SemaDecl.cpp revision c645ddf240efb112ff8f17371811deb3ebc1a5b5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58namespace {
59
60class TypeNameValidatorCCC : public CorrectionCandidateCallback {
61 public:
62  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
63    WantExpressionKeywords = false;
64    WantCXXNamedCasts = false;
65    WantRemainingKeywords = false;
66  }
67
68  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
69    if (NamedDecl *ND = candidate.getCorrectionDecl())
70      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
71          (AllowInvalidDecl || !ND->isInvalidDecl());
72    else
73      return candidate.isKeyword();
74  }
75
76 private:
77  bool AllowInvalidDecl;
78};
79
80}
81
82/// \brief If the identifier refers to a type name within this scope,
83/// return the declaration of that type.
84///
85/// This routine performs ordinary name lookup of the identifier II
86/// within the given scope, with optional C++ scope specifier SS, to
87/// determine whether the name refers to a type. If so, returns an
88/// opaque pointer (actually a QualType) corresponding to that
89/// type. Otherwise, returns NULL.
90///
91/// If name lookup results in an ambiguity, this routine will complain
92/// and then return NULL.
93ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
94                             Scope *S, CXXScopeSpec *SS,
95                             bool isClassName, bool HasTrailingDot,
96                             ParsedType ObjectTypePtr,
97                             bool IsCtorOrDtorName,
98                             bool WantNontrivialTypeSourceInfo,
99                             IdentifierInfo **CorrectedII) {
100  // Determine where we will perform name lookup.
101  DeclContext *LookupCtx = 0;
102  if (ObjectTypePtr) {
103    QualType ObjectType = ObjectTypePtr.get();
104    if (ObjectType->isRecordType())
105      LookupCtx = computeDeclContext(ObjectType);
106  } else if (SS && SS->isNotEmpty()) {
107    LookupCtx = computeDeclContext(*SS, false);
108
109    if (!LookupCtx) {
110      if (isDependentScopeSpecifier(*SS)) {
111        // C++ [temp.res]p3:
112        //   A qualified-id that refers to a type and in which the
113        //   nested-name-specifier depends on a template-parameter (14.6.2)
114        //   shall be prefixed by the keyword typename to indicate that the
115        //   qualified-id denotes a type, forming an
116        //   elaborated-type-specifier (7.1.5.3).
117        //
118        // We therefore do not perform any name lookup if the result would
119        // refer to a member of an unknown specialization.
120        if (!isClassName)
121          return ParsedType();
122
123        // We know from the grammar that this name refers to a type,
124        // so build a dependent node to describe the type.
125        if (WantNontrivialTypeSourceInfo)
126          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
127
128        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
129        QualType T =
130          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
131                            II, NameLoc);
132
133          return ParsedType::make(T);
134      }
135
136      return ParsedType();
137    }
138
139    if (!LookupCtx->isDependentContext() &&
140        RequireCompleteDeclContext(*SS, LookupCtx))
141      return ParsedType();
142  }
143
144  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
145  // lookup for class-names.
146  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
147                                      LookupOrdinaryName;
148  LookupResult Result(*this, &II, NameLoc, Kind);
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Result, LookupCtx);
155
156    if (ObjectTypePtr && Result.empty()) {
157      // C++ [basic.lookup.classref]p3:
158      //   If the unqualified-id is ~type-name, the type-name is looked up
159      //   in the context of the entire postfix-expression. If the type T of
160      //   the object expression is of a class type C, the type-name is also
161      //   looked up in the scope of class C. At least one of the lookups shall
162      //   find a name that refers to (possibly cv-qualified) T.
163      LookupName(Result, S);
164    }
165  } else {
166    // Perform unqualified name lookup.
167    LookupName(Result, S);
168  }
169
170  NamedDecl *IIDecl = 0;
171  switch (Result.getResultKind()) {
172  case LookupResult::NotFound:
173  case LookupResult::NotFoundInCurrentInstantiation:
174    if (CorrectedII) {
175      TypeNameValidatorCCC Validator(true);
176      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
177                                              Kind, S, SS, Validator);
178      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
179      TemplateTy Template;
180      bool MemberOfUnknownSpecialization;
181      UnqualifiedId TemplateName;
182      TemplateName.setIdentifier(NewII, NameLoc);
183      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
184      CXXScopeSpec NewSS, *NewSSPtr = SS;
185      if (SS && NNS) {
186        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
187        NewSSPtr = &NewSS;
188      }
189      if (Correction && (NNS || NewII != &II) &&
190          // Ignore a correction to a template type as the to-be-corrected
191          // identifier is not a template (typo correction for template names
192          // is handled elsewhere).
193          !(getLangOptions().CPlusPlus && NewSSPtr &&
194            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
195                           false, Template, MemberOfUnknownSpecialization))) {
196        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
197                                    isClassName, HasTrailingDot, ObjectTypePtr,
198                                    IsCtorOrDtorName,
199                                    WantNontrivialTypeSourceInfo);
200        if (Ty) {
201          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
202          std::string CorrectedQuotedStr(
203              Correction.getQuoted(getLangOptions()));
204          Diag(NameLoc, diag::err_unknown_typename_suggest)
205              << Result.getLookupName() << CorrectedQuotedStr
206              << FixItHint::CreateReplacement(SourceRange(NameLoc),
207                                              CorrectedStr);
208          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
209            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
210              << CorrectedQuotedStr;
211
212          if (SS && NNS)
213            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
214          *CorrectedII = NewII;
215          return Ty;
216        }
217      }
218    }
219    // If typo correction failed or was not performed, fall through
220  case LookupResult::FoundOverloaded:
221  case LookupResult::FoundUnresolvedValue:
222    Result.suppressDiagnostics();
223    return ParsedType();
224
225  case LookupResult::Ambiguous:
226    // Recover from type-hiding ambiguities by hiding the type.  We'll
227    // do the lookup again when looking for an object, and we can
228    // diagnose the error then.  If we don't do this, then the error
229    // about hiding the type will be immediately followed by an error
230    // that only makes sense if the identifier was treated like a type.
231    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
232      Result.suppressDiagnostics();
233      return ParsedType();
234    }
235
236    // Look to see if we have a type anywhere in the list of results.
237    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
238         Res != ResEnd; ++Res) {
239      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
240        if (!IIDecl ||
241            (*Res)->getLocation().getRawEncoding() <
242              IIDecl->getLocation().getRawEncoding())
243          IIDecl = *Res;
244      }
245    }
246
247    if (!IIDecl) {
248      // None of the entities we found is a type, so there is no way
249      // to even assume that the result is a type. In this case, don't
250      // complain about the ambiguity. The parser will either try to
251      // perform this lookup again (e.g., as an object name), which
252      // will produce the ambiguity, or will complain that it expected
253      // a type name.
254      Result.suppressDiagnostics();
255      return ParsedType();
256    }
257
258    // We found a type within the ambiguous lookup; diagnose the
259    // ambiguity and then return that type. This might be the right
260    // answer, or it might not be, but it suppresses any attempt to
261    // perform the name lookup again.
262    break;
263
264  case LookupResult::Found:
265    IIDecl = Result.getFoundDecl();
266    break;
267  }
268
269  assert(IIDecl && "Didn't find decl");
270
271  QualType T;
272  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
273    DiagnoseUseOfDecl(IIDecl, NameLoc);
274
275    if (T.isNull())
276      T = Context.getTypeDeclType(TD);
277
278    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
279    // constructor or destructor name (in such a case, the scope specifier
280    // will be attached to the enclosing Expr or Decl node).
281    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
282      if (WantNontrivialTypeSourceInfo) {
283        // Construct a type with type-source information.
284        TypeLocBuilder Builder;
285        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
286
287        T = getElaboratedType(ETK_None, *SS, T);
288        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
289        ElabTL.setKeywordLoc(SourceLocation());
290        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
291        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
292      } else {
293        T = getElaboratedType(ETK_None, *SS, T);
294      }
295    }
296  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
297    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
298    if (!HasTrailingDot)
299      T = Context.getObjCInterfaceType(IDecl);
300  }
301
302  if (T.isNull()) {
303    // If it's not plausibly a type, suppress diagnostics.
304    Result.suppressDiagnostics();
305    return ParsedType();
306  }
307  return ParsedType::make(T);
308}
309
310/// isTagName() - This method is called *for error recovery purposes only*
311/// to determine if the specified name is a valid tag name ("struct foo").  If
312/// so, this returns the TST for the tag corresponding to it (TST_enum,
313/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
314/// where the user forgot to specify the tag.
315DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
316  // Do a tag name lookup in this scope.
317  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
318  LookupName(R, S, false);
319  R.suppressDiagnostics();
320  if (R.getResultKind() == LookupResult::Found)
321    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
322      switch (TD->getTagKind()) {
323      case TTK_Struct: return DeclSpec::TST_struct;
324      case TTK_Union:  return DeclSpec::TST_union;
325      case TTK_Class:  return DeclSpec::TST_class;
326      case TTK_Enum:   return DeclSpec::TST_enum;
327      }
328    }
329
330  return DeclSpec::TST_unspecified;
331}
332
333/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
334/// if a CXXScopeSpec's type is equal to the type of one of the base classes
335/// then downgrade the missing typename error to a warning.
336/// This is needed for MSVC compatibility; Example:
337/// @code
338/// template<class T> class A {
339/// public:
340///   typedef int TYPE;
341/// };
342/// template<class T> class B : public A<T> {
343/// public:
344///   A<T>::TYPE a; // no typename required because A<T> is a base class.
345/// };
346/// @endcode
347bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
348  if (CurContext->isRecord()) {
349    const Type *Ty = SS->getScopeRep()->getAsType();
350
351    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
352    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
353          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
354      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
355        return true;
356    return S->isFunctionPrototypeScope();
357  }
358  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
359}
360
361bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
362                                   SourceLocation IILoc,
363                                   Scope *S,
364                                   CXXScopeSpec *SS,
365                                   ParsedType &SuggestedType) {
366  // We don't have anything to suggest (yet).
367  SuggestedType = ParsedType();
368
369  // There may have been a typo in the name of the type. Look up typo
370  // results, in case we have something that we can suggest.
371  TypeNameValidatorCCC Validator(false);
372  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
373                                             LookupOrdinaryName, S, SS,
374                                             Validator)) {
375    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
376    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
377
378    if (Corrected.isKeyword()) {
379      // We corrected to a keyword.
380      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
381      Diag(IILoc, diag::err_unknown_typename_suggest)
382        << &II << CorrectedQuotedStr;
383    } else {
384      NamedDecl *Result = Corrected.getCorrectionDecl();
385      // We found a similarly-named type or interface; suggest that.
386      if (!SS || !SS->isSet())
387        Diag(IILoc, diag::err_unknown_typename_suggest)
388          << &II << CorrectedQuotedStr
389          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
390      else if (DeclContext *DC = computeDeclContext(*SS, false))
391        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
392          << &II << DC << CorrectedQuotedStr << SS->getRange()
393          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
394      else
395        llvm_unreachable("could not have corrected a typo here");
396
397      Diag(Result->getLocation(), diag::note_previous_decl)
398        << CorrectedQuotedStr;
399
400      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
401                                  false, false, ParsedType(),
402                                  /*IsCtorOrDtorName=*/false,
403                                  /*NonTrivialTypeSourceInfo=*/true);
404    }
405    return true;
406  }
407
408  if (getLangOptions().CPlusPlus) {
409    // See if II is a class template that the user forgot to pass arguments to.
410    UnqualifiedId Name;
411    Name.setIdentifier(&II, IILoc);
412    CXXScopeSpec EmptySS;
413    TemplateTy TemplateResult;
414    bool MemberOfUnknownSpecialization;
415    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
416                       Name, ParsedType(), true, TemplateResult,
417                       MemberOfUnknownSpecialization) == TNK_Type_template) {
418      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
419      Diag(IILoc, diag::err_template_missing_args) << TplName;
420      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
421        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
422          << TplDecl->getTemplateParameters()->getSourceRange();
423      }
424      return true;
425    }
426  }
427
428  // FIXME: Should we move the logic that tries to recover from a missing tag
429  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
430
431  if (!SS || (!SS->isSet() && !SS->isInvalid()))
432    Diag(IILoc, diag::err_unknown_typename) << &II;
433  else if (DeclContext *DC = computeDeclContext(*SS, false))
434    Diag(IILoc, diag::err_typename_nested_not_found)
435      << &II << DC << SS->getRange();
436  else if (isDependentScopeSpecifier(*SS)) {
437    unsigned DiagID = diag::err_typename_missing;
438    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
439      DiagID = diag::warn_typename_missing;
440
441    Diag(SS->getRange().getBegin(), DiagID)
442      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
443      << SourceRange(SS->getRange().getBegin(), IILoc)
444      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
445    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
446                                                                         .get();
447  } else {
448    assert(SS && SS->isInvalid() &&
449           "Invalid scope specifier has already been diagnosed");
450  }
451
452  return true;
453}
454
455/// \brief Determine whether the given result set contains either a type name
456/// or
457static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
458  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
459                       NextToken.is(tok::less);
460
461  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
462    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
463      return true;
464
465    if (CheckTemplate && isa<TemplateDecl>(*I))
466      return true;
467  }
468
469  return false;
470}
471
472Sema::NameClassification Sema::ClassifyName(Scope *S,
473                                            CXXScopeSpec &SS,
474                                            IdentifierInfo *&Name,
475                                            SourceLocation NameLoc,
476                                            const Token &NextToken) {
477  DeclarationNameInfo NameInfo(Name, NameLoc);
478  ObjCMethodDecl *CurMethod = getCurMethodDecl();
479
480  if (NextToken.is(tok::coloncolon)) {
481    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
482                                QualType(), false, SS, 0, false);
483
484  }
485
486  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
487  LookupParsedName(Result, S, &SS, !CurMethod);
488
489  // Perform lookup for Objective-C instance variables (including automatically
490  // synthesized instance variables), if we're in an Objective-C method.
491  // FIXME: This lookup really, really needs to be folded in to the normal
492  // unqualified lookup mechanism.
493  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
494    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
495    if (E.get() || E.isInvalid())
496      return E;
497  }
498
499  bool SecondTry = false;
500  bool IsFilteredTemplateName = false;
501
502Corrected:
503  switch (Result.getResultKind()) {
504  case LookupResult::NotFound:
505    // If an unqualified-id is followed by a '(', then we have a function
506    // call.
507    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
508      // In C++, this is an ADL-only call.
509      // FIXME: Reference?
510      if (getLangOptions().CPlusPlus)
511        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
512
513      // C90 6.3.2.2:
514      //   If the expression that precedes the parenthesized argument list in a
515      //   function call consists solely of an identifier, and if no
516      //   declaration is visible for this identifier, the identifier is
517      //   implicitly declared exactly as if, in the innermost block containing
518      //   the function call, the declaration
519      //
520      //     extern int identifier ();
521      //
522      //   appeared.
523      //
524      // We also allow this in C99 as an extension.
525      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
526        Result.addDecl(D);
527        Result.resolveKind();
528        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
529      }
530    }
531
532    // In C, we first see whether there is a tag type by the same name, in
533    // which case it's likely that the user just forget to write "enum",
534    // "struct", or "union".
535    if (!getLangOptions().CPlusPlus && !SecondTry) {
536      Result.clear(LookupTagName);
537      LookupParsedName(Result, S, &SS);
538      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
539        const char *TagName = 0;
540        const char *FixItTagName = 0;
541        switch (Tag->getTagKind()) {
542          case TTK_Class:
543            TagName = "class";
544            FixItTagName = "class ";
545            break;
546
547          case TTK_Enum:
548            TagName = "enum";
549            FixItTagName = "enum ";
550            break;
551
552          case TTK_Struct:
553            TagName = "struct";
554            FixItTagName = "struct ";
555            break;
556
557          case TTK_Union:
558            TagName = "union";
559            FixItTagName = "union ";
560            break;
561        }
562
563        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
564          << Name << TagName << getLangOptions().CPlusPlus
565          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
566        break;
567      }
568
569      Result.clear(LookupOrdinaryName);
570    }
571
572    // Perform typo correction to determine if there is another name that is
573    // close to this name.
574    if (!SecondTry) {
575      SecondTry = true;
576      CorrectionCandidateCallback DefaultValidator;
577      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
578                                                 Result.getLookupKind(), S,
579                                                 &SS, DefaultValidator)) {
580        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
581        unsigned QualifiedDiag = diag::err_no_member_suggest;
582        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
583        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
584
585        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
586        NamedDecl *UnderlyingFirstDecl
587          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
588        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
589            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
590          UnqualifiedDiag = diag::err_no_template_suggest;
591          QualifiedDiag = diag::err_no_member_template_suggest;
592        } else if (UnderlyingFirstDecl &&
593                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
594                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
596           UnqualifiedDiag = diag::err_unknown_typename_suggest;
597           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
598         }
599
600        if (SS.isEmpty())
601          Diag(NameLoc, UnqualifiedDiag)
602            << Name << CorrectedQuotedStr
603            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
604        else
605          Diag(NameLoc, QualifiedDiag)
606            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
607            << SS.getRange()
608            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
609
610        // Update the name, so that the caller has the new name.
611        Name = Corrected.getCorrectionAsIdentifierInfo();
612
613        // Typo correction corrected to a keyword.
614        if (Corrected.isKeyword())
615          return Corrected.getCorrectionAsIdentifierInfo();
616
617        // Also update the LookupResult...
618        // FIXME: This should probably go away at some point
619        Result.clear();
620        Result.setLookupName(Corrected.getCorrection());
621        if (FirstDecl) {
622          Result.addDecl(FirstDecl);
623          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
624            << CorrectedQuotedStr;
625        }
626
627        // If we found an Objective-C instance variable, let
628        // LookupInObjCMethod build the appropriate expression to
629        // reference the ivar.
630        // FIXME: This is a gross hack.
631        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
632          Result.clear();
633          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
634          return move(E);
635        }
636
637        goto Corrected;
638      }
639    }
640
641    // We failed to correct; just fall through and let the parser deal with it.
642    Result.suppressDiagnostics();
643    return NameClassification::Unknown();
644
645  case LookupResult::NotFoundInCurrentInstantiation: {
646    // We performed name lookup into the current instantiation, and there were
647    // dependent bases, so we treat this result the same way as any other
648    // dependent nested-name-specifier.
649
650    // C++ [temp.res]p2:
651    //   A name used in a template declaration or definition and that is
652    //   dependent on a template-parameter is assumed not to name a type
653    //   unless the applicable name lookup finds a type name or the name is
654    //   qualified by the keyword typename.
655    //
656    // FIXME: If the next token is '<', we might want to ask the parser to
657    // perform some heroics to see if we actually have a
658    // template-argument-list, which would indicate a missing 'template'
659    // keyword here.
660    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
661                                     NameInfo, /*TemplateArgs=*/0);
662  }
663
664  case LookupResult::Found:
665  case LookupResult::FoundOverloaded:
666  case LookupResult::FoundUnresolvedValue:
667    break;
668
669  case LookupResult::Ambiguous:
670    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
671        hasAnyAcceptableTemplateNames(Result)) {
672      // C++ [temp.local]p3:
673      //   A lookup that finds an injected-class-name (10.2) can result in an
674      //   ambiguity in certain cases (for example, if it is found in more than
675      //   one base class). If all of the injected-class-names that are found
676      //   refer to specializations of the same class template, and if the name
677      //   is followed by a template-argument-list, the reference refers to the
678      //   class template itself and not a specialization thereof, and is not
679      //   ambiguous.
680      //
681      // This filtering can make an ambiguous result into an unambiguous one,
682      // so try again after filtering out template names.
683      FilterAcceptableTemplateNames(Result);
684      if (!Result.isAmbiguous()) {
685        IsFilteredTemplateName = true;
686        break;
687      }
688    }
689
690    // Diagnose the ambiguity and return an error.
691    return NameClassification::Error();
692  }
693
694  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
695      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
696    // C++ [temp.names]p3:
697    //   After name lookup (3.4) finds that a name is a template-name or that
698    //   an operator-function-id or a literal- operator-id refers to a set of
699    //   overloaded functions any member of which is a function template if
700    //   this is followed by a <, the < is always taken as the delimiter of a
701    //   template-argument-list and never as the less-than operator.
702    if (!IsFilteredTemplateName)
703      FilterAcceptableTemplateNames(Result);
704
705    if (!Result.empty()) {
706      bool IsFunctionTemplate;
707      TemplateName Template;
708      if (Result.end() - Result.begin() > 1) {
709        IsFunctionTemplate = true;
710        Template = Context.getOverloadedTemplateName(Result.begin(),
711                                                     Result.end());
712      } else {
713        TemplateDecl *TD
714          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
715        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
716
717        if (SS.isSet() && !SS.isInvalid())
718          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
719                                                    /*TemplateKeyword=*/false,
720                                                      TD);
721        else
722          Template = TemplateName(TD);
723      }
724
725      if (IsFunctionTemplate) {
726        // Function templates always go through overload resolution, at which
727        // point we'll perform the various checks (e.g., accessibility) we need
728        // to based on which function we selected.
729        Result.suppressDiagnostics();
730
731        return NameClassification::FunctionTemplate(Template);
732      }
733
734      return NameClassification::TypeTemplate(Template);
735    }
736  }
737
738  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
739  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
740    DiagnoseUseOfDecl(Type, NameLoc);
741    QualType T = Context.getTypeDeclType(Type);
742    return ParsedType::make(T);
743  }
744
745  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
746  if (!Class) {
747    // FIXME: It's unfortunate that we don't have a Type node for handling this.
748    if (ObjCCompatibleAliasDecl *Alias
749                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
750      Class = Alias->getClassInterface();
751  }
752
753  if (Class) {
754    DiagnoseUseOfDecl(Class, NameLoc);
755
756    if (NextToken.is(tok::period)) {
757      // Interface. <something> is parsed as a property reference expression.
758      // Just return "unknown" as a fall-through for now.
759      Result.suppressDiagnostics();
760      return NameClassification::Unknown();
761    }
762
763    QualType T = Context.getObjCInterfaceType(Class);
764    return ParsedType::make(T);
765  }
766
767  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
768    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
769
770  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
771  return BuildDeclarationNameExpr(SS, Result, ADL);
772}
773
774// Determines the context to return to after temporarily entering a
775// context.  This depends in an unnecessarily complicated way on the
776// exact ordering of callbacks from the parser.
777DeclContext *Sema::getContainingDC(DeclContext *DC) {
778
779  // Functions defined inline within classes aren't parsed until we've
780  // finished parsing the top-level class, so the top-level class is
781  // the context we'll need to return to.
782  if (isa<FunctionDecl>(DC)) {
783    DC = DC->getLexicalParent();
784
785    // A function not defined within a class will always return to its
786    // lexical context.
787    if (!isa<CXXRecordDecl>(DC))
788      return DC;
789
790    // A C++ inline method/friend is parsed *after* the topmost class
791    // it was declared in is fully parsed ("complete");  the topmost
792    // class is the context we need to return to.
793    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
794      DC = RD;
795
796    // Return the declaration context of the topmost class the inline method is
797    // declared in.
798    return DC;
799  }
800
801  return DC->getLexicalParent();
802}
803
804void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
805  assert(getContainingDC(DC) == CurContext &&
806      "The next DeclContext should be lexically contained in the current one.");
807  CurContext = DC;
808  S->setEntity(DC);
809}
810
811void Sema::PopDeclContext() {
812  assert(CurContext && "DeclContext imbalance!");
813
814  CurContext = getContainingDC(CurContext);
815  assert(CurContext && "Popped translation unit!");
816}
817
818/// EnterDeclaratorContext - Used when we must lookup names in the context
819/// of a declarator's nested name specifier.
820///
821void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
822  // C++0x [basic.lookup.unqual]p13:
823  //   A name used in the definition of a static data member of class
824  //   X (after the qualified-id of the static member) is looked up as
825  //   if the name was used in a member function of X.
826  // C++0x [basic.lookup.unqual]p14:
827  //   If a variable member of a namespace is defined outside of the
828  //   scope of its namespace then any name used in the definition of
829  //   the variable member (after the declarator-id) is looked up as
830  //   if the definition of the variable member occurred in its
831  //   namespace.
832  // Both of these imply that we should push a scope whose context
833  // is the semantic context of the declaration.  We can't use
834  // PushDeclContext here because that context is not necessarily
835  // lexically contained in the current context.  Fortunately,
836  // the containing scope should have the appropriate information.
837
838  assert(!S->getEntity() && "scope already has entity");
839
840#ifndef NDEBUG
841  Scope *Ancestor = S->getParent();
842  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
843  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
844#endif
845
846  CurContext = DC;
847  S->setEntity(DC);
848}
849
850void Sema::ExitDeclaratorContext(Scope *S) {
851  assert(S->getEntity() == CurContext && "Context imbalance!");
852
853  // Switch back to the lexical context.  The safety of this is
854  // enforced by an assert in EnterDeclaratorContext.
855  Scope *Ancestor = S->getParent();
856  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
857  CurContext = (DeclContext*) Ancestor->getEntity();
858
859  // We don't need to do anything with the scope, which is going to
860  // disappear.
861}
862
863
864void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
865  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
866  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
867    // We assume that the caller has already called
868    // ActOnReenterTemplateScope
869    FD = TFD->getTemplatedDecl();
870  }
871  if (!FD)
872    return;
873
874  PushDeclContext(S, FD);
875  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
876    ParmVarDecl *Param = FD->getParamDecl(P);
877    // If the parameter has an identifier, then add it to the scope
878    if (Param->getIdentifier()) {
879      S->AddDecl(Param);
880      IdResolver.AddDecl(Param);
881    }
882  }
883}
884
885
886/// \brief Determine whether we allow overloading of the function
887/// PrevDecl with another declaration.
888///
889/// This routine determines whether overloading is possible, not
890/// whether some new function is actually an overload. It will return
891/// true in C++ (where we can always provide overloads) or, as an
892/// extension, in C when the previous function is already an
893/// overloaded function declaration or has the "overloadable"
894/// attribute.
895static bool AllowOverloadingOfFunction(LookupResult &Previous,
896                                       ASTContext &Context) {
897  if (Context.getLangOptions().CPlusPlus)
898    return true;
899
900  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
901    return true;
902
903  return (Previous.getResultKind() == LookupResult::Found
904          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
905}
906
907/// Add this decl to the scope shadowed decl chains.
908void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
909  // Move up the scope chain until we find the nearest enclosing
910  // non-transparent context. The declaration will be introduced into this
911  // scope.
912  while (S->getEntity() &&
913         ((DeclContext *)S->getEntity())->isTransparentContext())
914    S = S->getParent();
915
916  // Add scoped declarations into their context, so that they can be
917  // found later. Declarations without a context won't be inserted
918  // into any context.
919  if (AddToContext)
920    CurContext->addDecl(D);
921
922  // Out-of-line definitions shouldn't be pushed into scope in C++.
923  // Out-of-line variable and function definitions shouldn't even in C.
924  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
925      D->isOutOfLine() &&
926      !D->getDeclContext()->getRedeclContext()->Equals(
927        D->getLexicalDeclContext()->getRedeclContext()))
928    return;
929
930  // Template instantiations should also not be pushed into scope.
931  if (isa<FunctionDecl>(D) &&
932      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
933    return;
934
935  // If this replaces anything in the current scope,
936  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
937                               IEnd = IdResolver.end();
938  for (; I != IEnd; ++I) {
939    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
940      S->RemoveDecl(*I);
941      IdResolver.RemoveDecl(*I);
942
943      // Should only need to replace one decl.
944      break;
945    }
946  }
947
948  S->AddDecl(D);
949
950  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
951    // Implicitly-generated labels may end up getting generated in an order that
952    // isn't strictly lexical, which breaks name lookup. Be careful to insert
953    // the label at the appropriate place in the identifier chain.
954    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
955      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
956      if (IDC == CurContext) {
957        if (!S->isDeclScope(*I))
958          continue;
959      } else if (IDC->Encloses(CurContext))
960        break;
961    }
962
963    IdResolver.InsertDeclAfter(I, D);
964  } else {
965    IdResolver.AddDecl(D);
966  }
967}
968
969void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
970  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
971    TUScope->AddDecl(D);
972}
973
974bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
975                         bool ExplicitInstantiationOrSpecialization) {
976  return IdResolver.isDeclInScope(D, Ctx, Context, S,
977                                  ExplicitInstantiationOrSpecialization);
978}
979
980Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
981  DeclContext *TargetDC = DC->getPrimaryContext();
982  do {
983    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
984      if (ScopeDC->getPrimaryContext() == TargetDC)
985        return S;
986  } while ((S = S->getParent()));
987
988  return 0;
989}
990
991static bool isOutOfScopePreviousDeclaration(NamedDecl *,
992                                            DeclContext*,
993                                            ASTContext&);
994
995/// Filters out lookup results that don't fall within the given scope
996/// as determined by isDeclInScope.
997void Sema::FilterLookupForScope(LookupResult &R,
998                                DeclContext *Ctx, Scope *S,
999                                bool ConsiderLinkage,
1000                                bool ExplicitInstantiationOrSpecialization) {
1001  LookupResult::Filter F = R.makeFilter();
1002  while (F.hasNext()) {
1003    NamedDecl *D = F.next();
1004
1005    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1006      continue;
1007
1008    if (ConsiderLinkage &&
1009        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1010      continue;
1011
1012    F.erase();
1013  }
1014
1015  F.done();
1016}
1017
1018static bool isUsingDecl(NamedDecl *D) {
1019  return isa<UsingShadowDecl>(D) ||
1020         isa<UnresolvedUsingTypenameDecl>(D) ||
1021         isa<UnresolvedUsingValueDecl>(D);
1022}
1023
1024/// Removes using shadow declarations from the lookup results.
1025static void RemoveUsingDecls(LookupResult &R) {
1026  LookupResult::Filter F = R.makeFilter();
1027  while (F.hasNext())
1028    if (isUsingDecl(F.next()))
1029      F.erase();
1030
1031  F.done();
1032}
1033
1034/// \brief Check for this common pattern:
1035/// @code
1036/// class S {
1037///   S(const S&); // DO NOT IMPLEMENT
1038///   void operator=(const S&); // DO NOT IMPLEMENT
1039/// };
1040/// @endcode
1041static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1042  // FIXME: Should check for private access too but access is set after we get
1043  // the decl here.
1044  if (D->doesThisDeclarationHaveABody())
1045    return false;
1046
1047  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1048    return CD->isCopyConstructor();
1049  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1050    return Method->isCopyAssignmentOperator();
1051  return false;
1052}
1053
1054bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1055  assert(D);
1056
1057  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1058    return false;
1059
1060  // Ignore class templates.
1061  if (D->getDeclContext()->isDependentContext() ||
1062      D->getLexicalDeclContext()->isDependentContext())
1063    return false;
1064
1065  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1066    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1067      return false;
1068
1069    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1070      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1071        return false;
1072    } else {
1073      // 'static inline' functions are used in headers; don't warn.
1074      if (FD->getStorageClass() == SC_Static &&
1075          FD->isInlineSpecified())
1076        return false;
1077    }
1078
1079    if (FD->doesThisDeclarationHaveABody() &&
1080        Context.DeclMustBeEmitted(FD))
1081      return false;
1082  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1083    if (!VD->isFileVarDecl() ||
1084        VD->getType().isConstant(Context) ||
1085        Context.DeclMustBeEmitted(VD))
1086      return false;
1087
1088    if (VD->isStaticDataMember() &&
1089        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1090      return false;
1091
1092  } else {
1093    return false;
1094  }
1095
1096  // Only warn for unused decls internal to the translation unit.
1097  if (D->getLinkage() == ExternalLinkage)
1098    return false;
1099
1100  return true;
1101}
1102
1103void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1104  if (!D)
1105    return;
1106
1107  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1108    const FunctionDecl *First = FD->getFirstDeclaration();
1109    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1110      return; // First should already be in the vector.
1111  }
1112
1113  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1114    const VarDecl *First = VD->getFirstDeclaration();
1115    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1116      return; // First should already be in the vector.
1117  }
1118
1119   if (ShouldWarnIfUnusedFileScopedDecl(D))
1120     UnusedFileScopedDecls.push_back(D);
1121 }
1122
1123static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1124  if (D->isInvalidDecl())
1125    return false;
1126
1127  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1128    return false;
1129
1130  if (isa<LabelDecl>(D))
1131    return true;
1132
1133  // White-list anything that isn't a local variable.
1134  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1135      !D->getDeclContext()->isFunctionOrMethod())
1136    return false;
1137
1138  // Types of valid local variables should be complete, so this should succeed.
1139  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1140
1141    // White-list anything with an __attribute__((unused)) type.
1142    QualType Ty = VD->getType();
1143
1144    // Only look at the outermost level of typedef.
1145    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1146      if (TT->getDecl()->hasAttr<UnusedAttr>())
1147        return false;
1148    }
1149
1150    // If we failed to complete the type for some reason, or if the type is
1151    // dependent, don't diagnose the variable.
1152    if (Ty->isIncompleteType() || Ty->isDependentType())
1153      return false;
1154
1155    if (const TagType *TT = Ty->getAs<TagType>()) {
1156      const TagDecl *Tag = TT->getDecl();
1157      if (Tag->hasAttr<UnusedAttr>())
1158        return false;
1159
1160      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1161        if (!RD->hasTrivialDestructor())
1162          return false;
1163
1164        if (const Expr *Init = VD->getInit()) {
1165          const CXXConstructExpr *Construct =
1166            dyn_cast<CXXConstructExpr>(Init);
1167          if (Construct && !Construct->isElidable()) {
1168            CXXConstructorDecl *CD = Construct->getConstructor();
1169            if (!CD->isTrivial())
1170              return false;
1171          }
1172        }
1173      }
1174    }
1175
1176    // TODO: __attribute__((unused)) templates?
1177  }
1178
1179  return true;
1180}
1181
1182static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1183                                     FixItHint &Hint) {
1184  if (isa<LabelDecl>(D)) {
1185    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1186                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1187    if (AfterColon.isInvalid())
1188      return;
1189    Hint = FixItHint::CreateRemoval(CharSourceRange::
1190                                    getCharRange(D->getLocStart(), AfterColon));
1191  }
1192  return;
1193}
1194
1195/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1196/// unless they are marked attr(unused).
1197void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1198  FixItHint Hint;
1199  if (!ShouldDiagnoseUnusedDecl(D))
1200    return;
1201
1202  GenerateFixForUnusedDecl(D, Context, Hint);
1203
1204  unsigned DiagID;
1205  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1206    DiagID = diag::warn_unused_exception_param;
1207  else if (isa<LabelDecl>(D))
1208    DiagID = diag::warn_unused_label;
1209  else
1210    DiagID = diag::warn_unused_variable;
1211
1212  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1213}
1214
1215static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1216  // Verify that we have no forward references left.  If so, there was a goto
1217  // or address of a label taken, but no definition of it.  Label fwd
1218  // definitions are indicated with a null substmt.
1219  if (L->getStmt() == 0)
1220    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1221}
1222
1223void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1224  if (S->decl_empty()) return;
1225  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1226         "Scope shouldn't contain decls!");
1227
1228  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1229       I != E; ++I) {
1230    Decl *TmpD = (*I);
1231    assert(TmpD && "This decl didn't get pushed??");
1232
1233    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1234    NamedDecl *D = cast<NamedDecl>(TmpD);
1235
1236    if (!D->getDeclName()) continue;
1237
1238    // Diagnose unused variables in this scope.
1239    if (!S->hasErrorOccurred())
1240      DiagnoseUnusedDecl(D);
1241
1242    // If this was a forward reference to a label, verify it was defined.
1243    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1244      CheckPoppedLabel(LD, *this);
1245
1246    // Remove this name from our lexical scope.
1247    IdResolver.RemoveDecl(D);
1248  }
1249}
1250
1251/// \brief Look for an Objective-C class in the translation unit.
1252///
1253/// \param Id The name of the Objective-C class we're looking for. If
1254/// typo-correction fixes this name, the Id will be updated
1255/// to the fixed name.
1256///
1257/// \param IdLoc The location of the name in the translation unit.
1258///
1259/// \param TypoCorrection If true, this routine will attempt typo correction
1260/// if there is no class with the given name.
1261///
1262/// \returns The declaration of the named Objective-C class, or NULL if the
1263/// class could not be found.
1264ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1265                                              SourceLocation IdLoc,
1266                                              bool DoTypoCorrection) {
1267  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1268  // creation from this context.
1269  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1270
1271  if (!IDecl && DoTypoCorrection) {
1272    // Perform typo correction at the given location, but only if we
1273    // find an Objective-C class name.
1274    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1275    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1276                                       LookupOrdinaryName, TUScope, NULL,
1277                                       Validator)) {
1278      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1279      Diag(IdLoc, diag::err_undef_interface_suggest)
1280        << Id << IDecl->getDeclName()
1281        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1282      Diag(IDecl->getLocation(), diag::note_previous_decl)
1283        << IDecl->getDeclName();
1284
1285      Id = IDecl->getIdentifier();
1286    }
1287  }
1288  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1289  // This routine must always return a class definition, if any.
1290  if (Def && Def->getDefinition())
1291      Def = Def->getDefinition();
1292  return Def;
1293}
1294
1295/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1296/// from S, where a non-field would be declared. This routine copes
1297/// with the difference between C and C++ scoping rules in structs and
1298/// unions. For example, the following code is well-formed in C but
1299/// ill-formed in C++:
1300/// @code
1301/// struct S6 {
1302///   enum { BAR } e;
1303/// };
1304///
1305/// void test_S6() {
1306///   struct S6 a;
1307///   a.e = BAR;
1308/// }
1309/// @endcode
1310/// For the declaration of BAR, this routine will return a different
1311/// scope. The scope S will be the scope of the unnamed enumeration
1312/// within S6. In C++, this routine will return the scope associated
1313/// with S6, because the enumeration's scope is a transparent
1314/// context but structures can contain non-field names. In C, this
1315/// routine will return the translation unit scope, since the
1316/// enumeration's scope is a transparent context and structures cannot
1317/// contain non-field names.
1318Scope *Sema::getNonFieldDeclScope(Scope *S) {
1319  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1320         (S->getEntity() &&
1321          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1322         (S->isClassScope() && !getLangOptions().CPlusPlus))
1323    S = S->getParent();
1324  return S;
1325}
1326
1327/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1328/// file scope.  lazily create a decl for it. ForRedeclaration is true
1329/// if we're creating this built-in in anticipation of redeclaring the
1330/// built-in.
1331NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1332                                     Scope *S, bool ForRedeclaration,
1333                                     SourceLocation Loc) {
1334  Builtin::ID BID = (Builtin::ID)bid;
1335
1336  ASTContext::GetBuiltinTypeError Error;
1337  QualType R = Context.GetBuiltinType(BID, Error);
1338  switch (Error) {
1339  case ASTContext::GE_None:
1340    // Okay
1341    break;
1342
1343  case ASTContext::GE_Missing_stdio:
1344    if (ForRedeclaration)
1345      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1346        << Context.BuiltinInfo.GetName(BID);
1347    return 0;
1348
1349  case ASTContext::GE_Missing_setjmp:
1350    if (ForRedeclaration)
1351      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1352        << Context.BuiltinInfo.GetName(BID);
1353    return 0;
1354
1355  case ASTContext::GE_Missing_ucontext:
1356    if (ForRedeclaration)
1357      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1358        << Context.BuiltinInfo.GetName(BID);
1359    return 0;
1360  }
1361
1362  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1363    Diag(Loc, diag::ext_implicit_lib_function_decl)
1364      << Context.BuiltinInfo.GetName(BID)
1365      << R;
1366    if (Context.BuiltinInfo.getHeaderName(BID) &&
1367        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1368          != DiagnosticsEngine::Ignored)
1369      Diag(Loc, diag::note_please_include_header)
1370        << Context.BuiltinInfo.getHeaderName(BID)
1371        << Context.BuiltinInfo.GetName(BID);
1372  }
1373
1374  FunctionDecl *New = FunctionDecl::Create(Context,
1375                                           Context.getTranslationUnitDecl(),
1376                                           Loc, Loc, II, R, /*TInfo=*/0,
1377                                           SC_Extern,
1378                                           SC_None, false,
1379                                           /*hasPrototype=*/true);
1380  New->setImplicit();
1381
1382  // Create Decl objects for each parameter, adding them to the
1383  // FunctionDecl.
1384  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1385    SmallVector<ParmVarDecl*, 16> Params;
1386    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1387      ParmVarDecl *parm =
1388        ParmVarDecl::Create(Context, New, SourceLocation(),
1389                            SourceLocation(), 0,
1390                            FT->getArgType(i), /*TInfo=*/0,
1391                            SC_None, SC_None, 0);
1392      parm->setScopeInfo(0, i);
1393      Params.push_back(parm);
1394    }
1395    New->setParams(Params);
1396  }
1397
1398  AddKnownFunctionAttributes(New);
1399
1400  // TUScope is the translation-unit scope to insert this function into.
