SemaDecl.cpp revision ca0408fb49c1370430672acf2d770b7151cf71de
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Sema/DeclSpec.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(Decl *D) {
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, CXXScopeSpec *SS,
64                                bool isClassName,
65                                TypeTy *ObjectTypePtr) {
66  // Determine where we will perform name lookup.
67  DeclContext *LookupCtx = 0;
68  if (ObjectTypePtr) {
69    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
70    if (ObjectType->isRecordType())
71      LookupCtx = computeDeclContext(ObjectType);
72  } else if (SS && SS->isNotEmpty()) {
73    LookupCtx = computeDeclContext(*SS, false);
74
75    if (!LookupCtx) {
76      if (isDependentScopeSpecifier(*SS)) {
77        // C++ [temp.res]p3:
78        //   A qualified-id that refers to a type and in which the
79        //   nested-name-specifier depends on a template-parameter (14.6.2)
80        //   shall be prefixed by the keyword typename to indicate that the
81        //   qualified-id denotes a type, forming an
82        //   elaborated-type-specifier (7.1.5.3).
83        //
84        // We therefore do not perform any name lookup if the result would
85        // refer to a member of an unknown specialization.
86        if (!isClassName)
87          return 0;
88
89        // We know from the grammar that this name refers to a type,
90        // so build a dependent node to describe the type.
91        return CheckTypenameType(ETK_None,
92                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
93                                 SourceLocation(), SS->getRange(), NameLoc
94                                 ).getAsOpaquePtr();
95      }
96
97      return 0;
98    }
99
100    if (!LookupCtx->isDependentContext() &&
101        RequireCompleteDeclContext(*SS, LookupCtx))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getElaboratedType(ETK_None, *SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else {
199    // If it's not plausibly a type, suppress diagnostics.
200    Result.suppressDiagnostics();
201    return 0;
202  }
203
204  return T.getAsOpaquePtr();
205}
206
207/// isTagName() - This method is called *for error recovery purposes only*
208/// to determine if the specified name is a valid tag name ("struct foo").  If
209/// so, this returns the TST for the tag corresponding to it (TST_enum,
210/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
211/// where the user forgot to specify the tag.
212DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
213  // Do a tag name lookup in this scope.
214  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
215  LookupName(R, S, false);
216  R.suppressDiagnostics();
217  if (R.getResultKind() == LookupResult::Found)
218    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
219      switch (TD->getTagKind()) {
220      default:         return DeclSpec::TST_unspecified;
221      case TTK_Struct: return DeclSpec::TST_struct;
222      case TTK_Union:  return DeclSpec::TST_union;
223      case TTK_Class:  return DeclSpec::TST_class;
224      case TTK_Enum:   return DeclSpec::TST_enum;
225      }
226    }
227
228  return DeclSpec::TST_unspecified;
229}
230
231bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
232                                   SourceLocation IILoc,
233                                   Scope *S,
234                                   CXXScopeSpec *SS,
235                                   TypeTy *&SuggestedType) {
236  // We don't have anything to suggest (yet).
237  SuggestedType = 0;
238
239  // There may have been a typo in the name of the type. Look up typo
240  // results, in case we have something that we can suggest.
241  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
242                      NotForRedeclaration);
243
244  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
245    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
246      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
247          !Result->isInvalidDecl()) {
248        // We found a similarly-named type or interface; suggest that.
249        if (!SS || !SS->isSet())
250          Diag(IILoc, diag::err_unknown_typename_suggest)
251            << &II << Lookup.getLookupName()
252            << FixItHint::CreateReplacement(SourceRange(IILoc),
253                                            Result->getNameAsString());
254        else if (DeclContext *DC = computeDeclContext(*SS, false))
255          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
256            << &II << DC << Lookup.getLookupName() << SS->getRange()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else
260          llvm_unreachable("could not have corrected a typo here");
261
262        Diag(Result->getLocation(), diag::note_previous_decl)
263          << Result->getDeclName();
264
265        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
266        return true;
267      }
268    } else if (Lookup.empty()) {
269      // We corrected to a keyword.
270      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
271      Diag(IILoc, diag::err_unknown_typename_suggest)
272        << &II << Corrected;
273      return true;
274    }
275  }
276
277  if (getLangOptions().CPlusPlus) {
278    // See if II is a class template that the user forgot to pass arguments to.
279    UnqualifiedId Name;
280    Name.setIdentifier(&II, IILoc);
281    CXXScopeSpec EmptySS;
282    TemplateTy TemplateResult;
283    bool MemberOfUnknownSpecialization;
284    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
285                       Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  // ObjCMethodDecls are parsed (for some reason) outside the context
347  // of the class.
348  if (isa<ObjCMethodDecl>(DC))
349    return DC->getLexicalParent()->getLexicalParent();
350
351  return DC->getLexicalParent();
352}
353
354void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
355  assert(getContainingDC(DC) == CurContext &&
356      "The next DeclContext should be lexically contained in the current one.");
357  CurContext = DC;
358  S->setEntity(DC);
359}
360
361void Sema::PopDeclContext() {
362  assert(CurContext && "DeclContext imbalance!");
363
364  CurContext = getContainingDC(CurContext);
365  assert(CurContext && "Popped translation unit!");
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(*I);
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(D);
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523/// \brief Check for this common pattern:
524/// @code
525/// class S {
526///   S(const S&); // DO NOT IMPLEMENT
527///   void operator=(const S&); // DO NOT IMPLEMENT
528/// };
529/// @endcode
530static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
531  // FIXME: Should check for private access too but access is set after we get
532  // the decl here.
533  if (D->isThisDeclarationADefinition())
534    return false;
535
536  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
537    return CD->isCopyConstructor();
538  return D->isCopyAssignment();
539}
540
541bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
542  assert(D);
543
544  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
545    return false;
546
547  // Ignore class templates.
548  if (D->getDeclContext()->isDependentContext())
549    return false;
550
551  // We warn for unused decls internal to the translation unit.
552  if (D->getLinkage() == ExternalLinkage)
553    return false;
554
555  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
556    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
557      return false;
558
559    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
560      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
561        return false;
562    } else {
563      // 'static inline' functions are used in headers; don't warn.
564      if (FD->getStorageClass() == FunctionDecl::Static &&
565          FD->isInlineSpecified())
566        return false;
567    }
568
569    if (FD->isThisDeclarationADefinition())
570      return !Context.DeclMustBeEmitted(FD);
571    return true;
572  }
573
574  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
575    if (VD->isStaticDataMember() &&
576        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
577      return false;
578
579    if ( VD->isFileVarDecl() &&
580        !VD->getType().isConstant(Context))
581      return !Context.DeclMustBeEmitted(VD);
582  }
583
584   return false;
585 }
586
587 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
588  if (!D)
589    return;
590
591  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
592    const FunctionDecl *First = FD->getFirstDeclaration();
593    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
594      return; // First should already be in the vector.
595  }
596
597  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
598    const VarDecl *First = VD->getFirstDeclaration();
599    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
600      return; // First should already be in the vector.
601  }
602
603   if (ShouldWarnIfUnusedFileScopedDecl(D))
604     UnusedFileScopedDecls.push_back(D);
605 }
606
607static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
608  if (D->isInvalidDecl())
609    return false;
610
611  if (D->isUsed() || D->hasAttr<UnusedAttr>())
612    return false;
613
614  // White-list anything that isn't a local variable.
615  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
616      !D->getDeclContext()->isFunctionOrMethod())
617    return false;
618
619  // Types of valid local variables should be complete, so this should succeed.
620  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
621
622    // White-list anything with an __attribute__((unused)) type.
623    QualType Ty = VD->getType();
624
625    // Only look at the outermost level of typedef.
626    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
627      if (TT->getDecl()->hasAttr<UnusedAttr>())
628        return false;
629    }
630
631    // If we failed to complete the type for some reason, or if the type is
632    // dependent, don't diagnose the variable.
633    if (Ty->isIncompleteType() || Ty->isDependentType())
634      return false;
635
636    if (const TagType *TT = Ty->getAs<TagType>()) {
637      const TagDecl *Tag = TT->getDecl();
638      if (Tag->hasAttr<UnusedAttr>())
639        return false;
640
641      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
642        // FIXME: Checking for the presence of a user-declared constructor
643        // isn't completely accurate; we'd prefer to check that the initializer
644        // has no side effects.
645        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
646          return false;
647      }
648    }
649
650    // TODO: __attribute__((unused)) templates?
651  }
652
653  return true;
654}
655
656void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
657  if (!ShouldDiagnoseUnusedDecl(D))
658    return;
659
660  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
661    Diag(D->getLocation(), diag::warn_unused_exception_param)
662    << D->getDeclName();
663  else
664    Diag(D->getLocation(), diag::warn_unused_variable)
665    << D->getDeclName();
666}
667
668void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
669  if (S->decl_empty()) return;
670  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
671         "Scope shouldn't contain decls!");
672
673  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
674       I != E; ++I) {
675    Decl *TmpD = (*I);
676    assert(TmpD && "This decl didn't get pushed??");
677
678    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
679    NamedDecl *D = cast<NamedDecl>(TmpD);
680
681    if (!D->getDeclName()) continue;
682
683    // Diagnose unused variables in this scope.
684    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
685      DiagnoseUnusedDecl(D);
686
687    // Remove this name from our lexical scope.
688    IdResolver.RemoveDecl(D);
689  }
690}
691
692/// \brief Look for an Objective-C class in the translation unit.
693///
694/// \param Id The name of the Objective-C class we're looking for. If
695/// typo-correction fixes this name, the Id will be updated
696/// to the fixed name.
697///
698/// \param IdLoc The location of the name in the translation unit.
699///
700/// \param TypoCorrection If true, this routine will attempt typo correction
701/// if there is no class with the given name.
702///
703/// \returns The declaration of the named Objective-C class, or NULL if the
704/// class could not be found.
705ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
706                                              SourceLocation IdLoc,
707                                              bool TypoCorrection) {
708  // The third "scope" argument is 0 since we aren't enabling lazy built-in
709  // creation from this context.
710  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
711
712  if (!IDecl && TypoCorrection) {
713    // Perform typo correction at the given location, but only if we
714    // find an Objective-C class name.
715    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
716    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
717        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
718      Diag(IdLoc, diag::err_undef_interface_suggest)
719        << Id << IDecl->getDeclName()
720        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
721      Diag(IDecl->getLocation(), diag::note_previous_decl)
722        << IDecl->getDeclName();
723
724      Id = IDecl->getIdentifier();
725    }
726  }
727
728  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
729}
730
731/// getNonFieldDeclScope - Retrieves the innermost scope, starting
732/// from S, where a non-field would be declared. This routine copes
733/// with the difference between C and C++ scoping rules in structs and
734/// unions. For example, the following code is well-formed in C but
735/// ill-formed in C++:
736/// @code
737/// struct S6 {
738///   enum { BAR } e;
739/// };
740///
741/// void test_S6() {
742///   struct S6 a;
743///   a.e = BAR;
744/// }
745/// @endcode
746/// For the declaration of BAR, this routine will return a different
747/// scope. The scope S will be the scope of the unnamed enumeration
748/// within S6. In C++, this routine will return the scope associated
749/// with S6, because the enumeration's scope is a transparent
750/// context but structures can contain non-field names. In C, this
751/// routine will return the translation unit scope, since the
752/// enumeration's scope is a transparent context and structures cannot
753/// contain non-field names.
754Scope *Sema::getNonFieldDeclScope(Scope *S) {
755  while (((S->getFlags() & Scope::DeclScope) == 0) ||
756         (S->getEntity() &&
757          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
758         (S->isClassScope() && !getLangOptions().CPlusPlus))
759    S = S->getParent();
760  return S;
761}
762
763void Sema::InitBuiltinVaListType() {
764  if (!Context.getBuiltinVaListType().isNull())
765    return;
766
767  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
768  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
769                                       LookupOrdinaryName, ForRedeclaration);
770  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
771  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  if (Context.BuiltinInfo.hasVAListUse(BID))
784    InitBuiltinVaListType();
785
786  ASTContext::GetBuiltinTypeError Error;
787  QualType R = Context.GetBuiltinType(BID, Error);
788  switch (Error) {
789  case ASTContext::GE_None:
790    // Okay
791    break;
792
793  case ASTContext::GE_Missing_stdio:
794    if (ForRedeclaration)
795      Diag(Loc, diag::err_implicit_decl_requires_stdio)
796        << Context.BuiltinInfo.GetName(BID);
797    return 0;
798
799  case ASTContext::GE_Missing_setjmp:
800    if (ForRedeclaration)
801      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
802        << Context.BuiltinInfo.GetName(BID);
803    return 0;
804  }
805
806  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
807    Diag(Loc, diag::ext_implicit_lib_function_decl)
808      << Context.BuiltinInfo.GetName(BID)
809      << R;
810    if (Context.BuiltinInfo.getHeaderName(BID) &&
811        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
812          != Diagnostic::Ignored)
813      Diag(Loc, diag::note_please_include_header)
814        << Context.BuiltinInfo.getHeaderName(BID)
815        << Context.BuiltinInfo.GetName(BID);
816  }
817
818  FunctionDecl *New = FunctionDecl::Create(Context,
819                                           Context.getTranslationUnitDecl(),
820                                           Loc, II, R, /*TInfo=*/0,
821                                           FunctionDecl::Extern,
822                                           FunctionDecl::None, false,
823                                           /*hasPrototype=*/true);
824  New->setImplicit();
825
826  // Create Decl objects for each parameter, adding them to the
827  // FunctionDecl.
828  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
829    llvm::SmallVector<ParmVarDecl*, 16> Params;
830    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
831      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
832                                           FT->getArgType(i), /*TInfo=*/0,
833                                           VarDecl::None, VarDecl::None, 0));
834    New->setParams(Params.data(), Params.size());
835  }
836
837  AddKnownFunctionAttributes(New);
838
839  // TUScope is the translation-unit scope to insert this function into.
840  // FIXME: This is hideous. We need to teach PushOnScopeChains to
841  // relate Scopes to DeclContexts, and probably eliminate CurContext
842  // entirely, but we're not there yet.
843  DeclContext *SavedContext = CurContext;
844  CurContext = Context.getTranslationUnitDecl();
845  PushOnScopeChains(New, TUScope);
846  CurContext = SavedContext;
847  return New;
848}
849
850/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
851/// same name and scope as a previous declaration 'Old'.  Figure out
852/// how to resolve this situation, merging decls or emitting
853/// diagnostics as appropriate. If there was an error, set New to be invalid.
854///
855void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
856  // If the new decl is known invalid already, don't bother doing any
857  // merging checks.
858  if (New->isInvalidDecl()) return;
859
860  // Allow multiple definitions for ObjC built-in typedefs.
861  // FIXME: Verify the underlying types are equivalent!
862  if (getLangOptions().ObjC1) {
863    const IdentifierInfo *TypeID = New->getIdentifier();
864    switch (TypeID->getLength()) {
865    default: break;
866    case 2:
867      if (!TypeID->isStr("id"))
868        break;
869      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
870      // Install the built-in type for 'id', ignoring the current definition.
871      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
872      return;
873    case 5:
874      if (!TypeID->isStr("Class"))
875        break;
876      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
877      // Install the built-in type for 'Class', ignoring the current definition.
878      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
879      return;
880    case 3:
881      if (!TypeID->isStr("SEL"))
882        break;
883      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
884      // Install the built-in type for 'SEL', ignoring the current definition.
885      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
886      return;
887    case 8:
888      if (!TypeID->isStr("Protocol"))
889        break;
890      Context.setObjCProtoType(New->getUnderlyingType());
891      return;
892    }
893    // Fall through - the typedef name was not a builtin type.
894  }
895
896  // Verify the old decl was also a type.
897  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
898  if (!Old) {
899    Diag(New->getLocation(), diag::err_redefinition_different_kind)
900      << New->getDeclName();
901
902    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
903    if (OldD->getLocation().isValid())
904      Diag(OldD->getLocation(), diag::note_previous_definition);
905
906    return New->setInvalidDecl();
907  }
908
909  // If the old declaration is invalid, just give up here.
910  if (Old->isInvalidDecl())
911    return New->setInvalidDecl();
912
913  // Determine the "old" type we'll use for checking and diagnostics.
914  QualType OldType;
915  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
916    OldType = OldTypedef->getUnderlyingType();
917  else
918    OldType = Context.getTypeDeclType(Old);
919
920  // If the typedef types are not identical, reject them in all languages and
921  // with any extensions enabled.
922
923  if (OldType != New->getUnderlyingType() &&
924      Context.getCanonicalType(OldType) !=
925      Context.getCanonicalType(New->getUnderlyingType())) {
926    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
927      << New->getUnderlyingType() << OldType;
928    if (Old->getLocation().isValid())
929      Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932
933  // The types match.  Link up the redeclaration chain if the old
934  // declaration was a typedef.
935  // FIXME: this is a potential source of wierdness if the type
936  // spellings don't match exactly.
937  if (isa<TypedefDecl>(Old))
938    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
939
940  if (getLangOptions().Microsoft)
941    return;
942
943  if (getLangOptions().CPlusPlus) {
944    // C++ [dcl.typedef]p2:
945    //   In a given non-class scope, a typedef specifier can be used to
946    //   redefine the name of any type declared in that scope to refer
947    //   to the type to which it already refers.
