SemaDecl.cpp revision c6ed729f669044f5072a49d79041f455d971ece3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = cast<FunctionType>(OldQType);
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  bool RequiresAdjustment = false;
1148  if (OldTypeInfo.getCC() != CC_Default &&
1149      NewTypeInfo.getCC() == CC_Default) {
1150    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1151    RequiresAdjustment = true;
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1166    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1167    RequiresAdjustment = true;
1168  }
1169
1170  // Merge regparm attribute.
1171  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1172    if (NewTypeInfo.getRegParm()) {
1173      Diag(New->getLocation(), diag::err_regparm_mismatch)
1174        << NewType->getRegParmType()
1175        << OldType->getRegParmType();
1176      Diag(Old->getLocation(), diag::note_previous_declaration);
1177      return true;
1178    }
1179
1180    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1181    RequiresAdjustment = true;
1182  }
1183
1184  if (RequiresAdjustment) {
1185    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1186    New->setType(QualType(NewType, 0));
1187    NewQType = Context.getCanonicalType(New->getType());
1188  }
1189
1190  if (getLangOptions().CPlusPlus) {
1191    // (C++98 13.1p2):
1192    //   Certain function declarations cannot be overloaded:
1193    //     -- Function declarations that differ only in the return type
1194    //        cannot be overloaded.
1195    QualType OldReturnType = OldType->getResultType();
1196    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1197    QualType ResQT;
1198    if (OldReturnType != NewReturnType) {
1199      if (NewReturnType->isObjCObjectPointerType()
1200          && OldReturnType->isObjCObjectPointerType())
1201        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1202      if (ResQT.isNull()) {
1203        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1204        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1205        return true;
1206      }
1207      else
1208        NewQType = ResQT;
1209    }
1210
1211    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1212    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1213    if (OldMethod && NewMethod) {
1214      // Preserve triviality.
1215      NewMethod->setTrivial(OldMethod->isTrivial());
1216
1217      bool isFriend = NewMethod->getFriendObjectKind();
1218
1219      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1220        //    -- Member function declarations with the same name and the
1221        //       same parameter types cannot be overloaded if any of them
1222        //       is a static member function declaration.
1223        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1224          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1225          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1226          return true;
1227        }
1228
1229        // C++ [class.mem]p1:
1230        //   [...] A member shall not be declared twice in the
1231        //   member-specification, except that a nested class or member
1232        //   class template can be declared and then later defined.
1233        unsigned NewDiag;
1234        if (isa<CXXConstructorDecl>(OldMethod))
1235          NewDiag = diag::err_constructor_redeclared;
1236        else if (isa<CXXDestructorDecl>(NewMethod))
1237          NewDiag = diag::err_destructor_redeclared;
1238        else if (isa<CXXConversionDecl>(NewMethod))
1239          NewDiag = diag::err_conv_function_redeclared;
1240        else
1241          NewDiag = diag::err_member_redeclared;
1242
1243        Diag(New->getLocation(), NewDiag);
1244        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1245
1246      // Complain if this is an explicit declaration of a special
1247      // member that was initially declared implicitly.
1248      //
1249      // As an exception, it's okay to befriend such methods in order
1250      // to permit the implicit constructor/destructor/operator calls.
1251      } else if (OldMethod->isImplicit()) {
1252        if (isFriend) {
1253          NewMethod->setImplicit();
1254        } else {
1255          Diag(NewMethod->getLocation(),
1256               diag::err_definition_of_implicitly_declared_member)
1257            << New << getSpecialMember(OldMethod);
1258          return true;
1259        }
1260      }
1261    }
1262
1263    // (C++98 8.3.5p3):
1264    //   All declarations for a function shall agree exactly in both the
1265    //   return type and the parameter-type-list.
1266    // We also want to respect all the extended bits except noreturn.
1267
1268    // noreturn should now match unless the old type info didn't have it.
1269    QualType OldQTypeForComparison = OldQType;
1270    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1271      assert(OldQType == QualType(OldType, 0));
1272      const FunctionType *OldTypeForComparison
1273        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1274      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1275      assert(OldQTypeForComparison.isCanonical());
1276    }
1277
1278    if (OldQTypeForComparison == NewQType)
1279      return MergeCompatibleFunctionDecls(New, Old);
1280
1281    // Fall through for conflicting redeclarations and redefinitions.
1282  }
1283
1284  // C: Function types need to be compatible, not identical. This handles
1285  // duplicate function decls like "void f(int); void f(enum X);" properly.
1286  if (!getLangOptions().CPlusPlus &&
1287      Context.typesAreCompatible(OldQType, NewQType)) {
1288    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1289    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1290    const FunctionProtoType *OldProto = 0;
1291    if (isa<FunctionNoProtoType>(NewFuncType) &&
1292        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1293      // The old declaration provided a function prototype, but the
1294      // new declaration does not. Merge in the prototype.
1295      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1296      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1297                                                 OldProto->arg_type_end());
1298      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1299                                         ParamTypes.data(), ParamTypes.size(),
1300                                         OldProto->getExtProtoInfo());
1301      New->setType(NewQType);
1302      New->setHasInheritedPrototype();
1303
1304      // Synthesize a parameter for each argument type.
1305      llvm::SmallVector<ParmVarDecl*, 16> Params;
1306      for (FunctionProtoType::arg_type_iterator
1307             ParamType = OldProto->arg_type_begin(),
1308             ParamEnd = OldProto->arg_type_end();
1309           ParamType != ParamEnd; ++ParamType) {
1310        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1311                                                 SourceLocation(), 0,
1312                                                 *ParamType, /*TInfo=*/0,
1313                                                 SC_None, SC_None,
1314                                                 0);
1315        Param->setImplicit();
1316        Params.push_back(Param);
1317      }
1318
1319      New->setParams(Params.data(), Params.size());
1320    }
1321
1322    return MergeCompatibleFunctionDecls(New, Old);
1323  }
1324
1325  // GNU C permits a K&R definition to follow a prototype declaration
1326  // if the declared types of the parameters in the K&R definition
1327  // match the types in the prototype declaration, even when the
1328  // promoted types of the parameters from the K&R definition differ
1329  // from the types in the prototype. GCC then keeps the types from
1330  // the prototype.
1331  //
1332  // If a variadic prototype is followed by a non-variadic K&R definition,
1333  // the K&R definition becomes variadic.  This is sort of an edge case, but
1334  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1335  // C99 6.9.1p8.
1336  if (!getLangOptions().CPlusPlus &&
1337      Old->hasPrototype() && !New->hasPrototype() &&
1338      New->getType()->getAs<FunctionProtoType>() &&
1339      Old->getNumParams() == New->getNumParams()) {
1340    llvm::SmallVector<QualType, 16> ArgTypes;
1341    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1342    const FunctionProtoType *OldProto
1343      = Old->getType()->getAs<FunctionProtoType>();
1344    const FunctionProtoType *NewProto
1345      = New->getType()->getAs<FunctionProtoType>();
1346
1347    // Determine whether this is the GNU C extension.
1348    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1349                                               NewProto->getResultType());
1350    bool LooseCompatible = !MergedReturn.isNull();
1351    for (unsigned Idx = 0, End = Old->getNumParams();
1352         LooseCompatible && Idx != End; ++Idx) {
1353      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1354      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1355      if (Context.typesAreCompatible(OldParm->getType(),
1356                                     NewProto->getArgType(Idx))) {
1357        ArgTypes.push_back(NewParm->getType());
1358      } else if (Context.typesAreCompatible(OldParm->getType(),
1359                                            NewParm->getType(),
1360                                            /*CompareUnqualified=*/true)) {
1361        GNUCompatibleParamWarning Warn
1362          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1363        Warnings.push_back(Warn);
1364        ArgTypes.push_back(NewParm->getType());
1365      } else
1366        LooseCompatible = false;
1367    }
1368
1369    if (LooseCompatible) {
1370      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1371        Diag(Warnings[Warn].NewParm->getLocation(),
1372             diag::ext_param_promoted_not_compatible_with_prototype)
1373          << Warnings[Warn].PromotedType
1374          << Warnings[Warn].OldParm->getType();
1375        if (Warnings[Warn].OldParm->getLocation().isValid())
1376          Diag(Warnings[Warn].OldParm->getLocation(),
1377               diag::note_previous_declaration);
1378      }
1379
1380      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1381                                           ArgTypes.size(),
1382                                           OldProto->getExtProtoInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  // C++ [class.mem]p1:
1472  //   A member shall not be declared twice in the member-specification [...]
1473  //
1474  // Here, we need only consider static data members.
1475  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1476    Diag(New->getLocation(), diag::err_duplicate_member)
1477      << New->getIdentifier();
1478    Diag(Old->getLocation(), diag::note_previous_declaration);
1479    New->setInvalidDecl();
1480  }
1481
1482  MergeDeclAttributes(New, Old, Context);
1483
1484  // Merge the types
1485  QualType MergedT;
1486  if (getLangOptions().CPlusPlus) {
1487    if (Context.hasSameType(New->getType(), Old->getType()))
1488      MergedT = New->getType();
1489    // C++ [basic.link]p10:
1490    //   [...] the types specified by all declarations referring to a given
1491    //   object or function shall be identical, except that declarations for an
1492    //   array object can specify array types that differ by the presence or
1493    //   absence of a major array bound (8.3.4).
1494    else if (Old->getType()->isIncompleteArrayType() &&
1495             New->getType()->isArrayType()) {
1496      CanQual<ArrayType> OldArray
1497        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1498      CanQual<ArrayType> NewArray
1499        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1500      if (OldArray->getElementType() == NewArray->getElementType())
1501        MergedT = New->getType();
1502    } else if (Old->getType()->isArrayType() &&
1503             New->getType()->isIncompleteArrayType()) {
1504      CanQual<ArrayType> OldArray
1505        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1506      CanQual<ArrayType> NewArray
1507        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1508      if (OldArray->getElementType() == NewArray->getElementType())
1509        MergedT = Old->getType();
1510    } else if (New->getType()->isObjCObjectPointerType()
1511               && Old->getType()->isObjCObjectPointerType()) {
1512        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1513    }
1514  } else {
1515    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1516  }
1517  if (MergedT.isNull()) {
1518    Diag(New->getLocation(), diag::err_redefinition_different_type)
1519      << New->getDeclName();
1520    Diag(Old->getLocation(), diag::note_previous_definition);
1521    return New->setInvalidDecl();
1522  }
1523  New->setType(MergedT);
1524
1525  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1526  if (New->getStorageClass() == SC_Static &&
1527      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1528    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1529    Diag(Old->getLocation(), diag::note_previous_definition);
1530    return New->setInvalidDecl();
1531  }
1532  // C99 6.2.2p4:
1533  //   For an identifier declared with the storage-class specifier
1534  //   extern in a scope in which a prior declaration of that
1535  //   identifier is visible,23) if the prior declaration specifies
1536  //   internal or external linkage, the linkage of the identifier at
1537  //   the later declaration is the same as the linkage specified at
1538  //   the prior declaration. If no prior declaration is visible, or
1539  //   if the prior declaration specifies no linkage, then the
1540  //   identifier has external linkage.
1541  if (New->hasExternalStorage() && Old->hasLinkage())
1542    /* Okay */;
1543  else if (New->getStorageClass() != SC_Static &&
1544           Old->getStorageClass() == SC_Static) {
1545    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1546    Diag(Old->getLocation(), diag::note_previous_definition);
1547    return New->setInvalidDecl();
1548  }
1549
1550  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1551
1552  // FIXME: The test for external storage here seems wrong? We still
1553  // need to check for mismatches.
1554  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1555      // Don't complain about out-of-line definitions of static members.
1556      !(Old->getLexicalDeclContext()->isRecord() &&
1557        !New->getLexicalDeclContext()->isRecord())) {
1558    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1559    Diag(Old->getLocation(), diag::note_previous_definition);
1560    return New->setInvalidDecl();
1561  }
1562
1563  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1564    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1565    Diag(Old->getLocation(), diag::note_previous_definition);
1566  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  }
1570
1571  // C++ doesn't have tentative definitions, so go right ahead and check here.
1572  const VarDecl *Def;
1573  if (getLangOptions().CPlusPlus &&
1574      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1575      (Def = Old->getDefinition())) {
1576    Diag(New->getLocation(), diag::err_redefinition)
1577      << New->getDeclName();
1578    Diag(Def->getLocation(), diag::note_previous_definition);
1579    New->setInvalidDecl();
1580    return;
1581  }
1582  // c99 6.2.2 P4.
1583  // For an identifier declared with the storage-class specifier extern in a
1584  // scope in which a prior declaration of that identifier is visible, if
1585  // the prior declaration specifies internal or external linkage, the linkage
1586  // of the identifier at the later declaration is the same as the linkage
1587  // specified at the prior declaration.
1588  // FIXME. revisit this code.
1589  if (New->hasExternalStorage() &&
1590      Old->getLinkage() == InternalLinkage &&
1591      New->getDeclContext() == Old->getDeclContext())
1592    New->setStorageClass(Old->getStorageClass());
1593
1594  // Keep a chain of previous declarations.
1595  New->setPreviousDeclaration(Old);
1596
1597  // Inherit access appropriately.
1598  New->setAccess(Old->getAccess());
1599}
1600
1601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1602/// no declarator (e.g. "struct foo;") is parsed.
1603Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1604                                            DeclSpec &DS) {
1605  // FIXME: Error on inline/virtual/explicit
1606  // FIXME: Warn on useless __thread
1607  // FIXME: Warn on useless const/volatile
1608  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1609  // FIXME: Warn on useless attributes
1610  Decl *TagD = 0;
1611  TagDecl *Tag = 0;
1612  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1613      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1614      DS.getTypeSpecType() == DeclSpec::TST_union ||
1615      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1616    TagD = DS.getRepAsDecl();
1617
1618    if (!TagD) // We probably had an error
1619      return 0;
1620
1621    // Note that the above type specs guarantee that the
1622    // type rep is a Decl, whereas in many of the others
1623    // it's a Type.
1624    Tag = dyn_cast<TagDecl>(TagD);
1625  }
1626
1627  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1628    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1629    // or incomplete types shall not be restrict-qualified."
1630    if (TypeQuals & DeclSpec::TQ_restrict)
1631      Diag(DS.getRestrictSpecLoc(),
1632           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1633           << DS.getSourceRange();
1634  }
1635
1636  if (DS.isFriendSpecified()) {
1637    // If we're dealing with a decl but not a TagDecl, assume that
1638    // whatever routines created it handled the friendship aspect.
1639    if (TagD && !Tag)
1640      return 0;
1641    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1642  }
1643
1644  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1645    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1646
1647    if (!Record->getDeclName() && Record->isDefinition() &&
1648        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1649      if (getLangOptions().CPlusPlus ||
1650          Record->getDeclContext()->isRecord())
1651        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1652
1653      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1654        << DS.getSourceRange();
1655    }
1656  }
1657
1658  // Check for Microsoft C extension: anonymous struct.
1659  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1660      CurContext->isRecord() &&
1661      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1662    // Handle 2 kinds of anonymous struct:
1663    //   struct STRUCT;
1664    // and
1665    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1666    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1667    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1668        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1669         DS.getRepAsType().get()->isStructureType())) {
1670      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1671        << DS.getSourceRange();
1672      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1673    }
1674  }
1675
1676  if (getLangOptions().CPlusPlus &&
1677      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1678    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1679      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1680          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1681        Diag(Enum->getLocation(), diag::ext_no_declarators)
1682          << DS.getSourceRange();
1683
1684  if (!DS.isMissingDeclaratorOk() &&
1685      DS.getTypeSpecType() != DeclSpec::TST_error) {
1686    // Warn about typedefs of enums without names, since this is an
1687    // extension in both Microsoft and GNU.
1688    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1689        Tag && isa<EnumDecl>(Tag)) {
1690      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1691        << DS.getSourceRange();
1692      return Tag;
1693    }
1694
1695    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1696      << DS.getSourceRange();
1697  }
1698
1699  return TagD;
1700}
1701
1702/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1703/// builds a statement for it and returns it so it is evaluated.
1704StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1705  StmtResult R;
1706  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1707    Expr *Exp = DS.getRepAsExpr();
1708    QualType Ty = Exp->getType();
1709    if (Ty->isPointerType()) {
1710      do
1711        Ty = Ty->getAs<PointerType>()->getPointeeType();
1712      while (Ty->isPointerType());
1713    }
1714    if (Ty->isVariableArrayType()) {
1715      R = ActOnExprStmt(MakeFullExpr(Exp));
1716    }
1717  }
1718  return R;
1719}
1720
1721/// We are trying to inject an anonymous member into the given scope;
1722/// check if there's an existing declaration that can't be overloaded.
1723///
1724/// \return true if this is a forbidden redeclaration
1725static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1726                                         Scope *S,
1727                                         DeclContext *Owner,
1728                                         DeclarationName Name,
1729                                         SourceLocation NameLoc,
1730                                         unsigned diagnostic) {
1731  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1732                 Sema::ForRedeclaration);
1733  if (!SemaRef.LookupName(R, S)) return false;
1734
1735  if (R.getAsSingle<TagDecl>())
1736    return false;
1737
1738  // Pick a representative declaration.
1739  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1740  assert(PrevDecl && "Expected a non-null Decl");
1741
1742  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1743    return false;
1744
1745  SemaRef.Diag(NameLoc, diagnostic) << Name;
1746  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1747
1748  return true;
1749}
1750
1751/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1752/// anonymous struct or union AnonRecord into the owning context Owner
1753/// and scope S. This routine will be invoked just after we realize
1754/// that an unnamed union or struct is actually an anonymous union or
1755/// struct, e.g.,
1756///
1757/// @code
1758/// union {
1759///   int i;
1760///   float f;
1761/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1762///    // f into the surrounding scope.x
1763/// @endcode
1764///
1765/// This routine is recursive, injecting the names of nested anonymous
1766/// structs/unions into the owning context and scope as well.
1767static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1768                                                DeclContext *Owner,
1769                                                RecordDecl *AnonRecord,
1770                                                AccessSpecifier AS,
1771                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1772                                                      bool MSAnonStruct) {
1773  unsigned diagKind
1774    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1775                            : diag::err_anonymous_struct_member_redecl;
1776
1777  bool Invalid = false;
1778
1779  // Look every FieldDecl and IndirectFieldDecl with a name.
1780  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1781                               DEnd = AnonRecord->decls_end();
1782       D != DEnd; ++D) {
1783    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1784        cast<NamedDecl>(*D)->getDeclName()) {
1785      ValueDecl *VD = cast<ValueDecl>(*D);
1786      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1787                                       VD->getLocation(), diagKind)) {
1788        // C++ [class.union]p2:
1789        //   The names of the members of an anonymous union shall be
1790        //   distinct from the names of any other entity in the
1791        //   scope in which the anonymous union is declared.
1792        Invalid = true;
1793      } else {
1794        // C++ [class.union]p2:
1795        //   For the purpose of name lookup, after the anonymous union
1796        //   definition, the members of the anonymous union are
1797        //   considered to have been defined in the scope in which the
1798        //   anonymous union is declared.
1799        unsigned OldChainingSize = Chaining.size();
1800        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1801          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1802               PE = IF->chain_end(); PI != PE; ++PI)
1803            Chaining.push_back(*PI);
1804        else
1805          Chaining.push_back(VD);
1806
1807        assert(Chaining.size() >= 2);
1808        NamedDecl **NamedChain =
1809          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1810        for (unsigned i = 0; i < Chaining.size(); i++)
1811          NamedChain[i] = Chaining[i];
1812
1813        IndirectFieldDecl* IndirectField =
1814          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1815                                    VD->getIdentifier(), VD->getType(),
1816                                    NamedChain, Chaining.size());
1817
1818        IndirectField->setAccess(AS);
1819        IndirectField->setImplicit();
1820        SemaRef.PushOnScopeChains(IndirectField, S);
1821
1822        // That includes picking up the appropriate access specifier.
1823        if (AS != AS_none) IndirectField->setAccess(AS);
1824
1825        Chaining.resize(OldChainingSize);
1826      }
1827    }
1828  }
1829
1830  return Invalid;
1831}
1832
1833/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1834/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1835/// illegal input values are mapped to SC_None.
1836static StorageClass
1837StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1838  switch (StorageClassSpec) {
1839  case DeclSpec::SCS_unspecified:    return SC_None;
1840  case DeclSpec::SCS_extern:         return SC_Extern;
1841  case DeclSpec::SCS_static:         return SC_Static;
1842  case DeclSpec::SCS_auto:           return SC_Auto;
1843  case DeclSpec::SCS_register:       return SC_Register;
1844  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1845    // Illegal SCSs map to None: error reporting is up to the caller.
1846  case DeclSpec::SCS_mutable:        // Fall through.
1847  case DeclSpec::SCS_typedef:        return SC_None;
1848  }
1849  llvm_unreachable("unknown storage class specifier");
1850}
1851
1852/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1853/// a StorageClass. Any error reporting is up to the caller:
1854/// illegal input values are mapped to SC_None.
1855static StorageClass
1856StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1857  switch (StorageClassSpec) {
1858  case DeclSpec::SCS_unspecified:    return SC_None;
1859  case DeclSpec::SCS_extern:         return SC_Extern;
1860  case DeclSpec::SCS_static:         return SC_Static;
1861  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1862    // Illegal SCSs map to None: error reporting is up to the caller.
1863  case DeclSpec::SCS_auto:           // Fall through.
1864  case DeclSpec::SCS_mutable:        // Fall through.
1865  case DeclSpec::SCS_register:       // Fall through.
1866  case DeclSpec::SCS_typedef:        return SC_None;
1867  }
1868  llvm_unreachable("unknown storage class specifier");
1869}
1870
1871/// BuildAnonymousStructOrUnion - Handle the declaration of an
1872/// anonymous structure or union. Anonymous unions are a C++ feature
1873/// (C++ [class.union]) and a GNU C extension; anonymous structures
1874/// are a GNU C and GNU C++ extension.
1875Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1876                                             AccessSpecifier AS,
1877                                             RecordDecl *Record) {
1878  DeclContext *Owner = Record->getDeclContext();
1879
1880  // Diagnose whether this anonymous struct/union is an extension.
1881  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1882    Diag(Record->getLocation(), diag::ext_anonymous_union);
1883  else if (!Record->isUnion())
1884    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1885
1886  // C and C++ require different kinds of checks for anonymous
1887  // structs/unions.
1888  bool Invalid = false;
1889  if (getLangOptions().CPlusPlus) {
1890    const char* PrevSpec = 0;
1891    unsigned DiagID;
1892    // C++ [class.union]p3:
1893    //   Anonymous unions declared in a named namespace or in the
1894    //   global namespace shall be declared static.
1895    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1896        (isa<TranslationUnitDecl>(Owner) ||
1897         (isa<NamespaceDecl>(Owner) &&
1898          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1899      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1900      Invalid = true;
1901
1902      // Recover by adding 'static'.
1903      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1904                             PrevSpec, DiagID);
1905    }
1906    // C++ [class.union]p3:
1907    //   A storage class is not allowed in a declaration of an
1908    //   anonymous union in a class scope.
1909    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1910             isa<RecordDecl>(Owner)) {
1911      Diag(DS.getStorageClassSpecLoc(),
1912           diag::err_anonymous_union_with_storage_spec);
1913      Invalid = true;
1914
1915      // Recover by removing the storage specifier.
1916      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1917                             PrevSpec, DiagID);
1918    }
1919
1920    // C++ [class.union]p2:
1921    //   The member-specification of an anonymous union shall only
1922    //   define non-static data members. [Note: nested types and
1923    //   functions cannot be declared within an anonymous union. ]
1924    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1925                                 MemEnd = Record->decls_end();
1926         Mem != MemEnd; ++Mem) {
1927      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1928        // C++ [class.union]p3:
1929        //   An anonymous union shall not have private or protected
1930        //   members (clause 11).
1931        assert(FD->getAccess() != AS_none);
1932        if (FD->getAccess() != AS_public) {
1933          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1934            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1935          Invalid = true;
1936        }
1937
1938        if (CheckNontrivialField(FD))
1939          Invalid = true;
1940      } else if ((*Mem)->isImplicit()) {
1941        // Any implicit members are fine.
1942      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1943        // This is a type that showed up in an
1944        // elaborated-type-specifier inside the anonymous struct or
1945        // union, but which actually declares a type outside of the
1946        // anonymous struct or union. It's okay.
1947      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1948        if (!MemRecord->isAnonymousStructOrUnion() &&
1949            MemRecord->getDeclName()) {
1950          // Visual C++ allows type definition in anonymous struct or union.
1951          if (getLangOptions().Microsoft)
1952            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1953              << (int)Record->isUnion();
1954          else {
1955            // This is a nested type declaration.
1956            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1957              << (int)Record->isUnion();
1958            Invalid = true;
1959          }
1960        }
1961      } else if (isa<AccessSpecDecl>(*Mem)) {
1962        // Any access specifier is fine.
1963      } else {
1964        // We have something that isn't a non-static data
1965        // member. Complain about it.
1966        unsigned DK = diag::err_anonymous_record_bad_member;
1967        if (isa<TypeDecl>(*Mem))
1968          DK = diag::err_anonymous_record_with_type;
1969        else if (isa<FunctionDecl>(*Mem))
1970          DK = diag::err_anonymous_record_with_function;
1971        else if (isa<VarDecl>(*Mem))
1972          DK = diag::err_anonymous_record_with_static;
1973
1974        // Visual C++ allows type definition in anonymous struct or union.
1975        if (getLangOptions().Microsoft &&
1976            DK == diag::err_anonymous_record_with_type)
1977          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1978            << (int)Record->isUnion();
1979        else {
1980          Diag((*Mem)->getLocation(), DK)
1981              << (int)Record->isUnion();
1982          Invalid = true;
1983        }
1984      }
1985    }
1986  }
1987
1988  if (!Record->isUnion() && !Owner->isRecord()) {
1989    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1990      << (int)getLangOptions().CPlusPlus;
1991    Invalid = true;
1992  }
1993
1994  // Mock up a declarator.
1995  Declarator Dc(DS, Declarator::TypeNameContext);
1996  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1997  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1998
1999  // Create a declaration for this anonymous struct/union.
2000  NamedDecl *Anon = 0;
2001  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2002    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2003                             /*IdentifierInfo=*/0,
2004                             Context.getTypeDeclType(Record),
2005                             TInfo,
2006                             /*BitWidth=*/0, /*Mutable=*/false);
2007    Anon->setAccess(AS);
2008    if (getLangOptions().CPlusPlus)
2009      FieldCollector->Add(cast<FieldDecl>(Anon));
2010  } else {
2011    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2012    assert(SCSpec != DeclSpec::SCS_typedef &&
2013           "Parser allowed 'typedef' as storage class VarDecl.");
2014    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2015    if (SCSpec == DeclSpec::SCS_mutable) {
2016      // mutable can only appear on non-static class members, so it's always
2017      // an error here
2018      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2019      Invalid = true;
2020      SC = SC_None;
2021    }
2022    SCSpec = DS.getStorageClassSpecAsWritten();
2023    VarDecl::StorageClass SCAsWritten
2024      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2025
2026    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2027                           /*IdentifierInfo=*/0,
2028                           Context.getTypeDeclType(Record),
2029                           TInfo, SC, SCAsWritten);
2030  }
2031  Anon->setImplicit();
2032
2033  // Add the anonymous struct/union object to the current
2034  // context. We'll be referencing this object when we refer to one of
2035  // its members.