1401  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1402  // relate Scopes to DeclContexts, and probably eliminate CurContext
1403  // entirely, but we're not there yet.
1404  DeclContext *SavedContext = CurContext;
1405  CurContext = Context.getTranslationUnitDecl();
1406  PushOnScopeChains(New, TUScope);
1407  CurContext = SavedContext;
1408  return New;
1409}
1410
1411bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1412  QualType OldType;
1413  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1414    OldType = OldTypedef->getUnderlyingType();
1415  else
1416    OldType = Context.getTypeDeclType(Old);
1417  QualType NewType = New->getUnderlyingType();
1418
1419  if (NewType->isVariablyModifiedType()) {
1420    // Must not redefine a typedef with a variably-modified type.
1421    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1422    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1423      << Kind << NewType;
1424    if (Old->getLocation().isValid())
1425      Diag(Old->getLocation(), diag::note_previous_definition);
1426    New->setInvalidDecl();
1427    return true;
1428  }
1429
1430  if (OldType != NewType &&
1431      !OldType->isDependentType() &&
1432      !NewType->isDependentType() &&
1433      !Context.hasSameType(OldType, NewType)) {
1434    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << NewType << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    New->setInvalidDecl();
1440    return true;
1441  }
1442  return false;
1443}
1444
1445/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1446/// same name and scope as a previous declaration 'Old'.  Figure out
1447/// how to resolve this situation, merging decls or emitting
1448/// diagnostics as appropriate. If there was an error, set New to be invalid.
1449///
1450void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1451  // If the new decl is known invalid already, don't bother doing any
1452  // merging checks.
1453  if (New->isInvalidDecl()) return;
1454
1455  // Allow multiple definitions for ObjC built-in typedefs.
1456  // FIXME: Verify the underlying types are equivalent!
1457  if (getLangOptions().ObjC1) {
1458    const IdentifierInfo *TypeID = New->getIdentifier();
1459    switch (TypeID->getLength()) {
1460    default: break;
1461    case 2:
1462      if (!TypeID->isStr("id"))
1463        break;
1464      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1465      // Install the built-in type for 'id', ignoring the current definition.
1466      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1467      return;
1468    case 5:
1469      if (!TypeID->isStr("Class"))
1470        break;
1471      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1472      // Install the built-in type for 'Class', ignoring the current definition.
1473      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1474      return;
1475    case 3:
1476      if (!TypeID->isStr("SEL"))
1477        break;
1478      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1479      // Install the built-in type for 'SEL', ignoring the current definition.
1480      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1481      return;
1482    }
1483    // Fall through - the typedef name was not a builtin type.
1484  }
1485
1486  // Verify the old decl was also a type.
1487  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1488  if (!Old) {
1489    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1490      << New->getDeclName();
1491
1492    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1493    if (OldD->getLocation().isValid())
1494      Diag(OldD->getLocation(), diag::note_previous_definition);
1495
1496    return New->setInvalidDecl();
1497  }
1498
1499  // If the old declaration is invalid, just give up here.
1500  if (Old->isInvalidDecl())
1501    return New->setInvalidDecl();
1502
1503  // If the typedef types are not identical, reject them in all languages and
1504  // with any extensions enabled.
1505  if (isIncompatibleTypedef(Old, New))
1506    return;
1507
1508  // The types match.  Link up the redeclaration chain if the old
1509  // declaration was a typedef.
1510  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1511    New->setPreviousDeclaration(Typedef);
1512
1513  if (getLangOptions().MicrosoftExt)
1514    return;
1515
1516  if (getLangOptions().CPlusPlus) {
1517    // C++ [dcl.typedef]p2:
1518    //   In a given non-class scope, a typedef specifier can be used to
1519    //   redefine the name of any type declared in that scope to refer
1520    //   to the type to which it already refers.
1521    if (!isa<CXXRecordDecl>(CurContext))
1522      return;
1523
1524    // C++0x [dcl.typedef]p4:
1525    //   In a given class scope, a typedef specifier can be used to redefine
1526    //   any class-name declared in that scope that is not also a typedef-name
1527    //   to refer to the type to which it already refers.
1528    //
1529    // This wording came in via DR424, which was a correction to the
1530    // wording in DR56, which accidentally banned code like:
1531    //
1532    //   struct S {
1533    //     typedef struct A { } A;
1534    //   };
1535    //
1536    // in the C++03 standard. We implement the C++0x semantics, which
1537    // allow the above but disallow
1538    //
1539    //   struct S {
1540    //     typedef int I;
1541    //     typedef int I;
1542    //   };
1543    //
1544    // since that was the intent of DR56.
1545    if (!isa<TypedefNameDecl>(Old))
1546      return;
1547
1548    Diag(New->getLocation(), diag::err_redefinition)
1549      << New->getDeclName();
1550    Diag(Old->getLocation(), diag::note_previous_definition);
1551    return New->setInvalidDecl();
1552  }
1553
1554  // Modules always permit redefinition of typedefs, as does C11.
1555  if (getLangOptions().Modules || getLangOptions().C11)
1556    return;
1557
1558  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1559  // is normally mapped to an error, but can be controlled with
1560  // -Wtypedef-redefinition.  If either the original or the redefinition is
1561  // in a system header, don't emit this for compatibility with GCC.
1562  if (getDiagnostics().getSuppressSystemWarnings() &&
1563      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1564       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1565    return;
1566
1567  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1568    << New->getDeclName();
1569  Diag(Old->getLocation(), diag::note_previous_definition);
1570  return;
1571}
1572
1573/// DeclhasAttr - returns true if decl Declaration already has the target
1574/// attribute.
1575static bool
1576DeclHasAttr(const Decl *D, const Attr *A) {
1577  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1578  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1579  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1580    if ((*i)->getKind() == A->getKind()) {
1581      if (Ann) {
1582        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1583          return true;
1584        continue;
1585      }
1586      // FIXME: Don't hardcode this check
1587      if (OA && isa<OwnershipAttr>(*i))
1588        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1589      return true;
1590    }
1591
1592  return false;
1593}
1594
1595/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1596void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1597                               bool MergeDeprecation) {
1598  if (!Old->hasAttrs())
1599    return;
1600
1601  bool foundAny = New->hasAttrs();
1602
1603  // Ensure that any moving of objects within the allocated map is done before
1604  // we process them.
1605  if (!foundAny) New->setAttrs(AttrVec());
1606
1607  for (specific_attr_iterator<InheritableAttr>
1608         i = Old->specific_attr_begin<InheritableAttr>(),
1609         e = Old->specific_attr_end<InheritableAttr>();
1610       i != e; ++i) {
1611    // Ignore deprecated/unavailable/availability attributes if requested.
1612    if (!MergeDeprecation &&
1613        (isa<DeprecatedAttr>(*i) ||
1614         isa<UnavailableAttr>(*i) ||
1615         isa<AvailabilityAttr>(*i)))
1616      continue;
1617
1618    if (!DeclHasAttr(New, *i)) {
1619      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1620      newAttr->setInherited(true);
1621      New->addAttr(newAttr);
1622      foundAny = true;
1623    }
1624  }
1625
1626  if (!foundAny) New->dropAttrs();
1627}
1628
1629/// mergeParamDeclAttributes - Copy attributes from the old parameter
1630/// to the new one.
1631static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1632                                     const ParmVarDecl *oldDecl,
1633                                     ASTContext &C) {
1634  if (!oldDecl->hasAttrs())
1635    return;
1636
1637  bool foundAny = newDecl->hasAttrs();
1638
1639  // Ensure that any moving of objects within the allocated map is
1640  // done before we process them.
1641  if (!foundAny) newDecl->setAttrs(AttrVec());
1642
1643  for (specific_attr_iterator<InheritableParamAttr>
1644       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1645       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1646    if (!DeclHasAttr(newDecl, *i)) {
1647      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1648      newAttr->setInherited(true);
1649      newDecl->addAttr(newAttr);
1650      foundAny = true;
1651    }
1652  }
1653
1654  if (!foundAny) newDecl->dropAttrs();
1655}
1656
1657namespace {
1658
1659/// Used in MergeFunctionDecl to keep track of function parameters in
1660/// C.
1661struct GNUCompatibleParamWarning {
1662  ParmVarDecl *OldParm;
1663  ParmVarDecl *NewParm;
1664  QualType PromotedType;
1665};
1666
1667}
1668
1669/// getSpecialMember - get the special member enum for a method.
1670Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1671  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1672    if (Ctor->isDefaultConstructor())
1673      return Sema::CXXDefaultConstructor;
1674
1675    if (Ctor->isCopyConstructor())
1676      return Sema::CXXCopyConstructor;
1677
1678    if (Ctor->isMoveConstructor())
1679      return Sema::CXXMoveConstructor;
1680  } else if (isa<CXXDestructorDecl>(MD)) {
1681    return Sema::CXXDestructor;
1682  } else if (MD->isCopyAssignmentOperator()) {
1683    return Sema::CXXCopyAssignment;
1684  } else if (MD->isMoveAssignmentOperator()) {
1685    return Sema::CXXMoveAssignment;
1686  }
1687
1688  return Sema::CXXInvalid;
1689}
1690
1691/// canRedefineFunction - checks if a function can be redefined. Currently,
1692/// only extern inline functions can be redefined, and even then only in
1693/// GNU89 mode.
1694static bool canRedefineFunction(const FunctionDecl *FD,
1695                                const LangOptions& LangOpts) {
1696  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1697          !LangOpts.CPlusPlus &&
1698          FD->isInlineSpecified() &&
1699          FD->getStorageClass() == SC_Extern);
1700}
1701
1702/// MergeFunctionDecl - We just parsed a function 'New' from
1703/// declarator D which has the same name and scope as a previous
1704/// declaration 'Old'.  Figure out how to resolve this situation,
1705/// merging decls or emitting diagnostics as appropriate.
1706///
1707/// In C++, New and Old must be declarations that are not
1708/// overloaded. Use IsOverload to determine whether New and Old are
1709/// overloaded, and to select the Old declaration that New should be
1710/// merged with.
1711///
1712/// Returns true if there was an error, false otherwise.
1713bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1714  // Verify the old decl was also a function.
1715  FunctionDecl *Old = 0;
1716  if (FunctionTemplateDecl *OldFunctionTemplate
1717        = dyn_cast<FunctionTemplateDecl>(OldD))
1718    Old = OldFunctionTemplate->getTemplatedDecl();
1719  else
1720    Old = dyn_cast<FunctionDecl>(OldD);
1721  if (!Old) {
1722    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1723      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1724      Diag(Shadow->getTargetDecl()->getLocation(),
1725           diag::note_using_decl_target);
1726      Diag(Shadow->getUsingDecl()->getLocation(),
1727           diag::note_using_decl) << 0;
1728      return true;
1729    }
1730
1731    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1732      << New->getDeclName();
1733    Diag(OldD->getLocation(), diag::note_previous_definition);
1734    return true;
1735  }
1736
1737  // Determine whether the previous declaration was a definition,
1738  // implicit declaration, or a declaration.
1739  diag::kind PrevDiag;
1740  if (Old->isThisDeclarationADefinition())
1741    PrevDiag = diag::note_previous_definition;
1742  else if (Old->isImplicit())
1743    PrevDiag = diag::note_previous_implicit_declaration;
1744  else
1745    PrevDiag = diag::note_previous_declaration;
1746
1747  QualType OldQType = Context.getCanonicalType(Old->getType());
1748  QualType NewQType = Context.getCanonicalType(New->getType());
1749
1750  // Don't complain about this if we're in GNU89 mode and the old function
1751  // is an extern inline function.
1752  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1753      New->getStorageClass() == SC_Static &&
1754      Old->getStorageClass() != SC_Static &&
1755      !canRedefineFunction(Old, getLangOptions())) {
1756    if (getLangOptions().MicrosoftExt) {
1757      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1758      Diag(Old->getLocation(), PrevDiag);
1759    } else {
1760      Diag(New->getLocation(), diag::err_static_non_static) << New;
1761      Diag(Old->getLocation(), PrevDiag);
1762      return true;
1763    }
1764  }
1765
1766  // If a function is first declared with a calling convention, but is
1767  // later declared or defined without one, the second decl assumes the
1768  // calling convention of the first.
1769  //
1770  // For the new decl, we have to look at the NON-canonical type to tell the
1771  // difference between a function that really doesn't have a calling
1772  // convention and one that is declared cdecl. That's because in
1773  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1774  // because it is the default calling convention.
1775  //
1776  // Note also that we DO NOT return at this point, because we still have
1777  // other tests to run.
1778  const FunctionType *OldType = cast<FunctionType>(OldQType);
1779  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1780  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1781  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1782  bool RequiresAdjustment = false;
1783  if (OldTypeInfo.getCC() != CC_Default &&
1784      NewTypeInfo.getCC() == CC_Default) {
1785    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1786    RequiresAdjustment = true;
1787  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1788                                     NewTypeInfo.getCC())) {
1789    // Calling conventions really aren't compatible, so complain.
1790    Diag(New->getLocation(), diag::err_cconv_change)
1791      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1792      << (OldTypeInfo.getCC() == CC_Default)
1793      << (OldTypeInfo.getCC() == CC_Default ? "" :
1794          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1795    Diag(Old->getLocation(), diag::note_previous_declaration);
1796    return true;
1797  }
1798
1799  // FIXME: diagnose the other way around?
1800  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1801    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1802    RequiresAdjustment = true;
1803  }
1804
1805  // Merge regparm attribute.
1806  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1807      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1808    if (NewTypeInfo.getHasRegParm()) {
1809      Diag(New->getLocation(), diag::err_regparm_mismatch)
1810        << NewType->getRegParmType()
1811        << OldType->getRegParmType();
1812      Diag(Old->getLocation(), diag::note_previous_declaration);
1813      return true;
1814    }
1815
1816    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1817    RequiresAdjustment = true;
1818  }
1819
1820  // Merge ns_returns_retained attribute.
1821  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1822    if (NewTypeInfo.getProducesResult()) {
1823      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1824      Diag(Old->getLocation(), diag::note_previous_declaration);
1825      return true;
1826    }
1827
1828    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1829    RequiresAdjustment = true;
1830  }
1831
1832  if (RequiresAdjustment) {
1833    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1834    New->setType(QualType(NewType, 0));
1835    NewQType = Context.getCanonicalType(New->getType());
1836  }
1837
1838  if (getLangOptions().CPlusPlus) {
1839    // (C++98 13.1p2):
1840    //   Certain function declarations cannot be overloaded:
1841    //     -- Function declarations that differ only in the return type
1842    //        cannot be overloaded.
1843    QualType OldReturnType = OldType->getResultType();
1844    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1845    QualType ResQT;
1846    if (OldReturnType != NewReturnType) {
1847      if (NewReturnType->isObjCObjectPointerType()
1848          && OldReturnType->isObjCObjectPointerType())
1849        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1850      if (ResQT.isNull()) {
1851        if (New->isCXXClassMember() && New->isOutOfLine())
1852          Diag(New->getLocation(),
1853               diag::err_member_def_does_not_match_ret_type) << New;
1854        else
1855          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1856        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1857        return true;
1858      }
1859      else
1860        NewQType = ResQT;
1861    }
1862
1863    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1864    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1865    if (OldMethod && NewMethod) {
1866      // Preserve triviality.
1867      NewMethod->setTrivial(OldMethod->isTrivial());
1868
1869      // MSVC allows explicit template specialization at class scope:
1870      // 2 CXMethodDecls referring to the same function will be injected.
1871      // We don't want a redeclartion error.
1872      bool IsClassScopeExplicitSpecialization =
1873                              OldMethod->isFunctionTemplateSpecialization() &&
1874                              NewMethod->isFunctionTemplateSpecialization();
1875      bool isFriend = NewMethod->getFriendObjectKind();
1876
1877      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1878          !IsClassScopeExplicitSpecialization) {
1879        //    -- Member function declarations with the same name and the
1880        //       same parameter types cannot be overloaded if any of them
1881        //       is a static member function declaration.
1882        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1883          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1884          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1885          return true;
1886        }
1887
1888        // C++ [class.mem]p1:
1889        //   [...] A member shall not be declared twice in the
1890        //   member-specification, except that a nested class or member
1891        //   class template can be declared and then later defined.
1892        unsigned NewDiag;
1893        if (isa<CXXConstructorDecl>(OldMethod))
1894          NewDiag = diag::err_constructor_redeclared;
1895        else if (isa<CXXDestructorDecl>(NewMethod))
1896          NewDiag = diag::err_destructor_redeclared;
1897        else if (isa<CXXConversionDecl>(NewMethod))
1898          NewDiag = diag::err_conv_function_redeclared;
1899        else
1900          NewDiag = diag::err_member_redeclared;
1901
1902        Diag(New->getLocation(), NewDiag);
1903        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1904
1905      // Complain if this is an explicit declaration of a special
1906      // member that was initially declared implicitly.
1907      //
1908      // As an exception, it's okay to befriend such methods in order
1909      // to permit the implicit constructor/destructor/operator calls.
1910      } else if (OldMethod->isImplicit()) {
1911        if (isFriend) {
1912          NewMethod->setImplicit();
1913        } else {
1914          Diag(NewMethod->getLocation(),
1915               diag::err_definition_of_implicitly_declared_member)
1916            << New << getSpecialMember(OldMethod);
1917          return true;
1918        }
1919      } else if (OldMethod->isExplicitlyDefaulted()) {
1920        Diag(NewMethod->getLocation(),
1921             diag::err_definition_of_explicitly_defaulted_member)
1922          << getSpecialMember(OldMethod);
1923        return true;
1924      }
1925    }
1926
1927    // (C++98 8.3.5p3):
1928    //   All declarations for a function shall agree exactly in both the
1929    //   return type and the parameter-type-list.
1930    // We also want to respect all the extended bits except noreturn.
1931
1932    // noreturn should now match unless the old type info didn't have it.
1933    QualType OldQTypeForComparison = OldQType;
1934    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1935      assert(OldQType == QualType(OldType, 0));
1936      const FunctionType *OldTypeForComparison
1937        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1938      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1939      assert(OldQTypeForComparison.isCanonical());
1940    }
1941
1942    if (OldQTypeForComparison == NewQType)
1943      return MergeCompatibleFunctionDecls(New, Old);
1944
1945    // Fall through for conflicting redeclarations and redefinitions.
1946  }
1947
1948  // C: Function types need to be compatible, not identical. This handles
1949  // duplicate function decls like "void f(int); void f(enum X);" properly.
1950  if (!getLangOptions().CPlusPlus &&
1951      Context.typesAreCompatible(OldQType, NewQType)) {
1952    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1953    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1954    const FunctionProtoType *OldProto = 0;
1955    if (isa<FunctionNoProtoType>(NewFuncType) &&
1956        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1957      // The old declaration provided a function prototype, but the
1958      // new declaration does not. Merge in the prototype.
1959      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1960      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1961                                                 OldProto->arg_type_end());
1962      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1963                                         ParamTypes.data(), ParamTypes.size(),
1964                                         OldProto->getExtProtoInfo());
1965      New->setType(NewQType);
1966      New->setHasInheritedPrototype();
1967
1968      // Synthesize a parameter for each argument type.
1969      SmallVector<ParmVarDecl*, 16> Params;
1970      for (FunctionProtoType::arg_type_iterator
1971             ParamType = OldProto->arg_type_begin(),
1972             ParamEnd = OldProto->arg_type_end();
1973           ParamType != ParamEnd; ++ParamType) {
1974        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1975                                                 SourceLocation(),
1976                                                 SourceLocation(), 0,
1977                                                 *ParamType, /*TInfo=*/0,
1978                                                 SC_None, SC_None,
1979                                                 0);
1980        Param->setScopeInfo(0, Params.size());
1981        Param->setImplicit();
1982        Params.push_back(Param);
1983      }
1984
1985      New->setParams(Params);
1986    }
1987
1988    return MergeCompatibleFunctionDecls(New, Old);
1989  }
1990
1991  // GNU C permits a K&R definition to follow a prototype declaration
1992  // if the declared types of the parameters in the K&R definition
1993  // match the types in the prototype declaration, even when the
1994  // promoted types of the parameters from the K&R definition differ
1995  // from the types in the prototype. GCC then keeps the types from
1996  // the prototype.
1997  //
1998  // If a variadic prototype is followed by a non-variadic K&R definition,
1999  // the K&R definition becomes variadic.  This is sort of an edge case, but
2000  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2001  // C99 6.9.1p8.
2002  if (!getLangOptions().CPlusPlus &&
2003      Old->hasPrototype() && !New->hasPrototype() &&
2004      New->getType()->getAs<FunctionProtoType>() &&
2005      Old->getNumParams() == New->getNumParams()) {
2006    SmallVector<QualType, 16> ArgTypes;
2007    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2008    const FunctionProtoType *OldProto
2009      = Old->getType()->getAs<FunctionProtoType>();
2010    const FunctionProtoType *NewProto
2011      = New->getType()->getAs<FunctionProtoType>();
2012
2013    // Determine whether this is the GNU C extension.
2014    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2015                                               NewProto->getResultType());
2016    bool LooseCompatible = !MergedReturn.isNull();
2017    for (unsigned Idx = 0, End = Old->getNumParams();
2018         LooseCompatible && Idx != End; ++Idx) {
2019      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2020      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2021      if (Context.typesAreCompatible(OldParm->getType(),
2022                                     NewProto->getArgType(Idx))) {
2023        ArgTypes.push_back(NewParm->getType());
2024      } else if (Context.typesAreCompatible(OldParm->getType(),
2025                                            NewParm->getType(),
2026                                            /*CompareUnqualified=*/true)) {
2027        GNUCompatibleParamWarning Warn
2028          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2029        Warnings.push_back(Warn);
2030        ArgTypes.push_back(NewParm->getType());
2031      } else
2032        LooseCompatible = false;
2033    }
2034
2035    if (LooseCompatible) {
2036      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2037        Diag(Warnings[Warn].NewParm->getLocation(),
2038             diag::ext_param_promoted_not_compatible_with_prototype)
2039          << Warnings[Warn].PromotedType
2040          << Warnings[Warn].OldParm->getType();
2041        if (Warnings[Warn].OldParm->getLocation().isValid())
2042          Diag(Warnings[Warn].OldParm->getLocation(),
2043               diag::note_previous_declaration);
2044      }
2045
2046      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2047                                           ArgTypes.size(),
2048                                           OldProto->getExtProtoInfo()));
2049      return MergeCompatibleFunctionDecls(New, Old);
2050    }
2051
2052    // Fall through to diagnose conflicting types.
2053  }
2054
2055  // A function that has already been declared has been redeclared or defined
2056  // with a different type- show appropriate diagnostic
2057  if (unsigned BuiltinID = Old->getBuiltinID()) {
2058    // The user has declared a builtin function with an incompatible
2059    // signature.
2060    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2061      // The function the user is redeclaring is a library-defined
2062      // function like 'malloc' or 'printf'. Warn about the
2063      // redeclaration, then pretend that we don't know about this
2064      // library built-in.
2065      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2066      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2067        << Old << Old->getType();
2068      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2069      Old->setInvalidDecl();
2070      return false;
2071    }
2072
2073    PrevDiag = diag::note_previous_builtin_declaration;
2074  }
2075
2076  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2077  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2078  return true;
2079}
2080
2081/// \brief Completes the merge of two function declarations that are
2082/// known to be compatible.
2083///
2084/// This routine handles the merging of attributes and other
2085/// properties of function declarations form the old declaration to
2086/// the new declaration, once we know that New is in fact a
2087/// redeclaration of Old.
2088///
2089/// \returns false
2090bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2091  // Merge the attributes
2092  mergeDeclAttributes(New, Old);
2093
2094  // Merge the storage class.
2095  if (Old->getStorageClass() != SC_Extern &&
2096      Old->getStorageClass() != SC_None)
2097    New->setStorageClass(Old->getStorageClass());
2098
2099  // Merge "pure" flag.
2100  if (Old->isPure())
2101    New->setPure();
2102
2103  // Merge attributes from the parameters.  These can mismatch with K&R
2104  // declarations.
2105  if (New->getNumParams() == Old->getNumParams())
2106    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2107      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2108                               Context);
2109
2110  if (getLangOptions().CPlusPlus)
2111    return MergeCXXFunctionDecl(New, Old);
2112
2113  return false;
2114}
2115
2116
2117void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2118                                ObjCMethodDecl *oldMethod) {
2119  // We don't want to merge unavailable and deprecated attributes
2120  // except from interface to implementation.
2121  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2122
2123  // Merge the attributes.
2124  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2125
2126  // Merge attributes from the parameters.
2127  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2128  for (ObjCMethodDecl::param_iterator
2129         ni = newMethod->param_begin(), ne = newMethod->param_end();
2130       ni != ne; ++ni, ++oi)
2131    mergeParamDeclAttributes(*ni, *oi, Context);
2132
2133  CheckObjCMethodOverride(newMethod, oldMethod, true);
2134}
2135
2136/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2137/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2138/// emitting diagnostics as appropriate.
2139///
2140/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2141/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2142/// check them before the initializer is attached.
2143///
2144void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2145  if (New->isInvalidDecl() || Old->isInvalidDecl())
2146    return;
2147
2148  QualType MergedT;
2149  if (getLangOptions().CPlusPlus) {
2150    AutoType *AT = New->getType()->getContainedAutoType();
2151    if (AT && !AT->isDeduced()) {
2152      // We don't know what the new type is until the initializer is attached.
2153      return;
2154    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2155      // These could still be something that needs exception specs checked.
2156      return MergeVarDeclExceptionSpecs(New, Old);
2157    }
2158    // C++ [basic.link]p10:
2159    //   [...] the types specified by all declarations referring to a given
2160    //   object or function shall be identical, except that declarations for an
2161    //   array object can specify array types that differ by the presence or
2162    //   absence of a major array bound (8.3.4).
2163    else if (Old->getType()->isIncompleteArrayType() &&
2164             New->getType()->isArrayType()) {
2165      CanQual<ArrayType> OldArray
2166        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2167      CanQual<ArrayType> NewArray
2168        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2169      if (OldArray->getElementType() == NewArray->getElementType())
2170        MergedT = New->getType();
2171    } else if (Old->getType()->isArrayType() &&
2172             New->getType()->isIncompleteArrayType()) {
2173      CanQual<ArrayType> OldArray
2174        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2175      CanQual<ArrayType> NewArray
2176        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2177      if (OldArray->getElementType() == NewArray->getElementType())
2178        MergedT = Old->getType();
2179    } else if (New->getType()->isObjCObjectPointerType()
2180               && Old->getType()->isObjCObjectPointerType()) {
2181        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2182                                                        Old->getType());
2183    }
2184  } else {
2185    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2186  }
2187  if (MergedT.isNull()) {
2188    Diag(New->getLocation(), diag::err_redefinition_different_type)
2189      << New->getDeclName();
2190    Diag(Old->getLocation(), diag::note_previous_definition);
2191    return New->setInvalidDecl();
2192  }
2193  New->setType(MergedT);
2194}
2195
2196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2198/// situation, merging decls or emitting diagnostics as appropriate.
2199///
2200/// Tentative definition rules (C99 6.9.2p2) are checked by
2201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2202/// definitions here, since the initializer hasn't been attached.
2203///
2204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2205  // If the new decl is already invalid, don't do any other checking.
2206  if (New->isInvalidDecl())
2207    return;
2208
2209  // Verify the old decl was also a variable.
2210  VarDecl *Old = 0;
2211  if (!Previous.isSingleResult() ||
2212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2214      << New->getDeclName();
2215    Diag(Previous.getRepresentativeDecl()->getLocation(),
2216         diag::note_previous_definition);
2217    return New->setInvalidDecl();
2218  }
2219
2220  // C++ [class.mem]p1:
2221  //   A member shall not be declared twice in the member-specification [...]
2222  //
2223  // Here, we need only consider static data members.
2224  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2225    Diag(New->getLocation(), diag::err_duplicate_member)
2226      << New->getIdentifier();
2227    Diag(Old->getLocation(), diag::note_previous_declaration);
2228    New->setInvalidDecl();
2229  }
2230
2231  mergeDeclAttributes(New, Old);
2232  // Warn if an already-declared variable is made a weak_import in a subsequent
2233  // declaration
2234  if (New->getAttr<WeakImportAttr>() &&
2235      Old->getStorageClass() == SC_None &&
2236      !Old->getAttr<WeakImportAttr>()) {
2237    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2238    Diag(Old->getLocation(), diag::note_previous_definition);
2239    // Remove weak_import attribute on new declaration.
2240    New->dropAttr<WeakImportAttr>();
2241  }
2242
2243  // Merge the types.
2244  MergeVarDeclTypes(New, Old);
2245  if (New->isInvalidDecl())
2246    return;
2247
2248  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2249  if (New->getStorageClass() == SC_Static &&
2250      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2251    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253    return New->setInvalidDecl();
2254  }
2255  // C99 6.2.2p4:
2256  //   For an identifier declared with the storage-class specifier
2257  //   extern in a scope in which a prior declaration of that
2258  //   identifier is visible,23) if the prior declaration specifies
2259  //   internal or external linkage, the linkage of the identifier at
2260  //   the later declaration is the same as the linkage specified at
2261  //   the prior declaration. If no prior declaration is visible, or
2262  //   if the prior declaration specifies no linkage, then the
2263  //   identifier has external linkage.
2264  if (New->hasExternalStorage() && Old->hasLinkage())
2265    /* Okay */;
2266  else if (New->getStorageClass() != SC_Static &&
2267           Old->getStorageClass() == SC_Static) {
2268    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2269    Diag(Old->getLocation(), diag::note_previous_definition);
2270    return New->setInvalidDecl();
2271  }
2272
2273  // Check if extern is followed by non-extern and vice-versa.
2274  if (New->hasExternalStorage() &&
2275      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2276    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2277    Diag(Old->getLocation(), diag::note_previous_definition);
2278    return New->setInvalidDecl();
2279  }
2280  if (Old->hasExternalStorage() &&
2281      !New->hasLinkage() && New->isLocalVarDecl()) {
2282    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2283    Diag(Old->getLocation(), diag::note_previous_definition);
2284    return New->setInvalidDecl();
2285  }
2286
2287  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2288
2289  // FIXME: The test for external storage here seems wrong? We still
2290  // need to check for mismatches.
2291  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2292      // Don't complain about out-of-line definitions of static members.
2293      !(Old->getLexicalDeclContext()->isRecord() &&
2294        !New->getLexicalDeclContext()->isRecord())) {
2295    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2296    Diag(Old->getLocation(), diag::note_previous_definition);
2297    return New->setInvalidDecl();
2298  }
2299
2300  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2301    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2302    Diag(Old->getLocation(), diag::note_previous_definition);
2303  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2304    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2305    Diag(Old->getLocation(), diag::note_previous_definition);
2306  }
2307
2308  // C++ doesn't have tentative definitions, so go right ahead and check here.
2309  const VarDecl *Def;
2310  if (getLangOptions().CPlusPlus &&
2311      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2312      (Def = Old->getDefinition())) {
2313    Diag(New->getLocation(), diag::err_redefinition)
2314      << New->getDeclName();
2315    Diag(Def->getLocation(), diag::note_previous_definition);
2316    New->setInvalidDecl();
2317    return;
2318  }
2319  // c99 6.2.2 P4.
2320  // For an identifier declared with the storage-class specifier extern in a
2321  // scope in which a prior declaration of that identifier is visible, if
2322  // the prior declaration specifies internal or external linkage, the linkage
2323  // of the identifier at the later declaration is the same as the linkage
2324  // specified at the prior declaration.
2325  // FIXME. revisit this code.
2326  if (New->hasExternalStorage() &&
2327      Old->getLinkage() == InternalLinkage &&
2328      New->getDeclContext() == Old->getDeclContext())
2329    New->setStorageClass(Old->getStorageClass());
2330
2331  // Keep a chain of previous declarations.
2332  New->setPreviousDeclaration(Old);
2333
2334  // Inherit access appropriately.
2335  New->setAccess(Old->getAccess());
2336}
2337
2338/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2339/// no declarator (e.g. "struct foo;") is parsed.
2340Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2341                                       DeclSpec &DS) {
2342  return ParsedFreeStandingDeclSpec(S, AS, DS,
2343                                    MultiTemplateParamsArg(*this, 0, 0));
2344}
2345
2346/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2347/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2348/// parameters to cope with template friend declarations.
2349Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                       DeclSpec &DS,
2351                                       MultiTemplateParamsArg TemplateParams) {
2352  Decl *TagD = 0;
2353  TagDecl *Tag = 0;
2354  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2355      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2356      DS.getTypeSpecType() == DeclSpec::TST_union ||
2357      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2358    TagD = DS.getRepAsDecl();
2359
2360    if (!TagD) // We probably had an error
2361      return 0;
2362
2363    // Note that the above type specs guarantee that the
2364    // type rep is a Decl, whereas in many of the others
2365    // it's a Type.
2366    if (isa<TagDecl>(TagD))
2367      Tag = cast<TagDecl>(TagD);
2368    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2369      Tag = CTD->getTemplatedDecl();
2370  }
2371
2372  if (Tag)
2373    Tag->setFreeStanding();
2374
2375  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2376    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2377    // or incomplete types shall not be restrict-qualified."
2378    if (TypeQuals & DeclSpec::TQ_restrict)
2379      Diag(DS.getRestrictSpecLoc(),
2380           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2381           << DS.getSourceRange();
2382  }
2383
2384  if (DS.isConstexprSpecified()) {
2385    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2386    // and definitions of functions and variables.
2387    if (Tag)
2388      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2389        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2390            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2391            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2392    else
2393      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2394    // Don't emit warnings after this error.
2395    return TagD;
2396  }
2397
2398  if (DS.isFriendSpecified()) {
2399    // If we're dealing with a decl but not a TagDecl, assume that
2400    // whatever routines created it handled the friendship aspect.
2401    if (TagD && !Tag)
2402      return 0;
2403    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2404  }
2405
2406  // Track whether we warned about the fact that there aren't any
2407  // declarators.
2408  bool emittedWarning = false;
2409
2410  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2411    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2412        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2413      if (getLangOptions().CPlusPlus ||
2414          Record->getDeclContext()->isRecord())
2415        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2416
2417      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2418        << DS.getSourceRange();
2419      emittedWarning = true;
2420    }
2421  }
2422
2423  // Check for Microsoft C extension: anonymous struct.
2424  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2425      CurContext->isRecord() &&
2426      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2427    // Handle 2 kinds of anonymous struct:
2428    //   struct STRUCT;
2429    // and
2430    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2431    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2432    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2433        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2434         DS.getRepAsType().get()->isStructureType())) {
2435      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2436        << DS.getSourceRange();
2437      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2438    }
2439  }
2440
2441  if (getLangOptions().CPlusPlus &&
2442      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2443    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2444      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2445          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2446        Diag(Enum->getLocation(), diag::ext_no_declarators)
2447          << DS.getSourceRange();
2448        emittedWarning = true;
2449      }
2450
2451  // Skip all the checks below if we have a type error.
2452  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2453
2454  if (!DS.isMissingDeclaratorOk()) {
2455    // Warn about typedefs of enums without names, since this is an
2456    // extension in both Microsoft and GNU.
2457    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2458        Tag && isa<EnumDecl>(Tag)) {
2459      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2460        << DS.getSourceRange();
2461      return Tag;
2462    }
2463
2464    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2465      << DS.getSourceRange();
2466    emittedWarning = true;
2467  }
2468
2469  // We're going to complain about a bunch of spurious specifiers;
2470  // only do this if we're declaring a tag, because otherwise we
2471  // should be getting diag::ext_no_declarators.
2472  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2473    return TagD;
2474
2475  // Note that a linkage-specification sets a storage class, but
2476  // 'extern "C" struct foo;' is actually valid and not theoretically
2477  // useless.
2478  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2479    if (!DS.isExternInLinkageSpec())
2480      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2481        << DeclSpec::getSpecifierName(scs);
2482
2483  if (DS.isThreadSpecified())
2484    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2485  if (DS.getTypeQualifiers()) {
2486    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2487      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2488    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2489      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2490    // Restrict is covered above.
2491  }
2492  if (DS.isInlineSpecified())
2493    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2494  if (DS.isVirtualSpecified())
2495    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2496  if (DS.isExplicitSpecified())
2497    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2498
2499  if (DS.isModulePrivateSpecified() &&
2500      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2501    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2502      << Tag->getTagKind()
2503      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2504
2505  // Warn about ignored type attributes, for example:
2506  // __attribute__((aligned)) struct A;
2507  // Attributes should be placed after tag to apply to type declaration.
2508  if (!DS.getAttributes().empty()) {
2509    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2510    if (TypeSpecType == DeclSpec::TST_class ||
2511        TypeSpecType == DeclSpec::TST_struct ||
2512        TypeSpecType == DeclSpec::TST_union ||
2513        TypeSpecType == DeclSpec::TST_enum) {
2514      AttributeList* attrs = DS.getAttributes().getList();
2515      while (attrs) {
2516        Diag(attrs->getScopeLoc(),
2517             diag::warn_declspec_attribute_ignored)
2518        << attrs->getName()
2519        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2520            TypeSpecType == DeclSpec::TST_struct ? 1 :
2521            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2522        attrs = attrs->getNext();
2523      }
2524    }
2525  }
2526
2527  return TagD;
2528}
2529
2530/// We are trying to inject an anonymous member into the given scope;
2531/// check if there's an existing declaration that can't be overloaded.
2532///
2533/// \return true if this is a forbidden redeclaration
2534static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2535                                         Scope *S,
2536                                         DeclContext *Owner,
2537                                         DeclarationName Name,
2538                                         SourceLocation NameLoc,
2539                                         unsigned diagnostic) {
2540  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2541                 Sema::ForRedeclaration);
2542  if (!SemaRef.LookupName(R, S)) return false;
2543
2544  if (R.getAsSingle<TagDecl>())
2545    return false;
2546
2547  // Pick a representative declaration.
2548  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2549  assert(PrevDecl && "Expected a non-null Decl");
2550
2551  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2552    return false;
2553
2554  SemaRef.Diag(NameLoc, diagnostic) << Name;
2555  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2556
2557  return true;
2558}
2559
2560/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2561/// anonymous struct or union AnonRecord into the owning context Owner
2562/// and scope S. This routine will be invoked just after we realize
2563/// that an unnamed union or struct is actually an anonymous union or
2564/// struct, e.g.,
2565///
2566/// @code
2567/// union {
2568///   int i;
2569///   float f;
2570/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2571///    // f into the surrounding scope.x
2572/// @endcode
2573///
2574/// This routine is recursive, injecting the names of nested anonymous
2575/// structs/unions into the owning context and scope as well.
2576static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2577                                                DeclContext *Owner,
2578                                                RecordDecl *AnonRecord,
2579                                                AccessSpecifier AS,
2580                              SmallVector<NamedDecl*, 2> &Chaining,
2581                                                      bool MSAnonStruct) {
2582  unsigned diagKind
2583    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2584                            : diag::err_anonymous_struct_member_redecl;
2585
2586  bool Invalid = false;
2587
2588  // Look every FieldDecl and IndirectFieldDecl with a name.
2589  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2590                               DEnd = AnonRecord->decls_end();
2591       D != DEnd; ++D) {
2592    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2593        cast<NamedDecl>(*D)->getDeclName()) {
2594      ValueDecl *VD = cast<ValueDecl>(*D);
2595      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2596                                       VD->getLocation(), diagKind)) {
2597        // C++ [class.union]p2:
2598        //   The names of the members of an anonymous union shall be
2599        //   distinct from the names of any other entity in the
2600        //   scope in which the anonymous union is declared.
2601        Invalid = true;
2602      } else {
2603        // C++ [class.union]p2:
2604        //   For the purpose of name lookup, after the anonymous union
2605        //   definition, the members of the anonymous union are
2606        //   considered to have been defined in the scope in which the
2607        //   anonymous union is declared.
2608        unsigned OldChainingSize = Chaining.size();
2609        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2610          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2611               PE = IF->chain_end(); PI != PE; ++PI)
2612            Chaining.push_back(*PI);
2613        else
2614          Chaining.push_back(VD);
2615
2616        assert(Chaining.size() >= 2);
2617        NamedDecl **NamedChain =
2618          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2619        for (unsigned i = 0; i < Chaining.size(); i++)
2620          NamedChain[i] = Chaining[i];
2621
2622        IndirectFieldDecl* IndirectField =
2623          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2624                                    VD->getIdentifier(), VD->getType(),
2625                                    NamedChain, Chaining.size());
2626
2627        IndirectField->setAccess(AS);
2628        IndirectField->setImplicit();
2629        SemaRef.PushOnScopeChains(IndirectField, S);
2630
2631        // That includes picking up the appropriate access specifier.