948    if (!isa<CXXRecordDecl>(CurContext))
949      return;
950
951    // C++0x [dcl.typedef]p4:
952    //   In a given class scope, a typedef specifier can be used to redefine
953    //   any class-name declared in that scope that is not also a typedef-name
954    //   to refer to the type to which it already refers.
955    //
956    // This wording came in via DR424, which was a correction to the
957    // wording in DR56, which accidentally banned code like:
958    //
959    //   struct S {
960    //     typedef struct A { } A;
961    //   };
962    //
963    // in the C++03 standard. We implement the C++0x semantics, which
964    // allow the above but disallow
965    //
966    //   struct S {
967    //     typedef int I;
968    //     typedef int I;
969    //   };
970    //
971    // since that was the intent of DR56.
972    if (!isa<TypedefDecl >(Old))
973      return;
974
975    Diag(New->getLocation(), diag::err_redefinition)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980
981  // If we have a redefinition of a typedef in C, emit a warning.  This warning
982  // is normally mapped to an error, but can be controlled with
983  // -Wtypedef-redefinition.  If either the original or the redefinition is
984  // in a system header, don't emit this for compatibility with GCC.
985  if (getDiagnostics().getSuppressSystemWarnings() &&
986      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
987       Context.getSourceManager().isInSystemHeader(New->getLocation())))
988    return;
989
990  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
991    << New->getDeclName();
992  Diag(Old->getLocation(), diag::note_previous_definition);
993  return;
994}
995
996/// DeclhasAttr - returns true if decl Declaration already has the target
997/// attribute.
998static bool
999DeclHasAttr(const Decl *D, const Attr *A) {
1000  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1001  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1002    if ((*i)->getKind() == A->getKind()) {
1003      // FIXME: Don't hardcode this check
1004      if (OA && isa<OwnershipAttr>(*i))
1005        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1006      return true;
1007    }
1008
1009  return false;
1010}
1011
1012/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1013static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1014  if (!Old->hasAttrs())
1015    return;
1016  // Ensure that any moving of objects within the allocated map is done before
1017  // we process them.
1018  if (!New->hasAttrs())
1019    New->setAttrs(AttrVec());
1020  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1021       ++i) {
1022    // FIXME: Make this more general than just checking for Overloadable.
1023    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1024      Attr *NewAttr = (*i)->clone(C);
1025      NewAttr->setInherited(true);
1026      New->addAttr(NewAttr);
1027    }
1028  }
1029}
1030
1031namespace {
1032
1033/// Used in MergeFunctionDecl to keep track of function parameters in
1034/// C.
1035struct GNUCompatibleParamWarning {
1036  ParmVarDecl *OldParm;
1037  ParmVarDecl *NewParm;
1038  QualType PromotedType;
1039};
1040
1041}
1042
1043/// getSpecialMember - get the special member enum for a method.
1044Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1045  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1046    if (Ctor->isCopyConstructor())
1047      return Sema::CXXCopyConstructor;
1048
1049    return Sema::CXXConstructor;
1050  }
1051
1052  if (isa<CXXDestructorDecl>(MD))
1053    return Sema::CXXDestructor;
1054
1055  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1056  return Sema::CXXCopyAssignment;
1057}
1058
1059/// canRedefineFunction - checks if a function can be redefined. Currently,
1060/// only extern inline functions can be redefined, and even then only in
1061/// GNU89 mode.
1062static bool canRedefineFunction(const FunctionDecl *FD,
1063                                const LangOptions& LangOpts) {
1064  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1065          FD->isInlineSpecified() &&
1066          FD->getStorageClass() == FunctionDecl::Extern);
1067}
1068
1069/// MergeFunctionDecl - We just parsed a function 'New' from
1070/// declarator D which has the same name and scope as a previous
1071/// declaration 'Old'.  Figure out how to resolve this situation,
1072/// merging decls or emitting diagnostics as appropriate.
1073///
1074/// In C++, New and Old must be declarations that are not
1075/// overloaded. Use IsOverload to determine whether New and Old are
1076/// overloaded, and to select the Old declaration that New should be
1077/// merged with.
1078///
1079/// Returns true if there was an error, false otherwise.
1080bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1081  // Verify the old decl was also a function.
1082  FunctionDecl *Old = 0;
1083  if (FunctionTemplateDecl *OldFunctionTemplate
1084        = dyn_cast<FunctionTemplateDecl>(OldD))
1085    Old = OldFunctionTemplate->getTemplatedDecl();
1086  else
1087    Old = dyn_cast<FunctionDecl>(OldD);
1088  if (!Old) {
1089    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1090      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1091      Diag(Shadow->getTargetDecl()->getLocation(),
1092           diag::note_using_decl_target);
1093      Diag(Shadow->getUsingDecl()->getLocation(),
1094           diag::note_using_decl) << 0;
1095      return true;
1096    }
1097
1098    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1099      << New->getDeclName();
1100    Diag(OldD->getLocation(), diag::note_previous_definition);
1101    return true;
1102  }
1103
1104  // Determine whether the previous declaration was a definition,
1105  // implicit declaration, or a declaration.
1106  diag::kind PrevDiag;
1107  if (Old->isThisDeclarationADefinition())
1108    PrevDiag = diag::note_previous_definition;
1109  else if (Old->isImplicit())
1110    PrevDiag = diag::note_previous_implicit_declaration;
1111  else
1112    PrevDiag = diag::note_previous_declaration;
1113
1114  QualType OldQType = Context.getCanonicalType(Old->getType());
1115  QualType NewQType = Context.getCanonicalType(New->getType());
1116
1117  // Don't complain about this if we're in GNU89 mode and the old function
1118  // is an extern inline function.
1119  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1120      New->getStorageClass() == FunctionDecl::Static &&
1121      Old->getStorageClass() != FunctionDecl::Static &&
1122      !canRedefineFunction(Old, getLangOptions())) {
1123    Diag(New->getLocation(), diag::err_static_non_static)
1124      << New;
1125    Diag(Old->getLocation(), PrevDiag);
1126    return true;
1127  }
1128
1129  // If a function is first declared with a calling convention, but is
1130  // later declared or defined without one, the second decl assumes the
1131  // calling convention of the first.
1132  //
1133  // For the new decl, we have to look at the NON-canonical type to tell the
1134  // difference between a function that really doesn't have a calling
1135  // convention and one that is declared cdecl. That's because in
1136  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1137  // because it is the default calling convention.
1138  //
1139  // Note also that we DO NOT return at this point, because we still have
1140  // other tests to run.
1141  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1142  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1143  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1144  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1145  if (OldTypeInfo.getCC() != CC_Default &&
1146      NewTypeInfo.getCC() == CC_Default) {
1147    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1148    New->setType(NewQType);
1149    NewQType = Context.getCanonicalType(NewQType);
1150  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1151                                     NewTypeInfo.getCC())) {
1152    // Calling conventions really aren't compatible, so complain.
1153    Diag(New->getLocation(), diag::err_cconv_change)
1154      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1155      << (OldTypeInfo.getCC() == CC_Default)
1156      << (OldTypeInfo.getCC() == CC_Default ? "" :
1157          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1158    Diag(Old->getLocation(), diag::note_previous_declaration);
1159    return true;
1160  }
1161
1162  // FIXME: diagnose the other way around?
1163  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1164    NewQType = Context.getNoReturnType(NewQType);
1165    New->setType(NewQType);
1166    assert(NewQType.isCanonical());
1167  }
1168
1169  // Merge regparm attribute.
1170  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1171    if (NewType->getRegParmType()) {
1172      Diag(New->getLocation(), diag::err_regparm_mismatch)
1173        << NewType->getRegParmType()
1174        << OldType->getRegParmType();
1175      Diag(Old->getLocation(), diag::note_previous_declaration);
1176      return true;
1177    }
1178
1179    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1180    New->setType(NewQType);
1181    assert(NewQType.isCanonical());
1182  }
1183
1184  if (getLangOptions().CPlusPlus) {
1185    // (C++98 13.1p2):
1186    //   Certain function declarations cannot be overloaded:
1187    //     -- Function declarations that differ only in the return type
1188    //        cannot be overloaded.
1189    QualType OldReturnType
1190      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1191    QualType NewReturnType
1192      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1193    QualType ResQT;
1194    if (OldReturnType != NewReturnType) {
1195      if (NewReturnType->isObjCObjectPointerType()
1196          && OldReturnType->isObjCObjectPointerType())
1197        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1198      if (ResQT.isNull()) {
1199        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1200        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1201        return true;
1202      }
1203      else
1204        NewQType = ResQT;
1205    }
1206
1207    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1208    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1209    if (OldMethod && NewMethod) {
1210      // Preserve triviality.
1211      NewMethod->setTrivial(OldMethod->isTrivial());
1212
1213      bool isFriend = NewMethod->getFriendObjectKind();
1214
1215      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1216        //    -- Member function declarations with the same name and the
1217        //       same parameter types cannot be overloaded if any of them
1218        //       is a static member function declaration.
1219        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1220          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1221          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1222          return true;
1223        }
1224
1225        // C++ [class.mem]p1:
1226        //   [...] A member shall not be declared twice in the
1227        //   member-specification, except that a nested class or member
1228        //   class template can be declared and then later defined.
1229        unsigned NewDiag;
1230        if (isa<CXXConstructorDecl>(OldMethod))
1231          NewDiag = diag::err_constructor_redeclared;
1232        else if (isa<CXXDestructorDecl>(NewMethod))
1233          NewDiag = diag::err_destructor_redeclared;
1234        else if (isa<CXXConversionDecl>(NewMethod))
1235          NewDiag = diag::err_conv_function_redeclared;
1236        else
1237          NewDiag = diag::err_member_redeclared;
1238
1239        Diag(New->getLocation(), NewDiag);
1240        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1241
1242      // Complain if this is an explicit declaration of a special
1243      // member that was initially declared implicitly.
1244      //
1245      // As an exception, it's okay to befriend such methods in order
1246      // to permit the implicit constructor/destructor/operator calls.
1247      } else if (OldMethod->isImplicit()) {
1248        if (isFriend) {
1249          NewMethod->setImplicit();
1250        } else {
1251          Diag(NewMethod->getLocation(),
1252               diag::err_definition_of_implicitly_declared_member)
1253            << New << getSpecialMember(OldMethod);
1254          return true;
1255        }
1256      }
1257    }
1258
1259    // (C++98 8.3.5p3):
1260    //   All declarations for a function shall agree exactly in both the
1261    //   return type and the parameter-type-list.
1262    // attributes should be ignored when comparing.
1263    if (Context.getNoReturnType(OldQType, false) ==
1264        Context.getNoReturnType(NewQType, false))
1265      return MergeCompatibleFunctionDecls(New, Old);
1266
1267    // Fall through for conflicting redeclarations and redefinitions.
1268  }
1269
1270  // C: Function types need to be compatible, not identical. This handles
1271  // duplicate function decls like "void f(int); void f(enum X);" properly.
1272  if (!getLangOptions().CPlusPlus &&
1273      Context.typesAreCompatible(OldQType, NewQType)) {
1274    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1275    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1276    const FunctionProtoType *OldProto = 0;
1277    if (isa<FunctionNoProtoType>(NewFuncType) &&
1278        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1279      // The old declaration provided a function prototype, but the
1280      // new declaration does not. Merge in the prototype.
1281      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1282      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1283                                                 OldProto->arg_type_end());
1284      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1285                                         ParamTypes.data(), ParamTypes.size(),
1286                                         OldProto->isVariadic(),
1287                                         OldProto->getTypeQuals(),
1288                                         false, false, 0, 0,
1289                                         OldProto->getExtInfo());
1290      New->setType(NewQType);
1291      New->setHasInheritedPrototype();
1292
1293      // Synthesize a parameter for each argument type.
1294      llvm::SmallVector<ParmVarDecl*, 16> Params;
1295      for (FunctionProtoType::arg_type_iterator
1296             ParamType = OldProto->arg_type_begin(),
1297             ParamEnd = OldProto->arg_type_end();
1298           ParamType != ParamEnd; ++ParamType) {
1299        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1300                                                 SourceLocation(), 0,
1301                                                 *ParamType, /*TInfo=*/0,
1302                                                 VarDecl::None, VarDecl::None,
1303                                                 0);
1304        Param->setImplicit();
1305        Params.push_back(Param);
1306      }
1307
1308      New->setParams(Params.data(), Params.size());
1309    }
1310
1311    return MergeCompatibleFunctionDecls(New, Old);
1312  }
1313
1314  // GNU C permits a K&R definition to follow a prototype declaration
1315  // if the declared types of the parameters in the K&R definition
1316  // match the types in the prototype declaration, even when the
1317  // promoted types of the parameters from the K&R definition differ
1318  // from the types in the prototype. GCC then keeps the types from
1319  // the prototype.
1320  //
1321  // If a variadic prototype is followed by a non-variadic K&R definition,
1322  // the K&R definition becomes variadic.  This is sort of an edge case, but
1323  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1324  // C99 6.9.1p8.
1325  if (!getLangOptions().CPlusPlus &&
1326      Old->hasPrototype() && !New->hasPrototype() &&
1327      New->getType()->getAs<FunctionProtoType>() &&
1328      Old->getNumParams() == New->getNumParams()) {
1329    llvm::SmallVector<QualType, 16> ArgTypes;
1330    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1331    const FunctionProtoType *OldProto
1332      = Old->getType()->getAs<FunctionProtoType>();
1333    const FunctionProtoType *NewProto
1334      = New->getType()->getAs<FunctionProtoType>();
1335
1336    // Determine whether this is the GNU C extension.
1337    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1338                                               NewProto->getResultType());
1339    bool LooseCompatible = !MergedReturn.isNull();
1340    for (unsigned Idx = 0, End = Old->getNumParams();
1341         LooseCompatible && Idx != End; ++Idx) {
1342      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1343      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1344      if (Context.typesAreCompatible(OldParm->getType(),
1345                                     NewProto->getArgType(Idx))) {
1346        ArgTypes.push_back(NewParm->getType());
1347      } else if (Context.typesAreCompatible(OldParm->getType(),
1348                                            NewParm->getType(),
1349                                            /*CompareUnqualified=*/true)) {
1350        GNUCompatibleParamWarning Warn
1351          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1352        Warnings.push_back(Warn);
1353        ArgTypes.push_back(NewParm->getType());
1354      } else
1355        LooseCompatible = false;
1356    }
1357
1358    if (LooseCompatible) {
1359      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1360        Diag(Warnings[Warn].NewParm->getLocation(),
1361             diag::ext_param_promoted_not_compatible_with_prototype)
1362          << Warnings[Warn].PromotedType
1363          << Warnings[Warn].OldParm->getType();
1364        if (Warnings[Warn].OldParm->getLocation().isValid())
1365          Diag(Warnings[Warn].OldParm->getLocation(),
1366               diag::note_previous_declaration);
1367      }
1368
1369      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1370                                           ArgTypes.size(),
1371                                           OldProto->isVariadic(), 0,
1372                                           false, false, 0, 0,
1373                                           OldProto->getExtInfo()));
1374      return MergeCompatibleFunctionDecls(New, Old);
1375    }
1376
1377    // Fall through to diagnose conflicting types.
1378  }
1379
1380  // A function that has already been declared has been redeclared or defined
1381  // with a different type- show appropriate diagnostic
1382  if (unsigned BuiltinID = Old->getBuiltinID()) {
1383    // The user has declared a builtin function with an incompatible
1384    // signature.
1385    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1386      // The function the user is redeclaring is a library-defined
1387      // function like 'malloc' or 'printf'. Warn about the
1388      // redeclaration, then pretend that we don't know about this
1389      // library built-in.
1390      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1391      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1392        << Old << Old->getType();
1393      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1394      Old->setInvalidDecl();
1395      return false;
1396    }
1397
1398    PrevDiag = diag::note_previous_builtin_declaration;
1399  }
1400
1401  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1402  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1403  return true;
1404}
1405
1406/// \brief Completes the merge of two function declarations that are
1407/// known to be compatible.
1408///
1409/// This routine handles the merging of attributes and other
1410/// properties of function declarations form the old declaration to
1411/// the new declaration, once we know that New is in fact a
1412/// redeclaration of Old.
1413///
1414/// \returns false
1415bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1416  // Merge the attributes
1417  MergeDeclAttributes(New, Old, Context);
1418
1419  // Merge the storage class.
1420  if (Old->getStorageClass() != FunctionDecl::Extern &&
1421      Old->getStorageClass() != FunctionDecl::None)
1422    New->setStorageClass(Old->getStorageClass());
1423
1424  // Merge "pure" flag.
1425  if (Old->isPure())
1426    New->setPure();
1427
1428  // Merge the "deleted" flag.
1429  if (Old->isDeleted())
1430    New->setDeleted();
1431
1432  if (getLangOptions().CPlusPlus)
1433    return MergeCXXFunctionDecl(New, Old);
1434
1435  return false;
1436}
1437
1438/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1439/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1440/// situation, merging decls or emitting diagnostics as appropriate.
1441///
1442/// Tentative definition rules (C99 6.9.2p2) are checked by
1443/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1444/// definitions here, since the initializer hasn't been attached.
1445///
1446void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1447  // If the new decl is already invalid, don't do any other checking.
1448  if (New->isInvalidDecl())
1449    return;
1450
1451  // Verify the old decl was also a variable.