2036  Owner->addDecl(Anon);
2037
2038  // Inject the members of the anonymous struct/union into the owning
2039  // context and into the identifier resolver chain for name lookup
2040  // purposes.
2041  llvm::SmallVector<NamedDecl*, 2> Chain;
2042  Chain.push_back(Anon);
2043
2044  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2045                                          Chain, false))
2046    Invalid = true;
2047
2048  // Mark this as an anonymous struct/union type. Note that we do not
2049  // do this until after we have already checked and injected the
2050  // members of this anonymous struct/union type, because otherwise
2051  // the members could be injected twice: once by DeclContext when it
2052  // builds its lookup table, and once by
2053  // InjectAnonymousStructOrUnionMembers.
2054  Record->setAnonymousStructOrUnion(true);
2055
2056  if (Invalid)
2057    Anon->setInvalidDecl();
2058
2059  return Anon;
2060}
2061
2062/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2063/// Microsoft C anonymous structure.
2064/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2065/// Example:
2066///
2067/// struct A { int a; };
2068/// struct B { struct A; int b; };
2069///
2070/// void foo() {
2071///   B var;
2072///   var.a = 3;
2073/// }
2074///
2075Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2076                                           RecordDecl *Record) {
2077
2078  // If there is no Record, get the record via the typedef.
2079  if (!Record)
2080    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2081
2082  // Mock up a declarator.
2083  Declarator Dc(DS, Declarator::TypeNameContext);
2084  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2085  assert(TInfo && "couldn't build declarator info for anonymous struct");
2086
2087  // Create a declaration for this anonymous struct.
2088  NamedDecl* Anon = FieldDecl::Create(Context,
2089                             cast<RecordDecl>(CurContext),
2090                             DS.getSourceRange().getBegin(),
2091                             /*IdentifierInfo=*/0,
2092                             Context.getTypeDeclType(Record),
2093                             TInfo,
2094                             /*BitWidth=*/0, /*Mutable=*/false);
2095  Anon->setImplicit();
2096
2097  // Add the anonymous struct object to the current context.
2098  CurContext->addDecl(Anon);
2099
2100  // Inject the members of the anonymous struct into the current
2101  // context and into the identifier resolver chain for name lookup
2102  // purposes.
2103  llvm::SmallVector<NamedDecl*, 2> Chain;
2104  Chain.push_back(Anon);
2105
2106  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2107                                          Record->getDefinition(),
2108                                          AS_none, Chain, true))
2109    Anon->setInvalidDecl();
2110
2111  return Anon;
2112}
2113
2114/// GetNameForDeclarator - Determine the full declaration name for the
2115/// given Declarator.
2116DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2117  return GetNameFromUnqualifiedId(D.getName());
2118}
2119
2120/// \brief Retrieves the declaration name from a parsed unqualified-id.
2121DeclarationNameInfo
2122Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2123  DeclarationNameInfo NameInfo;
2124  NameInfo.setLoc(Name.StartLocation);
2125
2126  switch (Name.getKind()) {
2127
2128  case UnqualifiedId::IK_Identifier:
2129    NameInfo.setName(Name.Identifier);
2130    NameInfo.setLoc(Name.StartLocation);
2131    return NameInfo;
2132
2133  case UnqualifiedId::IK_OperatorFunctionId:
2134    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2135                                           Name.OperatorFunctionId.Operator));
2136    NameInfo.setLoc(Name.StartLocation);
2137    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2138      = Name.OperatorFunctionId.SymbolLocations[0];
2139    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2140      = Name.EndLocation.getRawEncoding();
2141    return NameInfo;
2142
2143  case UnqualifiedId::IK_LiteralOperatorId:
2144    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2145                                                           Name.Identifier));
2146    NameInfo.setLoc(Name.StartLocation);
2147    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2148    return NameInfo;
2149
2150  case UnqualifiedId::IK_ConversionFunctionId: {
2151    TypeSourceInfo *TInfo;
2152    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2153    if (Ty.isNull())
2154      return DeclarationNameInfo();
2155    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2156                                               Context.getCanonicalType(Ty)));
2157    NameInfo.setLoc(Name.StartLocation);
2158    NameInfo.setNamedTypeInfo(TInfo);
2159    return NameInfo;
2160  }
2161
2162  case UnqualifiedId::IK_ConstructorName: {
2163    TypeSourceInfo *TInfo;
2164    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2165    if (Ty.isNull())
2166      return DeclarationNameInfo();
2167    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2168                                              Context.getCanonicalType(Ty)));
2169    NameInfo.setLoc(Name.StartLocation);
2170    NameInfo.setNamedTypeInfo(TInfo);
2171    return NameInfo;
2172  }
2173
2174  case UnqualifiedId::IK_ConstructorTemplateId: {
2175    // In well-formed code, we can only have a constructor
2176    // template-id that refers to the current context, so go there
2177    // to find the actual type being constructed.
2178    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2179    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2180      return DeclarationNameInfo();
2181
2182    // Determine the type of the class being constructed.
2183    QualType CurClassType = Context.getTypeDeclType(CurClass);
2184
2185    // FIXME: Check two things: that the template-id names the same type as
2186    // CurClassType, and that the template-id does not occur when the name
2187    // was qualified.
2188
2189    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2190                                    Context.getCanonicalType(CurClassType)));
2191    NameInfo.setLoc(Name.StartLocation);
2192    // FIXME: should we retrieve TypeSourceInfo?
2193    NameInfo.setNamedTypeInfo(0);
2194    return NameInfo;
2195  }
2196
2197  case UnqualifiedId::IK_DestructorName: {
2198    TypeSourceInfo *TInfo;
2199    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2200    if (Ty.isNull())
2201      return DeclarationNameInfo();
2202    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2203                                              Context.getCanonicalType(Ty)));
2204    NameInfo.setLoc(Name.StartLocation);
2205    NameInfo.setNamedTypeInfo(TInfo);
2206    return NameInfo;
2207  }
2208
2209  case UnqualifiedId::IK_TemplateId: {
2210    TemplateName TName = Name.TemplateId->Template.get();
2211    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2212    return Context.getNameForTemplate(TName, TNameLoc);
2213  }
2214
2215  } // switch (Name.getKind())
2216
2217  assert(false && "Unknown name kind");
2218  return DeclarationNameInfo();
2219}
2220
2221/// isNearlyMatchingFunction - Determine whether the C++ functions
2222/// Declaration and Definition are "nearly" matching. This heuristic
2223/// is used to improve diagnostics in the case where an out-of-line
2224/// function definition doesn't match any declaration within
2225/// the class or namespace.
2226static bool isNearlyMatchingFunction(ASTContext &Context,
2227                                     FunctionDecl *Declaration,
2228                                     FunctionDecl *Definition) {
2229  if (Declaration->param_size() != Definition->param_size())
2230    return false;
2231  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2232    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2233    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2234
2235    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2236                                        DefParamTy.getNonReferenceType()))
2237      return false;
2238  }
2239
2240  return true;
2241}
2242
2243/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2244/// declarator needs to be rebuilt in the current instantiation.
2245/// Any bits of declarator which appear before the name are valid for
2246/// consideration here.  That's specifically the type in the decl spec
2247/// and the base type in any member-pointer chunks.
2248static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2249                                                    DeclarationName Name) {
2250  // The types we specifically need to rebuild are:
2251  //   - typenames, typeofs, and decltypes
2252  //   - types which will become injected class names
2253  // Of course, we also need to rebuild any type referencing such a
2254  // type.  It's safest to just say "dependent", but we call out a
2255  // few cases here.
2256
2257  DeclSpec &DS = D.getMutableDeclSpec();
2258  switch (DS.getTypeSpecType()) {
2259  case DeclSpec::TST_typename:
2260  case DeclSpec::TST_typeofType:
2261  case DeclSpec::TST_decltype: {
2262    // Grab the type from the parser.
2263    TypeSourceInfo *TSI = 0;
2264    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2265    if (T.isNull() || !T->isDependentType()) break;
2266
2267    // Make sure there's a type source info.  This isn't really much
2268    // of a waste; most dependent types should have type source info
2269    // attached already.
2270    if (!TSI)
2271      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2272
2273    // Rebuild the type in the current instantiation.
2274    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2275    if (!TSI) return true;
2276
2277    // Store the new type back in the decl spec.
2278    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2279    DS.UpdateTypeRep(LocType);
2280    break;
2281  }
2282
2283  case DeclSpec::TST_typeofExpr: {
2284    Expr *E = DS.getRepAsExpr();
2285    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2286    if (Result.isInvalid()) return true;
2287    DS.UpdateExprRep(Result.get());
2288    break;
2289  }
2290
2291  default:
2292    // Nothing to do for these decl specs.
2293    break;
2294  }
2295
2296  // It doesn't matter what order we do this in.
2297  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2298    DeclaratorChunk &Chunk = D.getTypeObject(I);
2299
2300    // The only type information in the declarator which can come
2301    // before the declaration name is the base type of a member
2302    // pointer.
2303    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2304      continue;
2305
2306    // Rebuild the scope specifier in-place.
2307    CXXScopeSpec &SS = Chunk.Mem.Scope();
2308    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2309      return true;
2310  }
2311
2312  return false;
2313}
2314
2315Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2316  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2317}
2318
2319Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2320                             MultiTemplateParamsArg TemplateParamLists,
2321                             bool IsFunctionDefinition) {
2322  // TODO: consider using NameInfo for diagnostic.
2323  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2324  DeclarationName Name = NameInfo.getName();
2325
2326  // All of these full declarators require an identifier.  If it doesn't have
2327  // one, the ParsedFreeStandingDeclSpec action should be used.
2328  if (!Name) {
2329    if (!D.isInvalidType())  // Reject this if we think it is valid.
2330      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2331           diag::err_declarator_need_ident)
2332        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2333    return 0;
2334  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2335    return 0;
2336
2337  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2338  // we find one that is.
2339  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2340         (S->getFlags() & Scope::TemplateParamScope) != 0)
2341    S = S->getParent();
2342
2343  DeclContext *DC = CurContext;
2344  if (D.getCXXScopeSpec().isInvalid())
2345    D.setInvalidType();
2346  else if (D.getCXXScopeSpec().isSet()) {
2347    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2348                                        UPPC_DeclarationQualifier))
2349      return 0;
2350
2351    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2352    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2353    if (!DC) {
2354      // If we could not compute the declaration context, it's because the
2355      // declaration context is dependent but does not refer to a class,
2356      // class template, or class template partial specialization. Complain
2357      // and return early, to avoid the coming semantic disaster.
2358      Diag(D.getIdentifierLoc(),
2359           diag::err_template_qualified_declarator_no_match)
2360        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2361        << D.getCXXScopeSpec().getRange();
2362      return 0;
2363    }
2364
2365    bool IsDependentContext = DC->isDependentContext();
2366
2367    if (!IsDependentContext &&
2368        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2369      return 0;
2370
2371    if (isa<CXXRecordDecl>(DC)) {
2372      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2373        Diag(D.getIdentifierLoc(),
2374             diag::err_member_def_undefined_record)
2375          << Name << DC << D.getCXXScopeSpec().getRange();
2376        D.setInvalidType();
2377      } else if (isa<CXXRecordDecl>(CurContext) &&
2378                 !D.getDeclSpec().isFriendSpecified()) {
2379        // The user provided a superfluous scope specifier inside a class
2380        // definition:
2381        //
2382        // class X {
2383        //   void X::f();
2384        // };
2385        if (CurContext->Equals(DC))
2386          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2387            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2388        else
2389          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2390            << Name << D.getCXXScopeSpec().getRange();
2391
2392        // Pretend that this qualifier was not here.
2393        D.getCXXScopeSpec().clear();
2394      }
2395    }
2396
2397    // Check whether we need to rebuild the type of the given
2398    // declaration in the current instantiation.
2399    if (EnteringContext && IsDependentContext &&
2400        TemplateParamLists.size() != 0) {
2401      ContextRAII SavedContext(*this, DC);
2402      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2403        D.setInvalidType();
2404    }
2405  }
2406
2407  // C++ [class.mem]p13:
2408  //   If T is the name of a class, then each of the following shall have a
2409  //   name different from T:
2410  //     - every static data member of class T;
2411  //     - every member function of class T
2412  //     - every member of class T that is itself a type;
2413  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2414    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2415      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2416        << Name;
2417
2418      // If this is a typedef, we'll end up spewing multiple diagnostics.
2419      // Just return early; it's safer.
2420      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2421        return 0;
2422    }
2423
2424  NamedDecl *New;
2425
2426  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2427  QualType R = TInfo->getType();
2428
2429  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2430                                      UPPC_DeclarationType))
2431    D.setInvalidType();
2432
2433  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2434                        ForRedeclaration);
2435
2436  // See if this is a redefinition of a variable in the same scope.
2437  if (!D.getCXXScopeSpec().isSet()) {
2438    bool IsLinkageLookup = false;
2439
2440    // If the declaration we're planning to build will be a function
2441    // or object with linkage, then look for another declaration with
2442    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2443    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2444      /* Do nothing*/;
2445    else if (R->isFunctionType()) {
2446      if (CurContext->isFunctionOrMethod() ||
2447          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2448        IsLinkageLookup = true;
2449    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2450      IsLinkageLookup = true;
2451    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2452             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2453      IsLinkageLookup = true;
2454
2455    if (IsLinkageLookup)
2456      Previous.clear(LookupRedeclarationWithLinkage);
2457
2458    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2459  } else { // Something like "int foo::x;"
2460    LookupQualifiedName(Previous, DC);
2461
2462    // Don't consider using declarations as previous declarations for
2463    // out-of-line members.
2464    RemoveUsingDecls(Previous);
2465
2466    // C++ 7.3.1.2p2:
2467    // Members (including explicit specializations of templates) of a named
2468    // namespace can also be defined outside that namespace by explicit
2469    // qualification of the name being defined, provided that the entity being
2470    // defined was already declared in the namespace and the definition appears
2471    // after the point of declaration in a namespace that encloses the
2472    // declarations namespace.
2473    //
2474    // Note that we only check the context at this point. We don't yet
2475    // have enough information to make sure that PrevDecl is actually
2476    // the declaration we want to match. For example, given:
2477    //
2478    //   class X {
2479    //     void f();
2480    //     void f(float);
2481    //   };
2482    //
2483    //   void X::f(int) { } // ill-formed
2484    //
2485    // In this case, PrevDecl will point to the overload set
2486    // containing the two f's declared in X, but neither of them
2487    // matches.
2488
2489    // First check whether we named the global scope.
2490    if (isa<TranslationUnitDecl>(DC)) {
2491      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2492        << Name << D.getCXXScopeSpec().getRange();
2493    } else {
2494      DeclContext *Cur = CurContext;
2495      while (isa<LinkageSpecDecl>(Cur))
2496        Cur = Cur->getParent();
2497      if (!Cur->Encloses(DC)) {
2498        // The qualifying scope doesn't enclose the original declaration.
2499        // Emit diagnostic based on current scope.
2500        SourceLocation L = D.getIdentifierLoc();
2501        SourceRange R = D.getCXXScopeSpec().getRange();
2502        if (isa<FunctionDecl>(Cur))
2503          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2504        else
2505          Diag(L, diag::err_invalid_declarator_scope)
2506            << Name << cast<NamedDecl>(DC) << R;
2507        D.setInvalidType();
2508      }
2509    }
2510  }
2511
2512  if (Previous.isSingleResult() &&
2513      Previous.getFoundDecl()->isTemplateParameter()) {
2514    // Maybe we will complain about the shadowed template parameter.
2515    if (!D.isInvalidType())
2516      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2517                                          Previous.getFoundDecl()))
2518        D.setInvalidType();
2519
2520    // Just pretend that we didn't see the previous declaration.
2521    Previous.clear();
2522  }
2523
2524  // In C++, the previous declaration we find might be a tag type
2525  // (class or enum). In this case, the new declaration will hide the
2526  // tag type. Note that this does does not apply if we're declaring a
2527  // typedef (C++ [dcl.typedef]p4).
2528  if (Previous.isSingleTagDecl() &&
2529      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2530    Previous.clear();
2531
2532  bool Redeclaration = false;
2533  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2534    if (TemplateParamLists.size()) {
2535      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2536      return 0;
2537    }
2538
2539    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2540  } else if (R->isFunctionType()) {
2541    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2542                                  move(TemplateParamLists),
2543                                  IsFunctionDefinition, Redeclaration);
2544  } else {
2545    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2546                                  move(TemplateParamLists),
2547                                  Redeclaration);
2548  }
2549
2550  if (New == 0)
2551    return 0;
2552
2553  // If this has an identifier and is not an invalid redeclaration or
2554  // function template specialization, add it to the scope stack.
2555  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2556    PushOnScopeChains(New, S);
2557
2558  return New;
2559}
2560
2561/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2562/// types into constant array types in certain situations which would otherwise
2563/// be errors (for GCC compatibility).
2564static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2565                                                    ASTContext &Context,
2566                                                    bool &SizeIsNegative,
2567                                                    llvm::APSInt &Oversized) {
2568  // This method tries to turn a variable array into a constant
2569  // array even when the size isn't an ICE.  This is necessary
2570  // for compatibility with code that depends on gcc's buggy
2571  // constant expression folding, like struct {char x[(int)(char*)2];}
2572  SizeIsNegative = false;
2573  Oversized = 0;
2574
2575  if (T->isDependentType())
2576    return QualType();
2577
2578  QualifierCollector Qs;
2579  const Type *Ty = Qs.strip(T);
2580
2581  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2582    QualType Pointee = PTy->getPointeeType();
2583    QualType FixedType =
2584        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2585                                            Oversized);
2586    if (FixedType.isNull()) return FixedType;
2587    FixedType = Context.getPointerType(FixedType);
2588    return Qs.apply(Context, FixedType);
2589  }
2590  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2591    QualType Inner = PTy->getInnerType();
2592    QualType FixedType =
2593        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2594                                            Oversized);
2595    if (FixedType.isNull()) return FixedType;
2596    FixedType = Context.getParenType(FixedType);
2597    return Qs.apply(Context, FixedType);
2598  }
2599
2600  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2601  if (!VLATy)
2602    return QualType();
2603  // FIXME: We should probably handle this case
2604  if (VLATy->getElementType()->isVariablyModifiedType())
2605    return QualType();
2606
2607  Expr::EvalResult EvalResult;
2608  if (!VLATy->getSizeExpr() ||
2609      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2610      !EvalResult.Val.isInt())
2611    return QualType();
2612
2613  // Check whether the array size is negative.
2614  llvm::APSInt &Res = EvalResult.Val.getInt();
2615  if (Res.isSigned() && Res.isNegative()) {
2616    SizeIsNegative = true;
2617    return QualType();
2618  }
2619
2620  // Check whether the array is too large to be addressed.
2621  unsigned ActiveSizeBits
2622    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2623                                              Res);
2624  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2625    Oversized = Res;
2626    return QualType();
2627  }
2628
2629  return Context.getConstantArrayType(VLATy->getElementType(),
2630                                      Res, ArrayType::Normal, 0);
2631}
2632
2633/// \brief Register the given locally-scoped external C declaration so
2634/// that it can be found later for redeclarations
2635void
2636Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2637                                       const LookupResult &Previous,
2638                                       Scope *S) {
2639  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2640         "Decl is not a locally-scoped decl!");
2641  // Note that we have a locally-scoped external with this name.
2642  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2643
2644  if (!Previous.isSingleResult())
2645    return;
2646
2647  NamedDecl *PrevDecl = Previous.getFoundDecl();
2648
2649  // If there was a previous declaration of this variable, it may be
2650  // in our identifier chain. Update the identifier chain with the new
2651  // declaration.
2652  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2653    // The previous declaration was found on the identifer resolver
2654    // chain, so remove it from its scope.
2655    while (S && !S->isDeclScope(PrevDecl))
2656      S = S->getParent();
2657
2658    if (S)
2659      S->RemoveDecl(PrevDecl);
2660  }
2661}
2662
2663/// \brief Diagnose function specifiers on a declaration of an identifier that
2664/// does not identify a function.
2665void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2666  // FIXME: We should probably indicate the identifier in question to avoid
2667  // confusion for constructs like "inline int a(), b;"
2668  if (D.getDeclSpec().isInlineSpecified())
2669    Diag(D.getDeclSpec().getInlineSpecLoc(),
2670         diag::err_inline_non_function);
2671
2672  if (D.getDeclSpec().isVirtualSpecified())
2673    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2674         diag::err_virtual_non_function);
2675
2676  if (D.getDeclSpec().isExplicitSpecified())
2677    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2678         diag::err_explicit_non_function);
2679}
2680
2681NamedDecl*
2682Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2683                             QualType R,  TypeSourceInfo *TInfo,
2684                             LookupResult &Previous, bool &Redeclaration) {
2685  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2686  if (D.getCXXScopeSpec().isSet()) {
2687    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2688      << D.getCXXScopeSpec().getRange();
2689    D.setInvalidType();
2690    // Pretend we didn't see the scope specifier.
2691    DC = CurContext;
2692    Previous.clear();
2693  }
2694
2695  if (getLangOptions().CPlusPlus) {
2696    // Check that there are no default arguments (C++ only).
2697    CheckExtraCXXDefaultArguments(D);
2698  }
2699
2700  DiagnoseFunctionSpecifiers(D);
2701
2702  if (D.getDeclSpec().isThreadSpecified())
2703    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2704
2705  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2706    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2707      << D.getName().getSourceRange();
2708    return 0;
2709  }
2710
2711  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2712  if (!NewTD) return 0;
2713
2714  // Handle attributes prior to checking for duplicates in MergeVarDecl
2715  ProcessDeclAttributes(S, NewTD, D);
2716
2717  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2718  // then it shall have block scope.
2719  // Note that variably modified types must be fixed before merging the decl so
2720  // that redeclarations will match.
2721  QualType T = NewTD->getUnderlyingType();
2722  if (T->isVariablyModifiedType()) {
2723    getCurFunction()->setHasBranchProtectedScope();
2724
2725    if (S->getFnParent() == 0) {
2726      bool SizeIsNegative;
2727      llvm::APSInt Oversized;
2728      QualType FixedTy =
2729          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2730                                              Oversized);
2731      if (!FixedTy.isNull()) {
2732        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2733        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2734      } else {
2735        if (SizeIsNegative)
2736          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2737        else if (T->isVariableArrayType())
2738          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2739        else if (Oversized.getBoolValue())
2740          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2741            << Oversized.toString(10);
2742        else
2743          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2744        NewTD->setInvalidDecl();
2745      }
2746    }
2747  }
2748
2749  // Merge the decl with the existing one if appropriate. If the decl is
2750  // in an outer scope, it isn't the same thing.
2751  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2752  if (!Previous.empty()) {
2753    Redeclaration = true;
2754    MergeTypeDefDecl(NewTD, Previous);
2755  }
2756
2757  // If this is the C FILE type, notify the AST context.
2758  if (IdentifierInfo *II = NewTD->getIdentifier())
2759    if (!NewTD->isInvalidDecl() &&
2760        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2761      if (II->isStr("FILE"))
2762        Context.setFILEDecl(NewTD);
2763      else if (II->isStr("jmp_buf"))
2764        Context.setjmp_bufDecl(NewTD);
2765      else if (II->isStr("sigjmp_buf"))
2766        Context.setsigjmp_bufDecl(NewTD);
2767      else if (II->isStr("__builtin_va_list"))
2768        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2769    }
2770
2771  return NewTD;
2772}
2773
2774/// \brief Determines whether the given declaration is an out-of-scope
2775/// previous declaration.
2776///
2777/// This routine should be invoked when name lookup has found a
2778/// previous declaration (PrevDecl) that is not in the scope where a
2779/// new declaration by the same name is being introduced. If the new
2780/// declaration occurs in a local scope, previous declarations with
2781/// linkage may still be considered previous declarations (C99
2782/// 6.2.2p4-5, C++ [basic.link]p6).
2783///
2784/// \param PrevDecl the previous declaration found by name
2785/// lookup
2786///
2787/// \param DC the context in which the new declaration is being
2788/// declared.
2789///
2790/// \returns true if PrevDecl is an out-of-scope previous declaration
2791/// for a new delcaration with the same name.
2792static bool
2793isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2794                                ASTContext &Context) {
2795  if (!PrevDecl)
2796    return false;
2797
2798  if (!PrevDecl->hasLinkage())
2799    return false;
2800
2801  if (Context.getLangOptions().CPlusPlus) {
2802    // C++ [basic.link]p6:
2803    //   If there is a visible declaration of an entity with linkage
2804    //   having the same name and type, ignoring entities declared
2805    //   outside the innermost enclosing namespace scope, the block
2806    //   scope declaration declares that same entity and receives the
2807    //   linkage of the previous declaration.
2808    DeclContext *OuterContext = DC->getRedeclContext();
2809    if (!OuterContext->isFunctionOrMethod())
2810      // This rule only applies to block-scope declarations.
2811      return false;
2812
2813    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2814    if (PrevOuterContext->isRecord())
2815      // We found a member function: ignore it.
2816      return false;
2817
2818    // Find the innermost enclosing namespace for the new and
2819    // previous declarations.
2820    OuterContext = OuterContext->getEnclosingNamespaceContext();
2821    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2822
2823    // The previous declaration is in a different namespace, so it
2824    // isn't the same function.
2825    if (!OuterContext->Equals(PrevOuterContext))
2826      return false;
2827  }
2828
2829  return true;
2830}
2831
2832static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2833  CXXScopeSpec &SS = D.getCXXScopeSpec();
2834  if (!SS.isSet()) return;
2835  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2836                       SS.getRange());
2837}
2838
2839NamedDecl*
2840Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2841                              QualType R, TypeSourceInfo *TInfo,
2842                              LookupResult &Previous,
2843                              MultiTemplateParamsArg TemplateParamLists,
2844                              bool &Redeclaration) {
2845  DeclarationName Name = GetNameForDeclarator(D).getName();
2846
2847  // Check that there are no default arguments (C++ only).
2848  if (getLangOptions().CPlusPlus)
2849    CheckExtraCXXDefaultArguments(D);
2850
2851  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2852  assert(SCSpec != DeclSpec::SCS_typedef &&
2853         "Parser allowed 'typedef' as storage class VarDecl.");
2854  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2855  if (SCSpec == DeclSpec::SCS_mutable) {
2856    // mutable can only appear on non-static class members, so it's always
2857    // an error here
2858    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2859    D.setInvalidType();
2860    SC = SC_None;
2861  }
2862  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2863  VarDecl::StorageClass SCAsWritten
2864    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2865
2866  IdentifierInfo *II = Name.getAsIdentifierInfo();
2867  if (!II) {
2868    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2869      << Name.getAsString();
2870    return 0;
2871  }
2872
2873  DiagnoseFunctionSpecifiers(D);
2874
2875  if (!DC->isRecord() && S->getFnParent() == 0) {
2876    // C99 6.9p2: The storage-class specifiers auto and register shall not
2877    // appear in the declaration specifiers in an external declaration.