2632        if (AS != AS_none) IndirectField->setAccess(AS);
2633
2634        Chaining.resize(OldChainingSize);
2635      }
2636    }
2637  }
2638
2639  return Invalid;
2640}
2641
2642/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2643/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2644/// illegal input values are mapped to SC_None.
2645static StorageClass
2646StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2647  switch (StorageClassSpec) {
2648  case DeclSpec::SCS_unspecified:    return SC_None;
2649  case DeclSpec::SCS_extern:         return SC_Extern;
2650  case DeclSpec::SCS_static:         return SC_Static;
2651  case DeclSpec::SCS_auto:           return SC_Auto;
2652  case DeclSpec::SCS_register:       return SC_Register;
2653  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2654    // Illegal SCSs map to None: error reporting is up to the caller.
2655  case DeclSpec::SCS_mutable:        // Fall through.
2656  case DeclSpec::SCS_typedef:        return SC_None;
2657  }
2658  llvm_unreachable("unknown storage class specifier");
2659}
2660
2661/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2662/// a StorageClass. Any error reporting is up to the caller:
2663/// illegal input values are mapped to SC_None.
2664static StorageClass
2665StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2666  switch (StorageClassSpec) {
2667  case DeclSpec::SCS_unspecified:    return SC_None;
2668  case DeclSpec::SCS_extern:         return SC_Extern;
2669  case DeclSpec::SCS_static:         return SC_Static;
2670  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2671    // Illegal SCSs map to None: error reporting is up to the caller.
2672  case DeclSpec::SCS_auto:           // Fall through.
2673  case DeclSpec::SCS_mutable:        // Fall through.
2674  case DeclSpec::SCS_register:       // Fall through.
2675  case DeclSpec::SCS_typedef:        return SC_None;
2676  }
2677  llvm_unreachable("unknown storage class specifier");
2678}
2679
2680/// BuildAnonymousStructOrUnion - Handle the declaration of an
2681/// anonymous structure or union. Anonymous unions are a C++ feature
2682/// (C++ [class.union]) and a GNU C extension; anonymous structures
2683/// are a GNU C and GNU C++ extension.
2684Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2685                                             AccessSpecifier AS,
2686                                             RecordDecl *Record) {
2687  DeclContext *Owner = Record->getDeclContext();
2688
2689  // Diagnose whether this anonymous struct/union is an extension.
2690  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2691    Diag(Record->getLocation(), diag::ext_anonymous_union);
2692  else if (!Record->isUnion())
2693    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2694
2695  // C and C++ require different kinds of checks for anonymous
2696  // structs/unions.
2697  bool Invalid = false;
2698  if (getLangOptions().CPlusPlus) {
2699    const char* PrevSpec = 0;
2700    unsigned DiagID;
2701    if (Record->isUnion()) {
2702      // C++ [class.union]p6:
2703      //   Anonymous unions declared in a named namespace or in the
2704      //   global namespace shall be declared static.
2705      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2706          (isa<TranslationUnitDecl>(Owner) ||
2707           (isa<NamespaceDecl>(Owner) &&
2708            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2709        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2710          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2711
2712        // Recover by adding 'static'.
2713        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2714                               PrevSpec, DiagID);
2715      }
2716      // C++ [class.union]p6:
2717      //   A storage class is not allowed in a declaration of an
2718      //   anonymous union in a class scope.
2719      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2720               isa<RecordDecl>(Owner)) {
2721        Diag(DS.getStorageClassSpecLoc(),
2722             diag::err_anonymous_union_with_storage_spec)
2723          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2724
2725        // Recover by removing the storage specifier.
2726        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2727                               SourceLocation(),
2728                               PrevSpec, DiagID);
2729      }
2730    }
2731
2732    // Ignore const/volatile/restrict qualifiers.
2733    if (DS.getTypeQualifiers()) {
2734      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2735        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2736          << Record->isUnion() << 0
2737          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2738      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2739        Diag(DS.getVolatileSpecLoc(),
2740             diag::ext_anonymous_struct_union_qualified)
2741          << Record->isUnion() << 1
2742          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2743      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2744        Diag(DS.getRestrictSpecLoc(),
2745             diag::ext_anonymous_struct_union_qualified)
2746          << Record->isUnion() << 2
2747          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2748
2749      DS.ClearTypeQualifiers();
2750    }
2751
2752    // C++ [class.union]p2:
2753    //   The member-specification of an anonymous union shall only
2754    //   define non-static data members. [Note: nested types and
2755    //   functions cannot be declared within an anonymous union. ]
2756    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2757                                 MemEnd = Record->decls_end();
2758         Mem != MemEnd; ++Mem) {
2759      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2760        // C++ [class.union]p3:
2761        //   An anonymous union shall not have private or protected
2762        //   members (clause 11).
2763        assert(FD->getAccess() != AS_none);
2764        if (FD->getAccess() != AS_public) {
2765          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2766            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2767          Invalid = true;
2768        }
2769
2770        // C++ [class.union]p1
2771        //   An object of a class with a non-trivial constructor, a non-trivial
2772        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2773        //   assignment operator cannot be a member of a union, nor can an
2774        //   array of such objects.
2775        if (CheckNontrivialField(FD))
2776          Invalid = true;
2777      } else if ((*Mem)->isImplicit()) {
2778        // Any implicit members are fine.
2779      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2780        // This is a type that showed up in an
2781        // elaborated-type-specifier inside the anonymous struct or
2782        // union, but which actually declares a type outside of the
2783        // anonymous struct or union. It's okay.
2784      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2785        if (!MemRecord->isAnonymousStructOrUnion() &&
2786            MemRecord->getDeclName()) {
2787          // Visual C++ allows type definition in anonymous struct or union.
2788          if (getLangOptions().MicrosoftExt)
2789            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2790              << (int)Record->isUnion();
2791          else {
2792            // This is a nested type declaration.
2793            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2794              << (int)Record->isUnion();
2795            Invalid = true;
2796          }
2797        }
2798      } else if (isa<AccessSpecDecl>(*Mem)) {
2799        // Any access specifier is fine.
2800      } else {
2801        // We have something that isn't a non-static data
2802        // member. Complain about it.
2803        unsigned DK = diag::err_anonymous_record_bad_member;
2804        if (isa<TypeDecl>(*Mem))
2805          DK = diag::err_anonymous_record_with_type;
2806        else if (isa<FunctionDecl>(*Mem))
2807          DK = diag::err_anonymous_record_with_function;
2808        else if (isa<VarDecl>(*Mem))
2809          DK = diag::err_anonymous_record_with_static;
2810
2811        // Visual C++ allows type definition in anonymous struct or union.
2812        if (getLangOptions().MicrosoftExt &&
2813            DK == diag::err_anonymous_record_with_type)
2814          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2815            << (int)Record->isUnion();
2816        else {
2817          Diag((*Mem)->getLocation(), DK)
2818              << (int)Record->isUnion();
2819          Invalid = true;
2820        }
2821      }
2822    }
2823  }
2824
2825  if (!Record->isUnion() && !Owner->isRecord()) {
2826    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2827      << (int)getLangOptions().CPlusPlus;
2828    Invalid = true;
2829  }
2830
2831  // Mock up a declarator.
2832  Declarator Dc(DS, Declarator::MemberContext);
2833  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2834  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2835
2836  // Create a declaration for this anonymous struct/union.
2837  NamedDecl *Anon = 0;
2838  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2839    Anon = FieldDecl::Create(Context, OwningClass,
2840                             DS.getSourceRange().getBegin(),
2841                             Record->getLocation(),
2842                             /*IdentifierInfo=*/0,
2843                             Context.getTypeDeclType(Record),
2844                             TInfo,
2845                             /*BitWidth=*/0, /*Mutable=*/false,
2846                             /*HasInit=*/false);
2847    Anon->setAccess(AS);
2848    if (getLangOptions().CPlusPlus)
2849      FieldCollector->Add(cast<FieldDecl>(Anon));
2850  } else {
2851    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2852    assert(SCSpec != DeclSpec::SCS_typedef &&
2853           "Parser allowed 'typedef' as storage class VarDecl.");
2854    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2855    if (SCSpec == DeclSpec::SCS_mutable) {
2856      // mutable can only appear on non-static class members, so it's always
2857      // an error here
2858      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2859      Invalid = true;
2860      SC = SC_None;
2861    }
2862    SCSpec = DS.getStorageClassSpecAsWritten();
2863    VarDecl::StorageClass SCAsWritten
2864      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2865
2866    Anon = VarDecl::Create(Context, Owner,
2867                           DS.getSourceRange().getBegin(),
2868                           Record->getLocation(), /*IdentifierInfo=*/0,
2869                           Context.getTypeDeclType(Record),
2870                           TInfo, SC, SCAsWritten);
2871
2872    // Default-initialize the implicit variable. This initialization will be
2873    // trivial in almost all cases, except if a union member has an in-class
2874    // initializer:
2875    //   union { int n = 0; };
2876    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2877  }
2878  Anon->setImplicit();
2879
2880  // Add the anonymous struct/union object to the current
2881  // context. We'll be referencing this object when we refer to one of
2882  // its members.
2883  Owner->addDecl(Anon);
2884
2885  // Inject the members of the anonymous struct/union into the owning
2886  // context and into the identifier resolver chain for name lookup
2887  // purposes.
2888  SmallVector<NamedDecl*, 2> Chain;
2889  Chain.push_back(Anon);
2890
2891  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2892                                          Chain, false))
2893    Invalid = true;
2894
2895  // Mark this as an anonymous struct/union type. Note that we do not
2896  // do this until after we have already checked and injected the
2897  // members of this anonymous struct/union type, because otherwise
2898  // the members could be injected twice: once by DeclContext when it
2899  // builds its lookup table, and once by
2900  // InjectAnonymousStructOrUnionMembers.
2901  Record->setAnonymousStructOrUnion(true);
2902
2903  if (Invalid)
2904    Anon->setInvalidDecl();
2905
2906  return Anon;
2907}
2908
2909/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2910/// Microsoft C anonymous structure.
2911/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2912/// Example:
2913///
2914/// struct A { int a; };
2915/// struct B { struct A; int b; };
2916///
2917/// void foo() {
2918///   B var;
2919///   var.a = 3;
2920/// }
2921///
2922Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2923                                           RecordDecl *Record) {
2924
2925  // If there is no Record, get the record via the typedef.
2926  if (!Record)
2927    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2928
2929  // Mock up a declarator.
2930  Declarator Dc(DS, Declarator::TypeNameContext);
2931  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2932  assert(TInfo && "couldn't build declarator info for anonymous struct");
2933
2934  // Create a declaration for this anonymous struct.
2935  NamedDecl* Anon = FieldDecl::Create(Context,
2936                             cast<RecordDecl>(CurContext),
2937                             DS.getSourceRange().getBegin(),
2938                             DS.getSourceRange().getBegin(),
2939                             /*IdentifierInfo=*/0,
2940                             Context.getTypeDeclType(Record),
2941                             TInfo,
2942                             /*BitWidth=*/0, /*Mutable=*/false,
2943                             /*HasInit=*/false);
2944  Anon->setImplicit();
2945
2946  // Add the anonymous struct object to the current context.
2947  CurContext->addDecl(Anon);
2948
2949  // Inject the members of the anonymous struct into the current
2950  // context and into the identifier resolver chain for name lookup
2951  // purposes.
2952  SmallVector<NamedDecl*, 2> Chain;
2953  Chain.push_back(Anon);
2954
2955  RecordDecl *RecordDef = Record->getDefinition();
2956  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2957                                                        RecordDef, AS_none,
2958                                                        Chain, true))
2959    Anon->setInvalidDecl();
2960
2961  return Anon;
2962}
2963
2964/// GetNameForDeclarator - Determine the full declaration name for the
2965/// given Declarator.
2966DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2967  return GetNameFromUnqualifiedId(D.getName());
2968}
2969
2970/// \brief Retrieves the declaration name from a parsed unqualified-id.
2971DeclarationNameInfo
2972Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2973  DeclarationNameInfo NameInfo;
2974  NameInfo.setLoc(Name.StartLocation);
2975
2976  switch (Name.getKind()) {
2977
2978  case UnqualifiedId::IK_ImplicitSelfParam:
2979  case UnqualifiedId::IK_Identifier:
2980    NameInfo.setName(Name.Identifier);
2981    NameInfo.setLoc(Name.StartLocation);
2982    return NameInfo;
2983
2984  case UnqualifiedId::IK_OperatorFunctionId:
2985    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2986                                           Name.OperatorFunctionId.Operator));
2987    NameInfo.setLoc(Name.StartLocation);
2988    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2989      = Name.OperatorFunctionId.SymbolLocations[0];
2990    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2991      = Name.EndLocation.getRawEncoding();
2992    return NameInfo;
2993
2994  case UnqualifiedId::IK_LiteralOperatorId:
2995    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2996                                                           Name.Identifier));
2997    NameInfo.setLoc(Name.StartLocation);
2998    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2999    return NameInfo;
3000
3001  case UnqualifiedId::IK_ConversionFunctionId: {
3002    TypeSourceInfo *TInfo;
3003    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3004    if (Ty.isNull())
3005      return DeclarationNameInfo();
3006    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3007                                               Context.getCanonicalType(Ty)));
3008    NameInfo.setLoc(Name.StartLocation);
3009    NameInfo.setNamedTypeInfo(TInfo);
3010    return NameInfo;
3011  }
3012
3013  case UnqualifiedId::IK_ConstructorName: {
3014    TypeSourceInfo *TInfo;
3015    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3016    if (Ty.isNull())
3017      return DeclarationNameInfo();
3018    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3019                                              Context.getCanonicalType(Ty)));
3020    NameInfo.setLoc(Name.StartLocation);
3021    NameInfo.setNamedTypeInfo(TInfo);
3022    return NameInfo;
3023  }
3024
3025  case UnqualifiedId::IK_ConstructorTemplateId: {
3026    // In well-formed code, we can only have a constructor
3027    // template-id that refers to the current context, so go there
3028    // to find the actual type being constructed.
3029    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3030    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3031      return DeclarationNameInfo();
3032
3033    // Determine the type of the class being constructed.
3034    QualType CurClassType = Context.getTypeDeclType(CurClass);
3035
3036    // FIXME: Check two things: that the template-id names the same type as
3037    // CurClassType, and that the template-id does not occur when the name
3038    // was qualified.
3039
3040    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3041                                    Context.getCanonicalType(CurClassType)));
3042    NameInfo.setLoc(Name.StartLocation);
3043    // FIXME: should we retrieve TypeSourceInfo?
3044    NameInfo.setNamedTypeInfo(0);
3045    return NameInfo;
3046  }
3047
3048  case UnqualifiedId::IK_DestructorName: {
3049    TypeSourceInfo *TInfo;
3050    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3051    if (Ty.isNull())
3052      return DeclarationNameInfo();
3053    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3054                                              Context.getCanonicalType(Ty)));
3055    NameInfo.setLoc(Name.StartLocation);
3056    NameInfo.setNamedTypeInfo(TInfo);
3057    return NameInfo;
3058  }
3059
3060  case UnqualifiedId::IK_TemplateId: {
3061    TemplateName TName = Name.TemplateId->Template.get();
3062    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3063    return Context.getNameForTemplate(TName, TNameLoc);
3064  }
3065
3066  } // switch (Name.getKind())
3067
3068  llvm_unreachable("Unknown name kind");
3069}
3070
3071static QualType getCoreType(QualType Ty) {
3072  do {
3073    if (Ty->isPointerType() || Ty->isReferenceType())
3074      Ty = Ty->getPointeeType();
3075    else if (Ty->isArrayType())
3076      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3077    else
3078      return Ty.withoutLocalFastQualifiers();
3079  } while (true);
3080}
3081
3082/// hasSimilarParameters - Determine whether the C++ functions Declaration
3083/// and Definition have "nearly" matching parameters. This heuristic is
3084/// used to improve diagnostics in the case where an out-of-line function
3085/// definition doesn't match any declaration within the class or namespace.
3086/// Also sets Params to the list of indices to the parameters that differ
3087/// between the declaration and the definition. If hasSimilarParameters
3088/// returns true and Params is empty, then all of the parameters match.
3089static bool hasSimilarParameters(ASTContext &Context,
3090                                     FunctionDecl *Declaration,
3091                                     FunctionDecl *Definition,
3092                                     llvm::SmallVectorImpl<unsigned> &Params) {
3093  Params.clear();
3094  if (Declaration->param_size() != Definition->param_size())
3095    return false;
3096  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3097    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3098    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3099
3100    // The parameter types are identical
3101    if (Context.hasSameType(DefParamTy, DeclParamTy))
3102      continue;
3103
3104    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3105    QualType DefParamBaseTy = getCoreType(DefParamTy);
3106    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3107    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3108
3109    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3110        (DeclTyName && DeclTyName == DefTyName))
3111      Params.push_back(Idx);
3112    else  // The two parameters aren't even close
3113      return false;
3114  }
3115
3116  return true;
3117}
3118
3119/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3120/// declarator needs to be rebuilt in the current instantiation.
3121/// Any bits of declarator which appear before the name are valid for
3122/// consideration here.  That's specifically the type in the decl spec
3123/// and the base type in any member-pointer chunks.
3124static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3125                                                    DeclarationName Name) {
3126  // The types we specifically need to rebuild are:
3127  //   - typenames, typeofs, and decltypes
3128  //   - types which will become injected class names
3129  // Of course, we also need to rebuild any type referencing such a
3130  // type.  It's safest to just say "dependent", but we call out a
3131  // few cases here.
3132
3133  DeclSpec &DS = D.getMutableDeclSpec();
3134  switch (DS.getTypeSpecType()) {
3135  case DeclSpec::TST_typename:
3136  case DeclSpec::TST_typeofType:
3137  case DeclSpec::TST_decltype:
3138  case DeclSpec::TST_underlyingType:
3139  case DeclSpec::TST_atomic: {
3140    // Grab the type from the parser.
3141    TypeSourceInfo *TSI = 0;
3142    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3143    if (T.isNull() || !T->isDependentType()) break;
3144
3145    // Make sure there's a type source info.  This isn't really much
3146    // of a waste; most dependent types should have type source info
3147    // attached already.
3148    if (!TSI)
3149      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3150
3151    // Rebuild the type in the current instantiation.
3152    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3153    if (!TSI) return true;
3154
3155    // Store the new type back in the decl spec.
3156    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3157    DS.UpdateTypeRep(LocType);
3158    break;
3159  }
3160
3161  case DeclSpec::TST_typeofExpr: {
3162    Expr *E = DS.getRepAsExpr();
3163    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3164    if (Result.isInvalid()) return true;
3165    DS.UpdateExprRep(Result.get());
3166    break;
3167  }
3168
3169  default:
3170    // Nothing to do for these decl specs.
3171    break;
3172  }
3173
3174  // It doesn't matter what order we do this in.
3175  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3176    DeclaratorChunk &Chunk = D.getTypeObject(I);
3177
3178    // The only type information in the declarator which can come
3179    // before the declaration name is the base type of a member
3180    // pointer.
3181    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3182      continue;
3183
3184    // Rebuild the scope specifier in-place.
3185    CXXScopeSpec &SS = Chunk.Mem.Scope();
3186    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3187      return true;
3188  }
3189
3190  return false;
3191}
3192
3193Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3194  D.setFunctionDefinitionKind(FDK_Declaration);
3195  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3196
3197  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3198      Dcl->getDeclContext()->isFileContext())
3199    Dcl->setTopLevelDeclInObjCContainer();
3200
3201  return Dcl;
3202}
3203
3204/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3205///   If T is the name of a class, then each of the following shall have a
3206///   name different from T:
3207///     - every static data member of class T;
3208///     - every member function of class T
3209///     - every member of class T that is itself a type;
3210/// \returns true if the declaration name violates these rules.
3211bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3212                                   DeclarationNameInfo NameInfo) {
3213  DeclarationName Name = NameInfo.getName();
3214
3215  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3216    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3217      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3218      return true;
3219    }
3220
3221  return false;
3222}
3223
3224Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3225                             MultiTemplateParamsArg TemplateParamLists) {
3226  // TODO: consider using NameInfo for diagnostic.
3227  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3228  DeclarationName Name = NameInfo.getName();
3229
3230  // All of these full declarators require an identifier.  If it doesn't have
3231  // one, the ParsedFreeStandingDeclSpec action should be used.
3232  if (!Name) {
3233    if (!D.isInvalidType())  // Reject this if we think it is valid.
3234      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3235           diag::err_declarator_need_ident)
3236        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3237    return 0;
3238  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3239    return 0;
3240
3241  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3242  // we find one that is.
3243  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3244         (S->getFlags() & Scope::TemplateParamScope) != 0)
3245    S = S->getParent();
3246
3247  DeclContext *DC = CurContext;
3248  if (D.getCXXScopeSpec().isInvalid())
3249    D.setInvalidType();
3250  else if (D.getCXXScopeSpec().isSet()) {
3251    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3252                                        UPPC_DeclarationQualifier))
3253      return 0;
3254
3255    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3256    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3257    if (!DC) {
3258      // If we could not compute the declaration context, it's because the
3259      // declaration context is dependent but does not refer to a class,
3260      // class template, or class template partial specialization. Complain
3261      // and return early, to avoid the coming semantic disaster.
3262      Diag(D.getIdentifierLoc(),
3263           diag::err_template_qualified_declarator_no_match)
3264        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3265        << D.getCXXScopeSpec().getRange();
3266      return 0;
3267    }
3268    bool IsDependentContext = DC->isDependentContext();
3269
3270    if (!IsDependentContext &&
3271        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3272      return 0;
3273
3274    if (isa<CXXRecordDecl>(DC)) {
3275      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3276        Diag(D.getIdentifierLoc(),
3277             diag::err_member_def_undefined_record)
3278          << Name << DC << D.getCXXScopeSpec().getRange();
3279        D.setInvalidType();
3280      } else if (isa<CXXRecordDecl>(CurContext) &&
3281                 !D.getDeclSpec().isFriendSpecified()) {
3282        // The user provided a superfluous scope specifier inside a class
3283        // definition:
3284        //
3285        // class X {
3286        //   void X::f();
3287        // };
3288        if (CurContext->Equals(DC)) {
3289          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3290            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3291        } else {
3292          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3293            << Name << D.getCXXScopeSpec().getRange();
3294
3295          // C++ constructors and destructors with incorrect scopes can break
3296          // our AST invariants by having the wrong underlying types. If
3297          // that's the case, then drop this declaration entirely.
3298          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3299               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3300              !Context.hasSameType(Name.getCXXNameType(),
3301                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3302            return 0;
3303        }
3304
3305        // Pretend that this qualifier was not here.
3306        D.getCXXScopeSpec().clear();
3307      }
3308    }
3309
3310    // Check whether we need to rebuild the type of the given
3311    // declaration in the current instantiation.
3312    if (EnteringContext && IsDependentContext &&
3313        TemplateParamLists.size() != 0) {
3314      ContextRAII SavedContext(*this, DC);
3315      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3316        D.setInvalidType();
3317    }
3318  }
3319
3320  if (DiagnoseClassNameShadow(DC, NameInfo))
3321    // If this is a typedef, we'll end up spewing multiple diagnostics.
3322    // Just return early; it's safer.
3323    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3324      return 0;
3325
3326  NamedDecl *New;
3327
3328  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3329  QualType R = TInfo->getType();
3330
3331  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3332                                      UPPC_DeclarationType))
3333    D.setInvalidType();
3334
3335  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3336                        ForRedeclaration);
3337
3338  // See if this is a redefinition of a variable in the same scope.
3339  if (!D.getCXXScopeSpec().isSet()) {
3340    bool IsLinkageLookup = false;
3341
3342    // If the declaration we're planning to build will be a function
3343    // or object with linkage, then look for another declaration with
3344    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3345    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3346      /* Do nothing*/;
3347    else if (R->isFunctionType()) {
3348      if (CurContext->isFunctionOrMethod() ||
3349          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3350        IsLinkageLookup = true;
3351    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3352      IsLinkageLookup = true;
3353    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3354             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3355      IsLinkageLookup = true;
3356
3357    if (IsLinkageLookup)
3358      Previous.clear(LookupRedeclarationWithLinkage);
3359
3360    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3361  } else { // Something like "int foo::x;"
3362    LookupQualifiedName(Previous, DC);
3363
3364    // Don't consider using declarations as previous declarations for
3365    // out-of-line members.
3366    RemoveUsingDecls(Previous);
3367
3368    // C++ 7.3.1.2p2:
3369    // Members (including explicit specializations of templates) of a named
3370    // namespace can also be defined outside that namespace by explicit
3371    // qualification of the name being defined, provided that the entity being
3372    // defined was already declared in the namespace and the definition appears
3373    // after the point of declaration in a namespace that encloses the
3374    // declarations namespace.
3375    //
3376    // Note that we only check the context at this point. We don't yet
3377    // have enough information to make sure that PrevDecl is actually
3378    // the declaration we want to match. For example, given:
3379    //
3380    //   class X {
3381    //     void f();
3382    //     void f(float);
3383    //   };
3384    //
3385    //   void X::f(int) { } // ill-formed
3386    //
3387    // In this case, PrevDecl will point to the overload set
3388    // containing the two f's declared in X, but neither of them
3389    // matches.
3390
3391    // First check whether we named the global scope.
3392    if (isa<TranslationUnitDecl>(DC)) {
3393      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3394        << Name << D.getCXXScopeSpec().getRange();
3395    } else {
3396      DeclContext *Cur = CurContext;
3397      while (isa<LinkageSpecDecl>(Cur))
3398        Cur = Cur->getParent();
3399      if (!Cur->Encloses(DC)) {
3400        // The qualifying scope doesn't enclose the original declaration.
3401        // Emit diagnostic based on current scope.
3402        SourceLocation L = D.getIdentifierLoc();
3403        SourceRange R = D.getCXXScopeSpec().getRange();
3404        if (isa<FunctionDecl>(Cur))
3405          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3406        else
3407          Diag(L, diag::err_invalid_declarator_scope)
3408            << Name << cast<NamedDecl>(DC) << R;
3409        D.setInvalidType();
3410      }
3411
3412      // C++11 8.3p1:
3413      // ... "The nested-name-specifier of the qualified declarator-id shall
3414      // not begin with a decltype-specifer"
3415      NestedNameSpecifierLoc SpecLoc =
3416            D.getCXXScopeSpec().getWithLocInContext(Context);
3417      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3418                        "NestedNameSpecifierLoc");
3419      while (SpecLoc.getPrefix())
3420        SpecLoc = SpecLoc.getPrefix();
3421      if (dyn_cast_or_null<DecltypeType>(
3422            SpecLoc.getNestedNameSpecifier()->getAsType()))
3423        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3424          << SpecLoc.getTypeLoc().getSourceRange();
3425    }
3426  }
3427
3428  if (Previous.isSingleResult() &&
3429      Previous.getFoundDecl()->isTemplateParameter()) {
3430    // Maybe we will complain about the shadowed template parameter.
3431    if (!D.isInvalidType())
3432      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3433                                      Previous.getFoundDecl());
3434
3435    // Just pretend that we didn't see the previous declaration.
3436    Previous.clear();
3437  }
3438
3439  // In C++, the previous declaration we find might be a tag type
3440  // (class or enum). In this case, the new declaration will hide the
3441  // tag type. Note that this does does not apply if we're declaring a
3442  // typedef (C++ [dcl.typedef]p4).
3443  if (Previous.isSingleTagDecl() &&
3444      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3445    Previous.clear();
3446
3447  bool AddToScope = true;
3448  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3449    if (TemplateParamLists.size()) {
3450      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3451      return 0;
3452    }
3453
3454    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3455  } else if (R->isFunctionType()) {
3456    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3457                                  move(TemplateParamLists),
3458                                  AddToScope);
3459  } else {
3460    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3461                                  move(TemplateParamLists));
3462  }
3463
3464  if (New == 0)
3465    return 0;
3466
3467  // If this has an identifier and is not an invalid redeclaration or
3468  // function template specialization, add it to the scope stack.
3469  if (New->getDeclName() && AddToScope &&
3470       !(D.isRedeclaration() && New->isInvalidDecl()))
3471    PushOnScopeChains(New, S);
3472
3473  return New;
3474}
3475
3476/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3477/// types into constant array types in certain situations which would otherwise
3478/// be errors (for GCC compatibility).
3479static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3480                                                    ASTContext &Context,
3481                                                    bool &SizeIsNegative,
3482                                                    llvm::APSInt &Oversized) {
3483  // This method tries to turn a variable array into a constant
3484  // array even when the size isn't an ICE.  This is necessary
3485  // for compatibility with code that depends on gcc's buggy
3486  // constant expression folding, like struct {char x[(int)(char*)2];}
3487  SizeIsNegative = false;
3488  Oversized = 0;
3489
3490  if (T->isDependentType())
3491    return QualType();
3492
3493  QualifierCollector Qs;
3494  const Type *Ty = Qs.strip(T);
3495
3496  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3497    QualType Pointee = PTy->getPointeeType();
3498    QualType FixedType =
3499        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3500                                            Oversized);
3501    if (FixedType.isNull()) return FixedType;
3502    FixedType = Context.getPointerType(FixedType);
3503    return Qs.apply(Context, FixedType);
3504  }
3505  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3506    QualType Inner = PTy->getInnerType();
3507    QualType FixedType =
3508        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3509                                            Oversized);
3510    if (FixedType.isNull()) return FixedType;
3511    FixedType = Context.getParenType(FixedType);
3512    return Qs.apply(Context, FixedType);
3513  }
3514
3515  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3516  if (!VLATy)
3517    return QualType();
3518  // FIXME: We should probably handle this case
3519  if (VLATy->getElementType()->isVariablyModifiedType())
3520    return QualType();
3521
3522  llvm::APSInt Res;
3523  if (!VLATy->getSizeExpr() ||
3524      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3525    return QualType();
3526
3527  // Check whether the array size is negative.
3528  if (Res.isSigned() && Res.isNegative()) {
3529    SizeIsNegative = true;
3530    return QualType();
3531  }
3532
3533  // Check whether the array is too large to be addressed.
3534  unsigned ActiveSizeBits
3535    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3536                                              Res);
3537  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3538    Oversized = Res;
3539    return QualType();
3540  }
3541
3542  return Context.getConstantArrayType(VLATy->getElementType(),
3543                                      Res, ArrayType::Normal, 0);
3544}
3545
3546/// \brief Register the given locally-scoped external C declaration so
3547/// that it can be found later for redeclarations
3548void
3549Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3550                                       const LookupResult &Previous,
3551                                       Scope *S) {
3552  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3553         "Decl is not a locally-scoped decl!");
3554  // Note that we have a locally-scoped external with this name.
3555  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3556
3557  if (!Previous.isSingleResult())
3558    return;
3559
3560  NamedDecl *PrevDecl = Previous.getFoundDecl();
3561
3562  // If there was a previous declaration of this variable, it may be
3563  // in our identifier chain. Update the identifier chain with the new
3564  // declaration.
3565  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3566    // The previous declaration was found on the identifer resolver
3567    // chain, so remove it from its scope.
3568
3569    if (S->isDeclScope(PrevDecl)) {
3570      // Special case for redeclarations in the SAME scope.
3571      // Because this declaration is going to be added to the identifier chain
3572      // later, we should temporarily take it OFF the chain.
3573      IdResolver.RemoveDecl(ND);
3574
3575    } else {
3576      // Find the scope for the original declaration.
3577      while (S && !S->isDeclScope(PrevDecl))
3578        S = S->getParent();
3579    }
3580
3581    if (S)
3582      S->RemoveDecl(PrevDecl);
3583  }
3584}
3585
3586llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3587Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3588  if (ExternalSource) {
3589    // Load locally-scoped external decls from the external source.
3590    SmallVector<NamedDecl *, 4> Decls;
3591    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3592    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3593      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3594        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3595      if (Pos == LocallyScopedExternalDecls.end())
3596        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3597    }
3598  }
3599
3600  return LocallyScopedExternalDecls.find(Name);
3601}
3602
3603/// \brief Diagnose function specifiers on a declaration of an identifier that
3604/// does not identify a function.
3605void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3606  // FIXME: We should probably indicate the identifier in question to avoid
3607  // confusion for constructs like "inline int a(), b;"
3608  if (D.getDeclSpec().isInlineSpecified())
3609    Diag(D.getDeclSpec().getInlineSpecLoc(),
3610         diag::err_inline_non_function);
3611
3612  if (D.getDeclSpec().isVirtualSpecified())
3613    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3614         diag::err_virtual_non_function);
3615
3616  if (D.getDeclSpec().isExplicitSpecified())
3617    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3618         diag::err_explicit_non_function);
3619}
3620
3621NamedDecl*
3622Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3623                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3624  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3625  if (D.getCXXScopeSpec().isSet()) {
3626    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3627      << D.getCXXScopeSpec().getRange();
3628    D.setInvalidType();
3629    // Pretend we didn't see the scope specifier.
3630    DC = CurContext;
3631    Previous.clear();
3632  }
3633
3634  if (getLangOptions().CPlusPlus) {
3635    // Check that there are no default arguments (C++ only).
3636    CheckExtraCXXDefaultArguments(D);
3637  }
3638
3639  DiagnoseFunctionSpecifiers(D);
3640
3641  if (D.getDeclSpec().isThreadSpecified())
3642    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3643  if (D.getDeclSpec().isConstexprSpecified())
3644    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3645      << 1;
3646
3647  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3648    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3649      << D.getName().getSourceRange();
3650    return 0;
3651  }
3652
3653  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3654  if (!NewTD) return 0;
3655
3656  // Handle attributes prior to checking for duplicates in MergeVarDecl
3657  ProcessDeclAttributes(S, NewTD, D);
3658
3659  CheckTypedefForVariablyModifiedType(S, NewTD);
3660
3661  bool Redeclaration = D.isRedeclaration();
3662  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3663  D.setRedeclaration(Redeclaration);
3664  return ND;
3665}
3666
3667void
3668Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3669  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3670  // then it shall have block scope.
3671  // Note that variably modified types must be fixed before merging the decl so
3672  // that redeclarations will match.
3673  QualType T = NewTD->getUnderlyingType();
3674  if (T->isVariablyModifiedType()) {
3675    getCurFunction()->setHasBranchProtectedScope();
3676
3677    if (S->getFnParent() == 0) {
3678      bool SizeIsNegative;
3679      llvm::APSInt Oversized;
3680      QualType FixedTy =
3681          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3682                                              Oversized);
3683      if (!FixedTy.isNull()) {
3684        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3685        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3686      } else {
3687        if (SizeIsNegative)
3688          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3689        else if (T->isVariableArrayType())
3690          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3691        else if (Oversized.getBoolValue())
3692          Diag(NewTD->getLocation(), diag::err_array_too_large)
3693            << Oversized.toString(10);
3694        else
3695          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3696        NewTD->setInvalidDecl();
3697      }
3698    }
3699  }
3700}
3701
3702
3703/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3704/// declares a typedef-name, either using the 'typedef' type specifier or via
3705/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3706NamedDecl*
3707Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3708                           LookupResult &Previous, bool &Redeclaration) {
3709  // Merge the decl with the existing one if appropriate. If the decl is
3710  // in an outer scope, it isn't the same thing.
3711  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3712                       /*ExplicitInstantiationOrSpecialization=*/false);
3713  if (!Previous.empty()) {
3714    Redeclaration = true;
3715    MergeTypedefNameDecl(NewTD, Previous);
3716  }
3717
3718  // If this is the C FILE type, notify the AST context.
3719  if (IdentifierInfo *II = NewTD->getIdentifier())
3720    if (!NewTD->isInvalidDecl() &&
3721        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3722      if (II->isStr("FILE"))
3723        Context.setFILEDecl(NewTD);
3724      else if (II->isStr("jmp_buf"))
3725        Context.setjmp_bufDecl(NewTD);
3726      else if (II->isStr("sigjmp_buf"))
3727        Context.setsigjmp_bufDecl(NewTD);
3728      else if (II->isStr("ucontext_t"))
3729        Context.setucontext_tDecl(NewTD);
3730      else if (II->isStr("__builtin_va_list"))
3731        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3732    }
3733
3734  return NewTD;
3735}
3736
3737/// \brief Determines whether the given declaration is an out-of-scope
3738/// previous declaration.
3739///
3740/// This routine should be invoked when name lookup has found a
3741/// previous declaration (PrevDecl) that is not in the scope where a
3742/// new declaration by the same name is being introduced. If the new
3743/// declaration occurs in a local scope, previous declarations with
3744/// linkage may still be considered previous declarations (C99
3745/// 6.2.2p4-5, C++ [basic.link]p6).
3746///
3747/// \param PrevDecl the previous declaration found by name
3748/// lookup
3749///
3750/// \param DC the context in which the new declaration is being
3751/// declared.
3752///
3753/// \returns true if PrevDecl is an out-of-scope previous declaration
3754/// for a new delcaration with the same name.
3755static bool
3756isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3757                                ASTContext &Context) {
3758  if (!PrevDecl)
3759    return false;
3760
3761  if (!PrevDecl->hasLinkage())
3762    return false;
3763
3764  if (Context.getLangOptions().CPlusPlus) {
3765    // C++ [basic.link]p6:
3766    //   If there is a visible declaration of an entity with linkage
3767    //   having the same name and type, ignoring entities declared
3768    //   outside the innermost enclosing namespace scope, the block
3769    //   scope declaration declares that same entity and receives the
3770    //   linkage of the previous declaration.
3771    DeclContext *OuterContext = DC->getRedeclContext();
3772    if (!OuterContext->isFunctionOrMethod())
3773      // This rule only applies to block-scope declarations.
3774      return false;
3775
3776    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3777    if (PrevOuterContext->isRecord())
3778      // We found a member function: ignore it.
3779      return false;
3780
3781    // Find the innermost enclosing namespace for the new and
3782    // previous declarations.
3783    OuterContext = OuterContext->getEnclosingNamespaceContext();
3784    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3785
3786    // The previous declaration is in a different namespace, so it
3787    // isn't the same function.
3788    if (!OuterContext->Equals(PrevOuterContext))
3789      return false;
3790  }
3791
3792  return true;
3793}
3794
3795static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3796  CXXScopeSpec &SS = D.getCXXScopeSpec();
3797  if (!SS.isSet()) return;
3798  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3799}
3800
3801bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3802  QualType type = decl->getType();
3803  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3804  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3805    // Various kinds of declaration aren't allowed to be __autoreleasing.
3806    unsigned kind = -1U;
3807    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3808      if (var->hasAttr<BlocksAttr>())
3809        kind = 0; // __block
3810      else if (!var->hasLocalStorage())
3811        kind = 1; // global
3812    } else if (isa<ObjCIvarDecl>(decl)) {
3813      kind = 3; // ivar
3814    } else if (isa<FieldDecl>(decl)) {
3815      kind = 2; // field
3816    }
3817
3818    if (kind != -1U) {
3819      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3820        << kind;
3821    }
3822  } else if (lifetime == Qualifiers::OCL_None) {
3823    // Try to infer lifetime.
3824    if (!type->isObjCLifetimeType())
3825      return false;
3826
3827    lifetime = type->getObjCARCImplicitLifetime();
3828    type = Context.getLifetimeQualifiedType(type, lifetime);
3829    decl->setType(type);
3830  }
3831
3832  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3833    // Thread-local variables cannot have lifetime.
3834    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3835        var->isThreadSpecified()) {
3836      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3837        << var->getType();
3838      return true;
3839    }
3840  }
3841
3842  return false;
3843}
3844
3845NamedDecl*
3846Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3847                              TypeSourceInfo *TInfo, LookupResult &Previous,
3848                              MultiTemplateParamsArg TemplateParamLists) {
3849  QualType R = TInfo->getType();
3850  DeclarationName Name = GetNameForDeclarator(D).getName();
3851
3852  // Check that there are no default arguments (C++ only).
3853  if (getLangOptions().CPlusPlus)
3854    CheckExtraCXXDefaultArguments(D);
3855
3856  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3857  assert(SCSpec != DeclSpec::SCS_typedef &&
3858         "Parser allowed 'typedef' as storage class VarDecl.");
3859  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3860  if (SCSpec == DeclSpec::SCS_mutable) {
3861    // mutable can only appear on non-static class members, so it's always
3862    // an error here
3863    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3864    D.setInvalidType();
3865    SC = SC_None;
3866  }
3867  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3868  VarDecl::StorageClass SCAsWritten
3869    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3870
3871  IdentifierInfo *II = Name.getAsIdentifierInfo();
3872  if (!II) {
3873    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3874      << Name;
3875    return 0;
3876  }
3877
3878  DiagnoseFunctionSpecifiers(D);
3879
3880  if (!DC->isRecord() && S->getFnParent() == 0) {
3881    // C99 6.9p2: The storage-class specifiers auto and register shall not
3882    // appear in the declaration specifiers in an external declaration.