1452  VarDecl *Old = 0;
1453  if (!Previous.isSingleResult() ||
1454      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1455    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1456      << New->getDeclName();
1457    Diag(Previous.getRepresentativeDecl()->getLocation(),
1458         diag::note_previous_definition);
1459    return New->setInvalidDecl();
1460  }
1461
1462  MergeDeclAttributes(New, Old, Context);
1463
1464  // Merge the types
1465  QualType MergedT;
1466  if (getLangOptions().CPlusPlus) {
1467    if (Context.hasSameType(New->getType(), Old->getType()))
1468      MergedT = New->getType();
1469    // C++ [basic.link]p10:
1470    //   [...] the types specified by all declarations referring to a given
1471    //   object or function shall be identical, except that declarations for an
1472    //   array object can specify array types that differ by the presence or
1473    //   absence of a major array bound (8.3.4).
1474    else if (Old->getType()->isIncompleteArrayType() &&
1475             New->getType()->isArrayType()) {
1476      CanQual<ArrayType> OldArray
1477        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1478      CanQual<ArrayType> NewArray
1479        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1480      if (OldArray->getElementType() == NewArray->getElementType())
1481        MergedT = New->getType();
1482    } else if (Old->getType()->isArrayType() &&
1483             New->getType()->isIncompleteArrayType()) {
1484      CanQual<ArrayType> OldArray
1485        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1486      CanQual<ArrayType> NewArray
1487        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1488      if (OldArray->getElementType() == NewArray->getElementType())
1489        MergedT = Old->getType();
1490    } else if (New->getType()->isObjCObjectPointerType()
1491               && Old->getType()->isObjCObjectPointerType()) {
1492        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1493    }
1494  } else {
1495    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1496  }
1497  if (MergedT.isNull()) {
1498    Diag(New->getLocation(), diag::err_redefinition_different_type)
1499      << New->getDeclName();
1500    Diag(Old->getLocation(), diag::note_previous_definition);
1501    return New->setInvalidDecl();
1502  }
1503  New->setType(MergedT);
1504
1505  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1506  if (New->getStorageClass() == VarDecl::Static &&
1507      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1508    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  // C99 6.2.2p4:
1513  //   For an identifier declared with the storage-class specifier
1514  //   extern in a scope in which a prior declaration of that
1515  //   identifier is visible,23) if the prior declaration specifies
1516  //   internal or external linkage, the linkage of the identifier at
1517  //   the later declaration is the same as the linkage specified at
1518  //   the prior declaration. If no prior declaration is visible, or
1519  //   if the prior declaration specifies no linkage, then the
1520  //   identifier has external linkage.
1521  if (New->hasExternalStorage() && Old->hasLinkage())
1522    /* Okay */;
1523  else if (New->getStorageClass() != VarDecl::Static &&
1524           Old->getStorageClass() == VarDecl::Static) {
1525    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1526    Diag(Old->getLocation(), diag::note_previous_definition);
1527    return New->setInvalidDecl();
1528  }
1529
1530  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1531
1532  // FIXME: The test for external storage here seems wrong? We still
1533  // need to check for mismatches.
1534  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1535      // Don't complain about out-of-line definitions of static members.
1536      !(Old->getLexicalDeclContext()->isRecord() &&
1537        !New->getLexicalDeclContext()->isRecord())) {
1538    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1544    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1545    Diag(Old->getLocation(), diag::note_previous_definition);
1546  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1547    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549  }
1550
1551  // C++ doesn't have tentative definitions, so go right ahead and check here.
1552  const VarDecl *Def;
1553  if (getLangOptions().CPlusPlus &&
1554      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1555      (Def = Old->getDefinition())) {
1556    Diag(New->getLocation(), diag::err_redefinition)
1557      << New->getDeclName();
1558    Diag(Def->getLocation(), diag::note_previous_definition);
1559    New->setInvalidDecl();
1560    return;
1561  }
1562  // c99 6.2.2 P4.
1563  // For an identifier declared with the storage-class specifier extern in a
1564  // scope in which a prior declaration of that identifier is visible, if
1565  // the prior declaration specifies internal or external linkage, the linkage
1566  // of the identifier at the later declaration is the same as the linkage
1567  // specified at the prior declaration.
1568  // FIXME. revisit this code.
1569  if (New->hasExternalStorage() &&
1570      Old->getLinkage() == InternalLinkage &&
1571      New->getDeclContext() == Old->getDeclContext())
1572    New->setStorageClass(Old->getStorageClass());
1573
1574  // Keep a chain of previous declarations.
1575  New->setPreviousDeclaration(Old);
1576
1577  // Inherit access appropriately.
1578  New->setAccess(Old->getAccess());
1579}
1580
1581/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1582/// no declarator (e.g. "struct foo;") is parsed.
1583Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1584                                            DeclSpec &DS) {
1585  // FIXME: Error on auto/register at file scope
1586  // FIXME: Error on inline/virtual/explicit
1587  // FIXME: Warn on useless __thread
1588  // FIXME: Warn on useless const/volatile
1589  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1590  // FIXME: Warn on useless attributes
1591  Decl *TagD = 0;
1592  TagDecl *Tag = 0;
1593  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1594      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1595      DS.getTypeSpecType() == DeclSpec::TST_union ||
1596      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1597    TagD = static_cast<Decl *>(DS.getTypeRep());
1598
1599    if (!TagD) // We probably had an error
1600      return 0;
1601
1602    // Note that the above type specs guarantee that the
1603    // type rep is a Decl, whereas in many of the others
1604    // it's a Type.
1605    Tag = dyn_cast<TagDecl>(TagD);
1606  }
1607
1608  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1609    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1610    // or incomplete types shall not be restrict-qualified."
1611    if (TypeQuals & DeclSpec::TQ_restrict)
1612      Diag(DS.getRestrictSpecLoc(),
1613           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1614           << DS.getSourceRange();
1615  }
1616
1617  if (DS.isFriendSpecified()) {
1618    // If we're dealing with a class template decl, assume that the
1619    // template routines are handling it.
1620    if (TagD && isa<ClassTemplateDecl>(TagD))
1621      return 0;
1622    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1623  }
1624
1625  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1626    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1627
1628    if (!Record->getDeclName() && Record->isDefinition() &&
1629        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1630      if (getLangOptions().CPlusPlus ||
1631          Record->getDeclContext()->isRecord())
1632        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1633
1634      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1635        << DS.getSourceRange();
1636    }
1637
1638    // Microsoft allows unnamed struct/union fields. Don't complain
1639    // about them.
1640    // FIXME: Should we support Microsoft's extensions in this area?
1641    if (Record->getDeclName() && getLangOptions().Microsoft)
1642      return Tag;
1643  }
1644
1645  if (getLangOptions().CPlusPlus &&
1646      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1647    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1648      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1649          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1650        Diag(Enum->getLocation(), diag::ext_no_declarators)
1651          << DS.getSourceRange();
1652
1653  if (!DS.isMissingDeclaratorOk() &&
1654      DS.getTypeSpecType() != DeclSpec::TST_error) {
1655    // Warn about typedefs of enums without names, since this is an
1656    // extension in both Microsoft and GNU.
1657    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1658        Tag && isa<EnumDecl>(Tag)) {
1659      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1660        << DS.getSourceRange();
1661      return Tag;
1662    }
1663
1664    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1665      << DS.getSourceRange();
1666  }
1667
1668  return TagD;
1669}
1670
1671/// We are trying to inject an anonymous member into the given scope;
1672/// check if there's an existing declaration that can't be overloaded.
1673///
1674/// \return true if this is a forbidden redeclaration
1675static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1676                                         Scope *S,
1677                                         DeclContext *Owner,
1678                                         DeclarationName Name,
1679                                         SourceLocation NameLoc,
1680                                         unsigned diagnostic) {
1681  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1682                 Sema::ForRedeclaration);
1683  if (!SemaRef.LookupName(R, S)) return false;
1684
1685  if (R.getAsSingle<TagDecl>())
1686    return false;
1687
1688  // Pick a representative declaration.
1689  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1690  if (PrevDecl && Owner->isRecord()) {
1691    RecordDecl *Record = cast<RecordDecl>(Owner);
1692    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1693      return false;
1694  }
1695
1696  SemaRef.Diag(NameLoc, diagnostic) << Name;
1697  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1698
1699  return true;
1700}
1701
1702/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1703/// anonymous struct or union AnonRecord into the owning context Owner
1704/// and scope S. This routine will be invoked just after we realize
1705/// that an unnamed union or struct is actually an anonymous union or
1706/// struct, e.g.,
1707///
1708/// @code
1709/// union {
1710///   int i;
1711///   float f;
1712/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1713///    // f into the surrounding scope.x
1714/// @endcode
1715///
1716/// This routine is recursive, injecting the names of nested anonymous
1717/// structs/unions into the owning context and scope as well.
1718static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1719                                                DeclContext *Owner,
1720                                                RecordDecl *AnonRecord,
1721                                                AccessSpecifier AS) {
1722  unsigned diagKind
1723    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1724                            : diag::err_anonymous_struct_member_redecl;
1725
1726  bool Invalid = false;
1727  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1728                               FEnd = AnonRecord->field_end();
1729       F != FEnd; ++F) {
1730    if ((*F)->getDeclName()) {
1731      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1732                                       (*F)->getLocation(), diagKind)) {
1733        // C++ [class.union]p2:
1734        //   The names of the members of an anonymous union shall be
1735        //   distinct from the names of any other entity in the
1736        //   scope in which the anonymous union is declared.
1737        Invalid = true;
1738      } else {
1739        // C++ [class.union]p2:
1740        //   For the purpose of name lookup, after the anonymous union
1741        //   definition, the members of the anonymous union are
1742        //   considered to have been defined in the scope in which the
1743        //   anonymous union is declared.
1744        Owner->makeDeclVisibleInContext(*F);
1745        S->AddDecl(*F);
1746        SemaRef.IdResolver.AddDecl(*F);
1747
1748        // That includes picking up the appropriate access specifier.
1749        if (AS != AS_none) (*F)->setAccess(AS);
1750      }
1751    } else if (const RecordType *InnerRecordType
1752                 = (*F)->getType()->getAs<RecordType>()) {
1753      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1754      if (InnerRecord->isAnonymousStructOrUnion())
1755        Invalid = Invalid ||
1756          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1757                                              InnerRecord, AS);
1758    }
1759  }
1760
1761  return Invalid;
1762}
1763
1764/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1765/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1766/// illegal input values are mapped to VarDecl::None.
1767static VarDecl::StorageClass
1768StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1769  switch (StorageClassSpec) {
1770  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1771  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1772  case DeclSpec::SCS_static:         return VarDecl::Static;
1773  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1774  case DeclSpec::SCS_register:       return VarDecl::Register;
1775  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1776    // Illegal SCSs map to None: error reporting is up to the caller.
1777  case DeclSpec::SCS_mutable:        // Fall through.
1778  case DeclSpec::SCS_typedef:        return VarDecl::None;
1779  }
1780  llvm_unreachable("unknown storage class specifier");
1781}
1782
1783/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1784/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1785/// illegal input values are mapped to FunctionDecl::None.
1786static FunctionDecl::StorageClass
1787StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1788  switch (StorageClassSpec) {
1789  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1790  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1791  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1792  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1793    // Illegal SCSs map to None: error reporting is up to the caller.
1794  case DeclSpec::SCS_auto:           // Fall through.
1795  case DeclSpec::SCS_mutable:        // Fall through.
1796  case DeclSpec::SCS_register:       // Fall through.
1797  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1798  }
1799  llvm_unreachable("unknown storage class specifier");
1800}
1801
1802/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1803/// anonymous structure or union. Anonymous unions are a C++ feature
1804/// (C++ [class.union]) and a GNU C extension; anonymous structures
1805/// are a GNU C and GNU C++ extension.
1806Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1807                                             AccessSpecifier AS,
1808                                             RecordDecl *Record) {
1809  DeclContext *Owner = Record->getDeclContext();
1810
1811  // Diagnose whether this anonymous struct/union is an extension.
1812  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1813    Diag(Record->getLocation(), diag::ext_anonymous_union);
1814  else if (!Record->isUnion())
1815    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1816
1817  // C and C++ require different kinds of checks for anonymous
1818  // structs/unions.
1819  bool Invalid = false;
1820  if (getLangOptions().CPlusPlus) {
1821    const char* PrevSpec = 0;
1822    unsigned DiagID;
1823    // C++ [class.union]p3:
1824    //   Anonymous unions declared in a named namespace or in the
1825    //   global namespace shall be declared static.
1826    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1827        (isa<TranslationUnitDecl>(Owner) ||
1828         (isa<NamespaceDecl>(Owner) &&
1829          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1830      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1831      Invalid = true;
1832
1833      // Recover by adding 'static'.
1834      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1835                             PrevSpec, DiagID);
1836    }
1837    // C++ [class.union]p3:
1838    //   A storage class is not allowed in a declaration of an
1839    //   anonymous union in a class scope.
1840    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1841             isa<RecordDecl>(Owner)) {
1842      Diag(DS.getStorageClassSpecLoc(),
1843           diag::err_anonymous_union_with_storage_spec);
1844      Invalid = true;
1845
1846      // Recover by removing the storage specifier.
1847      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1848                             PrevSpec, DiagID);
1849    }
1850
1851    // C++ [class.union]p2:
1852    //   The member-specification of an anonymous union shall only
1853    //   define non-static data members. [Note: nested types and
1854    //   functions cannot be declared within an anonymous union. ]
1855    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1856                                 MemEnd = Record->decls_end();
1857         Mem != MemEnd; ++Mem) {
1858      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1859        // C++ [class.union]p3:
1860        //   An anonymous union shall not have private or protected
1861        //   members (clause 11).
1862        assert(FD->getAccess() != AS_none);
1863        if (FD->getAccess() != AS_public) {
1864          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1865            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1866          Invalid = true;
1867        }
1868
1869        if (CheckNontrivialField(FD))
1870          Invalid = true;
1871      } else if ((*Mem)->isImplicit()) {
1872        // Any implicit members are fine.
1873      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1874        // This is a type that showed up in an
1875        // elaborated-type-specifier inside the anonymous struct or
1876        // union, but which actually declares a type outside of the
1877        // anonymous struct or union. It's okay.
1878      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1879        if (!MemRecord->isAnonymousStructOrUnion() &&
1880            MemRecord->getDeclName()) {
1881          // This is a nested type declaration.
1882          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1883            << (int)Record->isUnion();
1884          Invalid = true;
1885        }
1886      } else if (isa<AccessSpecDecl>(*Mem)) {
1887        // Any access specifier is fine.
1888      } else {
1889        // We have something that isn't a non-static data
1890        // member. Complain about it.
1891        unsigned DK = diag::err_anonymous_record_bad_member;
1892        if (isa<TypeDecl>(*Mem))
1893          DK = diag::err_anonymous_record_with_type;
1894        else if (isa<FunctionDecl>(*Mem))
1895          DK = diag::err_anonymous_record_with_function;
1896        else if (isa<VarDecl>(*Mem))
1897          DK = diag::err_anonymous_record_with_static;
1898        Diag((*Mem)->getLocation(), DK)
1899            << (int)Record->isUnion();
1900          Invalid = true;
1901      }
1902    }
1903  }
1904
1905  if (!Record->isUnion() && !Owner->isRecord()) {
1906    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1907      << (int)getLangOptions().CPlusPlus;
1908    Invalid = true;
1909  }
1910
1911  // Mock up a declarator.
1912  Declarator Dc(DS, Declarator::TypeNameContext);
1913  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1914  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1915
1916  // Create a declaration for this anonymous struct/union.
1917  NamedDecl *Anon = 0;
1918  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1919    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1920                             /*IdentifierInfo=*/0,
1921                             Context.getTypeDeclType(Record),
1922                             TInfo,
1923                             /*BitWidth=*/0, /*Mutable=*/false);
1924    Anon->setAccess(AS);
1925    if (getLangOptions().CPlusPlus) {
1926      FieldCollector->Add(cast<FieldDecl>(Anon));
1927      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1928        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1929    }
1930  } else {
1931    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1932    assert(SCSpec != DeclSpec::SCS_typedef &&
1933           "Parser allowed 'typedef' as storage class VarDecl.");
1934    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1935    if (SCSpec == DeclSpec::SCS_mutable) {
1936      // mutable can only appear on non-static class members, so it's always
1937      // an error here
1938      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1939      Invalid = true;
1940      SC = VarDecl::None;
1941    }
1942    SCSpec = DS.getStorageClassSpecAsWritten();
1943    VarDecl::StorageClass SCAsWritten
1944      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1945
1946    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1947                           /*IdentifierInfo=*/0,
1948                           Context.getTypeDeclType(Record),
1949                           TInfo, SC, SCAsWritten);
1950  }
1951  Anon->setImplicit();
1952
1953  // Add the anonymous struct/union object to the current
1954  // context. We'll be referencing this object when we refer to one of
1955  // its members.
1956  Owner->addDecl(Anon);
1957
1958  // Inject the members of the anonymous struct/union into the owning
1959  // context and into the identifier resolver chain for name lookup
1960  // purposes.
