecl *CDecl =
6995        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6996      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6997        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6998        return 0;
6999      }
7000    }
7001    EnclosingContext = EnclosingDecl;
7002  }
7003
7004  // Construct the decl.
7005  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7006                                             EnclosingContext, Loc, II, T,
7007                                             TInfo, ac, (Expr *)BitfieldWidth);
7008
7009  if (II) {
7010    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7011                                           ForRedeclaration);
7012    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7013        && !isa<TagDecl>(PrevDecl)) {
7014      Diag(Loc, diag::err_duplicate_member) << II;
7015      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7016      NewID->setInvalidDecl();
7017    }
7018  }
7019
7020  // Process attributes attached to the ivar.
7021  ProcessDeclAttributes(S, NewID, D);
7022
7023  if (D.isInvalidType())
7024    NewID->setInvalidDecl();
7025
7026  if (II) {
7027    // FIXME: When interfaces are DeclContexts, we'll need to add
7028    // these to the interface.
7029    S->AddDecl(NewID);
7030    IdResolver.AddDecl(NewID);
7031  }
7032
7033  return NewID;
7034}
7035
7036/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7037/// class and class extensions. For every class @interface and class
7038/// extension @interface, if the last ivar is a bitfield of any type,
7039/// then add an implicit `char :0` ivar to the end of that interface.
7040void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7041                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7042  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7043    return;
7044
7045  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7046  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7047
7048  if (!Ivar->isBitField())
7049    return;
7050  uint64_t BitFieldSize =
7051    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7052  if (BitFieldSize == 0)
7053    return;
7054  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7055  if (!ID) {
7056    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7057      if (!CD->IsClassExtension())
7058        return;
7059    }
7060    // No need to add this to end of @implementation.
7061    else
7062      return;
7063  }
7064  // All conditions are met. Add a new bitfield to the tail end of ivars.
7065  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7066  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7067
7068  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7069                              DeclLoc, 0,
7070                              Context.CharTy,
7071                              Context.CreateTypeSourceInfo(Context.CharTy),
7072                              ObjCIvarDecl::Private, BW,
7073                              true);
7074  AllIvarDecls.push_back(Ivar);
7075}
7076
7077void Sema::ActOnFields(Scope* S,
7078                       SourceLocation RecLoc, Decl *EnclosingDecl,
7079                       Decl **Fields, unsigned NumFields,
7080                       SourceLocation LBrac, SourceLocation RBrac,
7081                       AttributeList *Attr) {
7082  assert(EnclosingDecl && "missing record or interface decl");
7083
7084  // If the decl this is being inserted into is invalid, then it may be a
7085  // redeclaration or some other bogus case.  Don't try to add fields to it.
7086  if (EnclosingDecl->isInvalidDecl()) {
7087    // FIXME: Deallocate fields?
7088    return;
7089  }
7090
7091
7092  // Verify that all the fields are okay.
7093  unsigned NumNamedMembers = 0;
7094  llvm::SmallVector<FieldDecl*, 32> RecFields;
7095
7096  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7097  for (unsigned i = 0; i != NumFields; ++i) {
7098    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7099
7100    // Get the type for the field.
7101    Type *FDTy = FD->getType().getTypePtr();
7102
7103    if (!FD->isAnonymousStructOrUnion()) {
7104      // Remember all fields written by the user.
7105      RecFields.push_back(FD);
7106    }
7107
7108    // If the field is already invalid for some reason, don't emit more
7109    // diagnostics about it.
7110    if (FD->isInvalidDecl()) {
7111      EnclosingDecl->setInvalidDecl();
7112      continue;
7113    }
7114
7115    // C99 6.7.2.1p2:
7116    //   A structure or union shall not contain a member with
7117    //   incomplete or function type (hence, a structure shall not
7118    //   contain an instance of itself, but may contain a pointer to
7119    //   an instance of itself), except that the last member of a
7120    //   structure with more than one named member may have incomplete
7121    //   array type; such a structure (and any union containing,
7122    //   possibly recursively, a member that is such a structure)
7123    //   shall not be a member of a structure or an element of an
7124    //   array.
7125    if (FDTy->isFunctionType()) {
7126      // Field declared as a function.
