SemaDecl.cpp revision c0c00664887f5d99780c9b3e33e2f204712823b7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
354/// where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
438      else
439        llvm_unreachable("could not have corrected a typo here");
440
441      Diag(Result->getLocation(), diag::note_previous_decl)
442        << CorrectedQuotedStr;
443
444      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
445                                  false, false, ParsedType(),
446                                  /*IsCtorOrDtorName=*/false,
447                                  /*NonTrivialTypeSourceInfo=*/true);
448    }
449    return true;
450  }
451
452  if (getLangOpts().CPlusPlus) {
453    // See if II is a class template that the user forgot to pass arguments to.
454    UnqualifiedId Name;
455    Name.setIdentifier(II, IILoc);
456    CXXScopeSpec EmptySS;
457    TemplateTy TemplateResult;
458    bool MemberOfUnknownSpecialization;
459    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
460                       Name, ParsedType(), true, TemplateResult,
461                       MemberOfUnknownSpecialization) == TNK_Type_template) {
462      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
463      Diag(IILoc, diag::err_template_missing_args) << TplName;
464      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
465        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
466          << TplDecl->getTemplateParameters()->getSourceRange();
467      }
468      return true;
469    }
470  }
471
472  // FIXME: Should we move the logic that tries to recover from a missing tag
473  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
474
475  if (!SS || (!SS->isSet() && !SS->isInvalid()))
476    Diag(IILoc, diag::err_unknown_typename) << II;
477  else if (DeclContext *DC = computeDeclContext(*SS, false))
478    Diag(IILoc, diag::err_typename_nested_not_found)
479      << II << DC << SS->getRange();
480  else if (isDependentScopeSpecifier(*SS)) {
481    unsigned DiagID = diag::err_typename_missing;
482    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
483      DiagID = diag::warn_typename_missing;
484
485    Diag(SS->getRange().getBegin(), DiagID)
486      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
487      << SourceRange(SS->getRange().getBegin(), IILoc)
488      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
489    SuggestedType = ActOnTypenameType(S, SourceLocation(),
490                                      *SS, *II, IILoc).get();
491  } else {
492    assert(SS && SS->isInvalid() &&
493           "Invalid scope specifier has already been diagnosed");
494  }
495
496  return true;
497}
498
499/// \brief Determine whether the given result set contains either a type name
500/// or
501static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
502  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
503                       NextToken.is(tok::less);
504
505  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
506    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
507      return true;
508
509    if (CheckTemplate && isa<TemplateDecl>(*I))
510      return true;
511  }
512
513  return false;
514}
515
516static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
517                                    Scope *S, CXXScopeSpec &SS,
518                                    IdentifierInfo *&Name,
519                                    SourceLocation NameLoc) {
520  Result.clear(Sema::LookupTagName);
521  SemaRef.LookupParsedName(Result, S, &SS);
522  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
523    const char *TagName = 0;
524    const char *FixItTagName = 0;
525    switch (Tag->getTagKind()) {
526      case TTK_Class:
527        TagName = "class";
528        FixItTagName = "class ";
529        break;
530
531      case TTK_Enum:
532        TagName = "enum";
533        FixItTagName = "enum ";
534        break;
535
536      case TTK_Struct:
537        TagName = "struct";
538        FixItTagName = "struct ";
539        break;
540
541      case TTK_Union:
542        TagName = "union";
543        FixItTagName = "union ";
544        break;
545    }
546
547    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
548      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
549      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
550
551    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
552    if (SemaRef.LookupParsedName(R, S, &SS)) {
553      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
554           I != IEnd; ++I)
555        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
556          << Name << TagName;
557    }
558    return true;
559  }
560
561  Result.clear(Sema::LookupOrdinaryName);
562  return false;
563}
564
565/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
566static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
567                                  QualType T, SourceLocation NameLoc) {
568  ASTContext &Context = S.Context;
569
570  TypeLocBuilder Builder;
571  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
572
573  T = S.getElaboratedType(ETK_None, SS, T);
574  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
575  ElabTL.setElaboratedKeywordLoc(SourceLocation());
576  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
577  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
578}
579
580Sema::NameClassification Sema::ClassifyName(Scope *S,
581                                            CXXScopeSpec &SS,
582                                            IdentifierInfo *&Name,
583                                            SourceLocation NameLoc,
584                                            const Token &NextToken,
585                                            bool IsAddressOfOperand,
586                                            CorrectionCandidateCallback *CCC) {
587  DeclarationNameInfo NameInfo(Name, NameLoc);
588  ObjCMethodDecl *CurMethod = getCurMethodDecl();
589
590  if (NextToken.is(tok::coloncolon)) {
591    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
592                                QualType(), false, SS, 0, false);
593
594  }
595
596  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
597  LookupParsedName(Result, S, &SS, !CurMethod);
598
599  // Perform lookup for Objective-C instance variables (including automatically
600  // synthesized instance variables), if we're in an Objective-C method.
601  // FIXME: This lookup really, really needs to be folded in to the normal
602  // unqualified lookup mechanism.
603  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
604    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
605    if (E.get() || E.isInvalid())
606      return E;
607  }
608
609  bool SecondTry = false;
610  bool IsFilteredTemplateName = false;
611
612Corrected:
613  switch (Result.getResultKind()) {
614  case LookupResult::NotFound:
615    // If an unqualified-id is followed by a '(', then we have a function
616    // call.
617    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
618      // In C++, this is an ADL-only call.
619      // FIXME: Reference?
620      if (getLangOpts().CPlusPlus)
621        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
622
623      // C90 6.3.2.2:
624      //   If the expression that precedes the parenthesized argument list in a
625      //   function call consists solely of an identifier, and if no
626      //   declaration is visible for this identifier, the identifier is
627      //   implicitly declared exactly as if, in the innermost block containing
628      //   the function call, the declaration
629      //
630      //     extern int identifier ();
631      //
632      //   appeared.
633      //
634      // We also allow this in C99 as an extension.
635      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
636        Result.addDecl(D);
637        Result.resolveKind();
638        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
639      }
640    }
641
642    // In C, we first see whether there is a tag type by the same name, in
643    // which case it's likely that the user just forget to write "enum",
644    // "struct", or "union".
645    if (!getLangOpts().CPlusPlus && !SecondTry &&
646        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
647      break;
648    }
649
650    // Perform typo correction to determine if there is another name that is
651    // close to this name.
652    if (!SecondTry && CCC) {
653      SecondTry = true;
654      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
655                                                 Result.getLookupKind(), S,
656                                                 &SS, *CCC)) {
657        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
658        unsigned QualifiedDiag = diag::err_no_member_suggest;
659        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
660        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
661
662        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
663        NamedDecl *UnderlyingFirstDecl
664          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
665        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
666            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
667          UnqualifiedDiag = diag::err_no_template_suggest;
668          QualifiedDiag = diag::err_no_member_template_suggest;
669        } else if (UnderlyingFirstDecl &&
670                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
671                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
672                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
673           UnqualifiedDiag = diag::err_unknown_typename_suggest;
674           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
675         }
676
677        if (SS.isEmpty())
678          Diag(NameLoc, UnqualifiedDiag)
679            << Name << CorrectedQuotedStr
680            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
681        else
682          Diag(NameLoc, QualifiedDiag)
683            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
684            << SS.getRange()
685            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
686
687        // Update the name, so that the caller has the new name.
688        Name = Corrected.getCorrectionAsIdentifierInfo();
689
690        // Typo correction corrected to a keyword.
691        if (Corrected.isKeyword())
692          return Corrected.getCorrectionAsIdentifierInfo();
693
694        // Also update the LookupResult...
695        // FIXME: This should probably go away at some point
696        Result.clear();
697        Result.setLookupName(Corrected.getCorrection());
698        if (FirstDecl) {
699          Result.addDecl(FirstDecl);
700          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
701            << CorrectedQuotedStr;
702        }
703
704        // If we found an Objective-C instance variable, let
705        // LookupInObjCMethod build the appropriate expression to
706        // reference the ivar.
707        // FIXME: This is a gross hack.
708        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
709          Result.clear();
710          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
711          return E;
712        }
713
714        goto Corrected;
715      }
716    }
717
718    // We failed to correct; just fall through and let the parser deal with it.
719    Result.suppressDiagnostics();
720    return NameClassification::Unknown();
721
722  case LookupResult::NotFoundInCurrentInstantiation: {
723    // We performed name lookup into the current instantiation, and there were
724    // dependent bases, so we treat this result the same way as any other
725    // dependent nested-name-specifier.
726
727    // C++ [temp.res]p2:
728    //   A name used in a template declaration or definition and that is
729    //   dependent on a template-parameter is assumed not to name a type
730    //   unless the applicable name lookup finds a type name or the name is
731    //   qualified by the keyword typename.
732    //
733    // FIXME: If the next token is '<', we might want to ask the parser to
734    // perform some heroics to see if we actually have a
735    // template-argument-list, which would indicate a missing 'template'
736    // keyword here.
737    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
738                                      NameInfo, IsAddressOfOperand,
739                                      /*TemplateArgs=*/0);
740  }
741
742  case LookupResult::Found:
743  case LookupResult::FoundOverloaded:
744  case LookupResult::FoundUnresolvedValue:
745    break;
746
747  case LookupResult::Ambiguous:
748    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
749        hasAnyAcceptableTemplateNames(Result)) {
750      // C++ [temp.local]p3:
751      //   A lookup that finds an injected-class-name (10.2) can result in an
752      //   ambiguity in certain cases (for example, if it is found in more than
753      //   one base class). If all of the injected-class-names that are found
754      //   refer to specializations of the same class template, and if the name
755      //   is followed by a template-argument-list, the reference refers to the
756      //   class template itself and not a specialization thereof, and is not
757      //   ambiguous.
758      //
759      // This filtering can make an ambiguous result into an unambiguous one,
760      // so try again after filtering out template names.
761      FilterAcceptableTemplateNames(Result);
762      if (!Result.isAmbiguous()) {
763        IsFilteredTemplateName = true;
764        break;
765      }
766    }
767
768    // Diagnose the ambiguity and return an error.
769    return NameClassification::Error();
770  }
771
772  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
773      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
774    // C++ [temp.names]p3:
775    //   After name lookup (3.4) finds that a name is a template-name or that
776    //   an operator-function-id or a literal- operator-id refers to a set of
777    //   overloaded functions any member of which is a function template if
778    //   this is followed by a <, the < is always taken as the delimiter of a
779    //   template-argument-list and never as the less-than operator.
780    if (!IsFilteredTemplateName)
781      FilterAcceptableTemplateNames(Result);
782
783    if (!Result.empty()) {
784      bool IsFunctionTemplate;
785      TemplateName Template;
786      if (Result.end() - Result.begin() > 1) {
787        IsFunctionTemplate = true;
788        Template = Context.getOverloadedTemplateName(Result.begin(),
789                                                     Result.end());
790      } else {
791        TemplateDecl *TD
792          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
793        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
794
795        if (SS.isSet() && !SS.isInvalid())
796          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
797                                                    /*TemplateKeyword=*/false,
798                                                      TD);
799        else
800          Template = TemplateName(TD);
801      }
802
803      if (IsFunctionTemplate) {
804        // Function templates always go through overload resolution, at which
805        // point we'll perform the various checks (e.g., accessibility) we need
806        // to based on which function we selected.
807        Result.suppressDiagnostics();
808
809        return NameClassification::FunctionTemplate(Template);
810      }
811
812      return NameClassification::TypeTemplate(Template);
813    }
814  }
815
816  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
817  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
818    DiagnoseUseOfDecl(Type, NameLoc);
819    QualType T = Context.getTypeDeclType(Type);
820    if (SS.isNotEmpty())
821      return buildNestedType(*this, SS, T, NameLoc);
822    return ParsedType::make(T);
823  }
824
825  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
826  if (!Class) {
827    // FIXME: It's unfortunate that we don't have a Type node for handling this.
828    if (ObjCCompatibleAliasDecl *Alias
829                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
830      Class = Alias->getClassInterface();
831  }
832
833  if (Class) {
834    DiagnoseUseOfDecl(Class, NameLoc);
835
836    if (NextToken.is(tok::period)) {
837      // Interface. <something> is parsed as a property reference expression.
838      // Just return "unknown" as a fall-through for now.
839      Result.suppressDiagnostics();
840      return NameClassification::Unknown();
841    }
842
843    QualType T = Context.getObjCInterfaceType(Class);
844    return ParsedType::make(T);
845  }
846
847  // We can have a type template here if we're classifying a template argument.
848  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
849    return NameClassification::TypeTemplate(
850        TemplateName(cast<TemplateDecl>(FirstDecl)));
851
852  // Check for a tag type hidden by a non-type decl in a few cases where it
853  // seems likely a type is wanted instead of the non-type that was found.
854  if (!getLangOpts().ObjC1) {
855    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
856    if ((NextToken.is(tok::identifier) ||
857         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
858        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
859      FirstDecl = (*Result.begin())->getUnderlyingDecl();
860      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
861        DiagnoseUseOfDecl(Type, NameLoc);
862        QualType T = Context.getTypeDeclType(Type);
863        if (SS.isNotEmpty())
864          return buildNestedType(*this, SS, T, NameLoc);
865        return ParsedType::make(T);
866      }
867    }
868  }
869
870  if (FirstDecl->isCXXClassMember())
871    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
872
873  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
874  return BuildDeclarationNameExpr(SS, Result, ADL);
875}
876
877// Determines the context to return to after temporarily entering a
878// context.  This depends in an unnecessarily complicated way on the
879// exact ordering of callbacks from the parser.
880DeclContext *Sema::getContainingDC(DeclContext *DC) {
881
882  // Functions defined inline within classes aren't parsed until we've
883  // finished parsing the top-level class, so the top-level class is
884  // the context we'll need to return to.
885  if (isa<FunctionDecl>(DC)) {
886    DC = DC->getLexicalParent();
887
888    // A function not defined within a class will always return to its
889    // lexical context.
890    if (!isa<CXXRecordDecl>(DC))
891      return DC;
892
893    // A C++ inline method/friend is parsed *after* the topmost class
894    // it was declared in is fully parsed ("complete");  the topmost
895    // class is the context we need to return to.
896    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
897      DC = RD;
898
899    // Return the declaration context of the topmost class the inline method is
900    // declared in.
901    return DC;
902  }
903
904  return DC->getLexicalParent();
905}
906
907void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
908  assert(getContainingDC(DC) == CurContext &&
909      "The next DeclContext should be lexically contained in the current one.");
910  CurContext = DC;
911  S->setEntity(DC);
912}
913
914void Sema::PopDeclContext() {
915  assert(CurContext && "DeclContext imbalance!");
916
917  CurContext = getContainingDC(CurContext);
918  assert(CurContext && "Popped translation unit!");
919}
920
921/// EnterDeclaratorContext - Used when we must lookup names in the context
922/// of a declarator's nested name specifier.
923///
924void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
925  // C++0x [basic.lookup.unqual]p13:
926  //   A name used in the definition of a static data member of class
927  //   X (after the qualified-id of the static member) is looked up as
928  //   if the name was used in a member function of X.
929  // C++0x [basic.lookup.unqual]p14:
930  //   If a variable member of a namespace is defined outside of the
931  //   scope of its namespace then any name used in the definition of
932  //   the variable member (after the declarator-id) is looked up as
933  //   if the definition of the variable member occurred in its
934  //   namespace.
935  // Both of these imply that we should push a scope whose context
936  // is the semantic context of the declaration.  We can't use
937  // PushDeclContext here because that context is not necessarily
938  // lexically contained in the current context.  Fortunately,
939  // the containing scope should have the appropriate information.
940
941  assert(!S->getEntity() && "scope already has entity");
942
943#ifndef NDEBUG
944  Scope *Ancestor = S->getParent();
945  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
946  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
947#endif
948
949  CurContext = DC;
950  S->setEntity(DC);
951}
952
953void Sema::ExitDeclaratorContext(Scope *S) {
954  assert(S->getEntity() == CurContext && "Context imbalance!");
955
956  // Switch back to the lexical context.  The safety of this is
957  // enforced by an assert in EnterDeclaratorContext.
958  Scope *Ancestor = S->getParent();
959  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
960  CurContext = (DeclContext*) Ancestor->getEntity();
961
962  // We don't need to do anything with the scope, which is going to
963  // disappear.
964}
965
966
967void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
968  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
969  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
970    // We assume that the caller has already called
971    // ActOnReenterTemplateScope
972    FD = TFD->getTemplatedDecl();
973  }
974  if (!FD)
975    return;
976
977  // Same implementation as PushDeclContext, but enters the context
978  // from the lexical parent, rather than the top-level class.
979  assert(CurContext == FD->getLexicalParent() &&
980    "The next DeclContext should be lexically contained in the current one.");
981  CurContext = FD;
982  S->setEntity(CurContext);
983
984  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
985    ParmVarDecl *Param = FD->getParamDecl(P);
986    // If the parameter has an identifier, then add it to the scope
987    if (Param->getIdentifier()) {
988      S->AddDecl(Param);
989      IdResolver.AddDecl(Param);
990    }
991  }
992}
993
994
995void Sema::ActOnExitFunctionContext() {
996  // Same implementation as PopDeclContext, but returns to the lexical parent,
997  // rather than the top-level class.
998  assert(CurContext && "DeclContext imbalance!");
999  CurContext = CurContext->getLexicalParent();
1000  assert(CurContext && "Popped translation unit!");
1001}
1002
1003
1004/// \brief Determine whether we allow overloading of the function
1005/// PrevDecl with another declaration.
1006///
1007/// This routine determines whether overloading is possible, not
1008/// whether some new function is actually an overload. It will return
1009/// true in C++ (where we can always provide overloads) or, as an
1010/// extension, in C when the previous function is already an
1011/// overloaded function declaration or has the "overloadable"
1012/// attribute.
1013static bool AllowOverloadingOfFunction(LookupResult &Previous,
1014                                       ASTContext &Context) {
1015  if (Context.getLangOpts().CPlusPlus)
1016    return true;
1017
1018  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1019    return true;
1020
1021  return (Previous.getResultKind() == LookupResult::Found
1022          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1023}
1024
1025/// Add this decl to the scope shadowed decl chains.
1026void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1027  // Move up the scope chain until we find the nearest enclosing
1028  // non-transparent context. The declaration will be introduced into this
1029  // scope.
1030  while (S->getEntity() &&
1031         ((DeclContext *)S->getEntity())->isTransparentContext())
1032    S = S->getParent();
1033
1034  // Add scoped declarations into their context, so that they can be
1035  // found later. Declarations without a context won't be inserted
1036  // into any context.
1037  if (AddToContext)
1038    CurContext->addDecl(D);
1039
1040  // Out-of-line definitions shouldn't be pushed into scope in C++.
1041  // Out-of-line variable and function definitions shouldn't even in C.
1042  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1043      D->isOutOfLine() &&
1044      !D->getDeclContext()->getRedeclContext()->Equals(
1045        D->getLexicalDeclContext()->getRedeclContext()))
1046    return;
1047
1048  // Template instantiations should also not be pushed into scope.
1049  if (isa<FunctionDecl>(D) &&
1050      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1051    return;
1052
1053  // If this replaces anything in the current scope,
1054  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1055                               IEnd = IdResolver.end();
1056  for (; I != IEnd; ++I) {
1057    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1058      S->RemoveDecl(*I);
1059      IdResolver.RemoveDecl(*I);
1060
1061      // Should only need to replace one decl.
1062      break;
1063    }
1064  }
1065
1066  S->AddDecl(D);
1067
1068  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1069    // Implicitly-generated labels may end up getting generated in an order that
1070    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1071    // the label at the appropriate place in the identifier chain.
1072    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1073      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1074      if (IDC == CurContext) {
1075        if (!S->isDeclScope(*I))
1076          continue;
1077      } else if (IDC->Encloses(CurContext))
1078        break;
1079    }
1080
1081    IdResolver.InsertDeclAfter(I, D);
1082  } else {
1083    IdResolver.AddDecl(D);
1084  }
1085}
1086
1087void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1088  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1089    TUScope->AddDecl(D);
1090}
1091
1092bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1093                         bool ExplicitInstantiationOrSpecialization) {
1094  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1095                                  ExplicitInstantiationOrSpecialization);
1096}
1097
1098Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1099  DeclContext *TargetDC = DC->getPrimaryContext();
1100  do {
1101    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1102      if (ScopeDC->getPrimaryContext() == TargetDC)
1103        return S;
1104  } while ((S = S->getParent()));
1105
1106  return 0;
1107}
1108
1109static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1110                                            DeclContext*,
1111                                            ASTContext&);
1112
1113/// Filters out lookup results that don't fall within the given scope
1114/// as determined by isDeclInScope.
1115void Sema::FilterLookupForScope(LookupResult &R,
1116                                DeclContext *Ctx, Scope *S,
1117                                bool ConsiderLinkage,
1118                                bool ExplicitInstantiationOrSpecialization) {
1119  LookupResult::Filter F = R.makeFilter();
1120  while (F.hasNext()) {
1121    NamedDecl *D = F.next();
1122
1123    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1124      continue;
1125
1126    if (ConsiderLinkage &&
1127        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1128      continue;
1129
1130    F.erase();
1131  }
1132
1133  F.done();
1134}
1135
1136static bool isUsingDecl(NamedDecl *D) {
1137  return isa<UsingShadowDecl>(D) ||
1138         isa<UnresolvedUsingTypenameDecl>(D) ||
1139         isa<UnresolvedUsingValueDecl>(D);
1140}
1141
1142/// Removes using shadow declarations from the lookup results.
1143static void RemoveUsingDecls(LookupResult &R) {
1144  LookupResult::Filter F = R.makeFilter();
1145  while (F.hasNext())
1146    if (isUsingDecl(F.next()))
1147      F.erase();
1148
1149  F.done();
1150}
1151
1152/// \brief Check for this common pattern:
1153/// @code
1154/// class S {
1155///   S(const S&); // DO NOT IMPLEMENT
1156///   void operator=(const S&); // DO NOT IMPLEMENT
1157/// };
1158/// @endcode
1159static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1160  // FIXME: Should check for private access too but access is set after we get
1161  // the decl here.
1162  if (D->doesThisDeclarationHaveABody())
1163    return false;
1164
1165  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1166    return CD->isCopyConstructor();
1167  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1168    return Method->isCopyAssignmentOperator();
1169  return false;
1170}
1171
1172bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1173  assert(D);
1174
1175  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1176    return false;
1177
1178  // Ignore class templates.
1179  if (D->getDeclContext()->isDependentContext() ||
1180      D->getLexicalDeclContext()->isDependentContext())
1181    return false;
1182
1183  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1184    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1185      return false;
1186
1187    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1188      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1189        return false;
1190    } else {
1191      // 'static inline' functions are used in headers; don't warn.
1192      if (FD->getStorageClass() == SC_Static &&
1193          FD->isInlineSpecified())
1194        return false;
1195    }
1196
1197    if (FD->doesThisDeclarationHaveABody() &&
1198        Context.DeclMustBeEmitted(FD))
1199      return false;
1200  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1201    if (!VD->isFileVarDecl() ||
1202        VD->getType().isConstant(Context) ||
1203        Context.DeclMustBeEmitted(VD))
1204      return false;
1205
1206    if (VD->isStaticDataMember() &&
1207        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1208      return false;
1209
1210  } else {
1211    return false;
1212  }
1213
1214  // Only warn for unused decls internal to the translation unit.
1215  if (D->getLinkage() == ExternalLinkage)
1216    return false;
1217
1218  return true;
1219}
1220
1221void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1222  if (!D)
1223    return;
1224
1225  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1226    const FunctionDecl *First = FD->getFirstDeclaration();
1227    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1228      return; // First should already be in the vector.
1229  }
1230
1231  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232    const VarDecl *First = VD->getFirstDeclaration();
1233    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1234      return; // First should already be in the vector.
1235  }
1236
1237  if (ShouldWarnIfUnusedFileScopedDecl(D))
1238    UnusedFileScopedDecls.push_back(D);
1239}
1240
1241static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1242  if (D->isInvalidDecl())
1243    return false;
1244
1245  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1246    return false;
1247
1248  if (isa<LabelDecl>(D))
1249    return true;
1250
1251  // White-list anything that isn't a local variable.
1252  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1253      !D->getDeclContext()->isFunctionOrMethod())
1254    return false;
1255
1256  // Types of valid local variables should be complete, so this should succeed.
1257  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1258
1259    // White-list anything with an __attribute__((unused)) type.
1260    QualType Ty = VD->getType();
1261
1262    // Only look at the outermost level of typedef.
1263    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1264      if (TT->getDecl()->hasAttr<UnusedAttr>())
1265        return false;
1266    }
1267
1268    // If we failed to complete the type for some reason, or if the type is
1269    // dependent, don't diagnose the variable.
1270    if (Ty->isIncompleteType() || Ty->isDependentType())
1271      return false;
1272
1273    if (const TagType *TT = Ty->getAs<TagType>()) {
1274      const TagDecl *Tag = TT->getDecl();
1275      if (Tag->hasAttr<UnusedAttr>())
1276        return false;
1277
1278      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1279        if (!RD->hasTrivialDestructor())
1280          return false;
1281
1282        if (const Expr *Init = VD->getInit()) {
1283          const CXXConstructExpr *Construct =
1284            dyn_cast<CXXConstructExpr>(Init);
1285          if (Construct && !Construct->isElidable()) {
1286            CXXConstructorDecl *CD = Construct->getConstructor();
1287            if (!CD->isTrivial())
1288              return false;
1289          }
1290        }
1291      }
1292    }
1293
1294    // TODO: __attribute__((unused)) templates?
1295  }
1296
1297  return true;
1298}
1299
1300static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1301                                     FixItHint &Hint) {
1302  if (isa<LabelDecl>(D)) {
1303    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1304                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1305    if (AfterColon.isInvalid())
1306      return;
1307    Hint = FixItHint::CreateRemoval(CharSourceRange::
1308                                    getCharRange(D->getLocStart(), AfterColon));
1309  }
1310  return;
1311}
1312
1313/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1314/// unless they are marked attr(unused).
1315void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1316  FixItHint Hint;
1317  if (!ShouldDiagnoseUnusedDecl(D))
1318    return;
1319
1320  GenerateFixForUnusedDecl(D, Context, Hint);
1321
1322  unsigned DiagID;
1323  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1324    DiagID = diag::warn_unused_exception_param;
1325  else if (isa<LabelDecl>(D))
1326    DiagID = diag::warn_unused_label;
1327  else
1328    DiagID = diag::warn_unused_variable;
1329
1330  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1331}
1332
1333static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1334  // Verify that we have no forward references left.  If so, there was a goto
1335  // or address of a label taken, but no definition of it.  Label fwd
1336  // definitions are indicated with a null substmt.
1337  if (L->getStmt() == 0)
1338    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1339}
1340
1341void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1342  if (S->decl_empty()) return;
1343  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1344         "Scope shouldn't contain decls!");
1345
1346  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1347       I != E; ++I) {
1348    Decl *TmpD = (*I);
1349    assert(TmpD && "This decl didn't get pushed??");
1350
1351    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1352    NamedDecl *D = cast<NamedDecl>(TmpD);
1353
1354    if (!D->getDeclName()) continue;
1355
1356    // Diagnose unused variables in this scope.
1357    if (!S->hasErrorOccurred())
1358      DiagnoseUnusedDecl(D);
1359
1360    // If this was a forward reference to a label, verify it was defined.
1361    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1362      CheckPoppedLabel(LD, *this);
1363
1364    // Remove this name from our lexical scope.
1365    IdResolver.RemoveDecl(D);
1366  }
1367}
1368
1369void Sema::ActOnStartFunctionDeclarator() {
1370  ++InFunctionDeclarator;
1371}
1372
1373void Sema::ActOnEndFunctionDeclarator() {
1374  assert(InFunctionDeclarator);
1375  --InFunctionDeclarator;
1376}
1377
1378/// \brief Look for an Objective-C class in the translation unit.
1379///
1380/// \param Id The name of the Objective-C class we're looking for. If
1381/// typo-correction fixes this name, the Id will be updated
1382/// to the fixed name.
1383///
1384/// \param IdLoc The location of the name in the translation unit.
1385///
1386/// \param DoTypoCorrection If true, this routine will attempt typo correction
1387/// if there is no class with the given name.
1388///
1389/// \returns The declaration of the named Objective-C class, or NULL if the
1390/// class could not be found.
1391ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1392                                              SourceLocation IdLoc,
1393                                              bool DoTypoCorrection) {
1394  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1395  // creation from this context.
1396  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1397
1398  if (!IDecl && DoTypoCorrection) {
1399    // Perform typo correction at the given location, but only if we
1400    // find an Objective-C class name.
1401    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1402    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1403                                       LookupOrdinaryName, TUScope, NULL,
1404                                       Validator)) {
1405      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1406      Diag(IdLoc, diag::err_undef_interface_suggest)
1407        << Id << IDecl->getDeclName()
1408        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1409      Diag(IDecl->getLocation(), diag::note_previous_decl)
1410        << IDecl->getDeclName();
1411
1412      Id = IDecl->getIdentifier();
1413    }
1414  }
1415  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1416  // This routine must always return a class definition, if any.
1417  if (Def && Def->getDefinition())
1418      Def = Def->getDefinition();
1419  return Def;
1420}
1421
1422/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1423/// from S, where a non-field would be declared. This routine copes
1424/// with the difference between C and C++ scoping rules in structs and
1425/// unions. For example, the following code is well-formed in C but
1426/// ill-formed in C++:
1427/// @code
1428/// struct S6 {
1429///   enum { BAR } e;
1430/// };
1431///
1432/// void test_S6() {
1433///   struct S6 a;
1434///   a.e = BAR;
1435/// }
1436/// @endcode
1437/// For the declaration of BAR, this routine will return a different
1438/// scope. The scope S will be the scope of the unnamed enumeration
1439/// within S6. In C++, this routine will return the scope associated
1440/// with S6, because the enumeration's scope is a transparent
1441/// context but structures can contain non-field names. In C, this
1442/// routine will return the translation unit scope, since the
1443/// enumeration's scope is a transparent context and structures cannot
1444/// contain non-field names.
1445Scope *Sema::getNonFieldDeclScope(Scope *S) {
1446  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1447         (S->getEntity() &&
1448          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1449         (S->isClassScope() && !getLangOpts().CPlusPlus))
1450    S = S->getParent();
1451  return S;
1452}
1453
1454/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1455/// file scope.  lazily create a decl for it. ForRedeclaration is true
1456/// if we're creating this built-in in anticipation of redeclaring the
1457/// built-in.
1458NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1459                                     Scope *S, bool ForRedeclaration,
1460                                     SourceLocation Loc) {
1461  Builtin::ID BID = (Builtin::ID)bid;
1462
1463  ASTContext::GetBuiltinTypeError Error;
1464  QualType R = Context.GetBuiltinType(BID, Error);
1465  switch (Error) {
1466  case ASTContext::GE_None:
1467    // Okay
1468    break;
1469
1470  case ASTContext::GE_Missing_stdio:
1471    if (ForRedeclaration)
1472      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1473        << Context.BuiltinInfo.GetName(BID);
1474    return 0;
1475
1476  case ASTContext::GE_Missing_setjmp:
1477    if (ForRedeclaration)
1478      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1479        << Context.BuiltinInfo.GetName(BID);
1480    return 0;
1481
1482  case ASTContext::GE_Missing_ucontext:
1483    if (ForRedeclaration)
1484      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1485        << Context.BuiltinInfo.GetName(BID);
1486    return 0;
1487  }
1488
1489  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1490    Diag(Loc, diag::ext_implicit_lib_function_decl)
1491      << Context.BuiltinInfo.GetName(BID)
1492      << R;
1493    if (Context.BuiltinInfo.getHeaderName(BID) &&
1494        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1495          != DiagnosticsEngine::Ignored)
1496      Diag(Loc, diag::note_please_include_header)
1497        << Context.BuiltinInfo.getHeaderName(BID)
1498        << Context.BuiltinInfo.GetName(BID);
1499  }
1500
1501  FunctionDecl *New = FunctionDecl::Create(Context,
1502                                           Context.getTranslationUnitDecl(),
1503                                           Loc, Loc, II, R, /*TInfo=*/0,
1504                                           SC_Extern,
1505                                           SC_None, false,
1506                                           /*hasPrototype=*/true);
1507  New->setImplicit();
1508
1509  // Create Decl objects for each parameter, adding them to the
1510  // FunctionDecl.
1511  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1512    SmallVector<ParmVarDecl*, 16> Params;
1513    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1514      ParmVarDecl *parm =
1515        ParmVarDecl::Create(Context, New, SourceLocation(),
1516                            SourceLocation(), 0,
1517                            FT->getArgType(i), /*TInfo=*/0,
1518                            SC_None, SC_None, 0);
1519      parm->setScopeInfo(0, i);
1520      Params.push_back(parm);
1521    }
1522    New->setParams(Params);
1523  }
1524
1525  AddKnownFunctionAttributes(New);
1526
1527  // TUScope is the translation-unit scope to insert this function into.
1528  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1529  // relate Scopes to DeclContexts, and probably eliminate CurContext
1530  // entirely, but we're not there yet.
1531  DeclContext *SavedContext = CurContext;
1532  CurContext = Context.getTranslationUnitDecl();
1533  PushOnScopeChains(New, TUScope);
1534  CurContext = SavedContext;
1535  return New;
1536}
1537
1538bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1539  QualType OldType;
1540  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1541    OldType = OldTypedef->getUnderlyingType();
1542  else
1543    OldType = Context.getTypeDeclType(Old);
1544  QualType NewType = New->getUnderlyingType();
1545
1546  if (NewType->isVariablyModifiedType()) {
1547    // Must not redefine a typedef with a variably-modified type.
1548    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1549    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1550      << Kind << NewType;
1551    if (Old->getLocation().isValid())
1552      Diag(Old->getLocation(), diag::note_previous_definition);
1553    New->setInvalidDecl();
1554    return true;
1555  }
1556
1557  if (OldType != NewType &&
1558      !OldType->isDependentType() &&
1559      !NewType->isDependentType() &&
1560      !Context.hasSameType(OldType, NewType)) {
1561    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1562    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1563      << Kind << NewType << OldType;
1564    if (Old->getLocation().isValid())
1565      Diag(Old->getLocation(), diag::note_previous_definition);
1566    New->setInvalidDecl();
1567    return true;
1568  }
1569  return false;
1570}
1571
1572/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1573/// same name and scope as a previous declaration 'Old'.  Figure out
1574/// how to resolve this situation, merging decls or emitting
1575/// diagnostics as appropriate. If there was an error, set New to be invalid.
1576///
1577void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1578  // If the new decl is known invalid already, don't bother doing any
1579  // merging checks.
1580  if (New->isInvalidDecl()) return;
1581
1582  // Allow multiple definitions for ObjC built-in typedefs.
1583  // FIXME: Verify the underlying types are equivalent!
1584  if (getLangOpts().ObjC1) {
1585    const IdentifierInfo *TypeID = New->getIdentifier();
1586    switch (TypeID->getLength()) {
1587    default: break;
1588    case 2:
1589      {
1590        if (!TypeID->isStr("id"))
1591          break;
1592        QualType T = New->getUnderlyingType();
1593        if (!T->isPointerType())
1594          break;
1595        if (!T->isVoidPointerType()) {
1596          QualType PT = T->getAs<PointerType>()->getPointeeType();
1597          if (!PT->isStructureType())
1598            break;
1599        }
1600        Context.setObjCIdRedefinitionType(T);
1601        // Install the built-in type for 'id', ignoring the current definition.
1602        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1603        return;
1604      }
1605    case 5:
1606      if (!TypeID->isStr("Class"))
1607        break;
1608      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1609      // Install the built-in type for 'Class', ignoring the current definition.
1610      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1611      return;
1612    case 3:
1613      if (!TypeID->isStr("SEL"))
1614        break;
1615      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1616      // Install the built-in type for 'SEL', ignoring the current definition.
1617      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1618      return;
1619    }
1620    // Fall through - the typedef name was not a builtin type.
1621  }
1622
1623  // Verify the old decl was also a type.
1624  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1625  if (!Old) {
1626    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1627      << New->getDeclName();
1628
1629    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1630    if (OldD->getLocation().isValid())
1631      Diag(OldD->getLocation(), diag::note_previous_definition);
1632
1633    return New->setInvalidDecl();
1634  }
1635
1636  // If the old declaration is invalid, just give up here.
1637  if (Old->isInvalidDecl())
1638    return New->setInvalidDecl();
1639
1640  // If the typedef types are not identical, reject them in all languages and
1641  // with any extensions enabled.
1642  if (isIncompatibleTypedef(Old, New))
1643    return;
1644
1645  // The types match.  Link up the redeclaration chain if the old
1646  // declaration was a typedef.
1647  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1648    New->setPreviousDeclaration(Typedef);
1649
1650  if (getLangOpts().MicrosoftExt)
1651    return;
1652
1653  if (getLangOpts().CPlusPlus) {
1654    // C++ [dcl.typedef]p2:
1655    //   In a given non-class scope, a typedef specifier can be used to
1656    //   redefine the name of any type declared in that scope to refer
1657    //   to the type to which it already refers.
1658    if (!isa<CXXRecordDecl>(CurContext))
1659      return;
1660
1661    // C++0x [dcl.typedef]p4:
1662    //   In a given class scope, a typedef specifier can be used to redefine
1663    //   any class-name declared in that scope that is not also a typedef-name
1664    //   to refer to the type to which it already refers.
1665    //
1666    // This wording came in via DR424, which was a correction to the
1667    // wording in DR56, which accidentally banned code like:
1668    //
1669    //   struct S {
1670    //     typedef struct A { } A;
1671    //   };
1672    //
1673    // in the C++03 standard. We implement the C++0x semantics, which
1674    // allow the above but disallow
1675    //
1676    //   struct S {
1677    //     typedef int I;
1678    //     typedef int I;
1679    //   };
1680    //
1681    // since that was the intent of DR56.
1682    if (!isa<TypedefNameDecl>(Old))
1683      return;
1684
1685    Diag(New->getLocation(), diag::err_redefinition)
1686      << New->getDeclName();
1687    Diag(Old->getLocation(), diag::note_previous_definition);
1688    return New->setInvalidDecl();
1689  }
1690
1691  // Modules always permit redefinition of typedefs, as does C11.
1692  if (getLangOpts().Modules || getLangOpts().C11)
1693    return;
1694
1695  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1696  // is normally mapped to an error, but can be controlled with
1697  // -Wtypedef-redefinition.  If either the original or the redefinition is
1698  // in a system header, don't emit this for compatibility with GCC.
1699  if (getDiagnostics().getSuppressSystemWarnings() &&
1700      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1701       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1702    return;
1703
1704  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1705    << New->getDeclName();
1706  Diag(Old->getLocation(), diag::note_previous_definition);
1707  return;
1708}
1709
1710/// DeclhasAttr - returns true if decl Declaration already has the target
1711/// attribute.
1712static bool
1713DeclHasAttr(const Decl *D, const Attr *A) {
1714  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1715  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1716  // responsible for making sure they are consistent.
1717  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1718  if (AA)
1719    return false;
1720
1721  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1722  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1723  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1724    if ((*i)->getKind() == A->getKind()) {
1725      if (Ann) {
1726        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1727          return true;
1728        continue;
1729      }
1730      // FIXME: Don't hardcode this check
1731      if (OA && isa<OwnershipAttr>(*i))
1732        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1733      return true;
1734    }
1735
1736  return false;
1737}
1738
1739bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1740  InheritableAttr *NewAttr = NULL;
1741  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1742    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1743                                    AA->getIntroduced(), AA->getDeprecated(),
1744                                    AA->getObsoleted(), AA->getUnavailable(),
1745                                    AA->getMessage());
1746  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1747    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1748  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1749    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1750  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1751    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1752  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1753    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1754                              FA->getFormatIdx(), FA->getFirstArg());
1755  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1756    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1757  else if (!DeclHasAttr(D, Attr))
1758    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1759
1760  if (NewAttr) {
1761    NewAttr->setInherited(true);
1762    D->addAttr(NewAttr);
1763    return true;
1764  }
1765
1766  return false;
1767}
1768
1769static const Decl *getDefinition(const Decl *D) {
1770  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1771    return TD->getDefinition();
1772  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1773    return VD->getDefinition();
1774  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1775    const FunctionDecl* Def;
1776    if (FD->hasBody(Def))
1777      return Def;
1778  }
1779  return NULL;
1780}
1781
1782static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1783  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1784       I != E; ++I) {
1785    Attr *Attribute = *I;
1786    if (Attribute->getKind() == Kind)
1787      return true;
1788  }
1789  return false;
1790}
1791
1792/// checkNewAttributesAfterDef - If we already have a definition, check that
1793/// there are no new attributes in this declaration.
1794static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1795  if (!New->hasAttrs())
1796    return;
1797
1798  const Decl *Def = getDefinition(Old);
1799  if (!Def || Def == New)
1800    return;
1801
1802  AttrVec &NewAttributes = New->getAttrs();
1803  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1804    const Attr *NewAttribute = NewAttributes[I];
1805    if (hasAttribute(Def, NewAttribute->getKind())) {
1806      ++I;
1807      continue; // regular attr merging will take care of validating this.
1808    }
1809    S.Diag(NewAttribute->getLocation(),
1810           diag::warn_attribute_precede_definition);
1811    S.Diag(Def->getLocation(), diag::note_previous_definition);
1812    NewAttributes.erase(NewAttributes.begin() + I);
1813    --E;
1814  }
1815}
1816
1817/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1818void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1819                               bool MergeDeprecation) {
1820  // attributes declared post-definition are currently ignored
1821  checkNewAttributesAfterDef(*this, New, Old);
1822
1823  if (!Old->hasAttrs())
1824    return;
1825
1826  bool foundAny = New->hasAttrs();
1827
1828  // Ensure that any moving of objects within the allocated map is done before
1829  // we process them.
1830  if (!foundAny) New->setAttrs(AttrVec());
1831
1832  for (specific_attr_iterator<InheritableAttr>
1833         i = Old->specific_attr_begin<InheritableAttr>(),
1834         e = Old->specific_attr_end<InheritableAttr>();
1835       i != e; ++i) {
1836    // Ignore deprecated/unavailable/availability attributes if requested.