1961  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1962    Invalid = true;
1963
1964  // Mark this as an anonymous struct/union type. Note that we do not
1965  // do this until after we have already checked and injected the
1966  // members of this anonymous struct/union type, because otherwise
1967  // the members could be injected twice: once by DeclContext when it
1968  // builds its lookup table, and once by
1969  // InjectAnonymousStructOrUnionMembers.
1970  Record->setAnonymousStructOrUnion(true);
1971
1972  if (Invalid)
1973    Anon->setInvalidDecl();
1974
1975  return Anon;
1976}
1977
1978
1979/// GetNameForDeclarator - Determine the full declaration name for the
1980/// given Declarator.
1981DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1982  return GetNameFromUnqualifiedId(D.getName());
1983}
1984
1985/// \brief Retrieves the declaration name from a parsed unqualified-id.
1986DeclarationNameInfo
1987Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1988  DeclarationNameInfo NameInfo;
1989  NameInfo.setLoc(Name.StartLocation);
1990
1991  switch (Name.getKind()) {
1992
1993  case UnqualifiedId::IK_Identifier:
1994    NameInfo.setName(Name.Identifier);
1995    NameInfo.setLoc(Name.StartLocation);
1996    return NameInfo;
1997
1998  case UnqualifiedId::IK_OperatorFunctionId:
1999    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2000                                           Name.OperatorFunctionId.Operator));
2001    NameInfo.setLoc(Name.StartLocation);
2002    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2003      = Name.OperatorFunctionId.SymbolLocations[0];
2004    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2005      = Name.EndLocation.getRawEncoding();
2006    return NameInfo;
2007
2008  case UnqualifiedId::IK_LiteralOperatorId:
2009    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2010                                                           Name.Identifier));
2011    NameInfo.setLoc(Name.StartLocation);
2012    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2013    return NameInfo;
2014
2015  case UnqualifiedId::IK_ConversionFunctionId: {
2016    TypeSourceInfo *TInfo;
2017    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2018    if (Ty.isNull())
2019      return DeclarationNameInfo();
2020    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2021                                               Context.getCanonicalType(Ty)));
2022    NameInfo.setLoc(Name.StartLocation);
2023    NameInfo.setNamedTypeInfo(TInfo);
2024    return NameInfo;
2025  }
2026
2027  case UnqualifiedId::IK_ConstructorName: {
2028    TypeSourceInfo *TInfo;
2029    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2030    if (Ty.isNull())
2031      return DeclarationNameInfo();
2032    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2033                                              Context.getCanonicalType(Ty)));
2034    NameInfo.setLoc(Name.StartLocation);
2035    NameInfo.setNamedTypeInfo(TInfo);
2036    return NameInfo;
2037  }
2038
2039  case UnqualifiedId::IK_ConstructorTemplateId: {
2040    // In well-formed code, we can only have a constructor
2041    // template-id that refers to the current context, so go there
2042    // to find the actual type being constructed.
2043    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2044    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2045      return DeclarationNameInfo();
2046
2047    // Determine the type of the class being constructed.
2048    QualType CurClassType = Context.getTypeDeclType(CurClass);
2049
2050    // FIXME: Check two things: that the template-id names the same type as
2051    // CurClassType, and that the template-id does not occur when the name
2052    // was qualified.
2053
2054    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2055                                    Context.getCanonicalType(CurClassType)));
2056    NameInfo.setLoc(Name.StartLocation);
2057    // FIXME: should we retrieve TypeSourceInfo?
2058    NameInfo.setNamedTypeInfo(0);
2059    return NameInfo;
2060  }
2061
2062  case UnqualifiedId::IK_DestructorName: {
2063    TypeSourceInfo *TInfo;
2064    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2065    if (Ty.isNull())
2066      return DeclarationNameInfo();
2067    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2068                                              Context.getCanonicalType(Ty)));
2069    NameInfo.setLoc(Name.StartLocation);
2070    NameInfo.setNamedTypeInfo(TInfo);
2071    return NameInfo;
2072  }
2073
2074  case UnqualifiedId::IK_TemplateId: {
2075    TemplateName TName
2076      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2077    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2078    return Context.getNameForTemplate(TName, TNameLoc);
2079  }
2080
2081  } // switch (Name.getKind())
2082
2083  assert(false && "Unknown name kind");
2084  return DeclarationNameInfo();
2085}
2086
2087/// isNearlyMatchingFunction - Determine whether the C++ functions
2088/// Declaration and Definition are "nearly" matching. This heuristic
2089/// is used to improve diagnostics in the case where an out-of-line
2090/// function definition doesn't match any declaration within
2091/// the class or namespace.
2092static bool isNearlyMatchingFunction(ASTContext &Context,
2093                                     FunctionDecl *Declaration,
2094                                     FunctionDecl *Definition) {
2095  if (Declaration->param_size() != Definition->param_size())
2096    return false;
2097  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2098    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2099    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2100
2101    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2102                                        DefParamTy.getNonReferenceType()))
2103      return false;
2104  }
2105
2106  return true;
2107}
2108
2109/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2110/// declarator needs to be rebuilt in the current instantiation.
2111/// Any bits of declarator which appear before the name are valid for
2112/// consideration here.  That's specifically the type in the decl spec
2113/// and the base type in any member-pointer chunks.
2114static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2115                                                    DeclarationName Name) {
2116  // The types we specifically need to rebuild are:
2117  //   - typenames, typeofs, and decltypes
2118  //   - types which will become injected class names
2119  // Of course, we also need to rebuild any type referencing such a
2120  // type.  It's safest to just say "dependent", but we call out a
2121  // few cases here.
2122
2123  DeclSpec &DS = D.getMutableDeclSpec();
2124  switch (DS.getTypeSpecType()) {
2125  case DeclSpec::TST_typename:
2126  case DeclSpec::TST_typeofType:
2127  case DeclSpec::TST_typeofExpr:
2128  case DeclSpec::TST_decltype: {
2129    // Grab the type from the parser.
2130    TypeSourceInfo *TSI = 0;
2131    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2132    if (T.isNull() || !T->isDependentType()) break;
2133
2134    // Make sure there's a type source info.  This isn't really much
2135    // of a waste; most dependent types should have type source info
2136    // attached already.
2137    if (!TSI)
2138      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2139
2140    // Rebuild the type in the current instantiation.
2141    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2142    if (!TSI) return true;
2143
2144    // Store the new type back in the decl spec.
2145    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2146    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2147    break;
2148  }
2149
2150  default:
2151    // Nothing to do for these decl specs.
2152    break;
2153  }
2154
2155  // It doesn't matter what order we do this in.
2156  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2157    DeclaratorChunk &Chunk = D.getTypeObject(I);
2158
2159    // The only type information in the declarator which can come
2160    // before the declaration name is the base type of a member
2161    // pointer.
2162    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2163      continue;
2164
2165    // Rebuild the scope specifier in-place.
2166    CXXScopeSpec &SS = Chunk.Mem.Scope();
2167    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2168      return true;
2169  }
2170
2171  return false;
2172}
2173
2174Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2175                             MultiTemplateParamsArg TemplateParamLists,
2176                             bool IsFunctionDefinition) {
2177  // TODO: consider using NameInfo for diagnostic.
2178  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2179  DeclarationName Name = NameInfo.getName();
2180
2181  // All of these full declarators require an identifier.  If it doesn't have
2182  // one, the ParsedFreeStandingDeclSpec action should be used.
2183  if (!Name) {
2184    if (!D.isInvalidType())  // Reject this if we think it is valid.
2185      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2186           diag::err_declarator_need_ident)
2187        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2188    return 0;
2189  }
2190
2191  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2192  // we find one that is.
2193  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2194         (S->getFlags() & Scope::TemplateParamScope) != 0)
2195    S = S->getParent();
2196
2197  DeclContext *DC = CurContext;
2198  if (D.getCXXScopeSpec().isInvalid())
2199    D.setInvalidType();
2200  else if (D.getCXXScopeSpec().isSet()) {
2201    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2202    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2203    if (!DC) {
2204      // If we could not compute the declaration context, it's because the
2205      // declaration context is dependent but does not refer to a class,
2206      // class template, or class template partial specialization. Complain
2207      // and return early, to avoid the coming semantic disaster.
2208      Diag(D.getIdentifierLoc(),
2209           diag::err_template_qualified_declarator_no_match)
2210        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2211        << D.getCXXScopeSpec().getRange();
2212      return 0;
2213    }
2214
2215    bool IsDependentContext = DC->isDependentContext();
2216
2217    if (!IsDependentContext &&
2218        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2219      return 0;
2220
2221    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2222      Diag(D.getIdentifierLoc(),
2223           diag::err_member_def_undefined_record)
2224        << Name << DC << D.getCXXScopeSpec().getRange();
2225      D.setInvalidType();
2226    }
2227
2228    // Check whether we need to rebuild the type of the given
2229    // declaration in the current instantiation.
2230    if (EnteringContext && IsDependentContext &&
2231        TemplateParamLists.size() != 0) {
2232      ContextRAII SavedContext(*this, DC);
2233      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2234        D.setInvalidType();
2235    }
2236  }
2237
2238  NamedDecl *New;
2239
2240  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2241  QualType R = TInfo->getType();
2242
2243  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2244                        ForRedeclaration);
2245
2246  // See if this is a redefinition of a variable in the same scope.
2247  if (!D.getCXXScopeSpec().isSet()) {
2248    bool IsLinkageLookup = false;
2249
2250    // If the declaration we're planning to build will be a function
2251    // or object with linkage, then look for another declaration with
2252    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2253    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2254      /* Do nothing*/;
2255    else if (R->isFunctionType()) {
2256      if (CurContext->isFunctionOrMethod() ||
2257          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2258        IsLinkageLookup = true;
2259    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2260      IsLinkageLookup = true;
2261    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2262             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2263      IsLinkageLookup = true;
2264
2265    if (IsLinkageLookup)
2266      Previous.clear(LookupRedeclarationWithLinkage);
2267
2268    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2269  } else { // Something like "int foo::x;"
2270    LookupQualifiedName(Previous, DC);
2271
2272    // Don't consider using declarations as previous declarations for
2273    // out-of-line members.
2274    RemoveUsingDecls(Previous);
2275
2276    // C++ 7.3.1.2p2:
2277    // Members (including explicit specializations of templates) of a named
2278    // namespace can also be defined outside that namespace by explicit
2279    // qualification of the name being defined, provided that the entity being
2280    // defined was already declared in the namespace and the definition appears
2281    // after the point of declaration in a namespace that encloses the
2282    // declarations namespace.
2283    //
2284    // Note that we only check the context at this point. We don't yet
2285    // have enough information to make sure that PrevDecl is actually
2286    // the declaration we want to match. For example, given:
2287    //
2288    //   class X {
2289    //     void f();
2290    //     void f(float);
2291    //   };
2292    //
2293    //   void X::f(int) { } // ill-formed
2294    //
2295    // In this case, PrevDecl will point to the overload set
2296    // containing the two f's declared in X, but neither of them
2297    // matches.
2298
2299    // First check whether we named the global scope.
2300    if (isa<TranslationUnitDecl>(DC)) {
2301      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2302        << Name << D.getCXXScopeSpec().getRange();
2303    } else {
2304      DeclContext *Cur = CurContext;
2305      while (isa<LinkageSpecDecl>(Cur))
2306        Cur = Cur->getParent();
2307      if (!Cur->Encloses(DC)) {
2308        // The qualifying scope doesn't enclose the original declaration.
2309        // Emit diagnostic based on current scope.
2310        SourceLocation L = D.getIdentifierLoc();
2311        SourceRange R = D.getCXXScopeSpec().getRange();
2312        if (isa<FunctionDecl>(Cur))
2313          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2314        else
2315          Diag(L, diag::err_invalid_declarator_scope)
2316            << Name << cast<NamedDecl>(DC) << R;
2317        D.setInvalidType();
2318      }
2319    }
2320  }
2321
2322  if (Previous.isSingleResult() &&
2323      Previous.getFoundDecl()->isTemplateParameter()) {
2324    // Maybe we will complain about the shadowed template parameter.
2325    if (!D.isInvalidType())
2326      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2327                                          Previous.getFoundDecl()))
2328        D.setInvalidType();
2329
2330    // Just pretend that we didn't see the previous declaration.
2331    Previous.clear();
2332  }
2333
2334  // In C++, the previous declaration we find might be a tag type
2335  // (class or enum). In this case, the new declaration will hide the
2336  // tag type. Note that this does does not apply if we're declaring a
2337  // typedef (C++ [dcl.typedef]p4).
2338  if (Previous.isSingleTagDecl() &&
2339      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2340    Previous.clear();
2341
2342  bool Redeclaration = false;
2343  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2344    if (TemplateParamLists.size()) {
2345      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2346      return 0;
2347    }
2348
2349    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2350  } else if (R->isFunctionType()) {
2351    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2352                                  move(TemplateParamLists),
2353                                  IsFunctionDefinition, Redeclaration);
2354  } else {
2355    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2356                                  move(TemplateParamLists),
2357                                  Redeclaration);
2358  }
2359
2360  if (New == 0)
2361    return 0;
2362
2363  // If this has an identifier and is not an invalid redeclaration or
2364  // function template specialization, add it to the scope stack.
2365  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2366    PushOnScopeChains(New, S);
2367
2368  return New;
2369}
2370
2371/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2372/// types into constant array types in certain situations which would otherwise
2373/// be errors (for GCC compatibility).
2374static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2375                                                    ASTContext &Context,
2376                                                    bool &SizeIsNegative,
2377                                                    llvm::APSInt &Oversized) {
2378  // This method tries to turn a variable array into a constant
2379  // array even when the size isn't an ICE.  This is necessary
2380  // for compatibility with code that depends on gcc's buggy
2381  // constant expression folding, like struct {char x[(int)(char*)2];}
2382  SizeIsNegative = false;
2383  Oversized = 0;
2384
2385  if (T->isDependentType())
2386    return QualType();
2387
2388  QualifierCollector Qs;
2389  const Type *Ty = Qs.strip(T);
2390
2391  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2392    QualType Pointee = PTy->getPointeeType();
2393    QualType FixedType =
2394        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2395                                            Oversized);
2396    if (FixedType.isNull()) return FixedType;
2397    FixedType = Context.getPointerType(FixedType);
2398    return Qs.apply(FixedType);
2399  }
2400
2401  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2402  if (!VLATy)
2403    return QualType();
2404  // FIXME: We should probably handle this case
2405  if (VLATy->getElementType()->isVariablyModifiedType())
2406    return QualType();
2407
2408  Expr::EvalResult EvalResult;
2409  if (!VLATy->getSizeExpr() ||
2410      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2411      !EvalResult.Val.isInt())
2412    return QualType();
2413
2414  // Check whether the array size is negative.
2415  llvm::APSInt &Res = EvalResult.Val.getInt();
2416  if (Res.isSigned() && Res.isNegative()) {
2417    SizeIsNegative = true;
2418    return QualType();
2419  }
2420
2421  // Check whether the array is too large to be addressed.
2422  unsigned ActiveSizeBits
2423    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2424                                              Res);
2425  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2426    Oversized = Res;
2427    return QualType();
2428  }
2429
2430  return Context.getConstantArrayType(VLATy->getElementType(),
2431                                      Res, ArrayType::Normal, 0);
2432}
2433
2434/// \brief Register the given locally-scoped external C declaration so
2435/// that it can be found later for redeclarations
2436void
2437Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2438                                       const LookupResult &Previous,
2439                                       Scope *S) {
2440  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2441         "Decl is not a locally-scoped decl!");
2442  // Note that we have a locally-scoped external with this name.
2443  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2444
2445  if (!Previous.isSingleResult())
2446    return;
2447
2448  NamedDecl *PrevDecl = Previous.getFoundDecl();
2449
2450  // If there was a previous declaration of this variable, it may be
2451  // in our identifier chain. Update the identifier chain with the new
2452  // declaration.
2453  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2454    // The previous declaration was found on the identifer resolver
2455    // chain, so remove it from its scope.
2456    while (S && !S->isDeclScope(PrevDecl))
2457      S = S->getParent();
2458
2459    if (S)
2460      S->RemoveDecl(PrevDecl);
2461  }
2462}
2463
2464/// \brief Diagnose function specifiers on a declaration of an identifier that
2465/// does not identify a function.
2466void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2467  // FIXME: We should probably indicate the identifier in question to avoid
2468  // confusion for constructs like "inline int a(), b;"
2469  if (D.getDeclSpec().isInlineSpecified())
2470    Diag(D.getDeclSpec().getInlineSpecLoc(),
2471         diag::err_inline_non_function);
2472
2473  if (D.getDeclSpec().isVirtualSpecified())
2474    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2475         diag::err_virtual_non_function);
2476
2477  if (D.getDeclSpec().isExplicitSpecified())
2478    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2479         diag::err_explicit_non_function);
2480}
2481
2482NamedDecl*
2483Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2484                             QualType R,  TypeSourceInfo *TInfo,
2485                             LookupResult &Previous, bool &Redeclaration) {
2486  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2487  if (D.getCXXScopeSpec().isSet()) {
2488    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2489      << D.getCXXScopeSpec().getRange();
2490    D.setInvalidType();
2491    // Pretend we didn't see the scope specifier.
2492    DC = CurContext;
2493    Previous.clear();
2494  }
2495
2496  if (getLangOptions().CPlusPlus) {
2497    // Check that there are no default arguments (C++ only).