7127      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7128        << FD->getDeclName();
7129      FD->setInvalidDecl();
7130      EnclosingDecl->setInvalidDecl();
7131      continue;
7132    } else if (FDTy->isIncompleteArrayType() && Record &&
7133               ((i == NumFields - 1 && !Record->isUnion()) ||
7134                (getLangOptions().Microsoft &&
7135                 (i == NumFields - 1 || Record->isUnion())))) {
7136      // Flexible array member.
7137      // Microsoft is more permissive regarding flexible array.
7138      // It will accept flexible array in union and also
7139      // as the sole element of a struct/class.
7140      if (getLangOptions().Microsoft) {
7141        if (Record->isUnion())
7142          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7143            << FD->getDeclName();
7144        else if (NumFields == 1)
7145          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7146            << FD->getDeclName() << Record->getTagKind();
7147      } else  if (NumNamedMembers < 1) {
7148        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7149          << FD->getDeclName();
7150        FD->setInvalidDecl();
7151        EnclosingDecl->setInvalidDecl();
7152        continue;
7153      }
7154      if (!FD->getType()->isDependentType() &&
7155          !Context.getBaseElementType(FD->getType())->isPODType()) {
7156        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7157          << FD->getDeclName() << FD->getType();
7158        FD->setInvalidDecl();
7159        EnclosingDecl->setInvalidDecl();
7160        continue;
7161      }
7162      // Okay, we have a legal flexible array member at the end of the struct.
7163      if (Record)
7164        Record->setHasFlexibleArrayMember(true);
7165    } else if (!FDTy->isDependentType() &&
7166               RequireCompleteType(FD->getLocation(), FD->getType(),
7167                                   diag::err_field_incomplete)) {
7168      // Incomplete type
7169      FD->setInvalidDecl();
7170      EnclosingDecl->setInvalidDecl();
7171      continue;
7172    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7173      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7174        // If this is a member of a union, then entire union becomes "flexible".
7175        if (Record && Record->isUnion()) {
7176          Record->setHasFlexibleArrayMember(true);
7177        } else {
7178          // If this is a struct/class and this is not the last element, reject
7179          // it.  Note that GCC supports variable sized arrays in the middle of
7180          // structures.
7181          if (i != NumFields-1)
7182            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7183              << FD->getDeclName() << FD->getType();
7184          else {
7185            // We support flexible arrays at the end of structs in
7186            // other structs as an extension.
7187            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7188              << FD->getDeclName();
7189            if (Record)
7190              Record->setHasFlexibleArrayMember(true);
7191          }
7192        }
7193      }
7194      if (Record && FDTTy->getDecl()->hasObjectMember())
7195        Record->setHasObjectMember(true);
7196    } else if (FDTy->isObjCObjectType()) {
7197      /// A field cannot be an Objective-c object
7198      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7199      FD->setInvalidDecl();
7200      EnclosingDecl->setInvalidDecl();
7201      continue;
7202    } else if (getLangOptions().ObjC1 &&
7203               getLangOptions().getGCMode() != LangOptions::NonGC &&
7204               Record &&
7205               (FD->getType()->isObjCObjectPointerType() ||
7206                FD->getType().isObjCGCStrong()))
7207      Record->setHasObjectMember(true);
7208    else if (Context.getAsArrayType(FD->getType())) {
7209      QualType BaseType = Context.getBaseElementType(FD->getType());
7210      if (Record && BaseType->isRecordType() &&
7211          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7212        Record->setHasObjectMember(true);
7213    }
7214    // Keep track of the number of named members.
7215    if (FD->getIdentifier())
7216      ++NumNamedMembers;
7217  }
7218
7219  // Okay, we successfully defined 'Record'.
7220  if (Record) {
7221    bool Completed = false;
7222    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7223      if (!CXXRecord->isInvalidDecl()) {
7224        // Set access bits correctly on the directly-declared conversions.
7225        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7226        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7227             I != E; ++I)
7228          Convs->setAccess(I, (*I)->getAccess());
7229
7230        if (!CXXRecord->isDependentType()) {
7231          // Add any implicitly-declared members to this class.
7232          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7233
7234          // If we have virtual base classes, we may end up finding multiple
7235          // final overriders for a given virtual function. Check for this
7236          // problem now.