3883    if (SC == SC_Auto || SC == SC_Register) {
3884
3885      // If this is a register variable with an asm label specified, then this
3886      // is a GNU extension.
3887      if (SC == SC_Register && D.getAsmLabel())
3888        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3889      else
3890        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3891      D.setInvalidType();
3892    }
3893  }
3894
3895  if (getLangOptions().OpenCL) {
3896    // Set up the special work-group-local storage class for variables in the
3897    // OpenCL __local address space.
3898    if (R.getAddressSpace() == LangAS::opencl_local)
3899      SC = SC_OpenCLWorkGroupLocal;
3900  }
3901
3902  bool isExplicitSpecialization = false;
3903  VarDecl *NewVD;
3904  if (!getLangOptions().CPlusPlus) {
3905    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3906                            D.getIdentifierLoc(), II,
3907                            R, TInfo, SC, SCAsWritten);
3908
3909    if (D.isInvalidType())
3910      NewVD->setInvalidDecl();
3911  } else {
3912    if (DC->isRecord() && !CurContext->isRecord()) {
3913      // This is an out-of-line definition of a static data member.
3914      if (SC == SC_Static) {
3915        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3916             diag::err_static_out_of_line)
3917          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3918      } else if (SC == SC_None)
3919        SC = SC_Static;
3920    }
3921    if (SC == SC_Static) {
3922      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3923        if (RD->isLocalClass())
3924          Diag(D.getIdentifierLoc(),
3925               diag::err_static_data_member_not_allowed_in_local_class)
3926            << Name << RD->getDeclName();
3927
3928        // C++ [class.union]p1: If a union contains a static data member,
3929        // the program is ill-formed.
3930        //
3931        // We also disallow static data members in anonymous structs.
3932        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3933          Diag(D.getIdentifierLoc(),
3934               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3935            << Name << RD->isUnion();
3936      }
3937    }
3938
3939    // Match up the template parameter lists with the scope specifier, then
3940    // determine whether we have a template or a template specialization.
3941    isExplicitSpecialization = false;
3942    bool Invalid = false;
3943    if (TemplateParameterList *TemplateParams
3944        = MatchTemplateParametersToScopeSpecifier(
3945                                  D.getDeclSpec().getSourceRange().getBegin(),
3946                                                  D.getIdentifierLoc(),
3947                                                  D.getCXXScopeSpec(),
3948                                                  TemplateParamLists.get(),
3949                                                  TemplateParamLists.size(),
3950                                                  /*never a friend*/ false,
3951                                                  isExplicitSpecialization,
3952                                                  Invalid)) {
3953      if (TemplateParams->size() > 0) {
3954        // There is no such thing as a variable template.
3955        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3956          << II
3957          << SourceRange(TemplateParams->getTemplateLoc(),
3958                         TemplateParams->getRAngleLoc());
3959        return 0;
3960      } else {
3961        // There is an extraneous 'template<>' for this variable. Complain
3962        // about it, but allow the declaration of the variable.
3963        Diag(TemplateParams->getTemplateLoc(),
3964             diag::err_template_variable_noparams)
3965          << II
3966          << SourceRange(TemplateParams->getTemplateLoc(),
3967                         TemplateParams->getRAngleLoc());
3968      }
3969    }
3970
3971    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3972                            D.getIdentifierLoc(), II,
3973                            R, TInfo, SC, SCAsWritten);
3974
3975    // If this decl has an auto type in need of deduction, make a note of the
3976    // Decl so we can diagnose uses of it in its own initializer.
3977    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3978        R->getContainedAutoType())
3979      ParsingInitForAutoVars.insert(NewVD);
3980
3981    if (D.isInvalidType() || Invalid)
3982      NewVD->setInvalidDecl();
3983
3984    SetNestedNameSpecifier(NewVD, D);
3985
3986    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3987      NewVD->setTemplateParameterListsInfo(Context,
3988                                           TemplateParamLists.size(),
3989                                           TemplateParamLists.release());
3990    }
3991
3992    if (D.getDeclSpec().isConstexprSpecified())
3993      NewVD->setConstexpr(true);
3994  }
3995
3996  // Set the lexical context. If the declarator has a C++ scope specifier, the
3997  // lexical context will be different from the semantic context.
3998  NewVD->setLexicalDeclContext(CurContext);
3999
4000  if (D.getDeclSpec().isThreadSpecified()) {
4001    if (NewVD->hasLocalStorage())
4002      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4003    else if (!Context.getTargetInfo().isTLSSupported())
4004      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4005    else
4006      NewVD->setThreadSpecified(true);
4007  }
4008
4009  if (D.getDeclSpec().isModulePrivateSpecified()) {
4010    if (isExplicitSpecialization)
4011      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4012        << 2
4013        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4014    else if (NewVD->hasLocalStorage())
4015      Diag(NewVD->getLocation(), diag::err_module_private_local)
4016        << 0 << NewVD->getDeclName()
4017        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4018        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4019    else
4020      NewVD->setModulePrivate();
4021  }
4022
4023  // Handle attributes prior to checking for duplicates in MergeVarDecl
4024  ProcessDeclAttributes(S, NewVD, D);
4025
4026  // In auto-retain/release, infer strong retension for variables of
4027  // retainable type.
4028  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4029    NewVD->setInvalidDecl();
4030
4031  // Handle GNU asm-label extension (encoded as an attribute).
4032  if (Expr *E = (Expr*)D.getAsmLabel()) {
4033    // The parser guarantees this is a string.
4034    StringLiteral *SE = cast<StringLiteral>(E);
4035    StringRef Label = SE->getString();
4036    if (S->getFnParent() != 0) {
4037      switch (SC) {
4038      case SC_None:
4039      case SC_Auto:
4040        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4041        break;
4042      case SC_Register:
4043        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4044          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4045        break;
4046      case SC_Static:
4047      case SC_Extern:
4048      case SC_PrivateExtern:
4049      case SC_OpenCLWorkGroupLocal:
4050        break;
4051      }
4052    }
4053
4054    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4055                                                Context, Label));
4056  }
4057
4058  // Diagnose shadowed variables before filtering for scope.
4059  if (!D.getCXXScopeSpec().isSet())
4060    CheckShadow(S, NewVD, Previous);
4061
4062  // Don't consider existing declarations that are in a different
4063  // scope and are out-of-semantic-context declarations (if the new
4064  // declaration has linkage).
4065  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4066                       isExplicitSpecialization);
4067
4068  if (!getLangOptions().CPlusPlus) {
4069    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4070  } else {
4071    // Merge the decl with the existing one if appropriate.
4072    if (!Previous.empty()) {
4073      if (Previous.isSingleResult() &&
4074          isa<FieldDecl>(Previous.getFoundDecl()) &&
4075          D.getCXXScopeSpec().isSet()) {
4076        // The user tried to define a non-static data member
4077        // out-of-line (C++ [dcl.meaning]p1).
4078        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4079          << D.getCXXScopeSpec().getRange();
4080        Previous.clear();
4081        NewVD->setInvalidDecl();
4082      }
4083    } else if (D.getCXXScopeSpec().isSet()) {
4084      // No previous declaration in the qualifying scope.
4085      Diag(D.getIdentifierLoc(), diag::err_no_member)
4086        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4087        << D.getCXXScopeSpec().getRange();
4088      NewVD->setInvalidDecl();
4089    }
4090
4091    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4092
4093    // This is an explicit specialization of a static data member. Check it.
4094    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4095        CheckMemberSpecialization(NewVD, Previous))
4096      NewVD->setInvalidDecl();
4097  }
4098
4099  // attributes declared post-definition are currently ignored
4100  // FIXME: This should be handled in attribute merging, not
4101  // here.
4102  if (Previous.isSingleResult()) {
4103    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4104    if (Def && (Def = Def->getDefinition()) &&
4105        Def != NewVD && D.hasAttributes()) {
4106      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4107      Diag(Def->getLocation(), diag::note_previous_definition);
4108    }
4109  }
4110
4111  // If this is a locally-scoped extern C variable, update the map of
4112  // such variables.
4113  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4114      !NewVD->isInvalidDecl())
4115    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4116
4117  // If there's a #pragma GCC visibility in scope, and this isn't a class
4118  // member, set the visibility of this variable.
4119  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4120    AddPushedVisibilityAttribute(NewVD);
4121
4122  MarkUnusedFileScopedDecl(NewVD);
4123
4124  return NewVD;
4125}
4126
4127/// \brief Diagnose variable or built-in function shadowing.  Implements
4128/// -Wshadow.
4129///
4130/// This method is called whenever a VarDecl is added to a "useful"
4131/// scope.
4132///
4133/// \param S the scope in which the shadowing name is being declared
4134/// \param R the lookup of the name
4135///
4136void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4137  // Return if warning is ignored.
4138  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4139        DiagnosticsEngine::Ignored)
4140    return;
4141
4142  // Don't diagnose declarations at file scope.
4143  if (D->hasGlobalStorage())
4144    return;
4145
4146  DeclContext *NewDC = D->getDeclContext();
4147
4148  // Only diagnose if we're shadowing an unambiguous field or variable.
4149  if (R.getResultKind() != LookupResult::Found)
4150    return;
4151
4152  NamedDecl* ShadowedDecl = R.getFoundDecl();
4153  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4154    return;
4155
4156  // Fields are not shadowed by variables in C++ static methods.
4157  if (isa<FieldDecl>(ShadowedDecl))
4158    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4159      if (MD->isStatic())
4160        return;
4161
4162  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4163    if (shadowedVar->isExternC()) {
4164      // For shadowing external vars, make sure that we point to the global
4165      // declaration, not a locally scoped extern declaration.
4166      for (VarDecl::redecl_iterator
4167             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4168           I != E; ++I)
4169        if (I->isFileVarDecl()) {
4170          ShadowedDecl = *I;
4171          break;
4172        }
4173    }
4174
4175  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4176
4177  // Only warn about certain kinds of shadowing for class members.
4178  if (NewDC && NewDC->isRecord()) {
4179    // In particular, don't warn about shadowing non-class members.
4180    if (!OldDC->isRecord())
4181      return;
4182
4183    // TODO: should we warn about static data members shadowing
4184    // static data members from base classes?
4185
4186    // TODO: don't diagnose for inaccessible shadowed members.
4187    // This is hard to do perfectly because we might friend the
4188    // shadowing context, but that's just a false negative.
4189  }
4190
4191  // Determine what kind of declaration we're shadowing.
4192  unsigned Kind;
4193  if (isa<RecordDecl>(OldDC)) {
4194    if (isa<FieldDecl>(ShadowedDecl))
4195      Kind = 3; // field
4196    else
4197      Kind = 2; // static data member
4198  } else if (OldDC->isFileContext())
4199    Kind = 1; // global
4200  else
4201    Kind = 0; // local
4202
4203  DeclarationName Name = R.getLookupName();
4204
4205  // Emit warning and note.
4206  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4207  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4208}
4209
4210/// \brief Check -Wshadow without the advantage of a previous lookup.
4211void Sema::CheckShadow(Scope *S, VarDecl *D) {
4212  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4213        DiagnosticsEngine::Ignored)
4214    return;
4215
4216  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4217                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4218  LookupName(R, S);
4219  CheckShadow(S, D, R);
4220}
4221
4222/// \brief Perform semantic checking on a newly-created variable
4223/// declaration.
4224///
4225/// This routine performs all of the type-checking required for a
4226/// variable declaration once it has been built. It is used both to
4227/// check variables after they have been parsed and their declarators
4228/// have been translated into a declaration, and to check variables
4229/// that have been instantiated from a template.
4230///
4231/// Sets NewVD->isInvalidDecl() if an error was encountered.
4232///
4233/// Returns true if the variable declaration is a redeclaration.
4234bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4235                                    LookupResult &Previous) {
4236  // If the decl is already known invalid, don't check it.
4237  if (NewVD->isInvalidDecl())
4238    return false;
4239
4240  QualType T = NewVD->getType();
4241
4242  if (T->isObjCObjectType()) {
4243    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4244      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4245    T = Context.getObjCObjectPointerType(T);
4246    NewVD->setType(T);
4247  }
4248
4249  // Emit an error if an address space was applied to decl with local storage.
4250  // This includes arrays of objects with address space qualifiers, but not
4251  // automatic variables that point to other address spaces.
4252  // ISO/IEC TR 18037 S5.1.2
4253  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4254    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4255    NewVD->setInvalidDecl();
4256    return false;
4257  }
4258
4259  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4260      && !NewVD->hasAttr<BlocksAttr>()) {
4261    if (getLangOptions().getGC() != LangOptions::NonGC)
4262      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4263    else
4264      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4265  }
4266
4267  bool isVM = T->isVariablyModifiedType();
4268  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4269      NewVD->hasAttr<BlocksAttr>())
4270    getCurFunction()->setHasBranchProtectedScope();
4271
4272  if ((isVM && NewVD->hasLinkage()) ||
4273      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4274    bool SizeIsNegative;
4275    llvm::APSInt Oversized;
4276    QualType FixedTy =
4277        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4278                                            Oversized);
4279
4280    if (FixedTy.isNull() && T->isVariableArrayType()) {
4281      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4282      // FIXME: This won't give the correct result for
4283      // int a[10][n];
4284      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4285
4286      if (NewVD->isFileVarDecl())
4287        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4288        << SizeRange;
4289      else if (NewVD->getStorageClass() == SC_Static)
4290        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4291        << SizeRange;
4292      else
4293        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4294        << SizeRange;
4295      NewVD->setInvalidDecl();
4296      return false;
4297    }
4298
4299    if (FixedTy.isNull()) {
4300      if (NewVD->isFileVarDecl())
4301        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4302      else
4303        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4304      NewVD->setInvalidDecl();
4305      return false;
4306    }
4307
4308    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4309    NewVD->setType(FixedTy);
4310  }
4311
4312  if (Previous.empty() && NewVD->isExternC()) {
4313    // Since we did not find anything by this name and we're declaring
4314    // an extern "C" variable, look for a non-visible extern "C"
4315    // declaration with the same name.
4316    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4317      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4318    if (Pos != LocallyScopedExternalDecls.end())
4319      Previous.addDecl(Pos->second);
4320  }
4321
4322  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4323    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4324      << T;
4325    NewVD->setInvalidDecl();
4326    return false;
4327  }
4328
4329  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4330    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4331    NewVD->setInvalidDecl();
4332    return false;
4333  }
4334
4335  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4336    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4337    NewVD->setInvalidDecl();
4338    return false;
4339  }
4340
4341  // Function pointers and references cannot have qualified function type, only
4342  // function pointer-to-members can do that.
4343  QualType Pointee;
4344  unsigned PtrOrRef = 0;
4345  if (const PointerType *Ptr = T->getAs<PointerType>())
4346    Pointee = Ptr->getPointeeType();
4347  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4348    Pointee = Ref->getPointeeType();
4349    PtrOrRef = 1;
4350  }
4351  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4352      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4353    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4354        << PtrOrRef;
4355    NewVD->setInvalidDecl();
4356    return false;
4357  }
4358
4359  if (!Previous.empty()) {
4360    MergeVarDecl(NewVD, Previous);
4361    return true;
4362  }
4363  return false;
4364}
4365
4366/// \brief Data used with FindOverriddenMethod
4367struct FindOverriddenMethodData {
4368  Sema *S;
4369  CXXMethodDecl *Method;
4370};
4371
4372/// \brief Member lookup function that determines whether a given C++
4373/// method overrides a method in a base class, to be used with
4374/// CXXRecordDecl::lookupInBases().
4375static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4376                                 CXXBasePath &Path,
4377                                 void *UserData) {
4378  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4379
4380  FindOverriddenMethodData *Data
4381    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4382
4383  DeclarationName Name = Data->Method->getDeclName();
4384
4385  // FIXME: Do we care about other names here too?
4386  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4387    // We really want to find the base class destructor here.
4388    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4389    CanQualType CT = Data->S->Context.getCanonicalType(T);
4390
4391    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4392  }
4393
4394  for (Path.Decls = BaseRecord->lookup(Name);
4395       Path.Decls.first != Path.Decls.second;
4396       ++Path.Decls.first) {
4397    NamedDecl *D = *Path.Decls.first;
4398    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4399      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4400        return true;
4401    }
4402  }
4403
4404  return false;
4405}
4406
4407/// AddOverriddenMethods - See if a method overrides any in the base classes,
4408/// and if so, check that it's a valid override and remember it.
4409bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4410  // Look for virtual methods in base classes that this method might override.
4411  CXXBasePaths Paths;
4412  FindOverriddenMethodData Data;
4413  Data.Method = MD;
4414  Data.S = this;
4415  bool AddedAny = false;
4416  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4417    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4418         E = Paths.found_decls_end(); I != E; ++I) {
4419      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4420        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4421        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4422            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4423            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4424          AddedAny = true;
4425        }
4426      }
4427    }
4428  }
4429
4430  return AddedAny;
4431}
4432
4433namespace {
4434  // Struct for holding all of the extra arguments needed by
4435  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4436  struct ActOnFDArgs {
4437    Scope *S;
4438    Declarator &D;
4439    MultiTemplateParamsArg TemplateParamLists;
4440    bool AddToScope;
4441  };
4442}
4443
4444namespace {
4445
4446// Callback to only accept typo corrections that have a non-zero edit distance.
4447class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4448 public:
4449  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4450    return candidate.getEditDistance() > 0;
4451  }
4452};
4453
4454}
4455
4456/// \brief Generate diagnostics for an invalid function redeclaration.
4457///
4458/// This routine handles generating the diagnostic messages for an invalid
4459/// function redeclaration, including finding possible similar declarations
4460/// or performing typo correction if there are no previous declarations with
4461/// the same name.
4462///
4463/// Returns a NamedDecl iff typo correction was performed and substituting in
4464/// the new declaration name does not cause new errors.
4465static NamedDecl* DiagnoseInvalidRedeclaration(
4466    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4467    ActOnFDArgs &ExtraArgs) {
4468  NamedDecl *Result = NULL;
4469  DeclarationName Name = NewFD->getDeclName();
4470  DeclContext *NewDC = NewFD->getDeclContext();
4471  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4472                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4473  llvm::SmallVector<unsigned, 1> MismatchedParams;
4474  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4475  TypoCorrection Correction;
4476  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4477                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4478  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4479                                  : diag::err_member_def_does_not_match;
4480
4481  NewFD->setInvalidDecl();
4482  SemaRef.LookupQualifiedName(Prev, NewDC);
4483  assert(!Prev.isAmbiguous() &&
4484         "Cannot have an ambiguity in previous-declaration lookup");
4485  DifferentNameValidatorCCC Validator;
4486  if (!Prev.empty()) {
4487    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4488         Func != FuncEnd; ++Func) {
4489      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4490      if (FD &&
4491          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4492        // Add 1 to the index so that 0 can mean the mismatch didn't
4493        // involve a parameter
4494        unsigned ParamNum =
4495            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4496        NearMatches.push_back(std::make_pair(FD, ParamNum));
4497      }
4498    }
4499  // If the qualified name lookup yielded nothing, try typo correction
4500  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4501                                         Prev.getLookupKind(), 0, 0,
4502                                         Validator, NewDC))) {
4503    // Trap errors.
4504    Sema::SFINAETrap Trap(SemaRef);
4505
4506    // Set up everything for the call to ActOnFunctionDeclarator
4507    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4508                              ExtraArgs.D.getIdentifierLoc());
4509    Previous.clear();
4510    Previous.setLookupName(Correction.getCorrection());
4511    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4512                                    CDeclEnd = Correction.end();
4513         CDecl != CDeclEnd; ++CDecl) {
4514      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4515      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4516                                     MismatchedParams)) {
4517        Previous.addDecl(FD);
4518      }
4519    }
4520    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4521    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4522    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4523    // eliminate the need for the parameter pack ExtraArgs.
4524    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4525                                             NewFD->getDeclContext(),
4526                                             NewFD->getTypeSourceInfo(),
4527                                             Previous,
4528                                             ExtraArgs.TemplateParamLists,
4529                                             ExtraArgs.AddToScope);
4530    if (Trap.hasErrorOccurred()) {
4531      // Pretend the typo correction never occurred
4532      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4533                                ExtraArgs.D.getIdentifierLoc());
4534      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4535      Previous.clear();
4536      Previous.setLookupName(Name);
4537      Result = NULL;
4538    } else {
4539      for (LookupResult::iterator Func = Previous.begin(),
4540                               FuncEnd = Previous.end();
4541           Func != FuncEnd; ++Func) {
4542        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4543          NearMatches.push_back(std::make_pair(FD, 0));
4544      }
4545    }
4546    if (NearMatches.empty()) {
4547      // Ignore the correction if it didn't yield any close FunctionDecl matches
4548      Correction = TypoCorrection();
4549    } else {
4550      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4551                             : diag::err_member_def_does_not_match_suggest;
4552    }
4553  }
4554
4555  if (Correction)
4556    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4557        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4558        << FixItHint::CreateReplacement(
4559            NewFD->getLocation(),
4560            Correction.getAsString(SemaRef.getLangOptions()));
4561  else
4562    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4563        << Name << NewDC << NewFD->getLocation();
4564
4565  bool NewFDisConst = false;
4566  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4567    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4568
4569  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4570       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4571       NearMatch != NearMatchEnd; ++NearMatch) {
4572    FunctionDecl *FD = NearMatch->first;
4573    bool FDisConst = false;
4574    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4575      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4576
4577    if (unsigned Idx = NearMatch->second) {
4578      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4579      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4580             diag::note_member_def_close_param_match)
4581          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4582    } else if (Correction) {
4583      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4584          << Correction.getQuoted(SemaRef.getLangOptions());
4585    } else if (FDisConst != NewFDisConst) {
4586      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4587          << NewFDisConst << FD->getSourceRange().getEnd();
4588    } else
4589      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4590  }
4591  return Result;
4592}
4593
4594static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4595                                                          Declarator &D) {
4596  switch (D.getDeclSpec().getStorageClassSpec()) {
4597  default: llvm_unreachable("Unknown storage class!");
4598  case DeclSpec::SCS_auto:
4599  case DeclSpec::SCS_register:
4600  case DeclSpec::SCS_mutable:
4601    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4602                 diag::err_typecheck_sclass_func);
4603    D.setInvalidType();
4604    break;
4605  case DeclSpec::SCS_unspecified: break;
4606  case DeclSpec::SCS_extern: return SC_Extern;
4607  case DeclSpec::SCS_static: {
4608    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4609      // C99 6.7.1p5:
4610      //   The declaration of an identifier for a function that has
4611      //   block scope shall have no explicit storage-class specifier
4612      //   other than extern
4613      // See also (C++ [dcl.stc]p4).
4614      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4615                   diag::err_static_block_func);
4616      break;
4617    } else
4618      return SC_Static;
4619  }
4620  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4621  }
4622
4623  // No explicit storage class has already been returned
4624  return SC_None;
4625}
4626
4627static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4628                                           DeclContext *DC, QualType &R,
4629                                           TypeSourceInfo *TInfo,
4630                                           FunctionDecl::StorageClass SC,
4631                                           bool &IsVirtualOkay) {
4632  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4633  DeclarationName Name = NameInfo.getName();
4634
4635  FunctionDecl *NewFD = 0;
4636  bool isInline = D.getDeclSpec().isInlineSpecified();
4637  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4638  FunctionDecl::StorageClass SCAsWritten
4639    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4640
4641  if (!SemaRef.getLangOptions().CPlusPlus) {
4642    // Determine whether the function was written with a
4643    // prototype. This true when:
4644    //   - there is a prototype in the declarator, or
4645    //   - the type R of the function is some kind of typedef or other reference
4646    //     to a type name (which eventually refers to a function type).
4647    bool HasPrototype =
4648      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4649      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4650
4651    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4652                                 D.getSourceRange().getBegin(), NameInfo, R,
4653                                 TInfo, SC, SCAsWritten, isInline,
4654                                 HasPrototype);
4655    if (D.isInvalidType())
4656      NewFD->setInvalidDecl();
4657
4658    // Set the lexical context.
4659    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4660
4661    return NewFD;
4662  }
4663
4664  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4665  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4666
4667  // Check that the return type is not an abstract class type.
4668  // For record types, this is done by the AbstractClassUsageDiagnoser once
4669  // the class has been completely parsed.
4670  if (!DC->isRecord() &&
4671      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4672                                     R->getAs<FunctionType>()->getResultType(),
4673                                     diag::err_abstract_type_in_decl,
4674                                     SemaRef.AbstractReturnType))
4675    D.setInvalidType();
4676
4677  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4678    // This is a C++ constructor declaration.
4679    assert(DC->isRecord() &&
4680           "Constructors can only be declared in a member context");
4681
4682    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4683    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4684                                      D.getSourceRange().getBegin(), NameInfo,
4685                                      R, TInfo, isExplicit, isInline,
4686                                      /*isImplicitlyDeclared=*/false,
4687                                      isConstexpr);
4688
4689  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4690    // This is a C++ destructor declaration.
4691    if (DC->isRecord()) {
4692      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4693      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4694      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4695                                        SemaRef.Context, Record,
4696                                        D.getSourceRange().getBegin(),
4697                                        NameInfo, R, TInfo, isInline,
4698                                        /*isImplicitlyDeclared=*/false);
4699
4700      // If the class is complete, then we now create the implicit exception
4701      // specification. If the class is incomplete or dependent, we can't do
4702      // it yet.
4703      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4704          Record->getDefinition() && !Record->isBeingDefined() &&
4705          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4706        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4707      }
4708
4709      IsVirtualOkay = true;
4710      return NewDD;
4711
4712    } else {
4713      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4714      D.setInvalidType();
4715
4716      // Create a FunctionDecl to satisfy the function definition parsing
4717      // code path.
4718      return FunctionDecl::Create(SemaRef.Context, DC,
4719                                  D.getSourceRange().getBegin(),
4720                                  D.getIdentifierLoc(), Name, R, TInfo,
4721                                  SC, SCAsWritten, isInline,
4722                                  /*hasPrototype=*/true, isConstexpr);
4723    }
4724
4725  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4726    if (!DC->isRecord()) {
4727      SemaRef.Diag(D.getIdentifierLoc(),
4728           diag::err_conv_function_not_member);
4729      return 0;
4730    }
4731
4732    SemaRef.CheckConversionDeclarator(D, R, SC);
4733    IsVirtualOkay = true;
4734    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4735                                     D.getSourceRange().getBegin(), NameInfo,
4736                                     R, TInfo, isInline, isExplicit,
4737                                     isConstexpr, SourceLocation());
4738
4739  } else if (DC->isRecord()) {
4740    // If the name of the function is the same as the name of the record,
4741    // then this must be an invalid constructor that has a return type.
4742    // (The parser checks for a return type and makes the declarator a
4743    // constructor if it has no return type).
4744    if (Name.getAsIdentifierInfo() &&
4745        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4746      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4747        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4748        << SourceRange(D.getIdentifierLoc());
4749      return 0;
4750    }
4751
4752    bool isStatic = SC == SC_Static;
4753
4754    // [class.free]p1:
4755    // Any allocation function for a class T is a static member
4756    // (even if not explicitly declared static).
4757    if (Name.getCXXOverloadedOperator() == OO_New ||
4758        Name.getCXXOverloadedOperator() == OO_Array_New)
4759      isStatic = true;
4760
4761    // [class.free]p6 Any deallocation function for a class X is a static member
4762    // (even if not explicitly declared static).
4763    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4764        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4765      isStatic = true;
4766
4767    IsVirtualOkay = !isStatic;
4768
4769    // This is a C++ method declaration.
4770    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4771                                 D.getSourceRange().getBegin(), NameInfo, R,
4772                                 TInfo, isStatic, SCAsWritten, isInline,
4773                                 isConstexpr, SourceLocation());
4774
4775  } else {
4776    // Determine whether the function was written with a
4777    // prototype. This true when:
4778    //   - we're in C++ (where every function has a prototype),
4779    return FunctionDecl::Create(SemaRef.Context, DC,
4780                                D.getSourceRange().getBegin(),
4781                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4782                                true/*HasPrototype*/, isConstexpr);
4783  }
4784}
4785
4786NamedDecl*
4787Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4788                              TypeSourceInfo *TInfo, LookupResult &Previous,
4789                              MultiTemplateParamsArg TemplateParamLists,
4790                              bool &AddToScope) {
4791  QualType R = TInfo->getType();
4792
4793  assert(R.getTypePtr()->isFunctionType());
4794
4795  // TODO: consider using NameInfo for diagnostic.
4796  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4797  DeclarationName Name = NameInfo.getName();
4798  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4799
4800  if (D.getDeclSpec().isThreadSpecified())
4801    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4802
4803  // Do not allow returning a objc interface by-value.
4804  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4805    Diag(D.getIdentifierLoc(),
4806         diag::err_object_cannot_be_passed_returned_by_value) << 0
4807    << R->getAs<FunctionType>()->getResultType()
4808    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4809
4810    QualType T = R->getAs<FunctionType>()->getResultType();
4811    T = Context.getObjCObjectPointerType(T);
4812    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4813      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4814      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4815                                  FPT->getNumArgs(), EPI);
4816    }
4817    else if (isa<FunctionNoProtoType>(R))
4818      R = Context.getFunctionNoProtoType(T);
4819  }
4820
4821  bool isFriend = false;
4822  FunctionTemplateDecl *FunctionTemplate = 0;
4823  bool isExplicitSpecialization = false;
4824  bool isFunctionTemplateSpecialization = false;
4825  bool isDependentClassScopeExplicitSpecialization = false;
4826  bool isVirtualOkay = false;
4827
4828  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4829                                              isVirtualOkay);
4830  if (!NewFD) return 0;
4831
4832  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4833    NewFD->setTopLevelDeclInObjCContainer();
4834
4835  if (getLangOptions().CPlusPlus) {
4836    bool isInline = D.getDeclSpec().isInlineSpecified();
4837    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4838    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4839    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4840    isFriend = D.getDeclSpec().isFriendSpecified();
4841    if (isFriend && !isInline && D.isFunctionDefinition()) {
4842      // C++ [class.friend]p5
4843      //   A function can be defined in a friend declaration of a
4844      //   class . . . . Such a function is implicitly inline.
4845      NewFD->setImplicitlyInline();
4846    }
4847
4848    SetNestedNameSpecifier(NewFD, D);
4849    isExplicitSpecialization = false;
4850    isFunctionTemplateSpecialization = false;
4851    if (D.isInvalidType())
4852      NewFD->setInvalidDecl();
4853
4854    // Set the lexical context. If the declarator has a C++
4855    // scope specifier, or is the object of a friend declaration, the
4856    // lexical context will be different from the semantic context.
4857    NewFD->setLexicalDeclContext(CurContext);
4858
4859    // Match up the template parameter lists with the scope specifier, then
4860    // determine whether we have a template or a template specialization.
4861    bool Invalid = false;
4862    if (TemplateParameterList *TemplateParams
4863          = MatchTemplateParametersToScopeSpecifier(
4864                                  D.getDeclSpec().getSourceRange().getBegin(),
4865                                  D.getIdentifierLoc(),
4866                                  D.getCXXScopeSpec(),
4867                                  TemplateParamLists.get(),
4868                                  TemplateParamLists.size(),
4869                                  isFriend,
4870                                  isExplicitSpecialization,
4871                                  Invalid)) {
4872      if (TemplateParams->size() > 0) {
4873        // This is a function template
4874
4875        // Check that we can declare a template here.
4876        if (CheckTemplateDeclScope(S, TemplateParams))
4877          return 0;
4878
4879        // A destructor cannot be a template.
4880        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4881          Diag(NewFD->getLocation(), diag::err_destructor_template);
4882          return 0;
4883        }
4884
4885        // If we're adding a template to a dependent context, we may need to
4886        // rebuilding some of the types used within the template parameter list,
4887        // now that we know what the current instantiation is.
4888        if (DC->isDependentContext()) {
4889          ContextRAII SavedContext(*this, DC);
4890          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4891            Invalid = true;
4892        }
4893
4894
4895        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4896                                                        NewFD->getLocation(),
4897                                                        Name, TemplateParams,
4898                                                        NewFD);
4899        FunctionTemplate->setLexicalDeclContext(CurContext);
4900        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4901
4902        // For source fidelity, store the other template param lists.
4903        if (TemplateParamLists.size() > 1) {
4904          NewFD->setTemplateParameterListsInfo(Context,
4905                                               TemplateParamLists.size() - 1,
4906                                               TemplateParamLists.release());
4907        }
4908      } else {
4909        // This is a function template specialization.
4910        isFunctionTemplateSpecialization = true;
4911        // For source fidelity, store all the template param lists.
4912        NewFD->setTemplateParameterListsInfo(Context,
4913                                             TemplateParamLists.size(),
4914                                             TemplateParamLists.release());
4915
4916        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4917        if (isFriend) {
4918          // We want to remove the "template<>", found here.
4919          SourceRange RemoveRange = TemplateParams->getSourceRange();
4920
4921          // If we remove the template<> and the name is not a
4922          // template-id, we're actually silently creating a problem:
4923          // the friend declaration will refer to an untemplated decl,
4924          // and clearly the user wants a template specialization.  So
4925          // we need to insert '<>' after the name.
4926          SourceLocation InsertLoc;
4927          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4928            InsertLoc = D.getName().getSourceRange().getEnd();
4929            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4930          }
4931
4932          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4933            << Name << RemoveRange
4934            << FixItHint::CreateRemoval(RemoveRange)
4935            << FixItHint::CreateInsertion(InsertLoc, "<>");
4936        }
4937      }
4938    }
4939    else {
4940      // All template param lists were matched against the scope specifier:
4941      // this is NOT (an explicit specialization of) a template.
4942      if (TemplateParamLists.size() > 0)
4943        // For source fidelity, store all the template param lists.
4944        NewFD->setTemplateParameterListsInfo(Context,
4945                                             TemplateParamLists.size(),
4946                                             TemplateParamLists.release());
4947    }
4948
4949    if (Invalid) {
4950      NewFD->setInvalidDecl();
4951      if (FunctionTemplate)
4952        FunctionTemplate->setInvalidDecl();
4953    }
4954
4955    // If we see "T var();" at block scope, where T is a class type, it is
4956    // probably an attempt to initialize a variable, not a function declaration.
4957    // We don't catch this case earlier, since there is no ambiguity here.
4958    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4959        CurContext->isFunctionOrMethod() &&
4960        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4961        D.getDeclSpec().getStorageClassSpecAsWritten()
4962          == DeclSpec::SCS_unspecified) {
4963      QualType T = R->getAs<FunctionType>()->getResultType();
4964      DeclaratorChunk &C = D.getTypeObject(0);
4965      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4966          !C.Fun.TrailingReturnType &&
4967          C.Fun.getExceptionSpecType() == EST_None) {
4968        SourceRange ParenRange(C.Loc, C.EndLoc);
4969        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4970
4971        // If the declaration looks like:
4972        //   T var1,
4973        //   f();
4974        // and name lookup finds a function named 'f', then the ',' was
4975        // probably intended to be a ';'.
4976        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4977          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4978          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4979          if (Comma.getFileID() != Name.getFileID() ||
4980              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4981            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4982                                LookupOrdinaryName);
4983            if (LookupName(Result, S))
4984              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4985                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4986          }
4987        }
4988        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4989        // Empty parens mean value-initialization, and no parens mean default
4990        // initialization. These are equivalent if the default constructor is
4991        // user-provided, or if zero-initialization is a no-op.
4992        if (RD && RD->hasDefinition() &&
4993            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4994          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4995            << FixItHint::CreateRemoval(ParenRange);
4996        else if (const char *Init = getFixItZeroInitializerForType(T))
4997          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4998            << FixItHint::CreateReplacement(ParenRange, Init);
4999        else if (LangOpts.CPlusPlus0x)
5000          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5001            << FixItHint::CreateReplacement(ParenRange, "{}");
5002      }
5003    }
5004
5005    // C++ [dcl.fct.spec]p5:
5006    //   The virtual specifier shall only be used in declarations of
5007    //   nonstatic class member functions that appear within a
5008    //   member-specification of a class declaration; see 10.3.
5009    //
5010    if (isVirtual && !NewFD->isInvalidDecl()) {
5011      if (!isVirtualOkay) {
5012        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5013             diag::err_virtual_non_function);
5014      } else if (!CurContext->isRecord()) {
5015        // 'virtual' was specified outside of the class.
5016        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5017             diag::err_virtual_out_of_class)
5018          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5019      } else if (NewFD->getDescribedFunctionTemplate()) {
5020        // C++ [temp.mem]p3:
5021        //  A member function template shall not be virtual.
5022        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5023             diag::err_virtual_member_function_template)
5024          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5025      } else {
5026        // Okay: Add virtual to the method.
5027        NewFD->setVirtualAsWritten(true);
5028      }
5029    }
5030
5031    // C++ [dcl.fct.spec]p3:
5032    //  The inline specifier shall not appear on a block scope function
5033    //  declaration.
5034    if (isInline && !NewFD->isInvalidDecl()) {
5035      if (CurContext->isFunctionOrMethod()) {
5036        // 'inline' is not allowed on block scope function declaration.
5037        Diag(D.getDeclSpec().getInlineSpecLoc(),
5038             diag::err_inline_declaration_block_scope) << Name
5039          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5040      }
5041    }
5042
5043    // C++ [dcl.fct.spec]p6:
5044    //  The explicit specifier shall be used only in the declaration of a
5045    //  constructor or conversion function within its class definition;
5046    //  see 12.3.1 and 12.3.2.
5047    if (isExplicit && !NewFD->isInvalidDecl()) {
5048      if (!CurContext->isRecord()) {
5049        // 'explicit' was specified outside of the class.
5050        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5051             diag::err_explicit_out_of_class)
5052          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5053      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5054                 !isa<CXXConversionDecl>(NewFD)) {
5055        // 'explicit' was specified on a function that wasn't a constructor
5056        // or conversion function.
5057        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5058             diag::err_explicit_non_ctor_or_conv_function)
5059          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5060      }
5061    }
5062
5063    if (isConstexpr) {
5064      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5065      // are implicitly inline.
5066      NewFD->setImplicitlyInline();
5067
5068      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5069      // be either constructors or to return a literal type. Therefore,
5070      // destructors cannot be declared constexpr.
5071      if (isa<CXXDestructorDecl>(NewFD))
5072        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5073    }
5074
5075    // If __module_private__ was specified, mark the function accordingly.
5076    if (D.getDeclSpec().isModulePrivateSpecified()) {
5077      if (isFunctionTemplateSpecialization) {
5078        SourceLocation ModulePrivateLoc
5079          = D.getDeclSpec().getModulePrivateSpecLoc();
5080        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5081          << 0
5082          << FixItHint::CreateRemoval(ModulePrivateLoc);
5083      } else {
5084        NewFD->setModulePrivate();
5085        if (FunctionTemplate)
5086          FunctionTemplate->setModulePrivate();
5087      }
5088    }
5089
5090    if (isFriend) {
5091      // For now, claim that the objects have no previous declaration.
5092      if (FunctionTemplate) {
5093        FunctionTemplate->setObjectOfFriendDecl(false);
5094        FunctionTemplate->setAccess(AS_public);
5095      }
5096      NewFD->setObjectOfFriendDecl(false);
5097      NewFD->setAccess(AS_public);
5098    }
5099
5100    // If a function is defined as defaulted or deleted, mark it as such now.
5101    switch (D.getFunctionDefinitionKind()) {
5102      case FDK_Declaration:
5103      case FDK_Definition:
5104        break;
5105
5106      case FDK_Defaulted:
5107        NewFD->setDefaulted();
5108        break;
5109
5110      case FDK_Deleted:
5111        NewFD->setDeletedAsWritten();
5112        break;
5113    }
5114
5115    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5116        D.isFunctionDefinition()) {
5117      // C++ [class.mfct]p2:
5118      //   A member function may be defined (8.4) in its class definition, in
5119      //   which case it is an inline member function (7.1.2)
5120      NewFD->setImplicitlyInline();
5121    }
5122
5123    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5124        !CurContext->isRecord()) {
5125      // C++ [class.static]p1:
5126      //   A data or function member of a class may be declared static
5127      //   in a class definition, in which case it is a static member of
5128      //   the class.
5129
5130      // Complain about the 'static' specifier if it's on an out-of-line
5131      // member function definition.
5132      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5133           diag::err_static_out_of_line)
5134        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5135    }
5136  }
5137
5138  // Filter out previous declarations that don't match the scope.