1837    if (!MergeDeprecation &&
1838        (isa<DeprecatedAttr>(*i) ||
1839         isa<UnavailableAttr>(*i) ||
1840         isa<AvailabilityAttr>(*i)))
1841      continue;
1842
1843    if (mergeDeclAttribute(New, *i))
1844      foundAny = true;
1845  }
1846
1847  if (!foundAny) New->dropAttrs();
1848}
1849
1850/// mergeParamDeclAttributes - Copy attributes from the old parameter
1851/// to the new one.
1852static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1853                                     const ParmVarDecl *oldDecl,
1854                                     ASTContext &C) {
1855  if (!oldDecl->hasAttrs())
1856    return;
1857
1858  bool foundAny = newDecl->hasAttrs();
1859
1860  // Ensure that any moving of objects within the allocated map is
1861  // done before we process them.
1862  if (!foundAny) newDecl->setAttrs(AttrVec());
1863
1864  for (specific_attr_iterator<InheritableParamAttr>
1865       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1866       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1867    if (!DeclHasAttr(newDecl, *i)) {
1868      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1869      newAttr->setInherited(true);
1870      newDecl->addAttr(newAttr);
1871      foundAny = true;
1872    }
1873  }
1874
1875  if (!foundAny) newDecl->dropAttrs();
1876}
1877
1878namespace {
1879
1880/// Used in MergeFunctionDecl to keep track of function parameters in
1881/// C.
1882struct GNUCompatibleParamWarning {
1883  ParmVarDecl *OldParm;
1884  ParmVarDecl *NewParm;
1885  QualType PromotedType;
1886};
1887
1888}
1889
1890/// getSpecialMember - get the special member enum for a method.
1891Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1892  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1893    if (Ctor->isDefaultConstructor())
1894      return Sema::CXXDefaultConstructor;
1895
1896    if (Ctor->isCopyConstructor())
1897      return Sema::CXXCopyConstructor;
1898
1899    if (Ctor->isMoveConstructor())
1900      return Sema::CXXMoveConstructor;
1901  } else if (isa<CXXDestructorDecl>(MD)) {
1902    return Sema::CXXDestructor;
1903  } else if (MD->isCopyAssignmentOperator()) {
1904    return Sema::CXXCopyAssignment;
1905  } else if (MD->isMoveAssignmentOperator()) {
1906    return Sema::CXXMoveAssignment;
1907  }
1908
1909  return Sema::CXXInvalid;
1910}
1911
1912/// canRedefineFunction - checks if a function can be redefined. Currently,
1913/// only extern inline functions can be redefined, and even then only in
1914/// GNU89 mode.
1915static bool canRedefineFunction(const FunctionDecl *FD,
1916                                const LangOptions& LangOpts) {
1917  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1918          !LangOpts.CPlusPlus &&
1919          FD->isInlineSpecified() &&
1920          FD->getStorageClass() == SC_Extern);
1921}
1922
1923/// Is the given calling convention the ABI default for the given
1924/// declaration?
1925static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1926  CallingConv ABIDefaultCC;
1927  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1928    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1929  } else {
1930    // Free C function or a static method.
1931    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1932  }
1933  return ABIDefaultCC == CC;
1934}
1935
1936/// MergeFunctionDecl - We just parsed a function 'New' from
1937/// declarator D which has the same name and scope as a previous
1938/// declaration 'Old'.  Figure out how to resolve this situation,
1939/// merging decls or emitting diagnostics as appropriate.
1940///
1941/// In C++, New and Old must be declarations that are not
1942/// overloaded. Use IsOverload to determine whether New and Old are
1943/// overloaded, and to select the Old declaration that New should be
1944/// merged with.
1945///
1946/// Returns true if there was an error, false otherwise.
1947bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1948  // Verify the old decl was also a function.
1949  FunctionDecl *Old = 0;
1950  if (FunctionTemplateDecl *OldFunctionTemplate
1951        = dyn_cast<FunctionTemplateDecl>(OldD))
1952    Old = OldFunctionTemplate->getTemplatedDecl();
1953  else
1954    Old = dyn_cast<FunctionDecl>(OldD);
1955  if (!Old) {
1956    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1957      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1958      Diag(Shadow->getTargetDecl()->getLocation(),
1959           diag::note_using_decl_target);
1960      Diag(Shadow->getUsingDecl()->getLocation(),
1961           diag::note_using_decl) << 0;
1962      return true;
1963    }
1964
1965    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1966      << New->getDeclName();
1967    Diag(OldD->getLocation(), diag::note_previous_definition);
1968    return true;
1969  }
1970
1971  // Determine whether the previous declaration was a definition,
1972  // implicit declaration, or a declaration.
1973  diag::kind PrevDiag;
1974  if (Old->isThisDeclarationADefinition())
1975    PrevDiag = diag::note_previous_definition;
1976  else if (Old->isImplicit())
1977    PrevDiag = diag::note_previous_implicit_declaration;
1978  else
1979    PrevDiag = diag::note_previous_declaration;
1980
1981  QualType OldQType = Context.getCanonicalType(Old->getType());
1982  QualType NewQType = Context.getCanonicalType(New->getType());
1983
1984  // Don't complain about this if we're in GNU89 mode and the old function
1985  // is an extern inline function.
1986  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1987      New->getStorageClass() == SC_Static &&
1988      Old->getStorageClass() != SC_Static &&
1989      !canRedefineFunction(Old, getLangOpts())) {
1990    if (getLangOpts().MicrosoftExt) {
1991      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1992      Diag(Old->getLocation(), PrevDiag);
1993    } else {
1994      Diag(New->getLocation(), diag::err_static_non_static) << New;
1995      Diag(Old->getLocation(), PrevDiag);
1996      return true;
1997    }
1998  }
1999
2000  // If a function is first declared with a calling convention, but is
2001  // later declared or defined without one, the second decl assumes the
2002  // calling convention of the first.
2003  //
2004  // It's OK if a function is first declared without a calling convention,
2005  // but is later declared or defined with the default calling convention.
2006  //
2007  // For the new decl, we have to look at the NON-canonical type to tell the
2008  // difference between a function that really doesn't have a calling
2009  // convention and one that is declared cdecl. That's because in
2010  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2011  // because it is the default calling convention.
2012  //
2013  // Note also that we DO NOT return at this point, because we still have
2014  // other tests to run.
2015  const FunctionType *OldType = cast<FunctionType>(OldQType);
2016  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2017  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2018  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2019  bool RequiresAdjustment = false;
2020  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2021    // Fast path: nothing to do.
2022
2023  // Inherit the CC from the previous declaration if it was specified
2024  // there but not here.
2025  } else if (NewTypeInfo.getCC() == CC_Default) {
2026    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2027    RequiresAdjustment = true;
2028
2029  // Don't complain about mismatches when the default CC is
2030  // effectively the same as the explict one.
2031  } else if (OldTypeInfo.getCC() == CC_Default &&
2032             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2033    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2034    RequiresAdjustment = true;
2035
2036  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2037                                     NewTypeInfo.getCC())) {
2038    // Calling conventions really aren't compatible, so complain.
2039    Diag(New->getLocation(), diag::err_cconv_change)
2040      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2041      << (OldTypeInfo.getCC() == CC_Default)
2042      << (OldTypeInfo.getCC() == CC_Default ? "" :
2043          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2044    Diag(Old->getLocation(), diag::note_previous_declaration);
2045    return true;
2046  }
2047
2048  // FIXME: diagnose the other way around?
2049  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2050    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2051    RequiresAdjustment = true;
2052  }
2053
2054  // Merge regparm attribute.
2055  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2056      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2057    if (NewTypeInfo.getHasRegParm()) {
2058      Diag(New->getLocation(), diag::err_regparm_mismatch)
2059        << NewType->getRegParmType()
2060        << OldType->getRegParmType();
2061      Diag(Old->getLocation(), diag::note_previous_declaration);
2062      return true;
2063    }
2064
2065    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2066    RequiresAdjustment = true;
2067  }
2068
2069  // Merge ns_returns_retained attribute.
2070  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2071    if (NewTypeInfo.getProducesResult()) {
2072      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2073      Diag(Old->getLocation(), diag::note_previous_declaration);
2074      return true;
2075    }
2076
2077    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2078    RequiresAdjustment = true;
2079  }
2080
2081  if (RequiresAdjustment) {
2082    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2083    New->setType(QualType(NewType, 0));
2084    NewQType = Context.getCanonicalType(New->getType());
2085  }
2086
2087  if (getLangOpts().CPlusPlus) {
2088    // (C++98 13.1p2):
2089    //   Certain function declarations cannot be overloaded:
2090    //     -- Function declarations that differ only in the return type
2091    //        cannot be overloaded.
2092    QualType OldReturnType = OldType->getResultType();
2093    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2094    QualType ResQT;
2095    if (OldReturnType != NewReturnType) {
2096      if (NewReturnType->isObjCObjectPointerType()
2097          && OldReturnType->isObjCObjectPointerType())
2098        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2099      if (ResQT.isNull()) {
2100        if (New->isCXXClassMember() && New->isOutOfLine())
2101          Diag(New->getLocation(),
2102               diag::err_member_def_does_not_match_ret_type) << New;
2103        else
2104          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2105        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2106        return true;
2107      }
2108      else
2109        NewQType = ResQT;
2110    }
2111
2112    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2113    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2114    if (OldMethod && NewMethod) {
2115      // Preserve triviality.
2116      NewMethod->setTrivial(OldMethod->isTrivial());
2117
2118      // MSVC allows explicit template specialization at class scope:
2119      // 2 CXMethodDecls referring to the same function will be injected.
2120      // We don't want a redeclartion error.
2121      bool IsClassScopeExplicitSpecialization =
2122                              OldMethod->isFunctionTemplateSpecialization() &&
2123                              NewMethod->isFunctionTemplateSpecialization();
2124      bool isFriend = NewMethod->getFriendObjectKind();
2125
2126      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2127          !IsClassScopeExplicitSpecialization) {
2128        //    -- Member function declarations with the same name and the
2129        //       same parameter types cannot be overloaded if any of them
2130        //       is a static member function declaration.
2131        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2132          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2133          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2134          return true;
2135        }
2136
2137        // C++ [class.mem]p1:
2138        //   [...] A member shall not be declared twice in the
2139        //   member-specification, except that a nested class or member
2140        //   class template can be declared and then later defined.
2141        if (ActiveTemplateInstantiations.empty()) {
2142          unsigned NewDiag;
2143          if (isa<CXXConstructorDecl>(OldMethod))
2144            NewDiag = diag::err_constructor_redeclared;
2145          else if (isa<CXXDestructorDecl>(NewMethod))
2146            NewDiag = diag::err_destructor_redeclared;
2147          else if (isa<CXXConversionDecl>(NewMethod))
2148            NewDiag = diag::err_conv_function_redeclared;
2149          else
2150            NewDiag = diag::err_member_redeclared;
2151
2152          Diag(New->getLocation(), NewDiag);
2153        } else {
2154          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2155            << New << New->getType();
2156        }
2157        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2158
2159      // Complain if this is an explicit declaration of a special
2160      // member that was initially declared implicitly.
2161      //
2162      // As an exception, it's okay to befriend such methods in order
2163      // to permit the implicit constructor/destructor/operator calls.
2164      } else if (OldMethod->isImplicit()) {
2165        if (isFriend) {
2166          NewMethod->setImplicit();
2167        } else {
2168          Diag(NewMethod->getLocation(),
2169               diag::err_definition_of_implicitly_declared_member)
2170            << New << getSpecialMember(OldMethod);
2171          return true;
2172        }
2173      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2174        Diag(NewMethod->getLocation(),
2175             diag::err_definition_of_explicitly_defaulted_member)
2176          << getSpecialMember(OldMethod);
2177        return true;
2178      }
2179    }
2180
2181    // (C++98 8.3.5p3):
2182    //   All declarations for a function shall agree exactly in both the
2183    //   return type and the parameter-type-list.
2184    // We also want to respect all the extended bits except noreturn.
2185
2186    // noreturn should now match unless the old type info didn't have it.
2187    QualType OldQTypeForComparison = OldQType;
2188    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2189      assert(OldQType == QualType(OldType, 0));
2190      const FunctionType *OldTypeForComparison
2191        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2192      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2193      assert(OldQTypeForComparison.isCanonical());
2194    }
2195
2196    if (OldQTypeForComparison == NewQType)
2197      return MergeCompatibleFunctionDecls(New, Old, S);
2198
2199    // Fall through for conflicting redeclarations and redefinitions.
2200  }
2201
2202  // C: Function types need to be compatible, not identical. This handles
2203  // duplicate function decls like "void f(int); void f(enum X);" properly.
2204  if (!getLangOpts().CPlusPlus &&
2205      Context.typesAreCompatible(OldQType, NewQType)) {
2206    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2207    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2208    const FunctionProtoType *OldProto = 0;
2209    if (isa<FunctionNoProtoType>(NewFuncType) &&
2210        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2211      // The old declaration provided a function prototype, but the
2212      // new declaration does not. Merge in the prototype.
2213      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2214      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2215                                                 OldProto->arg_type_end());
2216      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2217                                         ParamTypes.data(), ParamTypes.size(),
2218                                         OldProto->getExtProtoInfo());
2219      New->setType(NewQType);
2220      New->setHasInheritedPrototype();
2221
2222      // Synthesize a parameter for each argument type.
2223      SmallVector<ParmVarDecl*, 16> Params;
2224      for (FunctionProtoType::arg_type_iterator
2225             ParamType = OldProto->arg_type_begin(),
2226             ParamEnd = OldProto->arg_type_end();
2227           ParamType != ParamEnd; ++ParamType) {
2228        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2229                                                 SourceLocation(),
2230                                                 SourceLocation(), 0,
2231                                                 *ParamType, /*TInfo=*/0,
2232                                                 SC_None, SC_None,
2233                                                 0);
2234        Param->setScopeInfo(0, Params.size());
2235        Param->setImplicit();
2236        Params.push_back(Param);
2237      }
2238
2239      New->setParams(Params);
2240    }
2241
2242    return MergeCompatibleFunctionDecls(New, Old, S);
2243  }
2244
2245  // GNU C permits a K&R definition to follow a prototype declaration
2246  // if the declared types of the parameters in the K&R definition
2247  // match the types in the prototype declaration, even when the
2248  // promoted types of the parameters from the K&R definition differ
2249  // from the types in the prototype. GCC then keeps the types from
2250  // the prototype.
2251  //
2252  // If a variadic prototype is followed by a non-variadic K&R definition,
2253  // the K&R definition becomes variadic.  This is sort of an edge case, but
2254  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2255  // C99 6.9.1p8.
2256  if (!getLangOpts().CPlusPlus &&
2257      Old->hasPrototype() && !New->hasPrototype() &&
2258      New->getType()->getAs<FunctionProtoType>() &&
2259      Old->getNumParams() == New->getNumParams()) {
2260    SmallVector<QualType, 16> ArgTypes;
2261    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2262    const FunctionProtoType *OldProto
2263      = Old->getType()->getAs<FunctionProtoType>();
2264    const FunctionProtoType *NewProto
2265      = New->getType()->getAs<FunctionProtoType>();
2266
2267    // Determine whether this is the GNU C extension.
2268    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2269                                               NewProto->getResultType());
2270    bool LooseCompatible = !MergedReturn.isNull();
2271    for (unsigned Idx = 0, End = Old->getNumParams();
2272         LooseCompatible && Idx != End; ++Idx) {
2273      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2274      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2275      if (Context.typesAreCompatible(OldParm->getType(),
2276                                     NewProto->getArgType(Idx))) {
2277        ArgTypes.push_back(NewParm->getType());
2278      } else if (Context.typesAreCompatible(OldParm->getType(),
2279                                            NewParm->getType(),
2280                                            /*CompareUnqualified=*/true)) {
2281        GNUCompatibleParamWarning Warn
2282          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2283        Warnings.push_back(Warn);
2284        ArgTypes.push_back(NewParm->getType());
2285      } else
2286        LooseCompatible = false;
2287    }
2288
2289    if (LooseCompatible) {
2290      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2291        Diag(Warnings[Warn].NewParm->getLocation(),
2292             diag::ext_param_promoted_not_compatible_with_prototype)
2293          << Warnings[Warn].PromotedType
2294          << Warnings[Warn].OldParm->getType();
2295        if (Warnings[Warn].OldParm->getLocation().isValid())
2296          Diag(Warnings[Warn].OldParm->getLocation(),
2297               diag::note_previous_declaration);
2298      }
2299
2300      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2301                                           ArgTypes.size(),
2302                                           OldProto->getExtProtoInfo()));
2303      return MergeCompatibleFunctionDecls(New, Old, S);
2304    }
2305
2306    // Fall through to diagnose conflicting types.
2307  }
2308
2309  // A function that has already been declared has been redeclared or defined
2310  // with a different type- show appropriate diagnostic
2311  if (unsigned BuiltinID = Old->getBuiltinID()) {
2312    // The user has declared a builtin function with an incompatible
2313    // signature.
2314    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2315      // The function the user is redeclaring is a library-defined
2316      // function like 'malloc' or 'printf'. Warn about the
2317      // redeclaration, then pretend that we don't know about this
2318      // library built-in.
2319      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2320      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2321        << Old << Old->getType();
2322      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2323      Old->setInvalidDecl();
2324      return false;
2325    }
2326
2327    PrevDiag = diag::note_previous_builtin_declaration;
2328  }
2329
2330  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2331  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2332  return true;
2333}
2334
2335/// \brief Completes the merge of two function declarations that are
2336/// known to be compatible.
2337///
2338/// This routine handles the merging of attributes and other
2339/// properties of function declarations form the old declaration to
2340/// the new declaration, once we know that New is in fact a
2341/// redeclaration of Old.
2342///
2343/// \returns false
2344bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2345                                        Scope *S) {
2346  // Merge the attributes
2347  mergeDeclAttributes(New, Old);
2348
2349  // Merge the storage class.
2350  if (Old->getStorageClass() != SC_Extern &&
2351      Old->getStorageClass() != SC_None)
2352    New->setStorageClass(Old->getStorageClass());
2353
2354  // Merge "pure" flag.
2355  if (Old->isPure())
2356    New->setPure();
2357
2358  // Merge attributes from the parameters.  These can mismatch with K&R
2359  // declarations.
2360  if (New->getNumParams() == Old->getNumParams())
2361    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2362      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2363                               Context);
2364
2365  if (getLangOpts().CPlusPlus)
2366    return MergeCXXFunctionDecl(New, Old, S);
2367
2368  return false;
2369}
2370
2371
2372void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2373                                ObjCMethodDecl *oldMethod) {
2374
2375  // Merge the attributes, including deprecated/unavailable
2376  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2377
2378  // Merge attributes from the parameters.
2379  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2380                                       oe = oldMethod->param_end();
2381  for (ObjCMethodDecl::param_iterator
2382         ni = newMethod->param_begin(), ne = newMethod->param_end();
2383       ni != ne && oi != oe; ++ni, ++oi)
2384    mergeParamDeclAttributes(*ni, *oi, Context);
2385
2386  CheckObjCMethodOverride(newMethod, oldMethod, true);
2387}
2388
2389/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2390/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2391/// emitting diagnostics as appropriate.
2392///
2393/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2394/// to here in AddInitializerToDecl. We can't check them before the initializer
2395/// is attached.
2396void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2397  if (New->isInvalidDecl() || Old->isInvalidDecl())
2398    return;
2399
2400  QualType MergedT;
2401  if (getLangOpts().CPlusPlus) {
2402    AutoType *AT = New->getType()->getContainedAutoType();
2403    if (AT && !AT->isDeduced()) {
2404      // We don't know what the new type is until the initializer is attached.
2405      return;
2406    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2407      // These could still be something that needs exception specs checked.
2408      return MergeVarDeclExceptionSpecs(New, Old);
2409    }
2410    // C++ [basic.link]p10:
2411    //   [...] the types specified by all declarations referring to a given
2412    //   object or function shall be identical, except that declarations for an
2413    //   array object can specify array types that differ by the presence or
2414    //   absence of a major array bound (8.3.4).
2415    else if (Old->getType()->isIncompleteArrayType() &&
2416             New->getType()->isArrayType()) {
2417      CanQual<ArrayType> OldArray
2418        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2419      CanQual<ArrayType> NewArray
2420        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2421      if (OldArray->getElementType() == NewArray->getElementType())
2422        MergedT = New->getType();
2423    } else if (Old->getType()->isArrayType() &&
2424             New->getType()->isIncompleteArrayType()) {
2425      CanQual<ArrayType> OldArray
2426        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2427      CanQual<ArrayType> NewArray
2428        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2429      if (OldArray->getElementType() == NewArray->getElementType())
2430        MergedT = Old->getType();
2431    } else if (New->getType()->isObjCObjectPointerType()
2432               && Old->getType()->isObjCObjectPointerType()) {
2433        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2434                                                        Old->getType());
2435    }
2436  } else {
2437    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2438  }
2439  if (MergedT.isNull()) {
2440    Diag(New->getLocation(), diag::err_redefinition_different_type)
2441      << New->getDeclName();
2442    Diag(Old->getLocation(), diag::note_previous_definition);
2443    return New->setInvalidDecl();
2444  }
2445  New->setType(MergedT);
2446}
2447
2448/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2449/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2450/// situation, merging decls or emitting diagnostics as appropriate.
2451///
2452/// Tentative definition rules (C99 6.9.2p2) are checked by
2453/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2454/// definitions here, since the initializer hasn't been attached.
2455///
2456void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2457  // If the new decl is already invalid, don't do any other checking.
2458  if (New->isInvalidDecl())
2459    return;
2460
2461  // Verify the old decl was also a variable.
2462  VarDecl *Old = 0;
2463  if (!Previous.isSingleResult() ||
2464      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2465    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2466      << New->getDeclName();
2467    Diag(Previous.getRepresentativeDecl()->getLocation(),
2468         diag::note_previous_definition);
2469    return New->setInvalidDecl();
2470  }
2471
2472  // C++ [class.mem]p1:
2473  //   A member shall not be declared twice in the member-specification [...]
2474  //
2475  // Here, we need only consider static data members.
2476  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2477    Diag(New->getLocation(), diag::err_duplicate_member)
2478      << New->getIdentifier();
2479    Diag(Old->getLocation(), diag::note_previous_declaration);
2480    New->setInvalidDecl();
2481  }
2482
2483  mergeDeclAttributes(New, Old);
2484  // Warn if an already-declared variable is made a weak_import in a subsequent
2485  // declaration
2486  if (New->getAttr<WeakImportAttr>() &&
2487      Old->getStorageClass() == SC_None &&
2488      !Old->getAttr<WeakImportAttr>()) {
2489    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2490    Diag(Old->getLocation(), diag::note_previous_definition);
2491    // Remove weak_import attribute on new declaration.
2492    New->dropAttr<WeakImportAttr>();
2493  }
2494
2495  // Merge the types.
2496  MergeVarDeclTypes(New, Old);
2497  if (New->isInvalidDecl())
2498    return;
2499
2500  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2501  if (New->getStorageClass() == SC_Static &&
2502      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2503    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2504    Diag(Old->getLocation(), diag::note_previous_definition);
2505    return New->setInvalidDecl();
2506  }
2507  // C99 6.2.2p4:
2508  //   For an identifier declared with the storage-class specifier
2509  //   extern in a scope in which a prior declaration of that
2510  //   identifier is visible,23) if the prior declaration specifies
2511  //   internal or external linkage, the linkage of the identifier at
2512  //   the later declaration is the same as the linkage specified at
2513  //   the prior declaration. If no prior declaration is visible, or
2514  //   if the prior declaration specifies no linkage, then the
2515  //   identifier has external linkage.
2516  if (New->hasExternalStorage() && Old->hasLinkage())
2517    /* Okay */;
2518  else if (New->getStorageClass() != SC_Static &&
2519           Old->getStorageClass() == SC_Static) {
2520    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2521    Diag(Old->getLocation(), diag::note_previous_definition);
2522    return New->setInvalidDecl();
2523  }
2524
2525  // Check if extern is followed by non-extern and vice-versa.
2526  if (New->hasExternalStorage() &&
2527      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2528    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2529    Diag(Old->getLocation(), diag::note_previous_definition);
2530    return New->setInvalidDecl();
2531  }
2532  if (Old->hasExternalStorage() &&
2533      !New->hasLinkage() && New->isLocalVarDecl()) {
2534    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2535    Diag(Old->getLocation(), diag::note_previous_definition);
2536    return New->setInvalidDecl();
2537  }
2538
2539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2540
2541  // FIXME: The test for external storage here seems wrong? We still
2542  // need to check for mismatches.
2543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2544      // Don't complain about out-of-line definitions of static members.
2545      !(Old->getLexicalDeclContext()->isRecord() &&
2546        !New->getLexicalDeclContext()->isRecord())) {
2547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2548    Diag(Old->getLocation(), diag::note_previous_definition);
2549    return New->setInvalidDecl();
2550  }
2551
2552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2557    Diag(Old->getLocation(), diag::note_previous_definition);
2558  }
2559
2560  // C++ doesn't have tentative definitions, so go right ahead and check here.
2561  const VarDecl *Def;
2562  if (getLangOpts().CPlusPlus &&
2563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2564      (Def = Old->getDefinition())) {
2565    Diag(New->getLocation(), diag::err_redefinition)
2566      << New->getDeclName();
2567    Diag(Def->getLocation(), diag::note_previous_definition);
2568    New->setInvalidDecl();
2569    return;
2570  }
2571  // c99 6.2.2 P4.
2572  // For an identifier declared with the storage-class specifier extern in a
2573  // scope in which a prior declaration of that identifier is visible, if
2574  // the prior declaration specifies internal or external linkage, the linkage
2575  // of the identifier at the later declaration is the same as the linkage
2576  // specified at the prior declaration.
2577  // FIXME. revisit this code.
2578  if (New->hasExternalStorage() &&
2579      Old->getLinkage() == InternalLinkage &&
2580      New->getDeclContext() == Old->getDeclContext())
2581    New->setStorageClass(Old->getStorageClass());
2582
2583  // Keep a chain of previous declarations.
2584  New->setPreviousDeclaration(Old);
2585
2586  // Inherit access appropriately.
2587  New->setAccess(Old->getAccess());
2588}
2589
2590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2591/// no declarator (e.g. "struct foo;") is parsed.
2592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2593                                       DeclSpec &DS) {
2594  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2595}
2596
2597/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2598/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2599/// parameters to cope with template friend declarations.
2600Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2601                                       DeclSpec &DS,
2602                                       MultiTemplateParamsArg TemplateParams) {
2603  Decl *TagD = 0;
2604  TagDecl *Tag = 0;
2605  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2606      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2607      DS.getTypeSpecType() == DeclSpec::TST_union ||
2608      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2609    TagD = DS.getRepAsDecl();
2610
2611    if (!TagD) // We probably had an error
2612      return 0;
2613
2614    // Note that the above type specs guarantee that the
2615    // type rep is a Decl, whereas in many of the others
2616    // it's a Type.
2617    if (isa<TagDecl>(TagD))
2618      Tag = cast<TagDecl>(TagD);
2619    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2620      Tag = CTD->getTemplatedDecl();
2621  }
2622
2623  if (Tag) {
2624    Tag->setFreeStanding();
2625    if (Tag->isInvalidDecl())
2626      return Tag;
2627  }
2628
2629  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2630    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2631    // or incomplete types shall not be restrict-qualified."
2632    if (TypeQuals & DeclSpec::TQ_restrict)
2633      Diag(DS.getRestrictSpecLoc(),
2634           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2635           << DS.getSourceRange();
2636  }
2637
2638  if (DS.isConstexprSpecified()) {
2639    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2640    // and definitions of functions and variables.
2641    if (Tag)
2642      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2643        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2644            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2645            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2646    else
2647      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2648    // Don't emit warnings after this error.
2649    return TagD;
2650  }
2651
2652  if (DS.isFriendSpecified()) {
2653    // If we're dealing with a decl but not a TagDecl, assume that
2654    // whatever routines created it handled the friendship aspect.
2655    if (TagD && !Tag)
2656      return 0;
2657    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2658  }
2659
2660  // Track whether we warned about the fact that there aren't any
2661  // declarators.
2662  bool emittedWarning = false;
2663
2664  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2665    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2666        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2667      if (getLangOpts().CPlusPlus ||
2668          Record->getDeclContext()->isRecord())
2669        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2670
2671      Diag(DS.getLocStart(), diag::ext_no_declarators)
2672        << DS.getSourceRange();
2673      emittedWarning = true;
2674    }
2675  }
2676
2677  // Check for Microsoft C extension: anonymous struct.
2678  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2679      CurContext->isRecord() &&
2680      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2681    // Handle 2 kinds of anonymous struct:
2682    //   struct STRUCT;
2683    // and
2684    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2685    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2686    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2687        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2688         DS.getRepAsType().get()->isStructureType())) {
2689      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2690        << DS.getSourceRange();
2691      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2692    }
2693  }
2694
2695  if (getLangOpts().CPlusPlus &&
2696      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2697    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2698      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2699          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2700        Diag(Enum->getLocation(), diag::ext_no_declarators)
2701          << DS.getSourceRange();
2702        emittedWarning = true;
2703      }
2704
2705  // Skip all the checks below if we have a type error.
2706  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2707
2708  if (!DS.isMissingDeclaratorOk()) {
2709    // Warn about typedefs of enums without names, since this is an
2710    // extension in both Microsoft and GNU.
2711    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2712        Tag && isa<EnumDecl>(Tag)) {
2713      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2714        << DS.getSourceRange();
2715      return Tag;
2716    }
2717
2718    Diag(DS.getLocStart(), diag::ext_no_declarators)
2719      << DS.getSourceRange();
2720    emittedWarning = true;
2721  }
2722
2723  // We're going to complain about a bunch of spurious specifiers;
2724  // only do this if we're declaring a tag, because otherwise we
2725  // should be getting diag::ext_no_declarators.
2726  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2727    return TagD;
2728
2729  // Note that a linkage-specification sets a storage class, but
2730  // 'extern "C" struct foo;' is actually valid and not theoretically
2731  // useless.
2732  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2733    if (!DS.isExternInLinkageSpec())
2734      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2735        << DeclSpec::getSpecifierName(scs);
2736
2737  if (DS.isThreadSpecified())
2738    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2739  if (DS.getTypeQualifiers()) {
2740    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2741      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2742    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2743      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2744    // Restrict is covered above.
2745  }
2746  if (DS.isInlineSpecified())
2747    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2748  if (DS.isVirtualSpecified())
2749    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2750  if (DS.isExplicitSpecified())
2751    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2752
2753  if (DS.isModulePrivateSpecified() &&
2754      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2755    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2756      << Tag->getTagKind()
2757      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2758
2759  // Warn about ignored type attributes, for example:
2760  // __attribute__((aligned)) struct A;
2761  // Attributes should be placed after tag to apply to type declaration.
2762  if (!DS.getAttributes().empty()) {
2763    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2764    if (TypeSpecType == DeclSpec::TST_class ||
2765        TypeSpecType == DeclSpec::TST_struct ||
2766        TypeSpecType == DeclSpec::TST_union ||
2767        TypeSpecType == DeclSpec::TST_enum) {
2768      AttributeList* attrs = DS.getAttributes().getList();
2769      while (attrs) {
2770        Diag(attrs->getScopeLoc(),
2771             diag::warn_declspec_attribute_ignored)
2772        << attrs->getName()
2773        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2774            TypeSpecType == DeclSpec::TST_struct ? 1 :
2775            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2776        attrs = attrs->getNext();
2777      }
2778    }
2779  }
2780
2781  ActOnDocumentableDecl(TagD);
2782
2783  return TagD;
2784}
2785
2786/// We are trying to inject an anonymous member into the given scope;
2787/// check if there's an existing declaration that can't be overloaded.
2788///
2789/// \return true if this is a forbidden redeclaration
2790static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2791                                         Scope *S,
2792                                         DeclContext *Owner,
2793                                         DeclarationName Name,
2794                                         SourceLocation NameLoc,
2795                                         unsigned diagnostic) {
2796  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2797                 Sema::ForRedeclaration);
2798  if (!SemaRef.LookupName(R, S)) return false;
2799
2800  if (R.getAsSingle<TagDecl>())
2801    return false;
2802
2803  // Pick a representative declaration.
2804  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2805  assert(PrevDecl && "Expected a non-null Decl");
2806
2807  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2808    return false;
2809
2810  SemaRef.Diag(NameLoc, diagnostic) << Name;
2811  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2812
2813  return true;
2814}
2815
2816/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2817/// anonymous struct or union AnonRecord into the owning context Owner
2818/// and scope S. This routine will be invoked just after we realize
2819/// that an unnamed union or struct is actually an anonymous union or
2820/// struct, e.g.,
2821///
2822/// @code
2823/// union {
2824///   int i;
2825///   float f;
2826/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2827///    // f into the surrounding scope.x
2828/// @endcode
2829///
2830/// This routine is recursive, injecting the names of nested anonymous
2831/// structs/unions into the owning context and scope as well.
2832static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2833                                                DeclContext *Owner,
2834                                                RecordDecl *AnonRecord,
2835                                                AccessSpecifier AS,
2836                              SmallVector<NamedDecl*, 2> &Chaining,
2837                                                      bool MSAnonStruct) {
2838  unsigned diagKind
2839    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2840                            : diag::err_anonymous_struct_member_redecl;
2841
2842  bool Invalid = false;
2843
2844  // Look every FieldDecl and IndirectFieldDecl with a name.
2845  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2846                               DEnd = AnonRecord->decls_end();
2847       D != DEnd; ++D) {
2848    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2849        cast<NamedDecl>(*D)->getDeclName()) {
2850      ValueDecl *VD = cast<ValueDecl>(*D);
2851      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2852                                       VD->getLocation(), diagKind)) {
2853        // C++ [class.union]p2:
2854        //   The names of the members of an anonymous union shall be
2855        //   distinct from the names of any other entity in the
2856        //   scope in which the anonymous union is declared.
2857        Invalid = true;
2858      } else {
2859        // C++ [class.union]p2:
2860        //   For the purpose of name lookup, after the anonymous union
2861        //   definition, the members of the anonymous union are
2862        //   considered to have been defined in the scope in which the
2863        //   anonymous union is declared.
2864        unsigned OldChainingSize = Chaining.size();
2865        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2866          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2867               PE = IF->chain_end(); PI != PE; ++PI)
2868            Chaining.push_back(*PI);
2869        else
2870          Chaining.push_back(VD);
2871
2872        assert(Chaining.size() >= 2);
2873        NamedDecl **NamedChain =
2874          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2875        for (unsigned i = 0; i < Chaining.size(); i++)
2876          NamedChain[i] = Chaining[i];
2877
2878        IndirectFieldDecl* IndirectField =
2879          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2880                                    VD->getIdentifier(), VD->getType(),
2881                                    NamedChain, Chaining.size());
2882
2883        IndirectField->setAccess(AS);
2884        IndirectField->setImplicit();
2885        SemaRef.PushOnScopeChains(IndirectField, S);
2886
2887        // That includes picking up the appropriate access specifier.
2888        if (AS != AS_none) IndirectField->setAccess(AS);
2889
2890        Chaining.resize(OldChainingSize);
2891      }
2892    }
2893  }
2894
2895  return Invalid;
2896}
2897
2898/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2899/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2900/// illegal input values are mapped to SC_None.
2901static StorageClass
2902StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2903  switch (StorageClassSpec) {
2904  case DeclSpec::SCS_unspecified:    return SC_None;
2905  case DeclSpec::SCS_extern:         return SC_Extern;
2906  case DeclSpec::SCS_static:         return SC_Static;
2907  case DeclSpec::SCS_auto:           return SC_Auto;
2908  case DeclSpec::SCS_register:       return SC_Register;
2909  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2910    // Illegal SCSs map to None: error reporting is up to the caller.
2911  case DeclSpec::SCS_mutable:        // Fall through.
2912  case DeclSpec::SCS_typedef:        return SC_None;
2913  }
2914  llvm_unreachable("unknown storage class specifier");
2915}
2916
2917/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2918/// a StorageClass. Any error reporting is up to the caller:
2919/// illegal input values are mapped to SC_None.
2920static StorageClass
2921StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2922  switch (StorageClassSpec) {
2923  case DeclSpec::SCS_unspecified:    return SC_None;
2924  case DeclSpec::SCS_extern:         return SC_Extern;
2925  case DeclSpec::SCS_static:         return SC_Static;
2926  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2927    // Illegal SCSs map to None: error reporting is up to the caller.
2928  case DeclSpec::SCS_auto:           // Fall through.
2929  case DeclSpec::SCS_mutable:        // Fall through.
2930  case DeclSpec::SCS_register:       // Fall through.
2931  case DeclSpec::SCS_typedef:        return SC_None;
2932  }
2933  llvm_unreachable("unknown storage class specifier");
2934}
2935
2936/// BuildAnonymousStructOrUnion - Handle the declaration of an
2937/// anonymous structure or union. Anonymous unions are a C++ feature
2938/// (C++ [class.union]) and a C11 feature; anonymous structures
2939/// are a C11 feature and GNU C++ extension.
2940Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2941                                             AccessSpecifier AS,
2942                                             RecordDecl *Record) {
2943  DeclContext *Owner = Record->getDeclContext();
2944
2945  // Diagnose whether this anonymous struct/union is an extension.
2946  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2947    Diag(Record->getLocation(), diag::ext_anonymous_union);
2948  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2949    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2950  else if (!Record->isUnion() && !getLangOpts().C11)
2951    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2952
2953  // C and C++ require different kinds of checks for anonymous
2954  // structs/unions.
2955  bool Invalid = false;
2956  if (getLangOpts().CPlusPlus) {
2957    const char* PrevSpec = 0;
2958    unsigned DiagID;
2959    if (Record->isUnion()) {
2960      // C++ [class.union]p6:
2961      //   Anonymous unions declared in a named namespace or in the
2962      //   global namespace shall be declared static.
2963      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2964          (isa<TranslationUnitDecl>(Owner) ||
2965           (isa<NamespaceDecl>(Owner) &&
2966            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2967        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2968          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2969
2970        // Recover by adding 'static'.
2971        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2972                               PrevSpec, DiagID);
2973      }
2974      // C++ [class.union]p6:
2975      //   A storage class is not allowed in a declaration of an
2976      //   anonymous union in a class scope.
2977      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2978               isa<RecordDecl>(Owner)) {
2979        Diag(DS.getStorageClassSpecLoc(),
2980             diag::err_anonymous_union_with_storage_spec)
2981          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2982
2983        // Recover by removing the storage specifier.
2984        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2985                               SourceLocation(),
2986                               PrevSpec, DiagID);
2987      }
2988    }
2989
2990    // Ignore const/volatile/restrict qualifiers.
2991    if (DS.getTypeQualifiers()) {
2992      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2993        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2994          << Record->isUnion() << 0
2995          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2996      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2997        Diag(DS.getVolatileSpecLoc(),
2998             diag::ext_anonymous_struct_union_qualified)
2999          << Record->isUnion() << 1
3000          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3001      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3002        Diag(DS.getRestrictSpecLoc(),
3003             diag::ext_anonymous_struct_union_qualified)
3004          << Record->isUnion() << 2
3005          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3006
3007      DS.ClearTypeQualifiers();
3008    }
3009
3010    // C++ [class.union]p2:
3011    //   The member-specification of an anonymous union shall only
3012    //   define non-static data members. [Note: nested types and
3013    //   functions cannot be declared within an anonymous union. ]
3014    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3015                                 MemEnd = Record->decls_end();
3016         Mem != MemEnd; ++Mem) {
3017      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3018        // C++ [class.union]p3:
3019        //   An anonymous union shall not have private or protected
3020        //   members (clause 11).
3021        assert(FD->getAccess() != AS_none);
3022        if (FD->getAccess() != AS_public) {
3023          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3024            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3025          Invalid = true;
3026        }
3027
3028        // C++ [class.union]p1
3029        //   An object of a class with a non-trivial constructor, a non-trivial
3030        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3031        //   assignment operator cannot be a member of a union, nor can an
3032        //   array of such objects.
3033        if (CheckNontrivialField(FD))
3034          Invalid = true;
3035      } else if ((*Mem)->isImplicit()) {
3036        // Any implicit members are fine.
3037      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3038        // This is a type that showed up in an
3039        // elaborated-type-specifier inside the anonymous struct or
3040        // union, but which actually declares a type outside of the
3041        // anonymous struct or union. It's okay.
3042      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3043        if (!MemRecord->isAnonymousStructOrUnion() &&
3044            MemRecord->getDeclName()) {
3045          // Visual C++ allows type definition in anonymous struct or union.
3046          if (getLangOpts().MicrosoftExt)
3047            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3048              << (int)Record->isUnion();
3049          else {
3050            // This is a nested type declaration.
3051            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3052              << (int)Record->isUnion();
3053            Invalid = true;
3054          }
3055        }
3056      } else if (isa<AccessSpecDecl>(*Mem)) {
3057        // Any access specifier is fine.
3058      } else {
3059        // We have something that isn't a non-static data
3060        // member. Complain about it.
3061        unsigned DK = diag::err_anonymous_record_bad_member;
3062        if (isa<TypeDecl>(*Mem))
3063          DK = diag::err_anonymous_record_with_type;
3064        else if (isa<FunctionDecl>(*Mem))
3065          DK = diag::err_anonymous_record_with_function;
3066        else if (isa<VarDecl>(*Mem))
3067          DK = diag::err_anonymous_record_with_static;
3068
3069        // Visual C++ allows type definition in anonymous struct or union.
3070        if (getLangOpts().MicrosoftExt &&
3071            DK == diag::err_anonymous_record_with_type)
3072          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3073            << (int)Record->isUnion();
3074        else {
3075          Diag((*Mem)->getLocation(), DK)
3076              << (int)Record->isUnion();
3077          Invalid = true;
3078        }
3079      }
3080    }
3081  }
3082
3083  if (!Record->isUnion() && !Owner->isRecord()) {
3084    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3085      << (int)getLangOpts().CPlusPlus;
3086    Invalid = true;
3087  }
3088
3089  // Mock up a declarator.
3090  Declarator Dc(DS, Declarator::MemberContext);
3091  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3092  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3093
3094  // Create a declaration for this anonymous struct/union.