7237          if (CXXRecord->getNumVBases()) {
7238            CXXFinalOverriderMap FinalOverriders;
7239            CXXRecord->getFinalOverriders(FinalOverriders);
7240
7241            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7242                                             MEnd = FinalOverriders.end();
7243                 M != MEnd; ++M) {
7244              for (OverridingMethods::iterator SO = M->second.begin(),
7245                                            SOEnd = M->second.end();
7246                   SO != SOEnd; ++SO) {
7247                assert(SO->second.size() > 0 &&
7248                       "Virtual function without overridding functions?");
7249                if (SO->second.size() == 1)
7250                  continue;
7251
7252                // C++ [class.virtual]p2:
7253                //   In a derived class, if a virtual member function of a base
7254                //   class subobject has more than one final overrider the
7255                //   program is ill-formed.
7256                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7257                  << (NamedDecl *)M->first << Record;
7258                Diag(M->first->getLocation(),
7259                     diag::note_overridden_virtual_function);
7260                for (OverridingMethods::overriding_iterator
7261                          OM = SO->second.begin(),
7262                       OMEnd = SO->second.end();
7263                     OM != OMEnd; ++OM)
7264                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7265                    << (NamedDecl *)M->first << OM->Method->getParent();
7266
7267                Record->setInvalidDecl();
7268              }
7269            }
7270            CXXRecord->completeDefinition(&FinalOverriders);
7271            Completed = true;
7272          }
7273        }
7274      }
7275    }
7276
7277    if (!Completed)
7278      Record->completeDefinition();
7279  } else {
7280    ObjCIvarDecl **ClsFields =
7281      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7282    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7283      ID->setLocEnd(RBrac);
7284      // Add ivar's to class's DeclContext.
7285      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7286        ClsFields[i]->setLexicalDeclContext(ID);
7287        ID->addDecl(ClsFields[i]);
7288      }
7289      // Must enforce the rule that ivars in the base classes may not be
7290      // duplicates.
7291      if (ID->getSuperClass())
7292        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7293    } else if (ObjCImplementationDecl *IMPDecl =
7294                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7295      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7296      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7297        // Ivar declared in @implementation never belongs to the implementation.
7298        // Only it is in implementation's lexical context.
7299        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7300      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7301    } else if (ObjCCategoryDecl *CDecl =
7302                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7303      // case of ivars in class extension; all other cases have been
7304      // reported as errors elsewhere.
7305      // FIXME. Class extension does not have a LocEnd field.
7306      // CDecl->setLocEnd(RBrac);
7307      // Add ivar's to class extension's DeclContext.
7308      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7309        ClsFields[i]->setLexicalDeclContext(CDecl);
7310        CDecl->addDecl(ClsFields[i]);
7311      }
7312    }
7313  }
7314
7315  if (Attr)
7316    ProcessDeclAttributeList(S, Record, Attr);
7317
7318  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7319  // set the visibility of this record.
7320  if (Record && !Record->getDeclContext()->isRecord())
7321    AddPushedVisibilityAttribute(Record);
7322}
7323
7324/// \brief Determine whether the given integral value is representable within
7325/// the given type T.
7326static bool isRepresentableIntegerValue(ASTContext &Context,
7327                                        llvm::APSInt &Value,
7328                                        QualType T) {
7329  assert(T->isIntegralType(Context) && "Integral type required!");
7330  unsigned BitWidth = Context.getIntWidth(T);
7331
7332  if (Value.isUnsigned() || Value.isNonNegative()) {
7333    if (T->isSignedIntegerType())
7334      --BitWidth;
7335    return Value.getActiveBits() <= BitWidth;
7336  }
7337  return Value.getMinSignedBits() <= BitWidth;
7338}
7339
7340// \brief Given an integral type, return the next larger integral type
7341// (or a NULL type of no such type exists).
7342static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7343  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7344  // enum checking below.