5139  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5140                       isExplicitSpecialization ||
5141                       isFunctionTemplateSpecialization);
5142
5143  // Handle GNU asm-label extension (encoded as an attribute).
5144  if (Expr *E = (Expr*) D.getAsmLabel()) {
5145    // The parser guarantees this is a string.
5146    StringLiteral *SE = cast<StringLiteral>(E);
5147    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5148                                                SE->getString()));
5149  }
5150
5151  // Copy the parameter declarations from the declarator D to the function
5152  // declaration NewFD, if they are available.  First scavenge them into Params.
5153  SmallVector<ParmVarDecl*, 16> Params;
5154  if (D.isFunctionDeclarator()) {
5155    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5156
5157    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5158    // function that takes no arguments, not a function that takes a
5159    // single void argument.
5160    // We let through "const void" here because Sema::GetTypeForDeclarator
5161    // already checks for that case.
5162    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5163        FTI.ArgInfo[0].Param &&
5164        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5165      // Empty arg list, don't push any params.
5166      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5167
5168      // In C++, the empty parameter-type-list must be spelled "void"; a
5169      // typedef of void is not permitted.
5170      if (getLangOptions().CPlusPlus &&
5171          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5172        bool IsTypeAlias = false;
5173        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5174          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5175        else if (const TemplateSpecializationType *TST =
5176                   Param->getType()->getAs<TemplateSpecializationType>())
5177          IsTypeAlias = TST->isTypeAlias();
5178        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5179          << IsTypeAlias;
5180      }
5181    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5182      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5183        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5184        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5185        Param->setDeclContext(NewFD);
5186        Params.push_back(Param);
5187
5188        if (Param->isInvalidDecl())
5189          NewFD->setInvalidDecl();
5190      }
5191    }
5192
5193  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5194    // When we're declaring a function with a typedef, typeof, etc as in the
5195    // following example, we'll need to synthesize (unnamed)
5196    // parameters for use in the declaration.
5197    //
5198    // @code
5199    // typedef void fn(int);
5200    // fn f;
5201    // @endcode
5202
5203    // Synthesize a parameter for each argument type.
5204    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5205         AE = FT->arg_type_end(); AI != AE; ++AI) {
5206      ParmVarDecl *Param =
5207        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5208      Param->setScopeInfo(0, Params.size());
5209      Params.push_back(Param);
5210    }
5211  } else {
5212    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5213           "Should not need args for typedef of non-prototype fn");
5214  }
5215
5216  // Finally, we know we have the right number of parameters, install them.
5217  NewFD->setParams(Params);
5218
5219  // Process the non-inheritable attributes on this declaration.
5220  ProcessDeclAttributes(S, NewFD, D,
5221                        /*NonInheritable=*/true, /*Inheritable=*/false);
5222
5223  if (!getLangOptions().CPlusPlus) {
5224    // Perform semantic checking on the function declaration.
5225    bool isExplicitSpecialization=false;
5226    if (!NewFD->isInvalidDecl()) {
5227      if (NewFD->getResultType()->isVariablyModifiedType()) {
5228        // Functions returning a variably modified type violate C99 6.7.5.2p2
5229        // because all functions have linkage.
5230        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5231        NewFD->setInvalidDecl();
5232      } else {
5233        if (NewFD->isMain())
5234          CheckMain(NewFD, D.getDeclSpec());
5235        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5236                                                    isExplicitSpecialization));
5237      }
5238    }
5239    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5240            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5241           "previous declaration set still overloaded");
5242  } else {
5243    // If the declarator is a template-id, translate the parser's template
5244    // argument list into our AST format.
5245    bool HasExplicitTemplateArgs = false;
5246    TemplateArgumentListInfo TemplateArgs;
5247    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5248      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5249      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5250      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5251      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5252                                         TemplateId->getTemplateArgs(),
5253                                         TemplateId->NumArgs);
5254      translateTemplateArguments(TemplateArgsPtr,
5255                                 TemplateArgs);
5256      TemplateArgsPtr.release();
5257
5258      HasExplicitTemplateArgs = true;
5259
5260      if (NewFD->isInvalidDecl()) {
5261        HasExplicitTemplateArgs = false;
5262      } else if (FunctionTemplate) {
5263        // Function template with explicit template arguments.
5264        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5265          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5266
5267        HasExplicitTemplateArgs = false;
5268      } else if (!isFunctionTemplateSpecialization &&
5269                 !D.getDeclSpec().isFriendSpecified()) {
5270        // We have encountered something that the user meant to be a
5271        // specialization (because it has explicitly-specified template
5272        // arguments) but that was not introduced with a "template<>" (or had
5273        // too few of them).
5274        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5275          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5276          << FixItHint::CreateInsertion(
5277                                    D.getDeclSpec().getSourceRange().getBegin(),
5278                                        "template<> ");
5279        isFunctionTemplateSpecialization = true;
5280      } else {
5281        // "friend void foo<>(int);" is an implicit specialization decl.
5282        isFunctionTemplateSpecialization = true;
5283      }
5284    } else if (isFriend && isFunctionTemplateSpecialization) {
5285      // This combination is only possible in a recovery case;  the user
5286      // wrote something like:
5287      //   template <> friend void foo(int);
5288      // which we're recovering from as if the user had written:
5289      //   friend void foo<>(int);
5290      // Go ahead and fake up a template id.
5291      HasExplicitTemplateArgs = true;
5292        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5293      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5294    }
5295
5296    // If it's a friend (and only if it's a friend), it's possible
5297    // that either the specialized function type or the specialized
5298    // template is dependent, and therefore matching will fail.  In
5299    // this case, don't check the specialization yet.
5300    bool InstantiationDependent = false;
5301    if (isFunctionTemplateSpecialization && isFriend &&
5302        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5303         TemplateSpecializationType::anyDependentTemplateArguments(
5304            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5305            InstantiationDependent))) {
5306      assert(HasExplicitTemplateArgs &&
5307             "friend function specialization without template args");
5308      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5309                                                       Previous))
5310        NewFD->setInvalidDecl();
5311    } else if (isFunctionTemplateSpecialization) {
5312      if (CurContext->isDependentContext() && CurContext->isRecord()
5313          && !isFriend) {
5314        isDependentClassScopeExplicitSpecialization = true;
5315        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5316          diag::ext_function_specialization_in_class :
5317          diag::err_function_specialization_in_class)
5318          << NewFD->getDeclName();
5319      } else if (CheckFunctionTemplateSpecialization(NewFD,
5320                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5321                                                     Previous))
5322        NewFD->setInvalidDecl();
5323
5324      // C++ [dcl.stc]p1:
5325      //   A storage-class-specifier shall not be specified in an explicit
5326      //   specialization (14.7.3)
5327      if (SC != SC_None) {
5328        if (SC != NewFD->getStorageClass())
5329          Diag(NewFD->getLocation(),
5330               diag::err_explicit_specialization_inconsistent_storage_class)
5331            << SC
5332            << FixItHint::CreateRemoval(
5333                                      D.getDeclSpec().getStorageClassSpecLoc());
5334
5335        else
5336          Diag(NewFD->getLocation(),
5337               diag::ext_explicit_specialization_storage_class)
5338            << FixItHint::CreateRemoval(
5339                                      D.getDeclSpec().getStorageClassSpecLoc());
5340      }
5341
5342    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5343      if (CheckMemberSpecialization(NewFD, Previous))
5344          NewFD->setInvalidDecl();
5345    }
5346
5347    // Perform semantic checking on the function declaration.
5348    if (!isDependentClassScopeExplicitSpecialization) {
5349      if (NewFD->isInvalidDecl()) {
5350        // If this is a class member, mark the class invalid immediately.
5351        // This avoids some consistency errors later.
5352        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5353          methodDecl->getParent()->setInvalidDecl();
5354      } else {
5355        if (NewFD->isMain())
5356          CheckMain(NewFD, D.getDeclSpec());
5357        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5358                                                    isExplicitSpecialization));
5359      }
5360    }
5361
5362    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5363            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5364           "previous declaration set still overloaded");
5365
5366    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5367        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5368      NewFD->setInvalidDecl();
5369
5370    NamedDecl *PrincipalDecl = (FunctionTemplate
5371                                ? cast<NamedDecl>(FunctionTemplate)
5372                                : NewFD);
5373
5374    if (isFriend && D.isRedeclaration()) {
5375      AccessSpecifier Access = AS_public;
5376      if (!NewFD->isInvalidDecl())
5377        Access = NewFD->getPreviousDecl()->getAccess();
5378
5379      NewFD->setAccess(Access);
5380      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5381
5382      PrincipalDecl->setObjectOfFriendDecl(true);
5383    }
5384
5385    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5386        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5387      PrincipalDecl->setNonMemberOperator();
5388
5389    // If we have a function template, check the template parameter
5390    // list. This will check and merge default template arguments.
5391    if (FunctionTemplate) {
5392      FunctionTemplateDecl *PrevTemplate =
5393                                     FunctionTemplate->getPreviousDecl();
5394      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5395                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5396                            D.getDeclSpec().isFriendSpecified()
5397                              ? (D.isFunctionDefinition()
5398                                   ? TPC_FriendFunctionTemplateDefinition
5399                                   : TPC_FriendFunctionTemplate)
5400                              : (D.getCXXScopeSpec().isSet() &&
5401                                 DC && DC->isRecord() &&
5402                                 DC->isDependentContext())
5403                                  ? TPC_ClassTemplateMember
5404                                  : TPC_FunctionTemplate);
5405    }
5406
5407    if (NewFD->isInvalidDecl()) {
5408      // Ignore all the rest of this.
5409    } else if (!D.isRedeclaration()) {
5410      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5411                                       AddToScope };
5412      // Fake up an access specifier if it's supposed to be a class member.
5413      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5414        NewFD->setAccess(AS_public);
5415
5416      // Qualified decls generally require a previous declaration.
5417      if (D.getCXXScopeSpec().isSet()) {
5418        // ...with the major exception of templated-scope or
5419        // dependent-scope friend declarations.
5420
5421        // TODO: we currently also suppress this check in dependent
5422        // contexts because (1) the parameter depth will be off when
5423        // matching friend templates and (2) we might actually be
5424        // selecting a friend based on a dependent factor.  But there
5425        // are situations where these conditions don't apply and we
5426        // can actually do this check immediately.
5427        if (isFriend &&
5428            (TemplateParamLists.size() ||
5429             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5430             CurContext->isDependentContext())) {
5431          // ignore these
5432        } else {
5433          // The user tried to provide an out-of-line definition for a
5434          // function that is a member of a class or namespace, but there
5435          // was no such member function declared (C++ [class.mfct]p2,
5436          // C++ [namespace.memdef]p2). For example:
5437          //
5438          // class X {
5439          //   void f() const;
5440          // };
5441          //
5442          // void X::f() { } // ill-formed
5443          //
5444          // Complain about this problem, and attempt to suggest close
5445          // matches (e.g., those that differ only in cv-qualifiers and
5446          // whether the parameter types are references).
5447
5448          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5449                                                               NewFD,
5450                                                               ExtraArgs)) {
5451            AddToScope = ExtraArgs.AddToScope;
5452            return Result;
5453          }
5454        }
5455
5456        // Unqualified local friend declarations are required to resolve
5457        // to something.
5458      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5459        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5460                                                             NewFD,
5461                                                             ExtraArgs)) {
5462          AddToScope = ExtraArgs.AddToScope;
5463          return Result;
5464        }
5465      }
5466
5467    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5468               !isFriend && !isFunctionTemplateSpecialization &&
5469               !isExplicitSpecialization) {
5470      // An out-of-line member function declaration must also be a
5471      // definition (C++ [dcl.meaning]p1).
5472      // Note that this is not the case for explicit specializations of
5473      // function templates or member functions of class templates, per
5474      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5475      // extension for compatibility with old SWIG code which likes to
5476      // generate them.
5477      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5478        << D.getCXXScopeSpec().getRange();
5479    }
5480  }
5481
5482
5483  // Handle attributes. We need to have merged decls when handling attributes
5484  // (for example to check for conflicts, etc).
5485  // FIXME: This needs to happen before we merge declarations. Then,
5486  // let attribute merging cope with attribute conflicts.
5487  ProcessDeclAttributes(S, NewFD, D,
5488                        /*NonInheritable=*/false, /*Inheritable=*/true);
5489
5490  // attributes declared post-definition are currently ignored
5491  // FIXME: This should happen during attribute merging
5492  if (D.isRedeclaration() && Previous.isSingleResult()) {
5493    const FunctionDecl *Def;
5494    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5495    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5496      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5497      Diag(Def->getLocation(), diag::note_previous_definition);
5498    }
5499  }
5500
5501  AddKnownFunctionAttributes(NewFD);
5502
5503  if (NewFD->hasAttr<OverloadableAttr>() &&
5504      !NewFD->getType()->getAs<FunctionProtoType>()) {
5505    Diag(NewFD->getLocation(),
5506         diag::err_attribute_overloadable_no_prototype)
5507      << NewFD;
5508
5509    // Turn this into a variadic function with no parameters.
5510    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5511    FunctionProtoType::ExtProtoInfo EPI;
5512    EPI.Variadic = true;
5513    EPI.ExtInfo = FT->getExtInfo();
5514
5515    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5516    NewFD->setType(R);
5517  }
5518
5519  // If there's a #pragma GCC visibility in scope, and this isn't a class
5520  // member, set the visibility of this function.
5521  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5522    AddPushedVisibilityAttribute(NewFD);
5523
5524  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5525  // marking the function.
5526  AddCFAuditedAttribute(NewFD);
5527
5528  // If this is a locally-scoped extern C function, update the
5529  // map of such names.
5530  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5531      && !NewFD->isInvalidDecl())
5532    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5533
5534  // Set this FunctionDecl's range up to the right paren.
5535  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5536
5537  if (getLangOptions().CPlusPlus) {
5538    if (FunctionTemplate) {
5539      if (NewFD->isInvalidDecl())
5540        FunctionTemplate->setInvalidDecl();
5541      return FunctionTemplate;
5542    }
5543  }
5544
5545  MarkUnusedFileScopedDecl(NewFD);
5546
5547  if (getLangOptions().CUDA)
5548    if (IdentifierInfo *II = NewFD->getIdentifier())
5549      if (!NewFD->isInvalidDecl() &&
5550          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5551        if (II->isStr("cudaConfigureCall")) {
5552          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5553            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5554
5555          Context.setcudaConfigureCallDecl(NewFD);
5556        }
5557      }
5558
5559  // Here we have an function template explicit specialization at class scope.
5560  // The actually specialization will be postponed to template instatiation
5561  // time via the ClassScopeFunctionSpecializationDecl node.
5562  if (isDependentClassScopeExplicitSpecialization) {
5563    ClassScopeFunctionSpecializationDecl *NewSpec =
5564                         ClassScopeFunctionSpecializationDecl::Create(
5565                                Context, CurContext,  SourceLocation(),
5566                                cast<CXXMethodDecl>(NewFD));
5567    CurContext->addDecl(NewSpec);
5568    AddToScope = false;
5569  }
5570
5571  return NewFD;
5572}
5573
5574/// \brief Perform semantic checking of a new function declaration.
5575///
5576/// Performs semantic analysis of the new function declaration
5577/// NewFD. This routine performs all semantic checking that does not
5578/// require the actual declarator involved in the declaration, and is
5579/// used both for the declaration of functions as they are parsed
5580/// (called via ActOnDeclarator) and for the declaration of functions
5581/// that have been instantiated via C++ template instantiation (called
5582/// via InstantiateDecl).
5583///
5584/// \param IsExplicitSpecialiation whether this new function declaration is
5585/// an explicit specialization of the previous declaration.
5586///
5587/// This sets NewFD->isInvalidDecl() to true if there was an error.
5588///
5589/// Returns true if the function declaration is a redeclaration.
5590bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5591                                    LookupResult &Previous,
5592                                    bool IsExplicitSpecialization) {
5593  assert(!NewFD->getResultType()->isVariablyModifiedType()
5594         && "Variably modified return types are not handled here");
5595
5596  // Check for a previous declaration of this name.
5597  if (Previous.empty() && NewFD->isExternC()) {
5598    // Since we did not find anything by this name and we're declaring
5599    // an extern "C" function, look for a non-visible extern "C"
5600    // declaration with the same name.
5601    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5602      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5603    if (Pos != LocallyScopedExternalDecls.end())
5604      Previous.addDecl(Pos->second);
5605  }
5606
5607  bool Redeclaration = false;
5608
5609  // Merge or overload the declaration with an existing declaration of
5610  // the same name, if appropriate.
5611  if (!Previous.empty()) {
5612    // Determine whether NewFD is an overload of PrevDecl or
5613    // a declaration that requires merging. If it's an overload,
5614    // there's no more work to do here; we'll just add the new
5615    // function to the scope.
5616
5617    NamedDecl *OldDecl = 0;
5618    if (!AllowOverloadingOfFunction(Previous, Context)) {
5619      Redeclaration = true;
5620      OldDecl = Previous.getFoundDecl();
5621    } else {
5622      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5623                            /*NewIsUsingDecl*/ false)) {
5624      case Ovl_Match:
5625        Redeclaration = true;
5626        break;
5627
5628      case Ovl_NonFunction:
5629        Redeclaration = true;
5630        break;
5631
5632      case Ovl_Overload:
5633        Redeclaration = false;
5634        break;
5635      }
5636
5637      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5638        // If a function name is overloadable in C, then every function
5639        // with that name must be marked "overloadable".
5640        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5641          << Redeclaration << NewFD;
5642        NamedDecl *OverloadedDecl = 0;
5643        if (Redeclaration)
5644          OverloadedDecl = OldDecl;
5645        else if (!Previous.empty())
5646          OverloadedDecl = Previous.getRepresentativeDecl();
5647        if (OverloadedDecl)
5648          Diag(OverloadedDecl->getLocation(),
5649               diag::note_attribute_overloadable_prev_overload);
5650        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5651                                                        Context));
5652      }
5653    }
5654
5655    if (Redeclaration) {
5656      // NewFD and OldDecl represent declarations that need to be
5657      // merged.
5658      if (MergeFunctionDecl(NewFD, OldDecl)) {
5659        NewFD->setInvalidDecl();
5660        return Redeclaration;
5661      }
5662
5663      Previous.clear();
5664      Previous.addDecl(OldDecl);
5665
5666      if (FunctionTemplateDecl *OldTemplateDecl
5667                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5668        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5669        FunctionTemplateDecl *NewTemplateDecl
5670          = NewFD->getDescribedFunctionTemplate();
5671        assert(NewTemplateDecl && "Template/non-template mismatch");
5672        if (CXXMethodDecl *Method
5673              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5674          Method->setAccess(OldTemplateDecl->getAccess());
5675          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5676        }
5677
5678        // If this is an explicit specialization of a member that is a function
5679        // template, mark it as a member specialization.
5680        if (IsExplicitSpecialization &&
5681            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5682          NewTemplateDecl->setMemberSpecialization();
5683          assert(OldTemplateDecl->isMemberSpecialization());
5684        }
5685
5686      } else {
5687        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5688          NewFD->setAccess(OldDecl->getAccess());
5689        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5690      }
5691    }
5692  }
5693
5694  // Semantic checking for this function declaration (in isolation).
5695  if (getLangOptions().CPlusPlus) {
5696    // C++-specific checks.
5697    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5698      CheckConstructor(Constructor);
5699    } else if (CXXDestructorDecl *Destructor =
5700                dyn_cast<CXXDestructorDecl>(NewFD)) {
5701      CXXRecordDecl *Record = Destructor->getParent();
5702      QualType ClassType = Context.getTypeDeclType(Record);
5703
5704      // FIXME: Shouldn't we be able to perform this check even when the class
5705      // type is dependent? Both gcc and edg can handle that.
5706      if (!ClassType->isDependentType()) {
5707        DeclarationName Name
5708          = Context.DeclarationNames.getCXXDestructorName(
5709                                        Context.getCanonicalType(ClassType));
5710        if (NewFD->getDeclName() != Name) {
5711          Diag(NewFD->getLocation(), diag::err_destructor_name);
5712          NewFD->setInvalidDecl();
5713          return Redeclaration;
5714        }
5715      }
5716    } else if (CXXConversionDecl *Conversion
5717               = dyn_cast<CXXConversionDecl>(NewFD)) {
5718      ActOnConversionDeclarator(Conversion);
5719    }
5720
5721    // Find any virtual functions that this function overrides.
5722    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5723      if (!Method->isFunctionTemplateSpecialization() &&
5724          !Method->getDescribedFunctionTemplate()) {
5725        if (AddOverriddenMethods(Method->getParent(), Method)) {
5726          // If the function was marked as "static", we have a problem.
5727          if (NewFD->getStorageClass() == SC_Static) {
5728            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5729              << NewFD->getDeclName();
5730            for (CXXMethodDecl::method_iterator
5731                      Overridden = Method->begin_overridden_methods(),
5732                   OverriddenEnd = Method->end_overridden_methods();
5733                 Overridden != OverriddenEnd;
5734                 ++Overridden) {
5735              Diag((*Overridden)->getLocation(),
5736                   diag::note_overridden_virtual_function);
5737            }
5738          }
5739        }
5740      }
5741    }
5742
5743    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5744    if (NewFD->isOverloadedOperator() &&
5745        CheckOverloadedOperatorDeclaration(NewFD)) {
5746      NewFD->setInvalidDecl();
5747      return Redeclaration;
5748    }
5749
5750    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5751    if (NewFD->getLiteralIdentifier() &&
5752        CheckLiteralOperatorDeclaration(NewFD)) {
5753      NewFD->setInvalidDecl();
5754      return Redeclaration;
5755    }
5756
5757    // In C++, check default arguments now that we have merged decls. Unless
5758    // the lexical context is the class, because in this case this is done
5759    // during delayed parsing anyway.
5760    if (!CurContext->isRecord())
5761      CheckCXXDefaultArguments(NewFD);
5762
5763    // If this function declares a builtin function, check the type of this
5764    // declaration against the expected type for the builtin.
5765    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5766      ASTContext::GetBuiltinTypeError Error;
5767      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5768      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5769        // The type of this function differs from the type of the builtin,
5770        // so forget about the builtin entirely.
5771        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5772      }
5773    }
5774  }
5775  return Redeclaration;
5776}
5777
5778void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5779  // C++ [basic.start.main]p3:  A program that declares main to be inline
5780  //   or static is ill-formed.
5781  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5782  //   shall not appear in a declaration of main.
5783  // static main is not an error under C99, but we should warn about it.
5784  if (FD->getStorageClass() == SC_Static)
5785    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5786         ? diag::err_static_main : diag::warn_static_main)
5787      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5788  if (FD->isInlineSpecified())
5789    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5790      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5791
5792  QualType T = FD->getType();
5793  assert(T->isFunctionType() && "function decl is not of function type");
5794  const FunctionType* FT = T->getAs<FunctionType>();
5795
5796  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5797    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5798    FD->setInvalidDecl(true);
5799  }
5800
5801  // Treat protoless main() as nullary.
5802  if (isa<FunctionNoProtoType>(FT)) return;
5803
5804  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5805  unsigned nparams = FTP->getNumArgs();
5806  assert(FD->getNumParams() == nparams);
5807
5808  bool HasExtraParameters = (nparams > 3);
5809
5810  // Darwin passes an undocumented fourth argument of type char**.  If
5811  // other platforms start sprouting these, the logic below will start
5812  // getting shifty.
5813  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5814    HasExtraParameters = false;
5815
5816  if (HasExtraParameters) {
5817    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5818    FD->setInvalidDecl(true);
5819    nparams = 3;
5820  }
5821
5822  // FIXME: a lot of the following diagnostics would be improved
5823  // if we had some location information about types.
5824
5825  QualType CharPP =
5826    Context.getPointerType(Context.getPointerType(Context.CharTy));
5827  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5828
5829  for (unsigned i = 0; i < nparams; ++i) {
5830    QualType AT = FTP->getArgType(i);
5831
5832    bool mismatch = true;
5833
5834    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5835      mismatch = false;
5836    else if (Expected[i] == CharPP) {
5837      // As an extension, the following forms are okay:
5838      //   char const **
5839      //   char const * const *
5840      //   char * const *
5841
5842      QualifierCollector qs;
5843      const PointerType* PT;
5844      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5845          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5846          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5847        qs.removeConst();
5848        mismatch = !qs.empty();
5849      }
5850    }
5851
5852    if (mismatch) {
5853      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5854      // TODO: suggest replacing given type with expected type
5855      FD->setInvalidDecl(true);
5856    }
5857  }
5858
5859  if (nparams == 1 && !FD->isInvalidDecl()) {
5860    Diag(FD->getLocation(), diag::warn_main_one_arg);
5861  }
5862
5863  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5864    Diag(FD->getLocation(), diag::err_main_template_decl);
5865    FD->setInvalidDecl();
5866  }
5867}
5868
5869bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5870  // FIXME: Need strict checking.  In C89, we need to check for
5871  // any assignment, increment, decrement, function-calls, or
5872  // commas outside of a sizeof.  In C99, it's the same list,
5873  // except that the aforementioned are allowed in unevaluated
5874  // expressions.  Everything else falls under the
5875  // "may accept other forms of constant expressions" exception.
5876  // (We never end up here for C++, so the constant expression
5877  // rules there don't matter.)
5878  if (Init->isConstantInitializer(Context, false))
5879    return false;
5880  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5881    << Init->getSourceRange();
5882  return true;
5883}
5884
5885namespace {
5886  // Visits an initialization expression to see if OrigDecl is evaluated in
5887  // its own initialization and throws a warning if it does.
5888  class SelfReferenceChecker
5889      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5890    Sema &S;
5891    Decl *OrigDecl;
5892    bool isRecordType;
5893    bool isPODType;
5894
5895  public:
5896    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5897
5898    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5899                                                    S(S), OrigDecl(OrigDecl) {
5900      isPODType = false;
5901      isRecordType = false;
5902      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5903        isPODType = VD->getType().isPODType(S.Context);
5904        isRecordType = VD->getType()->isRecordType();
5905      }
5906    }
5907
5908    void VisitExpr(Expr *E) {
5909      if (isa<ObjCMessageExpr>(*E)) return;
5910      if (isRecordType) {
5911        Expr *expr = E;
5912        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5913          ValueDecl *VD = ME->getMemberDecl();
5914          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5915          expr = ME->getBase();
5916        }
5917        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5918          HandleDeclRefExpr(DRE);
5919          return;
5920        }
5921      }
5922      Inherited::VisitExpr(E);
5923    }
5924
5925    void VisitMemberExpr(MemberExpr *E) {
5926      if (E->getType()->canDecayToPointerType()) return;
5927      if (isa<FieldDecl>(E->getMemberDecl()))
5928        if (DeclRefExpr *DRE
5929              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5930          HandleDeclRefExpr(DRE);
5931          return;
5932        }
5933      Inherited::VisitMemberExpr(E);
5934    }
5935
5936    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5937      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5938          (isRecordType && E->getCastKind() == CK_NoOp)) {
5939        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5940        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5941          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5942        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5943          HandleDeclRefExpr(DRE);
5944          return;
5945        }
5946      }
5947      Inherited::VisitImplicitCastExpr(E);
5948    }
5949
5950    void VisitUnaryOperator(UnaryOperator *E) {
5951      // For POD record types, addresses of its own members are well-defined.
5952      if (isRecordType && isPODType) return;
5953      Inherited::VisitUnaryOperator(E);
5954    }
5955
5956    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5957      Decl* ReferenceDecl = DRE->getDecl();
5958      if (OrigDecl != ReferenceDecl) return;
5959      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5960                          Sema::NotForRedeclaration);
5961      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5962                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5963                              << Result.getLookupName()
5964                              << OrigDecl->getLocation()
5965                              << DRE->getSourceRange());
5966    }
5967  };
5968}
5969
5970/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5971void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5972  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5973}
5974
5975/// AddInitializerToDecl - Adds the initializer Init to the
5976/// declaration dcl. If DirectInit is true, this is C++ direct
5977/// initialization rather than copy initialization.
5978void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5979                                bool DirectInit, bool TypeMayContainAuto) {
5980  // If there is no declaration, there was an error parsing it.  Just ignore
5981  // the initializer.
5982  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5983    return;
5984
5985  // Check for self-references within variable initializers.
5986  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5987    // Variables declared within a function/method body are handled
5988    // by a dataflow analysis.
5989    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5990      CheckSelfReference(RealDecl, Init);
5991  }
5992  else {
5993    CheckSelfReference(RealDecl, Init);
5994  }
5995
5996  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5997    // With declarators parsed the way they are, the parser cannot
5998    // distinguish between a normal initializer and a pure-specifier.
5999    // Thus this grotesque test.
6000    IntegerLiteral *IL;
6001    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6002        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6003      CheckPureMethod(Method, Init->getSourceRange());
6004    else {
6005      Diag(Method->getLocation(), diag::err_member_function_initialization)
6006        << Method->getDeclName() << Init->getSourceRange();
6007      Method->setInvalidDecl();
6008    }
6009    return;
6010  }
6011
6012  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6013  if (!VDecl) {
6014    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6015    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6016    RealDecl->setInvalidDecl();
6017    return;
6018  }
6019
6020  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6021  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6022    TypeSourceInfo *DeducedType = 0;
6023    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
6024            DAR_Failed)
6025      DiagnoseAutoDeductionFailure(VDecl, Init);
6026    if (!DeducedType) {
6027      RealDecl->setInvalidDecl();
6028      return;
6029    }
6030    VDecl->setTypeSourceInfo(DeducedType);
6031    VDecl->setType(DeducedType->getType());
6032
6033    // In ARC, infer lifetime.
6034    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6035      VDecl->setInvalidDecl();
6036
6037    // If this is a redeclaration, check that the type we just deduced matches
6038    // the previously declared type.
6039    if (VarDecl *Old = VDecl->getPreviousDecl())
6040      MergeVarDeclTypes(VDecl, Old);
6041  }
6042
6043  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6044    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6045    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6046    VDecl->setInvalidDecl();
6047    return;
6048  }
6049
6050
6051  // A definition must end up with a complete type, which means it must be
6052  // complete with the restriction that an array type might be completed by the
6053  // initializer; note that later code assumes this restriction.
6054  QualType BaseDeclType = VDecl->getType();
6055  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6056    BaseDeclType = Array->getElementType();
6057  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6058                          diag::err_typecheck_decl_incomplete_type)) {
6059    RealDecl->setInvalidDecl();
6060    return;
6061  }
6062
6063  // The variable can not have an abstract class type.
6064  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6065                             diag::err_abstract_type_in_decl,
6066                             AbstractVariableType))
6067    VDecl->setInvalidDecl();
6068
6069  const VarDecl *Def;
6070  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6071    Diag(VDecl->getLocation(), diag::err_redefinition)
6072      << VDecl->getDeclName();
6073    Diag(Def->getLocation(), diag::note_previous_definition);
6074    VDecl->setInvalidDecl();
6075    return;
6076  }
6077
6078  const VarDecl* PrevInit = 0;
6079  if (getLangOptions().CPlusPlus) {
6080    // C++ [class.static.data]p4
6081    //   If a static data member is of const integral or const
6082    //   enumeration type, its declaration in the class definition can
6083    //   specify a constant-initializer which shall be an integral
6084    //   constant expression (5.19). In that case, the member can appear
6085    //   in integral constant expressions. The member shall still be
6086    //   defined in a namespace scope if it is used in the program and the
6087    //   namespace scope definition shall not contain an initializer.
6088    //
6089    // We already performed a redefinition check above, but for static
6090    // data members we also need to check whether there was an in-class
6091    // declaration with an initializer.
6092    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6093      Diag(VDecl->getLocation(), diag::err_redefinition)
6094        << VDecl->getDeclName();
6095      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6096      return;
6097    }
6098
6099    if (VDecl->hasLocalStorage())
6100      getCurFunction()->setHasBranchProtectedScope();
6101
6102    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6103      VDecl->setInvalidDecl();
6104      return;
6105    }
6106  }
6107
6108  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6109  // a kernel function cannot be initialized."
6110  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6111    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6112    VDecl->setInvalidDecl();
6113    return;
6114  }
6115
6116  // Get the decls type and save a reference for later, since
6117  // CheckInitializerTypes may change it.
6118  QualType DclT = VDecl->getType(), SavT = DclT;
6119
6120  // Perform the initialization.
6121  if (!VDecl->isInvalidDecl()) {
6122    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6123    InitializationKind Kind
6124      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6125                                                      Init->getLocStart(),
6126                                                      Init->getLocEnd())
6127                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6128                                                    Init->getLocStart());
6129
6130    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6131    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6132                                              MultiExprArg(*this, &Init, 1),
6133                                              &DclT);
6134    if (Result.isInvalid()) {
6135      VDecl->setInvalidDecl();
6136      return;
6137    }
6138
6139    Init = Result.takeAs<Expr>();
6140  }
6141
6142  // If the type changed, it means we had an incomplete type that was
6143  // completed by the initializer. For example:
6144  //   int ary[] = { 1, 3, 5 };
6145  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6146  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6147    VDecl->setType(DclT);
6148    Init->setType(DclT.getNonReferenceType());
6149  }
6150
6151  // Check any implicit conversions within the expression.
6152  CheckImplicitConversions(Init, VDecl->getLocation());
6153
6154  if (!VDecl->isInvalidDecl())
6155    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6156
6157  Init = MaybeCreateExprWithCleanups(Init);
6158  // Attach the initializer to the decl.
6159  VDecl->setInit(Init);
6160
6161  if (VDecl->isLocalVarDecl()) {
6162    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6163    // static storage duration shall be constant expressions or string literals.
6164    // C++ does not have this restriction.
6165    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6166        VDecl->getStorageClass() == SC_Static)
6167      CheckForConstantInitializer(Init, DclT);
6168  } else if (VDecl->isStaticDataMember() &&
6169             VDecl->getLexicalDeclContext()->isRecord()) {
6170    // This is an in-class initialization for a static data member, e.g.,
6171    //
6172    // struct S {
6173    //   static const int value = 17;
6174    // };
6175
6176    // C++ [class.mem]p4:
6177    //   A member-declarator can contain a constant-initializer only
6178    //   if it declares a static member (9.4) of const integral or
6179    //   const enumeration type, see 9.4.2.
6180    //
6181    // C++11 [class.static.data]p3:
6182    //   If a non-volatile const static data member is of integral or
6183    //   enumeration type, its declaration in the class definition can
6184    //   specify a brace-or-equal-initializer in which every initalizer-clause
6185    //   that is an assignment-expression is a constant expression. A static
6186    //   data member of literal type can be declared in the class definition
6187    //   with the constexpr specifier; if so, its declaration shall specify a
6188    //   brace-or-equal-initializer in which every initializer-clause that is
6189    //   an assignment-expression is a constant expression.
6190
6191    // Do nothing on dependent types.
6192    if (DclT->isDependentType()) {
6193
6194    // Allow any 'static constexpr' members, whether or not they are of literal
6195    // type. We separately check that the initializer is a constant expression,
6196    // which implicitly requires the member to be of literal type.
6197    } else if (VDecl->isConstexpr()) {
6198
6199    // Require constness.
6200    } else if (!DclT.isConstQualified()) {
6201      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6202        << Init->getSourceRange();
6203      VDecl->setInvalidDecl();
6204
6205    // We allow integer constant expressions in all cases.
6206    } else if (DclT->isIntegralOrEnumerationType()) {
6207      // Check whether the expression is a constant expression.
6208      SourceLocation Loc;
6209      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6210        // In C++11, a non-constexpr const static data member with an
6211        // in-class initializer cannot be volatile.
6212        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6213      else if (Init->isValueDependent())
6214        ; // Nothing to check.
6215      else if (Init->isIntegerConstantExpr(Context, &Loc))
6216        ; // Ok, it's an ICE!
6217      else if (Init->isEvaluatable(Context)) {
6218        // If we can constant fold the initializer through heroics, accept it,
6219        // but report this as a use of an extension for -pedantic.
6220        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6221          << Init->getSourceRange();
6222      } else {
6223        // Otherwise, this is some crazy unknown case.  Report the issue at the
6224        // location provided by the isIntegerConstantExpr failed check.
6225        Diag(Loc, diag::err_in_class_initializer_non_constant)
6226          << Init->getSourceRange();
6227        VDecl->setInvalidDecl();
6228      }
6229
6230    // We allow foldable floating-point constants as an extension.
6231    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6232      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6233        << DclT << Init->getSourceRange();
6234      if (getLangOptions().CPlusPlus0x)
6235        Diag(VDecl->getLocation(),
6236             diag::note_in_class_initializer_float_type_constexpr)
6237          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6238
6239      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6240        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6241          << Init->getSourceRange();
6242        VDecl->setInvalidDecl();
6243      }
6244
6245    // Suggest adding 'constexpr' in C++11 for literal types.
6246    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6247      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6248        << DclT << Init->getSourceRange()
6249        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6250      VDecl->setConstexpr(true);
6251
6252    } else {
6253      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6254        << DclT << Init->getSourceRange();
6255      VDecl->setInvalidDecl();
6256    }
6257  } else if (VDecl->isFileVarDecl()) {
6258    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6259        (!getLangOptions().CPlusPlus ||
6260         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6261      Diag(VDecl->getLocation(), diag::warn_extern_init);
6262
6263    // C99 6.7.8p4. All file scoped initializers need to be constant.
6264    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6265      CheckForConstantInitializer(Init, DclT);
6266  }
6267
6268  CheckCompleteVariableDeclaration(VDecl);
6269}
6270
6271/// ActOnInitializerError - Given that there was an error parsing an
6272/// initializer for the given declaration, try to return to some form
6273/// of sanity.
6274void Sema::ActOnInitializerError(Decl *D) {
6275  // Our main concern here is re-establishing invariants like "a
6276  // variable's type is either dependent or complete".
6277  if (!D || D->isInvalidDecl()) return;
6278
6279  VarDecl *VD = dyn_cast<VarDecl>(D);
6280  if (!VD) return;
6281
6282  // Auto types are meaningless if we can't make sense of the initializer.
6283  if (ParsingInitForAutoVars.count(D)) {
6284    D->setInvalidDecl();
6285    return;
6286  }
6287
6288  QualType Ty = VD->getType();
6289  if (Ty->isDependentType()) return;
6290
6291  // Require a complete type.
6292  if (RequireCompleteType(VD->getLocation(),
6293                          Context.getBaseElementType(Ty),
6294                          diag::err_typecheck_decl_incomplete_type)) {
6295    VD->setInvalidDecl();
6296    return;
6297  }
6298
6299  // Require an abstract type.
6300  if (RequireNonAbstractType(VD->getLocation(), Ty,
6301                             diag::err_abstract_type_in_decl,
6302                             AbstractVariableType)) {
6303    VD->setInvalidDecl();
6304    return;
6305  }
6306
6307  // Don't bother complaining about constructors or destructors,
6308  // though.
6309}
6310
6311void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6312                                  bool TypeMayContainAuto) {
6313  // If there is no declaration, there was an error parsing it. Just ignore it.
6314  if (RealDecl == 0)
6315    return;
6316
6317  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6318    QualType Type = Var->getType();
6319
6320    // C++11 [dcl.spec.auto]p3
6321    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6322      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6323        << Var->getDeclName() << Type;
6324      Var->setInvalidDecl();
6325      return;
6326    }
6327
6328    // C++11 [class.static.data]p3: A static data member can be declared with
6329    // the constexpr specifier; if so, its declaration shall specify
6330    // a brace-or-equal-initializer.
6331    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6332    // the definition of a variable [...] or the declaration of a static data
6333    // member.
6334    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6335      if (Var->isStaticDataMember())
6336        Diag(Var->getLocation(),
6337             diag::err_constexpr_static_mem_var_requires_init)
6338          << Var->getDeclName();
6339      else
6340        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6341      Var->setInvalidDecl();
6342      return;
6343    }
6344
6345    switch (Var->isThisDeclarationADefinition()) {
6346    case VarDecl::Definition:
6347      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6348        break;
6349
6350      // We have an out-of-line definition of a static data member
6351      // that has an in-class initializer, so we type-check this like
6352      // a declaration.
6353      //
6354      // Fall through
6355
6356    case VarDecl::DeclarationOnly:
6357      // It's only a declaration.
6358
6359      // Block scope. C99 6.7p7: If an identifier for an object is
6360      // declared with no linkage (C99 6.2.2p6), the type for the
6361      // object shall be complete.
6362      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6363          !Var->getLinkage() && !Var->isInvalidDecl() &&
6364          RequireCompleteType(Var->getLocation(), Type,
6365                              diag::err_typecheck_decl_incomplete_type))
6366        Var->setInvalidDecl();
6367
6368      // Make sure that the type is not abstract.