3095  NamedDecl *Anon = 0;
3096  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3097    Anon = FieldDecl::Create(Context, OwningClass,
3098                             DS.getLocStart(),
3099                             Record->getLocation(),
3100                             /*IdentifierInfo=*/0,
3101                             Context.getTypeDeclType(Record),
3102                             TInfo,
3103                             /*BitWidth=*/0, /*Mutable=*/false,
3104                             /*InitStyle=*/ICIS_NoInit);
3105    Anon->setAccess(AS);
3106    if (getLangOpts().CPlusPlus)
3107      FieldCollector->Add(cast<FieldDecl>(Anon));
3108  } else {
3109    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3110    assert(SCSpec != DeclSpec::SCS_typedef &&
3111           "Parser allowed 'typedef' as storage class VarDecl.");
3112    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3113    if (SCSpec == DeclSpec::SCS_mutable) {
3114      // mutable can only appear on non-static class members, so it's always
3115      // an error here
3116      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3117      Invalid = true;
3118      SC = SC_None;
3119    }
3120    SCSpec = DS.getStorageClassSpecAsWritten();
3121    VarDecl::StorageClass SCAsWritten
3122      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3123
3124    Anon = VarDecl::Create(Context, Owner,
3125                           DS.getLocStart(),
3126                           Record->getLocation(), /*IdentifierInfo=*/0,
3127                           Context.getTypeDeclType(Record),
3128                           TInfo, SC, SCAsWritten);
3129
3130    // Default-initialize the implicit variable. This initialization will be
3131    // trivial in almost all cases, except if a union member has an in-class
3132    // initializer:
3133    //   union { int n = 0; };
3134    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3135  }
3136  Anon->setImplicit();
3137
3138  // Add the anonymous struct/union object to the current
3139  // context. We'll be referencing this object when we refer to one of
3140  // its members.
3141  Owner->addDecl(Anon);
3142
3143  // Inject the members of the anonymous struct/union into the owning
3144  // context and into the identifier resolver chain for name lookup
3145  // purposes.
3146  SmallVector<NamedDecl*, 2> Chain;
3147  Chain.push_back(Anon);
3148
3149  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3150                                          Chain, false))
3151    Invalid = true;
3152
3153  // Mark this as an anonymous struct/union type. Note that we do not
3154  // do this until after we have already checked and injected the
3155  // members of this anonymous struct/union type, because otherwise
3156  // the members could be injected twice: once by DeclContext when it
3157  // builds its lookup table, and once by
3158  // InjectAnonymousStructOrUnionMembers.
3159  Record->setAnonymousStructOrUnion(true);
3160
3161  if (Invalid)
3162    Anon->setInvalidDecl();
3163
3164  return Anon;
3165}
3166
3167/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3168/// Microsoft C anonymous structure.
3169/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3170/// Example:
3171///
3172/// struct A { int a; };
3173/// struct B { struct A; int b; };
3174///
3175/// void foo() {
3176///   B var;
3177///   var.a = 3;
3178/// }
3179///
3180Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3181                                           RecordDecl *Record) {
3182
3183  // If there is no Record, get the record via the typedef.
3184  if (!Record)
3185    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3186
3187  // Mock up a declarator.
3188  Declarator Dc(DS, Declarator::TypeNameContext);
3189  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3190  assert(TInfo && "couldn't build declarator info for anonymous struct");
3191
3192  // Create a declaration for this anonymous struct.
3193  NamedDecl* Anon = FieldDecl::Create(Context,
3194                             cast<RecordDecl>(CurContext),
3195                             DS.getLocStart(),
3196                             DS.getLocStart(),
3197                             /*IdentifierInfo=*/0,
3198                             Context.getTypeDeclType(Record),
3199                             TInfo,
3200                             /*BitWidth=*/0, /*Mutable=*/false,
3201                             /*InitStyle=*/ICIS_NoInit);
3202  Anon->setImplicit();
3203
3204  // Add the anonymous struct object to the current context.
3205  CurContext->addDecl(Anon);
3206
3207  // Inject the members of the anonymous struct into the current
3208  // context and into the identifier resolver chain for name lookup
3209  // purposes.
3210  SmallVector<NamedDecl*, 2> Chain;
3211  Chain.push_back(Anon);
3212
3213  RecordDecl *RecordDef = Record->getDefinition();
3214  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3215                                                        RecordDef, AS_none,
3216                                                        Chain, true))
3217    Anon->setInvalidDecl();
3218
3219  return Anon;
3220}
3221
3222/// GetNameForDeclarator - Determine the full declaration name for the
3223/// given Declarator.
3224DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3225  return GetNameFromUnqualifiedId(D.getName());
3226}
3227
3228/// \brief Retrieves the declaration name from a parsed unqualified-id.
3229DeclarationNameInfo
3230Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3231  DeclarationNameInfo NameInfo;
3232  NameInfo.setLoc(Name.StartLocation);
3233
3234  switch (Name.getKind()) {
3235
3236  case UnqualifiedId::IK_ImplicitSelfParam:
3237  case UnqualifiedId::IK_Identifier:
3238    NameInfo.setName(Name.Identifier);
3239    NameInfo.setLoc(Name.StartLocation);
3240    return NameInfo;
3241
3242  case UnqualifiedId::IK_OperatorFunctionId:
3243    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3244                                           Name.OperatorFunctionId.Operator));
3245    NameInfo.setLoc(Name.StartLocation);
3246    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3247      = Name.OperatorFunctionId.SymbolLocations[0];
3248    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3249      = Name.EndLocation.getRawEncoding();
3250    return NameInfo;
3251
3252  case UnqualifiedId::IK_LiteralOperatorId:
3253    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3254                                                           Name.Identifier));
3255    NameInfo.setLoc(Name.StartLocation);
3256    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3257    return NameInfo;
3258
3259  case UnqualifiedId::IK_ConversionFunctionId: {
3260    TypeSourceInfo *TInfo;
3261    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3262    if (Ty.isNull())
3263      return DeclarationNameInfo();
3264    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3265                                               Context.getCanonicalType(Ty)));
3266    NameInfo.setLoc(Name.StartLocation);
3267    NameInfo.setNamedTypeInfo(TInfo);
3268    return NameInfo;
3269  }
3270
3271  case UnqualifiedId::IK_ConstructorName: {
3272    TypeSourceInfo *TInfo;
3273    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3274    if (Ty.isNull())
3275      return DeclarationNameInfo();
3276    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3277                                              Context.getCanonicalType(Ty)));
3278    NameInfo.setLoc(Name.StartLocation);
3279    NameInfo.setNamedTypeInfo(TInfo);
3280    return NameInfo;
3281  }
3282
3283  case UnqualifiedId::IK_ConstructorTemplateId: {
3284    // In well-formed code, we can only have a constructor
3285    // template-id that refers to the current context, so go there
3286    // to find the actual type being constructed.
3287    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3288    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3289      return DeclarationNameInfo();
3290
3291    // Determine the type of the class being constructed.
3292    QualType CurClassType = Context.getTypeDeclType(CurClass);
3293
3294    // FIXME: Check two things: that the template-id names the same type as
3295    // CurClassType, and that the template-id does not occur when the name
3296    // was qualified.
3297
3298    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3299                                    Context.getCanonicalType(CurClassType)));
3300    NameInfo.setLoc(Name.StartLocation);
3301    // FIXME: should we retrieve TypeSourceInfo?
3302    NameInfo.setNamedTypeInfo(0);
3303    return NameInfo;
3304  }
3305
3306  case UnqualifiedId::IK_DestructorName: {
3307    TypeSourceInfo *TInfo;
3308    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3309    if (Ty.isNull())
3310      return DeclarationNameInfo();
3311    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3312                                              Context.getCanonicalType(Ty)));
3313    NameInfo.setLoc(Name.StartLocation);
3314    NameInfo.setNamedTypeInfo(TInfo);
3315    return NameInfo;
3316  }
3317
3318  case UnqualifiedId::IK_TemplateId: {
3319    TemplateName TName = Name.TemplateId->Template.get();
3320    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3321    return Context.getNameForTemplate(TName, TNameLoc);
3322  }
3323
3324  } // switch (Name.getKind())
3325
3326  llvm_unreachable("Unknown name kind");
3327}
3328
3329static QualType getCoreType(QualType Ty) {
3330  do {
3331    if (Ty->isPointerType() || Ty->isReferenceType())
3332      Ty = Ty->getPointeeType();
3333    else if (Ty->isArrayType())
3334      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3335    else
3336      return Ty.withoutLocalFastQualifiers();
3337  } while (true);
3338}
3339
3340/// hasSimilarParameters - Determine whether the C++ functions Declaration
3341/// and Definition have "nearly" matching parameters. This heuristic is
3342/// used to improve diagnostics in the case where an out-of-line function
3343/// definition doesn't match any declaration within the class or namespace.
3344/// Also sets Params to the list of indices to the parameters that differ
3345/// between the declaration and the definition. If hasSimilarParameters
3346/// returns true and Params is empty, then all of the parameters match.
3347static bool hasSimilarParameters(ASTContext &Context,
3348                                     FunctionDecl *Declaration,
3349                                     FunctionDecl *Definition,
3350                                     llvm::SmallVectorImpl<unsigned> &Params) {
3351  Params.clear();
3352  if (Declaration->param_size() != Definition->param_size())
3353    return false;
3354  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3355    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3356    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3357
3358    // The parameter types are identical
3359    if (Context.hasSameType(DefParamTy, DeclParamTy))
3360      continue;
3361
3362    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3363    QualType DefParamBaseTy = getCoreType(DefParamTy);
3364    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3365    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3366
3367    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3368        (DeclTyName && DeclTyName == DefTyName))
3369      Params.push_back(Idx);
3370    else  // The two parameters aren't even close
3371      return false;
3372  }
3373
3374  return true;
3375}
3376
3377/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3378/// declarator needs to be rebuilt in the current instantiation.
3379/// Any bits of declarator which appear before the name are valid for
3380/// consideration here.  That's specifically the type in the decl spec
3381/// and the base type in any member-pointer chunks.
3382static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3383                                                    DeclarationName Name) {
3384  // The types we specifically need to rebuild are:
3385  //   - typenames, typeofs, and decltypes
3386  //   - types which will become injected class names
3387  // Of course, we also need to rebuild any type referencing such a
3388  // type.  It's safest to just say "dependent", but we call out a
3389  // few cases here.
3390
3391  DeclSpec &DS = D.getMutableDeclSpec();
3392  switch (DS.getTypeSpecType()) {
3393  case DeclSpec::TST_typename:
3394  case DeclSpec::TST_typeofType:
3395  case DeclSpec::TST_decltype:
3396  case DeclSpec::TST_underlyingType:
3397  case DeclSpec::TST_atomic: {
3398    // Grab the type from the parser.
3399    TypeSourceInfo *TSI = 0;
3400    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3401    if (T.isNull() || !T->isDependentType()) break;
3402
3403    // Make sure there's a type source info.  This isn't really much
3404    // of a waste; most dependent types should have type source info
3405    // attached already.
3406    if (!TSI)
3407      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3408
3409    // Rebuild the type in the current instantiation.
3410    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3411    if (!TSI) return true;
3412
3413    // Store the new type back in the decl spec.
3414    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3415    DS.UpdateTypeRep(LocType);
3416    break;
3417  }
3418
3419  case DeclSpec::TST_typeofExpr: {
3420    Expr *E = DS.getRepAsExpr();
3421    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3422    if (Result.isInvalid()) return true;
3423    DS.UpdateExprRep(Result.get());
3424    break;
3425  }
3426
3427  default:
3428    // Nothing to do for these decl specs.
3429    break;
3430  }
3431
3432  // It doesn't matter what order we do this in.
3433  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3434    DeclaratorChunk &Chunk = D.getTypeObject(I);
3435
3436    // The only type information in the declarator which can come
3437    // before the declaration name is the base type of a member
3438    // pointer.
3439    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3440      continue;
3441
3442    // Rebuild the scope specifier in-place.
3443    CXXScopeSpec &SS = Chunk.Mem.Scope();
3444    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3445      return true;
3446  }
3447
3448  return false;
3449}
3450
3451Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3452  D.setFunctionDefinitionKind(FDK_Declaration);
3453  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3454
3455  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3456      Dcl && Dcl->getDeclContext()->isFileContext())
3457    Dcl->setTopLevelDeclInObjCContainer();
3458
3459  return Dcl;
3460}
3461
3462/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3463///   If T is the name of a class, then each of the following shall have a
3464///   name different from T:
3465///     - every static data member of class T;
3466///     - every member function of class T
3467///     - every member of class T that is itself a type;
3468/// \returns true if the declaration name violates these rules.
3469bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3470                                   DeclarationNameInfo NameInfo) {
3471  DeclarationName Name = NameInfo.getName();
3472
3473  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3474    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3475      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3476      return true;
3477    }
3478
3479  return false;
3480}
3481
3482/// \brief Diagnose a declaration whose declarator-id has the given
3483/// nested-name-specifier.
3484///
3485/// \param SS The nested-name-specifier of the declarator-id.
3486///
3487/// \param DC The declaration context to which the nested-name-specifier
3488/// resolves.
3489///
3490/// \param Name The name of the entity being declared.
3491///
3492/// \param Loc The location of the name of the entity being declared.
3493///
3494/// \returns true if we cannot safely recover from this error, false otherwise.
3495bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3496                                        DeclarationName Name,
3497                                      SourceLocation Loc) {
3498  DeclContext *Cur = CurContext;
3499  while (isa<LinkageSpecDecl>(Cur))
3500    Cur = Cur->getParent();
3501
3502  // C++ [dcl.meaning]p1:
3503  //   A declarator-id shall not be qualified except for the definition
3504  //   of a member function (9.3) or static data member (9.4) outside of
3505  //   its class, the definition or explicit instantiation of a function
3506  //   or variable member of a namespace outside of its namespace, or the
3507  //   definition of an explicit specialization outside of its namespace,
3508  //   or the declaration of a friend function that is a member of
3509  //   another class or namespace (11.3). [...]
3510
3511  // The user provided a superfluous scope specifier that refers back to the
3512  // class or namespaces in which the entity is already declared.
3513  //
3514  // class X {
3515  //   void X::f();
3516  // };
3517  if (Cur->Equals(DC)) {
3518    Diag(Loc, diag::warn_member_extra_qualification)
3519      << Name << FixItHint::CreateRemoval(SS.getRange());
3520    SS.clear();
3521    return false;
3522  }
3523
3524  // Check whether the qualifying scope encloses the scope of the original
3525  // declaration.
3526  if (!Cur->Encloses(DC)) {
3527    if (Cur->isRecord())
3528      Diag(Loc, diag::err_member_qualification)
3529        << Name << SS.getRange();
3530    else if (isa<TranslationUnitDecl>(DC))
3531      Diag(Loc, diag::err_invalid_declarator_global_scope)
3532        << Name << SS.getRange();
3533    else if (isa<FunctionDecl>(Cur))
3534      Diag(Loc, diag::err_invalid_declarator_in_function)
3535        << Name << SS.getRange();
3536    else
3537      Diag(Loc, diag::err_invalid_declarator_scope)
3538      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3539
3540    return true;
3541  }
3542
3543  if (Cur->isRecord()) {
3544    // Cannot qualify members within a class.
3545    Diag(Loc, diag::err_member_qualification)
3546      << Name << SS.getRange();
3547    SS.clear();
3548
3549    // C++ constructors and destructors with incorrect scopes can break
3550    // our AST invariants by having the wrong underlying types. If
3551    // that's the case, then drop this declaration entirely.
3552    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3553         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3554        !Context.hasSameType(Name.getCXXNameType(),
3555                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3556      return true;
3557
3558    return false;
3559  }
3560
3561  // C++11 [dcl.meaning]p1:
3562  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3563  //   not begin with a decltype-specifer"
3564  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3565  while (SpecLoc.getPrefix())
3566    SpecLoc = SpecLoc.getPrefix();
3567  if (dyn_cast_or_null<DecltypeType>(
3568        SpecLoc.getNestedNameSpecifier()->getAsType()))
3569    Diag(Loc, diag::err_decltype_in_declarator)
3570      << SpecLoc.getTypeLoc().getSourceRange();
3571
3572  return false;
3573}
3574
3575Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3576                             MultiTemplateParamsArg TemplateParamLists) {
3577  // TODO: consider using NameInfo for diagnostic.
3578  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3579  DeclarationName Name = NameInfo.getName();
3580
3581  // All of these full declarators require an identifier.  If it doesn't have
3582  // one, the ParsedFreeStandingDeclSpec action should be used.
3583  if (!Name) {
3584    if (!D.isInvalidType())  // Reject this if we think it is valid.
3585      Diag(D.getDeclSpec().getLocStart(),
3586           diag::err_declarator_need_ident)
3587        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3588    return 0;
3589  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3590    return 0;
3591
3592  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3593  // we find one that is.
3594  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3595         (S->getFlags() & Scope::TemplateParamScope) != 0)
3596    S = S->getParent();
3597
3598  DeclContext *DC = CurContext;
3599  if (D.getCXXScopeSpec().isInvalid())
3600    D.setInvalidType();
3601  else if (D.getCXXScopeSpec().isSet()) {
3602    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3603                                        UPPC_DeclarationQualifier))
3604      return 0;
3605
3606    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3607    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3608    if (!DC) {
3609      // If we could not compute the declaration context, it's because the
3610      // declaration context is dependent but does not refer to a class,
3611      // class template, or class template partial specialization. Complain
3612      // and return early, to avoid the coming semantic disaster.
3613      Diag(D.getIdentifierLoc(),
3614           diag::err_template_qualified_declarator_no_match)
3615        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3616        << D.getCXXScopeSpec().getRange();
3617      return 0;
3618    }
3619    bool IsDependentContext = DC->isDependentContext();
3620
3621    if (!IsDependentContext &&
3622        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3623      return 0;
3624
3625    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3626      Diag(D.getIdentifierLoc(),
3627           diag::err_member_def_undefined_record)
3628        << Name << DC << D.getCXXScopeSpec().getRange();
3629      D.setInvalidType();
3630    } else if (!D.getDeclSpec().isFriendSpecified()) {
3631      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3632                                      Name, D.getIdentifierLoc())) {
3633        if (DC->isRecord())
3634          return 0;
3635
3636        D.setInvalidType();
3637      }
3638    }
3639
3640    // Check whether we need to rebuild the type of the given
3641    // declaration in the current instantiation.
3642    if (EnteringContext && IsDependentContext &&
3643        TemplateParamLists.size() != 0) {
3644      ContextRAII SavedContext(*this, DC);
3645      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3646        D.setInvalidType();
3647    }
3648  }
3649
3650  if (DiagnoseClassNameShadow(DC, NameInfo))
3651    // If this is a typedef, we'll end up spewing multiple diagnostics.
3652    // Just return early; it's safer.
3653    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3654      return 0;
3655
3656  NamedDecl *New;
3657
3658  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3659  QualType R = TInfo->getType();
3660
3661  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3662                                      UPPC_DeclarationType))
3663    D.setInvalidType();
3664
3665  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3666                        ForRedeclaration);
3667
3668  // See if this is a redefinition of a variable in the same scope.
3669  if (!D.getCXXScopeSpec().isSet()) {
3670    bool IsLinkageLookup = false;
3671
3672    // If the declaration we're planning to build will be a function
3673    // or object with linkage, then look for another declaration with
3674    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3675    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3676      /* Do nothing*/;
3677    else if (R->isFunctionType()) {
3678      if (CurContext->isFunctionOrMethod() ||
3679          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3680        IsLinkageLookup = true;
3681    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3682      IsLinkageLookup = true;
3683    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3684             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3685      IsLinkageLookup = true;
3686
3687    if (IsLinkageLookup)
3688      Previous.clear(LookupRedeclarationWithLinkage);
3689
3690    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3691  } else { // Something like "int foo::x;"
3692    LookupQualifiedName(Previous, DC);
3693
3694    // C++ [dcl.meaning]p1:
3695    //   When the declarator-id is qualified, the declaration shall refer to a
3696    //  previously declared member of the class or namespace to which the
3697    //  qualifier refers (or, in the case of a namespace, of an element of the
3698    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3699    //  thereof; [...]
3700    //
3701    // Note that we already checked the context above, and that we do not have
3702    // enough information to make sure that Previous contains the declaration
3703    // we want to match. For example, given:
3704    //
3705    //   class X {
3706    //     void f();
3707    //     void f(float);
3708    //   };
3709    //
3710    //   void X::f(int) { } // ill-formed
3711    //
3712    // In this case, Previous will point to the overload set
3713    // containing the two f's declared in X, but neither of them
3714    // matches.
3715
3716    // C++ [dcl.meaning]p1:
3717    //   [...] the member shall not merely have been introduced by a
3718    //   using-declaration in the scope of the class or namespace nominated by
3719    //   the nested-name-specifier of the declarator-id.
3720    RemoveUsingDecls(Previous);
3721  }
3722
3723  if (Previous.isSingleResult() &&
3724      Previous.getFoundDecl()->isTemplateParameter()) {
3725    // Maybe we will complain about the shadowed template parameter.
3726    if (!D.isInvalidType())
3727      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3728                                      Previous.getFoundDecl());
3729
3730    // Just pretend that we didn't see the previous declaration.
3731    Previous.clear();
3732  }
3733
3734  // In C++, the previous declaration we find might be a tag type
3735  // (class or enum). In this case, the new declaration will hide the
3736  // tag type. Note that this does does not apply if we're declaring a
3737  // typedef (C++ [dcl.typedef]p4).
3738  if (Previous.isSingleTagDecl() &&
3739      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3740    Previous.clear();
3741
3742  bool AddToScope = true;
3743  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3744    if (TemplateParamLists.size()) {
3745      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3746      return 0;
3747    }
3748
3749    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3750  } else if (R->isFunctionType()) {
3751    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3752                                  TemplateParamLists,
3753                                  AddToScope);
3754  } else {
3755    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3756                                  TemplateParamLists);
3757  }
3758
3759  if (New == 0)
3760    return 0;
3761
3762  // If this has an identifier and is not an invalid redeclaration or
3763  // function template specialization, add it to the scope stack.
3764  if (New->getDeclName() && AddToScope &&
3765       !(D.isRedeclaration() && New->isInvalidDecl()))
3766    PushOnScopeChains(New, S);
3767
3768  return New;
3769}
3770
3771/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3772/// types into constant array types in certain situations which would otherwise
3773/// be errors (for GCC compatibility).
3774static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3775                                                    ASTContext &Context,
3776                                                    bool &SizeIsNegative,
3777                                                    llvm::APSInt &Oversized) {
3778  // This method tries to turn a variable array into a constant
3779  // array even when the size isn't an ICE.  This is necessary
3780  // for compatibility with code that depends on gcc's buggy
3781  // constant expression folding, like struct {char x[(int)(char*)2];}
3782  SizeIsNegative = false;
3783  Oversized = 0;
3784
3785  if (T->isDependentType())
3786    return QualType();
3787
3788  QualifierCollector Qs;
3789  const Type *Ty = Qs.strip(T);
3790
3791  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3792    QualType Pointee = PTy->getPointeeType();
3793    QualType FixedType =
3794        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3795                                            Oversized);
3796    if (FixedType.isNull()) return FixedType;
3797    FixedType = Context.getPointerType(FixedType);
3798    return Qs.apply(Context, FixedType);
3799  }
3800  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3801    QualType Inner = PTy->getInnerType();
3802    QualType FixedType =
3803        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3804                                            Oversized);
3805    if (FixedType.isNull()) return FixedType;
3806    FixedType = Context.getParenType(FixedType);
3807    return Qs.apply(Context, FixedType);
3808  }
3809
3810  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3811  if (!VLATy)
3812    return QualType();
3813  // FIXME: We should probably handle this case
3814  if (VLATy->getElementType()->isVariablyModifiedType())
3815    return QualType();
3816
3817  llvm::APSInt Res;
3818  if (!VLATy->getSizeExpr() ||
3819      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3820    return QualType();
3821
3822  // Check whether the array size is negative.
3823  if (Res.isSigned() && Res.isNegative()) {
3824    SizeIsNegative = true;
3825    return QualType();
3826  }
3827
3828  // Check whether the array is too large to be addressed.
3829  unsigned ActiveSizeBits
3830    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3831                                              Res);
3832  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3833    Oversized = Res;
3834    return QualType();
3835  }
3836
3837  return Context.getConstantArrayType(VLATy->getElementType(),
3838                                      Res, ArrayType::Normal, 0);
3839}
3840
3841/// \brief Register the given locally-scoped external C declaration so
3842/// that it can be found later for redeclarations
3843void
3844Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3845                                       const LookupResult &Previous,
3846                                       Scope *S) {
3847  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3848         "Decl is not a locally-scoped decl!");
3849  // Note that we have a locally-scoped external with this name.
3850  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3851
3852  if (!Previous.isSingleResult())
3853    return;
3854
3855  NamedDecl *PrevDecl = Previous.getFoundDecl();
3856
3857  // If there was a previous declaration of this variable, it may be
3858  // in our identifier chain. Update the identifier chain with the new
3859  // declaration.
3860  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3861    // The previous declaration was found on the identifer resolver
3862    // chain, so remove it from its scope.
3863
3864    if (S->isDeclScope(PrevDecl)) {
3865      // Special case for redeclarations in the SAME scope.
3866      // Because this declaration is going to be added to the identifier chain
3867      // later, we should temporarily take it OFF the chain.
3868      IdResolver.RemoveDecl(ND);
3869
3870    } else {
3871      // Find the scope for the original declaration.
3872      while (S && !S->isDeclScope(PrevDecl))
3873        S = S->getParent();
3874    }
3875
3876    if (S)
3877      S->RemoveDecl(PrevDecl);
3878  }
3879}
3880
3881llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3882Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3883  if (ExternalSource) {
3884    // Load locally-scoped external decls from the external source.
3885    SmallVector<NamedDecl *, 4> Decls;
3886    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3887    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3888      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3889        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3890      if (Pos == LocallyScopedExternalDecls.end())
3891        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3892    }
3893  }
3894
3895  return LocallyScopedExternalDecls.find(Name);
3896}
3897
3898/// \brief Diagnose function specifiers on a declaration of an identifier that
3899/// does not identify a function.
3900void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3901  // FIXME: We should probably indicate the identifier in question to avoid
3902  // confusion for constructs like "inline int a(), b;"
3903  if (D.getDeclSpec().isInlineSpecified())
3904    Diag(D.getDeclSpec().getInlineSpecLoc(),
3905         diag::err_inline_non_function);
3906
3907  if (D.getDeclSpec().isVirtualSpecified())
3908    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3909         diag::err_virtual_non_function);
3910
3911  if (D.getDeclSpec().isExplicitSpecified())
3912    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3913         diag::err_explicit_non_function);
3914}
3915
3916NamedDecl*
3917Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3918                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3919  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3920  if (D.getCXXScopeSpec().isSet()) {
3921    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3922      << D.getCXXScopeSpec().getRange();
3923    D.setInvalidType();
3924    // Pretend we didn't see the scope specifier.
3925    DC = CurContext;
3926    Previous.clear();
3927  }
3928
3929  if (getLangOpts().CPlusPlus) {
3930    // Check that there are no default arguments (C++ only).
3931    CheckExtraCXXDefaultArguments(D);
3932  }
3933
3934  DiagnoseFunctionSpecifiers(D);
3935
3936  if (D.getDeclSpec().isThreadSpecified())
3937    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3938  if (D.getDeclSpec().isConstexprSpecified())
3939    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3940      << 1;
3941
3942  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3943    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3944      << D.getName().getSourceRange();
3945    return 0;
3946  }
3947
3948  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3949  if (!NewTD) return 0;
3950
3951  // Handle attributes prior to checking for duplicates in MergeVarDecl
3952  ProcessDeclAttributes(S, NewTD, D);
3953
3954  CheckTypedefForVariablyModifiedType(S, NewTD);
3955
3956  bool Redeclaration = D.isRedeclaration();
3957  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3958  D.setRedeclaration(Redeclaration);
3959  return ND;
3960}
3961
3962void
3963Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3964  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3965  // then it shall have block scope.
3966  // Note that variably modified types must be fixed before merging the decl so
3967  // that redeclarations will match.
3968  QualType T = NewTD->getUnderlyingType();
3969  if (T->isVariablyModifiedType()) {
3970    getCurFunction()->setHasBranchProtectedScope();
3971
3972    if (S->getFnParent() == 0) {
3973      bool SizeIsNegative;
3974      llvm::APSInt Oversized;
3975      QualType FixedTy =
3976          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3977                                              Oversized);
3978      if (!FixedTy.isNull()) {
3979        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3980        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3981      } else {
3982        if (SizeIsNegative)
3983          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3984        else if (T->isVariableArrayType())
3985          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3986        else if (Oversized.getBoolValue())
3987          Diag(NewTD->getLocation(), diag::err_array_too_large)
3988            << Oversized.toString(10);
3989        else
3990          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3991        NewTD->setInvalidDecl();
3992      }
3993    }
3994  }
3995}
3996
3997
3998/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3999/// declares a typedef-name, either using the 'typedef' type specifier or via
4000/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4001NamedDecl*
4002Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4003                           LookupResult &Previous, bool &Redeclaration) {
4004  // Merge the decl with the existing one if appropriate. If the decl is
4005  // in an outer scope, it isn't the same thing.
4006  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4007                       /*ExplicitInstantiationOrSpecialization=*/false);
4008  if (!Previous.empty()) {
4009    Redeclaration = true;
4010    MergeTypedefNameDecl(NewTD, Previous);
4011  }
4012
4013  // If this is the C FILE type, notify the AST context.
4014  if (IdentifierInfo *II = NewTD->getIdentifier())
4015    if (!NewTD->isInvalidDecl() &&
4016        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4017      if (II->isStr("FILE"))
4018        Context.setFILEDecl(NewTD);
4019      else if (II->isStr("jmp_buf"))
4020        Context.setjmp_bufDecl(NewTD);
4021      else if (II->isStr("sigjmp_buf"))
4022        Context.setsigjmp_bufDecl(NewTD);
4023      else if (II->isStr("ucontext_t"))
4024        Context.setucontext_tDecl(NewTD);
4025    }
4026
4027  return NewTD;
4028}
4029
4030/// \brief Determines whether the given declaration is an out-of-scope
4031/// previous declaration.
4032///
4033/// This routine should be invoked when name lookup has found a
4034/// previous declaration (PrevDecl) that is not in the scope where a
4035/// new declaration by the same name is being introduced. If the new
4036/// declaration occurs in a local scope, previous declarations with
4037/// linkage may still be considered previous declarations (C99
4038/// 6.2.2p4-5, C++ [basic.link]p6).
4039///
4040/// \param PrevDecl the previous declaration found by name
4041/// lookup
4042///
4043/// \param DC the context in which the new declaration is being
4044/// declared.
4045///
4046/// \returns true if PrevDecl is an out-of-scope previous declaration
4047/// for a new delcaration with the same name.
4048static bool
4049isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4050                                ASTContext &Context) {
4051  if (!PrevDecl)
4052    return false;
4053
4054  if (!PrevDecl->hasLinkage())
4055    return false;
4056
4057  if (Context.getLangOpts().CPlusPlus) {
4058    // C++ [basic.link]p6:
4059    //   If there is a visible declaration of an entity with linkage
4060    //   having the same name and type, ignoring entities declared
4061    //   outside the innermost enclosing namespace scope, the block
4062    //   scope declaration declares that same entity and receives the
4063    //   linkage of the previous declaration.
4064    DeclContext *OuterContext = DC->getRedeclContext();
4065    if (!OuterContext->isFunctionOrMethod())
4066      // This rule only applies to block-scope declarations.
4067      return false;
4068
4069    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4070    if (PrevOuterContext->isRecord())
4071      // We found a member function: ignore it.
4072      return false;
4073
4074    // Find the innermost enclosing namespace for the new and
4075    // previous declarations.
4076    OuterContext = OuterContext->getEnclosingNamespaceContext();
4077    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4078
4079    // The previous declaration is in a different namespace, so it
4080    // isn't the same function.
4081    if (!OuterContext->Equals(PrevOuterContext))
4082      return false;
4083  }
4084
4085  return true;
4086}
4087
4088static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4089  CXXScopeSpec &SS = D.getCXXScopeSpec();
4090  if (!SS.isSet()) return;
4091  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4092}
4093
4094bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4095  QualType type = decl->getType();
4096  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4097  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4098    // Various kinds of declaration aren't allowed to be __autoreleasing.
4099    unsigned kind = -1U;
4100    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4101      if (var->hasAttr<BlocksAttr>())
4102        kind = 0; // __block
4103      else if (!var->hasLocalStorage())
4104        kind = 1; // global
4105    } else if (isa<ObjCIvarDecl>(decl)) {
4106      kind = 3; // ivar
4107    } else if (isa<FieldDecl>(decl)) {
4108      kind = 2; // field
4109    }
4110
4111    if (kind != -1U) {
4112      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4113        << kind;
4114    }
4115  } else if (lifetime == Qualifiers::OCL_None) {
4116    // Try to infer lifetime.
4117    if (!type->isObjCLifetimeType())
4118      return false;
4119
4120    lifetime = type->getObjCARCImplicitLifetime();
4121    type = Context.getLifetimeQualifiedType(type, lifetime);
4122    decl->setType(type);
4123  }
4124
4125  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4126    // Thread-local variables cannot have lifetime.
4127    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4128        var->isThreadSpecified()) {
4129      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4130        << var->getType();
4131      return true;
4132    }
4133  }
4134
4135  return false;
4136}
4137
4138NamedDecl*
4139Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4140                              TypeSourceInfo *TInfo, LookupResult &Previous,
4141                              MultiTemplateParamsArg TemplateParamLists) {
4142  QualType R = TInfo->getType();
4143  DeclarationName Name = GetNameForDeclarator(D).getName();
4144
4145  // Check that there are no default arguments (C++ only).
4146  if (getLangOpts().CPlusPlus)
4147    CheckExtraCXXDefaultArguments(D);
4148
4149  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4150  assert(SCSpec != DeclSpec::SCS_typedef &&
4151         "Parser allowed 'typedef' as storage class VarDecl.");
4152  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4153  if (SCSpec == DeclSpec::SCS_mutable) {
4154    // mutable can only appear on non-static class members, so it's always
4155    // an error here
4156    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4157    D.setInvalidType();
4158    SC = SC_None;
4159  }
4160  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4161  VarDecl::StorageClass SCAsWritten
4162    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4163
4164  IdentifierInfo *II = Name.getAsIdentifierInfo();
4165  if (!II) {
4166    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4167      << Name;
4168    return 0;
4169  }
4170
4171  DiagnoseFunctionSpecifiers(D);
4172
4173  if (!DC->isRecord() && S->getFnParent() == 0) {
4174    // C99 6.9p2: The storage-class specifiers auto and register shall not
4175    // appear in the declaration specifiers in an external declaration.
4176    if (SC == SC_Auto || SC == SC_Register) {
4177
4178      // If this is a register variable with an asm label specified, then this
4179      // is a GNU extension.
4180      if (SC == SC_Register && D.getAsmLabel())
4181        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4182      else
4183        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4184      D.setInvalidType();
4185    }
4186  }
4187
4188  if (getLangOpts().OpenCL) {
4189    // Set up the special work-group-local storage class for variables in the
4190    // OpenCL __local address space.
4191    if (R.getAddressSpace() == LangAS::opencl_local)
4192      SC = SC_OpenCLWorkGroupLocal;
4193  }
4194
4195  bool isExplicitSpecialization = false;
4196  VarDecl *NewVD;
4197  if (!getLangOpts().CPlusPlus) {
4198    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4199                            D.getIdentifierLoc(), II,
4200                            R, TInfo, SC, SCAsWritten);
4201
4202    if (D.isInvalidType())
4203      NewVD->setInvalidDecl();
4204  } else {
4205    if (DC->isRecord() && !CurContext->isRecord()) {
4206      // This is an out-of-line definition of a static data member.
4207      if (SC == SC_Static) {
4208        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4209             diag::err_static_out_of_line)
4210          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4211      } else if (SC == SC_None)
4212        SC = SC_Static;
4213    }
4214    if (SC == SC_Static && CurContext->isRecord()) {
4215      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4216        if (RD->isLocalClass())
4217          Diag(D.getIdentifierLoc(),
4218               diag::err_static_data_member_not_allowed_in_local_class)
4219            << Name << RD->getDeclName();
4220
4221        // C++98 [class.union]p1: If a union contains a static data member,
4222        // the program is ill-formed. C++11 drops this restriction.
4223        if (RD->isUnion())
4224          Diag(D.getIdentifierLoc(),
4225               getLangOpts().CPlusPlus0x
4226                 ? diag::warn_cxx98_compat_static_data_member_in_union
4227                 : diag::ext_static_data_member_in_union) << Name;
4228        // We conservatively disallow static data members in anonymous structs.
4229        else if (!RD->getDeclName())
4230          Diag(D.getIdentifierLoc(),
4231               diag::err_static_data_member_not_allowed_in_anon_struct)
4232            << Name << RD->isUnion();
4233      }
4234    }
4235
4236    // Match up the template parameter lists with the scope specifier, then
4237    // determine whether we have a template or a template specialization.
4238    isExplicitSpecialization = false;
4239    bool Invalid = false;
4240    if (TemplateParameterList *TemplateParams
4241        = MatchTemplateParametersToScopeSpecifier(
4242                                  D.getDeclSpec().getLocStart(),
4243                                                  D.getIdentifierLoc(),
4244                                                  D.getCXXScopeSpec(),
4245                                                  TemplateParamLists.data(),
4246                                                  TemplateParamLists.size(),
4247                                                  /*never a friend*/ false,
4248                                                  isExplicitSpecialization,
4249                                                  Invalid)) {
4250      if (TemplateParams->size() > 0) {
4251        // There is no such thing as a variable template.
4252        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4253          << II
4254          << SourceRange(TemplateParams->getTemplateLoc(),
4255                         TemplateParams->getRAngleLoc());
4256        return 0;
4257      } else {
4258        // There is an extraneous 'template<>' for this variable. Complain
4259        // about it, but allow the declaration of the variable.
4260        Diag(TemplateParams->getTemplateLoc(),
4261             diag::err_template_variable_noparams)
4262          << II
4263          << SourceRange(TemplateParams->getTemplateLoc(),
4264                         TemplateParams->getRAngleLoc());
4265      }
4266    }
4267
4268    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4269                            D.getIdentifierLoc(), II,
4270                            R, TInfo, SC, SCAsWritten);
4271
4272    // If this decl has an auto type in need of deduction, make a note of the
4273    // Decl so we can diagnose uses of it in its own initializer.
4274    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4275        R->getContainedAutoType())
4276      ParsingInitForAutoVars.insert(NewVD);
4277
4278    if (D.isInvalidType() || Invalid)
4279      NewVD->setInvalidDecl();
4280
4281    SetNestedNameSpecifier(NewVD, D);
4282
4283    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4284      NewVD->setTemplateParameterListsInfo(Context,
4285                                           TemplateParamLists.size(),
4286                                           TemplateParamLists.data());
4287    }
4288
4289    if (D.getDeclSpec().isConstexprSpecified())
4290      NewVD->setConstexpr(true);
4291  }
4292
4293  // Set the lexical context. If the declarator has a C++ scope specifier, the
4294  // lexical context will be different from the semantic context.
4295  NewVD->setLexicalDeclContext(CurContext);
4296
4297  if (D.getDeclSpec().isThreadSpecified()) {
4298    if (NewVD->hasLocalStorage())
4299      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4300    else if (!Context.getTargetInfo().isTLSSupported())
4301      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4302    else
4303      NewVD->setThreadSpecified(true);
4304  }
4305
4306  if (D.getDeclSpec().isModulePrivateSpecified()) {
4307    if (isExplicitSpecialization)
4308      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4309        << 2
4310        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4311    else if (NewVD->hasLocalStorage())
4312      Diag(NewVD->getLocation(), diag::err_module_private_local)
4313        << 0 << NewVD->getDeclName()
4314        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4315        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4316    else
4317      NewVD->setModulePrivate();
4318  }
4319
4320  // Handle attributes prior to checking for duplicates in MergeVarDecl
4321  ProcessDeclAttributes(S, NewVD, D);
4322
4323  if (getLangOpts().CUDA) {
4324    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4325    // storage [duration]."
4326    if (SC == SC_None && S->getFnParent() != 0 &&
4327       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4328      NewVD->setStorageClass(SC_Static);
4329  }
4330
4331  // In auto-retain/release, infer strong retension for variables of
4332  // retainable type.
4333  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4334    NewVD->setInvalidDecl();
4335
4336  // Handle GNU asm-label extension (encoded as an attribute).
4337  if (Expr *E = (Expr*)D.getAsmLabel()) {
4338    // The parser guarantees this is a string.
4339    StringLiteral *SE = cast<StringLiteral>(E);
4340    StringRef Label = SE->getString();
4341    if (S->getFnParent() != 0) {
4342      switch (SC) {
4343      case SC_None:
4344      case SC_Auto:
4345        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4346        break;
4347      case SC_Register:
4348        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4349          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4350        break;
4351      case SC_Static:
4352      case SC_Extern:
4353      case SC_PrivateExtern:
4354      case SC_OpenCLWorkGroupLocal:
4355        break;
4356      }
4357    }
4358
4359    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4360                                                Context, Label));
4361  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4362    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4363      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4364    if (I != ExtnameUndeclaredIdentifiers.end()) {
4365      NewVD->addAttr(I->second);
4366      ExtnameUndeclaredIdentifiers.erase(I);
4367    }
4368  }
4369
4370  // Diagnose shadowed variables before filtering for scope.
4371  if (!D.getCXXScopeSpec().isSet())
4372    CheckShadow(S, NewVD, Previous);
4373
4374  // Don't consider existing declarations that are in a different
4375  // scope and are out-of-semantic-context declarations (if the new
4376  // declaration has linkage).
4377  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4378                       isExplicitSpecialization);
4379
4380  if (!getLangOpts().CPlusPlus) {
4381    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4382  } else {
4383    // Merge the decl with the existing one if appropriate.
4384    if (!Previous.empty()) {
4385      if (Previous.isSingleResult() &&
4386          isa<FieldDecl>(Previous.getFoundDecl()) &&
4387          D.getCXXScopeSpec().isSet()) {
4388        // The user tried to define a non-static data member
4389        // out-of-line (C++ [dcl.meaning]p1).
4390        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4391          << D.getCXXScopeSpec().getRange();
4392        Previous.clear();
4393        NewVD->setInvalidDecl();
4394      }
4395    } else if (D.getCXXScopeSpec().isSet()) {
4396      // No previous declaration in the qualifying scope.