2878    if (SC == SC_Auto || SC == SC_Register) {
2879
2880      // If this is a register variable with an asm label specified, then this
2881      // is a GNU extension.
2882      if (SC == SC_Register && D.getAsmLabel())
2883        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2884      else
2885        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2886      D.setInvalidType();
2887    }
2888  }
2889
2890  bool isExplicitSpecialization;
2891  VarDecl *NewVD;
2892  if (!getLangOptions().CPlusPlus) {
2893      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2894                              II, R, TInfo, SC, SCAsWritten);
2895
2896    if (D.isInvalidType())
2897      NewVD->setInvalidDecl();
2898  } else {
2899    if (DC->isRecord() && !CurContext->isRecord()) {
2900      // This is an out-of-line definition of a static data member.
2901      if (SC == SC_Static) {
2902        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2903             diag::err_static_out_of_line)
2904          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2905      } else if (SC == SC_None)
2906        SC = SC_Static;
2907    }
2908    if (SC == SC_Static) {
2909      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2910        if (RD->isLocalClass())
2911          Diag(D.getIdentifierLoc(),
2912               diag::err_static_data_member_not_allowed_in_local_class)
2913            << Name << RD->getDeclName();
2914
2915        // C++ [class.union]p1: If a union contains a static data member,
2916        // the program is ill-formed.
2917        //
2918        // We also disallow static data members in anonymous structs.
2919        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2920          Diag(D.getIdentifierLoc(),
2921               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2922            << Name << RD->isUnion();
2923      }
2924    }
2925
2926    // Match up the template parameter lists with the scope specifier, then
2927    // determine whether we have a template or a template specialization.
2928    isExplicitSpecialization = false;
2929    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2930    bool Invalid = false;
2931    if (TemplateParameterList *TemplateParams
2932        = MatchTemplateParametersToScopeSpecifier(
2933                                                  D.getDeclSpec().getSourceRange().getBegin(),
2934                                                  D.getCXXScopeSpec(),
2935                                                  TemplateParamLists.get(),
2936                                                  TemplateParamLists.size(),
2937                                                  /*never a friend*/ false,
2938                                                  isExplicitSpecialization,
2939                                                  Invalid)) {
2940      // All but one template parameter lists have been matching.
2941      --NumMatchedTemplateParamLists;
2942
2943      if (TemplateParams->size() > 0) {
2944        // There is no such thing as a variable template.
2945        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2946          << II
2947          << SourceRange(TemplateParams->getTemplateLoc(),
2948                         TemplateParams->getRAngleLoc());
2949        return 0;
2950      } else {
2951        // There is an extraneous 'template<>' for this variable. Complain
2952        // about it, but allow the declaration of the variable.
2953        Diag(TemplateParams->getTemplateLoc(),
2954             diag::err_template_variable_noparams)
2955          << II
2956          << SourceRange(TemplateParams->getTemplateLoc(),
2957                         TemplateParams->getRAngleLoc());
2958
2959        isExplicitSpecialization = true;
2960      }
2961    }
2962
2963    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2964                            II, R, TInfo, SC, SCAsWritten);
2965
2966    if (D.isInvalidType() || Invalid)
2967      NewVD->setInvalidDecl();
2968
2969    SetNestedNameSpecifier(NewVD, D);
2970
2971    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2972      NewVD->setTemplateParameterListsInfo(Context,
2973                                           NumMatchedTemplateParamLists,
2974                                           TemplateParamLists.release());
2975    }
2976  }
2977
2978  if (D.getDeclSpec().isThreadSpecified()) {
2979    if (NewVD->hasLocalStorage())
2980      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2981    else if (!Context.Target.isTLSSupported())
2982      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2983    else
2984      NewVD->setThreadSpecified(true);
2985  }
2986
2987  // Set the lexical context. If the declarator has a C++ scope specifier, the
2988  // lexical context will be different from the semantic context.
2989  NewVD->setLexicalDeclContext(CurContext);
2990
2991  // Handle attributes prior to checking for duplicates in MergeVarDecl
2992  ProcessDeclAttributes(S, NewVD, D);
2993
2994  // Handle GNU asm-label extension (encoded as an attribute).
2995  if (Expr *E = (Expr*)D.getAsmLabel()) {
2996    // The parser guarantees this is a string.
2997    StringLiteral *SE = cast<StringLiteral>(E);
2998    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2999                                                Context, SE->getString()));
3000  }
3001
3002  // Diagnose shadowed variables before filtering for scope.
3003  if (!D.getCXXScopeSpec().isSet())
3004    CheckShadow(S, NewVD, Previous);
3005
3006  // Don't consider existing declarations that are in a different
3007  // scope and are out-of-semantic-context declarations (if the new
3008  // declaration has linkage).
3009  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3010
3011  if (!getLangOptions().CPlusPlus)
3012    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3013  else {
3014    // Merge the decl with the existing one if appropriate.
3015    if (!Previous.empty()) {
3016      if (Previous.isSingleResult() &&
3017          isa<FieldDecl>(Previous.getFoundDecl()) &&
3018          D.getCXXScopeSpec().isSet()) {
3019        // The user tried to define a non-static data member
3020        // out-of-line (C++ [dcl.meaning]p1).
3021        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3022          << D.getCXXScopeSpec().getRange();
3023        Previous.clear();
3024        NewVD->setInvalidDecl();
3025      }
3026    } else if (D.getCXXScopeSpec().isSet()) {
3027      // No previous declaration in the qualifying scope.
3028      Diag(D.getIdentifierLoc(), diag::err_no_member)
3029        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3030        << D.getCXXScopeSpec().getRange();
3031      NewVD->setInvalidDecl();
3032    }
3033
3034    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3035
3036    // This is an explicit specialization of a static data member. Check it.
3037    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3038        CheckMemberSpecialization(NewVD, Previous))
3039      NewVD->setInvalidDecl();
3040    // For variables declared as __block which require copy construction,
3041    // must capture copy initialization expression here.
3042    if (!NewVD->isInvalidDecl() && NewVD->hasAttr<BlocksAttr>()) {
3043      QualType T = NewVD->getType();
3044      if (!T->isDependentType() && !T->isReferenceType() &&
3045          T->getAs<RecordType>() && !T->isUnionType()) {
3046        Expr *E = new (Context) DeclRefExpr(NewVD, T,
3047                                            VK_LValue, SourceLocation());
3048        ExprResult Res = PerformCopyInitialization(
3049                InitializedEntity::InitializeBlock(NewVD->getLocation(),
3050                                                   T, false),
3051                SourceLocation(),
3052                Owned(E));
3053        if (!Res.isInvalid()) {
3054          Res = MaybeCreateExprWithCleanups(Res);
3055          Expr *Init = Res.takeAs<Expr>();
3056          Context.setBlockVarCopyInits(NewVD, Init);
3057        }
3058      }
3059    }
3060  }
3061
3062  // attributes declared post-definition are currently ignored
3063  // FIXME: This should be handled in attribute merging, not
3064  // here.
3065  if (Previous.isSingleResult()) {
3066    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3067    if (Def && (Def = Def->getDefinition()) &&
3068        Def != NewVD && D.hasAttributes()) {
3069      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3070      Diag(Def->getLocation(), diag::note_previous_definition);
3071    }
3072  }
3073
3074  // If this is a locally-scoped extern C variable, update the map of
3075  // such variables.
3076  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3077      !NewVD->isInvalidDecl())
3078    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3079
3080  // If there's a #pragma GCC visibility in scope, and this isn't a class
3081  // member, set the visibility of this variable.
3082  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3083    AddPushedVisibilityAttribute(NewVD);
3084
3085  MarkUnusedFileScopedDecl(NewVD);
3086
3087  return NewVD;
3088}
3089
3090/// \brief Diagnose variable or built-in function shadowing.  Implements
3091/// -Wshadow.
3092///
3093/// This method is called whenever a VarDecl is added to a "useful"
3094/// scope.
3095///
3096/// \param S the scope in which the shadowing name is being declared
3097/// \param R the lookup of the name
3098///
3099void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3100  // Return if warning is ignored.
3101  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3102        Diagnostic::Ignored)
3103    return;
3104
3105  // Don't diagnose declarations at file scope.  The scope might not
3106  // have a DeclContext if (e.g.) we're parsing a function prototype.
3107  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3108  if (NewDC && NewDC->isFileContext())
3109    return;
3110
3111  // Only diagnose if we're shadowing an unambiguous field or variable.
3112  if (R.getResultKind() != LookupResult::Found)
3113    return;
3114
3115  NamedDecl* ShadowedDecl = R.getFoundDecl();
3116  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3117    return;
3118
3119  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3120
3121  // Only warn about certain kinds of shadowing for class members.
3122  if (NewDC && NewDC->isRecord()) {
3123    // In particular, don't warn about shadowing non-class members.
3124    if (!OldDC->isRecord())
3125      return;
3126
3127    // TODO: should we warn about static data members shadowing
3128    // static data members from base classes?
3129
3130    // TODO: don't diagnose for inaccessible shadowed members.
3131    // This is hard to do perfectly because we might friend the
3132    // shadowing context, but that's just a false negative.
3133  }
3134
3135  // Determine what kind of declaration we're shadowing.
3136  unsigned Kind;
3137  if (isa<RecordDecl>(OldDC)) {
3138    if (isa<FieldDecl>(ShadowedDecl))
3139      Kind = 3; // field
3140    else
3141      Kind = 2; // static data member
3142  } else if (OldDC->isFileContext())
3143    Kind = 1; // global
3144  else
3145    Kind = 0; // local
3146
3147  DeclarationName Name = R.getLookupName();
3148
3149  // Emit warning and note.
3150  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3151  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3152}
3153
3154/// \brief Check -Wshadow without the advantage of a previous lookup.
3155void Sema::CheckShadow(Scope *S, VarDecl *D) {
3156  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3157        Diagnostic::Ignored)
3158    return;
3159
3160  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3161                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3162  LookupName(R, S);
3163  CheckShadow(S, D, R);
3164}
3165
3166/// \brief Perform semantic checking on a newly-created variable
3167/// declaration.
3168///
3169/// This routine performs all of the type-checking required for a
3170/// variable declaration once it has been built. It is used both to
3171/// check variables after they have been parsed and their declarators
3172/// have been translated into a declaration, and to check variables
3173/// that have been instantiated from a template.
3174///
3175/// Sets NewVD->isInvalidDecl() if an error was encountered.
3176void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3177                                    LookupResult &Previous,
3178                                    bool &Redeclaration) {
3179  // If the decl is already known invalid, don't check it.
3180  if (NewVD->isInvalidDecl())
3181    return;
3182
3183  QualType T = NewVD->getType();
3184
3185  if (T->isObjCObjectType()) {
3186    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3187    return NewVD->setInvalidDecl();
3188  }
3189
3190  // Emit an error if an address space was applied to decl with local storage.
3191  // This includes arrays of objects with address space qualifiers, but not
3192  // automatic variables that point to other address spaces.
3193  // ISO/IEC TR 18037 S5.1.2
3194  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3195    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3196    return NewVD->setInvalidDecl();
3197  }
3198
3199  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3200      && !NewVD->hasAttr<BlocksAttr>())
3201    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3202
3203  bool isVM = T->isVariablyModifiedType();
3204  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3205      NewVD->hasAttr<BlocksAttr>())
3206    getCurFunction()->setHasBranchProtectedScope();
3207
3208  if ((isVM && NewVD->hasLinkage()) ||
3209      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3210    bool SizeIsNegative;
3211    llvm::APSInt Oversized;
3212    QualType FixedTy =
3213        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3214                                            Oversized);
3215
3216    if (FixedTy.isNull() && T->isVariableArrayType()) {
3217      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3218      // FIXME: This won't give the correct result for
3219      // int a[10][n];
3220      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3221
3222      if (NewVD->isFileVarDecl())
3223        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3224        << SizeRange;
3225      else if (NewVD->getStorageClass() == SC_Static)
3226        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3227        << SizeRange;
3228      else
3229        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3230        << SizeRange;
3231      return NewVD->setInvalidDecl();
3232    }
3233
3234    if (FixedTy.isNull()) {
3235      if (NewVD->isFileVarDecl())
3236        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3237      else
3238        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3239      return NewVD->setInvalidDecl();
3240    }
3241
3242    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3243    NewVD->setType(FixedTy);
3244  }
3245
3246  if (Previous.empty() && NewVD->isExternC()) {
3247    // Since we did not find anything by this name and we're declaring
3248    // an extern "C" variable, look for a non-visible extern "C"
3249    // declaration with the same name.
3250    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3251      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3252    if (Pos != LocallyScopedExternalDecls.end())
3253      Previous.addDecl(Pos->second);
3254  }
3255
3256  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3257    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3258      << T;
3259    return NewVD->setInvalidDecl();
3260  }
3261
3262  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3263    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3264    return NewVD->setInvalidDecl();
3265  }
3266
3267  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3268    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3269    return NewVD->setInvalidDecl();
3270  }
3271
3272  // Function pointers and references cannot have qualified function type, only
3273  // function pointer-to-members can do that.
3274  QualType Pointee;
3275  unsigned PtrOrRef = 0;
3276  if (const PointerType *Ptr = T->getAs<PointerType>())
3277    Pointee = Ptr->getPointeeType();
3278  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3279    Pointee = Ref->getPointeeType();
3280    PtrOrRef = 1;
3281  }
3282  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3283      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3284    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3285        << PtrOrRef;
3286    return NewVD->setInvalidDecl();
3287  }
3288
3289  if (!Previous.empty()) {
3290    Redeclaration = true;
3291    MergeVarDecl(NewVD, Previous);
3292  }
3293}
3294
3295/// \brief Data used with FindOverriddenMethod
3296struct FindOverriddenMethodData {
3297  Sema *S;
3298  CXXMethodDecl *Method;
3299};
3300
3301/// \brief Member lookup function that determines whether a given C++
3302/// method overrides a method in a base class, to be used with
3303/// CXXRecordDecl::lookupInBases().
3304static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3305                                 CXXBasePath &Path,
3306                                 void *UserData) {
3307  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3308
3309  FindOverriddenMethodData *Data
3310    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3311
3312  DeclarationName Name = Data->Method->getDeclName();
3313
3314  // FIXME: Do we care about other names here too?
3315  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3316    // We really want to find the base class destructor here.
3317    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3318    CanQualType CT = Data->S->Context.getCanonicalType(T);
3319
3320    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3321  }
3322
3323  for (Path.Decls = BaseRecord->lookup(Name);
3324       Path.Decls.first != Path.Decls.second;
3325       ++Path.Decls.first) {
3326    NamedDecl *D = *Path.Decls.first;
3327    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3328      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3329        return true;
3330    }
3331  }
3332
3333  return false;
3334}
3335
3336/// AddOverriddenMethods - See if a method overrides any in the base classes,
3337/// and if so, check that it's a valid override and remember it.
3338bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3339  // Look for virtual methods in base classes that this method might override.
3340  CXXBasePaths Paths;
3341  FindOverriddenMethodData Data;
3342  Data.Method = MD;
3343  Data.S = this;
3344  bool AddedAny = false;
3345  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3346    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3347         E = Paths.found_decls_end(); I != E; ++I) {
3348      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3349        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3350            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3351            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3352          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3353          AddedAny = true;
3354        }
3355      }
3356    }
3357  }
3358
3359  return AddedAny;
3360}
3361
3362static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3363  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3364                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3365  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3366  assert(!Prev.isAmbiguous() &&
3367         "Cannot have an ambiguity in previous-declaration lookup");
3368  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3369       Func != FuncEnd; ++Func) {
3370    if (isa<FunctionDecl>(*Func) &&
3371        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3372      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3373  }
3374}
3375
3376/// CheckClassMemberNameAttributes - Check for class member name checking
3377/// attributes according to [dcl.attr.override]
3378static void
3379CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3380  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3381  if (!MD || !MD->isVirtual())
3382    return;
3383
3384  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3385  bool HasOverriddenMethods =
3386    MD->begin_overridden_methods() != MD->end_overridden_methods();
3387
3388  /// C++ [dcl.attr.override]p2:
3389  ///   If a virtual member function f is marked override and does not override
3390  ///   a member function of a base class the program is ill-formed.
3391  if (HasOverrideAttr && !HasOverriddenMethods) {
3392    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3393      << MD->getDeclName();
3394    return;
3395  }
3396
3397  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3398    return;
3399
3400  /// C++ [dcl.attr.override]p6:
3401  ///   In a class definition marked base_check, if a virtual member function
3402  ///    that is neither implicitly-declared nor a destructor overrides a
3403  ///    member function of a base class and it is not marked override, the
3404  ///    program is ill-formed.
3405  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3406      !isa<CXXDestructorDecl>(MD)) {
3407    llvm::SmallVector<const CXXMethodDecl*, 4>
3408      OverriddenMethods(MD->begin_overridden_methods(),
3409                        MD->end_overridden_methods());
3410
3411    SemaRef.Diag(MD->getLocation(),
3412                 diag::err_function_overriding_without_override)
3413      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3414
3415    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3416      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3417                   diag::note_overridden_virtual_function);
3418  }
3419}
3420
3421NamedDecl*
3422Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3423                              QualType R, TypeSourceInfo *TInfo,
3424                              LookupResult &Previous,
3425                              MultiTemplateParamsArg TemplateParamLists,
3426                              bool IsFunctionDefinition, bool &Redeclaration) {
3427  assert(R.getTypePtr()->isFunctionType());
3428
3429  // TODO: consider using NameInfo for diagnostic.
3430  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3431  DeclarationName Name = NameInfo.getName();
3432  FunctionDecl::StorageClass SC = SC_None;
3433  switch (D.getDeclSpec().getStorageClassSpec()) {
3434  default: assert(0 && "Unknown storage class!");
3435  case DeclSpec::SCS_auto:
3436  case DeclSpec::SCS_register:
3437  case DeclSpec::SCS_mutable:
3438    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3439         diag::err_typecheck_sclass_func);
3440    D.setInvalidType();
3441    break;
3442  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3443  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3444  case DeclSpec::SCS_static: {
3445    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3446      // C99 6.7.1p5:
3447      //   The declaration of an identifier for a function that has
3448      //   block scope shall have no explicit storage-class specifier
3449      //   other than extern
3450      // See also (C++ [dcl.stc]p4).
3451      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3452           diag::err_static_block_func);
3453      SC = SC_None;
3454    } else
3455      SC = SC_Static;
3456    break;
3457  }
3458  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3459  }
3460
3461  if (D.getDeclSpec().isThreadSpecified())
3462    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3463
3464  // Do not allow returning a objc interface by-value.
3465  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3466    Diag(D.getIdentifierLoc(),
3467         diag::err_object_cannot_be_passed_returned_by_value) << 0
3468    << R->getAs<FunctionType>()->getResultType();
3469    D.setInvalidType();
3470  }
3471
3472  FunctionDecl *NewFD;
3473  bool isInline = D.getDeclSpec().isInlineSpecified();
3474  bool isFriend = false;
3475  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3476  FunctionDecl::StorageClass SCAsWritten
3477    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3478  FunctionTemplateDecl *FunctionTemplate = 0;
3479  bool isExplicitSpecialization = false;
3480  bool isFunctionTemplateSpecialization = false;
3481  unsigned NumMatchedTemplateParamLists = 0;
3482
3483  if (!getLangOptions().CPlusPlus) {
3484    // Determine whether the function was written with a
3485    // prototype. This true when:
3486    //   - there is a prototype in the declarator, or
3487    //   - the type R of the function is some kind of typedef or other reference
3488    //     to a type name (which eventually refers to a function type).
3489    bool HasPrototype =
3490    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3491    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3492
3493    NewFD = FunctionDecl::Create(Context, DC,
3494                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3495                                 HasPrototype);
3496    if (D.isInvalidType())
3497      NewFD->setInvalidDecl();
3498
3499    // Set the lexical context.
3500    NewFD->setLexicalDeclContext(CurContext);
3501    // Filter out previous declarations that don't match the scope.
3502    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3503  } else {
3504    isFriend = D.getDeclSpec().isFriendSpecified();
3505    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3506    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3507    bool isVirtualOkay = false;
3508
3509    // Check that the return type is not an abstract class type.
3510    // For record types, this is done by the AbstractClassUsageDiagnoser once
3511    // the class has been completely parsed.
3512    if (!DC->isRecord() &&
3513      RequireNonAbstractType(D.getIdentifierLoc(),
3514                             R->getAs<FunctionType>()->getResultType(),
3515                             diag::err_abstract_type_in_decl,
3516                             AbstractReturnType))
3517      D.setInvalidType();
3518
3519
3520    if (isFriend) {
3521      // C++ [class.friend]p5
3522      //   A function can be defined in a friend declaration of a
3523      //   class . . . . Such a function is implicitly inline.
3524      isInline |= IsFunctionDefinition;
3525    }
3526
3527    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3528      // This is a C++ constructor declaration.
3529      assert(DC->isRecord() &&
3530             "Constructors can only be declared in a member context");
3531
3532      R = CheckConstructorDeclarator(D, R, SC);
3533
3534      // Create the new declaration
3535      NewFD = CXXConstructorDecl::Create(Context,
3536                                         cast<CXXRecordDecl>(DC),
3537                                         NameInfo, R, TInfo,
3538                                         isExplicit, isInline,
3539                                         /*isImplicitlyDeclared=*/false);
3540    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3541      // This is a C++ destructor declaration.
3542      if (DC->isRecord()) {
3543        R = CheckDestructorDeclarator(D, R, SC);
3544
3545        NewFD = CXXDestructorDecl::Create(Context,
3546                                          cast<CXXRecordDecl>(DC),
3547                                          NameInfo, R, TInfo,
3548                                          isInline,
3549                                          /*isImplicitlyDeclared=*/false);
3550        isVirtualOkay = true;
3551      } else {
3552        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3553
3554        // Create a FunctionDecl to satisfy the function definition parsing
3555        // code path.
3556        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3557                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3558                                     /*hasPrototype=*/true);
3559        D.setInvalidType();
3560      }
3561    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3562      if (!DC->isRecord()) {
3563        Diag(D.getIdentifierLoc(),
3564             diag::err_conv_function_not_member);
3565        return 0;
3566      }
3567
3568      CheckConversionDeclarator(D, R, SC);
3569      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3570                                        NameInfo, R, TInfo,
3571                                        isInline, isExplicit);
3572
3573      isVirtualOkay = true;
3574    } else if (DC->isRecord()) {
3575      // If the of the function is the same as the name of the record, then this
3576      // must be an invalid constructor that has a return type.
3577      // (The parser checks for a return type and makes the declarator a
3578      // constructor if it has no return type).
3579      // must have an invalid constructor that has a return type
3580      if (Name.getAsIdentifierInfo() &&
3581          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3582        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3583          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3584          << SourceRange(D.getIdentifierLoc());
3585        return 0;
3586      }
3587
3588      bool isStatic = SC == SC_Static;
3589
3590      // [class.free]p1:
3591      // Any allocation function for a class T is a static member
3592      // (even if not explicitly declared static).
3593      if (Name.getCXXOverloadedOperator() == OO_New ||
3594          Name.getCXXOverloadedOperator() == OO_Array_New)
3595        isStatic = true;
3596
3597      // [class.free]p6 Any deallocation function for a class X is a static member
3598      // (even if not explicitly declared static).
3599      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3600          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3601        isStatic = true;
3602
3603      // This is a C++ method declaration.
3604      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3605                                    NameInfo, R, TInfo,
3606                                    isStatic, SCAsWritten, isInline);
3607
3608      isVirtualOkay = !isStatic;
3609    } else {
3610      // Determine whether the function was written with a
3611      // prototype. This true when:
3612      //   - we're in C++ (where every function has a prototype),
3613      NewFD = FunctionDecl::Create(Context, DC,
3614                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3615                                   true/*HasPrototype*/);
3616    }
3617    SetNestedNameSpecifier(NewFD, D);
3618    isExplicitSpecialization = false;
3619    isFunctionTemplateSpecialization = false;
3620    NumMatchedTemplateParamLists = TemplateParamLists.size();
3621    if (D.isInvalidType())
3622      NewFD->setInvalidDecl();
3623
3624    // Set the lexical context. If the declarator has a C++
3625    // scope specifier, or is the object of a friend declaration, the
3626    // lexical context will be different from the semantic context.
3627    NewFD->setLexicalDeclContext(CurContext);
3628
3629    // Match up the template parameter lists with the scope specifier, then
3630    // determine whether we have a template or a template specialization.
3631    bool Invalid = false;
3632    if (TemplateParameterList *TemplateParams
3633        = MatchTemplateParametersToScopeSpecifier(
3634                                  D.getDeclSpec().getSourceRange().getBegin(),
3635                                  D.getCXXScopeSpec(),
3636                                  TemplateParamLists.get(),
3637                                  TemplateParamLists.size(),
3638                                  isFriend,
3639                                  isExplicitSpecialization,
3640                                  Invalid)) {
3641          // All but one template parameter lists have been matching.
3642          --NumMatchedTemplateParamLists;
3643
3644          if (TemplateParams->size() > 0) {
3645            // This is a function template
3646
3647            // Check that we can declare a template here.
3648            if (CheckTemplateDeclScope(S, TemplateParams))
3649              return 0;
3650
3651            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3652                                                      NewFD->getLocation(),
3653                                                      Name, TemplateParams,
3654                                                      NewFD);
3655            FunctionTemplate->setLexicalDeclContext(CurContext);
3656            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3657          } else {
3658            // This is a function template specialization.
3659            isFunctionTemplateSpecialization = true;
3660
3661            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3662            if (isFriend && isFunctionTemplateSpecialization) {
3663              // We want to remove the "template<>", found here.
3664              SourceRange RemoveRange = TemplateParams->getSourceRange();
3665
3666              // If we remove the template<> and the name is not a
3667              // template-id, we're actually silently creating a problem:
3668              // the friend declaration will refer to an untemplated decl,
3669              // and clearly the user wants a template specialization.  So
3670              // we need to insert '<>' after the name.
3671              SourceLocation InsertLoc;
3672              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3673                InsertLoc = D.getName().getSourceRange().getEnd();
3674                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3675              }
3676
3677              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3678              << Name << RemoveRange
3679              << FixItHint::CreateRemoval(RemoveRange)
3680              << FixItHint::CreateInsertion(InsertLoc, "<>");
3681            }
3682          }
3683        }
3684
3685    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3686      NewFD->setTemplateParameterListsInfo(Context,
3687                                           NumMatchedTemplateParamLists,
3688                                           TemplateParamLists.release());
3689    }
3690
3691    if (Invalid) {
3692      NewFD->setInvalidDecl();
3693      if (FunctionTemplate)
3694        FunctionTemplate->setInvalidDecl();
3695    }
3696
3697    // C++ [dcl.fct.spec]p5:
3698    //   The virtual specifier shall only be used in declarations of
3699    //   nonstatic class member functions that appear within a
3700    //   member-specification of a class declaration; see 10.3.