6369      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6370          RequireNonAbstractType(Var->getLocation(), Type,
6371                                 diag::err_abstract_type_in_decl,
6372                                 AbstractVariableType))
6373        Var->setInvalidDecl();
6374      return;
6375
6376    case VarDecl::TentativeDefinition:
6377      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6378      // object that has file scope without an initializer, and without a
6379      // storage-class specifier or with the storage-class specifier "static",
6380      // constitutes a tentative definition. Note: A tentative definition with
6381      // external linkage is valid (C99 6.2.2p5).
6382      if (!Var->isInvalidDecl()) {
6383        if (const IncompleteArrayType *ArrayT
6384                                    = Context.getAsIncompleteArrayType(Type)) {
6385          if (RequireCompleteType(Var->getLocation(),
6386                                  ArrayT->getElementType(),
6387                                  diag::err_illegal_decl_array_incomplete_type))
6388            Var->setInvalidDecl();
6389        } else if (Var->getStorageClass() == SC_Static) {
6390          // C99 6.9.2p3: If the declaration of an identifier for an object is
6391          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6392          // declared type shall not be an incomplete type.
6393          // NOTE: code such as the following
6394          //     static struct s;
6395          //     struct s { int a; };
6396          // is accepted by gcc. Hence here we issue a warning instead of
6397          // an error and we do not invalidate the static declaration.
6398          // NOTE: to avoid multiple warnings, only check the first declaration.
6399          if (Var->getPreviousDecl() == 0)
6400            RequireCompleteType(Var->getLocation(), Type,
6401                                diag::ext_typecheck_decl_incomplete_type);
6402        }
6403      }
6404
6405      // Record the tentative definition; we're done.
6406      if (!Var->isInvalidDecl())
6407        TentativeDefinitions.push_back(Var);
6408      return;
6409    }
6410
6411    // Provide a specific diagnostic for uninitialized variable
6412    // definitions with incomplete array type.
6413    if (Type->isIncompleteArrayType()) {
6414      Diag(Var->getLocation(),
6415           diag::err_typecheck_incomplete_array_needs_initializer);
6416      Var->setInvalidDecl();
6417      return;
6418    }
6419
6420    // Provide a specific diagnostic for uninitialized variable
6421    // definitions with reference type.
6422    if (Type->isReferenceType()) {
6423      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6424        << Var->getDeclName()
6425        << SourceRange(Var->getLocation(), Var->getLocation());
6426      Var->setInvalidDecl();
6427      return;
6428    }
6429
6430    // Do not attempt to type-check the default initializer for a
6431    // variable with dependent type.
6432    if (Type->isDependentType())
6433      return;
6434
6435    if (Var->isInvalidDecl())
6436      return;
6437
6438    if (RequireCompleteType(Var->getLocation(),
6439                            Context.getBaseElementType(Type),
6440                            diag::err_typecheck_decl_incomplete_type)) {
6441      Var->setInvalidDecl();
6442      return;
6443    }
6444
6445    // The variable can not have an abstract class type.
6446    if (RequireNonAbstractType(Var->getLocation(), Type,
6447                               diag::err_abstract_type_in_decl,
6448                               AbstractVariableType)) {
6449      Var->setInvalidDecl();
6450      return;
6451    }
6452
6453    // Check for jumps past the implicit initializer.  C++0x
6454    // clarifies that this applies to a "variable with automatic
6455    // storage duration", not a "local variable".
6456    // C++11 [stmt.dcl]p3
6457    //   A program that jumps from a point where a variable with automatic
6458    //   storage duration is not in scope to a point where it is in scope is
6459    //   ill-formed unless the variable has scalar type, class type with a
6460    //   trivial default constructor and a trivial destructor, a cv-qualified
6461    //   version of one of these types, or an array of one of the preceding
6462    //   types and is declared without an initializer.
6463    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6464      if (const RecordType *Record
6465            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6466        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6467        // Mark the function for further checking even if the looser rules of
6468        // C++11 do not require such checks, so that we can diagnose
6469        // incompatibilities with C++98.
6470        if (!CXXRecord->isPOD())
6471          getCurFunction()->setHasBranchProtectedScope();
6472      }
6473    }
6474
6475    // C++03 [dcl.init]p9:
6476    //   If no initializer is specified for an object, and the
6477    //   object is of (possibly cv-qualified) non-POD class type (or
6478    //   array thereof), the object shall be default-initialized; if
6479    //   the object is of const-qualified type, the underlying class
6480    //   type shall have a user-declared default
6481    //   constructor. Otherwise, if no initializer is specified for
6482    //   a non- static object, the object and its subobjects, if
6483    //   any, have an indeterminate initial value); if the object
6484    //   or any of its subobjects are of const-qualified type, the
6485    //   program is ill-formed.
6486    // C++0x [dcl.init]p11:
6487    //   If no initializer is specified for an object, the object is
6488    //   default-initialized; [...].
6489    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6490    InitializationKind Kind
6491      = InitializationKind::CreateDefault(Var->getLocation());
6492
6493    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6494    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6495                                      MultiExprArg(*this, 0, 0));
6496    if (Init.isInvalid())
6497      Var->setInvalidDecl();
6498    else if (Init.get())
6499      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6500
6501    CheckCompleteVariableDeclaration(Var);
6502  }
6503}
6504
6505void Sema::ActOnCXXForRangeDecl(Decl *D) {
6506  VarDecl *VD = dyn_cast<VarDecl>(D);
6507  if (!VD) {
6508    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6509    D->setInvalidDecl();
6510    return;
6511  }
6512
6513  VD->setCXXForRangeDecl(true);
6514
6515  // for-range-declaration cannot be given a storage class specifier.
6516  int Error = -1;
6517  switch (VD->getStorageClassAsWritten()) {
6518  case SC_None:
6519    break;
6520  case SC_Extern:
6521    Error = 0;
6522    break;
6523  case SC_Static:
6524    Error = 1;
6525    break;
6526  case SC_PrivateExtern:
6527    Error = 2;
6528    break;
6529  case SC_Auto:
6530    Error = 3;
6531    break;
6532  case SC_Register:
6533    Error = 4;
6534    break;
6535  case SC_OpenCLWorkGroupLocal:
6536    llvm_unreachable("Unexpected storage class");
6537  }
6538  if (VD->isConstexpr())
6539    Error = 5;
6540  if (Error != -1) {
6541    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6542      << VD->getDeclName() << Error;
6543    D->setInvalidDecl();
6544  }
6545}
6546
6547void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6548  if (var->isInvalidDecl()) return;
6549
6550  // In ARC, don't allow jumps past the implicit initialization of a
6551  // local retaining variable.
6552  if (getLangOptions().ObjCAutoRefCount &&
6553      var->hasLocalStorage()) {
6554    switch (var->getType().getObjCLifetime()) {
6555    case Qualifiers::OCL_None:
6556    case Qualifiers::OCL_ExplicitNone:
6557    case Qualifiers::OCL_Autoreleasing:
6558      break;
6559
6560    case Qualifiers::OCL_Weak:
6561    case Qualifiers::OCL_Strong:
6562      getCurFunction()->setHasBranchProtectedScope();
6563      break;
6564    }
6565  }
6566
6567  // All the following checks are C++ only.
6568  if (!getLangOptions().CPlusPlus) return;
6569
6570  QualType baseType = Context.getBaseElementType(var->getType());
6571  if (baseType->isDependentType()) return;
6572
6573  // __block variables might require us to capture a copy-initializer.
6574  if (var->hasAttr<BlocksAttr>()) {
6575    // It's currently invalid to ever have a __block variable with an
6576    // array type; should we diagnose that here?
6577
6578    // Regardless, we don't want to ignore array nesting when
6579    // constructing this copy.
6580    QualType type = var->getType();
6581
6582    if (type->isStructureOrClassType()) {
6583      SourceLocation poi = var->getLocation();
6584      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6585      ExprResult result =
6586        PerformCopyInitialization(
6587                        InitializedEntity::InitializeBlock(poi, type, false),
6588                                  poi, Owned(varRef));
6589      if (!result.isInvalid()) {
6590        result = MaybeCreateExprWithCleanups(result);
6591        Expr *init = result.takeAs<Expr>();
6592        Context.setBlockVarCopyInits(var, init);
6593      }
6594    }
6595  }
6596
6597  Expr *Init = var->getInit();
6598  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6599
6600  if (!var->getDeclContext()->isDependentContext() && Init) {
6601    if (IsGlobal && !var->isConstexpr() &&
6602        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6603                                            var->getLocation())
6604          != DiagnosticsEngine::Ignored &&
6605        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6606      Diag(var->getLocation(), diag::warn_global_constructor)
6607        << Init->getSourceRange();
6608
6609    if (var->isConstexpr()) {
6610      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6611      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6612        SourceLocation DiagLoc = var->getLocation();
6613        // If the note doesn't add any useful information other than a source
6614        // location, fold it into the primary diagnostic.
6615        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6616              diag::note_invalid_subexpr_in_const_expr) {
6617          DiagLoc = Notes[0].first;
6618          Notes.clear();
6619        }
6620        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6621          << var << Init->getSourceRange();
6622        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6623          Diag(Notes[I].first, Notes[I].second);
6624      }
6625    } else if (var->isUsableInConstantExpressions()) {
6626      // Check whether the initializer of a const variable of integral or
6627      // enumeration type is an ICE now, since we can't tell whether it was
6628      // initialized by a constant expression if we check later.
6629      var->checkInitIsICE();
6630    }
6631  }
6632
6633  // Require the destructor.
6634  if (const RecordType *recordType = baseType->getAs<RecordType>())
6635    FinalizeVarWithDestructor(var, recordType);
6636}
6637
6638/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6639/// any semantic actions necessary after any initializer has been attached.
6640void
6641Sema::FinalizeDeclaration(Decl *ThisDecl) {
6642  // Note that we are no longer parsing the initializer for this declaration.
6643  ParsingInitForAutoVars.erase(ThisDecl);
6644}
6645
6646Sema::DeclGroupPtrTy
6647Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6648                              Decl **Group, unsigned NumDecls) {
6649  SmallVector<Decl*, 8> Decls;
6650
6651  if (DS.isTypeSpecOwned())
6652    Decls.push_back(DS.getRepAsDecl());
6653
6654  for (unsigned i = 0; i != NumDecls; ++i)
6655    if (Decl *D = Group[i])
6656      Decls.push_back(D);
6657
6658  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6659                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6660}
6661
6662/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6663/// group, performing any necessary semantic checking.
6664Sema::DeclGroupPtrTy
6665Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6666                           bool TypeMayContainAuto) {
6667  // C++0x [dcl.spec.auto]p7:
6668  //   If the type deduced for the template parameter U is not the same in each
6669  //   deduction, the program is ill-formed.
6670  // FIXME: When initializer-list support is added, a distinction is needed
6671  // between the deduced type U and the deduced type which 'auto' stands for.
6672  //   auto a = 0, b = { 1, 2, 3 };
6673  // is legal because the deduced type U is 'int' in both cases.
6674  if (TypeMayContainAuto && NumDecls > 1) {
6675    QualType Deduced;
6676    CanQualType DeducedCanon;
6677    VarDecl *DeducedDecl = 0;
6678    for (unsigned i = 0; i != NumDecls; ++i) {
6679      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6680        AutoType *AT = D->getType()->getContainedAutoType();
6681        // Don't reissue diagnostics when instantiating a template.
6682        if (AT && D->isInvalidDecl())
6683          break;
6684        if (AT && AT->isDeduced()) {
6685          QualType U = AT->getDeducedType();
6686          CanQualType UCanon = Context.getCanonicalType(U);
6687          if (Deduced.isNull()) {
6688            Deduced = U;
6689            DeducedCanon = UCanon;
6690            DeducedDecl = D;
6691          } else if (DeducedCanon != UCanon) {
6692            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6693                 diag::err_auto_different_deductions)
6694              << Deduced << DeducedDecl->getDeclName()
6695              << U << D->getDeclName()
6696              << DeducedDecl->getInit()->getSourceRange()
6697              << D->getInit()->getSourceRange();
6698            D->setInvalidDecl();
6699            break;
6700          }
6701        }
6702      }
6703    }
6704  }
6705
6706  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6707}
6708
6709
6710/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6711/// to introduce parameters into function prototype scope.
6712Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6713  const DeclSpec &DS = D.getDeclSpec();
6714
6715  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6716  // C++03 [dcl.stc]p2 also permits 'auto'.
6717  VarDecl::StorageClass StorageClass = SC_None;
6718  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6719  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6720    StorageClass = SC_Register;
6721    StorageClassAsWritten = SC_Register;
6722  } else if (getLangOptions().CPlusPlus &&
6723             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6724    StorageClass = SC_Auto;
6725    StorageClassAsWritten = SC_Auto;
6726  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6727    Diag(DS.getStorageClassSpecLoc(),
6728         diag::err_invalid_storage_class_in_func_decl);
6729    D.getMutableDeclSpec().ClearStorageClassSpecs();
6730  }
6731
6732  if (D.getDeclSpec().isThreadSpecified())
6733    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6734  if (D.getDeclSpec().isConstexprSpecified())
6735    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6736      << 0;
6737
6738  DiagnoseFunctionSpecifiers(D);
6739
6740  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6741  QualType parmDeclType = TInfo->getType();
6742
6743  if (getLangOptions().CPlusPlus) {
6744    // Check that there are no default arguments inside the type of this
6745    // parameter.
6746    CheckExtraCXXDefaultArguments(D);
6747
6748    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6749    if (D.getCXXScopeSpec().isSet()) {
6750      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6751        << D.getCXXScopeSpec().getRange();
6752      D.getCXXScopeSpec().clear();
6753    }
6754  }
6755
6756  // Ensure we have a valid name
6757  IdentifierInfo *II = 0;
6758  if (D.hasName()) {
6759    II = D.getIdentifier();
6760    if (!II) {
6761      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6762        << GetNameForDeclarator(D).getName().getAsString();
6763      D.setInvalidType(true);
6764    }
6765  }
6766
6767  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6768  if (II) {
6769    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6770                   ForRedeclaration);
6771    LookupName(R, S);
6772    if (R.isSingleResult()) {
6773      NamedDecl *PrevDecl = R.getFoundDecl();
6774      if (PrevDecl->isTemplateParameter()) {
6775        // Maybe we will complain about the shadowed template parameter.
6776        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6777        // Just pretend that we didn't see the previous declaration.
6778        PrevDecl = 0;
6779      } else if (S->isDeclScope(PrevDecl)) {
6780        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6781        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6782
6783        // Recover by removing the name
6784        II = 0;
6785        D.SetIdentifier(0, D.getIdentifierLoc());
6786        D.setInvalidType(true);
6787      }
6788    }
6789  }
6790
6791  // Temporarily put parameter variables in the translation unit, not
6792  // the enclosing context.  This prevents them from accidentally
6793  // looking like class members in C++.
6794  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6795                                    D.getSourceRange().getBegin(),
6796                                    D.getIdentifierLoc(), II,
6797                                    parmDeclType, TInfo,
6798                                    StorageClass, StorageClassAsWritten);
6799
6800  if (D.isInvalidType())
6801    New->setInvalidDecl();
6802
6803  assert(S->isFunctionPrototypeScope());
6804  assert(S->getFunctionPrototypeDepth() >= 1);
6805  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6806                    S->getNextFunctionPrototypeIndex());
6807
6808  // Add the parameter declaration into this scope.
6809  S->AddDecl(New);
6810  if (II)
6811    IdResolver.AddDecl(New);
6812
6813  ProcessDeclAttributes(S, New, D);
6814
6815  if (D.getDeclSpec().isModulePrivateSpecified())
6816    Diag(New->getLocation(), diag::err_module_private_local)
6817      << 1 << New->getDeclName()
6818      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6819      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6820
6821  if (New->hasAttr<BlocksAttr>()) {
6822    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6823  }
6824  return New;
6825}
6826
6827/// \brief Synthesizes a variable for a parameter arising from a
6828/// typedef.
6829ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6830                                              SourceLocation Loc,
6831                                              QualType T) {
6832  /* FIXME: setting StartLoc == Loc.
6833     Would it be worth to modify callers so as to provide proper source
6834     location for the unnamed parameters, embedding the parameter's type? */
6835  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6836                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6837                                           SC_None, SC_None, 0);
6838  Param->setImplicit();
6839  return Param;
6840}
6841
6842void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6843                                    ParmVarDecl * const *ParamEnd) {
6844  // Don't diagnose unused-parameter errors in template instantiations; we
6845  // will already have done so in the template itself.
6846  if (!ActiveTemplateInstantiations.empty())
6847    return;
6848
6849  for (; Param != ParamEnd; ++Param) {
6850    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6851        !(*Param)->hasAttr<UnusedAttr>()) {
6852      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6853        << (*Param)->getDeclName();
6854    }
6855  }
6856}
6857
6858void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6859                                                  ParmVarDecl * const *ParamEnd,
6860                                                  QualType ReturnTy,
6861                                                  NamedDecl *D) {
6862  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6863    return;
6864
6865  // Warn if the return value is pass-by-value and larger than the specified
6866  // threshold.
6867  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6868    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6869    if (Size > LangOpts.NumLargeByValueCopy)
6870      Diag(D->getLocation(), diag::warn_return_value_size)
6871          << D->getDeclName() << Size;
6872  }
6873
6874  // Warn if any parameter is pass-by-value and larger than the specified
6875  // threshold.
6876  for (; Param != ParamEnd; ++Param) {
6877    QualType T = (*Param)->getType();
6878    if (T->isDependentType() || !T.isPODType(Context))
6879      continue;
6880    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6881    if (Size > LangOpts.NumLargeByValueCopy)
6882      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6883          << (*Param)->getDeclName() << Size;
6884  }
6885}
6886
6887ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6888                                  SourceLocation NameLoc, IdentifierInfo *Name,
6889                                  QualType T, TypeSourceInfo *TSInfo,
6890                                  VarDecl::StorageClass StorageClass,
6891                                  VarDecl::StorageClass StorageClassAsWritten) {
6892  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6893  if (getLangOptions().ObjCAutoRefCount &&
6894      T.getObjCLifetime() == Qualifiers::OCL_None &&
6895      T->isObjCLifetimeType()) {
6896
6897    Qualifiers::ObjCLifetime lifetime;
6898
6899    // Special cases for arrays:
6900    //   - if it's const, use __unsafe_unretained
6901    //   - otherwise, it's an error
6902    if (T->isArrayType()) {
6903      if (!T.isConstQualified()) {
6904        DelayedDiagnostics.add(
6905            sema::DelayedDiagnostic::makeForbiddenType(
6906            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6907      }
6908      lifetime = Qualifiers::OCL_ExplicitNone;
6909    } else {
6910      lifetime = T->getObjCARCImplicitLifetime();
6911    }
6912    T = Context.getLifetimeQualifiedType(T, lifetime);
6913  }
6914
6915  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6916                                         Context.getAdjustedParameterType(T),
6917                                         TSInfo,
6918                                         StorageClass, StorageClassAsWritten,
6919                                         0);
6920
6921  // Parameters can not be abstract class types.
6922  // For record types, this is done by the AbstractClassUsageDiagnoser once
6923  // the class has been completely parsed.
6924  if (!CurContext->isRecord() &&
6925      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6926                             AbstractParamType))
6927    New->setInvalidDecl();
6928
6929  // Parameter declarators cannot be interface types. All ObjC objects are
6930  // passed by reference.
6931  if (T->isObjCObjectType()) {
6932    Diag(NameLoc,
6933         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6934      << FixItHint::CreateInsertion(NameLoc, "*");
6935    T = Context.getObjCObjectPointerType(T);
6936    New->setType(T);
6937  }
6938
6939  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6940  // duration shall not be qualified by an address-space qualifier."
6941  // Since all parameters have automatic store duration, they can not have
6942  // an address space.
6943  if (T.getAddressSpace() != 0) {
6944    Diag(NameLoc, diag::err_arg_with_address_space);
6945    New->setInvalidDecl();
6946  }
6947
6948  return New;
6949}
6950
6951void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6952                                           SourceLocation LocAfterDecls) {
6953  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6954
6955  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6956  // for a K&R function.
6957  if (!FTI.hasPrototype) {
6958    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6959      --i;
6960      if (FTI.ArgInfo[i].Param == 0) {
6961        llvm::SmallString<256> Code;
6962        llvm::raw_svector_ostream(Code) << "  int "
6963                                        << FTI.ArgInfo[i].Ident->getName()
6964                                        << ";\n";
6965        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6966          << FTI.ArgInfo[i].Ident
6967          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6968
6969        // Implicitly declare the argument as type 'int' for lack of a better
6970        // type.
6971        AttributeFactory attrs;
6972        DeclSpec DS(attrs);
6973        const char* PrevSpec; // unused
6974        unsigned DiagID; // unused
6975        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6976                           PrevSpec, DiagID);
6977        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6978        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6979        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6980      }
6981    }
6982  }
6983}
6984
6985Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6986                                         Declarator &D) {
6987  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6988  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6989  Scope *ParentScope = FnBodyScope->getParent();
6990
6991  D.setFunctionDefinitionKind(FDK_Definition);
6992  Decl *DP = HandleDeclarator(ParentScope, D,
6993                              MultiTemplateParamsArg(*this));
6994  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6995}
6996
6997static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6998  // Don't warn about invalid declarations.
6999  if (FD->isInvalidDecl())
7000    return false;
7001
7002  // Or declarations that aren't global.
7003  if (!FD->isGlobal())
7004    return false;
7005
7006  // Don't warn about C++ member functions.
7007  if (isa<CXXMethodDecl>(FD))
7008    return false;
7009
7010  // Don't warn about 'main'.
7011  if (FD->isMain())
7012    return false;
7013
7014  // Don't warn about inline functions.
7015  if (FD->isInlined())
7016    return false;
7017
7018  // Don't warn about function templates.
7019  if (FD->getDescribedFunctionTemplate())
7020    return false;
7021
7022  // Don't warn about function template specializations.
7023  if (FD->isFunctionTemplateSpecialization())
7024    return false;
7025
7026  bool MissingPrototype = true;
7027  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7028       Prev; Prev = Prev->getPreviousDecl()) {
7029    // Ignore any declarations that occur in function or method
7030    // scope, because they aren't visible from the header.
7031    if (Prev->getDeclContext()->isFunctionOrMethod())
7032      continue;
7033
7034    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7035    break;
7036  }
7037
7038  return MissingPrototype;
7039}
7040
7041void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7042  // Don't complain if we're in GNU89 mode and the previous definition
7043  // was an extern inline function.
7044  const FunctionDecl *Definition;
7045  if (FD->isDefined(Definition) &&
7046      !canRedefineFunction(Definition, getLangOptions())) {
7047    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7048        Definition->getStorageClass() == SC_Extern)
7049      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7050        << FD->getDeclName() << getLangOptions().CPlusPlus;
7051    else
7052      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7053    Diag(Definition->getLocation(), diag::note_previous_definition);
7054  }
7055}
7056
7057Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7058  // Clear the last template instantiation error context.
7059  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7060
7061  if (!D)
7062    return D;
7063  FunctionDecl *FD = 0;
7064
7065  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7066    FD = FunTmpl->getTemplatedDecl();
7067  else
7068    FD = cast<FunctionDecl>(D);
7069
7070  // Enter a new function scope
7071  PushFunctionScope();
7072
7073  // See if this is a redefinition.
7074  if (!FD->isLateTemplateParsed())
7075    CheckForFunctionRedefinition(FD);
7076
7077  // Builtin functions cannot be defined.
7078  if (unsigned BuiltinID = FD->getBuiltinID()) {
7079    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7080      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7081      FD->setInvalidDecl();
7082    }
7083  }
7084
7085  // The return type of a function definition must be complete
7086  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7087  QualType ResultType = FD->getResultType();
7088  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7089      !FD->isInvalidDecl() &&
7090      RequireCompleteType(FD->getLocation(), ResultType,
7091                          diag::err_func_def_incomplete_result))
7092    FD->setInvalidDecl();
7093
7094  // GNU warning -Wmissing-prototypes:
7095  //   Warn if a global function is defined without a previous
7096  //   prototype declaration. This warning is issued even if the
7097  //   definition itself provides a prototype. The aim is to detect
7098  //   global functions that fail to be declared in header files.
7099  if (ShouldWarnAboutMissingPrototype(FD))
7100    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7101
7102  if (FnBodyScope)
7103    PushDeclContext(FnBodyScope, FD);
7104
7105  // Check the validity of our function parameters
7106  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7107                           /*CheckParameterNames=*/true);
7108
7109  // Introduce our parameters into the function scope
7110  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7111    ParmVarDecl *Param = FD->getParamDecl(p);
7112    Param->setOwningFunction(FD);
7113
7114    // If this has an identifier, add it to the scope stack.
7115    if (Param->getIdentifier() && FnBodyScope) {
7116      CheckShadow(FnBodyScope, Param);
7117
7118      PushOnScopeChains(Param, FnBodyScope);
7119    }
7120  }
7121
7122  // Checking attributes of current function definition
7123  // dllimport attribute.
7124  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7125  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7126    // dllimport attribute cannot be directly applied to definition.
7127    // Microsoft accepts dllimport for functions defined within class scope.
7128    if (!DA->isInherited() &&
7129        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7130      Diag(FD->getLocation(),
7131           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7132        << "dllimport";
7133      FD->setInvalidDecl();
7134      return FD;
7135    }
7136
7137    // Visual C++ appears to not think this is an issue, so only issue
7138    // a warning when Microsoft extensions are disabled.
7139    if (!LangOpts.MicrosoftExt) {
7140      // If a symbol previously declared dllimport is later defined, the
7141      // attribute is ignored in subsequent references, and a warning is
7142      // emitted.
7143      Diag(FD->getLocation(),
7144           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7145        << FD->getName() << "dllimport";
7146    }
7147  }
7148  return FD;
7149}
7150
7151/// \brief Given the set of return statements within a function body,
7152/// compute the variables that are subject to the named return value
7153/// optimization.
7154///
7155/// Each of the variables that is subject to the named return value
7156/// optimization will be marked as NRVO variables in the AST, and any
7157/// return statement that has a marked NRVO variable as its NRVO candidate can
7158/// use the named return value optimization.
7159///
7160/// This function applies a very simplistic algorithm for NRVO: if every return
7161/// statement in the function has the same NRVO candidate, that candidate is
7162/// the NRVO variable.
7163///
7164/// FIXME: Employ a smarter algorithm that accounts for multiple return
7165/// statements and the lifetimes of the NRVO candidates. We should be able to
7166/// find a maximal set of NRVO variables.
7167void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7168  ReturnStmt **Returns = Scope->Returns.data();
7169
7170  const VarDecl *NRVOCandidate = 0;
7171  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7172    if (!Returns[I]->getNRVOCandidate())
7173      return;
7174
7175    if (!NRVOCandidate)
7176      NRVOCandidate = Returns[I]->getNRVOCandidate();
7177    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7178      return;
7179  }
7180
7181  if (NRVOCandidate)
7182    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7183}
7184
7185Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7186  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7187}
7188
7189Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7190                                    bool IsInstantiation) {
7191  FunctionDecl *FD = 0;
7192  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7193  if (FunTmpl)
7194    FD = FunTmpl->getTemplatedDecl();
7195  else
7196    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7197
7198  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7199  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7200
7201  if (FD) {
7202    FD->setBody(Body);
7203    if (FD->isMain()) {
7204      // C and C++ allow for main to automagically return 0.
7205      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7206      FD->setHasImplicitReturnZero(true);
7207      WP.disableCheckFallThrough();
7208    } else if (FD->hasAttr<NakedAttr>()) {
7209      // If the function is marked 'naked', don't complain about missing return
7210      // statements.
7211      WP.disableCheckFallThrough();
7212    }
7213
7214    // MSVC permits the use of pure specifier (=0) on function definition,
7215    // defined at class scope, warn about this non standard construct.
7216    if (getLangOptions().MicrosoftExt && FD->isPure())
7217      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7218
7219    if (!FD->isInvalidDecl()) {
7220      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7221      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7222                                             FD->getResultType(), FD);
7223
7224      // If this is a constructor, we need a vtable.
7225      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7226        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7227
7228      computeNRVO(Body, getCurFunction());
7229    }
7230
7231    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7232  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7233    assert(MD == getCurMethodDecl() && "Method parsing confused");
7234    MD->setBody(Body);
7235    if (Body)
7236      MD->setEndLoc(Body->getLocEnd());
7237    if (!MD->isInvalidDecl()) {
7238      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7239      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7240                                             MD->getResultType(), MD);
7241
7242      if (Body)
7243        computeNRVO(Body, getCurFunction());
7244    }
7245    if (ObjCShouldCallSuperDealloc) {
7246      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7247      ObjCShouldCallSuperDealloc = false;
7248    }
7249    if (ObjCShouldCallSuperFinalize) {
7250      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7251      ObjCShouldCallSuperFinalize = false;
7252    }
7253  } else {
7254    return 0;
7255  }
7256
7257  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7258         "ObjC methods, which should have been handled in the block above.");
7259  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7260         "ObjC methods, which should have been handled in the block above.");
7261
7262  // Verify and clean out per-function state.
7263  if (Body) {
7264    // C++ constructors that have function-try-blocks can't have return
7265    // statements in the handlers of that block. (C++ [except.handle]p14)
7266    // Verify this.
7267    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7268      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7269
7270    // Verify that gotos and switch cases don't jump into scopes illegally.
7271    if (getCurFunction()->NeedsScopeChecking() &&
7272        !dcl->isInvalidDecl() &&
7273        !hasAnyUnrecoverableErrorsInThisFunction())
7274      DiagnoseInvalidJumps(Body);
7275
7276    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7277      if (!Destructor->getParent()->isDependentType())
7278        CheckDestructor(Destructor);
7279
7280      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7281                                             Destructor->getParent());
7282    }
7283
7284    // If any errors have occurred, clear out any temporaries that may have
7285    // been leftover. This ensures that these temporaries won't be picked up for
7286    // deletion in some later function.
7287    if (PP.getDiagnostics().hasErrorOccurred() ||
7288        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7289      DiscardCleanupsInEvaluationContext();
7290    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7291      // Since the body is valid, issue any analysis-based warnings that are
7292      // enabled.
7293      ActivePolicy = &WP;
7294    }
7295
7296    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7297        !CheckConstexprFunctionBody(FD, Body))
7298      FD->setInvalidDecl();
7299
7300    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7301    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7302  }
7303
7304  if (!IsInstantiation)
7305    PopDeclContext();
7306
7307  PopFunctionScopeInfo(ActivePolicy, dcl);
7308
7309  // If any errors have occurred, clear out any temporaries that may have
7310  // been leftover. This ensures that these temporaries won't be picked up for
7311  // deletion in some later function.
7312  if (getDiagnostics().hasErrorOccurred()) {
7313    DiscardCleanupsInEvaluationContext();
7314  }
7315
7316  return dcl;
7317}
7318
7319
7320/// When we finish delayed parsing of an attribute, we must attach it to the
7321/// relevant Decl.
7322void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7323                                       ParsedAttributes &Attrs) {
7324  // Always attach attributes to the underlying decl.
7325  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7326    D = TD->getTemplatedDecl();
7327  ProcessDeclAttributeList(S, D, Attrs.getList());
7328}
7329
7330
7331/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7332/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7333NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7334                                          IdentifierInfo &II, Scope *S) {
7335  // Before we produce a declaration for an implicitly defined
7336  // function, see whether there was a locally-scoped declaration of
7337  // this name as a function or variable. If so, use that
7338  // (non-visible) declaration, and complain about it.
7339  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7340    = findLocallyScopedExternalDecl(&II);
7341  if (Pos != LocallyScopedExternalDecls.end()) {
7342    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7343    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7344    return Pos->second;
7345  }
7346
7347  // Extension in C99.  Legal in C90, but warn about it.
7348  unsigned diag_id;
7349  if (II.getName().startswith("__builtin_"))
7350    diag_id = diag::warn_builtin_unknown;
7351  else if (getLangOptions().C99)
7352    diag_id = diag::ext_implicit_function_decl;
7353  else
7354    diag_id = diag::warn_implicit_function_decl;
7355  Diag(Loc, diag_id) << &II;
7356
7357  // Because typo correction is expensive, only do it if the implicit
7358  // function declaration is going to be treated as an error.
7359  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7360    TypoCorrection Corrected;
7361    DeclFilterCCC<FunctionDecl> Validator;
7362    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7363                                      LookupOrdinaryName, S, 0, Validator))) {
7364      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7365      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7366      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7367
7368      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7369          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7370
7371      if (Func->getLocation().isValid()
7372          && !II.getName().startswith("__builtin_"))
7373        Diag(Func->getLocation(), diag::note_previous_decl)
7374            << CorrectedQuotedStr;
7375    }
7376  }
7377
7378  // Set a Declarator for the implicit definition: int foo();
7379  const char *Dummy;
7380  AttributeFactory attrFactory;
7381  DeclSpec DS(attrFactory);
7382  unsigned DiagID;
7383  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7384  (void)Error; // Silence warning.
7385  assert(!Error && "Error setting up implicit decl!");
7386  Declarator D(DS, Declarator::BlockContext);
7387  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7388                                             0, 0, true, SourceLocation(),
7389                                             SourceLocation(), SourceLocation(),
7390                                             SourceLocation(),
7391                                             EST_None, SourceLocation(),
7392                                             0, 0, 0, 0, Loc, Loc, D),
7393                DS.getAttributes(),
7394                SourceLocation());
7395  D.SetIdentifier(&II, Loc);
7396
7397  // Insert this function into translation-unit scope.
7398
7399  DeclContext *PrevDC = CurContext;
7400  CurContext = Context.getTranslationUnitDecl();
7401
7402  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7403  FD->setImplicit();
7404
7405  CurContext = PrevDC;
7406
7407  AddKnownFunctionAttributes(FD);
7408
7409  return FD;
7410}
7411
7412/// \brief Adds any function attributes that we know a priori based on
7413/// the declaration of this function.
7414///
7415/// These attributes can apply both to implicitly-declared builtins
7416/// (like __builtin___printf_chk) or to library-declared functions
7417/// like NSLog or printf.
7418///
7419/// We need to check for duplicate attributes both here and where user-written
7420/// attributes are applied to declarations.
7421void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7422  if (FD->isInvalidDecl())
7423    return;
7424
7425  // If this is a built-in function, map its builtin attributes to
7426  // actual attributes.
7427  if (unsigned BuiltinID = FD->getBuiltinID()) {
7428    // Handle printf-formatting attributes.
7429    unsigned FormatIdx;
7430    bool HasVAListArg;
7431    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7432      if (!FD->getAttr<FormatAttr>()) {
7433        const char *fmt = "printf";
7434        unsigned int NumParams = FD->getNumParams();
7435        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7436            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7437          fmt = "NSString";
7438        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7439                                               fmt, FormatIdx+1,
7440                                               HasVAListArg ? 0 : FormatIdx+2));
7441      }
7442    }
7443    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7444                                             HasVAListArg)) {
7445     if (!FD->getAttr<FormatAttr>())
7446       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7447                                              "scanf", FormatIdx+1,
7448                                              HasVAListArg ? 0 : FormatIdx+2));
7449    }
7450
7451    // Mark const if we don't care about errno and that is the only
7452    // thing preventing the function from being const. This allows
7453    // IRgen to use LLVM intrinsics for such functions.
7454    if (!getLangOptions().MathErrno &&
7455        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7456      if (!FD->getAttr<ConstAttr>())
7457        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7458    }
7459
7460    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7461        !FD->getAttr<ReturnsTwiceAttr>())
7462      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7463    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7464      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7465    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7466      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7467  }
7468
7469  IdentifierInfo *Name = FD->getIdentifier();
7470  if (!Name)
7471    return;
7472  if ((!getLangOptions().CPlusPlus &&
7473       FD->getDeclContext()->isTranslationUnit()) ||
7474      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7475       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7476       LinkageSpecDecl::lang_c)) {
7477    // Okay: this could be a libc/libm/Objective-C function we know
7478    // about.
7479  } else
7480    return;
7481
7482  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7483    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7484    // target-specific builtins, perhaps?
7485    if (!FD->getAttr<FormatAttr>())
7486      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7487                                             "printf", 2,
7488                                             Name->isStr("vasprintf") ? 0 : 3));
7489  }
7490}
7491
7492TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7493                                    TypeSourceInfo *TInfo) {
7494  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7495  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7496
7497  if (!TInfo) {
7498    assert(D.isInvalidType() && "no declarator info for valid type");
7499    TInfo = Context.getTrivialTypeSourceInfo(T);
7500  }
7501
7502  // Scope manipulation handled by caller.
7503  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7504                                           D.getSourceRange().getBegin(),
7505                                           D.getIdentifierLoc(),
7506                                           D.getIdentifier(),
7507                                           TInfo);
7508
7509  // Bail out immediately if we have an invalid declaration.
7510  if (D.isInvalidType()) {
7511    NewTD->setInvalidDecl();
7512    return NewTD;
7513  }
7514
7515  if (D.getDeclSpec().isModulePrivateSpecified()) {
7516    if (CurContext->isFunctionOrMethod())
7517      Diag(NewTD->getLocation(), diag::err_module_private_local)
7518        << 2 << NewTD->getDeclName()
7519        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7520        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7521    else
7522      NewTD->setModulePrivate();
7523  }
7524
7525  // C++ [dcl.typedef]p8:
7526  //   If the typedef declaration defines an unnamed class (or
7527  //   enum), the first typedef-name declared by the declaration
7528  //   to be that class type (or enum type) is used to denote the
7529  //   class type (or enum type) for linkage purposes only.
7530  // We need to check whether the type was declared in the declaration.
7531  switch (D.getDeclSpec().getTypeSpecType()) {
7532  case TST_enum:
7533  case TST_struct:
7534  case TST_union:
7535  case TST_class: {
7536    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7537
7538    // Do nothing if the tag is not anonymous or already has an
7539    // associated typedef (from an earlier typedef in this decl group).
7540    if (tagFromDeclSpec->getIdentifier()) break;
7541    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7542
7543    // A well-formed anonymous tag must always be a TUK_Definition.
7544    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7545
7546    // The type must match the tag exactly;  no qualifiers allowed.
7547    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7548      break;
7549
7550    // Otherwise, set this is the anon-decl typedef for the tag.
7551    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7552    break;
7553  }
7554
7555  default:
7556    break;
7557  }
7558
7559  return NewTD;
7560}
7561
7562
7563/// \brief Determine whether a tag with a given kind is acceptable
7564/// as a redeclaration of the given tag declaration.
7565///
7566/// \returns true if the new tag kind is acceptable, false otherwise.
7567bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7568                                        TagTypeKind NewTag, bool isDefinition,
7569                                        SourceLocation NewTagLoc,
7570                                        const IdentifierInfo &Name) {
7571  // C++ [dcl.type.elab]p3:
7572  //   The class-key or enum keyword present in the
7573  //   elaborated-type-specifier shall agree in kind with the
7574  //   declaration to which the name in the elaborated-type-specifier
7575  //   refers. This rule also applies to the form of
7576  //   elaborated-type-specifier that declares a class-name or
7577  //   friend class since it can be construed as referring to the
7578  //   definition of the class. Thus, in any
7579  //   elaborated-type-specifier, the enum keyword shall be used to
7580  //   refer to an enumeration (7.2), the union class-key shall be
7581  //   used to refer to a union (clause 9), and either the class or
7582  //   struct class-key shall be used to refer to a class (clause 9)
7583  //   declared using the class or struct class-key.
7584  TagTypeKind OldTag = Previous->getTagKind();
7585  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7586    if (OldTag == NewTag)
7587      return true;
7588
7589  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7590      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7591    // Warn about the struct/class tag mismatch.
7592    bool isTemplate = false;
7593    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7594      isTemplate = Record->getDescribedClassTemplate();
7595
7596    if (!ActiveTemplateInstantiations.empty()) {
7597      // In a template instantiation, do not offer fix-its for tag mismatches
7598      // since they usually mess up the template instead of fixing the problem.
7599      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7600        << (NewTag == TTK_Class) << isTemplate << &Name;
7601      return true;
7602    }
7603
7604    if (isDefinition) {
7605      // On definitions, check previous tags and issue a fix-it for each
7606      // one that doesn't match the current tag.
7607      if (Previous->getDefinition()) {
7608        // Don't suggest fix-its for redefinitions.
7609        return true;
7610      }
7611
7612      bool previousMismatch = false;
7613      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7614           E(Previous->redecls_end()); I != E; ++I) {
7615        if (I->getTagKind() != NewTag) {
7616          if (!previousMismatch) {
7617            previousMismatch = true;
7618            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7619              << (NewTag == TTK_Class) << isTemplate << &Name;
7620          }
7621          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7622            << (NewTag == TTK_Class)
7623            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7624                                            NewTag == TTK_Class?