4397      Diag(D.getIdentifierLoc(), diag::err_no_member)
4398        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4399        << D.getCXXScopeSpec().getRange();
4400      NewVD->setInvalidDecl();
4401    }
4402
4403    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4404
4405    // This is an explicit specialization of a static data member. Check it.
4406    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4407        CheckMemberSpecialization(NewVD, Previous))
4408      NewVD->setInvalidDecl();
4409  }
4410
4411  // If this is a locally-scoped extern C variable, update the map of
4412  // such variables.
4413  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4414      !NewVD->isInvalidDecl())
4415    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4416
4417  // If there's a #pragma GCC visibility in scope, and this isn't a class
4418  // member, set the visibility of this variable.
4419  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4420    AddPushedVisibilityAttribute(NewVD);
4421
4422  MarkUnusedFileScopedDecl(NewVD);
4423
4424  return NewVD;
4425}
4426
4427/// \brief Diagnose variable or built-in function shadowing.  Implements
4428/// -Wshadow.
4429///
4430/// This method is called whenever a VarDecl is added to a "useful"
4431/// scope.
4432///
4433/// \param S the scope in which the shadowing name is being declared
4434/// \param R the lookup of the name
4435///
4436void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4437  // Return if warning is ignored.
4438  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4439        DiagnosticsEngine::Ignored)
4440    return;
4441
4442  // Don't diagnose declarations at file scope.
4443  if (D->hasGlobalStorage())
4444    return;
4445
4446  DeclContext *NewDC = D->getDeclContext();
4447
4448  // Only diagnose if we're shadowing an unambiguous field or variable.
4449  if (R.getResultKind() != LookupResult::Found)
4450    return;
4451
4452  NamedDecl* ShadowedDecl = R.getFoundDecl();
4453  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4454    return;
4455
4456  // Fields are not shadowed by variables in C++ static methods.
4457  if (isa<FieldDecl>(ShadowedDecl))
4458    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4459      if (MD->isStatic())
4460        return;
4461
4462  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4463    if (shadowedVar->isExternC()) {
4464      // For shadowing external vars, make sure that we point to the global
4465      // declaration, not a locally scoped extern declaration.
4466      for (VarDecl::redecl_iterator
4467             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4468           I != E; ++I)
4469        if (I->isFileVarDecl()) {
4470          ShadowedDecl = *I;
4471          break;
4472        }
4473    }
4474
4475  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4476
4477  // Only warn about certain kinds of shadowing for class members.
4478  if (NewDC && NewDC->isRecord()) {
4479    // In particular, don't warn about shadowing non-class members.
4480    if (!OldDC->isRecord())
4481      return;
4482
4483    // TODO: should we warn about static data members shadowing
4484    // static data members from base classes?
4485
4486    // TODO: don't diagnose for inaccessible shadowed members.
4487    // This is hard to do perfectly because we might friend the
4488    // shadowing context, but that's just a false negative.
4489  }
4490
4491  // Determine what kind of declaration we're shadowing.
4492  unsigned Kind;
4493  if (isa<RecordDecl>(OldDC)) {
4494    if (isa<FieldDecl>(ShadowedDecl))
4495      Kind = 3; // field
4496    else
4497      Kind = 2; // static data member
4498  } else if (OldDC->isFileContext())
4499    Kind = 1; // global
4500  else
4501    Kind = 0; // local
4502
4503  DeclarationName Name = R.getLookupName();
4504
4505  // Emit warning and note.
4506  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4507  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4508}
4509
4510/// \brief Check -Wshadow without the advantage of a previous lookup.
4511void Sema::CheckShadow(Scope *S, VarDecl *D) {
4512  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4513        DiagnosticsEngine::Ignored)
4514    return;
4515
4516  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4517                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4518  LookupName(R, S);
4519  CheckShadow(S, D, R);
4520}
4521
4522/// \brief Perform semantic checking on a newly-created variable
4523/// declaration.
4524///
4525/// This routine performs all of the type-checking required for a
4526/// variable declaration once it has been built. It is used both to
4527/// check variables after they have been parsed and their declarators
4528/// have been translated into a declaration, and to check variables
4529/// that have been instantiated from a template.
4530///
4531/// Sets NewVD->isInvalidDecl() if an error was encountered.
4532///
4533/// Returns true if the variable declaration is a redeclaration.
4534bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4535                                    LookupResult &Previous) {
4536  // If the decl is already known invalid, don't check it.
4537  if (NewVD->isInvalidDecl())
4538    return false;
4539
4540  QualType T = NewVD->getType();
4541
4542  if (T->isObjCObjectType()) {
4543    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4544      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4545    T = Context.getObjCObjectPointerType(T);
4546    NewVD->setType(T);
4547  }
4548
4549  // Emit an error if an address space was applied to decl with local storage.
4550  // This includes arrays of objects with address space qualifiers, but not
4551  // automatic variables that point to other address spaces.
4552  // ISO/IEC TR 18037 S5.1.2
4553  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4554    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4555    NewVD->setInvalidDecl();
4556    return false;
4557  }
4558
4559  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4560  // scope.
4561  if ((getLangOpts().OpenCLVersion >= 120)
4562      && NewVD->isStaticLocal()) {
4563    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4564    NewVD->setInvalidDecl();
4565    return false;
4566  }
4567
4568  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4569      && !NewVD->hasAttr<BlocksAttr>()) {
4570    if (getLangOpts().getGC() != LangOptions::NonGC)
4571      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4572    else
4573      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4574  }
4575
4576  bool isVM = T->isVariablyModifiedType();
4577  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4578      NewVD->hasAttr<BlocksAttr>())
4579    getCurFunction()->setHasBranchProtectedScope();
4580
4581  if ((isVM && NewVD->hasLinkage()) ||
4582      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4583    bool SizeIsNegative;
4584    llvm::APSInt Oversized;
4585    QualType FixedTy =
4586        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4587                                            Oversized);
4588
4589    if (FixedTy.isNull() && T->isVariableArrayType()) {
4590      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4591      // FIXME: This won't give the correct result for
4592      // int a[10][n];
4593      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4594
4595      if (NewVD->isFileVarDecl())
4596        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4597        << SizeRange;
4598      else if (NewVD->getStorageClass() == SC_Static)
4599        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4600        << SizeRange;
4601      else
4602        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4603        << SizeRange;
4604      NewVD->setInvalidDecl();
4605      return false;
4606    }
4607
4608    if (FixedTy.isNull()) {
4609      if (NewVD->isFileVarDecl())
4610        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4611      else
4612        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4613      NewVD->setInvalidDecl();
4614      return false;
4615    }
4616
4617    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4618    NewVD->setType(FixedTy);
4619  }
4620
4621  if (Previous.empty() && NewVD->isExternC()) {
4622    // Since we did not find anything by this name and we're declaring
4623    // an extern "C" variable, look for a non-visible extern "C"
4624    // declaration with the same name.
4625    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4626      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4627    if (Pos != LocallyScopedExternalDecls.end())
4628      Previous.addDecl(Pos->second);
4629  }
4630
4631  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4632    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4633      << T;
4634    NewVD->setInvalidDecl();
4635    return false;
4636  }
4637
4638  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4639    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4640    NewVD->setInvalidDecl();
4641    return false;
4642  }
4643
4644  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4645    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4646    NewVD->setInvalidDecl();
4647    return false;
4648  }
4649
4650  if (NewVD->isConstexpr() && !T->isDependentType() &&
4651      RequireLiteralType(NewVD->getLocation(), T,
4652                         diag::err_constexpr_var_non_literal)) {
4653    NewVD->setInvalidDecl();
4654    return false;
4655  }
4656
4657  if (!Previous.empty()) {
4658    MergeVarDecl(NewVD, Previous);
4659    return true;
4660  }
4661  return false;
4662}
4663
4664/// \brief Data used with FindOverriddenMethod
4665struct FindOverriddenMethodData {
4666  Sema *S;
4667  CXXMethodDecl *Method;
4668};
4669
4670/// \brief Member lookup function that determines whether a given C++
4671/// method overrides a method in a base class, to be used with
4672/// CXXRecordDecl::lookupInBases().
4673static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4674                                 CXXBasePath &Path,
4675                                 void *UserData) {
4676  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4677
4678  FindOverriddenMethodData *Data
4679    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4680
4681  DeclarationName Name = Data->Method->getDeclName();
4682
4683  // FIXME: Do we care about other names here too?
4684  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4685    // We really want to find the base class destructor here.
4686    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4687    CanQualType CT = Data->S->Context.getCanonicalType(T);
4688
4689    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4690  }
4691
4692  for (Path.Decls = BaseRecord->lookup(Name);
4693       Path.Decls.first != Path.Decls.second;
4694       ++Path.Decls.first) {
4695    NamedDecl *D = *Path.Decls.first;
4696    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4697      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4698        return true;
4699    }
4700  }
4701
4702  return false;
4703}
4704
4705/// AddOverriddenMethods - See if a method overrides any in the base classes,
4706/// and if so, check that it's a valid override and remember it.
4707bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4708  // Look for virtual methods in base classes that this method might override.
4709  CXXBasePaths Paths;
4710  FindOverriddenMethodData Data;
4711  Data.Method = MD;
4712  Data.S = this;
4713  bool AddedAny = false;
4714  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4715    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4716         E = Paths.found_decls_end(); I != E; ++I) {
4717      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4718        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4719        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4720            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4721            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4722          AddedAny = true;
4723        }
4724      }
4725    }
4726  }
4727
4728  return AddedAny;
4729}
4730
4731namespace {
4732  // Struct for holding all of the extra arguments needed by
4733  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4734  struct ActOnFDArgs {
4735    Scope *S;
4736    Declarator &D;
4737    MultiTemplateParamsArg TemplateParamLists;
4738    bool AddToScope;
4739  };
4740}
4741
4742namespace {
4743
4744// Callback to only accept typo corrections that have a non-zero edit distance.
4745// Also only accept corrections that have the same parent decl.
4746class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4747 public:
4748  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4749                            CXXRecordDecl *Parent)
4750      : Context(Context), OriginalFD(TypoFD),
4751        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4752
4753  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4754    if (candidate.getEditDistance() == 0)
4755      return false;
4756
4757    llvm::SmallVector<unsigned, 1> MismatchedParams;
4758    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4759                                          CDeclEnd = candidate.end();
4760         CDecl != CDeclEnd; ++CDecl) {
4761      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4762
4763      if (FD && !FD->hasBody() &&
4764          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4765        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4766          CXXRecordDecl *Parent = MD->getParent();
4767          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4768            return true;
4769        } else if (!ExpectedParent) {
4770          return true;
4771        }
4772      }
4773    }
4774
4775    return false;
4776  }
4777
4778 private:
4779  ASTContext &Context;
4780  FunctionDecl *OriginalFD;
4781  CXXRecordDecl *ExpectedParent;
4782};
4783
4784}
4785
4786/// \brief Generate diagnostics for an invalid function redeclaration.
4787///
4788/// This routine handles generating the diagnostic messages for an invalid
4789/// function redeclaration, including finding possible similar declarations
4790/// or performing typo correction if there are no previous declarations with
4791/// the same name.
4792///
4793/// Returns a NamedDecl iff typo correction was performed and substituting in
4794/// the new declaration name does not cause new errors.
4795static NamedDecl* DiagnoseInvalidRedeclaration(
4796    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4797    ActOnFDArgs &ExtraArgs) {
4798  NamedDecl *Result = NULL;
4799  DeclarationName Name = NewFD->getDeclName();
4800  DeclContext *NewDC = NewFD->getDeclContext();
4801  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4802                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4803  llvm::SmallVector<unsigned, 1> MismatchedParams;
4804  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4805  TypoCorrection Correction;
4806  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4807                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4808  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4809                                  : diag::err_member_def_does_not_match;
4810
4811  NewFD->setInvalidDecl();
4812  SemaRef.LookupQualifiedName(Prev, NewDC);
4813  assert(!Prev.isAmbiguous() &&
4814         "Cannot have an ambiguity in previous-declaration lookup");
4815  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4816  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4817                                      MD ? MD->getParent() : 0);
4818  if (!Prev.empty()) {
4819    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4820         Func != FuncEnd; ++Func) {
4821      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4822      if (FD &&
4823          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4824        // Add 1 to the index so that 0 can mean the mismatch didn't
4825        // involve a parameter
4826        unsigned ParamNum =
4827            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4828        NearMatches.push_back(std::make_pair(FD, ParamNum));
4829      }
4830    }
4831  // If the qualified name lookup yielded nothing, try typo correction
4832  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4833                                         Prev.getLookupKind(), 0, 0,
4834                                         Validator, NewDC))) {
4835    // Trap errors.
4836    Sema::SFINAETrap Trap(SemaRef);
4837
4838    // Set up everything for the call to ActOnFunctionDeclarator
4839    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4840                              ExtraArgs.D.getIdentifierLoc());
4841    Previous.clear();
4842    Previous.setLookupName(Correction.getCorrection());
4843    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4844                                    CDeclEnd = Correction.end();
4845         CDecl != CDeclEnd; ++CDecl) {
4846      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4847      if (FD && !FD->hasBody() &&
4848          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4849        Previous.addDecl(FD);
4850      }
4851    }
4852    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4853    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4854    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4855    // eliminate the need for the parameter pack ExtraArgs.
4856    Result = SemaRef.ActOnFunctionDeclarator(
4857        ExtraArgs.S, ExtraArgs.D,
4858        Correction.getCorrectionDecl()->getDeclContext(),
4859        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4860        ExtraArgs.AddToScope);
4861    if (Trap.hasErrorOccurred()) {
4862      // Pretend the typo correction never occurred
4863      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4864                                ExtraArgs.D.getIdentifierLoc());
4865      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4866      Previous.clear();
4867      Previous.setLookupName(Name);
4868      Result = NULL;
4869    } else {
4870      for (LookupResult::iterator Func = Previous.begin(),
4871                               FuncEnd = Previous.end();
4872           Func != FuncEnd; ++Func) {
4873        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4874          NearMatches.push_back(std::make_pair(FD, 0));
4875      }
4876    }
4877    if (NearMatches.empty()) {
4878      // Ignore the correction if it didn't yield any close FunctionDecl matches
4879      Correction = TypoCorrection();
4880    } else {
4881      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4882                             : diag::err_member_def_does_not_match_suggest;
4883    }
4884  }
4885
4886  if (Correction) {
4887    SourceRange FixItLoc(NewFD->getLocation());
4888    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4889    if (Correction.getCorrectionSpecifier() && SS.isValid())
4890      FixItLoc.setBegin(SS.getBeginLoc());
4891    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4892        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4893        << FixItHint::CreateReplacement(
4894            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4895  } else {
4896    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4897        << Name << NewDC << NewFD->getLocation();
4898  }
4899
4900  bool NewFDisConst = false;
4901  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4902    NewFDisConst = NewMD->isConst();
4903
4904  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4905       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4906       NearMatch != NearMatchEnd; ++NearMatch) {
4907    FunctionDecl *FD = NearMatch->first;
4908    bool FDisConst = false;
4909    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4910      FDisConst = MD->isConst();
4911
4912    if (unsigned Idx = NearMatch->second) {
4913      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4914      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4915      if (Loc.isInvalid()) Loc = FD->getLocation();
4916      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4917          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4918    } else if (Correction) {
4919      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4920          << Correction.getQuoted(SemaRef.getLangOpts());
4921    } else if (FDisConst != NewFDisConst) {
4922      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4923          << NewFDisConst << FD->getSourceRange().getEnd();
4924    } else
4925      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4926  }
4927  return Result;
4928}
4929
4930static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4931                                                          Declarator &D) {
4932  switch (D.getDeclSpec().getStorageClassSpec()) {
4933  default: llvm_unreachable("Unknown storage class!");
4934  case DeclSpec::SCS_auto:
4935  case DeclSpec::SCS_register:
4936  case DeclSpec::SCS_mutable:
4937    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4938                 diag::err_typecheck_sclass_func);
4939    D.setInvalidType();
4940    break;
4941  case DeclSpec::SCS_unspecified: break;
4942  case DeclSpec::SCS_extern: return SC_Extern;
4943  case DeclSpec::SCS_static: {
4944    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4945      // C99 6.7.1p5:
4946      //   The declaration of an identifier for a function that has
4947      //   block scope shall have no explicit storage-class specifier
4948      //   other than extern
4949      // See also (C++ [dcl.stc]p4).
4950      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4951                   diag::err_static_block_func);
4952      break;
4953    } else
4954      return SC_Static;
4955  }
4956  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4957  }
4958
4959  // No explicit storage class has already been returned
4960  return SC_None;
4961}
4962
4963static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4964                                           DeclContext *DC, QualType &R,
4965                                           TypeSourceInfo *TInfo,
4966                                           FunctionDecl::StorageClass SC,
4967                                           bool &IsVirtualOkay) {
4968  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4969  DeclarationName Name = NameInfo.getName();
4970
4971  FunctionDecl *NewFD = 0;
4972  bool isInline = D.getDeclSpec().isInlineSpecified();
4973  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4974  FunctionDecl::StorageClass SCAsWritten
4975    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4976
4977  if (!SemaRef.getLangOpts().CPlusPlus) {
4978    // Determine whether the function was written with a
4979    // prototype. This true when:
4980    //   - there is a prototype in the declarator, or
4981    //   - the type R of the function is some kind of typedef or other reference
4982    //     to a type name (which eventually refers to a function type).
4983    bool HasPrototype =
4984      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4985      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4986
4987    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4988                                 D.getLocStart(), NameInfo, R,
4989                                 TInfo, SC, SCAsWritten, isInline,
4990                                 HasPrototype);
4991    if (D.isInvalidType())
4992      NewFD->setInvalidDecl();
4993
4994    // Set the lexical context.
4995    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4996
4997    return NewFD;
4998  }
4999
5000  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5001  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5002
5003  // Check that the return type is not an abstract class type.
5004  // For record types, this is done by the AbstractClassUsageDiagnoser once
5005  // the class has been completely parsed.
5006  if (!DC->isRecord() &&
5007      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5008                                     R->getAs<FunctionType>()->getResultType(),
5009                                     diag::err_abstract_type_in_decl,
5010                                     SemaRef.AbstractReturnType))
5011    D.setInvalidType();
5012
5013  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5014    // This is a C++ constructor declaration.
5015    assert(DC->isRecord() &&
5016           "Constructors can only be declared in a member context");
5017
5018    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5019    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5020                                      D.getLocStart(), NameInfo,
5021                                      R, TInfo, isExplicit, isInline,
5022                                      /*isImplicitlyDeclared=*/false,
5023                                      isConstexpr);
5024
5025  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5026    // This is a C++ destructor declaration.
5027    if (DC->isRecord()) {
5028      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5029      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5030      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5031                                        SemaRef.Context, Record,
5032                                        D.getLocStart(),
5033                                        NameInfo, R, TInfo, isInline,
5034                                        /*isImplicitlyDeclared=*/false);
5035
5036      // If the class is complete, then we now create the implicit exception
5037      // specification. If the class is incomplete or dependent, we can't do
5038      // it yet.
5039      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5040          Record->getDefinition() && !Record->isBeingDefined() &&
5041          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5042        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5043      }
5044
5045      IsVirtualOkay = true;
5046      return NewDD;
5047
5048    } else {
5049      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5050      D.setInvalidType();
5051
5052      // Create a FunctionDecl to satisfy the function definition parsing
5053      // code path.
5054      return FunctionDecl::Create(SemaRef.Context, DC,
5055                                  D.getLocStart(),
5056                                  D.getIdentifierLoc(), Name, R, TInfo,
5057                                  SC, SCAsWritten, isInline,
5058                                  /*hasPrototype=*/true, isConstexpr);
5059    }
5060
5061  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5062    if (!DC->isRecord()) {
5063      SemaRef.Diag(D.getIdentifierLoc(),
5064           diag::err_conv_function_not_member);
5065      return 0;
5066    }
5067
5068    SemaRef.CheckConversionDeclarator(D, R, SC);
5069    IsVirtualOkay = true;
5070    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5071                                     D.getLocStart(), NameInfo,
5072                                     R, TInfo, isInline, isExplicit,
5073                                     isConstexpr, SourceLocation());
5074
5075  } else if (DC->isRecord()) {
5076    // If the name of the function is the same as the name of the record,
5077    // then this must be an invalid constructor that has a return type.
5078    // (The parser checks for a return type and makes the declarator a
5079    // constructor if it has no return type).
5080    if (Name.getAsIdentifierInfo() &&
5081        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5082      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5083        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5084        << SourceRange(D.getIdentifierLoc());
5085      return 0;
5086    }
5087
5088    bool isStatic = SC == SC_Static;
5089
5090    // [class.free]p1:
5091    // Any allocation function for a class T is a static member
5092    // (even if not explicitly declared static).
5093    if (Name.getCXXOverloadedOperator() == OO_New ||
5094        Name.getCXXOverloadedOperator() == OO_Array_New)
5095      isStatic = true;
5096
5097    // [class.free]p6 Any deallocation function for a class X is a static member
5098    // (even if not explicitly declared static).
5099    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5100        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5101      isStatic = true;
5102
5103    IsVirtualOkay = !isStatic;
5104
5105    // This is a C++ method declaration.
5106    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5107                                 D.getLocStart(), NameInfo, R,
5108                                 TInfo, isStatic, SCAsWritten, isInline,
5109                                 isConstexpr, SourceLocation());
5110
5111  } else {
5112    // Determine whether the function was written with a
5113    // prototype. This true when:
5114    //   - we're in C++ (where every function has a prototype),
5115    return FunctionDecl::Create(SemaRef.Context, DC,
5116                                D.getLocStart(),
5117                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5118                                true/*HasPrototype*/, isConstexpr);
5119  }
5120}
5121
5122NamedDecl*
5123Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5124                              TypeSourceInfo *TInfo, LookupResult &Previous,
5125                              MultiTemplateParamsArg TemplateParamLists,
5126                              bool &AddToScope) {
5127  QualType R = TInfo->getType();
5128
5129  assert(R.getTypePtr()->isFunctionType());
5130
5131  // TODO: consider using NameInfo for diagnostic.
5132  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5133  DeclarationName Name = NameInfo.getName();
5134  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5135
5136  if (D.getDeclSpec().isThreadSpecified())
5137    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5138
5139  // Do not allow returning a objc interface by-value.
5140  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5141    Diag(D.getIdentifierLoc(),
5142         diag::err_object_cannot_be_passed_returned_by_value) << 0
5143    << R->getAs<FunctionType>()->getResultType()
5144    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5145
5146    QualType T = R->getAs<FunctionType>()->getResultType();
5147    T = Context.getObjCObjectPointerType(T);
5148    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5149      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5150      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5151                                  FPT->getNumArgs(), EPI);
5152    }
5153    else if (isa<FunctionNoProtoType>(R))
5154      R = Context.getFunctionNoProtoType(T);
5155  }
5156
5157  bool isFriend = false;
5158  FunctionTemplateDecl *FunctionTemplate = 0;
5159  bool isExplicitSpecialization = false;
5160  bool isFunctionTemplateSpecialization = false;
5161
5162  bool isDependentClassScopeExplicitSpecialization = false;
5163  bool HasExplicitTemplateArgs = false;
5164  TemplateArgumentListInfo TemplateArgs;
5165
5166  bool isVirtualOkay = false;
5167
5168  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5169                                              isVirtualOkay);
5170  if (!NewFD) return 0;
5171
5172  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5173    NewFD->setTopLevelDeclInObjCContainer();
5174
5175  if (getLangOpts().CPlusPlus) {
5176    bool isInline = D.getDeclSpec().isInlineSpecified();
5177    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5178    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5179    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5180    isFriend = D.getDeclSpec().isFriendSpecified();
5181    if (isFriend && !isInline && D.isFunctionDefinition()) {
5182      // C++ [class.friend]p5
5183      //   A function can be defined in a friend declaration of a
5184      //   class . . . . Such a function is implicitly inline.
5185      NewFD->setImplicitlyInline();
5186    }
5187
5188    SetNestedNameSpecifier(NewFD, D);
5189    isExplicitSpecialization = false;
5190    isFunctionTemplateSpecialization = false;
5191    if (D.isInvalidType())
5192      NewFD->setInvalidDecl();
5193
5194    // Set the lexical context. If the declarator has a C++
5195    // scope specifier, or is the object of a friend declaration, the
5196    // lexical context will be different from the semantic context.
5197    NewFD->setLexicalDeclContext(CurContext);
5198
5199    // Match up the template parameter lists with the scope specifier, then
5200    // determine whether we have a template or a template specialization.
5201    bool Invalid = false;
5202    if (TemplateParameterList *TemplateParams
5203          = MatchTemplateParametersToScopeSpecifier(
5204                                  D.getDeclSpec().getLocStart(),
5205                                  D.getIdentifierLoc(),
5206                                  D.getCXXScopeSpec(),
5207                                  TemplateParamLists.data(),
5208                                  TemplateParamLists.size(),
5209                                  isFriend,
5210                                  isExplicitSpecialization,
5211                                  Invalid)) {
5212      if (TemplateParams->size() > 0) {
5213        // This is a function template
5214
5215        // Check that we can declare a template here.
5216        if (CheckTemplateDeclScope(S, TemplateParams))
5217          return 0;
5218
5219        // A destructor cannot be a template.
5220        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5221          Diag(NewFD->getLocation(), diag::err_destructor_template);
5222          return 0;
5223        }
5224
5225        // If we're adding a template to a dependent context, we may need to
5226        // rebuilding some of the types used within the template parameter list,
5227        // now that we know what the current instantiation is.
5228        if (DC->isDependentContext()) {
5229          ContextRAII SavedContext(*this, DC);
5230          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5231            Invalid = true;
5232        }
5233
5234
5235        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5236                                                        NewFD->getLocation(),
5237                                                        Name, TemplateParams,
5238                                                        NewFD);
5239        FunctionTemplate->setLexicalDeclContext(CurContext);
5240        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5241
5242        // For source fidelity, store the other template param lists.
5243        if (TemplateParamLists.size() > 1) {
5244          NewFD->setTemplateParameterListsInfo(Context,
5245                                               TemplateParamLists.size() - 1,
5246                                               TemplateParamLists.data());
5247        }
5248      } else {
5249        // This is a function template specialization.
5250        isFunctionTemplateSpecialization = true;
5251        // For source fidelity, store all the template param lists.
5252        NewFD->setTemplateParameterListsInfo(Context,
5253                                             TemplateParamLists.size(),
5254                                             TemplateParamLists.data());
5255
5256        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5257        if (isFriend) {
5258          // We want to remove the "template<>", found here.
5259          SourceRange RemoveRange = TemplateParams->getSourceRange();
5260
5261          // If we remove the template<> and the name is not a
5262          // template-id, we're actually silently creating a problem:
5263          // the friend declaration will refer to an untemplated decl,
5264          // and clearly the user wants a template specialization.  So
5265          // we need to insert '<>' after the name.
5266          SourceLocation InsertLoc;
5267          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5268            InsertLoc = D.getName().getSourceRange().getEnd();
5269            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5270          }
5271
5272          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5273            << Name << RemoveRange
5274            << FixItHint::CreateRemoval(RemoveRange)
5275            << FixItHint::CreateInsertion(InsertLoc, "<>");
5276        }
5277      }
5278    }
5279    else {
5280      // All template param lists were matched against the scope specifier:
5281      // this is NOT (an explicit specialization of) a template.
5282      if (TemplateParamLists.size() > 0)
5283        // For source fidelity, store all the template param lists.
5284        NewFD->setTemplateParameterListsInfo(Context,
5285                                             TemplateParamLists.size(),
5286                                             TemplateParamLists.data());
5287    }
5288
5289    if (Invalid) {
5290      NewFD->setInvalidDecl();
5291      if (FunctionTemplate)
5292        FunctionTemplate->setInvalidDecl();
5293    }
5294
5295    // C++ [dcl.fct.spec]p5:
5296    //   The virtual specifier shall only be used in declarations of
5297    //   nonstatic class member functions that appear within a
5298    //   member-specification of a class declaration; see 10.3.
5299    //
5300    if (isVirtual && !NewFD->isInvalidDecl()) {
5301      if (!isVirtualOkay) {
5302        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5303             diag::err_virtual_non_function);
5304      } else if (!CurContext->isRecord()) {
5305        // 'virtual' was specified outside of the class.
5306        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5307             diag::err_virtual_out_of_class)
5308          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5309      } else if (NewFD->getDescribedFunctionTemplate()) {
5310        // C++ [temp.mem]p3:
5311        //  A member function template shall not be virtual.
5312        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5313             diag::err_virtual_member_function_template)
5314          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5315      } else {
5316        // Okay: Add virtual to the method.
5317        NewFD->setVirtualAsWritten(true);
5318      }
5319    }
5320
5321    // C++ [dcl.fct.spec]p3:
5322    //  The inline specifier shall not appear on a block scope function
5323    //  declaration.
5324    if (isInline && !NewFD->isInvalidDecl()) {
5325      if (CurContext->isFunctionOrMethod()) {
5326        // 'inline' is not allowed on block scope function declaration.
5327        Diag(D.getDeclSpec().getInlineSpecLoc(),
5328             diag::err_inline_declaration_block_scope) << Name
5329          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5330      }
5331    }
5332
5333    // C++ [dcl.fct.spec]p6:
5334    //  The explicit specifier shall be used only in the declaration of a
5335    //  constructor or conversion function within its class definition;
5336    //  see 12.3.1 and 12.3.2.
5337    if (isExplicit && !NewFD->isInvalidDecl()) {
5338      if (!CurContext->isRecord()) {
5339        // 'explicit' was specified outside of the class.
5340        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5341             diag::err_explicit_out_of_class)
5342          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5343      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5344                 !isa<CXXConversionDecl>(NewFD)) {
5345        // 'explicit' was specified on a function that wasn't a constructor
5346        // or conversion function.
5347        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5348             diag::err_explicit_non_ctor_or_conv_function)
5349          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5350      }
5351    }
5352
5353    if (isConstexpr) {
5354      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5355      // are implicitly inline.
5356      NewFD->setImplicitlyInline();
5357
5358      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5359      // be either constructors or to return a literal type. Therefore,
5360      // destructors cannot be declared constexpr.
5361      if (isa<CXXDestructorDecl>(NewFD))
5362        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5363    }
5364
5365    // If __module_private__ was specified, mark the function accordingly.
5366    if (D.getDeclSpec().isModulePrivateSpecified()) {
5367      if (isFunctionTemplateSpecialization) {
5368        SourceLocation ModulePrivateLoc
5369          = D.getDeclSpec().getModulePrivateSpecLoc();
5370        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5371          << 0
5372          << FixItHint::CreateRemoval(ModulePrivateLoc);
5373      } else {
5374        NewFD->setModulePrivate();
5375        if (FunctionTemplate)
5376          FunctionTemplate->setModulePrivate();
5377      }
5378    }
5379
5380    if (isFriend) {
5381      // For now, claim that the objects have no previous declaration.
5382      if (FunctionTemplate) {
5383        FunctionTemplate->setObjectOfFriendDecl(false);
5384        FunctionTemplate->setAccess(AS_public);
5385      }
5386      NewFD->setObjectOfFriendDecl(false);
5387      NewFD->setAccess(AS_public);
5388    }
5389
5390    // If a function is defined as defaulted or deleted, mark it as such now.
5391    switch (D.getFunctionDefinitionKind()) {
5392      case FDK_Declaration:
5393      case FDK_Definition:
5394        break;
5395
5396      case FDK_Defaulted:
5397        NewFD->setDefaulted();
5398        break;
5399
5400      case FDK_Deleted:
5401        NewFD->setDeletedAsWritten();
5402        break;
5403    }
5404
5405    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5406        D.isFunctionDefinition()) {
5407      // C++ [class.mfct]p2:
5408      //   A member function may be defined (8.4) in its class definition, in
5409      //   which case it is an inline member function (7.1.2)
5410      NewFD->setImplicitlyInline();
5411    }
5412
5413    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5414        !CurContext->isRecord()) {
5415      // C++ [class.static]p1:
5416      //   A data or function member of a class may be declared static
5417      //   in a class definition, in which case it is a static member of
5418      //   the class.
5419
5420      // Complain about the 'static' specifier if it's on an out-of-line
5421      // member function definition.
5422      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5423           diag::err_static_out_of_line)
5424        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5425    }
5426  }
5427
5428  // Filter out previous declarations that don't match the scope.
5429  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5430                       isExplicitSpecialization ||
5431                       isFunctionTemplateSpecialization);
5432
5433  // Handle GNU asm-label extension (encoded as an attribute).
5434  if (Expr *E = (Expr*) D.getAsmLabel()) {
5435    // The parser guarantees this is a string.
5436    StringLiteral *SE = cast<StringLiteral>(E);
5437    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5438                                                SE->getString()));
5439  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5440    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5441      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5442    if (I != ExtnameUndeclaredIdentifiers.end()) {
5443      NewFD->addAttr(I->second);
5444      ExtnameUndeclaredIdentifiers.erase(I);
5445    }
5446  }
5447
5448  // Copy the parameter declarations from the declarator D to the function
5449  // declaration NewFD, if they are available.  First scavenge them into Params.
5450  SmallVector<ParmVarDecl*, 16> Params;
5451  if (D.isFunctionDeclarator()) {
5452    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5453
5454    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5455    // function that takes no arguments, not a function that takes a
5456    // single void argument.
5457    // We let through "const void" here because Sema::GetTypeForDeclarator
5458    // already checks for that case.
5459    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5460        FTI.ArgInfo[0].Param &&
5461        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5462      // Empty arg list, don't push any params.
5463      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5464
5465      // In C++, the empty parameter-type-list must be spelled "void"; a
5466      // typedef of void is not permitted.
5467      if (getLangOpts().CPlusPlus &&
5468          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5469        bool IsTypeAlias = false;
5470        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5471          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5472        else if (const TemplateSpecializationType *TST =
5473                   Param->getType()->getAs<TemplateSpecializationType>())
5474          IsTypeAlias = TST->isTypeAlias();
5475        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5476          << IsTypeAlias;
5477      }
5478    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5479      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5480        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5481        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5482        Param->setDeclContext(NewFD);
5483        Params.push_back(Param);
5484
5485        if (Param->isInvalidDecl())
5486          NewFD->setInvalidDecl();
5487      }
5488    }
5489
5490  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5491    // When we're declaring a function with a typedef, typeof, etc as in the
5492    // following example, we'll need to synthesize (unnamed)
5493    // parameters for use in the declaration.
5494    //
5495    // @code
5496    // typedef void fn(int);
5497    // fn f;
5498    // @endcode
5499
5500    // Synthesize a parameter for each argument type.
5501    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5502         AE = FT->arg_type_end(); AI != AE; ++AI) {
5503      ParmVarDecl *Param =
5504        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5505      Param->setScopeInfo(0, Params.size());
5506      Params.push_back(Param);
5507    }
5508  } else {
5509    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5510           "Should not need args for typedef of non-prototype fn");
5511  }
5512
5513  // Finally, we know we have the right number of parameters, install them.
5514  NewFD->setParams(Params);
5515
5516  // Find all anonymous symbols defined during the declaration of this function
5517  // and add to NewFD. This lets us track decls such 'enum Y' in:
5518  //
5519  //   void f(enum Y {AA} x) {}
5520  //
5521  // which would otherwise incorrectly end up in the translation unit scope.
5522  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5523  DeclsInPrototypeScope.clear();
5524
5525  // Process the non-inheritable attributes on this declaration.
5526  ProcessDeclAttributes(S, NewFD, D,
5527                        /*NonInheritable=*/true, /*Inheritable=*/false);
5528
5529  // Functions returning a variably modified type violate C99 6.7.5.2p2
5530  // because all functions have linkage.
5531  if (!NewFD->isInvalidDecl() &&
5532      NewFD->getResultType()->isVariablyModifiedType()) {
5533    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5534    NewFD->setInvalidDecl();
5535  }
5536
5537  // Handle attributes.
5538  ProcessDeclAttributes(S, NewFD, D,
5539                        /*NonInheritable=*/false, /*Inheritable=*/true);
5540
5541  if (!getLangOpts().CPlusPlus) {
5542    // Perform semantic checking on the function declaration.
5543    bool isExplicitSpecialization=false;
5544    if (!NewFD->isInvalidDecl()) {
5545      if (NewFD->isMain())
5546        CheckMain(NewFD, D.getDeclSpec());
5547      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5548                                                  isExplicitSpecialization));
5549    }
5550    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5551            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5552           "previous declaration set still overloaded");
5553  } else {
5554    // If the declarator is a template-id, translate the parser's template
5555    // argument list into our AST format.
5556    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5557      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5558      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5559      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5560      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5561                                         TemplateId->NumArgs);
5562      translateTemplateArguments(TemplateArgsPtr,
5563                                 TemplateArgs);
5564
5565      HasExplicitTemplateArgs = true;
5566
5567      if (NewFD->isInvalidDecl()) {
5568        HasExplicitTemplateArgs = false;
5569      } else if (FunctionTemplate) {
5570        // Function template with explicit template arguments.
5571        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5572          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5573
5574        HasExplicitTemplateArgs = false;
5575      } else if (!isFunctionTemplateSpecialization &&
5576                 !D.getDeclSpec().isFriendSpecified()) {
5577        // We have encountered something that the user meant to be a
5578        // specialization (because it has explicitly-specified template
5579        // arguments) but that was not introduced with a "template<>" (or had
5580        // too few of them).
5581        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5582          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5583          << FixItHint::CreateInsertion(
5584                                    D.getDeclSpec().getLocStart(),
5585                                        "template<> ");
5586        isFunctionTemplateSpecialization = true;
5587      } else {
5588        // "friend void foo<>(int);" is an implicit specialization decl.
5589        isFunctionTemplateSpecialization = true;
5590      }
5591    } else if (isFriend && isFunctionTemplateSpecialization) {
5592      // This combination is only possible in a recovery case;  the user
5593      // wrote something like:
5594      //   template <> friend void foo(int);
5595      // which we're recovering from as if the user had written:
5596      //   friend void foo<>(int);
5597      // Go ahead and fake up a template id.
5598      HasExplicitTemplateArgs = true;
5599        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5600      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5601    }
5602
5603    // If it's a friend (and only if it's a friend), it's possible
5604    // that either the specialized function type or the specialized
5605    // template is dependent, and therefore matching will fail.  In
5606    // this case, don't check the specialization yet.
5607    bool InstantiationDependent = false;
5608    if (isFunctionTemplateSpecialization && isFriend &&
5609        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5610         TemplateSpecializationType::anyDependentTemplateArguments(
5611            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5612            InstantiationDependent))) {
5613      assert(HasExplicitTemplateArgs &&
5614             "friend function specialization without template args");
5615      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5616                                                       Previous))
5617        NewFD->setInvalidDecl();
5618    } else if (isFunctionTemplateSpecialization) {
5619      if (CurContext->isDependentContext() && CurContext->isRecord()
5620          && !isFriend) {
5621        isDependentClassScopeExplicitSpecialization = true;
5622        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5623          diag::ext_function_specialization_in_class :
5624          diag::err_function_specialization_in_class)
5625          << NewFD->getDeclName();
5626      } else if (CheckFunctionTemplateSpecialization(NewFD,
5627                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5628                                                     Previous))
5629        NewFD->setInvalidDecl();
5630
5631      // C++ [dcl.stc]p1:
5632      //   A storage-class-specifier shall not be specified in an explicit
5633      //   specialization (14.7.3)
5634      if (SC != SC_None) {
5635        if (SC != NewFD->getStorageClass())
5636          Diag(NewFD->getLocation(),
5637               diag::err_explicit_specialization_inconsistent_storage_class)
5638            << SC
5639            << FixItHint::CreateRemoval(
5640                                      D.getDeclSpec().getStorageClassSpecLoc());
5641
5642        else
5643          Diag(NewFD->getLocation(),
5644               diag::ext_explicit_specialization_storage_class)
5645            << FixItHint::CreateRemoval(
5646                                      D.getDeclSpec().getStorageClassSpecLoc());
5647      }
5648
5649    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5650      if (CheckMemberSpecialization(NewFD, Previous))
5651          NewFD->setInvalidDecl();
5652    }
5653
5654    // Perform semantic checking on the function declaration.
5655    if (!isDependentClassScopeExplicitSpecialization) {
5656      if (NewFD->isInvalidDecl()) {
5657        // If this is a class member, mark the class invalid immediately.
5658        // This avoids some consistency errors later.
5659        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5660          methodDecl->getParent()->setInvalidDecl();
5661      } else {
5662        if (NewFD->isMain())
5663          CheckMain(NewFD, D.getDeclSpec());
5664        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5665                                                    isExplicitSpecialization));
5666      }
5667    }
5668
5669    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5670            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5671           "previous declaration set still overloaded");
5672
5673    NamedDecl *PrincipalDecl = (FunctionTemplate
5674                                ? cast<NamedDecl>(FunctionTemplate)
5675                                : NewFD);
5676
5677    if (isFriend && D.isRedeclaration()) {
5678      AccessSpecifier Access = AS_public;
5679      if (!NewFD->isInvalidDecl())
5680        Access = NewFD->getPreviousDecl()->getAccess();
5681
5682      NewFD->setAccess(Access);
5683      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5684
5685      PrincipalDecl->setObjectOfFriendDecl(true);
5686    }
5687
5688    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5689        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5690      PrincipalDecl->setNonMemberOperator();
5691
5692    // If we have a function template, check the template parameter
5693    // list. This will check and merge default template arguments.
5694    if (FunctionTemplate) {
5695      FunctionTemplateDecl *PrevTemplate =
5696                                     FunctionTemplate->getPreviousDecl();
5697      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5698                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5699                            D.getDeclSpec().isFriendSpecified()
5700                              ? (D.isFunctionDefinition()
5701                                   ? TPC_FriendFunctionTemplateDefinition
5702                                   : TPC_FriendFunctionTemplate)
5703                              : (D.getCXXScopeSpec().isSet() &&
5704                                 DC && DC->isRecord() &&
5705                                 DC->isDependentContext())
5706                                  ? TPC_ClassTemplateMember
5707                                  : TPC_FunctionTemplate);
5708    }
5709
5710    if (NewFD->isInvalidDecl()) {
5711      // Ignore all the rest of this.
5712    } else if (!D.isRedeclaration()) {
5713      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5714                                       AddToScope };
5715      // Fake up an access specifier if it's supposed to be a class member.