2498    CheckExtraCXXDefaultArguments(D);
2499  }
2500
2501  DiagnoseFunctionSpecifiers(D);
2502
2503  if (D.getDeclSpec().isThreadSpecified())
2504    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2505
2506  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2507    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2508      << D.getName().getSourceRange();
2509    return 0;
2510  }
2511
2512  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2513  if (!NewTD) return 0;
2514
2515  // Handle attributes prior to checking for duplicates in MergeVarDecl
2516  ProcessDeclAttributes(S, NewTD, D);
2517
2518  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2519  // then it shall have block scope.
2520  // Note that variably modified types must be fixed before merging the decl so
2521  // that redeclarations will match.
2522  QualType T = NewTD->getUnderlyingType();
2523  if (T->isVariablyModifiedType()) {
2524    setFunctionHasBranchProtectedScope();
2525
2526    if (S->getFnParent() == 0) {
2527      bool SizeIsNegative;
2528      llvm::APSInt Oversized;
2529      QualType FixedTy =
2530          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2531                                              Oversized);
2532      if (!FixedTy.isNull()) {
2533        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2534        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2535      } else {
2536        if (SizeIsNegative)
2537          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2538        else if (T->isVariableArrayType())
2539          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2540        else if (Oversized.getBoolValue())
2541          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2542            << Oversized.toString(10);
2543        else
2544          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2545        NewTD->setInvalidDecl();
2546      }
2547    }
2548  }
2549
2550  // Merge the decl with the existing one if appropriate. If the decl is
2551  // in an outer scope, it isn't the same thing.
2552  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2553  if (!Previous.empty()) {
2554    Redeclaration = true;
2555    MergeTypeDefDecl(NewTD, Previous);
2556  }
2557
2558  // If this is the C FILE type, notify the AST context.
2559  if (IdentifierInfo *II = NewTD->getIdentifier())
2560    if (!NewTD->isInvalidDecl() &&
2561        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2562      if (II->isStr("FILE"))
2563        Context.setFILEDecl(NewTD);
2564      else if (II->isStr("jmp_buf"))
2565        Context.setjmp_bufDecl(NewTD);
2566      else if (II->isStr("sigjmp_buf"))
2567        Context.setsigjmp_bufDecl(NewTD);
2568    }
2569
2570  return NewTD;
2571}
2572
2573/// \brief Determines whether the given declaration is an out-of-scope
2574/// previous declaration.
2575///
2576/// This routine should be invoked when name lookup has found a
2577/// previous declaration (PrevDecl) that is not in the scope where a
2578/// new declaration by the same name is being introduced. If the new
2579/// declaration occurs in a local scope, previous declarations with
2580/// linkage may still be considered previous declarations (C99
2581/// 6.2.2p4-5, C++ [basic.link]p6).
2582///
2583/// \param PrevDecl the previous declaration found by name
2584/// lookup
2585///
2586/// \param DC the context in which the new declaration is being
2587/// declared.
2588///
2589/// \returns true if PrevDecl is an out-of-scope previous declaration
2590/// for a new delcaration with the same name.
2591static bool
2592isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2593                                ASTContext &Context) {
2594  if (!PrevDecl)
2595    return 0;
2596
2597  if (!PrevDecl->hasLinkage())
2598    return false;
2599
2600  if (Context.getLangOptions().CPlusPlus) {
2601    // C++ [basic.link]p6:
2602    //   If there is a visible declaration of an entity with linkage
2603    //   having the same name and type, ignoring entities declared
2604    //   outside the innermost enclosing namespace scope, the block
2605    //   scope declaration declares that same entity and receives the
2606    //   linkage of the previous declaration.
2607    DeclContext *OuterContext = DC->getLookupContext();
2608    if (!OuterContext->isFunctionOrMethod())
2609      // This rule only applies to block-scope declarations.
2610      return false;
2611    else {
2612      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2613      if (PrevOuterContext->isRecord())
2614        // We found a member function: ignore it.
2615        return false;
2616      else {
2617        // Find the innermost enclosing namespace for the new and
2618        // previous declarations.
2619        while (!OuterContext->isFileContext())
2620          OuterContext = OuterContext->getParent();
2621        while (!PrevOuterContext->isFileContext())
2622          PrevOuterContext = PrevOuterContext->getParent();
2623
2624        // The previous declaration is in a different namespace, so it
2625        // isn't the same function.
2626        if (OuterContext->getPrimaryContext() !=
2627            PrevOuterContext->getPrimaryContext())
2628          return false;
2629      }
2630    }
2631  }
2632
2633  return true;
2634}
2635
2636static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2637  CXXScopeSpec &SS = D.getCXXScopeSpec();
2638  if (!SS.isSet()) return;
2639  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2640                       SS.getRange());
2641}
2642
2643NamedDecl*
2644Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2645                              QualType R, TypeSourceInfo *TInfo,
2646                              LookupResult &Previous,
2647                              MultiTemplateParamsArg TemplateParamLists,
2648                              bool &Redeclaration) {
2649  DeclarationName Name = GetNameForDeclarator(D).getName();
2650
2651  // Check that there are no default arguments (C++ only).
2652  if (getLangOptions().CPlusPlus)
2653    CheckExtraCXXDefaultArguments(D);
2654
2655  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2656  assert(SCSpec != DeclSpec::SCS_typedef &&
2657         "Parser allowed 'typedef' as storage class VarDecl.");
2658  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2659  if (SCSpec == DeclSpec::SCS_mutable) {
2660    // mutable can only appear on non-static class members, so it's always
2661    // an error here
2662    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2663    D.setInvalidType();
2664    SC = VarDecl::None;
2665  }
2666  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2667  VarDecl::StorageClass SCAsWritten
2668    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2669
2670  IdentifierInfo *II = Name.getAsIdentifierInfo();
2671  if (!II) {
2672    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2673      << Name.getAsString();
2674    return 0;
2675  }
2676
2677  DiagnoseFunctionSpecifiers(D);
2678
2679  if (!DC->isRecord() && S->getFnParent() == 0) {
2680    // C99 6.9p2: The storage-class specifiers auto and register shall not
2681    // appear in the declaration specifiers in an external declaration.
2682    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2683
2684      // If this is a register variable with an asm label specified, then this
2685      // is a GNU extension.
2686      if (SC == VarDecl::Register && D.getAsmLabel())
2687        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2688      else
2689        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2690      D.setInvalidType();
2691    }
2692  }
2693  if (DC->isRecord() && !CurContext->isRecord()) {
2694    // This is an out-of-line definition of a static data member.
2695    if (SC == VarDecl::Static) {
2696      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2697           diag::err_static_out_of_line)
2698        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2699    } else if (SC == VarDecl::None)
2700      SC = VarDecl::Static;
2701  }
2702  if (SC == VarDecl::Static) {
2703    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2704      if (RD->isLocalClass())
2705        Diag(D.getIdentifierLoc(),
2706             diag::err_static_data_member_not_allowed_in_local_class)
2707          << Name << RD->getDeclName();
2708    }
2709  }
2710
2711  // Match up the template parameter lists with the scope specifier, then
2712  // determine whether we have a template or a template specialization.
2713  bool isExplicitSpecialization = false;
2714  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2715  bool Invalid = false;
2716  if (TemplateParameterList *TemplateParams
2717        = MatchTemplateParametersToScopeSpecifier(
2718                                  D.getDeclSpec().getSourceRange().getBegin(),
2719                                                  D.getCXXScopeSpec(),
2720                        (TemplateParameterList**)TemplateParamLists.get(),
2721                                                   TemplateParamLists.size(),
2722                                                  /*never a friend*/ false,
2723                                                  isExplicitSpecialization,
2724                                                  Invalid)) {
2725    // All but one template parameter lists have been matching.
2726    --NumMatchedTemplateParamLists;
2727
2728    if (TemplateParams->size() > 0) {
2729      // There is no such thing as a variable template.
2730      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2731        << II
2732        << SourceRange(TemplateParams->getTemplateLoc(),
2733                       TemplateParams->getRAngleLoc());
2734      return 0;
2735    } else {
2736      // There is an extraneous 'template<>' for this variable. Complain
2737      // about it, but allow the declaration of the variable.
2738      Diag(TemplateParams->getTemplateLoc(),
2739           diag::err_template_variable_noparams)
2740        << II
2741        << SourceRange(TemplateParams->getTemplateLoc(),
2742                       TemplateParams->getRAngleLoc());
2743
2744      isExplicitSpecialization = true;
2745    }
2746  }
2747
2748  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2749                                   II, R, TInfo, SC, SCAsWritten);
2750
2751  if (D.isInvalidType() || Invalid)
2752    NewVD->setInvalidDecl();
2753
2754  SetNestedNameSpecifier(NewVD, D);
2755
2756  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2757    NewVD->setTemplateParameterListsInfo(Context,
2758                                         NumMatchedTemplateParamLists,
2759                        (TemplateParameterList**)TemplateParamLists.release());
2760  }
2761
2762  if (D.getDeclSpec().isThreadSpecified()) {
2763    if (NewVD->hasLocalStorage())
2764      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2765    else if (!Context.Target.isTLSSupported())
2766      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2767    else
2768      NewVD->setThreadSpecified(true);
2769  }
2770
2771  // Set the lexical context. If the declarator has a C++ scope specifier, the
2772  // lexical context will be different from the semantic context.
2773  NewVD->setLexicalDeclContext(CurContext);
2774
2775  // Handle attributes prior to checking for duplicates in MergeVarDecl
2776  ProcessDeclAttributes(S, NewVD, D);
2777
2778  // Handle GNU asm-label extension (encoded as an attribute).
2779  if (Expr *E = (Expr*) D.getAsmLabel()) {
2780    // The parser guarantees this is a string.
2781    StringLiteral *SE = cast<StringLiteral>(E);
2782    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2783                                                Context, SE->getString()));
2784  }
2785
2786  // Diagnose shadowed variables before filtering for scope.
2787  if (!D.getCXXScopeSpec().isSet())
2788    CheckShadow(S, NewVD, Previous);
2789
2790  // Don't consider existing declarations that are in a different
2791  // scope and are out-of-semantic-context declarations (if the new
2792  // declaration has linkage).
2793  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2794
2795  // Merge the decl with the existing one if appropriate.
2796  if (!Previous.empty()) {
2797    if (Previous.isSingleResult() &&
2798        isa<FieldDecl>(Previous.getFoundDecl()) &&
2799        D.getCXXScopeSpec().isSet()) {
2800      // The user tried to define a non-static data member
2801      // out-of-line (C++ [dcl.meaning]p1).
2802      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2803        << D.getCXXScopeSpec().getRange();
2804      Previous.clear();
2805      NewVD->setInvalidDecl();
2806    }
2807  } else if (D.getCXXScopeSpec().isSet()) {
2808    // No previous declaration in the qualifying scope.
2809    Diag(D.getIdentifierLoc(), diag::err_no_member)
2810      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2811      << D.getCXXScopeSpec().getRange();
2812    NewVD->setInvalidDecl();
2813  }
2814
2815  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2816
2817  // This is an explicit specialization of a static data member. Check it.
2818  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2819      CheckMemberSpecialization(NewVD, Previous))
2820    NewVD->setInvalidDecl();
2821
2822  // attributes declared post-definition are currently ignored
2823  // FIXME: This should be handled in attribute merging, not
2824  // here.
2825  if (Previous.isSingleResult()) {
2826    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2827    if (Def && (Def = Def->getDefinition()) &&
2828        Def != NewVD && D.hasAttributes()) {
2829      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2830      Diag(Def->getLocation(), diag::note_previous_definition);
2831    }
2832  }
2833
2834  // If this is a locally-scoped extern C variable, update the map of
2835  // such variables.
2836  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2837      !NewVD->isInvalidDecl())
2838    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2839
2840  // If there's a #pragma GCC visibility in scope, and this isn't a class
2841  // member, set the visibility of this variable.
2842  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2843    AddPushedVisibilityAttribute(NewVD);
2844
2845  MarkUnusedFileScopedDecl(NewVD);
2846
2847  return NewVD;
2848}
2849
2850/// \brief Diagnose variable or built-in function shadowing.  Implements
2851/// -Wshadow.
2852///
2853/// This method is called whenever a VarDecl is added to a "useful"
2854/// scope.
2855///
2856/// \param S the scope in which the shadowing name is being declared
2857/// \param R the lookup of the name
2858///
2859void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2860  // Return if warning is ignored.
2861  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2862    return;
2863
2864  // Don't diagnose declarations at file scope.  The scope might not
2865  // have a DeclContext if (e.g.) we're parsing a function prototype.
2866  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2867  if (NewDC && NewDC->isFileContext())
2868    return;
2869
2870  // Only diagnose if we're shadowing an unambiguous field or variable.
2871  if (R.getResultKind() != LookupResult::Found)
2872    return;
2873
2874  NamedDecl* ShadowedDecl = R.getFoundDecl();
2875  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2876    return;
2877
2878  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2879
2880  // Only warn about certain kinds of shadowing for class members.
2881  if (NewDC && NewDC->isRecord()) {
2882    // In particular, don't warn about shadowing non-class members.
2883    if (!OldDC->isRecord())
2884      return;
2885
2886    // TODO: should we warn about static data members shadowing
2887    // static data members from base classes?
2888
2889    // TODO: don't diagnose for inaccessible shadowed members.
2890    // This is hard to do perfectly because we might friend the
2891    // shadowing context, but that's just a false negative.
2892  }
2893
2894  // Determine what kind of declaration we're shadowing.
2895  unsigned Kind;
2896  if (isa<RecordDecl>(OldDC)) {
2897    if (isa<FieldDecl>(ShadowedDecl))
2898      Kind = 3; // field
2899    else
2900      Kind = 2; // static data member
2901  } else if (OldDC->isFileContext())
2902    Kind = 1; // global
2903  else
2904    Kind = 0; // local
2905
2906  DeclarationName Name = R.getLookupName();
2907
2908  // Emit warning and note.
2909  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2910  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2911}
2912
2913/// \brief Check -Wshadow without the advantage of a previous lookup.
2914void Sema::CheckShadow(Scope *S, VarDecl *D) {
2915  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2916                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2917  LookupName(R, S);
2918  CheckShadow(S, D, R);
2919}
2920
2921/// \brief Perform semantic checking on a newly-created variable
2922/// declaration.
2923///
2924/// This routine performs all of the type-checking required for a
2925/// variable declaration once it has been built. It is used both to
2926/// check variables after they have been parsed and their declarators
2927/// have been translated into a declaration, and to check variables
2928/// that have been instantiated from a template.
2929///
2930/// Sets NewVD->isInvalidDecl() if an error was encountered.
2931void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2932                                    LookupResult &Previous,
2933                                    bool &Redeclaration) {
2934  // If the decl is already known invalid, don't check it.
2935  if (NewVD->isInvalidDecl())
2936    return;
2937
2938  QualType T = NewVD->getType();
2939
2940  if (T->isObjCObjectType()) {
2941    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2942    return NewVD->setInvalidDecl();
2943  }
2944
2945  // Emit an error if an address space was applied to decl with local storage.
2946  // This includes arrays of objects with address space qualifiers, but not
2947  // automatic variables that point to other address spaces.
2948  // ISO/IEC TR 18037 S5.1.2
2949  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2950    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2951    return NewVD->setInvalidDecl();
2952  }
2953
2954  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2955      && !NewVD->hasAttr<BlocksAttr>())
2956    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2957
2958  bool isVM = T->isVariablyModifiedType();
2959  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2960      NewVD->hasAttr<BlocksAttr>())
2961    setFunctionHasBranchProtectedScope();
2962
2963  if ((isVM && NewVD->hasLinkage()) ||
2964      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2965    bool SizeIsNegative;
2966    llvm::APSInt Oversized;
2967    QualType FixedTy =
2968        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2969                                            Oversized);
2970
2971    if (FixedTy.isNull() && T->isVariableArrayType()) {
2972      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2973      // FIXME: This won't give the correct result for
2974      // int a[10][n];
2975      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2976
2977      if (NewVD->isFileVarDecl())
2978        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2979        << SizeRange;
2980      else if (NewVD->getStorageClass() == VarDecl::Static)
2981        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2982        << SizeRange;
2983      else
2984        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2985        << SizeRange;
2986      return NewVD->setInvalidDecl();
2987    }
2988
2989    if (FixedTy.isNull()) {
2990      if (NewVD->isFileVarDecl())
2991        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2992      else
2993        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2994      return NewVD->setInvalidDecl();
2995    }
2996
2997    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2998    NewVD->setType(FixedTy);
2999  }
3000
3001  if (Previous.empty() && NewVD->isExternC()) {
3002    // Since we did not find anything by this name and we're declaring
3003    // an extern "C" variable, look for a non-visible extern "C"
3004    // declaration with the same name.
3005    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3006      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3007    if (Pos != LocallyScopedExternalDecls.end())
3008      Previous.addDecl(Pos->second);
3009  }
3010
3011  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3012    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3013      << T;
3014    return NewVD->setInvalidDecl();
3015  }
3016
3017  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3018    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3019    return NewVD->setInvalidDecl();
3020  }
3021
3022  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3023    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3024    return NewVD->setInvalidDecl();
3025  }
3026
3027  // Function pointers and references cannot have qualified function type, only
3028  // function pointer-to-members can do that.