7625                                            "class" : "struct");
7626        }
7627      }
7628      return true;
7629    }
7630
7631    // Check for a previous definition.  If current tag and definition
7632    // are same type, do nothing.  If no definition, but disagree with
7633    // with previous tag type, give a warning, but no fix-it.
7634    const TagDecl *Redecl = Previous->getDefinition() ?
7635                            Previous->getDefinition() : Previous;
7636    if (Redecl->getTagKind() == NewTag) {
7637      return true;
7638    }
7639
7640    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7641      << (NewTag == TTK_Class)
7642      << isTemplate << &Name;
7643    Diag(Redecl->getLocation(), diag::note_previous_use);
7644
7645    // If there is a previous defintion, suggest a fix-it.
7646    if (Previous->getDefinition()) {
7647        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7648          << (Redecl->getTagKind() == TTK_Class)
7649          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7650                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7651    }
7652
7653    return true;
7654  }
7655  return false;
7656}
7657
7658/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7659/// former case, Name will be non-null.  In the later case, Name will be null.
7660/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7661/// reference/declaration/definition of a tag.
7662Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7663                     SourceLocation KWLoc, CXXScopeSpec &SS,
7664                     IdentifierInfo *Name, SourceLocation NameLoc,
7665                     AttributeList *Attr, AccessSpecifier AS,
7666                     SourceLocation ModulePrivateLoc,
7667                     MultiTemplateParamsArg TemplateParameterLists,
7668                     bool &OwnedDecl, bool &IsDependent,
7669                     SourceLocation ScopedEnumKWLoc,
7670                     bool ScopedEnumUsesClassTag,
7671                     TypeResult UnderlyingType) {
7672  // If this is not a definition, it must have a name.
7673  assert((Name != 0 || TUK == TUK_Definition) &&
7674         "Nameless record must be a definition!");
7675  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7676
7677  OwnedDecl = false;
7678  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7679  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7680
7681  // FIXME: Check explicit specializations more carefully.
7682  bool isExplicitSpecialization = false;
7683  bool Invalid = false;
7684
7685  // We only need to do this matching if we have template parameters
7686  // or a scope specifier, which also conveniently avoids this work
7687  // for non-C++ cases.
7688  if (TemplateParameterLists.size() > 0 ||
7689      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7690    if (TemplateParameterList *TemplateParams
7691          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7692                                                TemplateParameterLists.get(),
7693                                                TemplateParameterLists.size(),
7694                                                    TUK == TUK_Friend,
7695                                                    isExplicitSpecialization,
7696                                                    Invalid)) {
7697      if (TemplateParams->size() > 0) {
7698        // This is a declaration or definition of a class template (which may
7699        // be a member of another template).
7700
7701        if (Invalid)
7702          return 0;
7703
7704        OwnedDecl = false;
7705        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7706                                               SS, Name, NameLoc, Attr,
7707                                               TemplateParams, AS,
7708                                               ModulePrivateLoc,
7709                                           TemplateParameterLists.size() - 1,
7710                 (TemplateParameterList**) TemplateParameterLists.release());
7711        return Result.get();
7712      } else {
7713        // The "template<>" header is extraneous.
7714        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7715          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7716        isExplicitSpecialization = true;
7717      }
7718    }
7719  }
7720
7721  // Figure out the underlying type if this a enum declaration. We need to do
7722  // this early, because it's needed to detect if this is an incompatible
7723  // redeclaration.
7724  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7725
7726  if (Kind == TTK_Enum) {
7727    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7728      // No underlying type explicitly specified, or we failed to parse the
7729      // type, default to int.
7730      EnumUnderlying = Context.IntTy.getTypePtr();
7731    else if (UnderlyingType.get()) {
7732      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7733      // integral type; any cv-qualification is ignored.
7734      TypeSourceInfo *TI = 0;
7735      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7736      EnumUnderlying = TI;
7737
7738      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7739
7740      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7741        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7742          << T;
7743        // Recover by falling back to int.
7744        EnumUnderlying = Context.IntTy.getTypePtr();
7745      }
7746
7747      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7748                                          UPPC_FixedUnderlyingType))
7749        EnumUnderlying = Context.IntTy.getTypePtr();
7750
7751    } else if (getLangOptions().MicrosoftExt)
7752      // Microsoft enums are always of int type.
7753      EnumUnderlying = Context.IntTy.getTypePtr();
7754  }
7755
7756  DeclContext *SearchDC = CurContext;
7757  DeclContext *DC = CurContext;
7758  bool isStdBadAlloc = false;
7759
7760  RedeclarationKind Redecl = ForRedeclaration;
7761  if (TUK == TUK_Friend || TUK == TUK_Reference)
7762    Redecl = NotForRedeclaration;
7763
7764  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7765
7766  if (Name && SS.isNotEmpty()) {
7767    // We have a nested-name tag ('struct foo::bar').
7768
7769    // Check for invalid 'foo::'.
7770    if (SS.isInvalid()) {
7771      Name = 0;
7772      goto CreateNewDecl;
7773    }
7774
7775    // If this is a friend or a reference to a class in a dependent
7776    // context, don't try to make a decl for it.
7777    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7778      DC = computeDeclContext(SS, false);
7779      if (!DC) {
7780        IsDependent = true;
7781        return 0;
7782      }
7783    } else {
7784      DC = computeDeclContext(SS, true);
7785      if (!DC) {
7786        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7787          << SS.getRange();
7788        return 0;
7789      }
7790    }
7791
7792    if (RequireCompleteDeclContext(SS, DC))
7793      return 0;
7794
7795    SearchDC = DC;
7796    // Look-up name inside 'foo::'.
7797    LookupQualifiedName(Previous, DC);
7798
7799    if (Previous.isAmbiguous())
7800      return 0;
7801
7802    if (Previous.empty()) {
7803      // Name lookup did not find anything. However, if the
7804      // nested-name-specifier refers to the current instantiation,
7805      // and that current instantiation has any dependent base
7806      // classes, we might find something at instantiation time: treat
7807      // this as a dependent elaborated-type-specifier.
7808      // But this only makes any sense for reference-like lookups.
7809      if (Previous.wasNotFoundInCurrentInstantiation() &&
7810          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7811        IsDependent = true;
7812        return 0;
7813      }
7814
7815      // A tag 'foo::bar' must already exist.
7816      Diag(NameLoc, diag::err_not_tag_in_scope)
7817        << Kind << Name << DC << SS.getRange();
7818      Name = 0;
7819      Invalid = true;
7820      goto CreateNewDecl;
7821    }
7822  } else if (Name) {
7823    // If this is a named struct, check to see if there was a previous forward
7824    // declaration or definition.
7825    // FIXME: We're looking into outer scopes here, even when we
7826    // shouldn't be. Doing so can result in ambiguities that we
7827    // shouldn't be diagnosing.
7828    LookupName(Previous, S);
7829
7830    if (Previous.isAmbiguous() &&
7831        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7832      LookupResult::Filter F = Previous.makeFilter();
7833      while (F.hasNext()) {
7834        NamedDecl *ND = F.next();
7835        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7836          F.erase();
7837      }
7838      F.done();
7839    }
7840
7841    // Note:  there used to be some attempt at recovery here.
7842    if (Previous.isAmbiguous())
7843      return 0;
7844
7845    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7846      // FIXME: This makes sure that we ignore the contexts associated
7847      // with C structs, unions, and enums when looking for a matching
7848      // tag declaration or definition. See the similar lookup tweak
7849      // in Sema::LookupName; is there a better way to deal with this?
7850      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7851        SearchDC = SearchDC->getParent();
7852    }
7853  } else if (S->isFunctionPrototypeScope()) {
7854    // If this is an enum declaration in function prototype scope, set its
7855    // initial context to the translation unit.
7856    SearchDC = Context.getTranslationUnitDecl();
7857  }
7858
7859  if (Previous.isSingleResult() &&
7860      Previous.getFoundDecl()->isTemplateParameter()) {
7861    // Maybe we will complain about the shadowed template parameter.
7862    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7863    // Just pretend that we didn't see the previous declaration.
7864    Previous.clear();
7865  }
7866
7867  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7868      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7869    // This is a declaration of or a reference to "std::bad_alloc".
7870    isStdBadAlloc = true;
7871
7872    if (Previous.empty() && StdBadAlloc) {
7873      // std::bad_alloc has been implicitly declared (but made invisible to
7874      // name lookup). Fill in this implicit declaration as the previous
7875      // declaration, so that the declarations get chained appropriately.
7876      Previous.addDecl(getStdBadAlloc());
7877    }
7878  }
7879
7880  // If we didn't find a previous declaration, and this is a reference
7881  // (or friend reference), move to the correct scope.  In C++, we
7882  // also need to do a redeclaration lookup there, just in case
7883  // there's a shadow friend decl.
7884  if (Name && Previous.empty() &&
7885      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7886    if (Invalid) goto CreateNewDecl;
7887    assert(SS.isEmpty());
7888
7889    if (TUK == TUK_Reference) {
7890      // C++ [basic.scope.pdecl]p5:
7891      //   -- for an elaborated-type-specifier of the form
7892      //
7893      //          class-key identifier
7894      //
7895      //      if the elaborated-type-specifier is used in the
7896      //      decl-specifier-seq or parameter-declaration-clause of a
7897      //      function defined in namespace scope, the identifier is
7898      //      declared as a class-name in the namespace that contains
7899      //      the declaration; otherwise, except as a friend
7900      //      declaration, the identifier is declared in the smallest
7901      //      non-class, non-function-prototype scope that contains the
7902      //      declaration.
7903      //
7904      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7905      // C structs and unions.
7906      //
7907      // It is an error in C++ to declare (rather than define) an enum
7908      // type, including via an elaborated type specifier.  We'll
7909      // diagnose that later; for now, declare the enum in the same
7910      // scope as we would have picked for any other tag type.
7911      //
7912      // GNU C also supports this behavior as part of its incomplete
7913      // enum types extension, while GNU C++ does not.
7914      //
7915      // Find the context where we'll be declaring the tag.
7916      // FIXME: We would like to maintain the current DeclContext as the
7917      // lexical context,
7918      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7919             SearchDC->isObjCContainer())
7920        SearchDC = SearchDC->getParent();
7921
7922      // Find the scope where we'll be declaring the tag.
7923      while (S->isClassScope() ||
7924             (getLangOptions().CPlusPlus &&
7925              S->isFunctionPrototypeScope()) ||
7926             ((S->getFlags() & Scope::DeclScope) == 0) ||
7927             (S->getEntity() &&
7928              ((DeclContext *)S->getEntity())->isTransparentContext()))
7929        S = S->getParent();
7930    } else {
7931      assert(TUK == TUK_Friend);
7932      // C++ [namespace.memdef]p3:
7933      //   If a friend declaration in a non-local class first declares a
7934      //   class or function, the friend class or function is a member of
7935      //   the innermost enclosing namespace.
7936      SearchDC = SearchDC->getEnclosingNamespaceContext();
7937    }
7938
7939    // In C++, we need to do a redeclaration lookup to properly
7940    // diagnose some problems.
7941    if (getLangOptions().CPlusPlus) {
7942      Previous.setRedeclarationKind(ForRedeclaration);
7943      LookupQualifiedName(Previous, SearchDC);
7944    }
7945  }
7946
7947  if (!Previous.empty()) {
7948    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7949
7950    // It's okay to have a tag decl in the same scope as a typedef
7951    // which hides a tag decl in the same scope.  Finding this
7952    // insanity with a redeclaration lookup can only actually happen
7953    // in C++.
7954    //
7955    // This is also okay for elaborated-type-specifiers, which is
7956    // technically forbidden by the current standard but which is
7957    // okay according to the likely resolution of an open issue;
7958    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7959    if (getLangOptions().CPlusPlus) {
7960      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7961        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7962          TagDecl *Tag = TT->getDecl();
7963          if (Tag->getDeclName() == Name &&
7964              Tag->getDeclContext()->getRedeclContext()
7965                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7966            PrevDecl = Tag;
7967            Previous.clear();
7968            Previous.addDecl(Tag);
7969            Previous.resolveKind();
7970          }
7971        }
7972      }
7973    }
7974
7975    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7976      // If this is a use of a previous tag, or if the tag is already declared
7977      // in the same scope (so that the definition/declaration completes or
7978      // rementions the tag), reuse the decl.
7979      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7980          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7981        // Make sure that this wasn't declared as an enum and now used as a
7982        // struct or something similar.
7983        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7984                                          TUK == TUK_Definition, KWLoc,
7985                                          *Name)) {
7986          bool SafeToContinue
7987            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7988               Kind != TTK_Enum);
7989          if (SafeToContinue)
7990            Diag(KWLoc, diag::err_use_with_wrong_tag)
7991              << Name
7992              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7993                                              PrevTagDecl->getKindName());
7994          else
7995            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7996          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7997
7998          if (SafeToContinue)
7999            Kind = PrevTagDecl->getTagKind();
8000          else {
8001            // Recover by making this an anonymous redefinition.
8002            Name = 0;
8003            Previous.clear();
8004            Invalid = true;
8005          }
8006        }
8007
8008        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8009          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8010
8011          // If this is an elaborated-type-specifier for a scoped enumeration,
8012          // the 'class' keyword is not necessary and not permitted.
8013          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8014            if (ScopedEnum)
8015              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8016                << PrevEnum->isScoped()
8017                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8018            return PrevTagDecl;
8019          }
8020
8021          // All conflicts with previous declarations are recovered by
8022          // returning the previous declaration.
8023          if (ScopedEnum != PrevEnum->isScoped()) {
8024            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8025              << PrevEnum->isScoped();
8026            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8027            return PrevTagDecl;
8028          }
8029          else if (EnumUnderlying && PrevEnum->isFixed()) {
8030            QualType T;
8031            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8032                T = TI->getType();
8033            else
8034                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8035
8036            if (!Context.hasSameUnqualifiedType(T,
8037                                                PrevEnum->getIntegerType())) {
8038              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8039                   diag::err_enum_redeclare_type_mismatch)
8040                << T
8041                << PrevEnum->getIntegerType();
8042              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8043              return PrevTagDecl;
8044            }
8045          }
8046          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8047            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8048              << PrevEnum->isFixed();
8049            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8050            return PrevTagDecl;
8051          }
8052        }
8053
8054        if (!Invalid) {
8055          // If this is a use, just return the declaration we found.
8056
8057          // FIXME: In the future, return a variant or some other clue
8058          // for the consumer of this Decl to know it doesn't own it.
8059          // For our current ASTs this shouldn't be a problem, but will
8060          // need to be changed with DeclGroups.
8061          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8062               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8063            return PrevTagDecl;
8064
8065          // Diagnose attempts to redefine a tag.
8066          if (TUK == TUK_Definition) {
8067            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8068              // If we're defining a specialization and the previous definition
8069              // is from an implicit instantiation, don't emit an error
8070              // here; we'll catch this in the general case below.
8071              if (!isExplicitSpecialization ||
8072                  !isa<CXXRecordDecl>(Def) ||
8073                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8074                                               == TSK_ExplicitSpecialization) {
8075                Diag(NameLoc, diag::err_redefinition) << Name;
8076                Diag(Def->getLocation(), diag::note_previous_definition);
8077                // If this is a redefinition, recover by making this
8078                // struct be anonymous, which will make any later
8079                // references get the previous definition.
8080                Name = 0;
8081                Previous.clear();
8082                Invalid = true;
8083              }
8084            } else {
8085              // If the type is currently being defined, complain
8086              // about a nested redefinition.
8087              const TagType *Tag
8088                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8089              if (Tag->isBeingDefined()) {
8090                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8091                Diag(PrevTagDecl->getLocation(),
8092                     diag::note_previous_definition);
8093                Name = 0;
8094                Previous.clear();
8095                Invalid = true;
8096              }
8097            }
8098
8099            // Okay, this is definition of a previously declared or referenced
8100            // tag PrevDecl. We're going to create a new Decl for it.
8101          }
8102        }
8103        // If we get here we have (another) forward declaration or we
8104        // have a definition.  Just create a new decl.
8105
8106      } else {
8107        // If we get here, this is a definition of a new tag type in a nested
8108        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8109        // new decl/type.  We set PrevDecl to NULL so that the entities
8110        // have distinct types.
8111        Previous.clear();
8112      }
8113      // If we get here, we're going to create a new Decl. If PrevDecl
8114      // is non-NULL, it's a definition of the tag declared by
8115      // PrevDecl. If it's NULL, we have a new definition.
8116
8117
8118    // Otherwise, PrevDecl is not a tag, but was found with tag
8119    // lookup.  This is only actually possible in C++, where a few
8120    // things like templates still live in the tag namespace.
8121    } else {
8122      // Use a better diagnostic if an elaborated-type-specifier
8123      // found the wrong kind of type on the first
8124      // (non-redeclaration) lookup.
8125      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8126          !Previous.isForRedeclaration()) {
8127        unsigned Kind = 0;
8128        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8129        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8130        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8131        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8132        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8133        Invalid = true;
8134
8135      // Otherwise, only diagnose if the declaration is in scope.
8136      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8137                                isExplicitSpecialization)) {
8138        // do nothing
8139
8140      // Diagnose implicit declarations introduced by elaborated types.
8141      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8142        unsigned Kind = 0;
8143        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8144        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8145        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8146        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8147        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8148        Invalid = true;
8149
8150      // Otherwise it's a declaration.  Call out a particularly common
8151      // case here.
8152      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8153        unsigned Kind = 0;
8154        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8155        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8156          << Name << Kind << TND->getUnderlyingType();
8157        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8158        Invalid = true;
8159
8160      // Otherwise, diagnose.
8161      } else {
8162        // The tag name clashes with something else in the target scope,
8163        // issue an error and recover by making this tag be anonymous.
8164        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8165        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8166        Name = 0;
8167        Invalid = true;
8168      }
8169
8170      // The existing declaration isn't relevant to us; we're in a
8171      // new scope, so clear out the previous declaration.
8172      Previous.clear();
8173    }
8174  }
8175
8176CreateNewDecl:
8177
8178  TagDecl *PrevDecl = 0;
8179  if (Previous.isSingleResult())
8180    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8181
8182  // If there is an identifier, use the location of the identifier as the
8183  // location of the decl, otherwise use the location of the struct/union
8184  // keyword.
8185  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8186
8187  // Otherwise, create a new declaration. If there is a previous
8188  // declaration of the same entity, the two will be linked via
8189  // PrevDecl.
8190  TagDecl *New;
8191
8192  bool IsForwardReference = false;
8193  if (Kind == TTK_Enum) {
8194    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8195    // enum X { A, B, C } D;    D should chain to X.
8196    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8197                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8198                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8199    // If this is an undefined enum, warn.
8200    if (TUK != TUK_Definition && !Invalid) {
8201      TagDecl *Def;
8202      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8203        // C++0x: 7.2p2: opaque-enum-declaration.
8204        // Conflicts are diagnosed above. Do nothing.
8205      }
8206      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8207        Diag(Loc, diag::ext_forward_ref_enum_def)
8208          << New;
8209        Diag(Def->getLocation(), diag::note_previous_definition);
8210      } else {
8211        unsigned DiagID = diag::ext_forward_ref_enum;
8212        if (getLangOptions().MicrosoftExt)
8213          DiagID = diag::ext_ms_forward_ref_enum;
8214        else if (getLangOptions().CPlusPlus)
8215          DiagID = diag::err_forward_ref_enum;
8216        Diag(Loc, DiagID);
8217
8218        // If this is a forward-declared reference to an enumeration, make a
8219        // note of it; we won't actually be introducing the declaration into
8220        // the declaration context.
8221        if (TUK == TUK_Reference)
8222          IsForwardReference = true;
8223      }
8224    }
8225
8226    if (EnumUnderlying) {
8227      EnumDecl *ED = cast<EnumDecl>(New);
8228      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8229        ED->setIntegerTypeSourceInfo(TI);
8230      else
8231        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8232      ED->setPromotionType(ED->getIntegerType());
8233    }
8234
8235  } else {
8236    // struct/union/class
8237
8238    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8239    // struct X { int A; } D;    D should chain to X.
8240    if (getLangOptions().CPlusPlus) {
8241      // FIXME: Look for a way to use RecordDecl for simple structs.
8242      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8243                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8244
8245      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8246        StdBadAlloc = cast<CXXRecordDecl>(New);
8247    } else
8248      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8249                               cast_or_null<RecordDecl>(PrevDecl));
8250  }
8251
8252  // Maybe add qualifier info.
8253  if (SS.isNotEmpty()) {
8254    if (SS.isSet()) {
8255      New->setQualifierInfo(SS.getWithLocInContext(Context));
8256      if (TemplateParameterLists.size() > 0) {
8257        New->setTemplateParameterListsInfo(Context,
8258                                           TemplateParameterLists.size(),
8259                    (TemplateParameterList**) TemplateParameterLists.release());
8260      }
8261    }
8262    else
8263      Invalid = true;
8264  }
8265
8266  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8267    // Add alignment attributes if necessary; these attributes are checked when
8268    // the ASTContext lays out the structure.
8269    //
8270    // It is important for implementing the correct semantics that this
8271    // happen here (in act on tag decl). The #pragma pack stack is
8272    // maintained as a result of parser callbacks which can occur at
8273    // many points during the parsing of a struct declaration (because
8274    // the #pragma tokens are effectively skipped over during the
8275    // parsing of the struct).
8276    AddAlignmentAttributesForRecord(RD);
8277
8278    AddMsStructLayoutForRecord(RD);
8279  }
8280
8281  if (ModulePrivateLoc.isValid()) {
8282    if (isExplicitSpecialization)
8283      Diag(New->getLocation(), diag::err_module_private_specialization)
8284        << 2
8285        << FixItHint::CreateRemoval(ModulePrivateLoc);
8286    // __module_private__ does not apply to local classes. However, we only
8287    // diagnose this as an error when the declaration specifiers are
8288    // freestanding. Here, we just ignore the __module_private__.
8289    else if (!SearchDC->isFunctionOrMethod())
8290      New->setModulePrivate();
8291  }
8292
8293  // If this is a specialization of a member class (of a class template),
8294  // check the specialization.
8295  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8296    Invalid = true;
8297
8298  if (Invalid)
8299    New->setInvalidDecl();
8300
8301  if (Attr)
8302    ProcessDeclAttributeList(S, New, Attr);
8303
8304  // If we're declaring or defining a tag in function prototype scope
8305  // in C, note that this type can only be used within the function.
8306  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8307    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8308
8309  // Set the lexical context. If the tag has a C++ scope specifier, the
8310  // lexical context will be different from the semantic context.
8311  New->setLexicalDeclContext(CurContext);
8312
8313  // Mark this as a friend decl if applicable.
8314  // In Microsoft mode, a friend declaration also acts as a forward
8315  // declaration so we always pass true to setObjectOfFriendDecl to make
8316  // the tag name visible.
8317  if (TUK == TUK_Friend)
8318    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8319                               getLangOptions().MicrosoftExt);
8320
8321  // Set the access specifier.
8322  if (!Invalid && SearchDC->isRecord())
8323    SetMemberAccessSpecifier(New, PrevDecl, AS);
8324
8325  if (TUK == TUK_Definition)
8326    New->startDefinition();
8327
8328  // If this has an identifier, add it to the scope stack.
8329  if (TUK == TUK_Friend) {
8330    // We might be replacing an existing declaration in the lookup tables;
8331    // if so, borrow its access specifier.
8332    if (PrevDecl)
8333      New->setAccess(PrevDecl->getAccess());
8334
8335    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8336    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8337    if (Name) // can be null along some error paths
8338      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8339        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8340  } else if (Name) {
8341    S = getNonFieldDeclScope(S);
8342    PushOnScopeChains(New, S, !IsForwardReference);
8343    if (IsForwardReference)
8344      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8345
8346  } else {
8347    CurContext->addDecl(New);
8348  }
8349
8350  // If this is the C FILE type, notify the AST context.
8351  if (IdentifierInfo *II = New->getIdentifier())
8352    if (!New->isInvalidDecl() &&
8353        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8354        II->isStr("FILE"))
8355      Context.setFILEDecl(New);
8356
8357  OwnedDecl = true;
8358  return New;
8359}
8360
8361void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8362  AdjustDeclIfTemplate(TagD);
8363  TagDecl *Tag = cast<TagDecl>(TagD);
8364
8365  // Enter the tag context.
8366  PushDeclContext(S, Tag);
8367}
8368
8369Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8370  assert(isa<ObjCContainerDecl>(IDecl) &&
8371         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8372  DeclContext *OCD = cast<DeclContext>(IDecl);
8373  assert(getContainingDC(OCD) == CurContext &&
8374      "The next DeclContext should be lexically contained in the current one.");
8375  CurContext = OCD;
8376  return IDecl;
8377}
8378
8379void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8380                                           SourceLocation FinalLoc,
8381                                           SourceLocation LBraceLoc) {
8382  AdjustDeclIfTemplate(TagD);
8383  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8384
8385  FieldCollector->StartClass();
8386
8387  if (!Record->getIdentifier())
8388    return;
8389
8390  if (FinalLoc.isValid())
8391    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8392
8393  // C++ [class]p2:
8394  //   [...] The class-name is also inserted into the scope of the
8395  //   class itself; this is known as the injected-class-name. For
8396  //   purposes of access checking, the injected-class-name is treated
8397  //   as if it were a public member name.
8398  CXXRecordDecl *InjectedClassName
8399    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8400                            Record->getLocStart(), Record->getLocation(),
8401                            Record->getIdentifier(),
8402                            /*PrevDecl=*/0,
8403                            /*DelayTypeCreation=*/true);
8404  Context.getTypeDeclType(InjectedClassName, Record);
8405  InjectedClassName->setImplicit();
8406  InjectedClassName->setAccess(AS_public);
8407  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8408      InjectedClassName->setDescribedClassTemplate(Template);
8409  PushOnScopeChains(InjectedClassName, S);
8410  assert(InjectedClassName->isInjectedClassName() &&
8411         "Broken injected-class-name");
8412}
8413
8414void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8415                                    SourceLocation RBraceLoc) {
8416  AdjustDeclIfTemplate(TagD);
8417  TagDecl *Tag = cast<TagDecl>(TagD);
8418  Tag->setRBraceLoc(RBraceLoc);
8419
8420  if (isa<CXXRecordDecl>(Tag))
8421    FieldCollector->FinishClass();
8422
8423  // Exit this scope of this tag's definition.
8424  PopDeclContext();
8425
8426  // Notify the consumer that we've defined a tag.
8427  Consumer.HandleTagDeclDefinition(Tag);
8428}
8429
8430void Sema::ActOnObjCContainerFinishDefinition() {
8431  // Exit this scope of this interface definition.
8432  PopDeclContext();
8433}
8434
8435void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8436  assert(DC == CurContext && "Mismatch of container contexts");
8437  OriginalLexicalContext = DC;
8438  ActOnObjCContainerFinishDefinition();
8439}
8440
8441void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8442  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8443  OriginalLexicalContext = 0;
8444}
8445
8446void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8447  AdjustDeclIfTemplate(TagD);
8448  TagDecl *Tag = cast<TagDecl>(TagD);
8449  Tag->setInvalidDecl();
8450
8451  // We're undoing ActOnTagStartDefinition here, not
8452  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8453  // the FieldCollector.
8454
8455  PopDeclContext();
8456}
8457
8458// Note that FieldName may be null for anonymous bitfields.
8459bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8460                          QualType FieldTy, const Expr *BitWidth,
8461                          bool *ZeroWidth) {
8462  // Default to true; that shouldn't confuse checks for emptiness
8463  if (ZeroWidth)
8464    *ZeroWidth = true;
8465
8466  // C99 6.7.2.1p4 - verify the field type.
8467  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8468  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8469    // Handle incomplete types with specific error.
8470    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8471      return true;
8472    if (FieldName)
8473      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8474        << FieldName << FieldTy << BitWidth->getSourceRange();
8475    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8476      << FieldTy << BitWidth->getSourceRange();
8477  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8478                                             UPPC_BitFieldWidth))
8479    return true;
8480
8481  // If the bit-width is type- or value-dependent, don't try to check
8482  // it now.
8483  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8484    return false;
8485
8486  llvm::APSInt Value;
8487  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8488    return true;
8489
8490  if (Value != 0 && ZeroWidth)
8491    *ZeroWidth = false;
8492
8493  // Zero-width bitfield is ok for anonymous field.
8494  if (Value == 0 && FieldName)
8495    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8496
8497  if (Value.isSigned() && Value.isNegative()) {
8498    if (FieldName)
8499      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8500               << FieldName << Value.toString(10);
8501    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8502      << Value.toString(10);
8503  }
8504
8505  if (!FieldTy->isDependentType()) {
8506    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8507    if (Value.getZExtValue() > TypeSize) {
8508      if (!getLangOptions().CPlusPlus) {
8509        if (FieldName)
8510          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8511            << FieldName << (unsigned)Value.getZExtValue()
8512            << (unsigned)TypeSize;
8513
8514        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8515          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8516      }
8517
8518      if (FieldName)
8519        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8520          << FieldName << (unsigned)Value.getZExtValue()
8521          << (unsigned)TypeSize;
8522      else
8523        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8524          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8525    }
8526  }
8527
8528  return false;
8529}
8530
8531/// ActOnField - Each field of a C struct/union is passed into this in order
8532/// to create a FieldDecl object for it.
8533Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8534                       Declarator &D, Expr *BitfieldWidth) {
8535  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8536                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8537                               /*HasInit=*/false, AS_public);
8538  return Res;
8539}
8540
8541/// HandleField - Analyze a field of a C struct or a C++ data member.
8542///
8543FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8544                             SourceLocation DeclStart,
8545                             Declarator &D, Expr *BitWidth, bool HasInit,
8546                             AccessSpecifier AS) {
8547  IdentifierInfo *II = D.getIdentifier();
8548  SourceLocation Loc = DeclStart;
8549  if (II) Loc = D.getIdentifierLoc();
8550
8551  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8552  QualType T = TInfo->getType();
8553  if (getLangOptions().CPlusPlus) {
8554    CheckExtraCXXDefaultArguments(D);
8555
8556    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8557                                        UPPC_DataMemberType)) {
8558      D.setInvalidType();
8559      T = Context.IntTy;
8560      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8561    }
8562  }
8563
8564  DiagnoseFunctionSpecifiers(D);
8565
8566  if (D.getDeclSpec().isThreadSpecified())
8567    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8568  if (D.getDeclSpec().isConstexprSpecified())
8569    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8570      << 2;
8571
8572  // Check to see if this name was declared as a member previously
8573  NamedDecl *PrevDecl = 0;
8574  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8575  LookupName(Previous, S);
8576  switch (Previous.getResultKind()) {
8577    case LookupResult::Found:
8578    case LookupResult::FoundUnresolvedValue:
8579      PrevDecl = Previous.getAsSingle<NamedDecl>();
8580      break;
8581
8582    case LookupResult::FoundOverloaded:
8583      PrevDecl = Previous.getRepresentativeDecl();
8584      break;
8585
8586    case LookupResult::NotFound:
8587    case LookupResult::NotFoundInCurrentInstantiation:
8588    case LookupResult::Ambiguous:
8589      break;
8590  }
8591  Previous.suppressDiagnostics();
8592
8593  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8594    // Maybe we will complain about the shadowed template parameter.
8595    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8596    // Just pretend that we didn't see the previous declaration.
8597    PrevDecl = 0;
8598  }
8599
8600  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8601    PrevDecl = 0;
8602
8603  bool Mutable
8604    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8605  SourceLocation TSSL = D.getSourceRange().getBegin();
8606  FieldDecl *NewFD
8607    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8608                     TSSL, AS, PrevDecl, &D);
8609
8610  if (NewFD->isInvalidDecl())
8611    Record->setInvalidDecl();
8612
8613  if (D.getDeclSpec().isModulePrivateSpecified())
8614    NewFD->setModulePrivate();
8615
8616  if (NewFD->isInvalidDecl() && PrevDecl) {
8617    // Don't introduce NewFD into scope; there's already something
8618    // with the same name in the same scope.
8619  } else if (II) {
8620    PushOnScopeChains(NewFD, S);
8621  } else
8622    Record->addDecl(NewFD);
8623
8624  return NewFD;
8625}
8626
8627/// \brief Build a new FieldDecl and check its well-formedness.
8628///
8629/// This routine builds a new FieldDecl given the fields name, type,
8630/// record, etc. \p PrevDecl should refer to any previous declaration
8631/// with the same name and in the same scope as the field to be
8632/// created.
8633///
8634/// \returns a new FieldDecl.
8635///
8636/// \todo The Declarator argument is a hack. It will be removed once
8637FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8638                                TypeSourceInfo *TInfo,
8639                                RecordDecl *Record, SourceLocation Loc,
8640                                bool Mutable, Expr *BitWidth, bool HasInit,
8641                                SourceLocation TSSL,
8642                                AccessSpecifier AS, NamedDecl *PrevDecl,
8643                                Declarator *D) {
8644  IdentifierInfo *II = Name.getAsIdentifierInfo();
8645  bool InvalidDecl = false;
8646  if (D) InvalidDecl = D->isInvalidType();
8647
8648  // If we receive a broken type, recover by assuming 'int' and
8649  // marking this declaration as invalid.
8650  if (T.isNull()) {
8651    InvalidDecl = true;
8652    T = Context.IntTy;
8653  }
8654
8655  QualType EltTy = Context.getBaseElementType(T);
8656  if (!EltTy->isDependentType() &&
8657      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8658    // Fields of incomplete type force their record to be invalid.
8659    Record->setInvalidDecl();
8660    InvalidDecl = true;
8661  }
8662
8663  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8664  // than a variably modified type.
8665  if (!InvalidDecl && T->isVariablyModifiedType()) {
8666    bool SizeIsNegative;
8667    llvm::APSInt Oversized;
8668    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8669                                                           SizeIsNegative,
8670                                                           Oversized);
8671    if (!FixedTy.isNull()) {
8672      Diag(Loc, diag::warn_illegal_constant_array_size);
8673      T = FixedTy;
8674    } else {
8675      if (SizeIsNegative)
8676        Diag(Loc, diag::err_typecheck_negative_array_size);
8677      else if (Oversized.getBoolValue())
8678        Diag(Loc, diag::err_array_too_large)
8679          << Oversized.toString(10);
8680      else
8681        Diag(Loc, diag::err_typecheck_field_variable_size);
8682      InvalidDecl = true;
8683    }
8684  }
8685
8686  // Fields can not have abstract class types
8687  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8688                                             diag::err_abstract_type_in_decl,
8689                                             AbstractFieldType))
8690    InvalidDecl = true;
8691
8692  bool ZeroWidth = false;
8693  // If this is declared as a bit-field, check the bit-field.
8694  if (!InvalidDecl && BitWidth &&
8695      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8696    InvalidDecl = true;
8697    BitWidth = 0;
8698    ZeroWidth = false;
8699  }
8700
8701  // Check that 'mutable' is consistent with the type of the declaration.
8702  if (!InvalidDecl && Mutable) {
8703    unsigned DiagID = 0;
8704    if (T->isReferenceType())
8705      DiagID = diag::err_mutable_reference;
8706    else if (T.isConstQualified())
8707      DiagID = diag::err_mutable_const;
8708
8709    if (DiagID) {
8710      SourceLocation ErrLoc = Loc;
8711      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8712        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8713      Diag(ErrLoc, DiagID);
8714      Mutable = false;
8715      InvalidDecl = true;
8716    }
8717  }
8718
8719  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8720                                       BitWidth, Mutable, HasInit);
8721  if (InvalidDecl)
8722    NewFD->setInvalidDecl();
8723
8724  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8725    Diag(Loc, diag::err_duplicate_member) << II;
8726    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8727    NewFD->setInvalidDecl();
8728  }
8729
8730  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8731    if (Record->isUnion()) {
8732      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8733        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8734        if (RDecl->getDefinition()) {
8735          // C++ [class.union]p1: An object of a class with a non-trivial
8736          // constructor, a non-trivial copy constructor, a non-trivial
8737          // destructor, or a non-trivial copy assignment operator
8738          // cannot be a member of a union, nor can an array of such
8739          // objects.
8740          if (CheckNontrivialField(NewFD))
8741            NewFD->setInvalidDecl();
8742        }
8743      }
8744
8745      // C++ [class.union]p1: If a union contains a member of reference type,
8746      // the program is ill-formed.
8747      if (EltTy->isReferenceType()) {
8748        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8749          << NewFD->getDeclName() << EltTy;
8750        NewFD->setInvalidDecl();
8751      }
8752    }
8753  }
8754
8755  // FIXME: We need to pass in the attributes given an AST
8756  // representation, not a parser representation.
8757  if (D)
8758    // FIXME: What to pass instead of TUScope?
8759    ProcessDeclAttributes(TUScope, NewFD, *D);
8760
8761  // In auto-retain/release, infer strong retension for fields of
8762  // retainable type.
8763  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8764    NewFD->setInvalidDecl();
8765
8766  if (T.isObjCGCWeak())
8767    Diag(Loc, diag::warn_attribute_weak_on_field);
8768
8769  NewFD->setAccess(AS);
8770  return NewFD;
8771}
8772
8773bool Sema::CheckNontrivialField(FieldDecl *FD) {
8774  assert(FD);
8775  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8776
8777  if (FD->isInvalidDecl())
8778    return true;
8779
8780  QualType EltTy = Context.getBaseElementType(FD->getType());
8781  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8782    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8783    if (RDecl->getDefinition()) {
8784      // We check for copy constructors before constructors
8785      // because otherwise we'll never get complaints about
8786      // copy constructors.
8787
8788      CXXSpecialMember member = CXXInvalid;
8789      if (!RDecl->hasTrivialCopyConstructor())
8790        member = CXXCopyConstructor;
8791      else if (!RDecl->hasTrivialDefaultConstructor())
8792        member = CXXDefaultConstructor;
8793      else if (!RDecl->hasTrivialCopyAssignment())
8794        member = CXXCopyAssignment;
8795      else if (!RDecl->hasTrivialDestructor())
8796        member = CXXDestructor;
8797
8798      if (member != CXXInvalid) {
8799        if (!getLangOptions().CPlusPlus0x &&
8800            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8801          // Objective-C++ ARC: it is an error to have a non-trivial field of
8802          // a union. However, system headers in Objective-C programs
8803          // occasionally have Objective-C lifetime objects within unions,
8804          // and rather than cause the program to fail, we make those
8805          // members unavailable.
8806          SourceLocation Loc = FD->getLocation();
8807          if (getSourceManager().isInSystemHeader(Loc)) {
8808            if (!FD->hasAttr<UnavailableAttr>())
8809              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8810                                  "this system field has retaining ownership"));
8811            return false;
8812          }
8813        }
8814
8815        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8816               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8817               diag::err_illegal_union_or_anon_struct_member)
8818          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8819        DiagnoseNontrivial(RT, member);
8820        return !getLangOptions().CPlusPlus0x;
8821      }
8822    }
8823  }
8824
8825  return false;
8826}
8827
8828/// DiagnoseNontrivial - Given that a class has a non-trivial
8829/// special member, figure out why.
8830void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8831  QualType QT(T, 0U);
8832  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8833
8834  // Check whether the member was user-declared.
8835  switch (member) {
8836  case CXXInvalid:
8837    break;
8838
8839  case CXXDefaultConstructor:
8840    if (RD->hasUserDeclaredConstructor()) {
8841      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8842      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8843        const FunctionDecl *body = 0;
8844        ci->hasBody(body);
8845        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8846          SourceLocation CtorLoc = ci->getLocation();
8847          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8848          return;
8849        }
8850      }
8851
8852      llvm_unreachable("found no user-declared constructors");
8853    }
8854    break;
8855
8856  case CXXCopyConstructor:
8857    if (RD->hasUserDeclaredCopyConstructor()) {
8858      SourceLocation CtorLoc =
8859        RD->getCopyConstructor(0)->getLocation();
8860      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8861      return;
8862    }
8863    break;
8864
8865  case CXXMoveConstructor:
8866    if (RD->hasUserDeclaredMoveConstructor()) {
8867      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8868      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8869      return;
8870    }
8871    break;
8872
8873  case CXXCopyAssignment:
8874    if (RD->hasUserDeclaredCopyAssignment()) {
8875      // FIXME: this should use the location of the copy
8876      // assignment, not the type.
8877      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8878      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8879      return;
8880    }
8881    break;
8882
8883  case CXXMoveAssignment:
8884    if (RD->hasUserDeclaredMoveAssignment()) {
8885      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8886      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8887      return;
8888    }
8889    break;
8890
8891  case CXXDestructor:
8892    if (RD->hasUserDeclaredDestructor()) {
8893      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8894      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8895      return;
8896    }
8897    break;
8898  }
8899
8900  typedef CXXRecordDecl::base_class_iterator base_iter;
8901
8902  // Virtual bases and members inhibit trivial copying/construction,
8903  // but not trivial destruction.