5716      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5717        NewFD->setAccess(AS_public);
5718
5719      // Qualified decls generally require a previous declaration.
5720      if (D.getCXXScopeSpec().isSet()) {
5721        // ...with the major exception of templated-scope or
5722        // dependent-scope friend declarations.
5723
5724        // TODO: we currently also suppress this check in dependent
5725        // contexts because (1) the parameter depth will be off when
5726        // matching friend templates and (2) we might actually be
5727        // selecting a friend based on a dependent factor.  But there
5728        // are situations where these conditions don't apply and we
5729        // can actually do this check immediately.
5730        if (isFriend &&
5731            (TemplateParamLists.size() ||
5732             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5733             CurContext->isDependentContext())) {
5734          // ignore these
5735        } else {
5736          // The user tried to provide an out-of-line definition for a
5737          // function that is a member of a class or namespace, but there
5738          // was no such member function declared (C++ [class.mfct]p2,
5739          // C++ [namespace.memdef]p2). For example:
5740          //
5741          // class X {
5742          //   void f() const;
5743          // };
5744          //
5745          // void X::f() { } // ill-formed
5746          //
5747          // Complain about this problem, and attempt to suggest close
5748          // matches (e.g., those that differ only in cv-qualifiers and
5749          // whether the parameter types are references).
5750
5751          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5752                                                               NewFD,
5753                                                               ExtraArgs)) {
5754            AddToScope = ExtraArgs.AddToScope;
5755            return Result;
5756          }
5757        }
5758
5759        // Unqualified local friend declarations are required to resolve
5760        // to something.
5761      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5762        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5763                                                             NewFD,
5764                                                             ExtraArgs)) {
5765          AddToScope = ExtraArgs.AddToScope;
5766          return Result;
5767        }
5768      }
5769
5770    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5771               !isFriend && !isFunctionTemplateSpecialization &&
5772               !isExplicitSpecialization) {
5773      // An out-of-line member function declaration must also be a
5774      // definition (C++ [dcl.meaning]p1).
5775      // Note that this is not the case for explicit specializations of
5776      // function templates or member functions of class templates, per
5777      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5778      // extension for compatibility with old SWIG code which likes to
5779      // generate them.
5780      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5781        << D.getCXXScopeSpec().getRange();
5782    }
5783  }
5784
5785  AddKnownFunctionAttributes(NewFD);
5786
5787  if (NewFD->hasAttr<OverloadableAttr>() &&
5788      !NewFD->getType()->getAs<FunctionProtoType>()) {
5789    Diag(NewFD->getLocation(),
5790         diag::err_attribute_overloadable_no_prototype)
5791      << NewFD;
5792
5793    // Turn this into a variadic function with no parameters.
5794    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5795    FunctionProtoType::ExtProtoInfo EPI;
5796    EPI.Variadic = true;
5797    EPI.ExtInfo = FT->getExtInfo();
5798
5799    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5800    NewFD->setType(R);
5801  }
5802
5803  // If there's a #pragma GCC visibility in scope, and this isn't a class
5804  // member, set the visibility of this function.
5805  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5806    AddPushedVisibilityAttribute(NewFD);
5807
5808  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5809  // marking the function.
5810  AddCFAuditedAttribute(NewFD);
5811
5812  // If this is a locally-scoped extern C function, update the
5813  // map of such names.
5814  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5815      && !NewFD->isInvalidDecl())
5816    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5817
5818  // Set this FunctionDecl's range up to the right paren.
5819  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5820
5821  if (getLangOpts().CPlusPlus) {
5822    if (FunctionTemplate) {
5823      if (NewFD->isInvalidDecl())
5824        FunctionTemplate->setInvalidDecl();
5825      return FunctionTemplate;
5826    }
5827  }
5828
5829  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5830  if ((getLangOpts().OpenCLVersion >= 120)
5831      && NewFD->hasAttr<OpenCLKernelAttr>()
5832      && (SC == SC_Static)) {
5833    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5834    D.setInvalidType();
5835  }
5836
5837  MarkUnusedFileScopedDecl(NewFD);
5838
5839  if (getLangOpts().CUDA)
5840    if (IdentifierInfo *II = NewFD->getIdentifier())
5841      if (!NewFD->isInvalidDecl() &&
5842          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5843        if (II->isStr("cudaConfigureCall")) {
5844          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5845            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5846
5847          Context.setcudaConfigureCallDecl(NewFD);
5848        }
5849      }
5850
5851  // Here we have an function template explicit specialization at class scope.
5852  // The actually specialization will be postponed to template instatiation
5853  // time via the ClassScopeFunctionSpecializationDecl node.
5854  if (isDependentClassScopeExplicitSpecialization) {
5855    ClassScopeFunctionSpecializationDecl *NewSpec =
5856                         ClassScopeFunctionSpecializationDecl::Create(
5857                                Context, CurContext, SourceLocation(),
5858                                cast<CXXMethodDecl>(NewFD),
5859                                HasExplicitTemplateArgs, TemplateArgs);
5860    CurContext->addDecl(NewSpec);
5861    AddToScope = false;
5862  }
5863
5864  return NewFD;
5865}
5866
5867/// \brief Perform semantic checking of a new function declaration.
5868///
5869/// Performs semantic analysis of the new function declaration
5870/// NewFD. This routine performs all semantic checking that does not
5871/// require the actual declarator involved in the declaration, and is
5872/// used both for the declaration of functions as they are parsed
5873/// (called via ActOnDeclarator) and for the declaration of functions
5874/// that have been instantiated via C++ template instantiation (called
5875/// via InstantiateDecl).
5876///
5877/// \param IsExplicitSpecialization whether this new function declaration is
5878/// an explicit specialization of the previous declaration.
5879///
5880/// This sets NewFD->isInvalidDecl() to true if there was an error.
5881///
5882/// \returns true if the function declaration is a redeclaration.
5883bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5884                                    LookupResult &Previous,
5885                                    bool IsExplicitSpecialization) {
5886  assert(!NewFD->getResultType()->isVariablyModifiedType()
5887         && "Variably modified return types are not handled here");
5888
5889  // Check for a previous declaration of this name.
5890  if (Previous.empty() && NewFD->isExternC()) {
5891    // Since we did not find anything by this name and we're declaring
5892    // an extern "C" function, look for a non-visible extern "C"
5893    // declaration with the same name.
5894    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5895      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5896    if (Pos != LocallyScopedExternalDecls.end())
5897      Previous.addDecl(Pos->second);
5898  }
5899
5900  bool Redeclaration = false;
5901
5902  // Merge or overload the declaration with an existing declaration of
5903  // the same name, if appropriate.
5904  if (!Previous.empty()) {
5905    // Determine whether NewFD is an overload of PrevDecl or
5906    // a declaration that requires merging. If it's an overload,
5907    // there's no more work to do here; we'll just add the new
5908    // function to the scope.
5909
5910    NamedDecl *OldDecl = 0;
5911    if (!AllowOverloadingOfFunction(Previous, Context)) {
5912      Redeclaration = true;
5913      OldDecl = Previous.getFoundDecl();
5914    } else {
5915      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5916                            /*NewIsUsingDecl*/ false)) {
5917      case Ovl_Match:
5918        Redeclaration = true;
5919        break;
5920
5921      case Ovl_NonFunction:
5922        Redeclaration = true;
5923        break;
5924
5925      case Ovl_Overload:
5926        Redeclaration = false;
5927        break;
5928      }
5929
5930      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5931        // If a function name is overloadable in C, then every function
5932        // with that name must be marked "overloadable".
5933        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5934          << Redeclaration << NewFD;
5935        NamedDecl *OverloadedDecl = 0;
5936        if (Redeclaration)
5937          OverloadedDecl = OldDecl;
5938        else if (!Previous.empty())
5939          OverloadedDecl = Previous.getRepresentativeDecl();
5940        if (OverloadedDecl)
5941          Diag(OverloadedDecl->getLocation(),
5942               diag::note_attribute_overloadable_prev_overload);
5943        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5944                                                        Context));
5945      }
5946    }
5947
5948    if (Redeclaration) {
5949      // NewFD and OldDecl represent declarations that need to be
5950      // merged.
5951      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5952        NewFD->setInvalidDecl();
5953        return Redeclaration;
5954      }
5955
5956      Previous.clear();
5957      Previous.addDecl(OldDecl);
5958
5959      if (FunctionTemplateDecl *OldTemplateDecl
5960                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5961        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5962        FunctionTemplateDecl *NewTemplateDecl
5963          = NewFD->getDescribedFunctionTemplate();
5964        assert(NewTemplateDecl && "Template/non-template mismatch");
5965        if (CXXMethodDecl *Method
5966              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5967          Method->setAccess(OldTemplateDecl->getAccess());
5968          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5969        }
5970
5971        // If this is an explicit specialization of a member that is a function
5972        // template, mark it as a member specialization.
5973        if (IsExplicitSpecialization &&
5974            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5975          NewTemplateDecl->setMemberSpecialization();
5976          assert(OldTemplateDecl->isMemberSpecialization());
5977        }
5978
5979      } else {
5980        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5981          NewFD->setAccess(OldDecl->getAccess());
5982        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5983      }
5984    }
5985  }
5986
5987  // Semantic checking for this function declaration (in isolation).
5988  if (getLangOpts().CPlusPlus) {
5989    // C++-specific checks.
5990    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5991      CheckConstructor(Constructor);
5992    } else if (CXXDestructorDecl *Destructor =
5993                dyn_cast<CXXDestructorDecl>(NewFD)) {
5994      CXXRecordDecl *Record = Destructor->getParent();
5995      QualType ClassType = Context.getTypeDeclType(Record);
5996
5997      // FIXME: Shouldn't we be able to perform this check even when the class
5998      // type is dependent? Both gcc and edg can handle that.
5999      if (!ClassType->isDependentType()) {
6000        DeclarationName Name
6001          = Context.DeclarationNames.getCXXDestructorName(
6002                                        Context.getCanonicalType(ClassType));
6003        if (NewFD->getDeclName() != Name) {
6004          Diag(NewFD->getLocation(), diag::err_destructor_name);
6005          NewFD->setInvalidDecl();
6006          return Redeclaration;
6007        }
6008      }
6009    } else if (CXXConversionDecl *Conversion
6010               = dyn_cast<CXXConversionDecl>(NewFD)) {
6011      ActOnConversionDeclarator(Conversion);
6012    }
6013
6014    // Find any virtual functions that this function overrides.
6015    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6016      if (!Method->isFunctionTemplateSpecialization() &&
6017          !Method->getDescribedFunctionTemplate()) {
6018        if (AddOverriddenMethods(Method->getParent(), Method)) {
6019          // If the function was marked as "static", we have a problem.
6020          if (NewFD->getStorageClass() == SC_Static) {
6021            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6022              << NewFD->getDeclName();
6023            for (CXXMethodDecl::method_iterator
6024                      Overridden = Method->begin_overridden_methods(),
6025                   OverriddenEnd = Method->end_overridden_methods();
6026                 Overridden != OverriddenEnd;
6027                 ++Overridden) {
6028              Diag((*Overridden)->getLocation(),
6029                   diag::note_overridden_virtual_function);
6030            }
6031          }
6032        }
6033      }
6034
6035      if (Method->isStatic())
6036        checkThisInStaticMemberFunctionType(Method);
6037    }
6038
6039    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6040    if (NewFD->isOverloadedOperator() &&
6041        CheckOverloadedOperatorDeclaration(NewFD)) {
6042      NewFD->setInvalidDecl();
6043      return Redeclaration;
6044    }
6045
6046    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6047    if (NewFD->getLiteralIdentifier() &&
6048        CheckLiteralOperatorDeclaration(NewFD)) {
6049      NewFD->setInvalidDecl();
6050      return Redeclaration;
6051    }
6052
6053    // In C++, check default arguments now that we have merged decls. Unless
6054    // the lexical context is the class, because in this case this is done
6055    // during delayed parsing anyway.
6056    if (!CurContext->isRecord())
6057      CheckCXXDefaultArguments(NewFD);
6058
6059    // If this function declares a builtin function, check the type of this
6060    // declaration against the expected type for the builtin.
6061    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6062      ASTContext::GetBuiltinTypeError Error;
6063      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6064      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6065        // The type of this function differs from the type of the builtin,
6066        // so forget about the builtin entirely.
6067        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6068      }
6069    }
6070
6071    // If this function is declared as being extern "C", then check to see if
6072    // the function returns a UDT (class, struct, or union type) that is not C
6073    // compatible, and if it does, warn the user.
6074    if (NewFD->isExternC()) {
6075      QualType R = NewFD->getResultType();
6076      if (R->isIncompleteType() && !R->isVoidType())
6077        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6078            << NewFD << R;
6079      else if (!R.isPODType(Context) && !R->isVoidType() &&
6080               !R->isObjCObjectPointerType())
6081        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6082    }
6083  }
6084  return Redeclaration;
6085}
6086
6087void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6088  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6089  //   static or constexpr is ill-formed.
6090  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6091  //   shall not appear in a declaration of main.
6092  // static main is not an error under C99, but we should warn about it.
6093  if (FD->getStorageClass() == SC_Static)
6094    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6095         ? diag::err_static_main : diag::warn_static_main)
6096      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6097  if (FD->isInlineSpecified())
6098    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6099      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6100  if (FD->isConstexpr()) {
6101    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6102      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6103    FD->setConstexpr(false);
6104  }
6105
6106  QualType T = FD->getType();
6107  assert(T->isFunctionType() && "function decl is not of function type");
6108  const FunctionType* FT = T->castAs<FunctionType>();
6109
6110  // All the standards say that main() should should return 'int'.
6111  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6112    // In C and C++, main magically returns 0 if you fall off the end;
6113    // set the flag which tells us that.
6114    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6115    FD->setHasImplicitReturnZero(true);
6116
6117  // In C with GNU extensions we allow main() to have non-integer return
6118  // type, but we should warn about the extension, and we disable the
6119  // implicit-return-zero rule.
6120  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6121    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6122
6123  // Otherwise, this is just a flat-out error.
6124  } else {
6125    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6126    FD->setInvalidDecl(true);
6127  }
6128
6129  // Treat protoless main() as nullary.
6130  if (isa<FunctionNoProtoType>(FT)) return;
6131
6132  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6133  unsigned nparams = FTP->getNumArgs();
6134  assert(FD->getNumParams() == nparams);
6135
6136  bool HasExtraParameters = (nparams > 3);
6137
6138  // Darwin passes an undocumented fourth argument of type char**.  If
6139  // other platforms start sprouting these, the logic below will start
6140  // getting shifty.
6141  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6142    HasExtraParameters = false;
6143
6144  if (HasExtraParameters) {
6145    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6146    FD->setInvalidDecl(true);
6147    nparams = 3;
6148  }
6149
6150  // FIXME: a lot of the following diagnostics would be improved
6151  // if we had some location information about types.
6152
6153  QualType CharPP =
6154    Context.getPointerType(Context.getPointerType(Context.CharTy));
6155  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6156
6157  for (unsigned i = 0; i < nparams; ++i) {
6158    QualType AT = FTP->getArgType(i);
6159
6160    bool mismatch = true;
6161
6162    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6163      mismatch = false;
6164    else if (Expected[i] == CharPP) {
6165      // As an extension, the following forms are okay:
6166      //   char const **
6167      //   char const * const *
6168      //   char * const *
6169
6170      QualifierCollector qs;
6171      const PointerType* PT;
6172      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6173          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6174          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6175        qs.removeConst();
6176        mismatch = !qs.empty();
6177      }
6178    }
6179
6180    if (mismatch) {
6181      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6182      // TODO: suggest replacing given type with expected type
6183      FD->setInvalidDecl(true);
6184    }
6185  }
6186
6187  if (nparams == 1 && !FD->isInvalidDecl()) {
6188    Diag(FD->getLocation(), diag::warn_main_one_arg);
6189  }
6190
6191  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6192    Diag(FD->getLocation(), diag::err_main_template_decl);
6193    FD->setInvalidDecl();
6194  }
6195}
6196
6197bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6198  // FIXME: Need strict checking.  In C89, we need to check for
6199  // any assignment, increment, decrement, function-calls, or
6200  // commas outside of a sizeof.  In C99, it's the same list,
6201  // except that the aforementioned are allowed in unevaluated
6202  // expressions.  Everything else falls under the
6203  // "may accept other forms of constant expressions" exception.
6204  // (We never end up here for C++, so the constant expression
6205  // rules there don't matter.)
6206  if (Init->isConstantInitializer(Context, false))
6207    return false;
6208  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6209    << Init->getSourceRange();
6210  return true;
6211}
6212
6213namespace {
6214  // Visits an initialization expression to see if OrigDecl is evaluated in
6215  // its own initialization and throws a warning if it does.
6216  class SelfReferenceChecker
6217      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6218    Sema &S;
6219    Decl *OrigDecl;
6220    bool isRecordType;
6221    bool isPODType;
6222    bool isReferenceType;
6223
6224  public:
6225    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6226
6227    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6228                                                    S(S), OrigDecl(OrigDecl) {
6229      isPODType = false;
6230      isRecordType = false;
6231      isReferenceType = false;
6232      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6233        isPODType = VD->getType().isPODType(S.Context);
6234        isRecordType = VD->getType()->isRecordType();
6235        isReferenceType = VD->getType()->isReferenceType();
6236      }
6237    }
6238
6239    // Sometimes, the expression passed in lacks the casts that are used
6240    // to determine which DeclRefExpr's to check.  Assume that the casts
6241    // are present and continue visiting the expression.
6242    void HandleExpr(Expr *E) {
6243      // Skip checking T a = a where T is not a record or reference type.
6244      // Doing so is a way to silence uninitialized warnings.
6245      if (isRecordType || isReferenceType)
6246        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6247          HandleDeclRefExpr(DRE);
6248
6249      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6250        HandleValue(CO->getTrueExpr());
6251        HandleValue(CO->getFalseExpr());
6252      }
6253
6254      Visit(E);
6255    }
6256
6257    // For most expressions, the cast is directly above the DeclRefExpr.
6258    // For conditional operators, the cast can be outside the conditional
6259    // operator if both expressions are DeclRefExpr's.
6260    void HandleValue(Expr *E) {
6261      E = E->IgnoreParenImpCasts();
6262      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6263        HandleDeclRefExpr(DRE);
6264        return;
6265      }
6266
6267      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6268        HandleValue(CO->getTrueExpr());
6269        HandleValue(CO->getFalseExpr());
6270      }
6271    }
6272
6273    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6274      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6275          (isRecordType && E->getCastKind() == CK_NoOp))
6276        HandleValue(E->getSubExpr());
6277
6278      Inherited::VisitImplicitCastExpr(E);
6279    }
6280
6281    void VisitMemberExpr(MemberExpr *E) {
6282      // Don't warn on arrays since they can be treated as pointers.
6283      if (E->getType()->canDecayToPointerType()) return;
6284
6285      ValueDecl *VD = E->getMemberDecl();
6286      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6287      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6288        if (DeclRefExpr *DRE
6289              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6290          HandleDeclRefExpr(DRE);
6291          return;
6292        }
6293
6294      Inherited::VisitMemberExpr(E);
6295    }
6296
6297    void VisitUnaryOperator(UnaryOperator *E) {
6298      // For POD record types, addresses of its own members are well-defined.
6299      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6300          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6301      Inherited::VisitUnaryOperator(E);
6302    }
6303
6304    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6305
6306    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6307      Decl* ReferenceDecl = DRE->getDecl();
6308      if (OrigDecl != ReferenceDecl) return;
6309      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6310                          Sema::NotForRedeclaration);
6311      unsigned diag = isReferenceType
6312          ? diag::warn_uninit_self_reference_in_reference_init
6313          : diag::warn_uninit_self_reference_in_init;
6314      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6315                            S.PDiag(diag)
6316                              << Result.getLookupName()
6317                              << OrigDecl->getLocation()
6318                              << DRE->getSourceRange());
6319    }
6320  };
6321}
6322
6323/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6324void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6325  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6326}
6327
6328/// AddInitializerToDecl - Adds the initializer Init to the
6329/// declaration dcl. If DirectInit is true, this is C++ direct
6330/// initialization rather than copy initialization.
6331void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6332                                bool DirectInit, bool TypeMayContainAuto) {
6333  // If there is no declaration, there was an error parsing it.  Just ignore
6334  // the initializer.
6335  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6336    return;
6337
6338  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6339    // With declarators parsed the way they are, the parser cannot
6340    // distinguish between a normal initializer and a pure-specifier.
6341    // Thus this grotesque test.
6342    IntegerLiteral *IL;
6343    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6344        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6345      CheckPureMethod(Method, Init->getSourceRange());
6346    else {
6347      Diag(Method->getLocation(), diag::err_member_function_initialization)
6348        << Method->getDeclName() << Init->getSourceRange();
6349      Method->setInvalidDecl();
6350    }
6351    return;
6352  }
6353
6354  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6355  if (!VDecl) {
6356    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6357    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6358    RealDecl->setInvalidDecl();
6359    return;
6360  }
6361
6362  // Check for self-references within variable initializers.
6363  // Variables declared within a function/method body (except for references)
6364  // are handled by a dataflow analysis.
6365  // Record types initialized by initializer list are handled here.
6366  // Initialization by constructors are handled in TryConstructorInitialization.
6367  if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6368      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6369    CheckSelfReference(RealDecl, Init);
6370
6371  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6372
6373  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6374  AutoType *Auto = 0;
6375  if (TypeMayContainAuto &&
6376      (Auto = VDecl->getType()->getContainedAutoType()) &&
6377      !Auto->isDeduced()) {
6378    Expr *DeduceInit = Init;
6379    // Initializer could be a C++ direct-initializer. Deduction only works if it
6380    // contains exactly one expression.
6381    if (CXXDirectInit) {
6382      if (CXXDirectInit->getNumExprs() == 0) {
6383        // It isn't possible to write this directly, but it is possible to
6384        // end up in this situation with "auto x(some_pack...);"
6385        Diag(CXXDirectInit->getLocStart(),
6386             diag::err_auto_var_init_no_expression)
6387          << VDecl->getDeclName() << VDecl->getType()
6388          << VDecl->getSourceRange();
6389        RealDecl->setInvalidDecl();
6390        return;
6391      } else if (CXXDirectInit->getNumExprs() > 1) {
6392        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6393             diag::err_auto_var_init_multiple_expressions)
6394          << VDecl->getDeclName() << VDecl->getType()
6395          << VDecl->getSourceRange();
6396        RealDecl->setInvalidDecl();
6397        return;
6398      } else {
6399        DeduceInit = CXXDirectInit->getExpr(0);
6400      }
6401    }
6402    TypeSourceInfo *DeducedType = 0;
6403    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6404            DAR_Failed)
6405      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6406    if (!DeducedType) {
6407      RealDecl->setInvalidDecl();
6408      return;
6409    }
6410    VDecl->setTypeSourceInfo(DeducedType);
6411    VDecl->setType(DeducedType->getType());
6412    VDecl->ClearLinkageCache();
6413
6414    // In ARC, infer lifetime.
6415    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6416      VDecl->setInvalidDecl();
6417
6418    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6419    // 'id' instead of a specific object type prevents most of our usual checks.
6420    // We only want to warn outside of template instantiations, though:
6421    // inside a template, the 'id' could have come from a parameter.
6422    if (ActiveTemplateInstantiations.empty() &&
6423        DeducedType->getType()->isObjCIdType()) {
6424      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6425      Diag(Loc, diag::warn_auto_var_is_id)
6426        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6427    }
6428
6429    // If this is a redeclaration, check that the type we just deduced matches
6430    // the previously declared type.
6431    if (VarDecl *Old = VDecl->getPreviousDecl())
6432      MergeVarDeclTypes(VDecl, Old);
6433  }
6434
6435  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6436    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6437    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6438    VDecl->setInvalidDecl();
6439    return;
6440  }
6441
6442  if (!VDecl->getType()->isDependentType()) {
6443    // A definition must end up with a complete type, which means it must be
6444    // complete with the restriction that an array type might be completed by
6445    // the initializer; note that later code assumes this restriction.
6446    QualType BaseDeclType = VDecl->getType();
6447    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6448      BaseDeclType = Array->getElementType();
6449    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6450                            diag::err_typecheck_decl_incomplete_type)) {
6451      RealDecl->setInvalidDecl();
6452      return;
6453    }
6454
6455    // The variable can not have an abstract class type.
6456    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6457                               diag::err_abstract_type_in_decl,
6458                               AbstractVariableType))
6459      VDecl->setInvalidDecl();
6460  }
6461
6462  const VarDecl *Def;
6463  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6464    Diag(VDecl->getLocation(), diag::err_redefinition)
6465      << VDecl->getDeclName();
6466    Diag(Def->getLocation(), diag::note_previous_definition);
6467    VDecl->setInvalidDecl();
6468    return;
6469  }
6470
6471  const VarDecl* PrevInit = 0;
6472  if (getLangOpts().CPlusPlus) {
6473    // C++ [class.static.data]p4
6474    //   If a static data member is of const integral or const
6475    //   enumeration type, its declaration in the class definition can
6476    //   specify a constant-initializer which shall be an integral
6477    //   constant expression (5.19). In that case, the member can appear
6478    //   in integral constant expressions. The member shall still be
6479    //   defined in a namespace scope if it is used in the program and the
6480    //   namespace scope definition shall not contain an initializer.
6481    //
6482    // We already performed a redefinition check above, but for static
6483    // data members we also need to check whether there was an in-class
6484    // declaration with an initializer.
6485    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6486      Diag(VDecl->getLocation(), diag::err_redefinition)
6487        << VDecl->getDeclName();
6488      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6489      return;
6490    }
6491
6492    if (VDecl->hasLocalStorage())
6493      getCurFunction()->setHasBranchProtectedScope();
6494
6495    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6496      VDecl->setInvalidDecl();
6497      return;
6498    }
6499  }
6500
6501  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6502  // a kernel function cannot be initialized."
6503  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6504    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6505    VDecl->setInvalidDecl();
6506    return;
6507  }
6508
6509  // Get the decls type and save a reference for later, since
6510  // CheckInitializerTypes may change it.
6511  QualType DclT = VDecl->getType(), SavT = DclT;
6512
6513  // Top-level message sends default to 'id' when we're in a debugger
6514  // and we are assigning it to a variable of 'id' type.
6515  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6516    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6517      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6518      if (Result.isInvalid()) {
6519        VDecl->setInvalidDecl();
6520        return;
6521      }
6522      Init = Result.take();
6523    }
6524
6525  // Perform the initialization.
6526  if (!VDecl->isInvalidDecl()) {
6527    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6528    InitializationKind Kind
6529      = DirectInit ?
6530          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6531                                                           Init->getLocStart(),
6532                                                           Init->getLocEnd())
6533                        : InitializationKind::CreateDirectList(
6534                                                          VDecl->getLocation())
6535                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6536                                                    Init->getLocStart());
6537
6538    Expr **Args = &Init;
6539    unsigned NumArgs = 1;
6540    if (CXXDirectInit) {
6541      Args = CXXDirectInit->getExprs();
6542      NumArgs = CXXDirectInit->getNumExprs();
6543    }
6544    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6545    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6546                                        MultiExprArg(Args, NumArgs), &DclT);
6547    if (Result.isInvalid()) {
6548      VDecl->setInvalidDecl();
6549      return;
6550    }
6551
6552    Init = Result.takeAs<Expr>();
6553  }
6554
6555  // If the type changed, it means we had an incomplete type that was
6556  // completed by the initializer. For example:
6557  //   int ary[] = { 1, 3, 5 };
6558  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6559  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6560    VDecl->setType(DclT);
6561
6562  // Check any implicit conversions within the expression.
6563  CheckImplicitConversions(Init, VDecl->getLocation());
6564
6565  if (!VDecl->isInvalidDecl())
6566    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6567
6568  Init = MaybeCreateExprWithCleanups(Init);
6569  // Attach the initializer to the decl.
6570  VDecl->setInit(Init);
6571
6572  if (VDecl->isLocalVarDecl()) {
6573    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6574    // static storage duration shall be constant expressions or string literals.
6575    // C++ does not have this restriction.
6576    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6577        VDecl->getStorageClass() == SC_Static)
6578      CheckForConstantInitializer(Init, DclT);
6579  } else if (VDecl->isStaticDataMember() &&
6580             VDecl->getLexicalDeclContext()->isRecord()) {
6581    // This is an in-class initialization for a static data member, e.g.,
6582    //
6583    // struct S {
6584    //   static const int value = 17;
6585    // };
6586
6587    // C++ [class.mem]p4:
6588    //   A member-declarator can contain a constant-initializer only
6589    //   if it declares a static member (9.4) of const integral or
6590    //   const enumeration type, see 9.4.2.
6591    //
6592    // C++11 [class.static.data]p3:
6593    //   If a non-volatile const static data member is of integral or
6594    //   enumeration type, its declaration in the class definition can
6595    //   specify a brace-or-equal-initializer in which every initalizer-clause
6596    //   that is an assignment-expression is a constant expression. A static
6597    //   data member of literal type can be declared in the class definition
6598    //   with the constexpr specifier; if so, its declaration shall specify a
6599    //   brace-or-equal-initializer in which every initializer-clause that is
6600    //   an assignment-expression is a constant expression.
6601
6602    // Do nothing on dependent types.
6603    if (DclT->isDependentType()) {
6604
6605    // Allow any 'static constexpr' members, whether or not they are of literal
6606    // type. We separately check that every constexpr variable is of literal
6607    // type.
6608    } else if (VDecl->isConstexpr()) {
6609
6610    // Require constness.
6611    } else if (!DclT.isConstQualified()) {
6612      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6613        << Init->getSourceRange();
6614      VDecl->setInvalidDecl();
6615
6616    // We allow integer constant expressions in all cases.
6617    } else if (DclT->isIntegralOrEnumerationType()) {
6618      // Check whether the expression is a constant expression.
6619      SourceLocation Loc;
6620      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6621        // In C++11, a non-constexpr const static data member with an
6622        // in-class initializer cannot be volatile.
6623        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6624      else if (Init->isValueDependent())
6625        ; // Nothing to check.
6626      else if (Init->isIntegerConstantExpr(Context, &Loc))
6627        ; // Ok, it's an ICE!
6628      else if (Init->isEvaluatable(Context)) {
6629        // If we can constant fold the initializer through heroics, accept it,
6630        // but report this as a use of an extension for -pedantic.
6631        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6632          << Init->getSourceRange();
6633      } else {
6634        // Otherwise, this is some crazy unknown case.  Report the issue at the
6635        // location provided by the isIntegerConstantExpr failed check.
6636        Diag(Loc, diag::err_in_class_initializer_non_constant)
6637          << Init->getSourceRange();
6638        VDecl->setInvalidDecl();
6639      }
6640
6641    // We allow foldable floating-point constants as an extension.
6642    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6643      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6644        << DclT << Init->getSourceRange();
6645      if (getLangOpts().CPlusPlus0x)
6646        Diag(VDecl->getLocation(),
6647             diag::note_in_class_initializer_float_type_constexpr)
6648          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6649
6650      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6651        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6652          << Init->getSourceRange();
6653        VDecl->setInvalidDecl();
6654      }
6655
6656    // Suggest adding 'constexpr' in C++11 for literal types.
6657    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6658      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6659        << DclT << Init->getSourceRange()
6660        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6661      VDecl->setConstexpr(true);
6662
6663    } else {
6664      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6665        << DclT << Init->getSourceRange();
6666      VDecl->setInvalidDecl();
6667    }
6668  } else if (VDecl->isFileVarDecl()) {
6669    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6670        (!getLangOpts().CPlusPlus ||
6671         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6672      Diag(VDecl->getLocation(), diag::warn_extern_init);
6673
6674    // C99 6.7.8p4. All file scoped initializers need to be constant.
6675    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6676      CheckForConstantInitializer(Init, DclT);
6677  }
6678
6679  // We will represent direct-initialization similarly to copy-initialization:
6680  //    int x(1);  -as-> int x = 1;
6681  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6682  //
6683  // Clients that want to distinguish between the two forms, can check for
6684  // direct initializer using VarDecl::getInitStyle().
6685  // A major benefit is that clients that don't particularly care about which
6686  // exactly form was it (like the CodeGen) can handle both cases without
6687  // special case code.
6688
6689  // C++ 8.5p11:
6690  // The form of initialization (using parentheses or '=') is generally
6691  // insignificant, but does matter when the entity being initialized has a
6692  // class type.
6693  if (CXXDirectInit) {
6694    assert(DirectInit && "Call-style initializer must be direct init.");
6695    VDecl->setInitStyle(VarDecl::CallInit);
6696  } else if (DirectInit) {
6697    // This must be list-initialization. No other way is direct-initialization.
6698    VDecl->setInitStyle(VarDecl::ListInit);
6699  }
6700
6701  CheckCompleteVariableDeclaration(VDecl);
6702}
6703
6704/// ActOnInitializerError - Given that there was an error parsing an
6705/// initializer for the given declaration, try to return to some form
6706/// of sanity.
6707void Sema::ActOnInitializerError(Decl *D) {
6708  // Our main concern here is re-establishing invariants like "a
6709  // variable's type is either dependent or complete".
6710  if (!D || D->isInvalidDecl()) return;
6711
6712  VarDecl *VD = dyn_cast<VarDecl>(D);
6713  if (!VD) return;
6714
6715  // Auto types are meaningless if we can't make sense of the initializer.
6716  if (ParsingInitForAutoVars.count(D)) {
6717    D->setInvalidDecl();
6718    return;
6719  }
6720
6721  QualType Ty = VD->getType();
6722  if (Ty->isDependentType()) return;
6723
6724  // Require a complete type.
6725  if (RequireCompleteType(VD->getLocation(),
6726                          Context.getBaseElementType(Ty),
6727                          diag::err_typecheck_decl_incomplete_type)) {
6728    VD->setInvalidDecl();
6729    return;
6730  }
6731
6732  // Require an abstract type.
6733  if (RequireNonAbstractType(VD->getLocation(), Ty,
6734                             diag::err_abstract_type_in_decl,
6735                             AbstractVariableType)) {
6736    VD->setInvalidDecl();
6737    return;
6738  }
6739
6740  // Don't bother complaining about constructors or destructors,
6741  // though.
6742}
6743
6744void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6745                                  bool TypeMayContainAuto) {
6746  // If there is no declaration, there was an error parsing it. Just ignore it.
6747  if (RealDecl == 0)
6748    return;
6749
6750  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6751    QualType Type = Var->getType();
6752
6753    // C++11 [dcl.spec.auto]p3
6754    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6755      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6756        << Var->getDeclName() << Type;
6757      Var->setInvalidDecl();
6758      return;
6759    }
6760
6761    // C++11 [class.static.data]p3: A static data member can be declared with
6762    // the constexpr specifier; if so, its declaration shall specify
6763    // a brace-or-equal-initializer.
6764    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6765    // the definition of a variable [...] or the declaration of a static data
6766    // member.
6767    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6768      if (Var->isStaticDataMember())
6769        Diag(Var->getLocation(),
6770             diag::err_constexpr_static_mem_var_requires_init)
6771          << Var->getDeclName();
6772      else
6773        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6774      Var->setInvalidDecl();
6775      return;
6776    }
6777
6778    switch (Var->isThisDeclarationADefinition()) {
6779    case VarDecl::Definition:
6780      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6781        break;
6782
6783      // We have an out-of-line definition of a static data member
6784      // that has an in-class initializer, so we type-check this like
6785      // a declaration.
6786      //
6787      // Fall through
6788
6789    case VarDecl::DeclarationOnly:
6790      // It's only a declaration.
6791
6792      // Block scope. C99 6.7p7: If an identifier for an object is
6793      // declared with no linkage (C99 6.2.2p6), the type for the
6794      // object shall be complete.
6795      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6796          !Var->getLinkage() && !Var->isInvalidDecl() &&
6797          RequireCompleteType(Var->getLocation(), Type,
6798                              diag::err_typecheck_decl_incomplete_type))
6799        Var->setInvalidDecl();
6800
6801      // Make sure that the type is not abstract.
6802      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6803          RequireNonAbstractType(Var->getLocation(), Type,
6804                                 diag::err_abstract_type_in_decl,
6805                                 AbstractVariableType))
6806        Var->setInvalidDecl();
6807      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6808          Var->getStorageClass() == SC_PrivateExtern) {
6809        Diag(Var->getLocation(), diag::warn_private_extern);
6810        Diag(Var->getLocation(), diag::note_private_extern);
6811      }
6812
6813      return;
6814
6815    case VarDecl::TentativeDefinition:
6816      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6817      // object that has file scope without an initializer, and without a
6818      // storage-class specifier or with the storage-class specifier "static",
6819      // constitutes a tentative definition. Note: A tentative definition with
6820      // external linkage is valid (C99 6.2.2p5).
6821      if (!Var->isInvalidDecl()) {
6822        if (const IncompleteArrayType *ArrayT
6823                                    = Context.getAsIncompleteArrayType(Type)) {
6824          if (RequireCompleteType(Var->getLocation(),
6825                                  ArrayT->getElementType(),
6826                                  diag::err_illegal_decl_array_incomplete_type))
6827            Var->setInvalidDecl();
6828        } else if (Var->getStorageClass() == SC_Static) {
6829          // C99 6.9.2p3: If the declaration of an identifier for an object is
6830          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6831          // declared type shall not be an incomplete type.
6832          // NOTE: code such as the following
6833          //     static struct s;
6834          //     struct s { int a; };
6835          // is accepted by gcc. Hence here we issue a warning instead of
6836          // an error and we do not invalidate the static declaration.
6837          // NOTE: to avoid multiple warnings, only check the first declaration.
6838          if (Var->getPreviousDecl() == 0)
6839            RequireCompleteType(Var->getLocation(), Type,
6840                                diag::ext_typecheck_decl_incomplete_type);
6841        }
6842      }
6843
6844      // Record the tentative definition; we're done.
6845      if (!Var->isInvalidDecl())
6846        TentativeDefinitions.push_back(Var);
6847      return;
6848    }
6849
6850    // Provide a specific diagnostic for uninitialized variable
6851    // definitions with incomplete array type.
6852    if (Type->isIncompleteArrayType()) {
6853      Diag(Var->getLocation(),
6854           diag::err_typecheck_incomplete_array_needs_initializer);
6855      Var->setInvalidDecl();
6856      return;
6857    }
6858
6859    // Provide a specific diagnostic for uninitialized variable
6860    // definitions with reference type.
6861    if (Type->isReferenceType()) {
6862      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6863        << Var->getDeclName()
6864        << SourceRange(Var->getLocation(), Var->getLocation());
6865      Var->setInvalidDecl();
6866      return;
6867    }
6868
6869    // Do not attempt to type-check the default initializer for a
6870    // variable with dependent type.
6871    if (Type->isDependentType())
6872      return;
6873
6874    if (Var->isInvalidDecl())
6875      return;
6876
6877    if (RequireCompleteType(Var->getLocation(),
6878                            Context.getBaseElementType(Type),
6879                            diag::err_typecheck_decl_incomplete_type)) {
6880      Var->setInvalidDecl();
6881      return;
6882    }
6883
6884    // The variable can not have an abstract class type.
6885    if (RequireNonAbstractType(Var->getLocation(), Type,
6886                               diag::err_abstract_type_in_decl,
6887                               AbstractVariableType)) {
6888      Var->setInvalidDecl();
6889      return;
6890    }
6891
6892    // Check for jumps past the implicit initializer.  C++0x
6893    // clarifies that this applies to a "variable with automatic
6894    // storage duration", not a "local variable".
6895    // C++11 [stmt.dcl]p3
6896    //   A program that jumps from a point where a variable with automatic
6897    //   storage duration is not in scope to a point where it is in scope is
6898    //   ill-formed unless the variable has scalar type, class type with a
6899    //   trivial default constructor and a trivial destructor, a cv-qualified
6900    //   version of one of these types, or an array of one of the preceding
6901    //   types and is declared without an initializer.
6902    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6903      if (const RecordType *Record
6904            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6905        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6906        // Mark the function for further checking even if the looser rules of
6907        // C++11 do not require such checks, so that we can diagnose
6908        // incompatibilities with C++98.
6909        if (!CXXRecord->isPOD())
6910          getCurFunction()->setHasBranchProtectedScope();
6911      }
6912    }
6913
6914    // C++03 [dcl.init]p9:
6915    //   If no initializer is specified for an object, and the
6916    //   object is of (possibly cv-qualified) non-POD class type (or
6917    //   array thereof), the object shall be default-initialized; if
6918    //   the object is of const-qualified type, the underlying class
6919    //   type shall have a user-declared default
6920    //   constructor. Otherwise, if no initializer is specified for
6921    //   a non- static object, the object and its subobjects, if
6922    //   any, have an indeterminate initial value); if the object
6923    //   or any of its subobjects are of const-qualified type, the
6924    //   program is ill-formed.
6925    // C++0x [dcl.init]p11:
6926    //   If no initializer is specified for an object, the object is
6927    //   default-initialized; [...].
6928    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6929    InitializationKind Kind
6930      = InitializationKind::CreateDefault(Var->getLocation());
6931
6932    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6933    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6934    if (Init.isInvalid())
6935      Var->setInvalidDecl();
6936    else if (Init.get()) {
6937      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6938      // This is important for template substitution.
6939      Var->setInitStyle(VarDecl::CallInit);
6940    }
6941
6942    CheckCompleteVariableDeclaration(Var);
6943  }
6944}
6945
6946void Sema::ActOnCXXForRangeDecl(Decl *D) {
6947  VarDecl *VD = dyn_cast<VarDecl>(D);
6948  if (!VD) {
6949    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6950    D->setInvalidDecl();
6951    return;
6952  }
6953
6954  VD->setCXXForRangeDecl(true);
6955
6956  // for-range-declaration cannot be given a storage class specifier.
6957  int Error = -1;
6958  switch (VD->getStorageClassAsWritten()) {
6959  case SC_None:
6960    break;
6961  case SC_Extern:
6962    Error = 0;
6963    break;
6964  case SC_Static:
6965    Error = 1;
6966    break;
6967  case SC_PrivateExtern:
6968    Error = 2;
6969    break;
6970  case SC_Auto:
6971    Error = 3;
6972    break;
6973  case SC_Register:
6974    Error = 4;
6975    break;
6976  case SC_OpenCLWorkGroupLocal:
6977    llvm_unreachable("Unexpected storage class");
6978  }
6979  if (VD->isConstexpr())
6980    Error = 5;
6981  if (Error != -1) {
6982    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6983      << VD->getDeclName() << Error;
6984    D->setInvalidDecl();
6985  }
6986}
6987
6988void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6989  if (var->isInvalidDecl()) return;
6990
6991  // In ARC, don't allow jumps past the implicit initialization of a
6992  // local retaining variable.