3029  QualType Pointee;
3030  unsigned PtrOrRef = 0;
3031  if (const PointerType *Ptr = T->getAs<PointerType>())
3032    Pointee = Ptr->getPointeeType();
3033  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3034    Pointee = Ref->getPointeeType();
3035    PtrOrRef = 1;
3036  }
3037  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3038      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3039    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3040        << PtrOrRef;
3041    return NewVD->setInvalidDecl();
3042  }
3043
3044  if (!Previous.empty()) {
3045    Redeclaration = true;
3046    MergeVarDecl(NewVD, Previous);
3047  }
3048}
3049
3050/// \brief Data used with FindOverriddenMethod
3051struct FindOverriddenMethodData {
3052  Sema *S;
3053  CXXMethodDecl *Method;
3054};
3055
3056/// \brief Member lookup function that determines whether a given C++
3057/// method overrides a method in a base class, to be used with
3058/// CXXRecordDecl::lookupInBases().
3059static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3060                                 CXXBasePath &Path,
3061                                 void *UserData) {
3062  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3063
3064  FindOverriddenMethodData *Data
3065    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3066
3067  DeclarationName Name = Data->Method->getDeclName();
3068
3069  // FIXME: Do we care about other names here too?
3070  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3071    // We really want to find the base class destructor here.
3072    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3073    CanQualType CT = Data->S->Context.getCanonicalType(T);
3074
3075    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3076  }
3077
3078  for (Path.Decls = BaseRecord->lookup(Name);
3079       Path.Decls.first != Path.Decls.second;
3080       ++Path.Decls.first) {
3081    NamedDecl *D = *Path.Decls.first;
3082    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3083      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3084        return true;
3085    }
3086  }
3087
3088  return false;
3089}
3090
3091/// AddOverriddenMethods - See if a method overrides any in the base classes,
3092/// and if so, check that it's a valid override and remember it.
3093void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3094  // Look for virtual methods in base classes that this method might override.
3095  CXXBasePaths Paths;
3096  FindOverriddenMethodData Data;
3097  Data.Method = MD;
3098  Data.S = this;
3099  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3100    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3101         E = Paths.found_decls_end(); I != E; ++I) {
3102      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3103        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3104            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3105            !CheckOverridingFunctionAttributes(MD, OldMD))
3106          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3107      }
3108    }
3109  }
3110}
3111
3112NamedDecl*
3113Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3114                              QualType R, TypeSourceInfo *TInfo,
3115                              LookupResult &Previous,
3116                              MultiTemplateParamsArg TemplateParamLists,
3117                              bool IsFunctionDefinition, bool &Redeclaration) {
3118  assert(R.getTypePtr()->isFunctionType());
3119
3120  // TODO: consider using NameInfo for diagnostic.
3121  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3122  DeclarationName Name = NameInfo.getName();
3123  FunctionDecl::StorageClass SC = FunctionDecl::None;
3124  switch (D.getDeclSpec().getStorageClassSpec()) {
3125  default: assert(0 && "Unknown storage class!");
3126  case DeclSpec::SCS_auto:
3127  case DeclSpec::SCS_register:
3128  case DeclSpec::SCS_mutable:
3129    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3130         diag::err_typecheck_sclass_func);
3131    D.setInvalidType();
3132    break;
3133  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3134  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3135  case DeclSpec::SCS_static: {
3136    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3137      // C99 6.7.1p5:
3138      //   The declaration of an identifier for a function that has
3139      //   block scope shall have no explicit storage-class specifier
3140      //   other than extern
3141      // See also (C++ [dcl.stc]p4).
3142      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3143           diag::err_static_block_func);
3144      SC = FunctionDecl::None;
3145    } else
3146      SC = FunctionDecl::Static;
3147    break;
3148  }
3149  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3150  }
3151
3152  if (D.getDeclSpec().isThreadSpecified())
3153    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3154
3155  bool isFriend = D.getDeclSpec().isFriendSpecified();
3156  bool isInline = D.getDeclSpec().isInlineSpecified();
3157  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3158  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3159
3160  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3161  FunctionDecl::StorageClass SCAsWritten
3162    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3163
3164  // Check that the return type is not an abstract class type.
3165  // For record types, this is done by the AbstractClassUsageDiagnoser once
3166  // the class has been completely parsed.
3167  if (!DC->isRecord() &&
3168      RequireNonAbstractType(D.getIdentifierLoc(),
3169                             R->getAs<FunctionType>()->getResultType(),
3170                             diag::err_abstract_type_in_decl,
3171                             AbstractReturnType))
3172    D.setInvalidType();
3173
3174  // Do not allow returning a objc interface by-value.
3175  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3176    Diag(D.getIdentifierLoc(),
3177         diag::err_object_cannot_be_passed_returned_by_value) << 0
3178      << R->getAs<FunctionType>()->getResultType();
3179    D.setInvalidType();
3180  }
3181
3182  bool isVirtualOkay = false;
3183  FunctionDecl *NewFD;
3184
3185  if (isFriend) {
3186    // C++ [class.friend]p5
3187    //   A function can be defined in a friend declaration of a
3188    //   class . . . . Such a function is implicitly inline.
3189    isInline |= IsFunctionDefinition;
3190  }
3191
3192  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3193    // This is a C++ constructor declaration.
3194    assert(DC->isRecord() &&
3195           "Constructors can only be declared in a member context");
3196
3197    R = CheckConstructorDeclarator(D, R, SC);
3198
3199    // Create the new declaration
3200    NewFD = CXXConstructorDecl::Create(Context,
3201                                       cast<CXXRecordDecl>(DC),
3202                                       NameInfo, R, TInfo,
3203                                       isExplicit, isInline,
3204                                       /*isImplicitlyDeclared=*/false);
3205  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3206    // This is a C++ destructor declaration.
3207    if (DC->isRecord()) {
3208      R = CheckDestructorDeclarator(D, R, SC);
3209
3210      NewFD = CXXDestructorDecl::Create(Context,
3211                                        cast<CXXRecordDecl>(DC),
3212                                        NameInfo, R,
3213                                        isInline,
3214                                        /*isImplicitlyDeclared=*/false);
3215      NewFD->setTypeSourceInfo(TInfo);
3216
3217      isVirtualOkay = true;
3218    } else {
3219      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3220
3221      // Create a FunctionDecl to satisfy the function definition parsing
3222      // code path.
3223      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3224                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3225                                   /*hasPrototype=*/true);
3226      D.setInvalidType();
3227    }
3228  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3229    if (!DC->isRecord()) {
3230      Diag(D.getIdentifierLoc(),
3231           diag::err_conv_function_not_member);
3232      return 0;
3233    }
3234
3235    CheckConversionDeclarator(D, R, SC);
3236    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3237                                      NameInfo, R, TInfo,
3238                                      isInline, isExplicit);
3239
3240    isVirtualOkay = true;
3241  } else if (DC->isRecord()) {
3242    // If the of the function is the same as the name of the record, then this
3243    // must be an invalid constructor that has a return type.
3244    // (The parser checks for a return type and makes the declarator a
3245    // constructor if it has no return type).
3246    // must have an invalid constructor that has a return type
3247    if (Name.getAsIdentifierInfo() &&
3248        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3249      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3250        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3251        << SourceRange(D.getIdentifierLoc());
3252      return 0;
3253    }
3254
3255    bool isStatic = SC == FunctionDecl::Static;
3256
3257    // [class.free]p1:
3258    // Any allocation function for a class T is a static member
3259    // (even if not explicitly declared static).
3260    if (Name.getCXXOverloadedOperator() == OO_New ||
3261        Name.getCXXOverloadedOperator() == OO_Array_New)
3262      isStatic = true;
3263
3264    // [class.free]p6 Any deallocation function for a class X is a static member
3265    // (even if not explicitly declared static).
3266    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3267        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3268      isStatic = true;
3269
3270    // This is a C++ method declaration.
3271    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3272                                  NameInfo, R, TInfo,
3273                                  isStatic, SCAsWritten, isInline);
3274
3275    isVirtualOkay = !isStatic;
3276  } else {
3277    // Determine whether the function was written with a
3278    // prototype. This true when:
3279    //   - we're in C++ (where every function has a prototype),
3280    //   - there is a prototype in the declarator, or
3281    //   - the type R of the function is some kind of typedef or other reference
3282    //     to a type name (which eventually refers to a function type).
3283    bool HasPrototype =
3284       getLangOptions().CPlusPlus ||
3285       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3286       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3287
3288    NewFD = FunctionDecl::Create(Context, DC,
3289                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3290                                 HasPrototype);
3291  }
3292
3293  if (D.isInvalidType())
3294    NewFD->setInvalidDecl();
3295
3296  SetNestedNameSpecifier(NewFD, D);
3297
3298  // Set the lexical context. If the declarator has a C++
3299  // scope specifier, or is the object of a friend declaration, the
3300  // lexical context will be different from the semantic context.
3301  NewFD->setLexicalDeclContext(CurContext);
3302
3303  // Match up the template parameter lists with the scope specifier, then
3304  // determine whether we have a template or a template specialization.
3305  FunctionTemplateDecl *FunctionTemplate = 0;
3306  bool isExplicitSpecialization = false;
3307  bool isFunctionTemplateSpecialization = false;
3308  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3309  bool Invalid = false;
3310  if (TemplateParameterList *TemplateParams
3311        = MatchTemplateParametersToScopeSpecifier(
3312                                  D.getDeclSpec().getSourceRange().getBegin(),
3313                                  D.getCXXScopeSpec(),
3314                           (TemplateParameterList**)TemplateParamLists.get(),
3315                                                  TemplateParamLists.size(),
3316                                                  isFriend,
3317                                                  isExplicitSpecialization,
3318                                                  Invalid)) {
3319    // All but one template parameter lists have been matching.
3320    --NumMatchedTemplateParamLists;
3321
3322    if (TemplateParams->size() > 0) {
3323      // This is a function template
3324
3325      // Check that we can declare a template here.
3326      if (CheckTemplateDeclScope(S, TemplateParams))
3327        return 0;
3328
3329      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3330                                                      NewFD->getLocation(),
3331                                                      Name, TemplateParams,
3332                                                      NewFD);
3333      FunctionTemplate->setLexicalDeclContext(CurContext);
3334      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3335    } else {
3336      // This is a function template specialization.
3337      isFunctionTemplateSpecialization = true;
3338
3339      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3340      if (isFriend && isFunctionTemplateSpecialization) {
3341        // We want to remove the "template<>", found here.
3342        SourceRange RemoveRange = TemplateParams->getSourceRange();
3343
3344        // If we remove the template<> and the name is not a
3345        // template-id, we're actually silently creating a problem:
3346        // the friend declaration will refer to an untemplated decl,
3347        // and clearly the user wants a template specialization.  So
3348        // we need to insert '<>' after the name.
3349        SourceLocation InsertLoc;
3350        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3351          InsertLoc = D.getName().getSourceRange().getEnd();
3352          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3353        }
3354
3355        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3356          << Name << RemoveRange
3357          << FixItHint::CreateRemoval(RemoveRange)
3358          << FixItHint::CreateInsertion(InsertLoc, "<>");
3359      }
3360    }
3361  }
3362
3363  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3364    NewFD->setTemplateParameterListsInfo(Context,
3365                                         NumMatchedTemplateParamLists,
3366                        (TemplateParameterList**)TemplateParamLists.release());
3367  }
3368
3369  if (Invalid) {
3370    NewFD->setInvalidDecl();
3371    if (FunctionTemplate)
3372      FunctionTemplate->setInvalidDecl();
3373  }
3374
3375  // C++ [dcl.fct.spec]p5:
3376  //   The virtual specifier shall only be used in declarations of
3377  //   nonstatic class member functions that appear within a
3378  //   member-specification of a class declaration; see 10.3.
3379  //
3380  if (isVirtual && !NewFD->isInvalidDecl()) {
3381    if (!isVirtualOkay) {
3382       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3383           diag::err_virtual_non_function);
3384    } else if (!CurContext->isRecord()) {
3385      // 'virtual' was specified outside of the class.
3386      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3387        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3388    } else {
3389      // Okay: Add virtual to the method.
3390      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3391      CurClass->setMethodAsVirtual(NewFD);
3392    }
3393  }
3394
3395  // C++ [dcl.fct.spec]p3:
3396  //  The inline specifier shall not appear on a block scope function declaration.
3397  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3398    if (CurContext->isFunctionOrMethod()) {
3399      // 'inline' is not allowed on block scope function declaration.
3400      Diag(D.getDeclSpec().getInlineSpecLoc(),
3401           diag::err_inline_declaration_block_scope) << Name
3402        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3403    }
3404  }
3405
3406  // C++ [dcl.fct.spec]p6:
3407  //  The explicit specifier shall be used only in the declaration of a
3408  //  constructor or conversion function within its class definition; see 12.3.1
3409  //  and 12.3.2.
3410  if (isExplicit && !NewFD->isInvalidDecl()) {
3411    if (!CurContext->isRecord()) {
3412      // 'explicit' was specified outside of the class.
3413      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3414           diag::err_explicit_out_of_class)
3415        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3416    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3417               !isa<CXXConversionDecl>(NewFD)) {
3418      // 'explicit' was specified on a function that wasn't a constructor
3419      // or conversion function.
3420      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3421           diag::err_explicit_non_ctor_or_conv_function)
3422        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3423    }
3424  }
3425
3426  // Filter out previous declarations that don't match the scope.
3427  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3428
3429  if (isFriend) {
3430    // DC is the namespace in which the function is being declared.
3431    assert((DC->isFileContext() || !Previous.empty()) &&
3432           "previously-undeclared friend function being created "
3433           "in a non-namespace context");
3434
3435    // For now, claim that the objects have no previous declaration.
3436    if (FunctionTemplate) {
3437      FunctionTemplate->setObjectOfFriendDecl(false);
3438      FunctionTemplate->setAccess(AS_public);
3439    }
3440    NewFD->setObjectOfFriendDecl(false);
3441    NewFD->setAccess(AS_public);
3442  }
3443
3444  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3445      !CurContext->isRecord()) {
3446    // C++ [class.static]p1:
3447    //   A data or function member of a class may be declared static
3448    //   in a class definition, in which case it is a static member of
3449    //   the class.
3450
3451    // Complain about the 'static' specifier if it's on an out-of-line
3452    // member function definition.
3453    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3454         diag::err_static_out_of_line)
3455      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3456  }
3457
3458  // Handle GNU asm-label extension (encoded as an attribute).
3459  if (Expr *E = (Expr*) D.getAsmLabel()) {
3460    // The parser guarantees this is a string.
3461    StringLiteral *SE = cast<StringLiteral>(E);
3462    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3463                                                SE->getString()));
3464  }
3465
3466  // Copy the parameter declarations from the declarator D to the function
3467  // declaration NewFD, if they are available.  First scavenge them into Params.
3468  llvm::SmallVector<ParmVarDecl*, 16> Params;
3469  if (D.getNumTypeObjects() > 0) {
3470    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3471
3472    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3473    // function that takes no arguments, not a function that takes a
3474    // single void argument.
3475    // We let through "const void" here because Sema::GetTypeForDeclarator
3476    // already checks for that case.
3477    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3478        FTI.ArgInfo[0].Param &&
3479        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3480      // Empty arg list, don't push any params.
3481      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3482
3483      // In C++, the empty parameter-type-list must be spelled "void"; a
3484      // typedef of void is not permitted.
3485      if (getLangOptions().CPlusPlus &&
3486          Param->getType().getUnqualifiedType() != Context.VoidTy)
3487        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3488      // FIXME: Leaks decl?
3489    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3490      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3491        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3492        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3493        Param->setDeclContext(NewFD);
3494        Params.push_back(Param);
3495
3496        if (Param->isInvalidDecl())
3497          NewFD->setInvalidDecl();
3498      }
3499    }
3500
3501  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3502    // When we're declaring a function with a typedef, typeof, etc as in the
3503    // following example, we'll need to synthesize (unnamed)
3504    // parameters for use in the declaration.
3505    //
3506    // @code
3507    // typedef void fn(int);
3508    // fn f;
3509    // @endcode
3510
3511    // Synthesize a parameter for each argument type.
3512    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3513         AE = FT->arg_type_end(); AI != AE; ++AI) {
3514      ParmVarDecl *Param =
3515        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3516      Params.push_back(Param);
3517    }
3518  } else {
3519    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3520           "Should not need args for typedef of non-prototype fn");
3521  }
3522  // Finally, we know we have the right number of parameters, install them.
3523  NewFD->setParams(Params.data(), Params.size());
3524
3525  // If the declarator is a template-id, translate the parser's template
3526  // argument list into our AST format.
3527  bool HasExplicitTemplateArgs = false;
3528  TemplateArgumentListInfo TemplateArgs;
3529  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3530    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3531    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3532    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3533    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3534                                       TemplateId->getTemplateArgs(),
3535                                       TemplateId->NumArgs);
3536    translateTemplateArguments(TemplateArgsPtr,
3537                               TemplateArgs);
3538    TemplateArgsPtr.release();
3539
3540    HasExplicitTemplateArgs = true;
3541
3542    if (FunctionTemplate) {
3543      // FIXME: Diagnose function template with explicit template
3544      // arguments.