3701    //
3702    if (isVirtual && !NewFD->isInvalidDecl()) {
3703      if (!isVirtualOkay) {
3704        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3705             diag::err_virtual_non_function);
3706      } else if (!CurContext->isRecord()) {
3707        // 'virtual' was specified outside of the class.
3708        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3709          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3710      } else {
3711        // Okay: Add virtual to the method.
3712        NewFD->setVirtualAsWritten(true);
3713      }
3714    }
3715
3716    // C++ [dcl.fct.spec]p3:
3717    //  The inline specifier shall not appear on a block scope function declaration.
3718    if (isInline && !NewFD->isInvalidDecl()) {
3719      if (CurContext->isFunctionOrMethod()) {
3720        // 'inline' is not allowed on block scope function declaration.
3721        Diag(D.getDeclSpec().getInlineSpecLoc(),
3722             diag::err_inline_declaration_block_scope) << Name
3723          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3724      }
3725    }
3726
3727    // C++ [dcl.fct.spec]p6:
3728    //  The explicit specifier shall be used only in the declaration of a
3729    //  constructor or conversion function within its class definition; see 12.3.1
3730    //  and 12.3.2.
3731    if (isExplicit && !NewFD->isInvalidDecl()) {
3732      if (!CurContext->isRecord()) {
3733        // 'explicit' was specified outside of the class.
3734        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3735             diag::err_explicit_out_of_class)
3736          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3737      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3738                 !isa<CXXConversionDecl>(NewFD)) {
3739        // 'explicit' was specified on a function that wasn't a constructor
3740        // or conversion function.
3741        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3742             diag::err_explicit_non_ctor_or_conv_function)
3743          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3744      }
3745    }
3746
3747    // Filter out previous declarations that don't match the scope.
3748    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3749
3750    if (isFriend) {
3751      // For now, claim that the objects have no previous declaration.
3752      if (FunctionTemplate) {
3753        FunctionTemplate->setObjectOfFriendDecl(false);
3754        FunctionTemplate->setAccess(AS_public);
3755      }
3756      NewFD->setObjectOfFriendDecl(false);
3757      NewFD->setAccess(AS_public);
3758    }
3759
3760    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3761      // A method is implicitly inline if it's defined in its class
3762      // definition.
3763      NewFD->setImplicitlyInline();
3764    }
3765
3766    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3767        !CurContext->isRecord()) {
3768      // C++ [class.static]p1:
3769      //   A data or function member of a class may be declared static
3770      //   in a class definition, in which case it is a static member of
3771      //   the class.
3772
3773      // Complain about the 'static' specifier if it's on an out-of-line
3774      // member function definition.
3775      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3776           diag::err_static_out_of_line)
3777        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3778    }
3779  }
3780
3781  // Handle GNU asm-label extension (encoded as an attribute).
3782  if (Expr *E = (Expr*) D.getAsmLabel()) {
3783    // The parser guarantees this is a string.
3784    StringLiteral *SE = cast<StringLiteral>(E);
3785    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3786                                                SE->getString()));
3787  }
3788
3789  // Copy the parameter declarations from the declarator D to the function
3790  // declaration NewFD, if they are available.  First scavenge them into Params.
3791  llvm::SmallVector<ParmVarDecl*, 16> Params;
3792  if (D.isFunctionDeclarator()) {
3793    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3794
3795    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3796    // function that takes no arguments, not a function that takes a
3797    // single void argument.
3798    // We let through "const void" here because Sema::GetTypeForDeclarator
3799    // already checks for that case.
3800    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3801        FTI.ArgInfo[0].Param &&
3802        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3803      // Empty arg list, don't push any params.
3804      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3805
3806      // In C++, the empty parameter-type-list must be spelled "void"; a
3807      // typedef of void is not permitted.
3808      if (getLangOptions().CPlusPlus &&
3809          Param->getType().getUnqualifiedType() != Context.VoidTy)
3810        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3811    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3812      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3813        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3814        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3815        Param->setDeclContext(NewFD);
3816        Params.push_back(Param);
3817
3818        if (Param->isInvalidDecl())
3819          NewFD->setInvalidDecl();
3820      }
3821    }
3822
3823  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3824    // When we're declaring a function with a typedef, typeof, etc as in the
3825    // following example, we'll need to synthesize (unnamed)
3826    // parameters for use in the declaration.
3827    //
3828    // @code
3829    // typedef void fn(int);
3830    // fn f;
3831    // @endcode
3832
3833    // Synthesize a parameter for each argument type.
3834    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3835         AE = FT->arg_type_end(); AI != AE; ++AI) {
3836      ParmVarDecl *Param =
3837        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3838      Params.push_back(Param);
3839    }
3840  } else {
3841    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3842           "Should not need args for typedef of non-prototype fn");
3843  }
3844  // Finally, we know we have the right number of parameters, install them.
3845  NewFD->setParams(Params.data(), Params.size());
3846
3847  bool OverloadableAttrRequired=false; // FIXME: HACK!
3848  if (!getLangOptions().CPlusPlus) {
3849    // Perform semantic checking on the function declaration.
3850    bool isExplctSpecialization=false;
3851    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3852                             Redeclaration,
3853                             /*FIXME:*/OverloadableAttrRequired);
3854    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3855            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3856           "previous declaration set still overloaded");
3857  } else {
3858    // If the declarator is a template-id, translate the parser's template
3859    // argument list into our AST format.
3860    bool HasExplicitTemplateArgs = false;
3861    TemplateArgumentListInfo TemplateArgs;
3862    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3863      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3864      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3865      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3866      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3867                                         TemplateId->getTemplateArgs(),
3868                                         TemplateId->NumArgs);
3869      translateTemplateArguments(TemplateArgsPtr,
3870                                 TemplateArgs);
3871      TemplateArgsPtr.release();
3872
3873      HasExplicitTemplateArgs = true;
3874
3875      if (FunctionTemplate) {
3876        // FIXME: Diagnose function template with explicit template
3877        // arguments.
3878        HasExplicitTemplateArgs = false;
3879      } else if (!isFunctionTemplateSpecialization &&
3880                 !D.getDeclSpec().isFriendSpecified()) {
3881        // We have encountered something that the user meant to be a
3882        // specialization (because it has explicitly-specified template
3883        // arguments) but that was not introduced with a "template<>" (or had
3884        // too few of them).
3885        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3886          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3887          << FixItHint::CreateInsertion(
3888                                        D.getDeclSpec().getSourceRange().getBegin(),
3889                                                  "template<> ");
3890        isFunctionTemplateSpecialization = true;
3891      } else {
3892        // "friend void foo<>(int);" is an implicit specialization decl.
3893        isFunctionTemplateSpecialization = true;
3894      }
3895    } else if (isFriend && isFunctionTemplateSpecialization) {
3896      // This combination is only possible in a recovery case;  the user
3897      // wrote something like:
3898      //   template <> friend void foo(int);
3899      // which we're recovering from as if the user had written:
3900      //   friend void foo<>(int);
3901      // Go ahead and fake up a template id.
3902      HasExplicitTemplateArgs = true;
3903        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3904      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3905    }
3906
3907    // If it's a friend (and only if it's a friend), it's possible
3908    // that either the specialized function type or the specialized
3909    // template is dependent, and therefore matching will fail.  In
3910    // this case, don't check the specialization yet.
3911    if (isFunctionTemplateSpecialization && isFriend &&
3912        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3913      assert(HasExplicitTemplateArgs &&
3914             "friend function specialization without template args");
3915      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3916                                                       Previous))
3917        NewFD->setInvalidDecl();
3918    } else if (isFunctionTemplateSpecialization) {
3919      if (CheckFunctionTemplateSpecialization(NewFD,
3920                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3921                                              Previous))
3922        NewFD->setInvalidDecl();
3923    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3924      if (CheckMemberSpecialization(NewFD, Previous))
3925          NewFD->setInvalidDecl();
3926    }
3927
3928    // Perform semantic checking on the function declaration.
3929    bool flag_c_overloaded=false; // unused for c++
3930    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3931                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3932
3933    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3934            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3935           "previous declaration set still overloaded");
3936
3937    NamedDecl *PrincipalDecl = (FunctionTemplate
3938                                ? cast<NamedDecl>(FunctionTemplate)
3939                                : NewFD);
3940
3941    if (isFriend && Redeclaration) {
3942      AccessSpecifier Access = AS_public;
3943      if (!NewFD->isInvalidDecl())
3944        Access = NewFD->getPreviousDeclaration()->getAccess();
3945
3946      NewFD->setAccess(Access);
3947      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3948
3949      PrincipalDecl->setObjectOfFriendDecl(true);
3950    }
3951
3952    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3953        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3954      PrincipalDecl->setNonMemberOperator();
3955
3956    // If we have a function template, check the template parameter
3957    // list. This will check and merge default template arguments.
3958    if (FunctionTemplate) {
3959      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3960      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3961                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3962                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3963                                                  : TPC_FunctionTemplate);
3964    }
3965
3966    if (NewFD->isInvalidDecl()) {
3967      // Ignore all the rest of this.
3968    } else if (!Redeclaration) {
3969      // Fake up an access specifier if it's supposed to be a class member.
3970      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3971        NewFD->setAccess(AS_public);
3972
3973      // Qualified decls generally require a previous declaration.
3974      if (D.getCXXScopeSpec().isSet()) {
3975        // ...with the major exception of templated-scope or
3976        // dependent-scope friend declarations.
3977
3978        // TODO: we currently also suppress this check in dependent
3979        // contexts because (1) the parameter depth will be off when
3980        // matching friend templates and (2) we might actually be
3981        // selecting a friend based on a dependent factor.  But there
3982        // are situations where these conditions don't apply and we
3983        // can actually do this check immediately.
3984        if (isFriend &&
3985            (NumMatchedTemplateParamLists ||
3986             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3987             CurContext->isDependentContext())) {
3988              // ignore these
3989            } else {
3990              // The user tried to provide an out-of-line definition for a
3991              // function that is a member of a class or namespace, but there
3992              // was no such member function declared (C++ [class.mfct]p2,
3993              // C++ [namespace.memdef]p2). For example:
3994              //
3995              // class X {
3996              //   void f() const;
3997              // };
3998              //
3999              // void X::f() { } // ill-formed
4000              //
4001              // Complain about this problem, and attempt to suggest close
4002              // matches (e.g., those that differ only in cv-qualifiers and
4003              // whether the parameter types are references).
4004              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4005              << Name << DC << D.getCXXScopeSpec().getRange();
4006              NewFD->setInvalidDecl();
4007
4008              DiagnoseInvalidRedeclaration(*this, NewFD);
4009            }
4010
4011        // Unqualified local friend declarations are required to resolve
4012        // to something.
4013        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4014          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4015          NewFD->setInvalidDecl();
4016          DiagnoseInvalidRedeclaration(*this, NewFD);
4017        }
4018
4019    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4020               !isFriend && !isFunctionTemplateSpecialization &&
4021               !isExplicitSpecialization) {
4022      // An out-of-line member function declaration must also be a
4023      // definition (C++ [dcl.meaning]p1).
4024      // Note that this is not the case for explicit specializations of
4025      // function templates or member functions of class templates, per
4026      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4027      // for compatibility with old SWIG code which likes to generate them.
4028      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4029        << D.getCXXScopeSpec().getRange();
4030    }
4031  }
4032
4033
4034  // Handle attributes. We need to have merged decls when handling attributes
4035  // (for example to check for conflicts, etc).
4036  // FIXME: This needs to happen before we merge declarations. Then,
4037  // let attribute merging cope with attribute conflicts.
4038  ProcessDeclAttributes(S, NewFD, D);
4039
4040  // attributes declared post-definition are currently ignored
4041  // FIXME: This should happen during attribute merging
4042  if (Redeclaration && Previous.isSingleResult()) {
4043    const FunctionDecl *Def;
4044    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4045    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4046      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4047      Diag(Def->getLocation(), diag::note_previous_definition);
4048    }
4049  }
4050
4051  AddKnownFunctionAttributes(NewFD);
4052
4053  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4054    // If a function name is overloadable in C, then every function
4055    // with that name must be marked "overloadable".
4056    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4057      << Redeclaration << NewFD;
4058    if (!Previous.empty())
4059      Diag(Previous.getRepresentativeDecl()->getLocation(),
4060           diag::note_attribute_overloadable_prev_overload);
4061    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4062  }
4063
4064  if (NewFD->hasAttr<OverloadableAttr>() &&
4065      !NewFD->getType()->getAs<FunctionProtoType>()) {
4066    Diag(NewFD->getLocation(),
4067         diag::err_attribute_overloadable_no_prototype)
4068      << NewFD;
4069
4070    // Turn this into a variadic function with no parameters.
4071    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4072    FunctionProtoType::ExtProtoInfo EPI;
4073    EPI.Variadic = true;
4074    EPI.ExtInfo = FT->getExtInfo();
4075
4076    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4077    NewFD->setType(R);
4078  }
4079
4080  // If there's a #pragma GCC visibility in scope, and this isn't a class
4081  // member, set the visibility of this function.
4082  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4083    AddPushedVisibilityAttribute(NewFD);
4084
4085  // If this is a locally-scoped extern C function, update the
4086  // map of such names.
4087  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4088      && !NewFD->isInvalidDecl())
4089    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4090
4091  // Set this FunctionDecl's range up to the right paren.
4092  NewFD->setLocEnd(D.getSourceRange().getEnd());
4093
4094  if (getLangOptions().CPlusPlus) {
4095    if (FunctionTemplate) {
4096      if (NewFD->isInvalidDecl())
4097        FunctionTemplate->setInvalidDecl();
4098      return FunctionTemplate;
4099    }
4100    CheckClassMemberNameAttributes(*this, NewFD);
4101  }
4102
4103  MarkUnusedFileScopedDecl(NewFD);
4104  return NewFD;
4105}
4106
4107/// \brief Perform semantic checking of a new function declaration.
4108///
4109/// Performs semantic analysis of the new function declaration
4110/// NewFD. This routine performs all semantic checking that does not
4111/// require the actual declarator involved in the declaration, and is
4112/// used both for the declaration of functions as they are parsed
4113/// (called via ActOnDeclarator) and for the declaration of functions
4114/// that have been instantiated via C++ template instantiation (called
4115/// via InstantiateDecl).
4116///
4117/// \param IsExplicitSpecialiation whether this new function declaration is
4118/// an explicit specialization of the previous declaration.
4119///
4120/// This sets NewFD->isInvalidDecl() to true if there was an error.
4121void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4122                                    LookupResult &Previous,
4123                                    bool IsExplicitSpecialization,
4124                                    bool &Redeclaration,
4125                                    bool &OverloadableAttrRequired) {
4126  // If NewFD is already known erroneous, don't do any of this checking.
4127  if (NewFD->isInvalidDecl()) {
4128    // If this is a class member, mark the class invalid immediately.
4129    // This avoids some consistency errors later.
4130    if (isa<CXXMethodDecl>(NewFD))
4131      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4132
4133    return;
4134  }
4135
4136  if (NewFD->getResultType()->isVariablyModifiedType()) {
4137    // Functions returning a variably modified type violate C99 6.7.5.2p2
4138    // because all functions have linkage.
4139    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4140    return NewFD->setInvalidDecl();
4141  }
4142
4143  if (NewFD->isMain())
4144    CheckMain(NewFD);
4145
4146  // Check for a previous declaration of this name.
4147  if (Previous.empty() && NewFD->isExternC()) {
4148    // Since we did not find anything by this name and we're declaring
4149    // an extern "C" function, look for a non-visible extern "C"
4150    // declaration with the same name.
4151    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4152      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4153    if (Pos != LocallyScopedExternalDecls.end())
4154      Previous.addDecl(Pos->second);
4155  }
4156
4157  // Merge or overload the declaration with an existing declaration of
4158  // the same name, if appropriate.
4159  if (!Previous.empty()) {
4160    // Determine whether NewFD is an overload of PrevDecl or
4161    // a declaration that requires merging. If it's an overload,
4162    // there's no more work to do here; we'll just add the new
4163    // function to the scope.
4164
4165    NamedDecl *OldDecl = 0;
4166    if (!AllowOverloadingOfFunction(Previous, Context)) {
4167      Redeclaration = true;
4168      OldDecl = Previous.getFoundDecl();
4169    } else {
4170      if (!getLangOptions().CPlusPlus)
4171        OverloadableAttrRequired = true;
4172
4173      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4174                            /*NewIsUsingDecl*/ false)) {
4175      case Ovl_Match:
4176        Redeclaration = true;
4177        break;
4178
4179      case Ovl_NonFunction:
4180        Redeclaration = true;
4181        break;
4182
4183      case Ovl_Overload:
4184        Redeclaration = false;
4185        break;
4186      }
4187    }
4188
4189    if (Redeclaration) {
4190      // NewFD and OldDecl represent declarations that need to be
4191      // merged.
4192      if (MergeFunctionDecl(NewFD, OldDecl))
4193        return NewFD->setInvalidDecl();
4194
4195      Previous.clear();
4196      Previous.addDecl(OldDecl);
4197
4198      if (FunctionTemplateDecl *OldTemplateDecl
4199                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4200        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4201        FunctionTemplateDecl *NewTemplateDecl
4202          = NewFD->getDescribedFunctionTemplate();
4203        assert(NewTemplateDecl && "Template/non-template mismatch");
4204        if (CXXMethodDecl *Method
4205              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4206          Method->setAccess(OldTemplateDecl->getAccess());
4207          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4208        }
4209
4210        // If this is an explicit specialization of a member that is a function
4211        // template, mark it as a member specialization.
4212        if (IsExplicitSpecialization &&
4213            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4214          NewTemplateDecl->setMemberSpecialization();
4215          assert(OldTemplateDecl->isMemberSpecialization());
4216        }
4217      } else {
4218        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4219          NewFD->setAccess(OldDecl->getAccess());
4220        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4221      }
4222    }
4223  }
4224
4225  // Semantic checking for this function declaration (in isolation).
4226  if (getLangOptions().CPlusPlus) {
4227    // C++-specific checks.
4228    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4229      CheckConstructor(Constructor);
4230    } else if (CXXDestructorDecl *Destructor =
4231                dyn_cast<CXXDestructorDecl>(NewFD)) {
4232      CXXRecordDecl *Record = Destructor->getParent();
4233      QualType ClassType = Context.getTypeDeclType(Record);
4234
4235      // FIXME: Shouldn't we be able to perform this check even when the class
4236      // type is dependent? Both gcc and edg can handle that.
4237      if (!ClassType->isDependentType()) {
4238        DeclarationName Name
4239          = Context.DeclarationNames.getCXXDestructorName(
4240                                        Context.getCanonicalType(ClassType));
4241        if (NewFD->getDeclName() != Name) {
4242          Diag(NewFD->getLocation(), diag::err_destructor_name);
4243          return NewFD->setInvalidDecl();
4244        }
4245      }
4246    } else if (CXXConversionDecl *Conversion
4247               = dyn_cast<CXXConversionDecl>(NewFD)) {
4248      ActOnConversionDeclarator(Conversion);
4249    }
4250
4251    // Find any virtual functions that this function overrides.
4252    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4253      if (!Method->isFunctionTemplateSpecialization() &&
4254          !Method->getDescribedFunctionTemplate()) {
4255        if (AddOverriddenMethods(Method->getParent(), Method)) {
4256          // If the function was marked as "static", we have a problem.
4257          if (NewFD->getStorageClass() == SC_Static) {
4258            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4259              << NewFD->getDeclName();
4260            for (CXXMethodDecl::method_iterator
4261                      Overridden = Method->begin_overridden_methods(),
4262                   OverriddenEnd = Method->end_overridden_methods();
4263                 Overridden != OverriddenEnd;
4264                 ++Overridden) {
4265              Diag((*Overridden)->getLocation(),
4266                   diag::note_overridden_virtual_function);
4267            }
4268          }
4269        }
4270      }
4271    }
4272
4273    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4274    if (NewFD->isOverloadedOperator() &&
4275        CheckOverloadedOperatorDeclaration(NewFD))
4276      return NewFD->setInvalidDecl();
4277
4278    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4279    if (NewFD->getLiteralIdentifier() &&
4280        CheckLiteralOperatorDeclaration(NewFD))
4281      return NewFD->setInvalidDecl();
4282
4283    // In C++, check default arguments now that we have merged decls. Unless
4284    // the lexical context is the class, because in this case this is done
4285    // during delayed parsing anyway.
4286    if (!CurContext->isRecord())
4287      CheckCXXDefaultArguments(NewFD);
4288
4289    // If this function declares a builtin function, check the type of this
4290    // declaration against the expected type for the builtin.
4291    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4292      ASTContext::GetBuiltinTypeError Error;
4293      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4294      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4295        // The type of this function differs from the type of the builtin,
4296        // so forget about the builtin entirely.
4297        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4298      }
4299    }
4300  }
4301}
4302
4303void Sema::CheckMain(FunctionDecl* FD) {
4304  // C++ [basic.start.main]p3:  A program that declares main to be inline
4305  //   or static is ill-formed.
4306  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4307  //   shall not appear in a declaration of main.
4308  // static main is not an error under C99, but we should warn about it.
4309  bool isInline = FD->isInlineSpecified();
4310  bool isStatic = FD->getStorageClass() == SC_Static;
4311  if (isInline || isStatic) {
4312    unsigned diagID = diag::warn_unusual_main_decl;
4313    if (isInline || getLangOptions().CPlusPlus)
4314      diagID = diag::err_unusual_main_decl;
4315
4316    int which = isStatic + (isInline << 1) - 1;
4317    Diag(FD->getLocation(), diagID) << which;
4318  }
4319
4320  QualType T = FD->getType();
4321  assert(T->isFunctionType() && "function decl is not of function type");
4322  const FunctionType* FT = T->getAs<FunctionType>();
4323
4324  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4325    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4326    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4327    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4328                                          diag::err_main_returns_nonint);
4329    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4330      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4331                                        "int");
4332    }
4333    FD->setInvalidDecl(true);
4334  }
4335
4336  // Treat protoless main() as nullary.
4337  if (isa<FunctionNoProtoType>(FT)) return;
4338
4339  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4340  unsigned nparams = FTP->getNumArgs();
4341  assert(FD->getNumParams() == nparams);
4342
4343  bool HasExtraParameters = (nparams > 3);
4344
4345  // Darwin passes an undocumented fourth argument of type char**.  If
4346  // other platforms start sprouting these, the logic below will start
4347  // getting shifty.
4348  if (nparams == 4 &&
4349      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4350    HasExtraParameters = false;
4351
4352  if (HasExtraParameters) {
4353    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4354    FD->setInvalidDecl(true);
4355    nparams = 3;
4356  }
4357
4358  // FIXME: a lot of the following diagnostics would be improved
4359  // if we had some location information about types.
4360
4361  QualType CharPP =
4362    Context.getPointerType(Context.getPointerType(Context.CharTy));
4363  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4364
4365  for (unsigned i = 0; i < nparams; ++i) {
4366    QualType AT = FTP->getArgType(i);
4367
4368    bool mismatch = true;
4369
4370    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4371      mismatch = false;
4372    else if (Expected[i] == CharPP) {
4373      // As an extension, the following forms are okay:
4374      //   char const **
4375      //   char const * const *
4376      //   char * const *
4377
4378      QualifierCollector qs;
4379      const PointerType* PT;
4380      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4381          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4382          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4383        qs.removeConst();
4384        mismatch = !qs.empty();
4385      }
4386    }
4387
4388    if (mismatch) {
4389      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4390      // TODO: suggest replacing given type with expected type
4391      FD->setInvalidDecl(true);
4392    }
4393  }
4394
4395  if (nparams == 1 && !FD->isInvalidDecl()) {
4396    Diag(FD->getLocation(), diag::warn_main_one_arg);
4397  }
4398
4399  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4400    Diag(FD->getLocation(), diag::err_main_template_decl);
4401    FD->setInvalidDecl();
4402  }
4403}
4404
4405bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4406  // FIXME: Need strict checking.  In C89, we need to check for
4407  // any assignment, increment, decrement, function-calls, or
4408  // commas outside of a sizeof.  In C99, it's the same list,
4409  // except that the aforementioned are allowed in unevaluated
4410  // expressions.  Everything else falls under the
4411  // "may accept other forms of constant expressions" exception.
4412  // (We never end up here for C++, so the constant expression
4413  // rules there don't matter.)
4414  if (Init->isConstantInitializer(Context, false))
4415    return false;
4416  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4417    << Init->getSourceRange();
4418  return true;
4419}
4420
4421void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4422  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4423}
4424
4425/// AddInitializerToDecl - Adds the initializer Init to the
4426/// declaration dcl. If DirectInit is true, this is C++ direct
4427/// initialization rather than copy initialization.
4428void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4429  // If there is no declaration, there was an error parsing it.  Just ignore
4430  // the initializer.
4431  if (RealDecl == 0)
4432    return;
4433
4434  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4435    // With declarators parsed the way they are, the parser cannot
4436    // distinguish between a normal initializer and a pure-specifier.
4437    // Thus this grotesque test.
4438    IntegerLiteral *IL;
4439    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4440        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4441      CheckPureMethod(Method, Init->getSourceRange());
4442    else {
4443      Diag(Method->getLocation(), diag::err_member_function_initialization)
4444        << Method->getDeclName() << Init->getSourceRange();
4445      Method->setInvalidDecl();
4446    }
4447    return;
4448  }
4449
4450  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4451  if (!VDecl) {
4452    if (getLangOptions().CPlusPlus &&
4453        RealDecl->getLexicalDeclContext()->isRecord() &&
4454        isa<NamedDecl>(RealDecl))
4455      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4456    else
4457      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4458    RealDecl->setInvalidDecl();
4459    return;
4460  }
4461
4462
4463
4464  // A definition must end up with a complete type, which means it must be
4465  // complete with the restriction that an array type might be completed by the
4466  // initializer; note that later code assumes this restriction.
4467  QualType BaseDeclType = VDecl->getType();
4468  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4469    BaseDeclType = Array->getElementType();
4470  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4471                          diag::err_typecheck_decl_incomplete_type)) {
4472    RealDecl->setInvalidDecl();
4473    return;
4474  }
4475
4476  // The variable can not have an abstract class type.
4477  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4478                             diag::err_abstract_type_in_decl,
4479                             AbstractVariableType))
4480    VDecl->setInvalidDecl();
4481
4482  const VarDecl *Def;
4483  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4484    Diag(VDecl->getLocation(), diag::err_redefinition)
4485      << VDecl->getDeclName();
4486    Diag(Def->getLocation(), diag::note_previous_definition);
4487    VDecl->setInvalidDecl();
4488    return;
4489  }
4490
4491  const VarDecl* PrevInit = 0;
4492  if (getLangOptions().CPlusPlus) {
4493    // C++ [class.static.data]p4
4494    //   If a static data member is of const integral or const
4495    //   enumeration type, its declaration in the class definition can
4496    //   specify a constant-initializer which shall be an integral
4497    //   constant expression (5.19). In that case, the member can appear
4498    //   in integral constant expressions. The member shall still be
4499    //   defined in a namespace scope if it is used in the program and the
4500    //   namespace scope definition shall not contain an initializer.