7345  assert(T->isIntegralType(Context) && "Integral type required!");
7346  const unsigned NumTypes = 4;
7347  QualType SignedIntegralTypes[NumTypes] = {
7348    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7349  };
7350  QualType UnsignedIntegralTypes[NumTypes] = {
7351    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7352    Context.UnsignedLongLongTy
7353  };
7354
7355  unsigned BitWidth = Context.getTypeSize(T);
7356  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7357                                            : UnsignedIntegralTypes;
7358  for (unsigned I = 0; I != NumTypes; ++I)
7359    if (Context.getTypeSize(Types[I]) > BitWidth)
7360      return Types[I];
7361
7362  return QualType();
7363}
7364
7365EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7366                                          EnumConstantDecl *LastEnumConst,
7367                                          SourceLocation IdLoc,
7368                                          IdentifierInfo *Id,
7369                                          Expr *Val) {
7370  unsigned IntWidth = Context.Target.getIntWidth();
7371  llvm::APSInt EnumVal(IntWidth);
7372  QualType EltTy;
7373
7374  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7375    Val = 0;
7376
7377  if (Val) {
7378    if (Enum->isDependentType() || Val->isTypeDependent())
7379      EltTy = Context.DependentTy;
7380    else {
7381      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7382      SourceLocation ExpLoc;
7383      if (!Val->isValueDependent() &&
7384          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7385        Val = 0;
7386      } else {
7387        if (!getLangOptions().CPlusPlus) {
7388          // C99 6.7.2.2p2:
7389          //   The expression that defines the value of an enumeration constant
7390          //   shall be an integer constant expression that has a value
7391          //   representable as an int.
7392
7393          // Complain if the value is not representable in an int.
7394          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7395            Diag(IdLoc, diag::ext_enum_value_not_int)
7396              << EnumVal.toString(10) << Val->getSourceRange()
7397              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7398          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7399            // Force the type of the expression to 'int'.
7400            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7401          }
7402        }
7403
7404        if (Enum->isFixed()) {
7405          EltTy = Enum->getIntegerType();
7406
7407          // C++0x [dcl.enum]p5:
7408          //   ... if the initializing value of an enumerator cannot be
7409          //   represented by the underlying type, the program is ill-formed.
7410          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7411            if (getLangOptions().Microsoft) {
7412              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7413              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7414            } else
7415              Diag(IdLoc, diag::err_enumerator_too_large)
7416                << EltTy;
7417          } else
7418            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7419        }
7420        else {
7421          // C++0x [dcl.enum]p5:
7422          //   If the underlying type is not fixed, the type of each enumerator
7423          //   is the type of its initializing value:
7424          //     - If an initializer is specified for an enumerator, the
7425          //       initializing value has the same type as the expression.
7426          EltTy = Val->getType();
7427        }
7428      }
7429    }
7430  }
7431
7432  if (!Val) {
7433    if (Enum->isDependentType())
7434      EltTy = Context.DependentTy;
7435    else if (!LastEnumConst) {
7436      // C++0x [dcl.enum]p5:
7437      //   If the underlying type is not fixed, the type of each enumerator
7438      //   is the type of its initializing value:
7439      //     - If no initializer is specified for the first enumerator, the
7440      //       initializing value has an unspecified integral type.
7441      //
7442      // GCC uses 'int' for its unspecified integral type, as does
7443      // C99 6.7.2.2p3.
7444      if (Enum->isFixed()) {
7445        EltTy = Enum->getIntegerType();
7446      }
7447      else {
7448        EltTy = Context.IntTy;
7449      }
7450    } else {
7451      // Assign the last value + 1.
7452      EnumVal = LastEnumConst->getInitVal();
7453      ++EnumVal;
7454      EltTy = LastEnumConst->getType();
7455
7456      // Check for overflow on increment.
7457      if (EnumVal < LastEnumConst->getInitVal()) {
7458        // C++0x [dcl.enum]p5:
7459        //   If the underlying type is not fixed, the type of each enumerator
7460        //   is the type of its initializing value:
7461        //
7462        //     - Otherwise the type of the initializing value is the same as
7463        //       the type of the initializing value of the preceding enumerator
7464        //       unless the incremented value is not representable in that type,
7465        //       in which case the type is an unspecified integral type
7466        //       sufficient to contain the incremented value. If no such type
7467        //       exists, the program is ill-formed.
7468        QualType T = getNextLargerIntegralType(Context, EltTy);
7469        if (T.isNull() || Enum->isFixed()) {
7470          // There is no integral type larger enough to represent this
7471          // value. Complain, then allow the value to wrap around.
7472          EnumVal = LastEnumConst->getInitVal();
7473          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7474          ++EnumVal;
7475          if (Enum->isFixed())
7476            // When the underlying type is fixed, this is ill-formed.