3545      HasExplicitTemplateArgs = false;
3546    } else if (!isFunctionTemplateSpecialization &&
3547               !D.getDeclSpec().isFriendSpecified()) {
3548      // We have encountered something that the user meant to be a
3549      // specialization (because it has explicitly-specified template
3550      // arguments) but that was not introduced with a "template<>" (or had
3551      // too few of them).
3552      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3553        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3554        << FixItHint::CreateInsertion(
3555                                   D.getDeclSpec().getSourceRange().getBegin(),
3556                                                 "template<> ");
3557      isFunctionTemplateSpecialization = true;
3558    } else {
3559      // "friend void foo<>(int);" is an implicit specialization decl.
3560      isFunctionTemplateSpecialization = true;
3561    }
3562  } else if (isFriend && isFunctionTemplateSpecialization) {
3563    // This combination is only possible in a recovery case;  the user
3564    // wrote something like:
3565    //   template <> friend void foo(int);
3566    // which we're recovering from as if the user had written:
3567    //   friend void foo<>(int);
3568    // Go ahead and fake up a template id.
3569    HasExplicitTemplateArgs = true;
3570    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3571    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3572  }
3573
3574  // If it's a friend (and only if it's a friend), it's possible
3575  // that either the specialized function type or the specialized
3576  // template is dependent, and therefore matching will fail.  In
3577  // this case, don't check the specialization yet.
3578  if (isFunctionTemplateSpecialization && isFriend &&
3579      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3580    assert(HasExplicitTemplateArgs &&
3581           "friend function specialization without template args");
3582    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3583                                                     Previous))
3584      NewFD->setInvalidDecl();
3585  } else if (isFunctionTemplateSpecialization) {
3586    if (CheckFunctionTemplateSpecialization(NewFD,
3587                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3588                                            Previous))
3589      NewFD->setInvalidDecl();
3590  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3591    if (CheckMemberSpecialization(NewFD, Previous))
3592      NewFD->setInvalidDecl();
3593  }
3594
3595  // Perform semantic checking on the function declaration.
3596  bool OverloadableAttrRequired = false; // FIXME: HACK!
3597  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3598                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3599
3600  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3601          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3602         "previous declaration set still overloaded");
3603
3604  NamedDecl *PrincipalDecl = (FunctionTemplate
3605                              ? cast<NamedDecl>(FunctionTemplate)
3606                              : NewFD);
3607
3608  if (isFriend && Redeclaration) {
3609    AccessSpecifier Access = AS_public;
3610    if (!NewFD->isInvalidDecl())
3611      Access = NewFD->getPreviousDeclaration()->getAccess();
3612
3613    NewFD->setAccess(Access);
3614    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3615
3616    PrincipalDecl->setObjectOfFriendDecl(true);
3617  }
3618
3619  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3620      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3621    PrincipalDecl->setNonMemberOperator();
3622
3623  // If we have a function template, check the template parameter
3624  // list. This will check and merge default template arguments.
3625  if (FunctionTemplate) {
3626    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3627    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3628                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3629             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3630                                                : TPC_FunctionTemplate);
3631  }
3632
3633  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3634    // Fake up an access specifier if it's supposed to be a class member.
3635    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3636      NewFD->setAccess(AS_public);
3637
3638    // An out-of-line member function declaration must also be a
3639    // definition (C++ [dcl.meaning]p1).
3640    // Note that this is not the case for explicit specializations of
3641    // function templates or member functions of class templates, per
3642    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3643    // for compatibility with old SWIG code which likes to generate them.
3644    if (!IsFunctionDefinition && !isFriend &&
3645        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3646      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3647        << D.getCXXScopeSpec().getRange();
3648    }
3649    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3650      // The user tried to provide an out-of-line definition for a
3651      // function that is a member of a class or namespace, but there
3652      // was no such member function declared (C++ [class.mfct]p2,
3653      // C++ [namespace.memdef]p2). For example:
3654      //
3655      // class X {
3656      //   void f() const;
3657      // };
3658      //
3659      // void X::f() { } // ill-formed
3660      //
3661      // Complain about this problem, and attempt to suggest close
3662      // matches (e.g., those that differ only in cv-qualifiers and
3663      // whether the parameter types are references).
3664      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3665        << Name << DC << D.getCXXScopeSpec().getRange();
3666      NewFD->setInvalidDecl();
3667
3668      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3669                        ForRedeclaration);
3670      LookupQualifiedName(Prev, DC);
3671      assert(!Prev.isAmbiguous() &&
3672             "Cannot have an ambiguity in previous-declaration lookup");
3673      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3674           Func != FuncEnd; ++Func) {
3675        if (isa<FunctionDecl>(*Func) &&
3676            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3677          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3678      }
3679    }
3680  }
3681
3682  // Handle attributes. We need to have merged decls when handling attributes
3683  // (for example to check for conflicts, etc).
3684  // FIXME: This needs to happen before we merge declarations. Then,
3685  // let attribute merging cope with attribute conflicts.
3686  ProcessDeclAttributes(S, NewFD, D);
3687
3688  // attributes declared post-definition are currently ignored
3689  // FIXME: This should happen during attribute merging
3690  if (Redeclaration && Previous.isSingleResult()) {
3691    const FunctionDecl *Def;
3692    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3693    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3694      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3695      Diag(Def->getLocation(), diag::note_previous_definition);
3696    }
3697  }
3698
3699  AddKnownFunctionAttributes(NewFD);
3700
3701  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3702    // If a function name is overloadable in C, then every function
3703    // with that name must be marked "overloadable".
3704    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3705      << Redeclaration << NewFD;
3706    if (!Previous.empty())
3707      Diag(Previous.getRepresentativeDecl()->getLocation(),
3708           diag::note_attribute_overloadable_prev_overload);
3709    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3710  }
3711
3712  if (NewFD->hasAttr<OverloadableAttr>() &&
3713      !NewFD->getType()->getAs<FunctionProtoType>()) {
3714    Diag(NewFD->getLocation(),
3715         diag::err_attribute_overloadable_no_prototype)
3716      << NewFD;
3717
3718    // Turn this into a variadic function with no parameters.
3719    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3720    QualType R = Context.getFunctionType(FT->getResultType(),
3721                                         0, 0, true, 0, false, false, 0, 0,
3722                                         FT->getExtInfo());
3723    NewFD->setType(R);
3724  }
3725
3726  // If there's a #pragma GCC visibility in scope, and this isn't a class
3727  // member, set the visibility of this function.
3728  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3729    AddPushedVisibilityAttribute(NewFD);
3730
3731  // If this is a locally-scoped extern C function, update the
3732  // map of such names.
3733  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3734      && !NewFD->isInvalidDecl())
3735    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3736
3737  // Set this FunctionDecl's range up to the right paren.
3738  NewFD->setLocEnd(D.getSourceRange().getEnd());
3739
3740  if (FunctionTemplate && NewFD->isInvalidDecl())
3741    FunctionTemplate->setInvalidDecl();
3742
3743  if (FunctionTemplate)
3744    return FunctionTemplate;
3745
3746  MarkUnusedFileScopedDecl(NewFD);
3747
3748  return NewFD;
3749}
3750
3751/// \brief Perform semantic checking of a new function declaration.
3752///
3753/// Performs semantic analysis of the new function declaration
3754/// NewFD. This routine performs all semantic checking that does not
3755/// require the actual declarator involved in the declaration, and is
3756/// used both for the declaration of functions as they are parsed
3757/// (called via ActOnDeclarator) and for the declaration of functions
3758/// that have been instantiated via C++ template instantiation (called
3759/// via InstantiateDecl).
3760///
3761/// \param IsExplicitSpecialiation whether this new function declaration is
3762/// an explicit specialization of the previous declaration.
3763///
3764/// This sets NewFD->isInvalidDecl() to true if there was an error.
3765void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3766                                    LookupResult &Previous,
3767                                    bool IsExplicitSpecialization,
3768                                    bool &Redeclaration,
3769                                    bool &OverloadableAttrRequired) {
3770  // If NewFD is already known erroneous, don't do any of this checking.
3771  if (NewFD->isInvalidDecl()) {
3772    // If this is a class member, mark the class invalid immediately.
3773    // This avoids some consistency errors later.
3774    if (isa<CXXMethodDecl>(NewFD))
3775      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3776
3777    return;
3778  }
3779
3780  if (NewFD->getResultType()->isVariablyModifiedType()) {
3781    // Functions returning a variably modified type violate C99 6.7.5.2p2
3782    // because all functions have linkage.
3783    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3784    return NewFD->setInvalidDecl();
3785  }
3786
3787  if (NewFD->isMain())
3788    CheckMain(NewFD);
3789
3790  // Check for a previous declaration of this name.
3791  if (Previous.empty() && NewFD->isExternC()) {
3792    // Since we did not find anything by this name and we're declaring
3793    // an extern "C" function, look for a non-visible extern "C"
3794    // declaration with the same name.
3795    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3796      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3797    if (Pos != LocallyScopedExternalDecls.end())
3798      Previous.addDecl(Pos->second);
3799  }
3800
3801  // Merge or overload the declaration with an existing declaration of
3802  // the same name, if appropriate.
3803  if (!Previous.empty()) {
3804    // Determine whether NewFD is an overload of PrevDecl or
3805    // a declaration that requires merging. If it's an overload,
3806    // there's no more work to do here; we'll just add the new
3807    // function to the scope.
3808
3809    NamedDecl *OldDecl = 0;
3810    if (!AllowOverloadingOfFunction(Previous, Context)) {
3811      Redeclaration = true;
3812      OldDecl = Previous.getFoundDecl();
3813    } else {
3814      if (!getLangOptions().CPlusPlus)
3815        OverloadableAttrRequired = true;
3816
3817      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3818                            /*NewIsUsingDecl*/ false)) {
3819      case Ovl_Match:
3820        Redeclaration = true;
3821        break;
3822
3823      case Ovl_NonFunction:
3824        Redeclaration = true;
3825        break;
3826
3827      case Ovl_Overload:
3828        Redeclaration = false;
3829        break;
3830      }
3831    }
3832
3833    if (Redeclaration) {
3834      // NewFD and OldDecl represent declarations that need to be
3835      // merged.
3836      if (MergeFunctionDecl(NewFD, OldDecl))
3837        return NewFD->setInvalidDecl();
3838
3839      Previous.clear();
3840      Previous.addDecl(OldDecl);
3841
3842      if (FunctionTemplateDecl *OldTemplateDecl
3843                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3844        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3845        FunctionTemplateDecl *NewTemplateDecl
3846          = NewFD->getDescribedFunctionTemplate();
3847        assert(NewTemplateDecl && "Template/non-template mismatch");
3848        if (CXXMethodDecl *Method
3849              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3850          Method->setAccess(OldTemplateDecl->getAccess());
3851          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3852        }
3853
3854        // If this is an explicit specialization of a member that is a function
3855        // template, mark it as a member specialization.
3856        if (IsExplicitSpecialization &&
3857            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3858          NewTemplateDecl->setMemberSpecialization();
3859          assert(OldTemplateDecl->isMemberSpecialization());
3860        }
3861      } else {
3862        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3863          NewFD->setAccess(OldDecl->getAccess());
3864        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3865      }
3866    }
3867  }
3868
3869  // Semantic checking for this function declaration (in isolation).
3870  if (getLangOptions().CPlusPlus) {
3871    // C++-specific checks.
3872    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3873      CheckConstructor(Constructor);
3874    } else if (CXXDestructorDecl *Destructor =
3875                dyn_cast<CXXDestructorDecl>(NewFD)) {
3876      CXXRecordDecl *Record = Destructor->getParent();
3877      QualType ClassType = Context.getTypeDeclType(Record);
3878
3879      // FIXME: Shouldn't we be able to perform this check even when the class
3880      // type is dependent? Both gcc and edg can handle that.
3881      if (!ClassType->isDependentType()) {
3882        DeclarationName Name
3883          = Context.DeclarationNames.getCXXDestructorName(
3884                                        Context.getCanonicalType(ClassType));
3885//         NewFD->getDeclName().dump();
3886//         Name.dump();
3887        if (NewFD->getDeclName() != Name) {
3888          Diag(NewFD->getLocation(), diag::err_destructor_name);
3889          return NewFD->setInvalidDecl();
3890        }
3891      }
3892
3893      Record->setUserDeclaredDestructor(true);
3894      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3895      // user-defined destructor.
3896      Record->setPOD(false);
3897
3898      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3899      // declared destructor.
3900      // FIXME: C++0x: don't do this for "= default" destructors
3901      Record->setHasTrivialDestructor(false);
3902    } else if (CXXConversionDecl *Conversion
3903               = dyn_cast<CXXConversionDecl>(NewFD)) {
3904      ActOnConversionDeclarator(Conversion);
3905    }
3906
3907    // Find any virtual functions that this function overrides.
3908    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3909      if (!Method->isFunctionTemplateSpecialization() &&
3910          !Method->getDescribedFunctionTemplate())
3911        AddOverriddenMethods(Method->getParent(), Method);
3912    }
3913
3914    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3915    if (NewFD->isOverloadedOperator() &&
3916        CheckOverloadedOperatorDeclaration(NewFD))
3917      return NewFD->setInvalidDecl();
3918
3919    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3920    if (NewFD->getLiteralIdentifier() &&
3921        CheckLiteralOperatorDeclaration(NewFD))
3922      return NewFD->setInvalidDecl();
3923
3924    // In C++, check default arguments now that we have merged decls. Unless
3925    // the lexical context is the class, because in this case this is done
3926    // during delayed parsing anyway.
3927    if (!CurContext->isRecord())
3928      CheckCXXDefaultArguments(NewFD);
3929  }
3930}
3931
3932void Sema::CheckMain(FunctionDecl* FD) {
3933  // C++ [basic.start.main]p3:  A program that declares main to be inline
3934  //   or static is ill-formed.
3935  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3936  //   shall not appear in a declaration of main.
3937  // static main is not an error under C99, but we should warn about it.
3938  bool isInline = FD->isInlineSpecified();
3939  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3940  if (isInline || isStatic) {
3941    unsigned diagID = diag::warn_unusual_main_decl;
3942    if (isInline || getLangOptions().CPlusPlus)
3943      diagID = diag::err_unusual_main_decl;
3944
3945    int which = isStatic + (isInline << 1) - 1;
3946    Diag(FD->getLocation(), diagID) << which;
3947  }
3948
3949  QualType T = FD->getType();
3950  assert(T->isFunctionType() && "function decl is not of function type");
3951  const FunctionType* FT = T->getAs<FunctionType>();
3952
3953  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3954    // TODO: add a replacement fixit to turn the return type into 'int'.
3955    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3956    FD->setInvalidDecl(true);
3957  }
3958
3959  // Treat protoless main() as nullary.
3960  if (isa<FunctionNoProtoType>(FT)) return;
3961
3962  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3963  unsigned nparams = FTP->getNumArgs();
3964  assert(FD->getNumParams() == nparams);
3965
3966  bool HasExtraParameters = (nparams > 3);
3967
3968  // Darwin passes an undocumented fourth argument of type char**.  If
3969  // other platforms start sprouting these, the logic below will start
3970  // getting shifty.
3971  if (nparams == 4 &&
3972      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3973    HasExtraParameters = false;
3974
3975  if (HasExtraParameters) {
3976    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3977    FD->setInvalidDecl(true);
3978    nparams = 3;
3979  }
3980
3981  // FIXME: a lot of the following diagnostics would be improved
3982  // if we had some location information about types.
3983
3984  QualType CharPP =
3985    Context.getPointerType(Context.getPointerType(Context.CharTy));
3986  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3987
3988  for (unsigned i = 0; i < nparams; ++i) {
3989    QualType AT = FTP->getArgType(i);
3990
3991    bool mismatch = true;
3992
3993    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3994      mismatch = false;
3995    else if (Expected[i] == CharPP) {
3996      // As an extension, the following forms are okay:
3997      //   char const **
3998      //   char const * const *
3999      //   char * const *
4000
4001      QualifierCollector qs;
4002      const PointerType* PT;
4003      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4004          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4005          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4006        qs.removeConst();
4007        mismatch = !qs.empty();
4008      }
4009    }
4010
4011    if (mismatch) {
4012      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4013      // TODO: suggest replacing given type with expected type
4014      FD->setInvalidDecl(true);
4015    }
4016  }
4017
4018  if (nparams == 1 && !FD->isInvalidDecl()) {
4019    Diag(FD->getLocation(), diag::warn_main_one_arg);
4020  }
4021}
4022
4023bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4024  // FIXME: Need strict checking.  In C89, we need to check for
4025  // any assignment, increment, decrement, function-calls, or
4026  // commas outside of a sizeof.  In C99, it's the same list,
4027  // except that the aforementioned are allowed in unevaluated
4028  // expressions.  Everything else falls under the
4029  // "may accept other forms of constant expressions" exception.
4030  // (We never end up here for C++, so the constant expression
4031  // rules there don't matter.)
4032  if (Init->isConstantInitializer(Context, false))
4033    return false;
4034  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4035    << Init->getSourceRange();
4036  return true;
4037}
4038
4039void Sema::AddInitializerToDecl(Decl *dcl, ExprArg init) {
4040  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
4041}
4042
4043/// AddInitializerToDecl - Adds the initializer Init to the
4044/// declaration dcl. If DirectInit is true, this is C++ direct
4045/// initialization rather than copy initialization.