4501    //
4502    // We already performed a redefinition check above, but for static
4503    // data members we also need to check whether there was an in-class
4504    // declaration with an initializer.
4505    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4506      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4507      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4508      return;
4509    }
4510
4511    if (VDecl->hasLocalStorage())
4512      getCurFunction()->setHasBranchProtectedScope();
4513
4514    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4515      VDecl->setInvalidDecl();
4516      return;
4517    }
4518  }
4519
4520  // Capture the variable that is being initialized and the style of
4521  // initialization.
4522  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4523
4524  // FIXME: Poor source location information.
4525  InitializationKind Kind
4526    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4527                                                   Init->getLocStart(),
4528                                                   Init->getLocEnd())
4529                : InitializationKind::CreateCopy(VDecl->getLocation(),
4530                                                 Init->getLocStart());
4531
4532  // Get the decls type and save a reference for later, since
4533  // CheckInitializerTypes may change it.
4534  QualType DclT = VDecl->getType(), SavT = DclT;
4535  if (VDecl->isLocalVarDecl()) {
4536    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4537      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4538      VDecl->setInvalidDecl();
4539    } else if (!VDecl->isInvalidDecl()) {
4540      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4541      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4542                                                MultiExprArg(*this, &Init, 1),
4543                                                &DclT);
4544      if (Result.isInvalid()) {
4545        VDecl->setInvalidDecl();
4546        return;
4547      }
4548
4549      Init = Result.takeAs<Expr>();
4550
4551      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4552      // Don't check invalid declarations to avoid emitting useless diagnostics.
4553      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4554        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4555          CheckForConstantInitializer(Init, DclT);
4556      }
4557    }
4558  } else if (VDecl->isStaticDataMember() &&
4559             VDecl->getLexicalDeclContext()->isRecord()) {
4560    // This is an in-class initialization for a static data member, e.g.,
4561    //
4562    // struct S {
4563    //   static const int value = 17;
4564    // };
4565
4566    // Try to perform the initialization regardless.
4567    if (!VDecl->isInvalidDecl()) {
4568      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4569      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4570                                          MultiExprArg(*this, &Init, 1),
4571                                          &DclT);
4572      if (Result.isInvalid()) {
4573        VDecl->setInvalidDecl();
4574        return;
4575      }
4576
4577      Init = Result.takeAs<Expr>();
4578    }
4579
4580    // C++ [class.mem]p4:
4581    //   A member-declarator can contain a constant-initializer only
4582    //   if it declares a static member (9.4) of const integral or
4583    //   const enumeration type, see 9.4.2.
4584    QualType T = VDecl->getType();
4585
4586    // Do nothing on dependent types.
4587    if (T->isDependentType()) {
4588
4589    // Require constness.
4590    } else if (!T.isConstQualified()) {
4591      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4592        << Init->getSourceRange();
4593      VDecl->setInvalidDecl();
4594
4595    // We allow integer constant expressions in all cases.
4596    } else if (T->isIntegralOrEnumerationType()) {
4597      if (!Init->isValueDependent()) {
4598        // Check whether the expression is a constant expression.
4599        llvm::APSInt Value;
4600        SourceLocation Loc;
4601        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4602          Diag(Loc, diag::err_in_class_initializer_non_constant)
4603            << Init->getSourceRange();
4604          VDecl->setInvalidDecl();
4605        }
4606      }
4607
4608    // We allow floating-point constants as an extension in C++03, and
4609    // C++0x has far more complicated rules that we don't really
4610    // implement fully.
4611    } else {
4612      bool Allowed = false;
4613      if (getLangOptions().CPlusPlus0x) {
4614        Allowed = T->isLiteralType();
4615      } else if (T->isFloatingType()) { // also permits complex, which is ok
4616        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4617          << T << Init->getSourceRange();
4618        Allowed = true;
4619      }
4620
4621      if (!Allowed) {
4622        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4623          << T << Init->getSourceRange();
4624        VDecl->setInvalidDecl();
4625
4626      // TODO: there are probably expressions that pass here that shouldn't.
4627      } else if (!Init->isValueDependent() &&
4628                 !Init->isConstantInitializer(Context, false)) {
4629        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4630          << Init->getSourceRange();
4631        VDecl->setInvalidDecl();
4632      }
4633    }
4634  } else if (VDecl->isFileVarDecl()) {
4635    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4636        (!getLangOptions().CPlusPlus ||
4637         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4638      Diag(VDecl->getLocation(), diag::warn_extern_init);
4639    if (!VDecl->isInvalidDecl()) {
4640      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4641      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4642                                                MultiExprArg(*this, &Init, 1),
4643                                                &DclT);
4644      if (Result.isInvalid()) {
4645        VDecl->setInvalidDecl();
4646        return;
4647      }
4648
4649      Init = Result.takeAs<Expr>();
4650    }
4651
4652    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4653    // Don't check invalid declarations to avoid emitting useless diagnostics.
4654    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4655      // C99 6.7.8p4. All file scoped initializers need to be constant.
4656      CheckForConstantInitializer(Init, DclT);
4657    }
4658  }
4659  // If the type changed, it means we had an incomplete type that was
4660  // completed by the initializer. For example:
4661  //   int ary[] = { 1, 3, 5 };
4662  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4663  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4664    VDecl->setType(DclT);
4665    Init->setType(DclT);
4666  }
4667
4668
4669  // If this variable is a local declaration with record type, make sure it
4670  // doesn't have a flexible member initialization.  We only support this as a
4671  // global/static definition.
4672  if (VDecl->hasLocalStorage())
4673    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4674      if (RT->getDecl()->hasFlexibleArrayMember()) {
4675        // Check whether the initializer tries to initialize the flexible
4676        // array member itself to anything other than an empty initializer list.
4677        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4678          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4679                                         RT->getDecl()->field_end()) - 1;
4680          if (Index < ILE->getNumInits() &&
4681              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4682                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4683            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4684            VDecl->setInvalidDecl();
4685          }
4686        }
4687      }
4688
4689  // Check any implicit conversions within the expression.
4690  CheckImplicitConversions(Init, VDecl->getLocation());
4691
4692  Init = MaybeCreateExprWithCleanups(Init);
4693  // Attach the initializer to the decl.
4694  VDecl->setInit(Init);
4695
4696  if (getLangOptions().CPlusPlus) {
4697    if (!VDecl->isInvalidDecl() &&
4698        !VDecl->getDeclContext()->isDependentContext() &&
4699        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4700        !Init->isConstantInitializer(Context,
4701                                     VDecl->getType()->isReferenceType()))
4702      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4703        << Init->getSourceRange();
4704
4705    // Make sure we mark the destructor as used if necessary.
4706    QualType InitType = VDecl->getType();
4707    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4708      InitType = Context.getBaseElementType(Array);
4709    if (const RecordType *Record = InitType->getAs<RecordType>())
4710      FinalizeVarWithDestructor(VDecl, Record);
4711  }
4712
4713  return;
4714}
4715
4716/// ActOnInitializerError - Given that there was an error parsing an
4717/// initializer for the given declaration, try to return to some form
4718/// of sanity.
4719void Sema::ActOnInitializerError(Decl *D) {
4720  // Our main concern here is re-establishing invariants like "a
4721  // variable's type is either dependent or complete".
4722  if (!D || D->isInvalidDecl()) return;
4723
4724  VarDecl *VD = dyn_cast<VarDecl>(D);
4725  if (!VD) return;
4726
4727  QualType Ty = VD->getType();
4728  if (Ty->isDependentType()) return;
4729
4730  // Require a complete type.
4731  if (RequireCompleteType(VD->getLocation(),
4732                          Context.getBaseElementType(Ty),
4733                          diag::err_typecheck_decl_incomplete_type)) {
4734    VD->setInvalidDecl();
4735    return;
4736  }
4737
4738  // Require an abstract type.
4739  if (RequireNonAbstractType(VD->getLocation(), Ty,
4740                             diag::err_abstract_type_in_decl,
4741                             AbstractVariableType)) {
4742    VD->setInvalidDecl();
4743    return;
4744  }
4745
4746  // Don't bother complaining about constructors or destructors,
4747  // though.
4748}
4749
4750void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4751                                  bool TypeContainsUndeducedAuto) {
4752  // If there is no declaration, there was an error parsing it. Just ignore it.
4753  if (RealDecl == 0)
4754    return;
4755
4756  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4757    QualType Type = Var->getType();
4758
4759    // C++0x [dcl.spec.auto]p3
4760    if (TypeContainsUndeducedAuto) {
4761      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4762        << Var->getDeclName() << Type;
4763      Var->setInvalidDecl();
4764      return;
4765    }
4766
4767    switch (Var->isThisDeclarationADefinition()) {
4768    case VarDecl::Definition:
4769      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4770        break;
4771
4772      // We have an out-of-line definition of a static data member
4773      // that has an in-class initializer, so we type-check this like
4774      // a declaration.
4775      //
4776      // Fall through
4777
4778    case VarDecl::DeclarationOnly:
4779      // It's only a declaration.
4780
4781      // Block scope. C99 6.7p7: If an identifier for an object is
4782      // declared with no linkage (C99 6.2.2p6), the type for the
4783      // object shall be complete.
4784      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4785          !Var->getLinkage() && !Var->isInvalidDecl() &&
4786          RequireCompleteType(Var->getLocation(), Type,
4787                              diag::err_typecheck_decl_incomplete_type))
4788        Var->setInvalidDecl();
4789
4790      // Make sure that the type is not abstract.
4791      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4792          RequireNonAbstractType(Var->getLocation(), Type,
4793                                 diag::err_abstract_type_in_decl,
4794                                 AbstractVariableType))
4795        Var->setInvalidDecl();
4796      return;
4797
4798    case VarDecl::TentativeDefinition:
4799      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4800      // object that has file scope without an initializer, and without a
4801      // storage-class specifier or with the storage-class specifier "static",
4802      // constitutes a tentative definition. Note: A tentative definition with
4803      // external linkage is valid (C99 6.2.2p5).
4804      if (!Var->isInvalidDecl()) {
4805        if (const IncompleteArrayType *ArrayT
4806                                    = Context.getAsIncompleteArrayType(Type)) {
4807          if (RequireCompleteType(Var->getLocation(),
4808                                  ArrayT->getElementType(),
4809                                  diag::err_illegal_decl_array_incomplete_type))
4810            Var->setInvalidDecl();
4811        } else if (Var->getStorageClass() == SC_Static) {
4812          // C99 6.9.2p3: If the declaration of an identifier for an object is
4813          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4814          // declared type shall not be an incomplete type.
4815          // NOTE: code such as the following
4816          //     static struct s;
4817          //     struct s { int a; };
4818          // is accepted by gcc. Hence here we issue a warning instead of
4819          // an error and we do not invalidate the static declaration.
4820          // NOTE: to avoid multiple warnings, only check the first declaration.
4821          if (Var->getPreviousDeclaration() == 0)
4822            RequireCompleteType(Var->getLocation(), Type,
4823                                diag::ext_typecheck_decl_incomplete_type);
4824        }
4825      }
4826
4827      // Record the tentative definition; we're done.
4828      if (!Var->isInvalidDecl())
4829        TentativeDefinitions.push_back(Var);
4830      return;
4831    }
4832
4833    // Provide a specific diagnostic for uninitialized variable
4834    // definitions with incomplete array type.
4835    if (Type->isIncompleteArrayType()) {
4836      Diag(Var->getLocation(),
4837           diag::err_typecheck_incomplete_array_needs_initializer);
4838      Var->setInvalidDecl();
4839      return;
4840    }
4841
4842    // Provide a specific diagnostic for uninitialized variable
4843    // definitions with reference type.
4844    if (Type->isReferenceType()) {
4845      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4846        << Var->getDeclName()
4847        << SourceRange(Var->getLocation(), Var->getLocation());
4848      Var->setInvalidDecl();
4849      return;
4850    }
4851
4852    // Do not attempt to type-check the default initializer for a
4853    // variable with dependent type.
4854    if (Type->isDependentType())
4855      return;
4856
4857    if (Var->isInvalidDecl())
4858      return;
4859
4860    if (RequireCompleteType(Var->getLocation(),
4861                            Context.getBaseElementType(Type),
4862                            diag::err_typecheck_decl_incomplete_type)) {
4863      Var->setInvalidDecl();
4864      return;
4865    }
4866
4867    // The variable can not have an abstract class type.
4868    if (RequireNonAbstractType(Var->getLocation(), Type,
4869                               diag::err_abstract_type_in_decl,
4870                               AbstractVariableType)) {
4871      Var->setInvalidDecl();
4872      return;
4873    }
4874
4875    const RecordType *Record
4876      = Context.getBaseElementType(Type)->getAs<RecordType>();
4877    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4878        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4879      // C++03 [dcl.init]p9:
4880      //   If no initializer is specified for an object, and the
4881      //   object is of (possibly cv-qualified) non-POD class type (or
4882      //   array thereof), the object shall be default-initialized; if
4883      //   the object is of const-qualified type, the underlying class
4884      //   type shall have a user-declared default
4885      //   constructor. Otherwise, if no initializer is specified for
4886      //   a non- static object, the object and its subobjects, if
4887      //   any, have an indeterminate initial value); if the object
4888      //   or any of its subobjects are of const-qualified type, the
4889      //   program is ill-formed.
4890      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4891    } else {
4892      // Check for jumps past the implicit initializer.  C++0x
4893      // clarifies that this applies to a "variable with automatic
4894      // storage duration", not a "local variable".
4895      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4896        getCurFunction()->setHasBranchProtectedScope();
4897
4898      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4899      InitializationKind Kind
4900        = InitializationKind::CreateDefault(Var->getLocation());
4901
4902      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4903      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4904                                        MultiExprArg(*this, 0, 0));
4905      if (Init.isInvalid())
4906        Var->setInvalidDecl();
4907      else if (Init.get()) {
4908        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4909
4910        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4911            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4912            !Var->getDeclContext()->isDependentContext() &&
4913            !Var->getInit()->isConstantInitializer(Context, false))
4914          Diag(Var->getLocation(), diag::warn_global_constructor);
4915      }
4916    }
4917
4918    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4919      FinalizeVarWithDestructor(Var, Record);
4920  }
4921}
4922
4923Sema::DeclGroupPtrTy
4924Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4925                              Decl **Group, unsigned NumDecls) {
4926  llvm::SmallVector<Decl*, 8> Decls;
4927
4928  if (DS.isTypeSpecOwned())
4929    Decls.push_back(DS.getRepAsDecl());
4930
4931  for (unsigned i = 0; i != NumDecls; ++i)
4932    if (Decl *D = Group[i])
4933      Decls.push_back(D);
4934
4935  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4936                                                   Decls.data(), Decls.size()));
4937}
4938
4939
4940/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4941/// to introduce parameters into function prototype scope.
4942Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4943  const DeclSpec &DS = D.getDeclSpec();
4944
4945  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4946  VarDecl::StorageClass StorageClass = SC_None;
4947  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4948  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4949    StorageClass = SC_Register;
4950    StorageClassAsWritten = SC_Register;
4951  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4952    Diag(DS.getStorageClassSpecLoc(),
4953         diag::err_invalid_storage_class_in_func_decl);
4954    D.getMutableDeclSpec().ClearStorageClassSpecs();
4955  }
4956
4957  if (D.getDeclSpec().isThreadSpecified())
4958    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4959
4960  DiagnoseFunctionSpecifiers(D);
4961
4962  // Check that there are no default arguments inside the type of this
4963  // parameter (C++ only).
4964  if (getLangOptions().CPlusPlus)
4965    CheckExtraCXXDefaultArguments(D);
4966
4967  TagDecl *OwnedDecl = 0;
4968  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4969  QualType parmDeclType = TInfo->getType();
4970
4971  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4972    // C++ [dcl.fct]p6:
4973    //   Types shall not be defined in return or parameter types.
4974    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4975      << Context.getTypeDeclType(OwnedDecl);
4976  }
4977
4978  // Ensure we have a valid name
4979  IdentifierInfo *II = 0;
4980  if (D.hasName()) {
4981    II = D.getIdentifier();
4982    if (!II) {
4983      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4984        << GetNameForDeclarator(D).getName().getAsString();
4985      D.setInvalidType(true);
4986    }
4987  }
4988
4989  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4990  if (II) {
4991    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4992                   ForRedeclaration);
4993    LookupName(R, S);
4994    if (R.isSingleResult()) {
4995      NamedDecl *PrevDecl = R.getFoundDecl();
4996      if (PrevDecl->isTemplateParameter()) {
4997        // Maybe we will complain about the shadowed template parameter.
4998        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4999        // Just pretend that we didn't see the previous declaration.
5000        PrevDecl = 0;
5001      } else if (S->isDeclScope(PrevDecl)) {
5002        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5003        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5004
5005        // Recover by removing the name
5006        II = 0;
5007        D.SetIdentifier(0, D.getIdentifierLoc());
5008        D.setInvalidType(true);
5009      }
5010    }
5011  }
5012
5013  // Temporarily put parameter variables in the translation unit, not
5014  // the enclosing context.  This prevents them from accidentally
5015  // looking like class members in C++.
5016  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5017                                    TInfo, parmDeclType, II,
5018                                    D.getIdentifierLoc(),
5019                                    StorageClass, StorageClassAsWritten);
5020
5021  if (D.isInvalidType())
5022    New->setInvalidDecl();
5023
5024  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5025  if (D.getCXXScopeSpec().isSet()) {
5026    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5027      << D.getCXXScopeSpec().getRange();
5028    New->setInvalidDecl();
5029  }
5030
5031  // Add the parameter declaration into this scope.
5032  S->AddDecl(New);
5033  if (II)
5034    IdResolver.AddDecl(New);
5035
5036  ProcessDeclAttributes(S, New, D);
5037
5038  if (New->hasAttr<BlocksAttr>()) {
5039    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5040  }
5041  return New;
5042}
5043
5044/// \brief Synthesizes a variable for a parameter arising from a
5045/// typedef.
5046ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5047                                              SourceLocation Loc,
5048                                              QualType T) {
5049  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5050                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5051                                           SC_None, SC_None, 0);
5052  Param->setImplicit();
5053  return Param;
5054}
5055
5056void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5057                                    ParmVarDecl * const *ParamEnd) {
5058  // Don't diagnose unused-parameter errors in template instantiations; we
5059  // will already have done so in the template itself.
5060  if (!ActiveTemplateInstantiations.empty())
5061    return;
5062
5063  for (; Param != ParamEnd; ++Param) {
5064    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5065        !(*Param)->hasAttr<UnusedAttr>()) {
5066      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5067        << (*Param)->getDeclName();
5068    }
5069  }
5070}
5071
5072void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5073                                                  ParmVarDecl * const *ParamEnd,
5074                                                  QualType ReturnTy,
5075                                                  NamedDecl *D) {
5076  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5077    return;
5078
5079  // Warn if the return value is pass-by-value and larger than the specified
5080  // threshold.
5081  if (ReturnTy->isPODType()) {
5082    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5083    if (Size > LangOpts.NumLargeByValueCopy)
5084      Diag(D->getLocation(), diag::warn_return_value_size)
5085          << D->getDeclName() << Size;
5086  }
5087
5088  // Warn if any parameter is pass-by-value and larger than the specified
5089  // threshold.
5090  for (; Param != ParamEnd; ++Param) {
5091    QualType T = (*Param)->getType();
5092    if (!T->isPODType())
5093      continue;
5094    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5095    if (Size > LangOpts.NumLargeByValueCopy)
5096      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5097          << (*Param)->getDeclName() << Size;
5098  }
5099}
5100
5101ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5102                                  TypeSourceInfo *TSInfo, QualType T,
5103                                  IdentifierInfo *Name,
5104                                  SourceLocation NameLoc,
5105                                  VarDecl::StorageClass StorageClass,
5106                                  VarDecl::StorageClass StorageClassAsWritten) {
5107  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5108                                         adjustParameterType(T), TSInfo,
5109                                         StorageClass, StorageClassAsWritten,
5110                                         0);
5111
5112  // Parameters can not be abstract class types.
5113  // For record types, this is done by the AbstractClassUsageDiagnoser once
5114  // the class has been completely parsed.
5115  if (!CurContext->isRecord() &&
5116      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5117                             AbstractParamType))
5118    New->setInvalidDecl();
5119
5120  // Parameter declarators cannot be interface types. All ObjC objects are
5121  // passed by reference.
5122  if (T->isObjCObjectType()) {
5123    Diag(NameLoc,
5124         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5125    New->setInvalidDecl();
5126  }
5127
5128  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5129  // duration shall not be qualified by an address-space qualifier."
5130  // Since all parameters have automatic store duration, they can not have
5131  // an address space.
5132  if (T.getAddressSpace() != 0) {
5133    Diag(NameLoc, diag::err_arg_with_address_space);
5134    New->setInvalidDecl();
5135  }
5136
5137  return New;
5138}
5139
5140void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5141                                           SourceLocation LocAfterDecls) {
5142  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5143
5144  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5145  // for a K&R function.
5146  if (!FTI.hasPrototype) {
5147    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5148      --i;
5149      if (FTI.ArgInfo[i].Param == 0) {
5150        llvm::SmallString<256> Code;
5151        llvm::raw_svector_ostream(Code) << "  int "
5152                                        << FTI.ArgInfo[i].Ident->getName()
5153                                        << ";\n";
5154        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5155          << FTI.ArgInfo[i].Ident
5156          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5157
5158        // Implicitly declare the argument as type 'int' for lack of a better
5159        // type.
5160        DeclSpec DS;
5161        const char* PrevSpec; // unused
5162        unsigned DiagID; // unused
5163        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5164                           PrevSpec, DiagID);
5165        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5166        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5167        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5168      }
5169    }
5170  }
5171}
5172
5173Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5174                                         Declarator &D) {
5175  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5176  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5177  Scope *ParentScope = FnBodyScope->getParent();
5178
5179  Decl *DP = HandleDeclarator(ParentScope, D,
5180                              MultiTemplateParamsArg(*this),
5181                              /*IsFunctionDefinition=*/true);
5182  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5183}
5184
5185static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5186  // Don't warn about invalid declarations.
5187  if (FD->isInvalidDecl())
5188    return false;
5189
5190  // Or declarations that aren't global.
5191  if (!FD->isGlobal())
5192    return false;
5193
5194  // Don't warn about C++ member functions.
5195  if (isa<CXXMethodDecl>(FD))
5196    return false;
5197
5198  // Don't warn about 'main'.
5199  if (FD->isMain())
5200    return false;
5201
5202  // Don't warn about inline functions.
5203  if (FD->isInlineSpecified())
5204    return false;
5205
5206  // Don't warn about function templates.
5207  if (FD->getDescribedFunctionTemplate())
5208    return false;
5209
5210  // Don't warn about function template specializations.
5211  if (FD->isFunctionTemplateSpecialization())
5212    return false;
5213
5214  bool MissingPrototype = true;
5215  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5216       Prev; Prev = Prev->getPreviousDeclaration()) {
5217    // Ignore any declarations that occur in function or method
5218    // scope, because they aren't visible from the header.
5219    if (Prev->getDeclContext()->isFunctionOrMethod())
5220      continue;
5221
5222    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5223    break;
5224  }
5225
5226  return MissingPrototype;
5227}
5228
5229Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5230  // Clear the last template instantiation error context.
5231  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5232
5233  if (!D)
5234    return D;
5235  FunctionDecl *FD = 0;
5236
5237  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5238    FD = FunTmpl->getTemplatedDecl();
5239  else
5240    FD = cast<FunctionDecl>(D);
5241
5242  // Enter a new function scope
5243  PushFunctionScope();
5244
5245  // See if this is a redefinition.
5246  // But don't complain if we're in GNU89 mode and the previous definition
5247  // was an extern inline function.
5248  const FunctionDecl *Definition;
5249  if (FD->hasBody(Definition) &&
5250      !canRedefineFunction(Definition, getLangOptions())) {
5251    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5252        Definition->getStorageClass() == SC_Extern)
5253      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5254        << FD->getDeclName() << getLangOptions().CPlusPlus;
5255    else
5256      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5257    Diag(Definition->getLocation(), diag::note_previous_definition);
5258  }
5259
5260  // Builtin functions cannot be defined.
5261  if (unsigned BuiltinID = FD->getBuiltinID()) {
5262    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5263      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5264      FD->setInvalidDecl();
5265    }
5266  }
5267
5268  // The return type of a function definition must be complete
5269  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5270  QualType ResultType = FD->getResultType();
5271  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5272      !FD->isInvalidDecl() &&
5273      RequireCompleteType(FD->getLocation(), ResultType,
5274                          diag::err_func_def_incomplete_result))
5275    FD->setInvalidDecl();
5276
5277  // GNU warning -Wmissing-prototypes:
5278  //   Warn if a global function is defined without a previous
5279  //   prototype declaration. This warning is issued even if the
5280  //   definition itself provides a prototype. The aim is to detect
5281  //   global functions that fail to be declared in header files.
5282  if (ShouldWarnAboutMissingPrototype(FD))
5283    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5284
5285  if (FnBodyScope)
5286    PushDeclContext(FnBodyScope, FD);
5287
5288  // Check the validity of our function parameters
5289  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5290                           /*CheckParameterNames=*/true);
5291
5292  // Introduce our parameters into the function scope
5293  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5294    ParmVarDecl *Param = FD->getParamDecl(p);
5295    Param->setOwningFunction(FD);
5296
5297    // If this has an identifier, add it to the scope stack.
5298    if (Param->getIdentifier() && FnBodyScope) {
5299      CheckShadow(FnBodyScope, Param);
5300
5301      PushOnScopeChains(Param, FnBodyScope);
5302    }
5303  }
5304
5305  // Checking attributes of current function definition
5306  // dllimport attribute.
5307  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5308  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5309    // dllimport attribute cannot be directly applied to definition.
5310    if (!DA->isInherited()) {
5311      Diag(FD->getLocation(),
5312           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5313        << "dllimport";
5314      FD->setInvalidDecl();
5315      return FD;
5316    }
5317
5318    // Visual C++ appears to not think this is an issue, so only issue
5319    // a warning when Microsoft extensions are disabled.
5320    if (!LangOpts.Microsoft) {
5321      // If a symbol previously declared dllimport is later defined, the
5322      // attribute is ignored in subsequent references, and a warning is
5323      // emitted.
5324      Diag(FD->getLocation(),
5325           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5326        << FD->getName() << "dllimport";
5327    }
5328  }
5329  return FD;
5330}
5331
5332/// \brief Given the set of return statements within a function body,
5333/// compute the variables that are subject to the named return value
5334/// optimization.
5335///
5336/// Each of the variables that is subject to the named return value
5337/// optimization will be marked as NRVO variables in the AST, and any
5338/// return statement that has a marked NRVO variable as its NRVO candidate can
5339/// use the named return value optimization.