7477            Diag(IdLoc, diag::err_enumerator_wrapped)
7478              << EnumVal.toString(10)
7479              << EltTy;
7480          else
7481            Diag(IdLoc, diag::warn_enumerator_too_large)
7482              << EnumVal.toString(10);
7483        } else {
7484          EltTy = T;
7485        }
7486
7487        // Retrieve the last enumerator's value, extent that type to the
7488        // type that is supposed to be large enough to represent the incremented
7489        // value, then increment.
7490        EnumVal = LastEnumConst->getInitVal();
7491        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7492        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7493        ++EnumVal;
7494
7495        // If we're not in C++, diagnose the overflow of enumerator values,
7496        // which in C99 means that the enumerator value is not representable in
7497        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7498        // permits enumerator values that are representable in some larger
7499        // integral type.
7500        if (!getLangOptions().CPlusPlus && !T.isNull())
7501          Diag(IdLoc, diag::warn_enum_value_overflow);
7502      } else if (!getLangOptions().CPlusPlus &&
7503                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7504        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7505        Diag(IdLoc, diag::ext_enum_value_not_int)
7506          << EnumVal.toString(10) << 1;
7507      }
7508    }
7509  }
7510
7511  if (!EltTy->isDependentType()) {
7512    // Make the enumerator value match the signedness and size of the
7513    // enumerator's type.
7514    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7515    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7516  }
7517
7518  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7519                                  Val, EnumVal);
7520}
7521
7522
7523Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7524                              SourceLocation IdLoc, IdentifierInfo *Id,
7525                              AttributeList *Attr,
7526                              SourceLocation EqualLoc, ExprTy *val) {
7527  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7528  EnumConstantDecl *LastEnumConst =
7529    cast_or_null<EnumConstantDecl>(lastEnumConst);
7530  Expr *Val = static_cast<Expr*>(val);
7531
7532  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7533  // we find one that is.
7534  S = getNonFieldDeclScope(S);
7535
7536  // Verify that there isn't already something declared with this name in this
7537  // scope.
7538  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7539                                         ForRedeclaration);
7540  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7541    // Maybe we will complain about the shadowed template parameter.
7542    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7543    // Just pretend that we didn't see the previous declaration.
7544    PrevDecl = 0;
7545  }
7546
7547  if (PrevDecl) {
7548    // When in C++, we may get a TagDecl with the same name; in this case the
7549    // enum constant will 'hide' the tag.
7550    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7551           "Received TagDecl when not in C++!");
7552    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7553      if (isa<EnumConstantDecl>(PrevDecl))
7554        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7555      else
7556        Diag(IdLoc, diag::err_redefinition) << Id;
7557      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7558      return 0;
7559    }
7560  }
7561
7562  // C++ [class.mem]p13:
7563  //   If T is the name of a class, then each of the following shall have a
7564  //   name different from T:
7565  //     - every enumerator of every member of class T that is an enumerated
7566  //       type
7567  if (CXXRecordDecl *Record
7568                      = dyn_cast<CXXRecordDecl>(
7569                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7570    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7571      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7572
7573  EnumConstantDecl *New =
7574    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7575
7576  if (New) {
7577    // Process attributes.
7578    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7579
7580    // Register this decl in the current scope stack.
7581    New->setAccess(TheEnumDecl->getAccess());
7582    PushOnScopeChains(New, S);
7583  }
7584
7585  return New;
7586}
7587
7588void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7589                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7590                         Decl **Elements, unsigned NumElements,
7591                         Scope *S, AttributeList *Attr) {
7592  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7593  QualType EnumType = Context.getTypeDeclType(Enum);
7594
7595  if (Attr)
7596    ProcessDeclAttributeList(S, Enum, Attr);
7597
7598  if (Enum->isDependentType()) {
7599    for (unsigned i = 0; i != NumElements; ++i) {
7600      EnumConstantDecl *ECD =
7601        cast_or_null<EnumConstantDecl>(Elements[i]);
7602      if (!ECD) continue;
7603
7604      ECD->setType(EnumType);
7605    }
7606
7607    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7608    return;
7609  }
7610
7611  // TODO: If the result value doesn't fit in an int, it must be a long or long
7612  // long value.  ISO C does not support this, but GCC does as an extension,
7613  // emit a warning.