6993  if (getLangOpts().ObjCAutoRefCount &&
6994      var->hasLocalStorage()) {
6995    switch (var->getType().getObjCLifetime()) {
6996    case Qualifiers::OCL_None:
6997    case Qualifiers::OCL_ExplicitNone:
6998    case Qualifiers::OCL_Autoreleasing:
6999      break;
7000
7001    case Qualifiers::OCL_Weak:
7002    case Qualifiers::OCL_Strong:
7003      getCurFunction()->setHasBranchProtectedScope();
7004      break;
7005    }
7006  }
7007
7008  // All the following checks are C++ only.
7009  if (!getLangOpts().CPlusPlus) return;
7010
7011  QualType baseType = Context.getBaseElementType(var->getType());
7012  if (baseType->isDependentType()) return;
7013
7014  // __block variables might require us to capture a copy-initializer.
7015  if (var->hasAttr<BlocksAttr>()) {
7016    // It's currently invalid to ever have a __block variable with an
7017    // array type; should we diagnose that here?
7018
7019    // Regardless, we don't want to ignore array nesting when
7020    // constructing this copy.
7021    QualType type = var->getType();
7022
7023    if (type->isStructureOrClassType()) {
7024      SourceLocation poi = var->getLocation();
7025      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7026      ExprResult result =
7027        PerformCopyInitialization(
7028                        InitializedEntity::InitializeBlock(poi, type, false),
7029                                  poi, Owned(varRef));
7030      if (!result.isInvalid()) {
7031        result = MaybeCreateExprWithCleanups(result);
7032        Expr *init = result.takeAs<Expr>();
7033        Context.setBlockVarCopyInits(var, init);
7034      }
7035    }
7036  }
7037
7038  Expr *Init = var->getInit();
7039  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7040
7041  if (!var->getDeclContext()->isDependentContext() && Init) {
7042    if (IsGlobal && !var->isConstexpr() &&
7043        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7044                                            var->getLocation())
7045          != DiagnosticsEngine::Ignored &&
7046        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7047      Diag(var->getLocation(), diag::warn_global_constructor)
7048        << Init->getSourceRange();
7049
7050    if (var->isConstexpr()) {
7051      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7052      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7053        SourceLocation DiagLoc = var->getLocation();
7054        // If the note doesn't add any useful information other than a source
7055        // location, fold it into the primary diagnostic.
7056        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7057              diag::note_invalid_subexpr_in_const_expr) {
7058          DiagLoc = Notes[0].first;
7059          Notes.clear();
7060        }
7061        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7062          << var << Init->getSourceRange();
7063        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7064          Diag(Notes[I].first, Notes[I].second);
7065      }
7066    } else if (var->isUsableInConstantExpressions(Context)) {
7067      // Check whether the initializer of a const variable of integral or
7068      // enumeration type is an ICE now, since we can't tell whether it was
7069      // initialized by a constant expression if we check later.
7070      var->checkInitIsICE();
7071    }
7072  }
7073
7074  // Require the destructor.
7075  if (const RecordType *recordType = baseType->getAs<RecordType>())
7076    FinalizeVarWithDestructor(var, recordType);
7077}
7078
7079/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7080/// any semantic actions necessary after any initializer has been attached.
7081void
7082Sema::FinalizeDeclaration(Decl *ThisDecl) {
7083  // Note that we are no longer parsing the initializer for this declaration.
7084  ParsingInitForAutoVars.erase(ThisDecl);
7085
7086  // Now we have parsed the initializer and can update the table of magic
7087  // tag values.
7088  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7089    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7090    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7091      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7092               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7093               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7094           I != E; ++I) {
7095        const Expr *MagicValueExpr = VD->getInit();
7096        if (!MagicValueExpr) {
7097          continue;
7098        }
7099        llvm::APSInt MagicValueInt;
7100        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7101          Diag(I->getRange().getBegin(),
7102               diag::err_type_tag_for_datatype_not_ice)
7103            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7104          continue;
7105        }
7106        if (MagicValueInt.getActiveBits() > 64) {
7107          Diag(I->getRange().getBegin(),
7108               diag::err_type_tag_for_datatype_too_large)
7109            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7110          continue;
7111        }
7112        uint64_t MagicValue = MagicValueInt.getZExtValue();
7113        RegisterTypeTagForDatatype(I->getArgumentKind(),
7114                                   MagicValue,
7115                                   I->getMatchingCType(),
7116                                   I->getLayoutCompatible(),
7117                                   I->getMustBeNull());
7118      }
7119    }
7120  }
7121}
7122
7123Sema::DeclGroupPtrTy
7124Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7125                              Decl **Group, unsigned NumDecls) {
7126  SmallVector<Decl*, 8> Decls;
7127
7128  if (DS.isTypeSpecOwned())
7129    Decls.push_back(DS.getRepAsDecl());
7130
7131  for (unsigned i = 0; i != NumDecls; ++i)
7132    if (Decl *D = Group[i])
7133      Decls.push_back(D);
7134
7135  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7136                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7137}
7138
7139/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7140/// group, performing any necessary semantic checking.
7141Sema::DeclGroupPtrTy
7142Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7143                           bool TypeMayContainAuto) {
7144  // C++0x [dcl.spec.auto]p7:
7145  //   If the type deduced for the template parameter U is not the same in each
7146  //   deduction, the program is ill-formed.
7147  // FIXME: When initializer-list support is added, a distinction is needed
7148  // between the deduced type U and the deduced type which 'auto' stands for.
7149  //   auto a = 0, b = { 1, 2, 3 };
7150  // is legal because the deduced type U is 'int' in both cases.
7151  if (TypeMayContainAuto && NumDecls > 1) {
7152    QualType Deduced;
7153    CanQualType DeducedCanon;
7154    VarDecl *DeducedDecl = 0;
7155    for (unsigned i = 0; i != NumDecls; ++i) {
7156      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7157        AutoType *AT = D->getType()->getContainedAutoType();
7158        // Don't reissue diagnostics when instantiating a template.
7159        if (AT && D->isInvalidDecl())
7160          break;
7161        if (AT && AT->isDeduced()) {
7162          QualType U = AT->getDeducedType();
7163          CanQualType UCanon = Context.getCanonicalType(U);
7164          if (Deduced.isNull()) {
7165            Deduced = U;
7166            DeducedCanon = UCanon;
7167            DeducedDecl = D;
7168          } else if (DeducedCanon != UCanon) {
7169            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7170                 diag::err_auto_different_deductions)
7171              << Deduced << DeducedDecl->getDeclName()
7172              << U << D->getDeclName()
7173              << DeducedDecl->getInit()->getSourceRange()
7174              << D->getInit()->getSourceRange();
7175            D->setInvalidDecl();
7176            break;
7177          }
7178        }
7179      }
7180    }
7181  }
7182
7183  ActOnDocumentableDecls(Group, NumDecls);
7184
7185  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7186}
7187
7188void Sema::ActOnDocumentableDecl(Decl *D) {
7189  ActOnDocumentableDecls(&D, 1);
7190}
7191
7192void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7193  // Don't parse the comment if Doxygen diagnostics are ignored.
7194  if (NumDecls == 0 || !Group[0])
7195   return;
7196
7197  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7198                               Group[0]->getLocation())
7199        == DiagnosticsEngine::Ignored)
7200    return;
7201
7202  if (NumDecls >= 2) {
7203    // This is a decl group.  Normally it will contain only declarations
7204    // procuded from declarator list.  But in case we have any definitions or
7205    // additional declaration references:
7206    //   'typedef struct S {} S;'
7207    //   'typedef struct S *S;'
7208    //   'struct S *pS;'
7209    // FinalizeDeclaratorGroup adds these as separate declarations.
7210    Decl *MaybeTagDecl = Group[0];
7211    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7212      Group++;
7213      NumDecls--;
7214    }
7215  }
7216
7217  // See if there are any new comments that are not attached to a decl.
7218  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7219  if (!Comments.empty() &&
7220      !Comments.back()->isAttached()) {
7221    // There is at least one comment that not attached to a decl.
7222    // Maybe it should be attached to one of these decls?
7223    //
7224    // Note that this way we pick up not only comments that precede the
7225    // declaration, but also comments that *follow* the declaration -- thanks to
7226    // the lookahead in the lexer: we've consumed the semicolon and looked
7227    // ahead through comments.
7228    for (unsigned i = 0; i != NumDecls; ++i)
7229      Context.getCommentForDecl(Group[i]);
7230  }
7231}
7232
7233/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7234/// to introduce parameters into function prototype scope.
7235Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7236  const DeclSpec &DS = D.getDeclSpec();
7237
7238  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7239  // C++03 [dcl.stc]p2 also permits 'auto'.
7240  VarDecl::StorageClass StorageClass = SC_None;
7241  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7242  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7243    StorageClass = SC_Register;
7244    StorageClassAsWritten = SC_Register;
7245  } else if (getLangOpts().CPlusPlus &&
7246             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7247    StorageClass = SC_Auto;
7248    StorageClassAsWritten = SC_Auto;
7249  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7250    Diag(DS.getStorageClassSpecLoc(),
7251         diag::err_invalid_storage_class_in_func_decl);
7252    D.getMutableDeclSpec().ClearStorageClassSpecs();
7253  }
7254
7255  if (D.getDeclSpec().isThreadSpecified())
7256    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7257  if (D.getDeclSpec().isConstexprSpecified())
7258    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7259      << 0;
7260
7261  DiagnoseFunctionSpecifiers(D);
7262
7263  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7264  QualType parmDeclType = TInfo->getType();
7265
7266  if (getLangOpts().CPlusPlus) {
7267    // Check that there are no default arguments inside the type of this
7268    // parameter.
7269    CheckExtraCXXDefaultArguments(D);
7270
7271    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7272    if (D.getCXXScopeSpec().isSet()) {
7273      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7274        << D.getCXXScopeSpec().getRange();
7275      D.getCXXScopeSpec().clear();
7276    }
7277  }
7278
7279  // Ensure we have a valid name
7280  IdentifierInfo *II = 0;
7281  if (D.hasName()) {
7282    II = D.getIdentifier();
7283    if (!II) {
7284      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7285        << GetNameForDeclarator(D).getName().getAsString();
7286      D.setInvalidType(true);
7287    }
7288  }
7289
7290  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7291  if (II) {
7292    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7293                   ForRedeclaration);
7294    LookupName(R, S);
7295    if (R.isSingleResult()) {
7296      NamedDecl *PrevDecl = R.getFoundDecl();
7297      if (PrevDecl->isTemplateParameter()) {
7298        // Maybe we will complain about the shadowed template parameter.
7299        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7300        // Just pretend that we didn't see the previous declaration.
7301        PrevDecl = 0;
7302      } else if (S->isDeclScope(PrevDecl)) {
7303        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7304        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7305
7306        // Recover by removing the name
7307        II = 0;
7308        D.SetIdentifier(0, D.getIdentifierLoc());
7309        D.setInvalidType(true);
7310      }
7311    }
7312  }
7313
7314  // Temporarily put parameter variables in the translation unit, not
7315  // the enclosing context.  This prevents them from accidentally
7316  // looking like class members in C++.
7317  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7318                                    D.getLocStart(),
7319                                    D.getIdentifierLoc(), II,
7320                                    parmDeclType, TInfo,
7321                                    StorageClass, StorageClassAsWritten);
7322
7323  if (D.isInvalidType())
7324    New->setInvalidDecl();
7325
7326  assert(S->isFunctionPrototypeScope());
7327  assert(S->getFunctionPrototypeDepth() >= 1);
7328  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7329                    S->getNextFunctionPrototypeIndex());
7330
7331  // Add the parameter declaration into this scope.
7332  S->AddDecl(New);
7333  if (II)
7334    IdResolver.AddDecl(New);
7335
7336  ProcessDeclAttributes(S, New, D);
7337
7338  if (D.getDeclSpec().isModulePrivateSpecified())
7339    Diag(New->getLocation(), diag::err_module_private_local)
7340      << 1 << New->getDeclName()
7341      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7342      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7343
7344  if (New->hasAttr<BlocksAttr>()) {
7345    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7346  }
7347  return New;
7348}
7349
7350/// \brief Synthesizes a variable for a parameter arising from a
7351/// typedef.
7352ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7353                                              SourceLocation Loc,
7354                                              QualType T) {
7355  /* FIXME: setting StartLoc == Loc.
7356     Would it be worth to modify callers so as to provide proper source
7357     location for the unnamed parameters, embedding the parameter's type? */
7358  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7359                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7360                                           SC_None, SC_None, 0);
7361  Param->setImplicit();
7362  return Param;
7363}
7364
7365void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7366                                    ParmVarDecl * const *ParamEnd) {
7367  // Don't diagnose unused-parameter errors in template instantiations; we
7368  // will already have done so in the template itself.
7369  if (!ActiveTemplateInstantiations.empty())
7370    return;
7371
7372  for (; Param != ParamEnd; ++Param) {
7373    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7374        !(*Param)->hasAttr<UnusedAttr>()) {
7375      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7376        << (*Param)->getDeclName();
7377    }
7378  }
7379}
7380
7381void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7382                                                  ParmVarDecl * const *ParamEnd,
7383                                                  QualType ReturnTy,
7384                                                  NamedDecl *D) {
7385  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7386    return;
7387
7388  // Warn if the return value is pass-by-value and larger than the specified
7389  // threshold.
7390  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7391    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7392    if (Size > LangOpts.NumLargeByValueCopy)
7393      Diag(D->getLocation(), diag::warn_return_value_size)
7394          << D->getDeclName() << Size;
7395  }
7396
7397  // Warn if any parameter is pass-by-value and larger than the specified
7398  // threshold.
7399  for (; Param != ParamEnd; ++Param) {
7400    QualType T = (*Param)->getType();
7401    if (T->isDependentType() || !T.isPODType(Context))
7402      continue;
7403    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7404    if (Size > LangOpts.NumLargeByValueCopy)
7405      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7406          << (*Param)->getDeclName() << Size;
7407  }
7408}
7409
7410ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7411                                  SourceLocation NameLoc, IdentifierInfo *Name,
7412                                  QualType T, TypeSourceInfo *TSInfo,
7413                                  VarDecl::StorageClass StorageClass,
7414                                  VarDecl::StorageClass StorageClassAsWritten) {
7415  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7416  if (getLangOpts().ObjCAutoRefCount &&
7417      T.getObjCLifetime() == Qualifiers::OCL_None &&
7418      T->isObjCLifetimeType()) {
7419
7420    Qualifiers::ObjCLifetime lifetime;
7421
7422    // Special cases for arrays:
7423    //   - if it's const, use __unsafe_unretained
7424    //   - otherwise, it's an error
7425    if (T->isArrayType()) {
7426      if (!T.isConstQualified()) {
7427        DelayedDiagnostics.add(
7428            sema::DelayedDiagnostic::makeForbiddenType(
7429            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7430      }
7431      lifetime = Qualifiers::OCL_ExplicitNone;
7432    } else {
7433      lifetime = T->getObjCARCImplicitLifetime();
7434    }
7435    T = Context.getLifetimeQualifiedType(T, lifetime);
7436  }
7437
7438  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7439                                         Context.getAdjustedParameterType(T),
7440                                         TSInfo,
7441                                         StorageClass, StorageClassAsWritten,
7442                                         0);
7443
7444  // Parameters can not be abstract class types.
7445  // For record types, this is done by the AbstractClassUsageDiagnoser once
7446  // the class has been completely parsed.
7447  if (!CurContext->isRecord() &&
7448      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7449                             AbstractParamType))
7450    New->setInvalidDecl();
7451
7452  // Parameter declarators cannot be interface types. All ObjC objects are
7453  // passed by reference.
7454  if (T->isObjCObjectType()) {
7455    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7456    Diag(NameLoc,
7457         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7458      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7459    T = Context.getObjCObjectPointerType(T);
7460    New->setType(T);
7461  }
7462
7463  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7464  // duration shall not be qualified by an address-space qualifier."
7465  // Since all parameters have automatic store duration, they can not have
7466  // an address space.
7467  if (T.getAddressSpace() != 0) {
7468    Diag(NameLoc, diag::err_arg_with_address_space);
7469    New->setInvalidDecl();
7470  }
7471
7472  return New;
7473}
7474
7475void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7476                                           SourceLocation LocAfterDecls) {
7477  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7478
7479  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7480  // for a K&R function.
7481  if (!FTI.hasPrototype) {
7482    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7483      --i;
7484      if (FTI.ArgInfo[i].Param == 0) {
7485        SmallString<256> Code;
7486        llvm::raw_svector_ostream(Code) << "  int "
7487                                        << FTI.ArgInfo[i].Ident->getName()
7488                                        << ";\n";
7489        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7490          << FTI.ArgInfo[i].Ident
7491          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7492
7493        // Implicitly declare the argument as type 'int' for lack of a better
7494        // type.
7495        AttributeFactory attrs;
7496        DeclSpec DS(attrs);
7497        const char* PrevSpec; // unused
7498        unsigned DiagID; // unused
7499        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7500                           PrevSpec, DiagID);
7501        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7502        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7503        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7504      }
7505    }
7506  }
7507}
7508
7509Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7510  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7511  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7512  Scope *ParentScope = FnBodyScope->getParent();
7513
7514  D.setFunctionDefinitionKind(FDK_Definition);
7515  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7516  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7517}
7518
7519static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7520  // Don't warn about invalid declarations.
7521  if (FD->isInvalidDecl())
7522    return false;
7523
7524  // Or declarations that aren't global.
7525  if (!FD->isGlobal())
7526    return false;
7527
7528  // Don't warn about C++ member functions.
7529  if (isa<CXXMethodDecl>(FD))
7530    return false;
7531
7532  // Don't warn about 'main'.
7533  if (FD->isMain())
7534    return false;
7535
7536  // Don't warn about inline functions.
7537  if (FD->isInlined())
7538    return false;
7539
7540  // Don't warn about function templates.
7541  if (FD->getDescribedFunctionTemplate())
7542    return false;
7543
7544  // Don't warn about function template specializations.
7545  if (FD->isFunctionTemplateSpecialization())
7546    return false;
7547
7548  // Don't warn for OpenCL kernels.
7549  if (FD->hasAttr<OpenCLKernelAttr>())
7550    return false;
7551
7552  bool MissingPrototype = true;
7553  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7554       Prev; Prev = Prev->getPreviousDecl()) {
7555    // Ignore any declarations that occur in function or method
7556    // scope, because they aren't visible from the header.
7557    if (Prev->getDeclContext()->isFunctionOrMethod())
7558      continue;
7559
7560    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7561    break;
7562  }
7563
7564  return MissingPrototype;
7565}
7566
7567void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7568  // Don't complain if we're in GNU89 mode and the previous definition
7569  // was an extern inline function.
7570  const FunctionDecl *Definition;
7571  if (FD->isDefined(Definition) &&
7572      !canRedefineFunction(Definition, getLangOpts())) {
7573    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7574        Definition->getStorageClass() == SC_Extern)
7575      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7576        << FD->getDeclName() << getLangOpts().CPlusPlus;
7577    else
7578      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7579    Diag(Definition->getLocation(), diag::note_previous_definition);
7580    FD->setInvalidDecl();
7581  }
7582}
7583
7584Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7585  // Clear the last template instantiation error context.
7586  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7587
7588  if (!D)
7589    return D;
7590  FunctionDecl *FD = 0;
7591
7592  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7593    FD = FunTmpl->getTemplatedDecl();
7594  else
7595    FD = cast<FunctionDecl>(D);
7596
7597  // Enter a new function scope
7598  PushFunctionScope();
7599
7600  // See if this is a redefinition.
7601  if (!FD->isLateTemplateParsed())
7602    CheckForFunctionRedefinition(FD);
7603
7604  // Builtin functions cannot be defined.
7605  if (unsigned BuiltinID = FD->getBuiltinID()) {
7606    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7607      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7608      FD->setInvalidDecl();
7609    }
7610  }
7611
7612  // The return type of a function definition must be complete
7613  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7614  QualType ResultType = FD->getResultType();
7615  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7616      !FD->isInvalidDecl() &&
7617      RequireCompleteType(FD->getLocation(), ResultType,
7618                          diag::err_func_def_incomplete_result))
7619    FD->setInvalidDecl();
7620
7621  // GNU warning -Wmissing-prototypes:
7622  //   Warn if a global function is defined without a previous
7623  //   prototype declaration. This warning is issued even if the
7624  //   definition itself provides a prototype. The aim is to detect
7625  //   global functions that fail to be declared in header files.
7626  if (ShouldWarnAboutMissingPrototype(FD))
7627    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7628
7629  if (FnBodyScope)
7630    PushDeclContext(FnBodyScope, FD);
7631
7632  // Check the validity of our function parameters
7633  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7634                           /*CheckParameterNames=*/true);
7635
7636  // Introduce our parameters into the function scope
7637  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7638    ParmVarDecl *Param = FD->getParamDecl(p);
7639    Param->setOwningFunction(FD);
7640
7641    // If this has an identifier, add it to the scope stack.
7642    if (Param->getIdentifier() && FnBodyScope) {
7643      CheckShadow(FnBodyScope, Param);
7644
7645      PushOnScopeChains(Param, FnBodyScope);
7646    }
7647  }
7648
7649  // If we had any tags defined in the function prototype,
7650  // introduce them into the function scope.
7651  if (FnBodyScope) {
7652    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7653           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7654      NamedDecl *D = *I;
7655
7656      // Some of these decls (like enums) may have been pinned to the translation unit
7657      // for lack of a real context earlier. If so, remove from the translation unit
7658      // and reattach to the current context.
7659      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7660        // Is the decl actually in the context?
7661        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7662               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7663          if (*DI == D) {
7664            Context.getTranslationUnitDecl()->removeDecl(D);
7665            break;
7666          }
7667        }
7668        // Either way, reassign the lexical decl context to our FunctionDecl.
7669        D->setLexicalDeclContext(CurContext);
7670      }
7671
7672      // If the decl has a non-null name, make accessible in the current scope.
7673      if (!D->getName().empty())
7674        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7675
7676      // Similarly, dive into enums and fish their constants out, making them
7677      // accessible in this scope.
7678      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7679        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7680               EE = ED->enumerator_end(); EI != EE; ++EI)
7681          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7682      }
7683    }
7684  }
7685
7686  // Ensure that the function's exception specification is instantiated.
7687  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7688    ResolveExceptionSpec(D->getLocation(), FPT);
7689
7690  // Checking attributes of current function definition
7691  // dllimport attribute.
7692  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7693  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7694    // dllimport attribute cannot be directly applied to definition.
7695    // Microsoft accepts dllimport for functions defined within class scope.
7696    if (!DA->isInherited() &&
7697        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7698      Diag(FD->getLocation(),
7699           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7700        << "dllimport";
7701      FD->setInvalidDecl();
7702      return FD;
7703    }
7704
7705    // Visual C++ appears to not think this is an issue, so only issue
7706    // a warning when Microsoft extensions are disabled.
7707    if (!LangOpts.MicrosoftExt) {
7708      // If a symbol previously declared dllimport is later defined, the
7709      // attribute is ignored in subsequent references, and a warning is
7710      // emitted.
7711      Diag(FD->getLocation(),
7712           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7713        << FD->getName() << "dllimport";
7714    }
7715  }
7716  // We want to attach documentation to original Decl (which might be
7717  // a function template).
7718  ActOnDocumentableDecl(D);
7719  return FD;
7720}
7721
7722/// \brief Given the set of return statements within a function body,
7723/// compute the variables that are subject to the named return value
7724/// optimization.
7725///
7726/// Each of the variables that is subject to the named return value
7727/// optimization will be marked as NRVO variables in the AST, and any
7728/// return statement that has a marked NRVO variable as its NRVO candidate can
7729/// use the named return value optimization.
7730///
7731/// This function applies a very simplistic algorithm for NRVO: if every return
7732/// statement in the function has the same NRVO candidate, that candidate is
7733/// the NRVO variable.
7734///
7735/// FIXME: Employ a smarter algorithm that accounts for multiple return
7736/// statements and the lifetimes of the NRVO candidates. We should be able to
7737/// find a maximal set of NRVO variables.
7738void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7739  ReturnStmt **Returns = Scope->Returns.data();
7740
7741  const VarDecl *NRVOCandidate = 0;
7742  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7743    if (!Returns[I]->getNRVOCandidate())
7744      return;
7745
7746    if (!NRVOCandidate)
7747      NRVOCandidate = Returns[I]->getNRVOCandidate();
7748    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7749      return;
7750  }
7751
7752  if (NRVOCandidate)
7753    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7754}
7755
7756Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7757  return ActOnFinishFunctionBody(D, BodyArg, false);
7758}
7759
7760Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7761                                    bool IsInstantiation) {
7762  FunctionDecl *FD = 0;
7763  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7764  if (FunTmpl)
7765    FD = FunTmpl->getTemplatedDecl();
7766  else
7767    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7768
7769  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7770  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7771
7772  if (FD) {
7773    FD->setBody(Body);
7774
7775    // If the function implicitly returns zero (like 'main') or is naked,
7776    // don't complain about missing return statements.
7777    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7778      WP.disableCheckFallThrough();
7779
7780    // MSVC permits the use of pure specifier (=0) on function definition,
7781    // defined at class scope, warn about this non standard construct.
7782    if (getLangOpts().MicrosoftExt && FD->isPure())
7783      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7784
7785    if (!FD->isInvalidDecl()) {
7786      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7787      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7788                                             FD->getResultType(), FD);
7789
7790      // If this is a constructor, we need a vtable.
7791      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7792        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7793
7794      // Try to apply the named return value optimization. We have to check
7795      // if we can do this here because lambdas keep return statements around
7796      // to deduce an implicit return type.
7797      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7798          !FD->isDependentContext())
7799        computeNRVO(Body, getCurFunction());
7800    }
7801
7802    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7803           "Function parsing confused");
7804  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7805    assert(MD == getCurMethodDecl() && "Method parsing confused");
7806    MD->setBody(Body);
7807    if (!MD->isInvalidDecl()) {
7808      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7809      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7810                                             MD->getResultType(), MD);
7811
7812      if (Body)
7813        computeNRVO(Body, getCurFunction());
7814    }
7815    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7816      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7817      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7818    }
7819    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7820      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7821      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7822    }
7823  } else {
7824    return 0;
7825  }
7826
7827  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7828         "This should only be set for ObjC methods, which should have been "
7829         "handled in the block above.");
7830  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7831         "This should only be set for ObjC methods, which should have been "
7832         "handled in the block above.");
7833
7834  // Verify and clean out per-function state.
7835  if (Body) {
7836    // C++ constructors that have function-try-blocks can't have return
7837    // statements in the handlers of that block. (C++ [except.handle]p14)
7838    // Verify this.
7839    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7840      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7841
7842    // Verify that gotos and switch cases don't jump into scopes illegally.
7843    if (getCurFunction()->NeedsScopeChecking() &&
7844        !dcl->isInvalidDecl() &&
7845        !hasAnyUnrecoverableErrorsInThisFunction() &&
7846        !PP.isCodeCompletionEnabled())
7847      DiagnoseInvalidJumps(Body);
7848
7849    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7850      if (!Destructor->getParent()->isDependentType())
7851        CheckDestructor(Destructor);
7852
7853      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7854                                             Destructor->getParent());
7855    }
7856
7857    // If any errors have occurred, clear out any temporaries that may have
7858    // been leftover. This ensures that these temporaries won't be picked up for
7859    // deletion in some later function.
7860    if (PP.getDiagnostics().hasErrorOccurred() ||
7861        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7862      DiscardCleanupsInEvaluationContext();
7863    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7864      // Since the body is valid, issue any analysis-based warnings that are
7865      // enabled.
7866      ActivePolicy = &WP;
7867    }
7868
7869    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7870        (!CheckConstexprFunctionDecl(FD) ||
7871         !CheckConstexprFunctionBody(FD, Body)))
7872      FD->setInvalidDecl();
7873
7874    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7875    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7876    assert(MaybeODRUseExprs.empty() &&
7877           "Leftover expressions for odr-use checking");
7878  }
7879
7880  if (!IsInstantiation)
7881    PopDeclContext();
7882
7883  PopFunctionScopeInfo(ActivePolicy, dcl);
7884
7885  // If any errors have occurred, clear out any temporaries that may have
7886  // been leftover. This ensures that these temporaries won't be picked up for
7887  // deletion in some later function.
7888  if (getDiagnostics().hasErrorOccurred()) {
7889    DiscardCleanupsInEvaluationContext();
7890  }
7891
7892  return dcl;
7893}
7894
7895
7896/// When we finish delayed parsing of an attribute, we must attach it to the
7897/// relevant Decl.
7898void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7899                                       ParsedAttributes &Attrs) {
7900  // Always attach attributes to the underlying decl.
7901  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7902    D = TD->getTemplatedDecl();
7903  ProcessDeclAttributeList(S, D, Attrs.getList());
7904
7905  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7906    if (Method->isStatic())
7907      checkThisInStaticMemberFunctionAttributes(Method);
7908}
7909
7910
7911/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7912/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7913NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7914                                          IdentifierInfo &II, Scope *S) {
7915  // Before we produce a declaration for an implicitly defined
7916  // function, see whether there was a locally-scoped declaration of
7917  // this name as a function or variable. If so, use that
7918  // (non-visible) declaration, and complain about it.
7919  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7920    = findLocallyScopedExternalDecl(&II);
7921  if (Pos != LocallyScopedExternalDecls.end()) {
7922    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7923    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7924    return Pos->second;
7925  }
7926
7927  // Extension in C99.  Legal in C90, but warn about it.
7928  unsigned diag_id;
7929  if (II.getName().startswith("__builtin_"))
7930    diag_id = diag::warn_builtin_unknown;
7931  else if (getLangOpts().C99)
7932    diag_id = diag::ext_implicit_function_decl;
7933  else
7934    diag_id = diag::warn_implicit_function_decl;
7935  Diag(Loc, diag_id) << &II;
7936
7937  // Because typo correction is expensive, only do it if the implicit
7938  // function declaration is going to be treated as an error.
7939  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7940    TypoCorrection Corrected;
7941    DeclFilterCCC<FunctionDecl> Validator;
7942    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7943                                      LookupOrdinaryName, S, 0, Validator))) {
7944      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7945      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7946      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7947
7948      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7949          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7950
7951      if (Func->getLocation().isValid()
7952          && !II.getName().startswith("__builtin_"))
7953        Diag(Func->getLocation(), diag::note_previous_decl)
7954            << CorrectedQuotedStr;
7955    }
7956  }
7957
7958  // Set a Declarator for the implicit definition: int foo();
7959  const char *Dummy;
7960  AttributeFactory attrFactory;
7961  DeclSpec DS(attrFactory);
7962  unsigned DiagID;
7963  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7964  (void)Error; // Silence warning.
7965  assert(!Error && "Error setting up implicit decl!");
7966  Declarator D(DS, Declarator::BlockContext);
7967  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7968                                             SourceLocation(), 0, 0, 0, true,
7969                                             SourceLocation(), SourceLocation(),
7970                                             SourceLocation(), SourceLocation(),
7971                                             EST_None, SourceLocation(),
7972                                             0, 0, 0, 0, Loc, Loc, D),
7973                DS.getAttributes(),
7974                SourceLocation());
7975  D.SetIdentifier(&II, Loc);
7976
7977  // Insert this function into translation-unit scope.
7978
7979  DeclContext *PrevDC = CurContext;
7980  CurContext = Context.getTranslationUnitDecl();
7981
7982  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7983  FD->setImplicit();
7984
7985  CurContext = PrevDC;
7986
7987  AddKnownFunctionAttributes(FD);
7988
7989  return FD;
7990}
7991
7992/// \brief Adds any function attributes that we know a priori based on
7993/// the declaration of this function.
7994///
7995/// These attributes can apply both to implicitly-declared builtins
7996/// (like __builtin___printf_chk) or to library-declared functions
7997/// like NSLog or printf.
7998///
7999/// We need to check for duplicate attributes both here and where user-written
8000/// attributes are applied to declarations.
8001void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8002  if (FD->isInvalidDecl())
8003    return;
8004
8005  // If this is a built-in function, map its builtin attributes to
8006  // actual attributes.
8007  if (unsigned BuiltinID = FD->getBuiltinID()) {
8008    // Handle printf-formatting attributes.
8009    unsigned FormatIdx;
8010    bool HasVAListArg;
8011    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8012      if (!FD->getAttr<FormatAttr>()) {
8013        const char *fmt = "printf";
8014        unsigned int NumParams = FD->getNumParams();
8015        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8016            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8017          fmt = "NSString";
8018        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8019                                               fmt, FormatIdx+1,
8020                                               HasVAListArg ? 0 : FormatIdx+2));
8021      }
8022    }
8023    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8024                                             HasVAListArg)) {
8025     if (!FD->getAttr<FormatAttr>())
8026       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8027                                              "scanf", FormatIdx+1,
8028                                              HasVAListArg ? 0 : FormatIdx+2));
8029    }
8030
8031    // Mark const if we don't care about errno and that is the only
8032    // thing preventing the function from being const. This allows
8033    // IRgen to use LLVM intrinsics for such functions.
8034    if (!getLangOpts().MathErrno &&
8035        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8036      if (!FD->getAttr<ConstAttr>())
8037        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8038    }
8039
8040    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8041        !FD->getAttr<ReturnsTwiceAttr>())
8042      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8043    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8044      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8045    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8046      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8047  }
8048
8049  IdentifierInfo *Name = FD->getIdentifier();
8050  if (!Name)
8051    return;
8052  if ((!getLangOpts().CPlusPlus &&
8053       FD->getDeclContext()->isTranslationUnit()) ||
8054      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8055       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8056       LinkageSpecDecl::lang_c)) {
8057    // Okay: this could be a libc/libm/Objective-C function we know
8058    // about.
8059  } else
8060    return;
8061
8062  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8063    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8064    // target-specific builtins, perhaps?
8065    if (!FD->getAttr<FormatAttr>())
8066      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8067                                             "printf", 2,
8068                                             Name->isStr("vasprintf") ? 0 : 3));
8069  }
8070
8071  if (Name->isStr("__CFStringMakeConstantString")) {
8072    // We already have a __builtin___CFStringMakeConstantString,
8073    // but builds that use -fno-constant-cfstrings don't go through that.
8074    if (!FD->getAttr<FormatArgAttr>())
8075      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8076  }
8077}
8078
8079TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8080                                    TypeSourceInfo *TInfo) {
8081  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8082  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8083
8084  if (!TInfo) {
8085    assert(D.isInvalidType() && "no declarator info for valid type");
8086    TInfo = Context.getTrivialTypeSourceInfo(T);
8087  }
8088
8089  // Scope manipulation handled by caller.
8090  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8091                                           D.getLocStart(),
8092                                           D.getIdentifierLoc(),
8093                                           D.getIdentifier(),
8094                                           TInfo);
8095
8096  // Bail out immediately if we have an invalid declaration.
8097  if (D.isInvalidType()) {
8098    NewTD->setInvalidDecl();
8099    return NewTD;
8100  }
8101
8102  if (D.getDeclSpec().isModulePrivateSpecified()) {
8103    if (CurContext->isFunctionOrMethod())
8104      Diag(NewTD->getLocation(), diag::err_module_private_local)
8105        << 2 << NewTD->getDeclName()
8106        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8107        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8108    else
8109      NewTD->setModulePrivate();
8110  }
8111
8112  // C++ [dcl.typedef]p8:
8113  //   If the typedef declaration defines an unnamed class (or
8114  //   enum), the first typedef-name declared by the declaration
8115  //   to be that class type (or enum type) is used to denote the
8116  //   class type (or enum type) for linkage purposes only.
8117  // We need to check whether the type was declared in the declaration.
8118  switch (D.getDeclSpec().getTypeSpecType()) {
8119  case TST_enum:
8120  case TST_struct:
8121  case TST_union:
8122  case TST_class: {
8123    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8124
8125    // Do nothing if the tag is not anonymous or already has an
8126    // associated typedef (from an earlier typedef in this decl group).
8127    if (tagFromDeclSpec->getIdentifier()) break;
8128    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8129
8130    // A well-formed anonymous tag must always be a TUK_Definition.
8131    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8132
8133    // The type must match the tag exactly;  no qualifiers allowed.
8134    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8135      break;
8136
8137    // Otherwise, set this is the anon-decl typedef for the tag.
8138    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8139    break;
8140  }
8141
8142  default:
8143    break;
8144  }
8145
8146  return NewTD;
8147}
8148
8149
8150/// \brief Check that this is a valid underlying type for an enum declaration.
8151bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8152  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8153  QualType T = TI->getType();
8154
8155  if (T->isDependentType() || T->isIntegralType(Context))
8156    return false;
8157
8158  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8159  return true;
8160}
8161
8162/// Check whether this is a valid redeclaration of a previous enumeration.
8163/// \return true if the redeclaration was invalid.
8164bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8165                                  QualType EnumUnderlyingTy,
8166                                  const EnumDecl *Prev) {
8167  bool IsFixed = !EnumUnderlyingTy.isNull();
8168
8169  if (IsScoped != Prev->isScoped()) {
8170    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8171      << Prev->isScoped();
8172    Diag(Prev->getLocation(), diag::note_previous_use);
8173    return true;
8174  }
8175
8176  if (IsFixed && Prev->isFixed()) {
8177    if (!EnumUnderlyingTy->isDependentType() &&
8178        !Prev->getIntegerType()->isDependentType() &&
8179        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8180                                        Prev->getIntegerType())) {
8181      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8182        << EnumUnderlyingTy << Prev->getIntegerType();
8183      Diag(Prev->getLocation(), diag::note_previous_use);
8184      return true;
8185    }
8186  } else if (IsFixed != Prev->isFixed()) {
8187    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8188      << Prev->isFixed();
8189    Diag(Prev->getLocation(), diag::note_previous_use);
8190    return true;
8191  }
8192
8193  return false;
8194}
8195
8196/// \brief Determine whether a tag with a given kind is acceptable
8197/// as a redeclaration of the given tag declaration.
8198///
8199/// \returns true if the new tag kind is acceptable, false otherwise.
8200bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8201                                        TagTypeKind NewTag, bool isDefinition,
8202                                        SourceLocation NewTagLoc,
8203                                        const IdentifierInfo &Name) {
8204  // C++ [dcl.type.elab]p3:
8205  //   The class-key or enum keyword present in the
8206  //   elaborated-type-specifier shall agree in kind with the
8207  //   declaration to which the name in the elaborated-type-specifier
8208  //   refers. This rule also applies to the form of
8209  //   elaborated-type-specifier that declares a class-name or
8210  //   friend class since it can be construed as referring to the
8211  //   definition of the class. Thus, in any
8212  //   elaborated-type-specifier, the enum keyword shall be used to
8213  //   refer to an enumeration (7.2), the union class-key shall be
8214  //   used to refer to a union (clause 9), and either the class or
8215  //   struct class-key shall be used to refer to a class (clause 9)
8216  //   declared using the class or struct class-key.
8217  TagTypeKind OldTag = Previous->getTagKind();
8218  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8219    if (OldTag == NewTag)
8220      return true;
8221
8222  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8223      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8224    // Warn about the struct/class tag mismatch.
8225    bool isTemplate = false;
8226    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8227      isTemplate = Record->getDescribedClassTemplate();
8228
8229    if (!ActiveTemplateInstantiations.empty()) {
8230      // In a template instantiation, do not offer fix-its for tag mismatches
8231      // since they usually mess up the template instead of fixing the problem.
8232      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8233        << (NewTag == TTK_Class) << isTemplate << &Name;
8234      return true;
8235    }
8236
8237    if (isDefinition) {
8238      // On definitions, check previous tags and issue a fix-it for each
8239      // one that doesn't match the current tag.
8240      if (Previous->getDefinition()) {
8241        // Don't suggest fix-its for redefinitions.
8242        return true;
8243      }
8244
8245      bool previousMismatch = false;
8246      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8247           E(Previous->redecls_end()); I != E; ++I) {
8248        if (I->getTagKind() != NewTag) {
8249          if (!previousMismatch) {
8250            previousMismatch = true;
8251            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8252              << (NewTag == TTK_Class) << isTemplate << &Name;
8253          }
8254          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8255            << (NewTag == TTK_Class)
8256            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8257                                            NewTag == TTK_Class?
8258                                            "class" : "struct");
8259        }
8260      }
8261      return true;
8262    }
8263
8264    // Check for a previous definition.  If current tag and definition
8265    // are same type, do nothing.  If no definition, but disagree with
8266    // with previous tag type, give a warning, but no fix-it.
8267    const TagDecl *Redecl = Previous->getDefinition() ?
8268                            Previous->getDefinition() : Previous;
8269    if (Redecl->getTagKind() == NewTag) {
8270      return true;
8271    }
8272
8273    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8274      << (NewTag == TTK_Class)
8275      << isTemplate << &Name;
8276    Diag(Redecl->getLocation(), diag::note_previous_use);
8277
8278    // If there is a previous defintion, suggest a fix-it.
8279    if (Previous->getDefinition()) {
8280        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8281          << (Redecl->getTagKind() == TTK_Class)
8282          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8283                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8284    }
8285
8286    return true;
8287  }
8288  return false;
8289}
8290
8291/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8292/// former case, Name will be non-null.  In the later case, Name will be null.
8293/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8294/// reference/declaration/definition of a tag.
8295Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8296                     SourceLocation KWLoc, CXXScopeSpec &SS,
8297                     IdentifierInfo *Name, SourceLocation NameLoc,
8298                     AttributeList *Attr, AccessSpecifier AS,
8299                     SourceLocation ModulePrivateLoc,
8300                     MultiTemplateParamsArg TemplateParameterLists,
8301                     bool &OwnedDecl, bool &IsDependent,
8302                     SourceLocation ScopedEnumKWLoc,
8303                     bool ScopedEnumUsesClassTag,
8304                     TypeResult UnderlyingType) {
8305  // If this is not a definition, it must have a name.
8306  IdentifierInfo *OrigName = Name;
8307  assert((Name != 0 || TUK == TUK_Definition) &&
8308         "Nameless record must be a definition!");
8309  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8310
8311  OwnedDecl = false;
8312  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8313  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8314
8315  // FIXME: Check explicit specializations more carefully.