5340///
5341/// This function applies a very simplistic algorithm for NRVO: if every return
5342/// statement in the function has the same NRVO candidate, that candidate is
5343/// the NRVO variable.
5344///
5345/// FIXME: Employ a smarter algorithm that accounts for multiple return
5346/// statements and the lifetimes of the NRVO candidates. We should be able to
5347/// find a maximal set of NRVO variables.
5348static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5349  ReturnStmt **Returns = Scope->Returns.data();
5350
5351  const VarDecl *NRVOCandidate = 0;
5352  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5353    if (!Returns[I]->getNRVOCandidate())
5354      return;
5355
5356    if (!NRVOCandidate)
5357      NRVOCandidate = Returns[I]->getNRVOCandidate();
5358    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5359      return;
5360  }
5361
5362  if (NRVOCandidate)
5363    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5364}
5365
5366Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5367  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5368}
5369
5370Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5371                                    bool IsInstantiation) {
5372  FunctionDecl *FD = 0;
5373  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5374  if (FunTmpl)
5375    FD = FunTmpl->getTemplatedDecl();
5376  else
5377    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5378
5379  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5380
5381  if (FD) {
5382    FD->setBody(Body);
5383    if (FD->isMain()) {
5384      // C and C++ allow for main to automagically return 0.
5385      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5386      FD->setHasImplicitReturnZero(true);
5387      WP.disableCheckFallThrough();
5388    }
5389
5390    if (!FD->isInvalidDecl()) {
5391      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5392      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5393                                             FD->getResultType(), FD);
5394
5395      // If this is a constructor, we need a vtable.
5396      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5397        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5398
5399      ComputeNRVO(Body, getCurFunction());
5400    }
5401
5402    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5403  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5404    assert(MD == getCurMethodDecl() && "Method parsing confused");
5405    MD->setBody(Body);
5406    MD->setEndLoc(Body->getLocEnd());
5407    if (!MD->isInvalidDecl()) {
5408      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5409      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5410                                             MD->getResultType(), MD);
5411    }
5412  } else {
5413    return 0;
5414  }
5415
5416  // Verify and clean out per-function state.
5417
5418  // Check goto/label use.
5419  FunctionScopeInfo *CurFn = getCurFunction();
5420  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5421         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5422    LabelStmt *L = I->second;
5423
5424    // Verify that we have no forward references left.  If so, there was a goto
5425    // or address of a label taken, but no definition of it.  Label fwd
5426    // definitions are indicated with a null substmt.
5427    if (L->getSubStmt() != 0) {
5428      if (!L->isUsed())
5429        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5430      continue;
5431    }
5432
5433    // Emit error.
5434    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5435
5436    // At this point, we have gotos that use the bogus label.  Stitch it into
5437    // the function body so that they aren't leaked and that the AST is well
5438    // formed.
5439    if (Body == 0) {
5440      // The whole function wasn't parsed correctly.
5441      continue;
5442    }
5443
5444    // Otherwise, the body is valid: we want to stitch the label decl into the
5445    // function somewhere so that it is properly owned and so that the goto
5446    // has a valid target.  Do this by creating a new compound stmt with the
5447    // label in it.
5448
5449    // Give the label a sub-statement.
5450    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5451
5452    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5453                               cast<CXXTryStmt>(Body)->getTryBlock() :
5454                               cast<CompoundStmt>(Body);
5455    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5456                                          Compound->body_end());
5457    Elements.push_back(L);
5458    Compound->setStmts(Context, Elements.data(), Elements.size());
5459  }
5460
5461  if (Body) {
5462    // C++ constructors that have function-try-blocks can't have return
5463    // statements in the handlers of that block. (C++ [except.handle]p14)
5464    // Verify this.
5465    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5466      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5467
5468    // Verify that that gotos and switch cases don't jump into scopes illegally.
5469    // Verify that that gotos and switch cases don't jump into scopes illegally.
5470    if (getCurFunction()->NeedsScopeChecking() &&
5471        !dcl->isInvalidDecl() &&
5472        !hasAnyErrorsInThisFunction())
5473      DiagnoseInvalidJumps(Body);
5474
5475    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5476      if (!Destructor->getParent()->isDependentType())
5477        CheckDestructor(Destructor);
5478
5479      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5480                                             Destructor->getParent());
5481    }
5482
5483    // If any errors have occurred, clear out any temporaries that may have
5484    // been leftover. This ensures that these temporaries won't be picked up for
5485    // deletion in some later function.
5486    if (PP.getDiagnostics().hasErrorOccurred())
5487      ExprTemporaries.clear();
5488    else if (!isa<FunctionTemplateDecl>(dcl)) {
5489      // Since the body is valid, issue any analysis-based warnings that are
5490      // enabled.
5491      QualType ResultType;
5492      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5493        AnalysisWarnings.IssueWarnings(WP, FD);
5494      } else {
5495        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5496        AnalysisWarnings.IssueWarnings(WP, MD);
5497      }
5498    }
5499
5500    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5501  }
5502
5503  if (!IsInstantiation)
5504    PopDeclContext();
5505
5506  PopFunctionOrBlockScope();
5507
5508  // If any errors have occurred, clear out any temporaries that may have
5509  // been leftover. This ensures that these temporaries won't be picked up for
5510  // deletion in some later function.
5511  if (getDiagnostics().hasErrorOccurred())
5512    ExprTemporaries.clear();
5513
5514  return dcl;
5515}
5516
5517/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5518/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5519NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5520                                          IdentifierInfo &II, Scope *S) {
5521  // Before we produce a declaration for an implicitly defined
5522  // function, see whether there was a locally-scoped declaration of
5523  // this name as a function or variable. If so, use that
5524  // (non-visible) declaration, and complain about it.
5525  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5526    = LocallyScopedExternalDecls.find(&II);
5527  if (Pos != LocallyScopedExternalDecls.end()) {
5528    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5529    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5530    return Pos->second;
5531  }
5532
5533  // Extension in C99.  Legal in C90, but warn about it.
5534  if (II.getName().startswith("__builtin_"))
5535    Diag(Loc, diag::warn_builtin_unknown) << &II;
5536  else if (getLangOptions().C99)
5537    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5538  else
5539    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5540
5541  // Set a Declarator for the implicit definition: int foo();
5542  const char *Dummy;
5543  DeclSpec DS;
5544  unsigned DiagID;
5545  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5546  (void)Error; // Silence warning.
5547  assert(!Error && "Error setting up implicit decl!");
5548  Declarator D(DS, Declarator::BlockContext);
5549  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5550                                             0, 0, false, SourceLocation(),
5551                                             false, 0,0,0, Loc, Loc, D),
5552                SourceLocation());
5553  D.SetIdentifier(&II, Loc);
5554
5555  // Insert this function into translation-unit scope.
5556
5557  DeclContext *PrevDC = CurContext;
5558  CurContext = Context.getTranslationUnitDecl();
5559
5560  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5561  FD->setImplicit();
5562
5563  CurContext = PrevDC;
5564
5565  AddKnownFunctionAttributes(FD);
5566
5567  return FD;
5568}
5569
5570/// \brief Adds any function attributes that we know a priori based on
5571/// the declaration of this function.
5572///
5573/// These attributes can apply both to implicitly-declared builtins
5574/// (like __builtin___printf_chk) or to library-declared functions
5575/// like NSLog or printf.
5576void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5577  if (FD->isInvalidDecl())
5578    return;
5579
5580  // If this is a built-in function, map its builtin attributes to
5581  // actual attributes.
5582  if (unsigned BuiltinID = FD->getBuiltinID()) {
5583    // Handle printf-formatting attributes.
5584    unsigned FormatIdx;
5585    bool HasVAListArg;
5586    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5587      if (!FD->getAttr<FormatAttr>())
5588        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5589                                                "printf", FormatIdx+1,
5590                                               HasVAListArg ? 0 : FormatIdx+2));
5591    }
5592    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5593                                             HasVAListArg)) {
5594     if (!FD->getAttr<FormatAttr>())
5595       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5596                                              "scanf", FormatIdx+1,
5597                                              HasVAListArg ? 0 : FormatIdx+2));
5598    }
5599
5600    // Mark const if we don't care about errno and that is the only
5601    // thing preventing the function from being const. This allows
5602    // IRgen to use LLVM intrinsics for such functions.
5603    if (!getLangOptions().MathErrno &&
5604        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5605      if (!FD->getAttr<ConstAttr>())
5606        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5607    }
5608
5609    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5610      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5611    if (Context.BuiltinInfo.isConst(BuiltinID))
5612      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5613  }
5614
5615  IdentifierInfo *Name = FD->getIdentifier();
5616  if (!Name)
5617    return;
5618  if ((!getLangOptions().CPlusPlus &&
5619       FD->getDeclContext()->isTranslationUnit()) ||
5620      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5621       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5622       LinkageSpecDecl::lang_c)) {
5623    // Okay: this could be a libc/libm/Objective-C function we know
5624    // about.
5625  } else
5626    return;
5627
5628  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5629    // FIXME: NSLog and NSLogv should be target specific
5630    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5631      // FIXME: We known better than our headers.
5632      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5633    } else
5634      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5635                                             "printf", 1,
5636                                             Name->isStr("NSLogv") ? 0 : 2));
5637  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5638    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5639    // target-specific builtins, perhaps?
5640    if (!FD->getAttr<FormatAttr>())
5641      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5642                                             "printf", 2,
5643                                             Name->isStr("vasprintf") ? 0 : 3));
5644  }
5645}
5646
5647TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5648                                    TypeSourceInfo *TInfo) {
5649  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5650  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5651
5652  if (!TInfo) {
5653    assert(D.isInvalidType() && "no declarator info for valid type");
5654    TInfo = Context.getTrivialTypeSourceInfo(T);
5655  }
5656
5657  // Scope manipulation handled by caller.
5658  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5659                                           D.getIdentifierLoc(),
5660                                           D.getIdentifier(),
5661                                           TInfo);
5662
5663  if (const TagType *TT = T->getAs<TagType>()) {
5664    TagDecl *TD = TT->getDecl();
5665
5666    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5667    // keep track of the TypedefDecl.
5668    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5669      TD->setTypedefForAnonDecl(NewTD);
5670  }
5671
5672  if (D.isInvalidType())
5673    NewTD->setInvalidDecl();
5674  return NewTD;
5675}
5676
5677
5678/// \brief Determine whether a tag with a given kind is acceptable
5679/// as a redeclaration of the given tag declaration.
5680///
5681/// \returns true if the new tag kind is acceptable, false otherwise.
5682bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5683                                        TagTypeKind NewTag,
5684                                        SourceLocation NewTagLoc,
5685                                        const IdentifierInfo &Name) {
5686  // C++ [dcl.type.elab]p3:
5687  //   The class-key or enum keyword present in the
5688  //   elaborated-type-specifier shall agree in kind with the
5689  //   declaration to which the name in the elaborated-type-specifier
5690  //   refers. This rule also applies to the form of
5691  //   elaborated-type-specifier that declares a class-name or
5692  //   friend class since it can be construed as referring to the
5693  //   definition of the class. Thus, in any
5694  //   elaborated-type-specifier, the enum keyword shall be used to
5695  //   refer to an enumeration (7.2), the union class-key shall be
5696  //   used to refer to a union (clause 9), and either the class or
5697  //   struct class-key shall be used to refer to a class (clause 9)
5698  //   declared using the class or struct class-key.
5699  TagTypeKind OldTag = Previous->getTagKind();
5700  if (OldTag == NewTag)
5701    return true;
5702
5703  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5704      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5705    // Warn about the struct/class tag mismatch.
5706    bool isTemplate = false;
5707    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5708      isTemplate = Record->getDescribedClassTemplate();
5709
5710    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5711      << (NewTag == TTK_Class)
5712      << isTemplate << &Name
5713      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5714                              OldTag == TTK_Class? "class" : "struct");
5715    Diag(Previous->getLocation(), diag::note_previous_use);
5716    return true;
5717  }
5718  return false;
5719}
5720
5721/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5722/// former case, Name will be non-null.  In the later case, Name will be null.
5723/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5724/// reference/declaration/definition of a tag.
5725Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5726                     SourceLocation KWLoc, CXXScopeSpec &SS,
5727                     IdentifierInfo *Name, SourceLocation NameLoc,
5728                     AttributeList *Attr, AccessSpecifier AS,
5729                     MultiTemplateParamsArg TemplateParameterLists,
5730                     bool &OwnedDecl, bool &IsDependent,
5731                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5732                     TypeResult UnderlyingType) {
5733  // If this is not a definition, it must have a name.
5734  assert((Name != 0 || TUK == TUK_Definition) &&
5735         "Nameless record must be a definition!");
5736  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5737
5738  OwnedDecl = false;
5739  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5740
5741  // FIXME: Check explicit specializations more carefully.
5742  bool isExplicitSpecialization = false;
5743  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5744  bool Invalid = false;
5745
5746  // We only need to do this matching if we have template parameters
5747  // or a scope specifier, which also conveniently avoids this work
5748  // for non-C++ cases.
5749  if (NumMatchedTemplateParamLists ||
5750      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5751    if (TemplateParameterList *TemplateParams
5752          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5753                                                TemplateParameterLists.get(),
5754                                               TemplateParameterLists.size(),
5755                                                    TUK == TUK_Friend,
5756                                                    isExplicitSpecialization,
5757                                                    Invalid)) {
5758      // All but one template parameter lists have been matching.
5759      --NumMatchedTemplateParamLists;
5760
5761      if (TemplateParams->size() > 0) {
5762        // This is a declaration or definition of a class template (which may
5763        // be a member of another template).
5764        if (Invalid)
5765          return 0;
5766
5767        OwnedDecl = false;
5768        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5769                                               SS, Name, NameLoc, Attr,
5770                                               TemplateParams,
5771                                               AS);
5772        TemplateParameterLists.release();
5773        return Result.get();
5774      } else {
5775        // The "template<>" header is extraneous.
5776        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5777          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5778        isExplicitSpecialization = true;
5779      }
5780    }
5781  }
5782
5783  // Figure out the underlying type if this a enum declaration. We need to do
5784  // this early, because it's needed to detect if this is an incompatible
5785  // redeclaration.
5786  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5787
5788  if (Kind == TTK_Enum) {
5789    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5790      // No underlying type explicitly specified, or we failed to parse the
5791      // type, default to int.
5792      EnumUnderlying = Context.IntTy.getTypePtr();
5793    else if (UnderlyingType.get()) {
5794      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5795      // integral type; any cv-qualification is ignored.
5796      TypeSourceInfo *TI = 0;
5797      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5798      EnumUnderlying = TI;
5799
5800      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5801
5802      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5803        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5804          << T;
5805        // Recover by falling back to int.
5806        EnumUnderlying = Context.IntTy.getTypePtr();
5807      }
5808
5809      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5810                                          UPPC_FixedUnderlyingType))
5811        EnumUnderlying = Context.IntTy.getTypePtr();
5812
5813    } else if (getLangOptions().Microsoft)
5814      // Microsoft enums are always of int type.
5815      EnumUnderlying = Context.IntTy.getTypePtr();
5816  }
5817
5818  DeclContext *SearchDC = CurContext;
5819  DeclContext *DC = CurContext;
5820  bool isStdBadAlloc = false;
5821
5822  RedeclarationKind Redecl = ForRedeclaration;
5823  if (TUK == TUK_Friend || TUK == TUK_Reference)
5824    Redecl = NotForRedeclaration;
5825
5826  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5827
5828  if (Name && SS.isNotEmpty()) {
5829    // We have a nested-name tag ('struct foo::bar').
5830
5831    // Check for invalid 'foo::'.
5832    if (SS.isInvalid()) {
5833      Name = 0;
5834      goto CreateNewDecl;
5835    }
5836
5837    // If this is a friend or a reference to a class in a dependent
5838    // context, don't try to make a decl for it.
5839    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5840      DC = computeDeclContext(SS, false);
5841      if (!DC) {
5842        IsDependent = true;
5843        return 0;
5844      }
5845    } else {
5846      DC = computeDeclContext(SS, true);
5847      if (!DC) {
5848        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5849          << SS.getRange();
5850        return 0;
5851      }
5852    }
5853
5854    if (RequireCompleteDeclContext(SS, DC))
5855      return 0;
5856
5857    SearchDC = DC;
5858    // Look-up name inside 'foo::'.
5859    LookupQualifiedName(Previous, DC);
5860
5861    if (Previous.isAmbiguous())
5862      return 0;
5863
5864    if (Previous.empty()) {
5865      // Name lookup did not find anything. However, if the
5866      // nested-name-specifier refers to the current instantiation,
5867      // and that current instantiation has any dependent base
5868      // classes, we might find something at instantiation time: treat
5869      // this as a dependent elaborated-type-specifier.
5870      // But this only makes any sense for reference-like lookups.
5871      if (Previous.wasNotFoundInCurrentInstantiation() &&
5872          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5873        IsDependent = true;
5874        return 0;
5875      }
5876
5877      // A tag 'foo::bar' must already exist.
5878      Diag(NameLoc, diag::err_not_tag_in_scope)
5879        << Kind << Name << DC << SS.getRange();
5880      Name = 0;
5881      Invalid = true;
5882      goto CreateNewDecl;
5883    }
5884  } else if (Name) {
5885    // If this is a named struct, check to see if there was a previous forward
5886    // declaration or definition.
5887    // FIXME: We're looking into outer scopes here, even when we
5888    // shouldn't be. Doing so can result in ambiguities that we
5889    // shouldn't be diagnosing.
5890    LookupName(Previous, S);
5891
5892    // Note:  there used to be some attempt at recovery here.
5893    if (Previous.isAmbiguous())
5894      return 0;
5895
5896    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5897      // FIXME: This makes sure that we ignore the contexts associated
5898      // with C structs, unions, and enums when looking for a matching
5899      // tag declaration or definition. See the similar lookup tweak
5900      // in Sema::LookupName; is there a better way to deal with this?
5901      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5902        SearchDC = SearchDC->getParent();
5903    }
5904  } else if (S->isFunctionPrototypeScope()) {
5905    // If this is an enum declaration in function prototype scope, set its
5906    // initial context to the translation unit.
5907    SearchDC = Context.getTranslationUnitDecl();
5908  }
5909
5910  if (Previous.isSingleResult() &&
5911      Previous.getFoundDecl()->isTemplateParameter()) {
5912    // Maybe we will complain about the shadowed template parameter.
5913    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5914    // Just pretend that we didn't see the previous declaration.
5915    Previous.clear();
5916  }
5917
5918  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5919      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5920    // This is a declaration of or a reference to "std::bad_alloc".
5921    isStdBadAlloc = true;
5922
5923    if (Previous.empty() && StdBadAlloc) {
5924      // std::bad_alloc has been implicitly declared (but made invisible to
5925      // name lookup). Fill in this implicit declaration as the previous
5926      // declaration, so that the declarations get chained appropriately.
5927      Previous.addDecl(getStdBadAlloc());
5928    }
5929  }
5930
5931  // If we didn't find a previous declaration, and this is a reference
5932  // (or friend reference), move to the correct scope.  In C++, we
5933  // also need to do a redeclaration lookup there, just in case
5934  // there's a shadow friend decl.
5935  if (Name && Previous.empty() &&
5936      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5937    if (Invalid) goto CreateNewDecl;
5938    assert(SS.isEmpty());
5939
5940    if (TUK == TUK_Reference) {
5941      // C++ [basic.scope.pdecl]p5:
5942      //   -- for an elaborated-type-specifier of the form
5943      //
5944      //          class-key identifier
5945      //
5946      //      if the elaborated-type-specifier is used in the
5947      //      decl-specifier-seq or parameter-declaration-clause of a
5948      //      function defined in namespace scope, the identifier is
5949      //      declared as a class-name in the namespace that contains
5950      //      the declaration; otherwise, except as a friend
5951      //      declaration, the identifier is declared in the smallest
5952      //      non-class, non-function-prototype scope that contains the
5953      //      declaration.
5954      //
5955      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5956      // C structs and unions.
5957      //
5958      // It is an error in C++ to declare (rather than define) an enum
5959      // type, including via an elaborated type specifier.  We'll
5960      // diagnose that later; for now, declare the enum in the same
5961      // scope as we would have picked for any other tag type.
5962      //
5963      // GNU C also supports this behavior as part of its incomplete
5964      // enum types extension, while GNU C++ does not.
5965      //
5966      // Find the context where we'll be declaring the tag.
5967      // FIXME: We would like to maintain the current DeclContext as the
5968      // lexical context,
5969      while (SearchDC->isRecord())
5970        SearchDC = SearchDC->getParent();
5971
5972      // Find the scope where we'll be declaring the tag.
5973      while (S->isClassScope() ||
5974             (getLangOptions().CPlusPlus &&
5975              S->isFunctionPrototypeScope()) ||
5976             ((S->getFlags() & Scope::DeclScope) == 0) ||
5977             (S->getEntity() &&
5978              ((DeclContext *)S->getEntity())->isTransparentContext()))
5979        S = S->getParent();
5980    } else {
5981      assert(TUK == TUK_Friend);
5982      // C++ [namespace.memdef]p3:
5983      //   If a friend declaration in a non-local class first declares a
5984      //   class or function, the friend class or function is a member of
5985      //   the innermost enclosing namespace.
5986      SearchDC = SearchDC->getEnclosingNamespaceContext();
5987    }
5988
5989    // In C++, we need to do a redeclaration lookup to properly
5990    // diagnose some problems.
5991    if (getLangOptions().CPlusPlus) {
5992      Previous.setRedeclarationKind(ForRedeclaration);
5993      LookupQualifiedName(Previous, SearchDC);
5994    }
5995  }
5996
5997  if (!Previous.empty()) {
5998    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5999
6000    // It's okay to have a tag decl in the same scope as a typedef
6001    // which hides a tag decl in the same scope.  Finding this
6002    // insanity with a redeclaration lookup can only actually happen
6003    // in C++.
6004    //
6005    // This is also okay for elaborated-type-specifiers, which is
6006    // technically forbidden by the current standard but which is
6007    // okay according to the likely resolution of an open issue;
6008    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6009    if (getLangOptions().CPlusPlus) {
6010      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6011        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6012          TagDecl *Tag = TT->getDecl();
6013          if (Tag->getDeclName() == Name &&
6014              Tag->getDeclContext()->getRedeclContext()
6015                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6016            PrevDecl = Tag;
6017            Previous.clear();
6018            Previous.addDecl(Tag);
6019            Previous.resolveKind();
6020          }
6021        }
6022      }
6023    }
6024
6025    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6026      // If this is a use of a previous tag, or if the tag is already declared
6027      // in the same scope (so that the definition/declaration completes or
6028      // rementions the tag), reuse the decl.
6029      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6030          isDeclInScope(PrevDecl, SearchDC, S)) {
6031        // Make sure that this wasn't declared as an enum and now used as a
6032        // struct or something similar.
6033        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6034          bool SafeToContinue
6035            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6036               Kind != TTK_Enum);
6037          if (SafeToContinue)
6038            Diag(KWLoc, diag::err_use_with_wrong_tag)
6039              << Name
6040              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6041                                              PrevTagDecl->getKindName());
6042          else
6043            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6044          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6045
6046          if (SafeToContinue)
6047            Kind = PrevTagDecl->getTagKind();
6048          else {
6049            // Recover by making this an anonymous redefinition.
6050            Name = 0;
6051            Previous.clear();
6052            Invalid = true;
6053          }
6054        }
6055
6056        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6057          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6058
6059          // All conflicts with previous declarations are recovered by
6060          // returning the previous declaration.
6061          if (ScopedEnum != PrevEnum->isScoped()) {
6062            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6063              << PrevEnum->isScoped();
6064            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6065            return PrevTagDecl;
6066          }
6067          else if (EnumUnderlying && PrevEnum->isFixed()) {
6068            QualType T;
6069            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6070                T = TI->getType();
6071            else
6072                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6073
6074            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6075              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6076                   diag::err_enum_redeclare_type_mismatch)
6077                << T
6078                << PrevEnum->getIntegerType();
6079              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6080              return PrevTagDecl;
6081            }
6082          }
6083          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6084            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6085              << PrevEnum->isFixed();
6086            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6087            return PrevTagDecl;
6088          }
6089        }
6090
6091        if (!Invalid) {
6092          // If this is a use, just return the declaration we found.
6093
6094          // FIXME: In the future, return a variant or some other clue
6095          // for the consumer of this Decl to know it doesn't own it.
6096          // For our current ASTs this shouldn't be a problem, but will
6097          // need to be changed with DeclGroups.
6098          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6099              TUK == TUK_Friend)
6100            return PrevTagDecl;
6101
6102          // Diagnose attempts to redefine a tag.
6103          if (TUK == TUK_Definition) {
6104            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6105              // If we're defining a specialization and the previous definition
6106              // is from an implicit instantiation, don't emit an error
6107              // here; we'll catch this in the general case below.
6108              if (!isExplicitSpecialization ||
6109                  !isa<CXXRecordDecl>(Def) ||
6110                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6111                                               == TSK_ExplicitSpecialization) {
6112                Diag(NameLoc, diag::err_redefinition) << Name;
6113                Diag(Def->getLocation(), diag::note_previous_definition);
6114                // If this is a redefinition, recover by making this
6115                // struct be anonymous, which will make any later
6116                // references get the previous definition.
6117                Name = 0;
6118                Previous.clear();
6119                Invalid = true;
6120              }
6121            } else {
6122              // If the type is currently being defined, complain
6123              // about a nested redefinition.
6124              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6125              if (Tag->isBeingDefined()) {
6126                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6127                Diag(PrevTagDecl->getLocation(),
6128                     diag::note_previous_definition);
6129                Name = 0;
6130                Previous.clear();
6131                Invalid = true;
6132              }
6133            }
6134
6135            // Okay, this is definition of a previously declared or referenced
6136            // tag PrevDecl. We're going to create a new Decl for it.
6137          }
6138        }
6139        // If we get here we have (another) forward declaration or we
6140        // have a definition.  Just create a new decl.
6141
6142      } else {
6143        // If we get here, this is a definition of a new tag type in a nested
6144        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6145        // new decl/type.  We set PrevDecl to NULL so that the entities
6146        // have distinct types.
6147        Previous.clear();
6148      }
6149      // If we get here, we're going to create a new Decl. If PrevDecl
6150      // is non-NULL, it's a definition of the tag declared by
6151      // PrevDecl. If it's NULL, we have a new definition.
6152
6153
6154    // Otherwise, PrevDecl is not a tag, but was found with tag
6155    // lookup.  This is only actually possible in C++, where a few
6156    // things like templates still live in the tag namespace.
6157    } else {
6158      assert(getLangOptions().CPlusPlus);
6159
6160      // Use a better diagnostic if an elaborated-type-specifier
6161      // found the wrong kind of type on the first
6162      // (non-redeclaration) lookup.
6163      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6164          !Previous.isForRedeclaration()) {
6165        unsigned Kind = 0;
6166        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6167        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6168        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6169        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6170        Invalid = true;
6171
6172      // Otherwise, only diagnose if the declaration is in scope.