7614  unsigned IntWidth = Context.Target.getIntWidth();
7615  unsigned CharWidth = Context.Target.getCharWidth();
7616  unsigned ShortWidth = Context.Target.getShortWidth();
7617
7618  // Verify that all the values are okay, compute the size of the values, and
7619  // reverse the list.
7620  unsigned NumNegativeBits = 0;
7621  unsigned NumPositiveBits = 0;
7622
7623  // Keep track of whether all elements have type int.
7624  bool AllElementsInt = true;
7625
7626  for (unsigned i = 0; i != NumElements; ++i) {
7627    EnumConstantDecl *ECD =
7628      cast_or_null<EnumConstantDecl>(Elements[i]);
7629    if (!ECD) continue;  // Already issued a diagnostic.
7630
7631    const llvm::APSInt &InitVal = ECD->getInitVal();
7632
7633    // Keep track of the size of positive and negative values.
7634    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7635      NumPositiveBits = std::max(NumPositiveBits,
7636                                 (unsigned)InitVal.getActiveBits());
7637    else
7638      NumNegativeBits = std::max(NumNegativeBits,
7639                                 (unsigned)InitVal.getMinSignedBits());
7640
7641    // Keep track of whether every enum element has type int (very commmon).
7642    if (AllElementsInt)
7643      AllElementsInt = ECD->getType() == Context.IntTy;
7644  }
7645
7646  // Figure out the type that should be used for this enum.
7647  QualType BestType;
7648  unsigned BestWidth;
7649
7650  // C++0x N3000 [conv.prom]p3:
7651  //   An rvalue of an unscoped enumeration type whose underlying
7652  //   type is not fixed can be converted to an rvalue of the first
7653  //   of the following types that can represent all the values of
7654  //   the enumeration: int, unsigned int, long int, unsigned long
7655  //   int, long long int, or unsigned long long int.
7656  // C99 6.4.4.3p2:
7657  //   An identifier declared as an enumeration constant has type int.
7658  // The C99 rule is modified by a gcc extension
7659  QualType BestPromotionType;
7660
7661  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7662  // -fshort-enums is the equivalent to specifying the packed attribute on all
7663  // enum definitions.
7664  if (LangOpts.ShortEnums)
7665    Packed = true;
7666
7667  if (Enum->isFixed()) {
7668    BestType = BestPromotionType = Enum->getIntegerType();
7669    // We don't need to set BestWidth, because BestType is going to be the type
7670    // of the enumerators, but we do anyway because otherwise some compilers
7671    // warn that it might be used uninitialized.
7672    BestWidth = CharWidth;
7673  }
7674  else if (NumNegativeBits) {
7675    // If there is a negative value, figure out the smallest integer type (of
7676    // int/long/longlong) that fits.
7677    // If it's packed, check also if it fits a char or a short.
7678    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7679      BestType = Context.SignedCharTy;
7680      BestWidth = CharWidth;
7681    } else if (Packed && NumNegativeBits <= ShortWidth &&
7682               NumPositiveBits < ShortWidth) {
7683      BestType = Context.ShortTy;
7684      BestWidth = ShortWidth;
7685    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7686      BestType = Context.IntTy;
7687      BestWidth = IntWidth;
7688    } else {
7689      BestWidth = Context.Target.getLongWidth();
7690
7691      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7692        BestType = Context.LongTy;
7693      } else {
7694        BestWidth = Context.Target.getLongLongWidth();
7695
7696        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7697          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7698        BestType = Context.LongLongTy;
7699      }
7700    }
7701    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7702  } else {
7703    // If there is no negative value, figure out the smallest type that fits
7704    // all of the enumerator values.
7705    // If it's packed, check also if it fits a char or a short.
7706    if (Packed && NumPositiveBits <= CharWidth) {
7707      BestType = Context.UnsignedCharTy;
7708      BestPromotionType = Context.IntTy;
7709      BestWidth = CharWidth;
7710    } else if (Packed && NumPositiveBits <= ShortWidth) {
7711      BestType = Context.UnsignedShortTy;
7712      BestPromotionType = Context.IntTy;
7713      BestWidth = ShortWidth;
7714    } else if (NumPositiveBits <= IntWidth) {
7715      BestType = Context.UnsignedIntTy;
7716      BestWidth = IntWidth;
7717      BestPromotionType
7718        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7719                           ? Context.UnsignedIntTy : Context.IntTy;
7720    } else if (NumPositiveBits <=
7721               (BestWidth = Context.Target.getLongWidth())) {
7722      BestType = Context.UnsignedLongTy;
7723      BestPromotionType
7724        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7725                           ? Context.UnsignedLongTy : Context.LongTy;
7726    } else {
7727      BestWidth = Context.Target.getLongLongWidth();
7728      assert(NumPositiveBits <= BestWidth &&
7729             "How could an initializer get larger than ULL?");
7730      BestType = Context.UnsignedLongLongTy;
7731      BestPromotionType
7732        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7733                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7734    }
7735  }
7736
7737  // Loop over all of the enumerator constants, changing their types to match
7738  // the type of the enum if needed.