8904  if (member != CXXDestructor) {
8905    // Check for virtual bases.  vbases includes indirect virtual bases,
8906    // so we just iterate through the direct bases.
8907    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8908      if (bi->isVirtual()) {
8909        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8910        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8911        return;
8912      }
8913
8914    // Check for virtual methods.
8915    typedef CXXRecordDecl::method_iterator meth_iter;
8916    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8917         ++mi) {
8918      if (mi->isVirtual()) {
8919        SourceLocation MLoc = mi->getSourceRange().getBegin();
8920        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8921        return;
8922      }
8923    }
8924  }
8925
8926  bool (CXXRecordDecl::*hasTrivial)() const;
8927  switch (member) {
8928  case CXXDefaultConstructor:
8929    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8930  case CXXCopyConstructor:
8931    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8932  case CXXCopyAssignment:
8933    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8934  case CXXDestructor:
8935    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8936  default:
8937    llvm_unreachable("unexpected special member");
8938  }
8939
8940  // Check for nontrivial bases (and recurse).
8941  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8942    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8943    assert(BaseRT && "Don't know how to handle dependent bases");
8944    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8945    if (!(BaseRecTy->*hasTrivial)()) {
8946      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8947      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8948      DiagnoseNontrivial(BaseRT, member);
8949      return;
8950    }
8951  }
8952
8953  // Check for nontrivial members (and recurse).
8954  typedef RecordDecl::field_iterator field_iter;
8955  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8956       ++fi) {
8957    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8958    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8959      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8960
8961      if (!(EltRD->*hasTrivial)()) {
8962        SourceLocation FLoc = (*fi)->getLocation();
8963        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8964        DiagnoseNontrivial(EltRT, member);
8965        return;
8966      }
8967    }
8968
8969    if (EltTy->isObjCLifetimeType()) {
8970      switch (EltTy.getObjCLifetime()) {
8971      case Qualifiers::OCL_None:
8972      case Qualifiers::OCL_ExplicitNone:
8973        break;
8974
8975      case Qualifiers::OCL_Autoreleasing:
8976      case Qualifiers::OCL_Weak:
8977      case Qualifiers::OCL_Strong:
8978        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8979          << QT << EltTy.getObjCLifetime();
8980        return;
8981      }
8982    }
8983  }
8984
8985  llvm_unreachable("found no explanation for non-trivial member");
8986}
8987
8988/// TranslateIvarVisibility - Translate visibility from a token ID to an
8989///  AST enum value.
8990static ObjCIvarDecl::AccessControl
8991TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8992  switch (ivarVisibility) {
8993  default: llvm_unreachable("Unknown visitibility kind");
8994  case tok::objc_private: return ObjCIvarDecl::Private;
8995  case tok::objc_public: return ObjCIvarDecl::Public;
8996  case tok::objc_protected: return ObjCIvarDecl::Protected;
8997  case tok::objc_package: return ObjCIvarDecl::Package;
8998  }
8999}
9000
9001/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9002/// in order to create an IvarDecl object for it.
9003Decl *Sema::ActOnIvar(Scope *S,
9004                                SourceLocation DeclStart,
9005                                Declarator &D, Expr *BitfieldWidth,
9006                                tok::ObjCKeywordKind Visibility) {
9007
9008  IdentifierInfo *II = D.getIdentifier();
9009  Expr *BitWidth = (Expr*)BitfieldWidth;
9010  SourceLocation Loc = DeclStart;
9011  if (II) Loc = D.getIdentifierLoc();
9012
9013  // FIXME: Unnamed fields can be handled in various different ways, for
9014  // example, unnamed unions inject all members into the struct namespace!
9015
9016  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9017  QualType T = TInfo->getType();
9018
9019  if (BitWidth) {
9020    // 6.7.2.1p3, 6.7.2.1p4
9021    if (VerifyBitField(Loc, II, T, BitWidth)) {
9022      D.setInvalidType();
9023      BitWidth = 0;
9024    }
9025  } else {
9026    // Not a bitfield.
9027
9028    // validate II.
9029
9030  }
9031  if (T->isReferenceType()) {
9032    Diag(Loc, diag::err_ivar_reference_type);
9033    D.setInvalidType();
9034  }
9035  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9036  // than a variably modified type.
9037  else if (T->isVariablyModifiedType()) {
9038    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9039    D.setInvalidType();
9040  }
9041
9042  // Get the visibility (access control) for this ivar.
9043  ObjCIvarDecl::AccessControl ac =
9044    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9045                                        : ObjCIvarDecl::None;
9046  // Must set ivar's DeclContext to its enclosing interface.
9047  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9048  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9049    return 0;
9050  ObjCContainerDecl *EnclosingContext;
9051  if (ObjCImplementationDecl *IMPDecl =
9052      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9053    if (!LangOpts.ObjCNonFragileABI2) {
9054    // Case of ivar declared in an implementation. Context is that of its class.
9055      EnclosingContext = IMPDecl->getClassInterface();
9056      assert(EnclosingContext && "Implementation has no class interface!");
9057    }
9058    else
9059      EnclosingContext = EnclosingDecl;
9060  } else {
9061    if (ObjCCategoryDecl *CDecl =
9062        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9063      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9064        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9065        return 0;
9066      }
9067    }
9068    EnclosingContext = EnclosingDecl;
9069  }
9070
9071  // Construct the decl.
9072  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9073                                             DeclStart, Loc, II, T,
9074                                             TInfo, ac, (Expr *)BitfieldWidth);
9075
9076  if (II) {
9077    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9078                                           ForRedeclaration);
9079    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9080        && !isa<TagDecl>(PrevDecl)) {
9081      Diag(Loc, diag::err_duplicate_member) << II;
9082      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9083      NewID->setInvalidDecl();
9084    }
9085  }
9086
9087  // Process attributes attached to the ivar.
9088  ProcessDeclAttributes(S, NewID, D);
9089
9090  if (D.isInvalidType())
9091    NewID->setInvalidDecl();
9092
9093  // In ARC, infer 'retaining' for ivars of retainable type.
9094  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9095    NewID->setInvalidDecl();
9096
9097  if (D.getDeclSpec().isModulePrivateSpecified())
9098    NewID->setModulePrivate();
9099
9100  if (II) {
9101    // FIXME: When interfaces are DeclContexts, we'll need to add
9102    // these to the interface.
9103    S->AddDecl(NewID);
9104    IdResolver.AddDecl(NewID);
9105  }
9106
9107  return NewID;
9108}
9109
9110/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9111/// class and class extensions. For every class @interface and class
9112/// extension @interface, if the last ivar is a bitfield of any type,
9113/// then add an implicit `char :0` ivar to the end of that interface.
9114void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9115                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9116  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9117    return;
9118
9119  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9120  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9121
9122  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9123    return;
9124  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9125  if (!ID) {
9126    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9127      if (!CD->IsClassExtension())
9128        return;
9129    }
9130    // No need to add this to end of @implementation.
9131    else
9132      return;
9133  }
9134  // All conditions are met. Add a new bitfield to the tail end of ivars.
9135  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9136  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9137
9138  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9139                              DeclLoc, DeclLoc, 0,
9140                              Context.CharTy,
9141                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9142                                                               DeclLoc),
9143                              ObjCIvarDecl::Private, BW,
9144                              true);
9145  AllIvarDecls.push_back(Ivar);
9146}
9147
9148void Sema::ActOnFields(Scope* S,
9149                       SourceLocation RecLoc, Decl *EnclosingDecl,
9150                       llvm::ArrayRef<Decl *> Fields,
9151                       SourceLocation LBrac, SourceLocation RBrac,
9152                       AttributeList *Attr) {
9153  assert(EnclosingDecl && "missing record or interface decl");
9154
9155  // If the decl this is being inserted into is invalid, then it may be a
9156  // redeclaration or some other bogus case.  Don't try to add fields to it.
9157  if (EnclosingDecl->isInvalidDecl())
9158    return;
9159
9160  // Verify that all the fields are okay.
9161  unsigned NumNamedMembers = 0;
9162  SmallVector<FieldDecl*, 32> RecFields;
9163
9164  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9165  bool ARCErrReported = false;
9166  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9167       i != end; ++i) {
9168    FieldDecl *FD = cast<FieldDecl>(*i);
9169
9170    // Get the type for the field.
9171    const Type *FDTy = FD->getType().getTypePtr();
9172
9173    if (!FD->isAnonymousStructOrUnion()) {
9174      // Remember all fields written by the user.
9175      RecFields.push_back(FD);
9176    }
9177
9178    // If the field is already invalid for some reason, don't emit more
9179    // diagnostics about it.
9180    if (FD->isInvalidDecl()) {
9181      EnclosingDecl->setInvalidDecl();
9182      continue;
9183    }
9184
9185    // C99 6.7.2.1p2:
9186    //   A structure or union shall not contain a member with
9187    //   incomplete or function type (hence, a structure shall not
9188    //   contain an instance of itself, but may contain a pointer to
9189    //   an instance of itself), except that the last member of a
9190    //   structure with more than one named member may have incomplete
9191    //   array type; such a structure (and any union containing,
9192    //   possibly recursively, a member that is such a structure)
9193    //   shall not be a member of a structure or an element of an
9194    //   array.
9195    if (FDTy->isFunctionType()) {
9196      // Field declared as a function.
9197      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9198        << FD->getDeclName();
9199      FD->setInvalidDecl();
9200      EnclosingDecl->setInvalidDecl();
9201      continue;
9202    } else if (FDTy->isIncompleteArrayType() && Record &&
9203               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9204                ((getLangOptions().MicrosoftExt ||
9205                  getLangOptions().CPlusPlus) &&
9206                 (i + 1 == Fields.end() || Record->isUnion())))) {
9207      // Flexible array member.
9208      // Microsoft and g++ is more permissive regarding flexible array.
9209      // It will accept flexible array in union and also
9210      // as the sole element of a struct/class.
9211      if (getLangOptions().MicrosoftExt) {
9212        if (Record->isUnion())
9213          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9214            << FD->getDeclName();
9215        else if (Fields.size() == 1)
9216          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9217            << FD->getDeclName() << Record->getTagKind();
9218      } else if (getLangOptions().CPlusPlus) {
9219        if (Record->isUnion())
9220          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9221            << FD->getDeclName();
9222        else if (Fields.size() == 1)
9223          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9224            << FD->getDeclName() << Record->getTagKind();
9225      } else if (NumNamedMembers < 1) {
9226        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9227          << FD->getDeclName();
9228        FD->setInvalidDecl();
9229        EnclosingDecl->setInvalidDecl();
9230        continue;
9231      }
9232      if (!FD->getType()->isDependentType() &&
9233          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9234        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9235          << FD->getDeclName() << FD->getType();
9236        FD->setInvalidDecl();
9237        EnclosingDecl->setInvalidDecl();
9238        continue;
9239      }
9240      // Okay, we have a legal flexible array member at the end of the struct.
9241      if (Record)
9242        Record->setHasFlexibleArrayMember(true);
9243    } else if (!FDTy->isDependentType() &&
9244               RequireCompleteType(FD->getLocation(), FD->getType(),
9245                                   diag::err_field_incomplete)) {
9246      // Incomplete type
9247      FD->setInvalidDecl();
9248      EnclosingDecl->setInvalidDecl();
9249      continue;
9250    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9251      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9252        // If this is a member of a union, then entire union becomes "flexible".
9253        if (Record && Record->isUnion()) {
9254          Record->setHasFlexibleArrayMember(true);
9255        } else {
9256          // If this is a struct/class and this is not the last element, reject
9257          // it.  Note that GCC supports variable sized arrays in the middle of
9258          // structures.
9259          if (i + 1 != Fields.end())
9260            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9261              << FD->getDeclName() << FD->getType();
9262          else {
9263            // We support flexible arrays at the end of structs in
9264            // other structs as an extension.
9265            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9266              << FD->getDeclName();
9267            if (Record)
9268              Record->setHasFlexibleArrayMember(true);
9269          }
9270        }
9271      }
9272      if (Record && FDTTy->getDecl()->hasObjectMember())
9273        Record->setHasObjectMember(true);
9274    } else if (FDTy->isObjCObjectType()) {
9275      /// A field cannot be an Objective-c object
9276      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9277        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9278      QualType T = Context.getObjCObjectPointerType(FD->getType());
9279      FD->setType(T);
9280    }
9281    else if (!getLangOptions().CPlusPlus) {
9282      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9283        // It's an error in ARC if a field has lifetime.
9284        // We don't want to report this in a system header, though,
9285        // so we just make the field unavailable.
9286        // FIXME: that's really not sufficient; we need to make the type
9287        // itself invalid to, say, initialize or copy.
9288        QualType T = FD->getType();
9289        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9290        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9291          SourceLocation loc = FD->getLocation();
9292          if (getSourceManager().isInSystemHeader(loc)) {
9293            if (!FD->hasAttr<UnavailableAttr>()) {
9294              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9295                                "this system field has retaining ownership"));
9296            }
9297          } else {
9298            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9299              << T->isBlockPointerType();
9300          }
9301          ARCErrReported = true;
9302        }
9303      }
9304      else if (getLangOptions().ObjC1 &&
9305               getLangOptions().getGC() != LangOptions::NonGC &&
9306               Record && !Record->hasObjectMember()) {
9307        if (FD->getType()->isObjCObjectPointerType() ||
9308            FD->getType().isObjCGCStrong())
9309          Record->setHasObjectMember(true);
9310        else if (Context.getAsArrayType(FD->getType())) {
9311          QualType BaseType = Context.getBaseElementType(FD->getType());
9312          if (BaseType->isRecordType() &&
9313              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9314            Record->setHasObjectMember(true);
9315          else if (BaseType->isObjCObjectPointerType() ||
9316                   BaseType.isObjCGCStrong())
9317                 Record->setHasObjectMember(true);
9318        }
9319      }
9320    }
9321    // Keep track of the number of named members.
9322    if (FD->getIdentifier())
9323      ++NumNamedMembers;
9324  }
9325
9326  // Okay, we successfully defined 'Record'.
9327  if (Record) {
9328    bool Completed = false;
9329    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9330      if (!CXXRecord->isInvalidDecl()) {
9331        // Set access bits correctly on the directly-declared conversions.
9332        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9333        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9334             I != E; ++I)
9335          Convs->setAccess(I, (*I)->getAccess());
9336
9337        if (!CXXRecord->isDependentType()) {
9338          // Objective-C Automatic Reference Counting:
9339          //   If a class has a non-static data member of Objective-C pointer
9340          //   type (or array thereof), it is a non-POD type and its
9341          //   default constructor (if any), copy constructor, copy assignment
9342          //   operator, and destructor are non-trivial.
9343          //
9344          // This rule is also handled by CXXRecordDecl::completeDefinition().
9345          // However, here we check whether this particular class is only
9346          // non-POD because of the presence of an Objective-C pointer member.
9347          // If so, objects of this type cannot be shared between code compiled
9348          // with instant objects and code compiled with manual retain/release.
9349          if (getLangOptions().ObjCAutoRefCount &&
9350              CXXRecord->hasObjectMember() &&
9351              CXXRecord->getLinkage() == ExternalLinkage) {
9352            if (CXXRecord->isPOD()) {
9353              Diag(CXXRecord->getLocation(),
9354                   diag::warn_arc_non_pod_class_with_object_member)
9355               << CXXRecord;
9356            } else {
9357              // FIXME: Fix-Its would be nice here, but finding a good location
9358              // for them is going to be tricky.
9359              if (CXXRecord->hasTrivialCopyConstructor())
9360                Diag(CXXRecord->getLocation(),
9361                     diag::warn_arc_trivial_member_function_with_object_member)
9362                  << CXXRecord << 0;
9363              if (CXXRecord->hasTrivialCopyAssignment())
9364                Diag(CXXRecord->getLocation(),
9365                     diag::warn_arc_trivial_member_function_with_object_member)
9366                << CXXRecord << 1;
9367              if (CXXRecord->hasTrivialDestructor())
9368                Diag(CXXRecord->getLocation(),
9369                     diag::warn_arc_trivial_member_function_with_object_member)
9370                << CXXRecord << 2;
9371            }
9372          }
9373
9374          // Adjust user-defined destructor exception spec.
9375          if (getLangOptions().CPlusPlus0x &&
9376              CXXRecord->hasUserDeclaredDestructor())
9377            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9378
9379          // Add any implicitly-declared members to this class.
9380          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9381
9382          // If we have virtual base classes, we may end up finding multiple
9383          // final overriders for a given virtual function. Check for this
9384          // problem now.
9385          if (CXXRecord->getNumVBases()) {
9386            CXXFinalOverriderMap FinalOverriders;
9387            CXXRecord->getFinalOverriders(FinalOverriders);
9388
9389            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9390                                             MEnd = FinalOverriders.end();
9391                 M != MEnd; ++M) {
9392              for (OverridingMethods::iterator SO = M->second.begin(),
9393                                            SOEnd = M->second.end();
9394                   SO != SOEnd; ++SO) {
9395                assert(SO->second.size() > 0 &&
9396                       "Virtual function without overridding functions?");
9397                if (SO->second.size() == 1)
9398                  continue;
9399
9400                // C++ [class.virtual]p2:
9401                //   In a derived class, if a virtual member function of a base
9402                //   class subobject has more than one final overrider the
9403                //   program is ill-formed.
9404                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9405                  << (NamedDecl *)M->first << Record;
9406                Diag(M->first->getLocation(),
9407                     diag::note_overridden_virtual_function);
9408                for (OverridingMethods::overriding_iterator
9409                          OM = SO->second.begin(),
9410                       OMEnd = SO->second.end();
9411                     OM != OMEnd; ++OM)
9412                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9413                    << (NamedDecl *)M->first << OM->Method->getParent();
9414
9415                Record->setInvalidDecl();
9416              }
9417            }
9418            CXXRecord->completeDefinition(&FinalOverriders);
9419            Completed = true;
9420          }
9421        }
9422      }
9423    }
9424
9425    if (!Completed)
9426      Record->completeDefinition();
9427
9428    // Now that the record is complete, do any delayed exception spec checks
9429    // we were missing.
9430    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9431      const CXXDestructorDecl *Dtor =
9432              DelayedDestructorExceptionSpecChecks.back().first;
9433      if (Dtor->getParent() != Record)
9434        break;
9435
9436      assert(!Dtor->getParent()->isDependentType() &&
9437          "Should not ever add destructors of templates into the list.");
9438      CheckOverridingFunctionExceptionSpec(Dtor,
9439          DelayedDestructorExceptionSpecChecks.back().second);
9440      DelayedDestructorExceptionSpecChecks.pop_back();
9441    }
9442
9443  } else {
9444    ObjCIvarDecl **ClsFields =
9445      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9446    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9447      ID->setEndOfDefinitionLoc(RBrac);
9448      // Add ivar's to class's DeclContext.
9449      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9450        ClsFields[i]->setLexicalDeclContext(ID);
9451        ID->addDecl(ClsFields[i]);
9452      }
9453      // Must enforce the rule that ivars in the base classes may not be
9454      // duplicates.
9455      if (ID->getSuperClass())
9456        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9457    } else if (ObjCImplementationDecl *IMPDecl =
9458                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9459      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9460      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9461        // Ivar declared in @implementation never belongs to the implementation.
9462        // Only it is in implementation's lexical context.
9463        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9464      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9465    } else if (ObjCCategoryDecl *CDecl =
9466                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9467      // case of ivars in class extension; all other cases have been
9468      // reported as errors elsewhere.
9469      // FIXME. Class extension does not have a LocEnd field.
9470      // CDecl->setLocEnd(RBrac);
9471      // Add ivar's to class extension's DeclContext.
9472      // Diagnose redeclaration of private ivars.
9473      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9474      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9475        if (IDecl) {
9476          if (const ObjCIvarDecl *ClsIvar =
9477              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9478            Diag(ClsFields[i]->getLocation(),
9479                 diag::err_duplicate_ivar_declaration);
9480            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9481            continue;
9482          }
9483          for (const ObjCCategoryDecl *ClsExtDecl =
9484                IDecl->getFirstClassExtension();
9485               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9486            if (const ObjCIvarDecl *ClsExtIvar =
9487                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9488              Diag(ClsFields[i]->getLocation(),
9489                   diag::err_duplicate_ivar_declaration);
9490              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9491              continue;
9492            }
9493          }
9494        }
9495        ClsFields[i]->setLexicalDeclContext(CDecl);
9496        CDecl->addDecl(ClsFields[i]);
9497      }
9498    }
9499  }
9500
9501  if (Attr)
9502    ProcessDeclAttributeList(S, Record, Attr);
9503
9504  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9505  // set the visibility of this record.
9506  if (Record && !Record->getDeclContext()->isRecord())
9507    AddPushedVisibilityAttribute(Record);
9508}
9509
9510/// \brief Determine whether the given integral value is representable within
9511/// the given type T.
9512static bool isRepresentableIntegerValue(ASTContext &Context,
9513                                        llvm::APSInt &Value,
9514                                        QualType T) {
9515  assert(T->isIntegralType(Context) && "Integral type required!");
9516  unsigned BitWidth = Context.getIntWidth(T);
9517
9518  if (Value.isUnsigned() || Value.isNonNegative()) {
9519    if (T->isSignedIntegerOrEnumerationType())
9520      --BitWidth;
9521    return Value.getActiveBits() <= BitWidth;
9522  }
9523  return Value.getMinSignedBits() <= BitWidth;
9524}
9525
9526// \brief Given an integral type, return the next larger integral type
9527// (or a NULL type of no such type exists).
9528static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9529  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9530  // enum checking below.
9531  assert(T->isIntegralType(Context) && "Integral type required!");
9532  const unsigned NumTypes = 4;
9533  QualType SignedIntegralTypes[NumTypes] = {
9534    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9535  };
9536  QualType UnsignedIntegralTypes[NumTypes] = {
9537    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9538    Context.UnsignedLongLongTy
9539  };
9540
9541  unsigned BitWidth = Context.getTypeSize(T);
9542  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9543                                                        : UnsignedIntegralTypes;
9544  for (unsigned I = 0; I != NumTypes; ++I)
9545    if (Context.getTypeSize(Types[I]) > BitWidth)
9546      return Types[I];
9547
9548  return QualType();
9549}
9550
9551EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9552                                          EnumConstantDecl *LastEnumConst,
9553                                          SourceLocation IdLoc,
9554                                          IdentifierInfo *Id,
9555                                          Expr *Val) {
9556  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9557  llvm::APSInt EnumVal(IntWidth);
9558  QualType EltTy;
9559
9560  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9561    Val = 0;
9562
9563  if (Val)
9564    Val = DefaultLvalueConversion(Val).take();
9565
9566  if (Val) {
9567    if (Enum->isDependentType() || Val->isTypeDependent())
9568      EltTy = Context.DependentTy;
9569    else {
9570      SourceLocation ExpLoc;
9571      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9572          !getLangOptions().MicrosoftMode) {
9573        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9574        // constant-expression in the enumerator-definition shall be a converted
9575        // constant expression of the underlying type.
9576        EltTy = Enum->getIntegerType();
9577        ExprResult Converted =
9578          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9579                                           CCEK_Enumerator);
9580        if (Converted.isInvalid())
9581          Val = 0;
9582        else
9583          Val = Converted.take();
9584      } else if (!Val->isValueDependent() &&
9585                 VerifyIntegerConstantExpression(Val, &EnumVal)) {
9586        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9587        Val = 0;
9588      } else {
9589        if (!getLangOptions().CPlusPlus) {
9590          // C99 6.7.2.2p2:
9591          //   The expression that defines the value of an enumeration constant
9592          //   shall be an integer constant expression that has a value
9593          //   representable as an int.
9594
9595          // Complain if the value is not representable in an int.
9596          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9597            Diag(IdLoc, diag::ext_enum_value_not_int)
9598              << EnumVal.toString(10) << Val->getSourceRange()
9599              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9600          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9601            // Force the type of the expression to 'int'.
9602            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9603          }
9604        }
9605
9606        if (Enum->isFixed()) {
9607          EltTy = Enum->getIntegerType();
9608
9609          // In Obj-C and Microsoft mode, require the enumeration value to be
9610          // representable in the underlying type of the enumeration. In C++11,
9611          // we perform a non-narrowing conversion as part of converted constant
9612          // expression checking.
9613          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9614            if (getLangOptions().MicrosoftExt) {
9615              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9616              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9617            } else
9618              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9619          } else
9620            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9621        } else {
9622          // C++11 [dcl.enum]p5:
9623          //   If the underlying type is not fixed, the type of each enumerator
9624          //   is the type of its initializing value:
9625          //     - If an initializer is specified for an enumerator, the
9626          //       initializing value has the same type as the expression.
9627          EltTy = Val->getType();
9628        }
9629      }
9630    }
9631  }
9632
9633  if (!Val) {
9634    if (Enum->isDependentType())
9635      EltTy = Context.DependentTy;
9636    else if (!LastEnumConst) {
9637      // C++0x [dcl.enum]p5:
9638      //   If the underlying type is not fixed, the type of each enumerator
9639      //   is the type of its initializing value:
9640      //     - If no initializer is specified for the first enumerator, the
9641      //       initializing value has an unspecified integral type.
9642      //
9643      // GCC uses 'int' for its unspecified integral type, as does
9644      // C99 6.7.2.2p3.
9645      if (Enum->isFixed()) {
9646        EltTy = Enum->getIntegerType();
9647      }
9648      else {
9649        EltTy = Context.IntTy;
9650      }
9651    } else {
9652      // Assign the last value + 1.
9653      EnumVal = LastEnumConst->getInitVal();
9654      ++EnumVal;
9655      EltTy = LastEnumConst->getType();
9656
9657      // Check for overflow on increment.
9658      if (EnumVal < LastEnumConst->getInitVal()) {
9659        // C++0x [dcl.enum]p5:
9660        //   If the underlying type is not fixed, the type of each enumerator
9661        //   is the type of its initializing value:
9662        //
9663        //     - Otherwise the type of the initializing value is the same as
9664        //       the type of the initializing value of the preceding enumerator
9665        //       unless the incremented value is not representable in that type,
9666        //       in which case the type is an unspecified integral type
9667        //       sufficient to contain the incremented value. If no such type
9668        //       exists, the program is ill-formed.
9669        QualType T = getNextLargerIntegralType(Context, EltTy);
9670        if (T.isNull() || Enum->isFixed()) {
9671          // There is no integral type larger enough to represent this
9672          // value. Complain, then allow the value to wrap around.
9673          EnumVal = LastEnumConst->getInitVal();
9674          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9675          ++EnumVal;
9676          if (Enum->isFixed())
9677            // When the underlying type is fixed, this is ill-formed.
9678            Diag(IdLoc, diag::err_enumerator_wrapped)
9679              << EnumVal.toString(10)
9680              << EltTy;
9681          else
9682            Diag(IdLoc, diag::warn_enumerator_too_large)
9683              << EnumVal.toString(10);
9684        } else {
9685          EltTy = T;
9686        }
9687
9688        // Retrieve the last enumerator's value, extent that type to the
9689        // type that is supposed to be large enough to represent the incremented
9690        // value, then increment.
9691        EnumVal = LastEnumConst->getInitVal();
9692        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9693        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9694        ++EnumVal;
9695
9696        // If we're not in C++, diagnose the overflow of enumerator values,
9697        // which in C99 means that the enumerator value is not representable in
9698        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9699        // permits enumerator values that are representable in some larger
9700        // integral type.
9701        if (!getLangOptions().CPlusPlus && !T.isNull())
9702          Diag(IdLoc, diag::warn_enum_value_overflow);
9703      } else if (!getLangOptions().CPlusPlus &&
9704                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9705        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9706        Diag(IdLoc, diag::ext_enum_value_not_int)
9707          << EnumVal.toString(10) << 1;
9708      }
9709    }
9710  }
9711
9712  if (!EltTy->isDependentType()) {
9713    // Make the enumerator value match the signedness and size of the
9714    // enumerator's type.
9715    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9716    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9717  }
9718
9719  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9720                                  Val, EnumVal);
9721}
9722
9723
9724Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9725                              SourceLocation IdLoc, IdentifierInfo *Id,
9726                              AttributeList *Attr,
9727                              SourceLocation EqualLoc, Expr *Val) {
9728  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9729  EnumConstantDecl *LastEnumConst =
9730    cast_or_null<EnumConstantDecl>(lastEnumConst);
9731
9732  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9733  // we find one that is.
9734  S = getNonFieldDeclScope(S);
9735
9736  // Verify that there isn't already something declared with this name in this
9737  // scope.
9738  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9739                                         ForRedeclaration);
9740  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9741    // Maybe we will complain about the shadowed template parameter.
9742    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9743    // Just pretend that we didn't see the previous declaration.
9744    PrevDecl = 0;
9745  }
9746
9747  if (PrevDecl) {
9748    // When in C++, we may get a TagDecl with the same name; in this case the
9749    // enum constant will 'hide' the tag.
9750    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9751           "Received TagDecl when not in C++!");
9752    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9753      if (isa<EnumConstantDecl>(PrevDecl))
9754        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9755      else
9756        Diag(IdLoc, diag::err_redefinition) << Id;
9757      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9758      return 0;
9759    }
9760  }
9761
9762  // C++ [class.mem]p13:
9763  //   If T is the name of a class, then each of the following shall have a
9764  //   name different from T:
9765  //     - every enumerator of every member of class T that is an enumerated
9766  //       type
9767  if (CXXRecordDecl *Record
9768                      = dyn_cast<CXXRecordDecl>(
9769                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9770    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9771      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9772
9773  EnumConstantDecl *New =
9774    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9775
9776  if (New) {
9777    // Process attributes.
9778    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9779
9780    // Register this decl in the current scope stack.
9781    New->setAccess(TheEnumDecl->getAccess());
9782    PushOnScopeChains(New, S);
9783  }
9784
9785  return New;
9786}
9787
9788void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9789                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9790                         Decl **Elements, unsigned NumElements,
9791                         Scope *S, AttributeList *Attr) {
9792  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9793  QualType EnumType = Context.getTypeDeclType(Enum);
9794
9795  if (Attr)
9796    ProcessDeclAttributeList(S, Enum, Attr);
9797
9798  if (Enum->isDependentType()) {
9799    for (unsigned i = 0; i != NumElements; ++i) {
9800      EnumConstantDecl *ECD =
9801        cast_or_null<EnumConstantDecl>(Elements[i]);
9802      if (!ECD) continue;
9803
9804      ECD->setType(EnumType);
9805    }
9806
9807    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9808    return;
9809  }
9810
9811  // TODO: If the result value doesn't fit in an int, it must be a long or long
9812  // long value.  ISO C does not support this, but GCC does as an extension,
9813  // emit a warning.
9814  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9815  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9816  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9817
9818  // Verify that all the values are okay, compute the size of the values, and
9819  // reverse the list.
9820  unsigned NumNegativeBits = 0;
9821  unsigned NumPositiveBits = 0;
9822
9823  // Keep track of whether all elements have type int.
9824  bool AllElementsInt = true;
9825
9826  for (unsigned i = 0; i != NumElements; ++i) {
9827    EnumConstantDecl *ECD =
9828      cast_or_null<EnumConstantDecl>(Elements[i]);
9829    if (!ECD) continue;  // Already issued a diagnostic.
9830
9831    const llvm::APSInt &InitVal = ECD->getInitVal();
9832
9833    // Keep track of the size of positive and negative values.
9834    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9835      NumPositiveBits = std::max(NumPositiveBits,
9836                                 (unsigned)InitVal.getActiveBits());
9837    else
9838      NumNegativeBits = std::max(NumNegativeBits,
9839                                 (unsigned)InitVal.getMinSignedBits());
9840
9841    // Keep track of whether every enum element has type int (very commmon).
9842    if (AllElementsInt)
9843      AllElementsInt = ECD->getType() == Context.IntTy;
9844  }
9845
9846  // Figure out the type that should be used for this enum.
9847  QualType BestType;
9848  unsigned BestWidth;
9849
9850  // C++0x N3000 [conv.prom]p3:
9851  //   An rvalue of an unscoped enumeration type whose underlying
9852  //   type is not fixed can be converted to an rvalue of the first
9853  //   of the following types that can represent all the values of
9854  //   the enumeration: int, unsigned int, long int, unsigned long
9855  //   int, long long int, or unsigned long long int.
9856  // C99 6.4.4.3p2:
9857  //   An identifier declared as an enumeration constant has type int.
9858  // The C99 rule is modified by a gcc extension
9859  QualType BestPromotionType;
9860
9861  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9862  // -fshort-enums is the equivalent to specifying the packed attribute on all
9863  // enum definitions.
9864  if (LangOpts.ShortEnums)
9865    Packed = true;
9866
9867  if (Enum->isFixed()) {
9868    BestType = Enum->getIntegerType();
9869    if (BestType->isPromotableIntegerType())
9870      BestPromotionType = Context.getPromotedIntegerType(BestType);
9871    else
9872      BestPromotionType = BestType;
9873    // We don't need to set BestWidth, because BestType is going to be the type
9874    // of the enumerators, but we do anyway because otherwise some compilers
9875    // warn that it might be used uninitialized.
9876    BestWidth = CharWidth;
9877  }
9878  else if (NumNegativeBits) {
9879    // If there is a negative value, figure out the smallest integer type (of
9880    // int/long/longlong) that fits.
9881    // If it's packed, check also if it fits a char or a short.
9882    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9883      BestType = Context.SignedCharTy;
9884      BestWidth = CharWidth;
9885    } else if (Packed && NumNegativeBits <= ShortWidth &&
9886               NumPositiveBits < ShortWidth) {
9887      BestType = Context.ShortTy;
9888      BestWidth = ShortWidth;
9889    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9890      BestType = Context.IntTy;
9891      BestWidth = IntWidth;
9892    } else {
9893      BestWidth = Context.getTargetInfo().getLongWidth();
9894
9895      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9896        BestType = Context.LongTy;
9897      } else {
9898        BestWidth = Context.getTargetInfo().getLongLongWidth();
9899
9900        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9901          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9902        BestType = Context.LongLongTy;
9903      }
9904    }
9905    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9906  } else {
9907    // If there is no negative value, figure out the smallest type that fits
9908    // all of the enumerator values.
9909    // If it's packed, check also if it fits a char or a short.
9910    if (Packed && NumPositiveBits <= CharWidth) {
9911      BestType = Context.UnsignedCharTy;
9912      BestPromotionType = Context.IntTy;
9913      BestWidth = CharWidth;
9914    } else if (Packed && NumPositiveBits <= ShortWidth) {
9915      BestType = Context.UnsignedShortTy;
9916      BestPromotionType = Context.IntTy;
9917      BestWidth = ShortWidth;
9918    } else if (NumPositiveBits <= IntWidth) {
9919      BestType = Context.UnsignedIntTy;
9920      BestWidth = IntWidth;
9921      BestPromotionType
9922        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9923                           ? Context.UnsignedIntTy : Context.IntTy;
9924    } else if (NumPositiveBits <=
9925               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9926      BestType = Context.UnsignedLongTy;
9927      BestPromotionType
9928        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9929                           ? Context.UnsignedLongTy : Context.LongTy;
9930    } else {
9931      BestWidth = Context.getTargetInfo().getLongLongWidth();
9932      assert(NumPositiveBits <= BestWidth &&
9933             "How could an initializer get larger than ULL?");
9934      BestType = Context.UnsignedLongLongTy;
9935      BestPromotionType
9936        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9937                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9938    }
9939  }
9940
9941  // Loop over all of the enumerator constants, changing their types to match
9942  // the type of the enum if needed.
9943  for (unsigned i = 0; i != NumElements; ++i) {
9944    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9945    if (!ECD) continue;  // Already issued a diagnostic.
9946
9947    // Standard C says the enumerators have int type, but we allow, as an
9948    // extension, the enumerators to be larger than int size.  If each
9949    // enumerator value fits in an int, type it as an int, otherwise type it the
9950    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9951    // that X has type 'int', not 'unsigned'.
9952
9953    // Determine whether the value fits into an int.
9954    llvm::APSInt InitVal = ECD->getInitVal();
9955
9956    // If it fits into an integer type, force it.  Otherwise force it to match
9957    // the enum decl type.
9958    QualType NewTy;
9959    unsigned NewWidth;
9960    bool NewSign;
9961    if (!getLangOptions().CPlusPlus &&
9962        !Enum->isFixed() &&
9963        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9964      NewTy = Context.IntTy;
9965      NewWidth = IntWidth;
9966      NewSign = true;
9967    } else if (ECD->getType() == BestType) {
9968      // Already the right type!
9969      if (getLangOptions().CPlusPlus)
9970        // C++ [dcl.enum]p4: Following the closing brace of an
9971        // enum-specifier, each enumerator has the type of its
9972        // enumeration.
9973        ECD->setType(EnumType);
9974      continue;
9975    } else {
9976      NewTy = BestType;
9977      NewWidth = BestWidth;
9978      NewSign = BestType->isSignedIntegerOrEnumerationType();
9979    }
9980
9981    // Adjust the APSInt value.
9982    InitVal = InitVal.extOrTrunc(NewWidth);
9983    InitVal.setIsSigned(NewSign);
9984    ECD->setInitVal(InitVal);
9985
9986    // Adjust the Expr initializer and type.
9987    if (ECD->getInitExpr() &&
9988        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9989      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9990                                                CK_IntegralCast,
9991                                                ECD->getInitExpr(),
9992                                                /*base paths*/ 0,
9993                                                VK_RValue));
9994    if (getLangOptions().CPlusPlus)
9995      // C++ [dcl.enum]p4: Following the closing brace of an
9996      // enum-specifier, each enumerator has the type of its
9997      // enumeration.
9998      ECD->setType(EnumType);
9999    else
10000      ECD->setType(NewTy);
10001  }
10002
10003  Enum->completeDefinition(BestType, BestPromotionType,
10004                           NumPositiveBits, NumNegativeBits);
10005}
10006
10007Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10008                                  SourceLocation StartLoc,
10009                                  SourceLocation EndLoc) {
10010  StringLiteral *AsmString = cast<StringLiteral>(expr);
10011
10012  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10013                                                   AsmString, StartLoc,
10014                                                   EndLoc);
10015  CurContext->addDecl(New);
10016  return New;
10017}
10018
10019DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10020                                   SourceLocation ImportLoc,
10021                                   ModuleIdPath Path) {
10022  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10023                                                Module::AllVisible,
10024                                                /*IsIncludeDirective=*/false);
10025  if (!Mod)
10026    return true;
10027
10028  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10029  Module *ModCheck = Mod;
10030  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10031    // If we've run out of module parents, just drop the remaining identifiers.
10032    // We need the length to be consistent.
10033    if (!ModCheck)
10034      break;
10035    ModCheck = ModCheck->Parent;
10036
10037    IdentifierLocs.push_back(Path[I].second);
10038  }
10039
10040  ImportDecl *Import = ImportDecl::Create(Context,
10041                                          Context.getTranslationUnitDecl(),
10042                                          AtLoc.isValid()? AtLoc : ImportLoc,
10043                                          Mod, IdentifierLocs);
10044  Context.getTranslationUnitDecl()->addDecl(Import);
10045  return Import;
10046}
10047
10048void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10049                             SourceLocation PragmaLoc,
10050                             SourceLocation NameLoc) {
10051  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10052
10053  if (PrevDecl) {
10054    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10055  } else {
10056    (void)WeakUndeclaredIdentifiers.insert(
10057      std::pair<IdentifierInfo*,WeakInfo>
10058        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10059  }
10060}
10061
10062void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10063                                IdentifierInfo* AliasName,
10064                                SourceLocation PragmaLoc,
10065                                SourceLocation NameLoc,
10066                                SourceLocation AliasNameLoc) {
10067  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10068                                    LookupOrdinaryName);
10069  WeakInfo W = WeakInfo(Name, NameLoc);
10070
10071  if (PrevDecl) {
10072    if (!PrevDecl->hasAttr<AliasAttr>())
10073      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10074        DeclApplyPragmaWeak(TUScope, ND, W);
10075  } else {
10076    (void)WeakUndeclaredIdentifiers.insert(
10077      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10078  }
10079}
10080
10081Decl *Sema::getObjCDeclContext() const {
10082  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10083}
10084
10085AvailabilityResult Sema::getCurContextAvailability() const {
10086  const Decl *D = cast<Decl>(getCurLexicalContext());
10087  // A category implicitly has the availability of the interface.
10088  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10089    D = CatD->getClassInterface();
10090
10091  return D->getAvailability();
10092}
10093