6173      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6174        // do nothing
6175
6176      // Diagnose implicit declarations introduced by elaborated types.
6177      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6178        unsigned Kind = 0;
6179        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6180        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6181        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6182        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6183        Invalid = true;
6184
6185      // Otherwise it's a declaration.  Call out a particularly common
6186      // case here.
6187      } else if (isa<TypedefDecl>(PrevDecl)) {
6188        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6189          << Name
6190          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6191        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6192        Invalid = true;
6193
6194      // Otherwise, diagnose.
6195      } else {
6196        // The tag name clashes with something else in the target scope,
6197        // issue an error and recover by making this tag be anonymous.
6198        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6199        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6200        Name = 0;
6201        Invalid = true;
6202      }
6203
6204      // The existing declaration isn't relevant to us; we're in a
6205      // new scope, so clear out the previous declaration.
6206      Previous.clear();
6207    }
6208  }
6209
6210CreateNewDecl:
6211
6212  TagDecl *PrevDecl = 0;
6213  if (Previous.isSingleResult())
6214    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6215
6216  // If there is an identifier, use the location of the identifier as the
6217  // location of the decl, otherwise use the location of the struct/union
6218  // keyword.
6219  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6220
6221  // Otherwise, create a new declaration. If there is a previous
6222  // declaration of the same entity, the two will be linked via
6223  // PrevDecl.
6224  TagDecl *New;
6225
6226  bool IsForwardReference = false;
6227  if (Kind == TTK_Enum) {
6228    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6229    // enum X { A, B, C } D;    D should chain to X.
6230    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6231                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6232                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6233    // If this is an undefined enum, warn.
6234    if (TUK != TUK_Definition && !Invalid) {
6235      TagDecl *Def;
6236      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6237        // C++0x: 7.2p2: opaque-enum-declaration.
6238        // Conflicts are diagnosed above. Do nothing.
6239      }
6240      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6241        Diag(Loc, diag::ext_forward_ref_enum_def)
6242          << New;
6243        Diag(Def->getLocation(), diag::note_previous_definition);
6244      } else {
6245        unsigned DiagID = diag::ext_forward_ref_enum;
6246        if (getLangOptions().Microsoft)
6247          DiagID = diag::ext_ms_forward_ref_enum;
6248        else if (getLangOptions().CPlusPlus)
6249          DiagID = diag::err_forward_ref_enum;
6250        Diag(Loc, DiagID);
6251
6252        // If this is a forward-declared reference to an enumeration, make a
6253        // note of it; we won't actually be introducing the declaration into
6254        // the declaration context.
6255        if (TUK == TUK_Reference)
6256          IsForwardReference = true;
6257      }
6258    }
6259
6260    if (EnumUnderlying) {
6261      EnumDecl *ED = cast<EnumDecl>(New);
6262      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6263        ED->setIntegerTypeSourceInfo(TI);
6264      else
6265        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6266      ED->setPromotionType(ED->getIntegerType());
6267    }
6268
6269  } else {
6270    // struct/union/class
6271
6272    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6273    // struct X { int A; } D;    D should chain to X.
6274    if (getLangOptions().CPlusPlus) {
6275      // FIXME: Look for a way to use RecordDecl for simple structs.
6276      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6277                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6278
6279      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6280        StdBadAlloc = cast<CXXRecordDecl>(New);
6281    } else
6282      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6283                               cast_or_null<RecordDecl>(PrevDecl));
6284  }
6285
6286  // Maybe add qualifier info.
6287  if (SS.isNotEmpty()) {
6288    if (SS.isSet()) {
6289      NestedNameSpecifier *NNS
6290        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6291      New->setQualifierInfo(NNS, SS.getRange());
6292      if (NumMatchedTemplateParamLists > 0) {
6293        New->setTemplateParameterListsInfo(Context,
6294                                           NumMatchedTemplateParamLists,
6295                    (TemplateParameterList**) TemplateParameterLists.release());
6296      }
6297    }
6298    else
6299      Invalid = true;
6300  }
6301
6302  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6303    // Add alignment attributes if necessary; these attributes are checked when
6304    // the ASTContext lays out the structure.
6305    //
6306    // It is important for implementing the correct semantics that this
6307    // happen here (in act on tag decl). The #pragma pack stack is
6308    // maintained as a result of parser callbacks which can occur at
6309    // many points during the parsing of a struct declaration (because
6310    // the #pragma tokens are effectively skipped over during the
6311    // parsing of the struct).
6312    AddAlignmentAttributesForRecord(RD);
6313  }
6314
6315  // If this is a specialization of a member class (of a class template),
6316  // check the specialization.
6317  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6318    Invalid = true;
6319
6320  if (Invalid)
6321    New->setInvalidDecl();
6322
6323  if (Attr)
6324    ProcessDeclAttributeList(S, New, Attr);
6325
6326  // If we're declaring or defining a tag in function prototype scope
6327  // in C, note that this type can only be used within the function.
6328  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6329    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6330
6331  // Set the lexical context. If the tag has a C++ scope specifier, the
6332  // lexical context will be different from the semantic context.
6333  New->setLexicalDeclContext(CurContext);
6334
6335  // Mark this as a friend decl if applicable.
6336  if (TUK == TUK_Friend)
6337    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6338
6339  // Set the access specifier.
6340  if (!Invalid && SearchDC->isRecord())
6341    SetMemberAccessSpecifier(New, PrevDecl, AS);
6342
6343  if (TUK == TUK_Definition)
6344    New->startDefinition();
6345
6346  // If this has an identifier, add it to the scope stack.
6347  if (TUK == TUK_Friend) {
6348    // We might be replacing an existing declaration in the lookup tables;
6349    // if so, borrow its access specifier.
6350    if (PrevDecl)
6351      New->setAccess(PrevDecl->getAccess());
6352
6353    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6354    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6355    if (Name) // can be null along some error paths
6356      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6357        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6358  } else if (Name) {
6359    S = getNonFieldDeclScope(S);
6360    PushOnScopeChains(New, S, !IsForwardReference);
6361    if (IsForwardReference)
6362      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6363
6364  } else {
6365    CurContext->addDecl(New);
6366  }
6367
6368  // If this is the C FILE type, notify the AST context.
6369  if (IdentifierInfo *II = New->getIdentifier())
6370    if (!New->isInvalidDecl() &&
6371        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6372        II->isStr("FILE"))
6373      Context.setFILEDecl(New);
6374
6375  OwnedDecl = true;
6376  return New;
6377}
6378
6379void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6380  AdjustDeclIfTemplate(TagD);
6381  TagDecl *Tag = cast<TagDecl>(TagD);
6382
6383  // Enter the tag context.
6384  PushDeclContext(S, Tag);
6385}
6386
6387void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6388                                           SourceLocation LBraceLoc) {
6389  AdjustDeclIfTemplate(TagD);
6390  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6391
6392  FieldCollector->StartClass();
6393
6394  if (!Record->getIdentifier())
6395    return;
6396
6397  // C++ [class]p2:
6398  //   [...] The class-name is also inserted into the scope of the
6399  //   class itself; this is known as the injected-class-name. For
6400  //   purposes of access checking, the injected-class-name is treated
6401  //   as if it were a public member name.
6402  CXXRecordDecl *InjectedClassName
6403    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6404                            CurContext, Record->getLocation(),
6405                            Record->getIdentifier(),
6406                            Record->getTagKeywordLoc(),
6407                            /*PrevDecl=*/0,
6408                            /*DelayTypeCreation=*/true);
6409  Context.getTypeDeclType(InjectedClassName, Record);
6410  InjectedClassName->setImplicit();
6411  InjectedClassName->setAccess(AS_public);
6412  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6413      InjectedClassName->setDescribedClassTemplate(Template);
6414  PushOnScopeChains(InjectedClassName, S);
6415  assert(InjectedClassName->isInjectedClassName() &&
6416         "Broken injected-class-name");
6417}
6418
6419void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6420                                    SourceLocation RBraceLoc) {
6421  AdjustDeclIfTemplate(TagD);
6422  TagDecl *Tag = cast<TagDecl>(TagD);
6423  Tag->setRBraceLoc(RBraceLoc);
6424
6425  if (isa<CXXRecordDecl>(Tag))
6426    FieldCollector->FinishClass();
6427
6428  // Exit this scope of this tag's definition.
6429  PopDeclContext();
6430
6431  // Notify the consumer that we've defined a tag.
6432  Consumer.HandleTagDeclDefinition(Tag);
6433}
6434
6435void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6436  AdjustDeclIfTemplate(TagD);
6437  TagDecl *Tag = cast<TagDecl>(TagD);
6438  Tag->setInvalidDecl();
6439
6440  // We're undoing ActOnTagStartDefinition here, not
6441  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6442  // the FieldCollector.
6443
6444  PopDeclContext();
6445}
6446
6447// Note that FieldName may be null for anonymous bitfields.
6448bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6449                          QualType FieldTy, const Expr *BitWidth,
6450                          bool *ZeroWidth) {
6451  // Default to true; that shouldn't confuse checks for emptiness
6452  if (ZeroWidth)
6453    *ZeroWidth = true;
6454
6455  // C99 6.7.2.1p4 - verify the field type.
6456  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6457  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6458    // Handle incomplete types with specific error.
6459    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6460      return true;
6461    if (FieldName)
6462      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6463        << FieldName << FieldTy << BitWidth->getSourceRange();
6464    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6465      << FieldTy << BitWidth->getSourceRange();
6466  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6467                                             UPPC_BitFieldWidth))
6468    return true;
6469
6470  // If the bit-width is type- or value-dependent, don't try to check
6471  // it now.
6472  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6473    return false;
6474
6475  llvm::APSInt Value;
6476  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6477    return true;
6478
6479  if (Value != 0 && ZeroWidth)
6480    *ZeroWidth = false;
6481
6482  // Zero-width bitfield is ok for anonymous field.
6483  if (Value == 0 && FieldName)
6484    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6485
6486  if (Value.isSigned() && Value.isNegative()) {
6487    if (FieldName)
6488      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6489               << FieldName << Value.toString(10);
6490    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6491      << Value.toString(10);
6492  }
6493
6494  if (!FieldTy->isDependentType()) {
6495    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6496    if (Value.getZExtValue() > TypeSize) {
6497      if (!getLangOptions().CPlusPlus) {
6498        if (FieldName)
6499          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6500            << FieldName << (unsigned)Value.getZExtValue()
6501            << (unsigned)TypeSize;
6502
6503        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6504          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6505      }
6506
6507      if (FieldName)
6508        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6509          << FieldName << (unsigned)Value.getZExtValue()
6510          << (unsigned)TypeSize;
6511      else
6512        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6513          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6514    }
6515  }
6516
6517  return false;
6518}
6519
6520/// ActOnField - Each field of a struct/union/class is passed into this in order
6521/// to create a FieldDecl object for it.
6522Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6523                                 SourceLocation DeclStart,
6524                                 Declarator &D, ExprTy *BitfieldWidth) {
6525  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6526                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6527                               AS_public);
6528  return Res;
6529}
6530
6531/// HandleField - Analyze a field of a C struct or a C++ data member.
6532///
6533FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6534                             SourceLocation DeclStart,
6535                             Declarator &D, Expr *BitWidth,
6536                             AccessSpecifier AS) {
6537  IdentifierInfo *II = D.getIdentifier();
6538  SourceLocation Loc = DeclStart;
6539  if (II) Loc = D.getIdentifierLoc();
6540
6541  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6542  QualType T = TInfo->getType();
6543  if (getLangOptions().CPlusPlus) {
6544    CheckExtraCXXDefaultArguments(D);
6545
6546    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6547                                        UPPC_DataMemberType)) {
6548      D.setInvalidType();
6549      T = Context.IntTy;
6550      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6551    }
6552  }
6553
6554  DiagnoseFunctionSpecifiers(D);
6555
6556  if (D.getDeclSpec().isThreadSpecified())
6557    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6558
6559  // Check to see if this name was declared as a member previously
6560  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6561  LookupName(Previous, S);
6562  assert((Previous.empty() || Previous.isOverloadedResult() ||
6563          Previous.isSingleResult())
6564    && "Lookup of member name should be either overloaded, single or null");
6565
6566  // If the name is overloaded then get any declaration else get the single result
6567  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6568    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6569
6570  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6571    // Maybe we will complain about the shadowed template parameter.
6572    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6573    // Just pretend that we didn't see the previous declaration.
6574    PrevDecl = 0;
6575  }
6576
6577  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6578    PrevDecl = 0;
6579
6580  bool Mutable
6581    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6582  SourceLocation TSSL = D.getSourceRange().getBegin();
6583  FieldDecl *NewFD
6584    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6585                     AS, PrevDecl, &D);
6586
6587  if (NewFD->isInvalidDecl())
6588    Record->setInvalidDecl();
6589
6590  if (NewFD->isInvalidDecl() && PrevDecl) {
6591    // Don't introduce NewFD into scope; there's already something
6592    // with the same name in the same scope.
6593  } else if (II) {
6594    PushOnScopeChains(NewFD, S);
6595  } else
6596    Record->addDecl(NewFD);
6597
6598  return NewFD;
6599}
6600
6601/// \brief Build a new FieldDecl and check its well-formedness.
6602///
6603/// This routine builds a new FieldDecl given the fields name, type,
6604/// record, etc. \p PrevDecl should refer to any previous declaration
6605/// with the same name and in the same scope as the field to be
6606/// created.
6607///
6608/// \returns a new FieldDecl.
6609///
6610/// \todo The Declarator argument is a hack. It will be removed once
6611FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6612                                TypeSourceInfo *TInfo,
6613                                RecordDecl *Record, SourceLocation Loc,
6614                                bool Mutable, Expr *BitWidth,
6615                                SourceLocation TSSL,
6616                                AccessSpecifier AS, NamedDecl *PrevDecl,
6617                                Declarator *D) {
6618  IdentifierInfo *II = Name.getAsIdentifierInfo();
6619  bool InvalidDecl = false;
6620  if (D) InvalidDecl = D->isInvalidType();
6621
6622  // If we receive a broken type, recover by assuming 'int' and
6623  // marking this declaration as invalid.
6624  if (T.isNull()) {
6625    InvalidDecl = true;
6626    T = Context.IntTy;
6627  }
6628
6629  QualType EltTy = Context.getBaseElementType(T);
6630  if (!EltTy->isDependentType() &&
6631      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6632    // Fields of incomplete type force their record to be invalid.
6633    Record->setInvalidDecl();
6634    InvalidDecl = true;
6635  }
6636
6637  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6638  // than a variably modified type.
6639  if (!InvalidDecl && T->isVariablyModifiedType()) {
6640    bool SizeIsNegative;
6641    llvm::APSInt Oversized;
6642    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6643                                                           SizeIsNegative,
6644                                                           Oversized);
6645    if (!FixedTy.isNull()) {
6646      Diag(Loc, diag::warn_illegal_constant_array_size);
6647      T = FixedTy;
6648    } else {
6649      if (SizeIsNegative)
6650        Diag(Loc, diag::err_typecheck_negative_array_size);
6651      else if (Oversized.getBoolValue())
6652        Diag(Loc, diag::err_array_too_large)
6653          << Oversized.toString(10);
6654      else
6655        Diag(Loc, diag::err_typecheck_field_variable_size);
6656      InvalidDecl = true;
6657    }
6658  }
6659
6660  // Fields can not have abstract class types
6661  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6662                                             diag::err_abstract_type_in_decl,
6663                                             AbstractFieldType))
6664    InvalidDecl = true;
6665
6666  bool ZeroWidth = false;
6667  // If this is declared as a bit-field, check the bit-field.
6668  if (!InvalidDecl && BitWidth &&
6669      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6670    InvalidDecl = true;
6671    BitWidth = 0;
6672    ZeroWidth = false;
6673  }
6674
6675  // Check that 'mutable' is consistent with the type of the declaration.
6676  if (!InvalidDecl && Mutable) {
6677    unsigned DiagID = 0;
6678    if (T->isReferenceType())
6679      DiagID = diag::err_mutable_reference;
6680    else if (T.isConstQualified())
6681      DiagID = diag::err_mutable_const;
6682
6683    if (DiagID) {
6684      SourceLocation ErrLoc = Loc;
6685      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6686        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6687      Diag(ErrLoc, DiagID);
6688      Mutable = false;
6689      InvalidDecl = true;
6690    }
6691  }
6692
6693  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6694                                       BitWidth, Mutable);
6695  if (InvalidDecl)
6696    NewFD->setInvalidDecl();
6697
6698  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6699    Diag(Loc, diag::err_duplicate_member) << II;
6700    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6701    NewFD->setInvalidDecl();
6702  }
6703
6704  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6705    if (Record->isUnion()) {
6706      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6707        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6708        if (RDecl->getDefinition()) {
6709          // C++ [class.union]p1: An object of a class with a non-trivial
6710          // constructor, a non-trivial copy constructor, a non-trivial
6711          // destructor, or a non-trivial copy assignment operator
6712          // cannot be a member of a union, nor can an array of such
6713          // objects.
6714          // TODO: C++0x alters this restriction significantly.
6715          if (CheckNontrivialField(NewFD))
6716            NewFD->setInvalidDecl();
6717        }
6718      }
6719
6720      // C++ [class.union]p1: If a union contains a member of reference type,
6721      // the program is ill-formed.
6722      if (EltTy->isReferenceType()) {
6723        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6724          << NewFD->getDeclName() << EltTy;
6725        NewFD->setInvalidDecl();
6726      }
6727    }
6728  }
6729
6730  // FIXME: We need to pass in the attributes given an AST
6731  // representation, not a parser representation.
6732  if (D)
6733    // FIXME: What to pass instead of TUScope?
6734    ProcessDeclAttributes(TUScope, NewFD, *D);
6735
6736  if (T.isObjCGCWeak())
6737    Diag(Loc, diag::warn_attribute_weak_on_field);
6738
6739  NewFD->setAccess(AS);
6740  return NewFD;
6741}
6742
6743bool Sema::CheckNontrivialField(FieldDecl *FD) {
6744  assert(FD);
6745  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6746
6747  if (FD->isInvalidDecl())
6748    return true;
6749
6750  QualType EltTy = Context.getBaseElementType(FD->getType());
6751  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6752    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6753    if (RDecl->getDefinition()) {
6754      // We check for copy constructors before constructors
6755      // because otherwise we'll never get complaints about
6756      // copy constructors.
6757
6758      CXXSpecialMember member = CXXInvalid;
6759      if (!RDecl->hasTrivialCopyConstructor())
6760        member = CXXCopyConstructor;
6761      else if (!RDecl->hasTrivialConstructor())
6762        member = CXXConstructor;
6763      else if (!RDecl->hasTrivialCopyAssignment())
6764        member = CXXCopyAssignment;
6765      else if (!RDecl->hasTrivialDestructor())
6766        member = CXXDestructor;
6767
6768      if (member != CXXInvalid) {
6769        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6770              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6771        DiagnoseNontrivial(RT, member);
6772        return true;
6773      }
6774    }
6775  }
6776
6777  return false;
6778}
6779
6780/// DiagnoseNontrivial - Given that a class has a non-trivial
6781/// special member, figure out why.
6782void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6783  QualType QT(T, 0U);
6784  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6785
6786  // Check whether the member was user-declared.
6787  switch (member) {
6788  case CXXInvalid:
6789    break;
6790
6791  case CXXConstructor:
6792    if (RD->hasUserDeclaredConstructor()) {
6793      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6794      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6795        const FunctionDecl *body = 0;
6796        ci->hasBody(body);
6797        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6798          SourceLocation CtorLoc = ci->getLocation();
6799          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6800          return;
6801        }
6802      }
6803
6804      assert(0 && "found no user-declared constructors");
6805      return;
6806    }
6807    break;
6808
6809  case CXXCopyConstructor:
6810    if (RD->hasUserDeclaredCopyConstructor()) {
6811      SourceLocation CtorLoc =
6812        RD->getCopyConstructor(Context, 0)->getLocation();
6813      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6814      return;
6815    }
6816    break;
6817
6818  case CXXCopyAssignment:
6819    if (RD->hasUserDeclaredCopyAssignment()) {
6820      // FIXME: this should use the location of the copy
6821      // assignment, not the type.
6822      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6823      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6824      return;
6825    }
6826    break;
6827
6828  case CXXDestructor:
6829    if (RD->hasUserDeclaredDestructor()) {
6830      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6831      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6832      return;
6833    }
6834    break;
6835  }
6836
6837  typedef CXXRecordDecl::base_class_iterator base_iter;
6838
6839  // Virtual bases and members inhibit trivial copying/construction,
6840  // but not trivial destruction.
6841  if (member != CXXDestructor) {
6842    // Check for virtual bases.  vbases includes indirect virtual bases,
6843    // so we just iterate through the direct bases.
6844    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6845      if (bi->isVirtual()) {
6846        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6847        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6848        return;
6849      }
6850
6851    // Check for virtual methods.
6852    typedef CXXRecordDecl::method_iterator meth_iter;
6853    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6854         ++mi) {
6855      if (mi->isVirtual()) {
6856        SourceLocation MLoc = mi->getSourceRange().getBegin();
6857        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6858        return;
6859      }
6860    }
6861  }
6862
6863  bool (CXXRecordDecl::*hasTrivial)() const;
6864  switch (member) {
6865  case CXXConstructor:
6866    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6867  case CXXCopyConstructor:
6868    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6869  case CXXCopyAssignment:
6870    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6871  case CXXDestructor:
6872    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6873  default:
6874    assert(0 && "unexpected special member"); return;
6875  }
6876
6877  // Check for nontrivial bases (and recurse).
6878  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6879    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6880    assert(BaseRT && "Don't know how to handle dependent bases");
6881    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6882    if (!(BaseRecTy->*hasTrivial)()) {
6883      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6884      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6885      DiagnoseNontrivial(BaseRT, member);
6886      return;
6887    }
6888  }
6889
6890  // Check for nontrivial members (and recurse).
6891  typedef RecordDecl::field_iterator field_iter;
6892  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6893       ++fi) {
6894    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6895    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6896      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6897
6898      if (!(EltRD->*hasTrivial)()) {
6899        SourceLocation FLoc = (*fi)->getLocation();
6900        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6901        DiagnoseNontrivial(EltRT, member);
6902        return;
6903      }
6904    }
6905  }
6906
6907  assert(0 && "found no explanation for non-trivial member");
6908}
6909
6910/// TranslateIvarVisibility - Translate visibility from a token ID to an
6911///  AST enum value.
6912static ObjCIvarDecl::AccessControl
6913TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6914  switch (ivarVisibility) {
6915  default: assert(0 && "Unknown visitibility kind");
6916  case tok::objc_private: return ObjCIvarDecl::Private;
6917  case tok::objc_public: return ObjCIvarDecl::Public;
6918  case tok::objc_protected: return ObjCIvarDecl::Protected;
6919  case tok::objc_package: return ObjCIvarDecl::Package;
6920  }
6921}
6922
6923/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6924/// in order to create an IvarDecl object for it.
6925Decl *Sema::ActOnIvar(Scope *S,
6926                                SourceLocation DeclStart,
6927                                Decl *IntfDecl,
6928                                Declarator &D, ExprTy *BitfieldWidth,
6929                                tok::ObjCKeywordKind Visibility) {
6930
6931  IdentifierInfo *II = D.getIdentifier();
6932  Expr *BitWidth = (Expr*)BitfieldWidth;
6933  SourceLocation Loc = DeclStart;
6934  if (II) Loc = D.getIdentifierLoc();
6935
6936  // FIXME: Unnamed fields can be handled in various different ways, for
6937  // example, unnamed unions inject all members into the struct namespace!
6938
6939  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6940  QualType T = TInfo->getType();
6941
6942  if (BitWidth) {
6943    // 6.7.2.1p3, 6.7.2.1p4
6944    if (VerifyBitField(Loc, II, T, BitWidth)) {
6945      D.setInvalidType();
6946      BitWidth = 0;
6947    }
6948  } else {
6949    // Not a bitfield.
6950
6951    // validate II.
6952
6953  }
6954  if (T->isReferenceType()) {
6955    Diag(Loc, diag::err_ivar_reference_type);
6956    D.setInvalidType();
6957  }
6958  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6959  // than a variably modified type.
6960  else if (T->isVariablyModifiedType()) {
6961    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6962    D.setInvalidType();
6963  }
6964
6965  // Get the visibility (access control) for this ivar.
6966  ObjCIvarDecl::AccessControl ac =
6967    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6968                                        : ObjCIvarDecl::None;
6969  // Must set ivar's DeclContext to its enclosing interface.
6970  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6971  ObjCContainerDecl *EnclosingContext;
6972  if (ObjCImplementationDecl *IMPDecl =
6973      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6974    if (!LangOpts.ObjCNonFragileABI2) {
6975    // Case of ivar declared in an implementation. Context is that of its class.
6976      EnclosingContext = IMPDecl->getClassInterface();
6977      assert(EnclosingContext && "Implementation has no class interface!");
6978    }
6979    else
6980      EnclosingContext = EnclosingDecl;
6981  } else {
6982    if (ObjCCategoryDecl *CDecl =
6983        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6984      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6985        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6986        return 0;
6987      }
6988    }
6989    EnclosingContext = EnclosingDecl;
6990  }
6991
6992  // Construct the decl.
6993  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6994                                             EnclosingContext, Loc, II, T,
6995                                             TInfo, ac, (Expr *)BitfieldWidth);
6996
6997  if (II) {
6998    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6999                                           ForRedeclaration);
7000    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7001        && !isa<TagDecl>(PrevDecl)) {
7002      Diag(Loc, diag::err_duplicate_member) << II;
7003      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7004      NewID->setInvalidDecl();
7005    }
7006  }
7007
7008  // Process attributes attached to the ivar.
7009  ProcessDeclAttributes(S, NewID, D);
7010
7011  if (D.isInvalidType())
7012    NewID->setInvalidDecl();
7013
7014  if (II) {
7015    // FIXME: When interfaces are DeclContexts, we'll need to add
7016    // these to the interface.
7017    S->AddDecl(NewID);
7018    IdResolver.AddDecl(NewID);
7019  }
7020
7021  return NewID;
7022}
7023
7024/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7025/// class and class extensions. For every class @interface and class
7026/// extension @interface, if the last ivar is a bitfield of any type,
7027/// then add an implicit `char :0` ivar to the end of that interface.
7028void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7029                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7030  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7031    return;
7032
7033  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7034  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7035
7036  if (!Ivar->isBitField())
7037    return;
7038  uint64_t BitFieldSize =
7039    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7040  if (BitFieldSize == 0)
7041    return;
7042  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7043  if (!ID) {
7044    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7045      if (!CD->IsClassExtension())
7046        return;
7047    }
7048    // No need to add this to end of @implementation.
7049    else
7050      return;
7051  }
7052  // All conditions are met. Add a new bitfield to the tail end of ivars.