8316  bool isExplicitSpecialization = false;
8317  bool Invalid = false;
8318
8319  // We only need to do this matching if we have template parameters
8320  // or a scope specifier, which also conveniently avoids this work
8321  // for non-C++ cases.
8322  if (TemplateParameterLists.size() > 0 ||
8323      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8324    if (TemplateParameterList *TemplateParams
8325          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8326                                                TemplateParameterLists.data(),
8327                                                TemplateParameterLists.size(),
8328                                                    TUK == TUK_Friend,
8329                                                    isExplicitSpecialization,
8330                                                    Invalid)) {
8331      if (TemplateParams->size() > 0) {
8332        // This is a declaration or definition of a class template (which may
8333        // be a member of another template).
8334
8335        if (Invalid)
8336          return 0;
8337
8338        OwnedDecl = false;
8339        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8340                                               SS, Name, NameLoc, Attr,
8341                                               TemplateParams, AS,
8342                                               ModulePrivateLoc,
8343                                               TemplateParameterLists.size()-1,
8344                                               TemplateParameterLists.data());
8345        return Result.get();
8346      } else {
8347        // The "template<>" header is extraneous.
8348        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8349          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8350        isExplicitSpecialization = true;
8351      }
8352    }
8353  }
8354
8355  // Figure out the underlying type if this a enum declaration. We need to do
8356  // this early, because it's needed to detect if this is an incompatible
8357  // redeclaration.
8358  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8359
8360  if (Kind == TTK_Enum) {
8361    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8362      // No underlying type explicitly specified, or we failed to parse the
8363      // type, default to int.
8364      EnumUnderlying = Context.IntTy.getTypePtr();
8365    else if (UnderlyingType.get()) {
8366      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8367      // integral type; any cv-qualification is ignored.
8368      TypeSourceInfo *TI = 0;
8369      GetTypeFromParser(UnderlyingType.get(), &TI);
8370      EnumUnderlying = TI;
8371
8372      if (CheckEnumUnderlyingType(TI))
8373        // Recover by falling back to int.
8374        EnumUnderlying = Context.IntTy.getTypePtr();
8375
8376      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8377                                          UPPC_FixedUnderlyingType))
8378        EnumUnderlying = Context.IntTy.getTypePtr();
8379
8380    } else if (getLangOpts().MicrosoftMode)
8381      // Microsoft enums are always of int type.
8382      EnumUnderlying = Context.IntTy.getTypePtr();
8383  }
8384
8385  DeclContext *SearchDC = CurContext;
8386  DeclContext *DC = CurContext;
8387  bool isStdBadAlloc = false;
8388
8389  RedeclarationKind Redecl = ForRedeclaration;
8390  if (TUK == TUK_Friend || TUK == TUK_Reference)
8391    Redecl = NotForRedeclaration;
8392
8393  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8394
8395  if (Name && SS.isNotEmpty()) {
8396    // We have a nested-name tag ('struct foo::bar').
8397
8398    // Check for invalid 'foo::'.
8399    if (SS.isInvalid()) {
8400      Name = 0;
8401      goto CreateNewDecl;
8402    }
8403
8404    // If this is a friend or a reference to a class in a dependent
8405    // context, don't try to make a decl for it.
8406    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8407      DC = computeDeclContext(SS, false);
8408      if (!DC) {
8409        IsDependent = true;
8410        return 0;
8411      }
8412    } else {
8413      DC = computeDeclContext(SS, true);
8414      if (!DC) {
8415        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8416          << SS.getRange();
8417        return 0;
8418      }
8419    }
8420
8421    if (RequireCompleteDeclContext(SS, DC))
8422      return 0;
8423
8424    SearchDC = DC;
8425    // Look-up name inside 'foo::'.
8426    LookupQualifiedName(Previous, DC);
8427
8428    if (Previous.isAmbiguous())
8429      return 0;
8430
8431    if (Previous.empty()) {
8432      // Name lookup did not find anything. However, if the
8433      // nested-name-specifier refers to the current instantiation,
8434      // and that current instantiation has any dependent base
8435      // classes, we might find something at instantiation time: treat
8436      // this as a dependent elaborated-type-specifier.
8437      // But this only makes any sense for reference-like lookups.
8438      if (Previous.wasNotFoundInCurrentInstantiation() &&
8439          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8440        IsDependent = true;
8441        return 0;
8442      }
8443
8444      // A tag 'foo::bar' must already exist.
8445      Diag(NameLoc, diag::err_not_tag_in_scope)
8446        << Kind << Name << DC << SS.getRange();
8447      Name = 0;
8448      Invalid = true;
8449      goto CreateNewDecl;
8450    }
8451  } else if (Name) {
8452    // If this is a named struct, check to see if there was a previous forward
8453    // declaration or definition.
8454    // FIXME: We're looking into outer scopes here, even when we
8455    // shouldn't be. Doing so can result in ambiguities that we
8456    // shouldn't be diagnosing.
8457    LookupName(Previous, S);
8458
8459    if (Previous.isAmbiguous() &&
8460        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8461      LookupResult::Filter F = Previous.makeFilter();
8462      while (F.hasNext()) {
8463        NamedDecl *ND = F.next();
8464        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8465          F.erase();
8466      }
8467      F.done();
8468    }
8469
8470    // Note:  there used to be some attempt at recovery here.
8471    if (Previous.isAmbiguous())
8472      return 0;
8473
8474    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8475      // FIXME: This makes sure that we ignore the contexts associated
8476      // with C structs, unions, and enums when looking for a matching
8477      // tag declaration or definition. See the similar lookup tweak
8478      // in Sema::LookupName; is there a better way to deal with this?
8479      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8480        SearchDC = SearchDC->getParent();
8481    }
8482  } else if (S->isFunctionPrototypeScope()) {
8483    // If this is an enum declaration in function prototype scope, set its
8484    // initial context to the translation unit.
8485    // FIXME: [citation needed]
8486    SearchDC = Context.getTranslationUnitDecl();
8487  }
8488
8489  if (Previous.isSingleResult() &&
8490      Previous.getFoundDecl()->isTemplateParameter()) {
8491    // Maybe we will complain about the shadowed template parameter.
8492    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8493    // Just pretend that we didn't see the previous declaration.
8494    Previous.clear();
8495  }
8496
8497  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8498      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8499    // This is a declaration of or a reference to "std::bad_alloc".
8500    isStdBadAlloc = true;
8501
8502    if (Previous.empty() && StdBadAlloc) {
8503      // std::bad_alloc has been implicitly declared (but made invisible to
8504      // name lookup). Fill in this implicit declaration as the previous
8505      // declaration, so that the declarations get chained appropriately.
8506      Previous.addDecl(getStdBadAlloc());
8507    }
8508  }
8509
8510  // If we didn't find a previous declaration, and this is a reference
8511  // (or friend reference), move to the correct scope.  In C++, we
8512  // also need to do a redeclaration lookup there, just in case
8513  // there's a shadow friend decl.
8514  if (Name && Previous.empty() &&
8515      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8516    if (Invalid) goto CreateNewDecl;
8517    assert(SS.isEmpty());
8518
8519    if (TUK == TUK_Reference) {
8520      // C++ [basic.scope.pdecl]p5:
8521      //   -- for an elaborated-type-specifier of the form
8522      //
8523      //          class-key identifier
8524      //
8525      //      if the elaborated-type-specifier is used in the
8526      //      decl-specifier-seq or parameter-declaration-clause of a
8527      //      function defined in namespace scope, the identifier is
8528      //      declared as a class-name in the namespace that contains
8529      //      the declaration; otherwise, except as a friend
8530      //      declaration, the identifier is declared in the smallest
8531      //      non-class, non-function-prototype scope that contains the
8532      //      declaration.
8533      //
8534      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8535      // C structs and unions.
8536      //
8537      // It is an error in C++ to declare (rather than define) an enum
8538      // type, including via an elaborated type specifier.  We'll
8539      // diagnose that later; for now, declare the enum in the same
8540      // scope as we would have picked for any other tag type.
8541      //
8542      // GNU C also supports this behavior as part of its incomplete
8543      // enum types extension, while GNU C++ does not.
8544      //
8545      // Find the context where we'll be declaring the tag.
8546      // FIXME: We would like to maintain the current DeclContext as the
8547      // lexical context,
8548      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8549        SearchDC = SearchDC->getParent();
8550
8551      // Find the scope where we'll be declaring the tag.
8552      while (S->isClassScope() ||
8553             (getLangOpts().CPlusPlus &&
8554              S->isFunctionPrototypeScope()) ||
8555             ((S->getFlags() & Scope::DeclScope) == 0) ||
8556             (S->getEntity() &&
8557              ((DeclContext *)S->getEntity())->isTransparentContext()))
8558        S = S->getParent();
8559    } else {
8560      assert(TUK == TUK_Friend);
8561      // C++ [namespace.memdef]p3:
8562      //   If a friend declaration in a non-local class first declares a
8563      //   class or function, the friend class or function is a member of
8564      //   the innermost enclosing namespace.
8565      SearchDC = SearchDC->getEnclosingNamespaceContext();
8566    }
8567
8568    // In C++, we need to do a redeclaration lookup to properly
8569    // diagnose some problems.
8570    if (getLangOpts().CPlusPlus) {
8571      Previous.setRedeclarationKind(ForRedeclaration);
8572      LookupQualifiedName(Previous, SearchDC);
8573    }
8574  }
8575
8576  if (!Previous.empty()) {
8577    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8578
8579    // It's okay to have a tag decl in the same scope as a typedef
8580    // which hides a tag decl in the same scope.  Finding this
8581    // insanity with a redeclaration lookup can only actually happen
8582    // in C++.
8583    //
8584    // This is also okay for elaborated-type-specifiers, which is
8585    // technically forbidden by the current standard but which is
8586    // okay according to the likely resolution of an open issue;
8587    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8588    if (getLangOpts().CPlusPlus) {
8589      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8590        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8591          TagDecl *Tag = TT->getDecl();
8592          if (Tag->getDeclName() == Name &&
8593              Tag->getDeclContext()->getRedeclContext()
8594                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8595            PrevDecl = Tag;
8596            Previous.clear();
8597            Previous.addDecl(Tag);
8598            Previous.resolveKind();
8599          }
8600        }
8601      }
8602    }
8603
8604    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8605      // If this is a use of a previous tag, or if the tag is already declared
8606      // in the same scope (so that the definition/declaration completes or
8607      // rementions the tag), reuse the decl.
8608      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8609          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8610        // Make sure that this wasn't declared as an enum and now used as a
8611        // struct or something similar.
8612        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8613                                          TUK == TUK_Definition, KWLoc,
8614                                          *Name)) {
8615          bool SafeToContinue
8616            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8617               Kind != TTK_Enum);
8618          if (SafeToContinue)
8619            Diag(KWLoc, diag::err_use_with_wrong_tag)
8620              << Name
8621              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8622                                              PrevTagDecl->getKindName());
8623          else
8624            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8625          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8626
8627          if (SafeToContinue)
8628            Kind = PrevTagDecl->getTagKind();
8629          else {
8630            // Recover by making this an anonymous redefinition.
8631            Name = 0;
8632            Previous.clear();
8633            Invalid = true;
8634          }
8635        }
8636
8637        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8638          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8639
8640          // If this is an elaborated-type-specifier for a scoped enumeration,
8641          // the 'class' keyword is not necessary and not permitted.
8642          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8643            if (ScopedEnum)
8644              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8645                << PrevEnum->isScoped()
8646                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8647            return PrevTagDecl;
8648          }
8649
8650          QualType EnumUnderlyingTy;
8651          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8652            EnumUnderlyingTy = TI->getType();
8653          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8654            EnumUnderlyingTy = QualType(T, 0);
8655
8656          // All conflicts with previous declarations are recovered by
8657          // returning the previous declaration, unless this is a definition,
8658          // in which case we want the caller to bail out.
8659          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8660                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8661            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8662        }
8663
8664        if (!Invalid) {
8665          // If this is a use, just return the declaration we found.
8666
8667          // FIXME: In the future, return a variant or some other clue
8668          // for the consumer of this Decl to know it doesn't own it.
8669          // For our current ASTs this shouldn't be a problem, but will
8670          // need to be changed with DeclGroups.
8671          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8672               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8673            return PrevTagDecl;
8674
8675          // Diagnose attempts to redefine a tag.
8676          if (TUK == TUK_Definition) {
8677            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8678              // If we're defining a specialization and the previous definition
8679              // is from an implicit instantiation, don't emit an error
8680              // here; we'll catch this in the general case below.
8681              bool IsExplicitSpecializationAfterInstantiation = false;
8682              if (isExplicitSpecialization) {
8683                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8684                  IsExplicitSpecializationAfterInstantiation =
8685                    RD->getTemplateSpecializationKind() !=
8686                    TSK_ExplicitSpecialization;
8687                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8688                  IsExplicitSpecializationAfterInstantiation =
8689                    ED->getTemplateSpecializationKind() !=
8690                    TSK_ExplicitSpecialization;
8691              }
8692
8693              if (!IsExplicitSpecializationAfterInstantiation) {
8694                // A redeclaration in function prototype scope in C isn't
8695                // visible elsewhere, so merely issue a warning.
8696                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8697                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8698                else
8699                  Diag(NameLoc, diag::err_redefinition) << Name;
8700                Diag(Def->getLocation(), diag::note_previous_definition);
8701                // If this is a redefinition, recover by making this
8702                // struct be anonymous, which will make any later
8703                // references get the previous definition.
8704                Name = 0;
8705                Previous.clear();
8706                Invalid = true;
8707              }
8708            } else {
8709              // If the type is currently being defined, complain
8710              // about a nested redefinition.
8711              const TagType *Tag
8712                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8713              if (Tag->isBeingDefined()) {
8714                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8715                Diag(PrevTagDecl->getLocation(),
8716                     diag::note_previous_definition);
8717                Name = 0;
8718                Previous.clear();
8719                Invalid = true;
8720              }
8721            }
8722
8723            // Okay, this is definition of a previously declared or referenced
8724            // tag PrevDecl. We're going to create a new Decl for it.
8725          }
8726        }
8727        // If we get here we have (another) forward declaration or we
8728        // have a definition.  Just create a new decl.
8729
8730      } else {
8731        // If we get here, this is a definition of a new tag type in a nested
8732        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8733        // new decl/type.  We set PrevDecl to NULL so that the entities
8734        // have distinct types.
8735        Previous.clear();
8736      }
8737      // If we get here, we're going to create a new Decl. If PrevDecl
8738      // is non-NULL, it's a definition of the tag declared by
8739      // PrevDecl. If it's NULL, we have a new definition.
8740
8741
8742    // Otherwise, PrevDecl is not a tag, but was found with tag
8743    // lookup.  This is only actually possible in C++, where a few
8744    // things like templates still live in the tag namespace.
8745    } else {
8746      // Use a better diagnostic if an elaborated-type-specifier
8747      // found the wrong kind of type on the first
8748      // (non-redeclaration) lookup.
8749      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8750          !Previous.isForRedeclaration()) {
8751        unsigned Kind = 0;
8752        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8753        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8754        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8755        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8756        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8757        Invalid = true;
8758
8759      // Otherwise, only diagnose if the declaration is in scope.
8760      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8761                                isExplicitSpecialization)) {
8762        // do nothing
8763
8764      // Diagnose implicit declarations introduced by elaborated types.
8765      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8766        unsigned Kind = 0;
8767        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8768        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8769        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8770        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8771        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8772        Invalid = true;
8773
8774      // Otherwise it's a declaration.  Call out a particularly common
8775      // case here.
8776      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8777        unsigned Kind = 0;
8778        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8779        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8780          << Name << Kind << TND->getUnderlyingType();
8781        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8782        Invalid = true;
8783
8784      // Otherwise, diagnose.
8785      } else {
8786        // The tag name clashes with something else in the target scope,
8787        // issue an error and recover by making this tag be anonymous.
8788        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8789        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8790        Name = 0;
8791        Invalid = true;
8792      }
8793
8794      // The existing declaration isn't relevant to us; we're in a
8795      // new scope, so clear out the previous declaration.
8796      Previous.clear();
8797    }
8798  }
8799
8800CreateNewDecl:
8801
8802  TagDecl *PrevDecl = 0;
8803  if (Previous.isSingleResult())
8804    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8805
8806  // If there is an identifier, use the location of the identifier as the
8807  // location of the decl, otherwise use the location of the struct/union
8808  // keyword.
8809  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8810
8811  // Otherwise, create a new declaration. If there is a previous
8812  // declaration of the same entity, the two will be linked via
8813  // PrevDecl.
8814  TagDecl *New;
8815
8816  bool IsForwardReference = false;
8817  if (Kind == TTK_Enum) {
8818    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8819    // enum X { A, B, C } D;    D should chain to X.
8820    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8821                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8822                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8823    // If this is an undefined enum, warn.
8824    if (TUK != TUK_Definition && !Invalid) {
8825      TagDecl *Def;
8826      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8827        // C++0x: 7.2p2: opaque-enum-declaration.
8828        // Conflicts are diagnosed above. Do nothing.
8829      }
8830      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8831        Diag(Loc, diag::ext_forward_ref_enum_def)
8832          << New;
8833        Diag(Def->getLocation(), diag::note_previous_definition);
8834      } else {
8835        unsigned DiagID = diag::ext_forward_ref_enum;
8836        if (getLangOpts().MicrosoftMode)
8837          DiagID = diag::ext_ms_forward_ref_enum;
8838        else if (getLangOpts().CPlusPlus)
8839          DiagID = diag::err_forward_ref_enum;
8840        Diag(Loc, DiagID);
8841
8842        // If this is a forward-declared reference to an enumeration, make a
8843        // note of it; we won't actually be introducing the declaration into
8844        // the declaration context.
8845        if (TUK == TUK_Reference)
8846          IsForwardReference = true;
8847      }
8848    }
8849
8850    if (EnumUnderlying) {
8851      EnumDecl *ED = cast<EnumDecl>(New);
8852      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8853        ED->setIntegerTypeSourceInfo(TI);
8854      else
8855        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8856      ED->setPromotionType(ED->getIntegerType());
8857    }
8858
8859  } else {
8860    // struct/union/class
8861
8862    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8863    // struct X { int A; } D;    D should chain to X.
8864    if (getLangOpts().CPlusPlus) {
8865      // FIXME: Look for a way to use RecordDecl for simple structs.
8866      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8867                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8868
8869      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8870        StdBadAlloc = cast<CXXRecordDecl>(New);
8871    } else
8872      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8873                               cast_or_null<RecordDecl>(PrevDecl));
8874  }
8875
8876  // Maybe add qualifier info.
8877  if (SS.isNotEmpty()) {
8878    if (SS.isSet()) {
8879      // If this is either a declaration or a definition, check the
8880      // nested-name-specifier against the current context. We don't do this
8881      // for explicit specializations, because they have similar checking
8882      // (with more specific diagnostics) in the call to
8883      // CheckMemberSpecialization, below.
8884      if (!isExplicitSpecialization &&
8885          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8886          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8887        Invalid = true;
8888
8889      New->setQualifierInfo(SS.getWithLocInContext(Context));
8890      if (TemplateParameterLists.size() > 0) {
8891        New->setTemplateParameterListsInfo(Context,
8892                                           TemplateParameterLists.size(),
8893                                           TemplateParameterLists.data());
8894      }
8895    }
8896    else
8897      Invalid = true;
8898  }
8899
8900  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8901    // Add alignment attributes if necessary; these attributes are checked when
8902    // the ASTContext lays out the structure.
8903    //
8904    // It is important for implementing the correct semantics that this
8905    // happen here (in act on tag decl). The #pragma pack stack is
8906    // maintained as a result of parser callbacks which can occur at
8907    // many points during the parsing of a struct declaration (because
8908    // the #pragma tokens are effectively skipped over during the
8909    // parsing of the struct).
8910    if (TUK == TUK_Definition) {
8911      AddAlignmentAttributesForRecord(RD);
8912      AddMsStructLayoutForRecord(RD);
8913    }
8914  }
8915
8916  if (ModulePrivateLoc.isValid()) {
8917    if (isExplicitSpecialization)
8918      Diag(New->getLocation(), diag::err_module_private_specialization)
8919        << 2
8920        << FixItHint::CreateRemoval(ModulePrivateLoc);
8921    // __module_private__ does not apply to local classes. However, we only
8922    // diagnose this as an error when the declaration specifiers are
8923    // freestanding. Here, we just ignore the __module_private__.
8924    else if (!SearchDC->isFunctionOrMethod())
8925      New->setModulePrivate();
8926  }
8927
8928  // If this is a specialization of a member class (of a class template),
8929  // check the specialization.
8930  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8931    Invalid = true;
8932
8933  if (Invalid)
8934    New->setInvalidDecl();
8935
8936  if (Attr)
8937    ProcessDeclAttributeList(S, New, Attr);
8938
8939  // If we're declaring or defining a tag in function prototype scope
8940  // in C, note that this type can only be used within the function.
8941  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8942    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8943
8944  // Set the lexical context. If the tag has a C++ scope specifier, the
8945  // lexical context will be different from the semantic context.
8946  New->setLexicalDeclContext(CurContext);
8947
8948  // Mark this as a friend decl if applicable.
8949  // In Microsoft mode, a friend declaration also acts as a forward
8950  // declaration so we always pass true to setObjectOfFriendDecl to make
8951  // the tag name visible.
8952  if (TUK == TUK_Friend)
8953    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8954                               getLangOpts().MicrosoftExt);
8955
8956  // Set the access specifier.
8957  if (!Invalid && SearchDC->isRecord())
8958    SetMemberAccessSpecifier(New, PrevDecl, AS);
8959
8960  if (TUK == TUK_Definition)
8961    New->startDefinition();
8962
8963  // If this has an identifier, add it to the scope stack.
8964  if (TUK == TUK_Friend) {
8965    // We might be replacing an existing declaration in the lookup tables;
8966    // if so, borrow its access specifier.
8967    if (PrevDecl)
8968      New->setAccess(PrevDecl->getAccess());
8969
8970    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8971    DC->makeDeclVisibleInContext(New);
8972    if (Name) // can be null along some error paths
8973      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8974        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8975  } else if (Name) {
8976    S = getNonFieldDeclScope(S);
8977    PushOnScopeChains(New, S, !IsForwardReference);
8978    if (IsForwardReference)
8979      SearchDC->makeDeclVisibleInContext(New);
8980
8981  } else {
8982    CurContext->addDecl(New);
8983  }
8984
8985  // If this is the C FILE type, notify the AST context.
8986  if (IdentifierInfo *II = New->getIdentifier())
8987    if (!New->isInvalidDecl() &&
8988        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8989        II->isStr("FILE"))
8990      Context.setFILEDecl(New);
8991
8992  // If we were in function prototype scope (and not in C++ mode), add this
8993  // tag to the list of decls to inject into the function definition scope.
8994  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8995      InFunctionDeclarator && Name)
8996    DeclsInPrototypeScope.push_back(New);
8997
8998  if (PrevDecl)
8999    mergeDeclAttributes(New, PrevDecl);
9000
9001  // If there's a #pragma GCC visibility in scope, set the visibility of this
9002  // record.
9003  AddPushedVisibilityAttribute(New);
9004
9005  OwnedDecl = true;
9006  return New;
9007}
9008
9009void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9010  AdjustDeclIfTemplate(TagD);
9011  TagDecl *Tag = cast<TagDecl>(TagD);
9012
9013  // Enter the tag context.
9014  PushDeclContext(S, Tag);
9015
9016  ActOnDocumentableDecl(TagD);
9017
9018  // If there's a #pragma GCC visibility in scope, set the visibility of this
9019  // record.
9020  AddPushedVisibilityAttribute(Tag);
9021}
9022
9023Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9024  assert(isa<ObjCContainerDecl>(IDecl) &&
9025         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9026  DeclContext *OCD = cast<DeclContext>(IDecl);
9027  assert(getContainingDC(OCD) == CurContext &&
9028      "The next DeclContext should be lexically contained in the current one.");
9029  CurContext = OCD;
9030  return IDecl;
9031}
9032
9033void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9034                                           SourceLocation FinalLoc,
9035                                           SourceLocation LBraceLoc) {
9036  AdjustDeclIfTemplate(TagD);
9037  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9038
9039  FieldCollector->StartClass();
9040
9041  if (!Record->getIdentifier())
9042    return;
9043
9044  if (FinalLoc.isValid())
9045    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9046
9047  // C++ [class]p2:
9048  //   [...] The class-name is also inserted into the scope of the
9049  //   class itself; this is known as the injected-class-name. For
9050  //   purposes of access checking, the injected-class-name is treated
9051  //   as if it were a public member name.
9052  CXXRecordDecl *InjectedClassName
9053    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9054                            Record->getLocStart(), Record->getLocation(),
9055                            Record->getIdentifier(),
9056                            /*PrevDecl=*/0,
9057                            /*DelayTypeCreation=*/true);
9058  Context.getTypeDeclType(InjectedClassName, Record);
9059  InjectedClassName->setImplicit();
9060  InjectedClassName->setAccess(AS_public);
9061  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9062      InjectedClassName->setDescribedClassTemplate(Template);
9063  PushOnScopeChains(InjectedClassName, S);
9064  assert(InjectedClassName->isInjectedClassName() &&
9065         "Broken injected-class-name");
9066}
9067
9068void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9069                                    SourceLocation RBraceLoc) {
9070  AdjustDeclIfTemplate(TagD);
9071  TagDecl *Tag = cast<TagDecl>(TagD);
9072  Tag->setRBraceLoc(RBraceLoc);
9073
9074  // Make sure we "complete" the definition even it is invalid.
9075  if (Tag->isBeingDefined()) {
9076    assert(Tag->isInvalidDecl() && "We should already have completed it");
9077    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9078      RD->completeDefinition();
9079  }
9080
9081  if (isa<CXXRecordDecl>(Tag))
9082    FieldCollector->FinishClass();
9083
9084  // Exit this scope of this tag's definition.
9085  PopDeclContext();
9086
9087  // Notify the consumer that we've defined a tag.
9088  Consumer.HandleTagDeclDefinition(Tag);
9089}
9090
9091void Sema::ActOnObjCContainerFinishDefinition() {
9092  // Exit this scope of this interface definition.
9093  PopDeclContext();
9094}
9095
9096void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9097  assert(DC == CurContext && "Mismatch of container contexts");
9098  OriginalLexicalContext = DC;
9099  ActOnObjCContainerFinishDefinition();
9100}
9101
9102void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9103  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9104  OriginalLexicalContext = 0;
9105}
9106
9107void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9108  AdjustDeclIfTemplate(TagD);
9109  TagDecl *Tag = cast<TagDecl>(TagD);
9110  Tag->setInvalidDecl();
9111
9112  // Make sure we "complete" the definition even it is invalid.
9113  if (Tag->isBeingDefined()) {
9114    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9115      RD->completeDefinition();
9116  }
9117
9118  // We're undoing ActOnTagStartDefinition here, not
9119  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9120  // the FieldCollector.
9121
9122  PopDeclContext();
9123}
9124
9125// Note that FieldName may be null for anonymous bitfields.
9126ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9127                                IdentifierInfo *FieldName,
9128                                QualType FieldTy, Expr *BitWidth,
9129                                bool *ZeroWidth) {
9130  // Default to true; that shouldn't confuse checks for emptiness
9131  if (ZeroWidth)
9132    *ZeroWidth = true;
9133
9134  // C99 6.7.2.1p4 - verify the field type.
9135  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9136  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9137    // Handle incomplete types with specific error.
9138    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9139      return ExprError();
9140    if (FieldName)
9141      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9142        << FieldName << FieldTy << BitWidth->getSourceRange();
9143    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9144      << FieldTy << BitWidth->getSourceRange();
9145  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9146                                             UPPC_BitFieldWidth))
9147    return ExprError();
9148
9149  // If the bit-width is type- or value-dependent, don't try to check
9150  // it now.
9151  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9152    return Owned(BitWidth);
9153
9154  llvm::APSInt Value;
9155  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9156  if (ICE.isInvalid())
9157    return ICE;
9158  BitWidth = ICE.take();
9159
9160  if (Value != 0 && ZeroWidth)
9161    *ZeroWidth = false;
9162
9163  // Zero-width bitfield is ok for anonymous field.
9164  if (Value == 0 && FieldName)
9165    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9166
9167  if (Value.isSigned() && Value.isNegative()) {
9168    if (FieldName)
9169      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9170               << FieldName << Value.toString(10);
9171    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9172      << Value.toString(10);
9173  }
9174
9175  if (!FieldTy->isDependentType()) {
9176    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9177    if (Value.getZExtValue() > TypeSize) {
9178      if (!getLangOpts().CPlusPlus) {
9179        if (FieldName)
9180          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9181            << FieldName << (unsigned)Value.getZExtValue()
9182            << (unsigned)TypeSize;
9183
9184        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9185          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9186      }
9187
9188      if (FieldName)
9189        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9190          << FieldName << (unsigned)Value.getZExtValue()
9191          << (unsigned)TypeSize;
9192      else
9193        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9194          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9195    }
9196  }
9197
9198  return Owned(BitWidth);
9199}
9200
9201/// ActOnField - Each field of a C struct/union is passed into this in order
9202/// to create a FieldDecl object for it.
9203Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9204                       Declarator &D, Expr *BitfieldWidth) {
9205  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9206                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9207                               /*InitStyle=*/ICIS_NoInit, AS_public);
9208  return Res;
9209}
9210
9211/// HandleField - Analyze a field of a C struct or a C++ data member.
9212///
9213FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9214                             SourceLocation DeclStart,
9215                             Declarator &D, Expr *BitWidth,
9216                             InClassInitStyle InitStyle,
9217                             AccessSpecifier AS) {
9218  IdentifierInfo *II = D.getIdentifier();
9219  SourceLocation Loc = DeclStart;
9220  if (II) Loc = D.getIdentifierLoc();
9221
9222  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9223  QualType T = TInfo->getType();
9224  if (getLangOpts().CPlusPlus) {
9225    CheckExtraCXXDefaultArguments(D);
9226
9227    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9228                                        UPPC_DataMemberType)) {
9229      D.setInvalidType();
9230      T = Context.IntTy;
9231      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9232    }
9233  }
9234
9235  DiagnoseFunctionSpecifiers(D);
9236
9237  if (D.getDeclSpec().isThreadSpecified())
9238    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9239  if (D.getDeclSpec().isConstexprSpecified())
9240    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9241      << 2;
9242
9243  // Check to see if this name was declared as a member previously
9244  NamedDecl *PrevDecl = 0;
9245  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9246  LookupName(Previous, S);
9247  switch (Previous.getResultKind()) {
9248    case LookupResult::Found:
9249    case LookupResult::FoundUnresolvedValue:
9250      PrevDecl = Previous.getAsSingle<NamedDecl>();
9251      break;
9252
9253    case LookupResult::FoundOverloaded:
9254      PrevDecl = Previous.getRepresentativeDecl();
9255      break;
9256
9257    case LookupResult::NotFound:
9258    case LookupResult::NotFoundInCurrentInstantiation:
9259    case LookupResult::Ambiguous:
9260      break;
9261  }
9262  Previous.suppressDiagnostics();
9263
9264  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9265    // Maybe we will complain about the shadowed template parameter.
9266    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9267    // Just pretend that we didn't see the previous declaration.
9268    PrevDecl = 0;
9269  }
9270
9271  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9272    PrevDecl = 0;
9273
9274  bool Mutable
9275    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9276  SourceLocation TSSL = D.getLocStart();
9277  FieldDecl *NewFD
9278    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9279                     TSSL, AS, PrevDecl, &D);
9280
9281  if (NewFD->isInvalidDecl())
9282    Record->setInvalidDecl();
9283
9284  if (D.getDeclSpec().isModulePrivateSpecified())
9285    NewFD->setModulePrivate();
9286
9287  if (NewFD->isInvalidDecl() && PrevDecl) {
9288    // Don't introduce NewFD into scope; there's already something
9289    // with the same name in the same scope.
9290  } else if (II) {
9291    PushOnScopeChains(NewFD, S);
9292  } else
9293    Record->addDecl(NewFD);
9294
9295  return NewFD;
9296}
9297
9298/// \brief Build a new FieldDecl and check its well-formedness.
9299///
9300/// This routine builds a new FieldDecl given the fields name, type,
9301/// record, etc. \p PrevDecl should refer to any previous declaration
9302/// with the same name and in the same scope as the field to be
9303/// created.
9304///
9305/// \returns a new FieldDecl.
9306///
9307/// \todo The Declarator argument is a hack. It will be removed once
9308FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9309                                TypeSourceInfo *TInfo,
9310                                RecordDecl *Record, SourceLocation Loc,
9311                                bool Mutable, Expr *BitWidth,
9312                                InClassInitStyle InitStyle,
9313                                SourceLocation TSSL,
9314                                AccessSpecifier AS, NamedDecl *PrevDecl,
9315                                Declarator *D) {
9316  IdentifierInfo *II = Name.getAsIdentifierInfo();
9317  bool InvalidDecl = false;
9318  if (D) InvalidDecl = D->isInvalidType();
9319
9320  // If we receive a broken type, recover by assuming 'int' and
9321  // marking this declaration as invalid.
9322  if (T.isNull()) {
9323    InvalidDecl = true;
9324    T = Context.IntTy;
9325  }
9326
9327  QualType EltTy = Context.getBaseElementType(T);
9328  if (!EltTy->isDependentType()) {
9329    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9330      // Fields of incomplete type force their record to be invalid.
9331      Record->setInvalidDecl();
9332      InvalidDecl = true;
9333    } else {
9334      NamedDecl *Def;
9335      EltTy->isIncompleteType(&Def);
9336      if (Def && Def->isInvalidDecl()) {
9337        Record->setInvalidDecl();
9338        InvalidDecl = true;
9339      }
9340    }
9341  }
9342
9343  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9344  // than a variably modified type.
9345  if (!InvalidDecl && T->isVariablyModifiedType()) {
9346    bool SizeIsNegative;
9347    llvm::APSInt Oversized;
9348    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9349                                                           SizeIsNegative,
9350                                                           Oversized);
9351    if (!FixedTy.isNull()) {
9352      Diag(Loc, diag::warn_illegal_constant_array_size);
9353      T = FixedTy;
9354    } else {
9355      if (SizeIsNegative)
9356        Diag(Loc, diag::err_typecheck_negative_array_size);
9357      else if (Oversized.getBoolValue())
9358        Diag(Loc, diag::err_array_too_large)
9359          << Oversized.toString(10);
9360      else
9361        Diag(Loc, diag::err_typecheck_field_variable_size);
9362      InvalidDecl = true;
9363    }
9364  }
9365
9366  // Fields can not have abstract class types
9367  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9368                                             diag::err_abstract_type_in_decl,
9369                                             AbstractFieldType))
9370    InvalidDecl = true;
9371
9372  bool ZeroWidth = false;
9373  // If this is declared as a bit-field, check the bit-field.
9374  if (!InvalidDecl && BitWidth) {
9375    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9376    if (!BitWidth) {
9377      InvalidDecl = true;
9378      BitWidth = 0;
9379      ZeroWidth = false;
9380    }
9381  }
9382
9383  // Check that 'mutable' is consistent with the type of the declaration.
9384  if (!InvalidDecl && Mutable) {
9385    unsigned DiagID = 0;
9386    if (T->isReferenceType())
9387      DiagID = diag::err_mutable_reference;
9388    else if (T.isConstQualified())
9389      DiagID = diag::err_mutable_const;
9390
9391    if (DiagID) {
9392      SourceLocation ErrLoc = Loc;
9393      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9394        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9395      Diag(ErrLoc, DiagID);
9396      Mutable = false;
9397      InvalidDecl = true;
9398    }
9399  }
9400
9401  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9402                                       BitWidth, Mutable, InitStyle);
9403  if (InvalidDecl)
9404    NewFD->setInvalidDecl();
9405
9406  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9407    Diag(Loc, diag::err_duplicate_member) << II;
9408    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9409    NewFD->setInvalidDecl();
9410  }
9411
9412  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9413    if (Record->isUnion()) {
9414      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9415        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9416        if (RDecl->getDefinition()) {
9417          // C++ [class.union]p1: An object of a class with a non-trivial
9418          // constructor, a non-trivial copy constructor, a non-trivial
9419          // destructor, or a non-trivial copy assignment operator
9420          // cannot be a member of a union, nor can an array of such
9421          // objects.
9422          if (CheckNontrivialField(NewFD))
9423            NewFD->setInvalidDecl();
9424        }
9425      }
9426
9427      // C++ [class.union]p1: If a union contains a member of reference type,
9428      // the program is ill-formed.
9429      if (EltTy->isReferenceType()) {
9430        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9431          << NewFD->getDeclName() << EltTy;
9432        NewFD->setInvalidDecl();
9433      }
9434    }
9435  }
9436
9437  // FIXME: We need to pass in the attributes given an AST
9438  // representation, not a parser representation.
9439  if (D)
9440    // FIXME: What to pass instead of TUScope?
9441    ProcessDeclAttributes(TUScope, NewFD, *D);
9442
9443  // In auto-retain/release, infer strong retension for fields of
9444  // retainable type.
9445  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9446    NewFD->setInvalidDecl();
9447
9448  if (T.isObjCGCWeak())
9449    Diag(Loc, diag::warn_attribute_weak_on_field);
9450
9451  NewFD->setAccess(AS);
9452  return NewFD;
9453}
9454
9455bool Sema::CheckNontrivialField(FieldDecl *FD) {
9456  assert(FD);
9457  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9458
9459  if (FD->isInvalidDecl())
9460    return true;
9461
9462  QualType EltTy = Context.getBaseElementType(FD->getType());
9463  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9464    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9465    if (RDecl->getDefinition()) {
9466      // We check for copy constructors before constructors
9467      // because otherwise we'll never get complaints about
9468      // copy constructors.
9469
9470      CXXSpecialMember member = CXXInvalid;
9471      if (!RDecl->hasTrivialCopyConstructor())
9472        member = CXXCopyConstructor;
9473      else if (!RDecl->hasTrivialDefaultConstructor())
9474        member = CXXDefaultConstructor;
9475      else if (!RDecl->hasTrivialCopyAssignment())
9476        member = CXXCopyAssignment;
9477      else if (!RDecl->hasTrivialDestructor())
9478        member = CXXDestructor;
9479
9480      if (member != CXXInvalid) {
9481        if (!getLangOpts().CPlusPlus0x &&
9482            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9483          // Objective-C++ ARC: it is an error to have a non-trivial field of
9484          // a union. However, system headers in Objective-C programs
9485          // occasionally have Objective-C lifetime objects within unions,
9486          // and rather than cause the program to fail, we make those
9487          // members unavailable.
9488          SourceLocation Loc = FD->getLocation();
9489          if (getSourceManager().isInSystemHeader(Loc)) {
9490            if (!FD->hasAttr<UnavailableAttr>())
9491              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9492                                  "this system field has retaining ownership"));
9493            return false;
9494          }
9495        }
9496
9497        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9498               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9499               diag::err_illegal_union_or_anon_struct_member)
9500          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9501        DiagnoseNontrivial(RT, member);
9502        return !getLangOpts().CPlusPlus0x;
9503      }
9504    }
9505  }
9506
9507  return false;
9508}
9509
9510/// If the given constructor is user-provided, produce a diagnostic explaining
9511/// that it makes the class non-trivial.
9512static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9513                                               CXXConstructorDecl *CD,
9514                                               Sema::CXXSpecialMember CSM) {
9515  if (!CD->isUserProvided())
9516    return false;
9517
9518  SourceLocation CtorLoc = CD->getLocation();
9519  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9520  return true;
9521}
9522
9523/// DiagnoseNontrivial - Given that a class has a non-trivial
9524/// special member, figure out why.
9525void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9526  QualType QT(T, 0U);
9527  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9528
9529  // Check whether the member was user-declared.
9530  switch (member) {
9531  case CXXInvalid:
9532    break;
9533
9534  case CXXDefaultConstructor:
9535    if (RD->hasUserDeclaredConstructor()) {
9536      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9537      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9538        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9539          return;
9540
9541      // No user-provided constructors; look for constructor templates.
9542      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9543          tmpl_iter;
9544      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9545           TI != TE; ++TI) {
9546        CXXConstructorDecl *CD =
9547            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9548        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9549          return;
9550      }
9551    }
9552    break;
9553
9554  case CXXCopyConstructor:
9555    if (RD->hasUserDeclaredCopyConstructor()) {
9556      SourceLocation CtorLoc =
9557        RD->getCopyConstructor(0)->getLocation();
9558      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9559      return;
9560    }
9561    break;
9562
9563  case CXXMoveConstructor:
9564    if (RD->hasUserDeclaredMoveConstructor()) {
9565      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9566      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9567      return;
9568    }
9569    break;
9570
9571  case CXXCopyAssignment:
9572    if (RD->hasUserDeclaredCopyAssignment()) {
9573      SourceLocation AssignLoc =
9574        RD->getCopyAssignmentOperator(0)->getLocation();
9575      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9576      return;
9577    }
9578    break;
9579
9580  case CXXMoveAssignment:
9581    if (RD->hasUserDeclaredMoveAssignment()) {
9582      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9583      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9584      return;
9585    }
9586    break;
9587
9588  case CXXDestructor:
9589    if (RD->hasUserDeclaredDestructor()) {
9590      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9591      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9592      return;
9593    }
9594    break;
9595  }
9596
9597  typedef CXXRecordDecl::base_class_iterator base_iter;
9598
9599  // Virtual bases and members inhibit trivial copying/construction,
9600  // but not trivial destruction.
9601  if (member != CXXDestructor) {
9602    // Check for virtual bases.  vbases includes indirect virtual bases,
9603    // so we just iterate through the direct bases.
9604    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9605      if (bi->isVirtual()) {
9606        SourceLocation BaseLoc = bi->getLocStart();
9607        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9608        return;
9609      }
9610
9611    // Check for virtual methods.
9612    typedef CXXRecordDecl::method_iterator meth_iter;
9613    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9614         ++mi) {
9615      if (mi->isVirtual()) {
9616        SourceLocation MLoc = mi->getLocStart();
9617        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9618        return;
9619      }
9620    }
9621  }
9622
9623  bool (CXXRecordDecl::*hasTrivial)() const;
9624  switch (member) {
9625  case CXXDefaultConstructor:
9626    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9627  case CXXCopyConstructor:
9628    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9629  case CXXCopyAssignment:
9630    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9631  case CXXDestructor:
9632    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9633  default:
9634    llvm_unreachable("unexpected special member");
9635  }
9636
9637  // Check for nontrivial bases (and recurse).