7739  for (unsigned i = 0; i != NumElements; ++i) {
7740    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7741    if (!ECD) continue;  // Already issued a diagnostic.
7742
7743    // Standard C says the enumerators have int type, but we allow, as an
7744    // extension, the enumerators to be larger than int size.  If each
7745    // enumerator value fits in an int, type it as an int, otherwise type it the
7746    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7747    // that X has type 'int', not 'unsigned'.
7748
7749    // Determine whether the value fits into an int.
7750    llvm::APSInt InitVal = ECD->getInitVal();
7751
7752    // If it fits into an integer type, force it.  Otherwise force it to match
7753    // the enum decl type.
7754    QualType NewTy;
7755    unsigned NewWidth;
7756    bool NewSign;
7757    if (!getLangOptions().CPlusPlus &&
7758        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7759      NewTy = Context.IntTy;
7760      NewWidth = IntWidth;
7761      NewSign = true;
7762    } else if (ECD->getType() == BestType) {
7763      // Already the right type!
7764      if (getLangOptions().CPlusPlus)
7765        // C++ [dcl.enum]p4: Following the closing brace of an
7766        // enum-specifier, each enumerator has the type of its
7767        // enumeration.
7768        ECD->setType(EnumType);
7769      continue;
7770    } else {
7771      NewTy = BestType;
7772      NewWidth = BestWidth;
7773      NewSign = BestType->isSignedIntegerType();
7774    }
7775
7776    // Adjust the APSInt value.
7777    InitVal = InitVal.extOrTrunc(NewWidth);
7778    InitVal.setIsSigned(NewSign);
7779    ECD->setInitVal(InitVal);
7780
7781    // Adjust the Expr initializer and type.
7782    if (ECD->getInitExpr() &&
7783	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7784      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7785                                                CK_IntegralCast,
7786                                                ECD->getInitExpr(),
7787                                                /*base paths*/ 0,
7788                                                VK_RValue));
7789    if (getLangOptions().CPlusPlus)
7790      // C++ [dcl.enum]p4: Following the closing brace of an
7791      // enum-specifier, each enumerator has the type of its
7792      // enumeration.
7793      ECD->setType(EnumType);
7794    else
7795      ECD->setType(NewTy);
7796  }
7797
7798  Enum->completeDefinition(BestType, BestPromotionType,
7799                           NumPositiveBits, NumNegativeBits);
7800}
7801
7802Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7803  StringLiteral *AsmString = cast<StringLiteral>(expr);
7804
7805  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7806                                                   Loc, AsmString);
7807  CurContext->addDecl(New);
7808  return New;
7809}
7810
7811void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7812                             SourceLocation PragmaLoc,
7813                             SourceLocation NameLoc) {
7814  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7815
7816  if (PrevDecl) {
7817    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7818  } else {
7819    (void)WeakUndeclaredIdentifiers.insert(
7820      std::pair<IdentifierInfo*,WeakInfo>
7821        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7822  }
7823}
7824
7825void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7826                                IdentifierInfo* AliasName,
7827                                SourceLocation PragmaLoc,
7828                                SourceLocation NameLoc,
7829                                SourceLocation AliasNameLoc) {
7830  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7831                                    LookupOrdinaryName);
7832  WeakInfo W = WeakInfo(Name, NameLoc);
7833
7834  if (PrevDecl) {
7835    if (!PrevDecl->hasAttr<AliasAttr>())
7836      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7837        DeclApplyPragmaWeak(TUScope, ND, W);
7838  } else {
7839    (void)WeakUndeclaredIdentifiers.insert(
7840      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7841  }
7842}
7843