7053  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7054  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7055
7056  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7057                              DeclLoc, 0,
7058                              Context.CharTy,
7059                              Context.CreateTypeSourceInfo(Context.CharTy),
7060                              ObjCIvarDecl::Private, BW,
7061                              true);
7062  AllIvarDecls.push_back(Ivar);
7063}
7064
7065void Sema::ActOnFields(Scope* S,
7066                       SourceLocation RecLoc, Decl *EnclosingDecl,
7067                       Decl **Fields, unsigned NumFields,
7068                       SourceLocation LBrac, SourceLocation RBrac,
7069                       AttributeList *Attr) {
7070  assert(EnclosingDecl && "missing record or interface decl");
7071
7072  // If the decl this is being inserted into is invalid, then it may be a
7073  // redeclaration or some other bogus case.  Don't try to add fields to it.
7074  if (EnclosingDecl->isInvalidDecl()) {
7075    // FIXME: Deallocate fields?
7076    return;
7077  }
7078
7079
7080  // Verify that all the fields are okay.
7081  unsigned NumNamedMembers = 0;
7082  llvm::SmallVector<FieldDecl*, 32> RecFields;
7083
7084  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7085  for (unsigned i = 0; i != NumFields; ++i) {
7086    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7087
7088    // Get the type for the field.
7089    Type *FDTy = FD->getType().getTypePtr();
7090
7091    if (!FD->isAnonymousStructOrUnion()) {
7092      // Remember all fields written by the user.
7093      RecFields.push_back(FD);
7094    }
7095
7096    // If the field is already invalid for some reason, don't emit more
7097    // diagnostics about it.
7098    if (FD->isInvalidDecl()) {
7099      EnclosingDecl->setInvalidDecl();
7100      continue;
7101    }
7102
7103    // C99 6.7.2.1p2:
7104    //   A structure or union shall not contain a member with
7105    //   incomplete or function type (hence, a structure shall not
7106    //   contain an instance of itself, but may contain a pointer to
7107    //   an instance of itself), except that the last member of a
7108    //   structure with more than one named member may have incomplete
7109    //   array type; such a structure (and any union containing,
7110    //   possibly recursively, a member that is such a structure)
7111    //   shall not be a member of a structure or an element of an
7112    //   array.
7113    if (FDTy->isFunctionType()) {
7114      // Field declared as a function.
7115      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7116        << FD->getDeclName();
7117      FD->setInvalidDecl();
7118      EnclosingDecl->setInvalidDecl();
7119      continue;
7120    } else if (FDTy->isIncompleteArrayType() && Record &&
7121               ((i == NumFields - 1 && !Record->isUnion()) ||
7122                (getLangOptions().Microsoft &&
7123                 (i == NumFields - 1 || Record->isUnion())))) {
7124      // Flexible array member.
7125      // Microsoft is more permissive regarding flexible array.
7126      // It will accept flexible array in union and also
7127      // as the sole element of a struct/class.
7128      if (getLangOptions().Microsoft) {
7129        if (Record->isUnion())
7130          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7131            << FD->getDeclName();
7132        else if (NumFields == 1)
7133          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7134            << FD->getDeclName() << Record->getTagKind();
7135      } else  if (NumNamedMembers < 1) {
7136        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7137          << FD->getDeclName();
7138        FD->setInvalidDecl();
7139        EnclosingDecl->setInvalidDecl();
7140        continue;
7141      }
7142      if (!FD->getType()->isDependentType() &&
7143          !Context.getBaseElementType(FD->getType())->isPODType()) {
7144        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7145          << FD->getDeclName() << FD->getType();
7146        FD->setInvalidDecl();
7147        EnclosingDecl->setInvalidDecl();
7148        continue;
7149      }
7150      // Okay, we have a legal flexible array member at the end of the struct.
7151      if (Record)
7152        Record->setHasFlexibleArrayMember(true);
7153    } else if (!FDTy->isDependentType() &&
7154               RequireCompleteType(FD->getLocation(), FD->getType(),
7155                                   diag::err_field_incomplete)) {
7156      // Incomplete type
7157      FD->setInvalidDecl();
7158      EnclosingDecl->setInvalidDecl();
7159      continue;
7160    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7161      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7162        // If this is a member of a union, then entire union becomes "flexible".
7163        if (Record && Record->isUnion()) {
7164          Record->setHasFlexibleArrayMember(true);
7165        } else {
7166          // If this is a struct/class and this is not the last element, reject
7167          // it.  Note that GCC supports variable sized arrays in the middle of
7168          // structures.
7169          if (i != NumFields-1)
7170            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7171              << FD->getDeclName() << FD->getType();
7172          else {
7173            // We support flexible arrays at the end of structs in
7174            // other structs as an extension.
7175            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7176              << FD->getDeclName();
7177            if (Record)
7178              Record->setHasFlexibleArrayMember(true);
7179          }
7180        }
7181      }
7182      if (Record && FDTTy->getDecl()->hasObjectMember())
7183        Record->setHasObjectMember(true);
7184    } else if (FDTy->isObjCObjectType()) {
7185      /// A field cannot be an Objective-c object
7186      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7187      FD->setInvalidDecl();
7188      EnclosingDecl->setInvalidDecl();
7189      continue;
7190    } else if (getLangOptions().ObjC1 &&
7191               getLangOptions().getGCMode() != LangOptions::NonGC &&
7192               Record &&
7193               (FD->getType()->isObjCObjectPointerType() ||
7194                FD->getType().isObjCGCStrong()))
7195      Record->setHasObjectMember(true);
7196    else if (Context.getAsArrayType(FD->getType())) {
7197      QualType BaseType = Context.getBaseElementType(FD->getType());
7198      if (Record && BaseType->isRecordType() &&
7199          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7200        Record->setHasObjectMember(true);
7201    }
7202    // Keep track of the number of named members.
7203    if (FD->getIdentifier())
7204      ++NumNamedMembers;
7205  }
7206
7207  // Okay, we successfully defined 'Record'.
7208  if (Record) {
7209    bool Completed = false;
7210    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7211      if (!CXXRecord->isInvalidDecl()) {
7212        // Set access bits correctly on the directly-declared conversions.
7213        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7214        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7215             I != E; ++I)
7216          Convs->setAccess(I, (*I)->getAccess());
7217
7218        if (!CXXRecord->isDependentType()) {
7219          // Add any implicitly-declared members to this class.
7220          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7221
7222          // If we have virtual base classes, we may end up finding multiple
7223          // final overriders for a given virtual function. Check for this
7224          // problem now.
7225          if (CXXRecord->getNumVBases()) {
7226            CXXFinalOverriderMap FinalOverriders;
7227            CXXRecord->getFinalOverriders(FinalOverriders);
7228
7229            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7230                                             MEnd = FinalOverriders.end();
7231                 M != MEnd; ++M) {
7232              for (OverridingMethods::iterator SO = M->second.begin(),
7233                                            SOEnd = M->second.end();
7234                   SO != SOEnd; ++SO) {
7235                assert(SO->second.size() > 0 &&
7236                       "Virtual function without overridding functions?");
7237                if (SO->second.size() == 1)
7238                  continue;
7239
7240                // C++ [class.virtual]p2:
7241                //   In a derived class, if a virtual member function of a base
7242                //   class subobject has more than one final overrider the
7243                //   program is ill-formed.
7244                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7245                  << (NamedDecl *)M->first << Record;
7246                Diag(M->first->getLocation(),
7247                     diag::note_overridden_virtual_function);
7248                for (OverridingMethods::overriding_iterator
7249                          OM = SO->second.begin(),
7250                       OMEnd = SO->second.end();
7251                     OM != OMEnd; ++OM)
7252                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7253                    << (NamedDecl *)M->first << OM->Method->getParent();
7254
7255                Record->setInvalidDecl();
7256              }
7257            }
7258            CXXRecord->completeDefinition(&FinalOverriders);
7259            Completed = true;
7260          }
7261        }
7262      }
7263    }
7264
7265    if (!Completed)
7266      Record->completeDefinition();
7267  } else {
7268    ObjCIvarDecl **ClsFields =
7269      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7270    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7271      ID->setLocEnd(RBrac);
7272      // Add ivar's to class's DeclContext.
7273      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7274        ClsFields[i]->setLexicalDeclContext(ID);
7275        ID->addDecl(ClsFields[i]);
7276      }
7277      // Must enforce the rule that ivars in the base classes may not be
7278      // duplicates.
7279      if (ID->getSuperClass())
7280        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7281    } else if (ObjCImplementationDecl *IMPDecl =
7282                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7283      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7284      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7285        // Ivar declared in @implementation never belongs to the implementation.
7286        // Only it is in implementation's lexical context.
7287        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7288      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7289    } else if (ObjCCategoryDecl *CDecl =
7290                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7291      // case of ivars in class extension; all other cases have been
7292      // reported as errors elsewhere.
7293      // FIXME. Class extension does not have a LocEnd field.
7294      // CDecl->setLocEnd(RBrac);
7295      // Add ivar's to class extension's DeclContext.
7296      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7297        ClsFields[i]->setLexicalDeclContext(CDecl);
7298        CDecl->addDecl(ClsFields[i]);
7299      }
7300    }
7301  }
7302
7303  if (Attr)
7304    ProcessDeclAttributeList(S, Record, Attr);
7305
7306  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7307  // set the visibility of this record.
7308  if (Record && !Record->getDeclContext()->isRecord())
7309    AddPushedVisibilityAttribute(Record);
7310}
7311
7312/// \brief Determine whether the given integral value is representable within
7313/// the given type T.
7314static bool isRepresentableIntegerValue(ASTContext &Context,
7315                                        llvm::APSInt &Value,
7316                                        QualType T) {
7317  assert(T->isIntegralType(Context) && "Integral type required!");
7318  unsigned BitWidth = Context.getIntWidth(T);
7319
7320  if (Value.isUnsigned() || Value.isNonNegative()) {
7321    if (T->isSignedIntegerType())
7322      --BitWidth;
7323    return Value.getActiveBits() <= BitWidth;
7324  }
7325  return Value.getMinSignedBits() <= BitWidth;
7326}
7327
7328// \brief Given an integral type, return the next larger integral type
7329// (or a NULL type of no such type exists).
7330static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7331  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7332  // enum checking below.
7333  assert(T->isIntegralType(Context) && "Integral type required!");
7334  const unsigned NumTypes = 4;
7335  QualType SignedIntegralTypes[NumTypes] = {
7336    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7337  };
7338  QualType UnsignedIntegralTypes[NumTypes] = {
7339    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7340    Context.UnsignedLongLongTy
7341  };
7342
7343  unsigned BitWidth = Context.getTypeSize(T);
7344  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7345                                            : UnsignedIntegralTypes;
7346  for (unsigned I = 0; I != NumTypes; ++I)
7347    if (Context.getTypeSize(Types[I]) > BitWidth)
7348      return Types[I];
7349
7350  return QualType();
7351}
7352
7353EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7354                                          EnumConstantDecl *LastEnumConst,
7355                                          SourceLocation IdLoc,
7356                                          IdentifierInfo *Id,
7357                                          Expr *Val) {
7358  unsigned IntWidth = Context.Target.getIntWidth();
7359  llvm::APSInt EnumVal(IntWidth);
7360  QualType EltTy;
7361
7362  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7363    Val = 0;
7364
7365  if (Val) {
7366    if (Enum->isDependentType() || Val->isTypeDependent())
7367      EltTy = Context.DependentTy;
7368    else {
7369      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7370      SourceLocation ExpLoc;
7371      if (!Val->isValueDependent() &&
7372          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7373        Val = 0;
7374      } else {
7375        if (!getLangOptions().CPlusPlus) {
7376          // C99 6.7.2.2p2:
7377          //   The expression that defines the value of an enumeration constant
7378          //   shall be an integer constant expression that has a value
7379          //   representable as an int.
7380
7381          // Complain if the value is not representable in an int.
7382          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7383            Diag(IdLoc, diag::ext_enum_value_not_int)
7384              << EnumVal.toString(10) << Val->getSourceRange()
7385              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7386          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7387            // Force the type of the expression to 'int'.
7388            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7389          }
7390        }
7391
7392        if (Enum->isFixed()) {
7393          EltTy = Enum->getIntegerType();
7394
7395          // C++0x [dcl.enum]p5:
7396          //   ... if the initializing value of an enumerator cannot be
7397          //   represented by the underlying type, the program is ill-formed.
7398          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7399            if (getLangOptions().Microsoft) {
7400              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7401              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7402            } else
7403              Diag(IdLoc, diag::err_enumerator_too_large)
7404                << EltTy;
7405          } else
7406            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7407        }
7408        else {
7409          // C++0x [dcl.enum]p5:
7410          //   If the underlying type is not fixed, the type of each enumerator
7411          //   is the type of its initializing value:
7412          //     - If an initializer is specified for an enumerator, the
7413          //       initializing value has the same type as the expression.
7414          EltTy = Val->getType();
7415        }
7416      }
7417    }
7418  }
7419
7420  if (!Val) {
7421    if (Enum->isDependentType())
7422      EltTy = Context.DependentTy;
7423    else if (!LastEnumConst) {
7424      // C++0x [dcl.enum]p5:
7425      //   If the underlying type is not fixed, the type of each enumerator
7426      //   is the type of its initializing value:
7427      //     - If no initializer is specified for the first enumerator, the
7428      //       initializing value has an unspecified integral type.
7429      //
7430      // GCC uses 'int' for its unspecified integral type, as does
7431      // C99 6.7.2.2p3.
7432      if (Enum->isFixed()) {
7433        EltTy = Enum->getIntegerType();
7434      }
7435      else {
7436        EltTy = Context.IntTy;
7437      }
7438    } else {
7439      // Assign the last value + 1.
7440      EnumVal = LastEnumConst->getInitVal();
7441      ++EnumVal;
7442      EltTy = LastEnumConst->getType();
7443
7444      // Check for overflow on increment.
7445      if (EnumVal < LastEnumConst->getInitVal()) {
7446        // C++0x [dcl.enum]p5:
7447        //   If the underlying type is not fixed, the type of each enumerator
7448        //   is the type of its initializing value:
7449        //
7450        //     - Otherwise the type of the initializing value is the same as
7451        //       the type of the initializing value of the preceding enumerator
7452        //       unless the incremented value is not representable in that type,
7453        //       in which case the type is an unspecified integral type
7454        //       sufficient to contain the incremented value. If no such type
7455        //       exists, the program is ill-formed.
7456        QualType T = getNextLargerIntegralType(Context, EltTy);
7457        if (T.isNull() || Enum->isFixed()) {
7458          // There is no integral type larger enough to represent this
7459          // value. Complain, then allow the value to wrap around.
7460          EnumVal = LastEnumConst->getInitVal();
7461          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7462          ++EnumVal;
7463          if (Enum->isFixed())
7464            // When the underlying type is fixed, this is ill-formed.
7465            Diag(IdLoc, diag::err_enumerator_wrapped)
7466              << EnumVal.toString(10)
7467              << EltTy;
7468          else
7469            Diag(IdLoc, diag::warn_enumerator_too_large)
7470              << EnumVal.toString(10);
7471        } else {
7472          EltTy = T;
7473        }
7474
7475        // Retrieve the last enumerator's value, extent that type to the
7476        // type that is supposed to be large enough to represent the incremented
7477        // value, then increment.
7478        EnumVal = LastEnumConst->getInitVal();
7479        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7480        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7481        ++EnumVal;
7482
7483        // If we're not in C++, diagnose the overflow of enumerator values,
7484        // which in C99 means that the enumerator value is not representable in
7485        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7486        // permits enumerator values that are representable in some larger
7487        // integral type.
7488        if (!getLangOptions().CPlusPlus && !T.isNull())
7489          Diag(IdLoc, diag::warn_enum_value_overflow);
7490      } else if (!getLangOptions().CPlusPlus &&
7491                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7492        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7493        Diag(IdLoc, diag::ext_enum_value_not_int)
7494          << EnumVal.toString(10) << 1;
7495      }
7496    }
7497  }
7498
7499  if (!EltTy->isDependentType()) {
7500    // Make the enumerator value match the signedness and size of the
7501    // enumerator's type.
7502    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7503    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7504  }
7505
7506  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7507                                  Val, EnumVal);
7508}
7509
7510
7511Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7512                              SourceLocation IdLoc, IdentifierInfo *Id,
7513                              AttributeList *Attr,
7514                              SourceLocation EqualLoc, ExprTy *val) {
7515  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7516  EnumConstantDecl *LastEnumConst =
7517    cast_or_null<EnumConstantDecl>(lastEnumConst);
7518  Expr *Val = static_cast<Expr*>(val);
7519
7520  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7521  // we find one that is.
7522  S = getNonFieldDeclScope(S);
7523
7524  // Verify that there isn't already something declared with this name in this
7525  // scope.
7526  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7527                                         ForRedeclaration);
7528  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7529    // Maybe we will complain about the shadowed template parameter.
7530    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7531    // Just pretend that we didn't see the previous declaration.
7532    PrevDecl = 0;
7533  }
7534
7535  if (PrevDecl) {
7536    // When in C++, we may get a TagDecl with the same name; in this case the
7537    // enum constant will 'hide' the tag.
7538    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7539           "Received TagDecl when not in C++!");
7540    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7541      if (isa<EnumConstantDecl>(PrevDecl))
7542        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7543      else
7544        Diag(IdLoc, diag::err_redefinition) << Id;
7545      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7546      return 0;
7547    }
7548  }
7549
7550  // C++ [class.mem]p13:
7551  //   If T is the name of a class, then each of the following shall have a
7552  //   name different from T:
7553  //     - every enumerator of every member of class T that is an enumerated
7554  //       type
7555  if (CXXRecordDecl *Record
7556                      = dyn_cast<CXXRecordDecl>(
7557                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7558    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7559      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7560
7561  EnumConstantDecl *New =
7562    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7563
7564  if (New) {
7565    // Process attributes.
7566    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7567
7568    // Register this decl in the current scope stack.
7569    New->setAccess(TheEnumDecl->getAccess());
7570    PushOnScopeChains(New, S);
7571  }
7572
7573  return New;
7574}
7575
7576void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7577                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7578                         Decl **Elements, unsigned NumElements,
7579                         Scope *S, AttributeList *Attr) {
7580  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7581  QualType EnumType = Context.getTypeDeclType(Enum);
7582
7583  if (Attr)
7584    ProcessDeclAttributeList(S, Enum, Attr);
7585
7586  if (Enum->isDependentType()) {
7587    for (unsigned i = 0; i != NumElements; ++i) {
7588      EnumConstantDecl *ECD =
7589        cast_or_null<EnumConstantDecl>(Elements[i]);
7590      if (!ECD) continue;
7591
7592      ECD->setType(EnumType);
7593    }
7594
7595    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7596    return;
7597  }
7598
7599  // TODO: If the result value doesn't fit in an int, it must be a long or long
7600  // long value.  ISO C does not support this, but GCC does as an extension,
7601  // emit a warning.
7602  unsigned IntWidth = Context.Target.getIntWidth();
7603  unsigned CharWidth = Context.Target.getCharWidth();
7604  unsigned ShortWidth = Context.Target.getShortWidth();
7605
7606  // Verify that all the values are okay, compute the size of the values, and
7607  // reverse the list.
7608  unsigned NumNegativeBits = 0;
7609  unsigned NumPositiveBits = 0;
7610
7611  // Keep track of whether all elements have type int.
7612  bool AllElementsInt = true;
7613
7614  for (unsigned i = 0; i != NumElements; ++i) {
7615    EnumConstantDecl *ECD =
7616      cast_or_null<EnumConstantDecl>(Elements[i]);
7617    if (!ECD) continue;  // Already issued a diagnostic.
7618
7619    const llvm::APSInt &InitVal = ECD->getInitVal();
7620
7621    // Keep track of the size of positive and negative values.
7622    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7623      NumPositiveBits = std::max(NumPositiveBits,
7624                                 (unsigned)InitVal.getActiveBits());
7625    else
7626      NumNegativeBits = std::max(NumNegativeBits,
7627                                 (unsigned)InitVal.getMinSignedBits());
7628
7629    // Keep track of whether every enum element has type int (very commmon).
7630    if (AllElementsInt)
7631      AllElementsInt = ECD->getType() == Context.IntTy;
7632  }
7633
7634  // Figure out the type that should be used for this enum.
7635  QualType BestType;
7636  unsigned BestWidth;
7637
7638  // C++0x N3000 [conv.prom]p3:
7639  //   An rvalue of an unscoped enumeration type whose underlying
7640  //   type is not fixed can be converted to an rvalue of the first
7641  //   of the following types that can represent all the values of
7642  //   the enumeration: int, unsigned int, long int, unsigned long
7643  //   int, long long int, or unsigned long long int.
7644  // C99 6.4.4.3p2:
7645  //   An identifier declared as an enumeration constant has type int.
7646  // The C99 rule is modified by a gcc extension
7647  QualType BestPromotionType;
7648
7649  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7650  // -fshort-enums is the equivalent to specifying the packed attribute on all
7651  // enum definitions.
7652  if (LangOpts.ShortEnums)
7653    Packed = true;
7654
7655  if (Enum->isFixed()) {
7656    BestType = BestPromotionType = Enum->getIntegerType();
7657    // We don't need to set BestWidth, because BestType is going to be the type
7658    // of the enumerators, but we do anyway because otherwise some compilers
7659    // warn that it might be used uninitialized.
7660    BestWidth = CharWidth;
7661  }
7662  else if (NumNegativeBits) {
7663    // If there is a negative value, figure out the smallest integer type (of
7664    // int/long/longlong) that fits.
7665    // If it's packed, check also if it fits a char or a short.
7666    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7667      BestType = Context.SignedCharTy;
7668      BestWidth = CharWidth;
7669    } else if (Packed && NumNegativeBits <= ShortWidth &&
7670               NumPositiveBits < ShortWidth) {
7671      BestType = Context.ShortTy;
7672      BestWidth = ShortWidth;
7673    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7674      BestType = Context.IntTy;
7675      BestWidth = IntWidth;
7676    } else {
7677      BestWidth = Context.Target.getLongWidth();
7678
7679      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7680        BestType = Context.LongTy;
7681      } else {
7682        BestWidth = Context.Target.getLongLongWidth();
7683
7684        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7685          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7686        BestType = Context.LongLongTy;
7687      }
7688    }
7689    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7690  } else {
7691    // If there is no negative value, figure out the smallest type that fits
7692    // all of the enumerator values.
7693    // If it's packed, check also if it fits a char or a short.
7694    if (Packed && NumPositiveBits <= CharWidth) {
7695      BestType = Context.UnsignedCharTy;
7696      BestPromotionType = Context.IntTy;
7697      BestWidth = CharWidth;
7698    } else if (Packed && NumPositiveBits <= ShortWidth) {
7699      BestType = Context.UnsignedShortTy;
7700      BestPromotionType = Context.IntTy;
7701      BestWidth = ShortWidth;
7702    } else if (NumPositiveBits <= IntWidth) {
7703      BestType = Context.UnsignedIntTy;
7704      BestWidth = IntWidth;
7705      BestPromotionType
7706        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7707                           ? Context.UnsignedIntTy : Context.IntTy;
7708    } else if (NumPositiveBits <=
7709               (BestWidth = Context.Target.getLongWidth())) {
7710      BestType = Context.UnsignedLongTy;
7711      BestPromotionType
7712        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7713                           ? Context.UnsignedLongTy : Context.LongTy;
7714    } else {
7715      BestWidth = Context.Target.getLongLongWidth();
7716      assert(NumPositiveBits <= BestWidth &&
7717             "How could an initializer get larger than ULL?");
7718      BestType = Context.UnsignedLongLongTy;
7719      BestPromotionType
7720        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7721                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7722    }
7723  }
7724
7725  // Loop over all of the enumerator constants, changing their types to match
7726  // the type of the enum if needed.
7727  for (unsigned i = 0; i != NumElements; ++i) {
7728    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7729    if (!ECD) continue;  // Already issued a diagnostic.
7730
7731    // Standard C says the enumerators have int type, but we allow, as an
7732    // extension, the enumerators to be larger than int size.  If each
7733    // enumerator value fits in an int, type it as an int, otherwise type it the
7734    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7735    // that X has type 'int', not 'unsigned'.
7736
7737    // Determine whether the value fits into an int.
7738    llvm::APSInt InitVal = ECD->getInitVal();
7739
7740    // If it fits into an integer type, force it.  Otherwise force it to match
7741    // the enum decl type.
7742    QualType NewTy;
7743    unsigned NewWidth;
7744    bool NewSign;
7745    if (!getLangOptions().CPlusPlus &&
7746        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7747      NewTy = Context.IntTy;
7748      NewWidth = IntWidth;
7749      NewSign = true;
7750    } else if (ECD->getType() == BestType) {
7751      // Already the right type!
7752      if (getLangOptions().CPlusPlus)
7753        // C++ [dcl.enum]p4: Following the closing brace of an
7754        // enum-specifier, each enumerator has the type of its
7755        // enumeration.
7756        ECD->setType(EnumType);
7757      continue;
7758    } else {
7759      NewTy = BestType;
7760      NewWidth = BestWidth;
7761      NewSign = BestType->isSignedIntegerType();
7762    }
7763
7764    // Adjust the APSInt value.
7765    InitVal = InitVal.extOrTrunc(NewWidth);
7766    InitVal.setIsSigned(NewSign);
7767    ECD->setInitVal(InitVal);
7768
7769    // Adjust the Expr initializer and type.
7770    if (ECD->getInitExpr() &&
7771	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7772      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7773                                                CK_IntegralCast,
7774                                                ECD->getInitExpr(),
7775                                                /*base paths*/ 0,
7776                                                VK_RValue));
7777    if (getLangOptions().CPlusPlus)
7778      // C++ [dcl.enum]p4: Following the closing brace of an
7779      // enum-specifier, each enumerator has the type of its
7780      // enumeration.
7781      ECD->setType(EnumType);
7782    else
7783      ECD->setType(NewTy);
7784  }
7785
7786  Enum->completeDefinition(BestType, BestPromotionType,
7787                           NumPositiveBits, NumNegativeBits);
7788}
7789
7790Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7791  StringLiteral *AsmString = cast<StringLiteral>(expr);
7792
7793  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7794                                                   Loc, AsmString);
7795  CurContext->addDecl(New);
7796  return New;
7797}
7798
7799void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7800                             SourceLocation PragmaLoc,
7801                             SourceLocation NameLoc) {
7802  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7803
7804  if (PrevDecl) {
7805    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7806  } else {
7807    (void)WeakUndeclaredIdentifiers.insert(
7808      std::pair<IdentifierInfo*,WeakInfo>
7809        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7810  }
7811}
7812
7813void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7814                                IdentifierInfo* AliasName,
7815                                SourceLocation PragmaLoc,
7816                                SourceLocation NameLoc,
7817                                SourceLocation AliasNameLoc) {
7818  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7819                                    LookupOrdinaryName);
7820  WeakInfo W = WeakInfo(Name, NameLoc);
7821
7822  if (PrevDecl) {
7823    if (!PrevDecl->hasAttr<AliasAttr>())
7824      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7825        DeclApplyPragmaWeak(TUScope, ND, W);
7826  } else {
7827    (void)WeakUndeclaredIdentifiers.insert(
7828      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7829  }
7830}
7831