9638  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9639    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9640    assert(BaseRT && "Don't know how to handle dependent bases");
9641    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9642    if (!(BaseRecTy->*hasTrivial)()) {
9643      SourceLocation BaseLoc = bi->getLocStart();
9644      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9645      DiagnoseNontrivial(BaseRT, member);
9646      return;
9647    }
9648  }
9649
9650  // Check for nontrivial members (and recurse).
9651  typedef RecordDecl::field_iterator field_iter;
9652  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9653       ++fi) {
9654    QualType EltTy = Context.getBaseElementType(fi->getType());
9655    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9656      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9657
9658      if (!(EltRD->*hasTrivial)()) {
9659        SourceLocation FLoc = fi->getLocation();
9660        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9661        DiagnoseNontrivial(EltRT, member);
9662        return;
9663      }
9664    }
9665
9666    if (EltTy->isObjCLifetimeType()) {
9667      switch (EltTy.getObjCLifetime()) {
9668      case Qualifiers::OCL_None:
9669      case Qualifiers::OCL_ExplicitNone:
9670        break;
9671
9672      case Qualifiers::OCL_Autoreleasing:
9673      case Qualifiers::OCL_Weak:
9674      case Qualifiers::OCL_Strong:
9675        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9676          << QT << EltTy.getObjCLifetime();
9677        return;
9678      }
9679    }
9680  }
9681
9682  llvm_unreachable("found no explanation for non-trivial member");
9683}
9684
9685/// TranslateIvarVisibility - Translate visibility from a token ID to an
9686///  AST enum value.
9687static ObjCIvarDecl::AccessControl
9688TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9689  switch (ivarVisibility) {
9690  default: llvm_unreachable("Unknown visitibility kind");
9691  case tok::objc_private: return ObjCIvarDecl::Private;
9692  case tok::objc_public: return ObjCIvarDecl::Public;
9693  case tok::objc_protected: return ObjCIvarDecl::Protected;
9694  case tok::objc_package: return ObjCIvarDecl::Package;
9695  }
9696}
9697
9698/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9699/// in order to create an IvarDecl object for it.
9700Decl *Sema::ActOnIvar(Scope *S,
9701                                SourceLocation DeclStart,
9702                                Declarator &D, Expr *BitfieldWidth,
9703                                tok::ObjCKeywordKind Visibility) {
9704
9705  IdentifierInfo *II = D.getIdentifier();
9706  Expr *BitWidth = (Expr*)BitfieldWidth;
9707  SourceLocation Loc = DeclStart;
9708  if (II) Loc = D.getIdentifierLoc();
9709
9710  // FIXME: Unnamed fields can be handled in various different ways, for
9711  // example, unnamed unions inject all members into the struct namespace!
9712
9713  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9714  QualType T = TInfo->getType();
9715
9716  if (BitWidth) {
9717    // 6.7.2.1p3, 6.7.2.1p4
9718    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9719    if (!BitWidth)
9720      D.setInvalidType();
9721  } else {
9722    // Not a bitfield.
9723
9724    // validate II.
9725
9726  }
9727  if (T->isReferenceType()) {
9728    Diag(Loc, diag::err_ivar_reference_type);
9729    D.setInvalidType();
9730  }
9731  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9732  // than a variably modified type.
9733  else if (T->isVariablyModifiedType()) {
9734    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9735    D.setInvalidType();
9736  }
9737
9738  // Get the visibility (access control) for this ivar.
9739  ObjCIvarDecl::AccessControl ac =
9740    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9741                                        : ObjCIvarDecl::None;
9742  // Must set ivar's DeclContext to its enclosing interface.
9743  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9744  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9745    return 0;
9746  ObjCContainerDecl *EnclosingContext;
9747  if (ObjCImplementationDecl *IMPDecl =
9748      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9749    if (LangOpts.ObjCRuntime.isFragile()) {
9750    // Case of ivar declared in an implementation. Context is that of its class.
9751      EnclosingContext = IMPDecl->getClassInterface();
9752      assert(EnclosingContext && "Implementation has no class interface!");
9753    }
9754    else
9755      EnclosingContext = EnclosingDecl;
9756  } else {
9757    if (ObjCCategoryDecl *CDecl =
9758        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9759      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9760        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9761        return 0;
9762      }
9763    }
9764    EnclosingContext = EnclosingDecl;
9765  }
9766
9767  // Construct the decl.
9768  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9769                                             DeclStart, Loc, II, T,
9770                                             TInfo, ac, (Expr *)BitfieldWidth);
9771
9772  if (II) {
9773    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9774                                           ForRedeclaration);
9775    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9776        && !isa<TagDecl>(PrevDecl)) {
9777      Diag(Loc, diag::err_duplicate_member) << II;
9778      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9779      NewID->setInvalidDecl();
9780    }
9781  }
9782
9783  // Process attributes attached to the ivar.
9784  ProcessDeclAttributes(S, NewID, D);
9785
9786  if (D.isInvalidType())
9787    NewID->setInvalidDecl();
9788
9789  // In ARC, infer 'retaining' for ivars of retainable type.
9790  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9791    NewID->setInvalidDecl();
9792
9793  if (D.getDeclSpec().isModulePrivateSpecified())
9794    NewID->setModulePrivate();
9795
9796  if (II) {
9797    // FIXME: When interfaces are DeclContexts, we'll need to add
9798    // these to the interface.
9799    S->AddDecl(NewID);
9800    IdResolver.AddDecl(NewID);
9801  }
9802
9803  if (LangOpts.ObjCRuntime.isNonFragile() &&
9804      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9805    Diag(Loc, diag::warn_ivars_in_interface);
9806
9807  return NewID;
9808}
9809
9810/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9811/// class and class extensions. For every class @interface and class
9812/// extension @interface, if the last ivar is a bitfield of any type,
9813/// then add an implicit `char :0` ivar to the end of that interface.
9814void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9815                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9816  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9817    return;
9818
9819  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9820  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9821
9822  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9823    return;
9824  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9825  if (!ID) {
9826    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9827      if (!CD->IsClassExtension())
9828        return;
9829    }
9830    // No need to add this to end of @implementation.
9831    else
9832      return;
9833  }
9834  // All conditions are met. Add a new bitfield to the tail end of ivars.
9835  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9836  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9837
9838  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9839                              DeclLoc, DeclLoc, 0,
9840                              Context.CharTy,
9841                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9842                                                               DeclLoc),
9843                              ObjCIvarDecl::Private, BW,
9844                              true);
9845  AllIvarDecls.push_back(Ivar);
9846}
9847
9848void Sema::ActOnFields(Scope* S,
9849                       SourceLocation RecLoc, Decl *EnclosingDecl,
9850                       llvm::ArrayRef<Decl *> Fields,
9851                       SourceLocation LBrac, SourceLocation RBrac,
9852                       AttributeList *Attr) {
9853  assert(EnclosingDecl && "missing record or interface decl");
9854
9855  // If this is an Objective-C @implementation or category and we have
9856  // new fields here we should reset the layout of the interface since
9857  // it will now change.
9858  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9859    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9860    switch (DC->getKind()) {
9861    default: break;
9862    case Decl::ObjCCategory:
9863      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9864      break;
9865    case Decl::ObjCImplementation:
9866      Context.
9867        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9868      break;
9869    }
9870  }
9871
9872  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9873
9874  // Start counting up the number of named members; make sure to include
9875  // members of anonymous structs and unions in the total.
9876  unsigned NumNamedMembers = 0;
9877  if (Record) {
9878    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9879                                   e = Record->decls_end(); i != e; i++) {
9880      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9881        if (IFD->getDeclName())
9882          ++NumNamedMembers;
9883    }
9884  }
9885
9886  // Verify that all the fields are okay.
9887  SmallVector<FieldDecl*, 32> RecFields;
9888
9889  bool ARCErrReported = false;
9890  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9891       i != end; ++i) {
9892    FieldDecl *FD = cast<FieldDecl>(*i);
9893
9894    // Get the type for the field.
9895    const Type *FDTy = FD->getType().getTypePtr();
9896
9897    if (!FD->isAnonymousStructOrUnion()) {
9898      // Remember all fields written by the user.
9899      RecFields.push_back(FD);
9900    }
9901
9902    // If the field is already invalid for some reason, don't emit more
9903    // diagnostics about it.
9904    if (FD->isInvalidDecl()) {
9905      EnclosingDecl->setInvalidDecl();
9906      continue;
9907    }
9908
9909    // C99 6.7.2.1p2:
9910    //   A structure or union shall not contain a member with
9911    //   incomplete or function type (hence, a structure shall not
9912    //   contain an instance of itself, but may contain a pointer to
9913    //   an instance of itself), except that the last member of a
9914    //   structure with more than one named member may have incomplete
9915    //   array type; such a structure (and any union containing,
9916    //   possibly recursively, a member that is such a structure)
9917    //   shall not be a member of a structure or an element of an
9918    //   array.
9919    if (FDTy->isFunctionType()) {
9920      // Field declared as a function.
9921      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9922        << FD->getDeclName();
9923      FD->setInvalidDecl();
9924      EnclosingDecl->setInvalidDecl();
9925      continue;
9926    } else if (FDTy->isIncompleteArrayType() && Record &&
9927               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9928                ((getLangOpts().MicrosoftExt ||
9929                  getLangOpts().CPlusPlus) &&
9930                 (i + 1 == Fields.end() || Record->isUnion())))) {
9931      // Flexible array member.
9932      // Microsoft and g++ is more permissive regarding flexible array.
9933      // It will accept flexible array in union and also
9934      // as the sole element of a struct/class.
9935      if (getLangOpts().MicrosoftExt) {
9936        if (Record->isUnion())
9937          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9938            << FD->getDeclName();
9939        else if (Fields.size() == 1)
9940          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9941            << FD->getDeclName() << Record->getTagKind();
9942      } else if (getLangOpts().CPlusPlus) {
9943        if (Record->isUnion())
9944          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9945            << FD->getDeclName();
9946        else if (Fields.size() == 1)
9947          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9948            << FD->getDeclName() << Record->getTagKind();
9949      } else if (!getLangOpts().C99) {
9950      if (Record->isUnion())
9951        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9952          << FD->getDeclName();
9953      else
9954        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9955          << FD->getDeclName() << Record->getTagKind();
9956      } else if (NumNamedMembers < 1) {
9957        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9958          << FD->getDeclName();
9959        FD->setInvalidDecl();
9960        EnclosingDecl->setInvalidDecl();
9961        continue;
9962      }
9963      if (!FD->getType()->isDependentType() &&
9964          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9965        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9966          << FD->getDeclName() << FD->getType();
9967        FD->setInvalidDecl();
9968        EnclosingDecl->setInvalidDecl();
9969        continue;
9970      }
9971      // Okay, we have a legal flexible array member at the end of the struct.
9972      if (Record)
9973        Record->setHasFlexibleArrayMember(true);
9974    } else if (!FDTy->isDependentType() &&
9975               RequireCompleteType(FD->getLocation(), FD->getType(),
9976                                   diag::err_field_incomplete)) {
9977      // Incomplete type
9978      FD->setInvalidDecl();
9979      EnclosingDecl->setInvalidDecl();
9980      continue;
9981    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9982      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9983        // If this is a member of a union, then entire union becomes "flexible".
9984        if (Record && Record->isUnion()) {
9985          Record->setHasFlexibleArrayMember(true);
9986        } else {
9987          // If this is a struct/class and this is not the last element, reject
9988          // it.  Note that GCC supports variable sized arrays in the middle of
9989          // structures.
9990          if (i + 1 != Fields.end())
9991            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9992              << FD->getDeclName() << FD->getType();
9993          else {
9994            // We support flexible arrays at the end of structs in
9995            // other structs as an extension.
9996            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9997              << FD->getDeclName();
9998            if (Record)
9999              Record->setHasFlexibleArrayMember(true);
10000          }
10001        }
10002      }
10003      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10004          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10005                                 diag::err_abstract_type_in_decl,
10006                                 AbstractIvarType)) {
10007        // Ivars can not have abstract class types
10008        FD->setInvalidDecl();
10009      }
10010      if (Record && FDTTy->getDecl()->hasObjectMember())
10011        Record->setHasObjectMember(true);
10012    } else if (FDTy->isObjCObjectType()) {
10013      /// A field cannot be an Objective-c object
10014      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10015        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10016      QualType T = Context.getObjCObjectPointerType(FD->getType());
10017      FD->setType(T);
10018    } else if (!getLangOpts().CPlusPlus) {
10019      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10020        // It's an error in ARC if a field has lifetime.
10021        // We don't want to report this in a system header, though,
10022        // so we just make the field unavailable.
10023        // FIXME: that's really not sufficient; we need to make the type
10024        // itself invalid to, say, initialize or copy.
10025        QualType T = FD->getType();
10026        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10027        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10028          SourceLocation loc = FD->getLocation();
10029          if (getSourceManager().isInSystemHeader(loc)) {
10030            if (!FD->hasAttr<UnavailableAttr>()) {
10031              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10032                                "this system field has retaining ownership"));
10033            }
10034          } else {
10035            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10036              << T->isBlockPointerType();
10037          }
10038          ARCErrReported = true;
10039        }
10040      }
10041      else if (getLangOpts().ObjC1 &&
10042               getLangOpts().getGC() != LangOptions::NonGC &&
10043               Record && !Record->hasObjectMember()) {
10044        if (FD->getType()->isObjCObjectPointerType() ||
10045            FD->getType().isObjCGCStrong())
10046          Record->setHasObjectMember(true);
10047        else if (Context.getAsArrayType(FD->getType())) {
10048          QualType BaseType = Context.getBaseElementType(FD->getType());
10049          if (BaseType->isRecordType() &&
10050              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10051            Record->setHasObjectMember(true);
10052          else if (BaseType->isObjCObjectPointerType() ||
10053                   BaseType.isObjCGCStrong())
10054                 Record->setHasObjectMember(true);
10055        }
10056      }
10057    }
10058    // Keep track of the number of named members.
10059    if (FD->getIdentifier())
10060      ++NumNamedMembers;
10061  }
10062
10063  // Okay, we successfully defined 'Record'.
10064  if (Record) {
10065    bool Completed = false;
10066    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10067      if (!CXXRecord->isInvalidDecl()) {
10068        // Set access bits correctly on the directly-declared conversions.
10069        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10070        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10071             I != E; ++I)
10072          Convs->setAccess(I, (*I)->getAccess());
10073
10074        if (!CXXRecord->isDependentType()) {
10075          // Objective-C Automatic Reference Counting:
10076          //   If a class has a non-static data member of Objective-C pointer
10077          //   type (or array thereof), it is a non-POD type and its
10078          //   default constructor (if any), copy constructor, copy assignment
10079          //   operator, and destructor are non-trivial.
10080          //
10081          // This rule is also handled by CXXRecordDecl::completeDefinition().
10082          // However, here we check whether this particular class is only
10083          // non-POD because of the presence of an Objective-C pointer member.
10084          // If so, objects of this type cannot be shared between code compiled
10085          // with ARC and code compiled with manual retain/release.
10086          if (getLangOpts().ObjCAutoRefCount &&
10087              CXXRecord->hasObjectMember() &&
10088              CXXRecord->getLinkage() == ExternalLinkage) {
10089            if (CXXRecord->isPOD()) {
10090              Diag(CXXRecord->getLocation(),
10091                   diag::warn_arc_non_pod_class_with_object_member)
10092               << CXXRecord;
10093            } else {
10094              // FIXME: Fix-Its would be nice here, but finding a good location
10095              // for them is going to be tricky.
10096              if (CXXRecord->hasTrivialCopyConstructor())
10097                Diag(CXXRecord->getLocation(),
10098                     diag::warn_arc_trivial_member_function_with_object_member)
10099                  << CXXRecord << 0;
10100              if (CXXRecord->hasTrivialCopyAssignment())
10101                Diag(CXXRecord->getLocation(),
10102                     diag::warn_arc_trivial_member_function_with_object_member)
10103                << CXXRecord << 1;
10104              if (CXXRecord->hasTrivialDestructor())
10105                Diag(CXXRecord->getLocation(),
10106                     diag::warn_arc_trivial_member_function_with_object_member)
10107                << CXXRecord << 2;
10108            }
10109          }
10110
10111          // Adjust user-defined destructor exception spec.
10112          if (getLangOpts().CPlusPlus0x &&
10113              CXXRecord->hasUserDeclaredDestructor())
10114            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10115
10116          // Add any implicitly-declared members to this class.
10117          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10118
10119          // If we have virtual base classes, we may end up finding multiple
10120          // final overriders for a given virtual function. Check for this
10121          // problem now.
10122          if (CXXRecord->getNumVBases()) {
10123            CXXFinalOverriderMap FinalOverriders;
10124            CXXRecord->getFinalOverriders(FinalOverriders);
10125
10126            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10127                                             MEnd = FinalOverriders.end();
10128                 M != MEnd; ++M) {
10129              for (OverridingMethods::iterator SO = M->second.begin(),
10130                                            SOEnd = M->second.end();
10131                   SO != SOEnd; ++SO) {
10132                assert(SO->second.size() > 0 &&
10133                       "Virtual function without overridding functions?");
10134                if (SO->second.size() == 1)
10135                  continue;
10136
10137                // C++ [class.virtual]p2:
10138                //   In a derived class, if a virtual member function of a base
10139                //   class subobject has more than one final overrider the
10140                //   program is ill-formed.
10141                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10142                  << (NamedDecl *)M->first << Record;
10143                Diag(M->first->getLocation(),
10144                     diag::note_overridden_virtual_function);
10145                for (OverridingMethods::overriding_iterator
10146                          OM = SO->second.begin(),
10147                       OMEnd = SO->second.end();
10148                     OM != OMEnd; ++OM)
10149                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10150                    << (NamedDecl *)M->first << OM->Method->getParent();
10151
10152                Record->setInvalidDecl();
10153              }
10154            }
10155            CXXRecord->completeDefinition(&FinalOverriders);
10156            Completed = true;
10157          }
10158        }
10159      }
10160    }
10161
10162    if (!Completed)
10163      Record->completeDefinition();
10164
10165  } else {
10166    ObjCIvarDecl **ClsFields =
10167      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10168    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10169      ID->setEndOfDefinitionLoc(RBrac);
10170      // Add ivar's to class's DeclContext.
10171      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10172        ClsFields[i]->setLexicalDeclContext(ID);
10173        ID->addDecl(ClsFields[i]);
10174      }
10175      // Must enforce the rule that ivars in the base classes may not be
10176      // duplicates.
10177      if (ID->getSuperClass())
10178        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10179    } else if (ObjCImplementationDecl *IMPDecl =
10180                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10181      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10182      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10183        // Ivar declared in @implementation never belongs to the implementation.
10184        // Only it is in implementation's lexical context.
10185        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10186      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10187      IMPDecl->setIvarLBraceLoc(LBrac);
10188      IMPDecl->setIvarRBraceLoc(RBrac);
10189    } else if (ObjCCategoryDecl *CDecl =
10190                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10191      // case of ivars in class extension; all other cases have been
10192      // reported as errors elsewhere.
10193      // FIXME. Class extension does not have a LocEnd field.
10194      // CDecl->setLocEnd(RBrac);
10195      // Add ivar's to class extension's DeclContext.
10196      // Diagnose redeclaration of private ivars.
10197      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10198      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10199        if (IDecl) {
10200          if (const ObjCIvarDecl *ClsIvar =
10201              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10202            Diag(ClsFields[i]->getLocation(),
10203                 diag::err_duplicate_ivar_declaration);
10204            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10205            continue;
10206          }
10207          for (const ObjCCategoryDecl *ClsExtDecl =
10208                IDecl->getFirstClassExtension();
10209               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10210            if (const ObjCIvarDecl *ClsExtIvar =
10211                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10212              Diag(ClsFields[i]->getLocation(),
10213                   diag::err_duplicate_ivar_declaration);
10214              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10215              continue;
10216            }
10217          }
10218        }
10219        ClsFields[i]->setLexicalDeclContext(CDecl);
10220        CDecl->addDecl(ClsFields[i]);
10221      }
10222      CDecl->setIvarLBraceLoc(LBrac);
10223      CDecl->setIvarRBraceLoc(RBrac);
10224    }
10225  }
10226
10227  if (Attr)
10228    ProcessDeclAttributeList(S, Record, Attr);
10229}
10230
10231/// \brief Determine whether the given integral value is representable within
10232/// the given type T.
10233static bool isRepresentableIntegerValue(ASTContext &Context,
10234                                        llvm::APSInt &Value,
10235                                        QualType T) {
10236  assert(T->isIntegralType(Context) && "Integral type required!");
10237  unsigned BitWidth = Context.getIntWidth(T);
10238
10239  if (Value.isUnsigned() || Value.isNonNegative()) {
10240    if (T->isSignedIntegerOrEnumerationType())
10241      --BitWidth;
10242    return Value.getActiveBits() <= BitWidth;
10243  }
10244  return Value.getMinSignedBits() <= BitWidth;
10245}
10246
10247// \brief Given an integral type, return the next larger integral type
10248// (or a NULL type of no such type exists).
10249static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10250  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10251  // enum checking below.
10252  assert(T->isIntegralType(Context) && "Integral type required!");
10253  const unsigned NumTypes = 4;
10254  QualType SignedIntegralTypes[NumTypes] = {
10255    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10256  };
10257  QualType UnsignedIntegralTypes[NumTypes] = {
10258    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10259    Context.UnsignedLongLongTy
10260  };
10261
10262  unsigned BitWidth = Context.getTypeSize(T);
10263  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10264                                                        : UnsignedIntegralTypes;
10265  for (unsigned I = 0; I != NumTypes; ++I)
10266    if (Context.getTypeSize(Types[I]) > BitWidth)
10267      return Types[I];
10268
10269  return QualType();
10270}
10271
10272EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10273                                          EnumConstantDecl *LastEnumConst,
10274                                          SourceLocation IdLoc,
10275                                          IdentifierInfo *Id,
10276                                          Expr *Val) {
10277  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10278  llvm::APSInt EnumVal(IntWidth);
10279  QualType EltTy;
10280
10281  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10282    Val = 0;
10283
10284  if (Val)
10285    Val = DefaultLvalueConversion(Val).take();
10286
10287  if (Val) {
10288    if (Enum->isDependentType() || Val->isTypeDependent())
10289      EltTy = Context.DependentTy;
10290    else {
10291      SourceLocation ExpLoc;
10292      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10293          !getLangOpts().MicrosoftMode) {
10294        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10295        // constant-expression in the enumerator-definition shall be a converted
10296        // constant expression of the underlying type.
10297        EltTy = Enum->getIntegerType();
10298        ExprResult Converted =
10299          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10300                                           CCEK_Enumerator);
10301        if (Converted.isInvalid())
10302          Val = 0;
10303        else
10304          Val = Converted.take();
10305      } else if (!Val->isValueDependent() &&
10306                 !(Val = VerifyIntegerConstantExpression(Val,
10307                                                         &EnumVal).take())) {
10308        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10309      } else {
10310        if (Enum->isFixed()) {
10311          EltTy = Enum->getIntegerType();
10312
10313          // In Obj-C and Microsoft mode, require the enumeration value to be
10314          // representable in the underlying type of the enumeration. In C++11,
10315          // we perform a non-narrowing conversion as part of converted constant
10316          // expression checking.
10317          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10318            if (getLangOpts().MicrosoftMode) {
10319              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10320              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10321            } else
10322              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10323          } else
10324            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10325        } else if (getLangOpts().CPlusPlus) {
10326          // C++11 [dcl.enum]p5:
10327          //   If the underlying type is not fixed, the type of each enumerator
10328          //   is the type of its initializing value:
10329          //     - If an initializer is specified for an enumerator, the
10330          //       initializing value has the same type as the expression.
10331          EltTy = Val->getType();
10332        } else {
10333          // C99 6.7.2.2p2:
10334          //   The expression that defines the value of an enumeration constant
10335          //   shall be an integer constant expression that has a value
10336          //   representable as an int.
10337
10338          // Complain if the value is not representable in an int.
10339          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10340            Diag(IdLoc, diag::ext_enum_value_not_int)
10341              << EnumVal.toString(10) << Val->getSourceRange()
10342              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10343          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10344            // Force the type of the expression to 'int'.
10345            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10346          }
10347          EltTy = Val->getType();
10348        }
10349      }
10350    }
10351  }
10352
10353  if (!Val) {
10354    if (Enum->isDependentType())
10355      EltTy = Context.DependentTy;
10356    else if (!LastEnumConst) {
10357      // C++0x [dcl.enum]p5:
10358      //   If the underlying type is not fixed, the type of each enumerator
10359      //   is the type of its initializing value:
10360      //     - If no initializer is specified for the first enumerator, the
10361      //       initializing value has an unspecified integral type.
10362      //
10363      // GCC uses 'int' for its unspecified integral type, as does
10364      // C99 6.7.2.2p3.
10365      if (Enum->isFixed()) {
10366        EltTy = Enum->getIntegerType();
10367      }
10368      else {
10369        EltTy = Context.IntTy;
10370      }
10371    } else {
10372      // Assign the last value + 1.
10373      EnumVal = LastEnumConst->getInitVal();
10374      ++EnumVal;
10375      EltTy = LastEnumConst->getType();
10376
10377      // Check for overflow on increment.
10378      if (EnumVal < LastEnumConst->getInitVal()) {
10379        // C++0x [dcl.enum]p5:
10380        //   If the underlying type is not fixed, the type of each enumerator
10381        //   is the type of its initializing value:
10382        //
10383        //     - Otherwise the type of the initializing value is the same as
10384        //       the type of the initializing value of the preceding enumerator
10385        //       unless the incremented value is not representable in that type,
10386        //       in which case the type is an unspecified integral type
10387        //       sufficient to contain the incremented value. If no such type
10388        //       exists, the program is ill-formed.
10389        QualType T = getNextLargerIntegralType(Context, EltTy);
10390        if (T.isNull() || Enum->isFixed()) {
10391          // There is no integral type larger enough to represent this
10392          // value. Complain, then allow the value to wrap around.
10393          EnumVal = LastEnumConst->getInitVal();
10394          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10395          ++EnumVal;
10396          if (Enum->isFixed())
10397            // When the underlying type is fixed, this is ill-formed.
10398            Diag(IdLoc, diag::err_enumerator_wrapped)
10399              << EnumVal.toString(10)
10400              << EltTy;
10401          else
10402            Diag(IdLoc, diag::warn_enumerator_too_large)
10403              << EnumVal.toString(10);
10404        } else {
10405          EltTy = T;
10406        }
10407
10408        // Retrieve the last enumerator's value, extent that type to the
10409        // type that is supposed to be large enough to represent the incremented
10410        // value, then increment.
10411        EnumVal = LastEnumConst->getInitVal();
10412        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10413        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10414        ++EnumVal;
10415
10416        // If we're not in C++, diagnose the overflow of enumerator values,
10417        // which in C99 means that the enumerator value is not representable in
10418        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10419        // permits enumerator values that are representable in some larger
10420        // integral type.
10421        if (!getLangOpts().CPlusPlus && !T.isNull())
10422          Diag(IdLoc, diag::warn_enum_value_overflow);
10423      } else if (!getLangOpts().CPlusPlus &&
10424                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10425        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10426        Diag(IdLoc, diag::ext_enum_value_not_int)
10427          << EnumVal.toString(10) << 1;
10428      }
10429    }
10430  }
10431
10432  if (!EltTy->isDependentType()) {
10433    // Make the enumerator value match the signedness and size of the
10434    // enumerator's type.
10435    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10436    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10437  }
10438
10439  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10440                                  Val, EnumVal);
10441}
10442
10443
10444Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10445                              SourceLocation IdLoc, IdentifierInfo *Id,
10446                              AttributeList *Attr,
10447                              SourceLocation EqualLoc, Expr *Val) {
10448  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10449  EnumConstantDecl *LastEnumConst =
10450    cast_or_null<EnumConstantDecl>(lastEnumConst);
10451
10452  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10453  // we find one that is.
10454  S = getNonFieldDeclScope(S);
10455
10456  // Verify that there isn't already something declared with this name in this
10457  // scope.
10458  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10459                                         ForRedeclaration);
10460  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10461    // Maybe we will complain about the shadowed template parameter.
10462    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10463    // Just pretend that we didn't see the previous declaration.
10464    PrevDecl = 0;
10465  }
10466
10467  if (PrevDecl) {
10468    // When in C++, we may get a TagDecl with the same name; in this case the
10469    // enum constant will 'hide' the tag.
10470    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10471           "Received TagDecl when not in C++!");
10472    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10473      if (isa<EnumConstantDecl>(PrevDecl))
10474        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10475      else
10476        Diag(IdLoc, diag::err_redefinition) << Id;
10477      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10478      return 0;
10479    }
10480  }
10481
10482  // C++ [class.mem]p15:
10483  // If T is the name of a class, then each of the following shall have a name
10484  // different from T:
10485  // - every enumerator of every member of class T that is an unscoped
10486  // enumerated type
10487  if (CXXRecordDecl *Record
10488                      = dyn_cast<CXXRecordDecl>(
10489                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10490    if (!TheEnumDecl->isScoped() &&
10491        Record->getIdentifier() && Record->getIdentifier() == Id)
10492      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10493
10494  EnumConstantDecl *New =
10495    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10496
10497  if (New) {
10498    // Process attributes.
10499    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10500
10501    // Register this decl in the current scope stack.
10502    New->setAccess(TheEnumDecl->getAccess());
10503    PushOnScopeChains(New, S);
10504  }
10505
10506  ActOnDocumentableDecl(New);
10507
10508  return New;
10509}
10510
10511// Emits a warning if every element in the enum is the same value and if
10512// every element is initialized with a integer or boolean literal.
10513static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10514                                     unsigned NumElements, EnumDecl *Enum,
10515                                     QualType EnumType) {
10516  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10517                                 Enum->getLocation()) ==
10518      DiagnosticsEngine::Ignored)
10519    return;
10520
10521  if (NumElements < 2)
10522    return;
10523
10524  if (!Enum->getIdentifier())
10525    return;
10526
10527  llvm::APSInt FirstVal;
10528
10529  for (unsigned i = 0; i != NumElements; ++i) {
10530    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10531    if (!ECD)
10532      return;
10533
10534    Expr *InitExpr = ECD->getInitExpr();
10535    if (!InitExpr)
10536      return;
10537    InitExpr = InitExpr->IgnoreImpCasts();
10538    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10539      return;
10540
10541    if (i == 0) {
10542      FirstVal = ECD->getInitVal();
10543      continue;
10544    }
10545
10546    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10547      return;
10548  }
10549
10550  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10551      << EnumType << FirstVal.toString(10)
10552      << Enum->getSourceRange();
10553
10554  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10555                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10556
10557  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10558    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10559                                    Next->getName());
10560}
10561
10562void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10563                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10564                         Decl **Elements, unsigned NumElements,
10565                         Scope *S, AttributeList *Attr) {
10566  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10567  QualType EnumType = Context.getTypeDeclType(Enum);
10568
10569  if (Attr)
10570    ProcessDeclAttributeList(S, Enum, Attr);
10571
10572  if (Enum->isDependentType()) {
10573    for (unsigned i = 0; i != NumElements; ++i) {
10574      EnumConstantDecl *ECD =
10575        cast_or_null<EnumConstantDecl>(Elements[i]);
10576      if (!ECD) continue;
10577
10578      ECD->setType(EnumType);
10579    }
10580
10581    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10582    return;
10583  }
10584
10585  // TODO: If the result value doesn't fit in an int, it must be a long or long
10586  // long value.  ISO C does not support this, but GCC does as an extension,
10587  // emit a warning.
10588  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10589  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10590  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10591
10592  // Verify that all the values are okay, compute the size of the values, and
10593  // reverse the list.
10594  unsigned NumNegativeBits = 0;
10595  unsigned NumPositiveBits = 0;
10596
10597  // Keep track of whether all elements have type int.
10598  bool AllElementsInt = true;
10599
10600  for (unsigned i = 0; i != NumElements; ++i) {
10601    EnumConstantDecl *ECD =
10602      cast_or_null<EnumConstantDecl>(Elements[i]);
10603    if (!ECD) continue;  // Already issued a diagnostic.
10604
10605    const llvm::APSInt &InitVal = ECD->getInitVal();
10606
10607    // Keep track of the size of positive and negative values.
10608    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10609      NumPositiveBits = std::max(NumPositiveBits,
10610                                 (unsigned)InitVal.getActiveBits());
10611    else
10612      NumNegativeBits = std::max(NumNegativeBits,
10613                                 (unsigned)InitVal.getMinSignedBits());
10614
10615    // Keep track of whether every enum element has type int (very commmon).
10616    if (AllElementsInt)
10617      AllElementsInt = ECD->getType() == Context.IntTy;
10618  }
10619
10620  // Figure out the type that should be used for this enum.
10621  QualType BestType;
10622  unsigned BestWidth;
10623
10624  // C++0x N3000 [conv.prom]p3:
10625  //   An rvalue of an unscoped enumeration type whose underlying
10626  //   type is not fixed can be converted to an rvalue of the first
10627  //   of the following types that can represent all the values of
10628  //   the enumeration: int, unsigned int, long int, unsigned long
10629  //   int, long long int, or unsigned long long int.
10630  // C99 6.4.4.3p2:
10631  //   An identifier declared as an enumeration constant has type int.
10632  // The C99 rule is modified by a gcc extension
10633  QualType BestPromotionType;
10634
10635  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10636  // -fshort-enums is the equivalent to specifying the packed attribute on all
10637  // enum definitions.
10638  if (LangOpts.ShortEnums)
10639    Packed = true;
10640
10641  if (Enum->isFixed()) {
10642    BestType = Enum->getIntegerType();
10643    if (BestType->isPromotableIntegerType())
10644      BestPromotionType = Context.getPromotedIntegerType(BestType);
10645    else
10646      BestPromotionType = BestType;
10647    // We don't need to set BestWidth, because BestType is going to be the type
10648    // of the enumerators, but we do anyway because otherwise some compilers
10649    // warn that it might be used uninitialized.
10650    BestWidth = CharWidth;
10651  }
10652  else if (NumNegativeBits) {
10653    // If there is a negative value, figure out the smallest integer type (of
10654    // int/long/longlong) that fits.
10655    // If it's packed, check also if it fits a char or a short.
10656    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10657      BestType = Context.SignedCharTy;
10658      BestWidth = CharWidth;
10659    } else if (Packed && NumNegativeBits <= ShortWidth &&
10660               NumPositiveBits < ShortWidth) {
10661      BestType = Context.ShortTy;
10662      BestWidth = ShortWidth;
10663    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10664      BestType = Context.IntTy;
10665      BestWidth = IntWidth;
10666    } else {
10667      BestWidth = Context.getTargetInfo().getLongWidth();
10668
10669      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10670        BestType = Context.LongTy;
10671      } else {
10672        BestWidth = Context.getTargetInfo().getLongLongWidth();
10673
10674        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10675          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10676        BestType = Context.LongLongTy;
10677      }
10678    }
10679    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10680  } else {
10681    // If there is no negative value, figure out the smallest type that fits
10682    // all of the enumerator values.
10683    // If it's packed, check also if it fits a char or a short.
10684    if (Packed && NumPositiveBits <= CharWidth) {
10685      BestType = Context.UnsignedCharTy;
10686      BestPromotionType = Context.IntTy;
10687      BestWidth = CharWidth;
10688    } else if (Packed && NumPositiveBits <= ShortWidth) {
10689      BestType = Context.UnsignedShortTy;
10690      BestPromotionType = Context.IntTy;
10691      BestWidth = ShortWidth;
10692    } else if (NumPositiveBits <= IntWidth) {
10693      BestType = Context.UnsignedIntTy;
10694      BestWidth = IntWidth;
10695      BestPromotionType
10696        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10697                           ? Context.UnsignedIntTy : Context.IntTy;
10698    } else if (NumPositiveBits <=
10699               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10700      BestType = Context.UnsignedLongTy;
10701      BestPromotionType
10702        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10703                           ? Context.UnsignedLongTy : Context.LongTy;
10704    } else {
10705      BestWidth = Context.getTargetInfo().getLongLongWidth();
10706      assert(NumPositiveBits <= BestWidth &&
10707             "How could an initializer get larger than ULL?");
10708      BestType = Context.UnsignedLongLongTy;
10709      BestPromotionType
10710        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10711                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10712    }
10713  }
10714
10715  // Loop over all of the enumerator constants, changing their types to match
10716  // the type of the enum if needed.
10717  for (unsigned i = 0; i != NumElements; ++i) {
10718    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10719    if (!ECD) continue;  // Already issued a diagnostic.
10720
10721    // Standard C says the enumerators have int type, but we allow, as an
10722    // extension, the enumerators to be larger than int size.  If each
10723    // enumerator value fits in an int, type it as an int, otherwise type it the
10724    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10725    // that X has type 'int', not 'unsigned'.
10726
10727    // Determine whether the value fits into an int.
10728    llvm::APSInt InitVal = ECD->getInitVal();
10729
10730    // If it fits into an integer type, force it.  Otherwise force it to match
10731    // the enum decl type.
10732    QualType NewTy;
10733    unsigned NewWidth;
10734    bool NewSign;
10735    if (!getLangOpts().CPlusPlus &&
10736        !Enum->isFixed() &&
10737        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10738      NewTy = Context.IntTy;
10739      NewWidth = IntWidth;
10740      NewSign = true;
10741    } else if (ECD->getType() == BestType) {
10742      // Already the right type!
10743      if (getLangOpts().CPlusPlus)
10744        // C++ [dcl.enum]p4: Following the closing brace of an
10745        // enum-specifier, each enumerator has the type of its
10746        // enumeration.
10747        ECD->setType(EnumType);
10748      continue;
10749    } else {
10750      NewTy = BestType;
10751      NewWidth = BestWidth;
10752      NewSign = BestType->isSignedIntegerOrEnumerationType();
10753    }
10754
10755    // Adjust the APSInt value.
10756    InitVal = InitVal.extOrTrunc(NewWidth);
10757    InitVal.setIsSigned(NewSign);
10758    ECD->setInitVal(InitVal);
10759
10760    // Adjust the Expr initializer and type.
10761    if (ECD->getInitExpr() &&
10762        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10763      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10764                                                CK_IntegralCast,
10765                                                ECD->getInitExpr(),
10766                                                /*base paths*/ 0,
10767                                                VK_RValue));
10768    if (getLangOpts().CPlusPlus)
10769      // C++ [dcl.enum]p4: Following the closing brace of an
10770      // enum-specifier, each enumerator has the type of its
10771      // enumeration.
10772      ECD->setType(EnumType);
10773    else
10774      ECD->setType(NewTy);
10775  }
10776
10777  Enum->completeDefinition(BestType, BestPromotionType,
10778                           NumPositiveBits, NumNegativeBits);
10779
10780  // If we're declaring a function, ensure this decl isn't forgotten about -
10781  // it needs to go into the function scope.
10782  if (InFunctionDeclarator)
10783    DeclsInPrototypeScope.push_back(Enum);
10784
10785  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10786}
10787
10788Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10789                                  SourceLocation StartLoc,
10790                                  SourceLocation EndLoc) {
10791  StringLiteral *AsmString = cast<StringLiteral>(expr);
10792
10793  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10794                                                   AsmString, StartLoc,
10795                                                   EndLoc);
10796  CurContext->addDecl(New);
10797  return New;
10798}
10799
10800DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10801                                   SourceLocation ImportLoc,
10802                                   ModuleIdPath Path) {
10803  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10804                                                Module::AllVisible,
10805                                                /*IsIncludeDirective=*/false);
10806  if (!Mod)
10807    return true;
10808
10809  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10810  Module *ModCheck = Mod;
10811  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10812    // If we've run out of module parents, just drop the remaining identifiers.
10813    // We need the length to be consistent.
10814    if (!ModCheck)
10815      break;
10816    ModCheck = ModCheck->Parent;
10817
10818    IdentifierLocs.push_back(Path[I].second);
10819  }
10820
10821  ImportDecl *Import = ImportDecl::Create(Context,
10822                                          Context.getTranslationUnitDecl(),
10823                                          AtLoc.isValid()? AtLoc : ImportLoc,
10824                                          Mod, IdentifierLocs);
10825  Context.getTranslationUnitDecl()->addDecl(Import);
10826  return Import;
10827}
10828
10829void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10830                                      IdentifierInfo* AliasName,
10831                                      SourceLocation PragmaLoc,
10832                                      SourceLocation NameLoc,
10833                                      SourceLocation AliasNameLoc) {
10834  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10835                                    LookupOrdinaryName);
10836  AsmLabelAttr *Attr =
10837     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10838
10839  if (PrevDecl)
10840    PrevDecl->addAttr(Attr);
10841  else
10842    (void)ExtnameUndeclaredIdentifiers.insert(
10843      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10844}
10845
10846void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10847                             SourceLocation PragmaLoc,
10848                             SourceLocation NameLoc) {
10849  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10850
10851  if (PrevDecl) {
10852    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10853  } else {
10854    (void)WeakUndeclaredIdentifiers.insert(
10855      std::pair<IdentifierInfo*,WeakInfo>
10856        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10857  }
10858}
10859
10860void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10861                                IdentifierInfo* AliasName,
10862                                SourceLocation PragmaLoc,
10863                                SourceLocation NameLoc,
10864                                SourceLocation AliasNameLoc) {
10865  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10866                                    LookupOrdinaryName);
10867  WeakInfo W = WeakInfo(Name, NameLoc);
10868
10869  if (PrevDecl) {
10870    if (!PrevDecl->hasAttr<AliasAttr>())
10871      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10872        DeclApplyPragmaWeak(TUScope, ND, W);
10873  } else {
10874    (void)WeakUndeclaredIdentifiers.insert(
10875      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10876  }
10877}
10878
10879Decl *Sema::getObjCDeclContext() const {
10880  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10881}
10882
10883AvailabilityResult Sema::getCurContextAvailability() const {
10884  const Decl *D = cast<Decl>(getCurLexicalContext());
10885  // A category implicitly has the availability of the interface.
10886  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10887    D = CatD->getClassInterface();
10888
10889  return D->getAvailability();
10890}
10891