4046void Sema::AddInitializerToDecl(Decl *RealDecl, ExprArg init, bool DirectInit) {
4047  // If there is no declaration, there was an error parsing it.  Just ignore
4048  // the initializer.
4049  if (RealDecl == 0)
4050    return;
4051
4052  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4053    // With declarators parsed the way they are, the parser cannot
4054    // distinguish between a normal initializer and a pure-specifier.
4055    // Thus this grotesque test.
4056    IntegerLiteral *IL;
4057    Expr *Init = static_cast<Expr *>(init.get());
4058    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4059        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4060      CheckPureMethod(Method, Init->getSourceRange());
4061    else {
4062      Diag(Method->getLocation(), diag::err_member_function_initialization)
4063        << Method->getDeclName() << Init->getSourceRange();
4064      Method->setInvalidDecl();
4065    }
4066    return;
4067  }
4068
4069  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4070  if (!VDecl) {
4071    if (getLangOptions().CPlusPlus &&
4072        RealDecl->getLexicalDeclContext()->isRecord() &&
4073        isa<NamedDecl>(RealDecl))
4074      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4075        << cast<NamedDecl>(RealDecl)->getDeclName();
4076    else
4077      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4078    RealDecl->setInvalidDecl();
4079    return;
4080  }
4081
4082  // A definition must end up with a complete type, which means it must be
4083  // complete with the restriction that an array type might be completed by the
4084  // initializer; note that later code assumes this restriction.
4085  QualType BaseDeclType = VDecl->getType();
4086  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4087    BaseDeclType = Array->getElementType();
4088  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4089                          diag::err_typecheck_decl_incomplete_type)) {
4090    RealDecl->setInvalidDecl();
4091    return;
4092  }
4093
4094  // The variable can not have an abstract class type.
4095  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4096                             diag::err_abstract_type_in_decl,
4097                             AbstractVariableType))
4098    VDecl->setInvalidDecl();
4099
4100  const VarDecl *Def;
4101  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4102    Diag(VDecl->getLocation(), diag::err_redefinition)
4103      << VDecl->getDeclName();
4104    Diag(Def->getLocation(), diag::note_previous_definition);
4105    VDecl->setInvalidDecl();
4106    return;
4107  }
4108
4109  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4110    setFunctionHasBranchProtectedScope();
4111
4112  // Take ownership of the expression, now that we're sure we have somewhere
4113  // to put it.
4114  Expr *Init = init.takeAs<Expr>();
4115  assert(Init && "missing initializer");
4116
4117  // Capture the variable that is being initialized and the style of
4118  // initialization.
4119  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4120
4121  // FIXME: Poor source location information.
4122  InitializationKind Kind
4123    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4124                                                   Init->getLocStart(),
4125                                                   Init->getLocEnd())
4126                : InitializationKind::CreateCopy(VDecl->getLocation(),
4127                                                 Init->getLocStart());
4128
4129  // Get the decls type and save a reference for later, since
4130  // CheckInitializerTypes may change it.
4131  QualType DclT = VDecl->getType(), SavT = DclT;
4132  if (VDecl->isBlockVarDecl()) {
4133    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4134      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4135      VDecl->setInvalidDecl();
4136    } else if (!VDecl->isInvalidDecl()) {
4137      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4138      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4139                                                MultiExprArg(*this, &Init, 1),
4140                                                &DclT);
4141      if (Result.isInvalid()) {
4142        VDecl->setInvalidDecl();
4143        return;
4144      }
4145
4146      Init = Result.takeAs<Expr>();
4147
4148      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4149      // Don't check invalid declarations to avoid emitting useless diagnostics.
4150      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4151        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4152          CheckForConstantInitializer(Init, DclT);
4153      }
4154    }
4155  } else if (VDecl->isStaticDataMember() &&
4156             VDecl->getLexicalDeclContext()->isRecord()) {
4157    // This is an in-class initialization for a static data member, e.g.,
4158    //
4159    // struct S {
4160    //   static const int value = 17;
4161    // };
4162
4163    // Attach the initializer
4164    VDecl->setInit(Init);
4165
4166    // C++ [class.mem]p4:
4167    //   A member-declarator can contain a constant-initializer only
4168    //   if it declares a static member (9.4) of const integral or
4169    //   const enumeration type, see 9.4.2.
4170    QualType T = VDecl->getType();
4171    if (!T->isDependentType() &&
4172        (!Context.getCanonicalType(T).isConstQualified() ||
4173         !T->isIntegralOrEnumerationType())) {
4174      Diag(VDecl->getLocation(), diag::err_member_initialization)
4175        << VDecl->getDeclName() << Init->getSourceRange();
4176      VDecl->setInvalidDecl();
4177    } else {
4178      // C++ [class.static.data]p4:
4179      //   If a static data member is of const integral or const
4180      //   enumeration type, its declaration in the class definition
4181      //   can specify a constant-initializer which shall be an
4182      //   integral constant expression (5.19).
4183      if (!Init->isTypeDependent() &&
4184          !Init->getType()->isIntegralOrEnumerationType()) {
4185        // We have a non-dependent, non-integral or enumeration type.
4186        Diag(Init->getSourceRange().getBegin(),
4187             diag::err_in_class_initializer_non_integral_type)
4188          << Init->getType() << Init->getSourceRange();
4189        VDecl->setInvalidDecl();
4190      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4191        // Check whether the expression is a constant expression.
4192        llvm::APSInt Value;
4193        SourceLocation Loc;
4194        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4195          Diag(Loc, diag::err_in_class_initializer_non_constant)
4196            << Init->getSourceRange();
4197          VDecl->setInvalidDecl();
4198        } else if (!VDecl->getType()->isDependentType())
4199          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4200      }
4201    }
4202  } else if (VDecl->isFileVarDecl()) {
4203    if (VDecl->getStorageClass() == VarDecl::Extern &&
4204        (!getLangOptions().CPlusPlus ||
4205         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4206      Diag(VDecl->getLocation(), diag::warn_extern_init);
4207    if (!VDecl->isInvalidDecl()) {
4208      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4209      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4210                                                MultiExprArg(*this, &Init, 1),
4211                                                &DclT);
4212      if (Result.isInvalid()) {
4213        VDecl->setInvalidDecl();
4214        return;
4215      }
4216
4217      Init = Result.takeAs<Expr>();
4218    }
4219
4220    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4221    // Don't check invalid declarations to avoid emitting useless diagnostics.
4222    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4223      // C99 6.7.8p4. All file scoped initializers need to be constant.
4224      CheckForConstantInitializer(Init, DclT);
4225    }
4226  }
4227  // If the type changed, it means we had an incomplete type that was
4228  // completed by the initializer. For example:
4229  //   int ary[] = { 1, 3, 5 };
4230  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4231  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4232    VDecl->setType(DclT);
4233    Init->setType(DclT);
4234  }
4235
4236  Init = MaybeCreateCXXExprWithTemporaries(Init);
4237  // Attach the initializer to the decl.
4238  VDecl->setInit(Init);
4239
4240  if (getLangOptions().CPlusPlus) {
4241    if (!VDecl->isInvalidDecl() &&
4242        !VDecl->getDeclContext()->isDependentContext() &&
4243        VDecl->hasGlobalStorage() &&
4244        !Init->isConstantInitializer(Context,
4245                                     VDecl->getType()->isReferenceType()))
4246      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4247        << Init->getSourceRange();
4248
4249    // Make sure we mark the destructor as used if necessary.
4250    QualType InitType = VDecl->getType();
4251    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4252      InitType = Context.getBaseElementType(Array);
4253    if (const RecordType *Record = InitType->getAs<RecordType>())
4254      FinalizeVarWithDestructor(VDecl, Record);
4255  }
4256
4257  return;
4258}
4259
4260/// ActOnInitializerError - Given that there was an error parsing an
4261/// initializer for the given declaration, try to return to some form
4262/// of sanity.
4263void Sema::ActOnInitializerError(Decl *D) {
4264  // Our main concern here is re-establishing invariants like "a
4265  // variable's type is either dependent or complete".
4266  if (!D || D->isInvalidDecl()) return;
4267
4268  VarDecl *VD = dyn_cast<VarDecl>(D);
4269  if (!VD) return;
4270
4271  QualType Ty = VD->getType();
4272  if (Ty->isDependentType()) return;
4273
4274  // Require a complete type.
4275  if (RequireCompleteType(VD->getLocation(),
4276                          Context.getBaseElementType(Ty),
4277                          diag::err_typecheck_decl_incomplete_type)) {
4278    VD->setInvalidDecl();
4279    return;
4280  }
4281
4282  // Require an abstract type.
4283  if (RequireNonAbstractType(VD->getLocation(), Ty,
4284                             diag::err_abstract_type_in_decl,
4285                             AbstractVariableType)) {
4286    VD->setInvalidDecl();
4287    return;
4288  }
4289
4290  // Don't bother complaining about constructors or destructors,
4291  // though.
4292}
4293
4294void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4295                                  bool TypeContainsUndeducedAuto) {
4296  // If there is no declaration, there was an error parsing it. Just ignore it.
4297  if (RealDecl == 0)
4298    return;
4299
4300  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4301    QualType Type = Var->getType();
4302
4303    // C++0x [dcl.spec.auto]p3
4304    if (TypeContainsUndeducedAuto) {
4305      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4306        << Var->getDeclName() << Type;
4307      Var->setInvalidDecl();
4308      return;
4309    }
4310
4311    switch (Var->isThisDeclarationADefinition()) {
4312    case VarDecl::Definition:
4313      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4314        break;
4315
4316      // We have an out-of-line definition of a static data member
4317      // that has an in-class initializer, so we type-check this like
4318      // a declaration.
4319      //
4320      // Fall through
4321
4322    case VarDecl::DeclarationOnly:
4323      // It's only a declaration.
4324
4325      // Block scope. C99 6.7p7: If an identifier for an object is
4326      // declared with no linkage (C99 6.2.2p6), the type for the
4327      // object shall be complete.
4328      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4329          !Var->getLinkage() && !Var->isInvalidDecl() &&
4330          RequireCompleteType(Var->getLocation(), Type,
4331                              diag::err_typecheck_decl_incomplete_type))
4332        Var->setInvalidDecl();
4333
4334      // Make sure that the type is not abstract.
4335      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4336          RequireNonAbstractType(Var->getLocation(), Type,
4337                                 diag::err_abstract_type_in_decl,
4338                                 AbstractVariableType))
4339        Var->setInvalidDecl();
4340      return;
4341
4342    case VarDecl::TentativeDefinition:
4343      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4344      // object that has file scope without an initializer, and without a
4345      // storage-class specifier or with the storage-class specifier "static",
4346      // constitutes a tentative definition. Note: A tentative definition with
4347      // external linkage is valid (C99 6.2.2p5).
4348      if (!Var->isInvalidDecl()) {
4349        if (const IncompleteArrayType *ArrayT
4350                                    = Context.getAsIncompleteArrayType(Type)) {
4351          if (RequireCompleteType(Var->getLocation(),
4352                                  ArrayT->getElementType(),
4353                                  diag::err_illegal_decl_array_incomplete_type))
4354            Var->setInvalidDecl();
4355        } else if (Var->getStorageClass() == VarDecl::Static) {
4356          // C99 6.9.2p3: If the declaration of an identifier for an object is
4357          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4358          // declared type shall not be an incomplete type.
4359          // NOTE: code such as the following
4360          //     static struct s;
4361          //     struct s { int a; };
4362          // is accepted by gcc. Hence here we issue a warning instead of
4363          // an error and we do not invalidate the static declaration.
4364          // NOTE: to avoid multiple warnings, only check the first declaration.
4365          if (Var->getPreviousDeclaration() == 0)
4366            RequireCompleteType(Var->getLocation(), Type,
4367                                diag::ext_typecheck_decl_incomplete_type);
4368        }
4369      }
4370
4371      // Record the tentative definition; we're done.
4372      if (!Var->isInvalidDecl())
4373        TentativeDefinitions.push_back(Var);
4374      return;
4375    }
4376
4377    // Provide a specific diagnostic for uninitialized variable
4378    // definitions with incomplete array type.
4379    if (Type->isIncompleteArrayType()) {
4380      Diag(Var->getLocation(),
4381           diag::err_typecheck_incomplete_array_needs_initializer);
4382      Var->setInvalidDecl();
4383      return;
4384    }
4385
4386    // Provide a specific diagnostic for uninitialized variable
4387    // definitions with reference type.
4388    if (Type->isReferenceType()) {
4389      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4390        << Var->getDeclName()
4391        << SourceRange(Var->getLocation(), Var->getLocation());
4392      Var->setInvalidDecl();
4393      return;
4394    }
4395
4396    // Do not attempt to type-check the default initializer for a
4397    // variable with dependent type.
4398    if (Type->isDependentType())
4399      return;
4400
4401    if (Var->isInvalidDecl())
4402      return;
4403
4404    if (RequireCompleteType(Var->getLocation(),
4405                            Context.getBaseElementType(Type),
4406                            diag::err_typecheck_decl_incomplete_type)) {
4407      Var->setInvalidDecl();
4408      return;
4409    }
4410
4411    // The variable can not have an abstract class type.
4412    if (RequireNonAbstractType(Var->getLocation(), Type,
4413                               diag::err_abstract_type_in_decl,
4414                               AbstractVariableType)) {
4415      Var->setInvalidDecl();
4416      return;
4417    }
4418
4419    const RecordType *Record
4420      = Context.getBaseElementType(Type)->getAs<RecordType>();
4421    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4422        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4423      // C++03 [dcl.init]p9:
4424      //   If no initializer is specified for an object, and the
4425      //   object is of (possibly cv-qualified) non-POD class type (or
4426      //   array thereof), the object shall be default-initialized; if
4427      //   the object is of const-qualified type, the underlying class
4428      //   type shall have a user-declared default
4429      //   constructor. Otherwise, if no initializer is specified for
4430      //   a non- static object, the object and its subobjects, if
4431      //   any, have an indeterminate initial value); if the object
4432      //   or any of its subobjects are of const-qualified type, the
4433      //   program is ill-formed.
4434      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4435    } else {
4436      // Check for jumps past the implicit initializer.  C++0x
4437      // clarifies that this applies to a "variable with automatic
4438      // storage duration", not a "local variable".
4439      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4440        setFunctionHasBranchProtectedScope();
4441
4442      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4443      InitializationKind Kind
4444        = InitializationKind::CreateDefault(Var->getLocation());
4445
4446      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4447      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4448                                              MultiExprArg(*this, 0, 0));
4449      if (Init.isInvalid())
4450        Var->setInvalidDecl();
4451      else if (Init.get()) {
4452        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4453
4454        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4455            Var->hasGlobalStorage() &&
4456            !Var->getDeclContext()->isDependentContext() &&
4457            !Var->getInit()->isConstantInitializer(Context, false))
4458          Diag(Var->getLocation(), diag::warn_global_constructor);
4459      }
4460    }
4461
4462    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4463      FinalizeVarWithDestructor(Var, Record);
4464  }
4465}
4466
4467Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4468                                                   Decl **Group,
4469                                                   unsigned NumDecls) {
4470  llvm::SmallVector<Decl*, 8> Decls;
4471
4472  if (DS.isTypeSpecOwned())
4473    Decls.push_back((Decl*)DS.getTypeRep());
4474
4475  for (unsigned i = 0; i != NumDecls; ++i)
4476    if (Decl *D = Group[i])
4477      Decls.push_back(D);
4478
4479  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4480                                                   Decls.data(), Decls.size()));
4481}
4482
4483
4484/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4485/// to introduce parameters into function prototype scope.
4486Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4487  const DeclSpec &DS = D.getDeclSpec();
4488
4489  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4490  VarDecl::StorageClass StorageClass = VarDecl::None;
4491  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4492  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4493    StorageClass = VarDecl::Register;
4494    StorageClassAsWritten = VarDecl::Register;
4495  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4496    Diag(DS.getStorageClassSpecLoc(),
4497         diag::err_invalid_storage_class_in_func_decl);
4498    D.getMutableDeclSpec().ClearStorageClassSpecs();
4499  }
4500
4501  if (D.getDeclSpec().isThreadSpecified())
4502    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4503
4504  DiagnoseFunctionSpecifiers(D);
4505
4506  // Check that there are no default arguments inside the type of this
4507  // parameter (C++ only).
4508  if (getLangOptions().CPlusPlus)
4509    CheckExtraCXXDefaultArguments(D);
4510
4511  TagDecl *OwnedDecl = 0;
4512  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4513  QualType parmDeclType = TInfo->getType();
4514
4515  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4516    // C++ [dcl.fct]p6:
4517    //   Types shall not be defined in return or parameter types.
4518    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4519      << Context.getTypeDeclType(OwnedDecl);
4520  }
4521
4522  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4523  IdentifierInfo *II = D.getIdentifier();
4524  if (II) {
4525    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4526                   ForRedeclaration);
4527    LookupName(R, S);
4528    if (R.isSingleResult()) {
4529      NamedDecl *PrevDecl = R.getFoundDecl();
4530      if (PrevDecl->isTemplateParameter()) {
4531        // Maybe we will complain about the shadowed template parameter.
4532        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4533        // Just pretend that we didn't see the previous declaration.
4534        PrevDecl = 0;
4535      } else if (S->isDeclScope(PrevDecl)) {
4536        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4537        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4538
4539        // Recover by removing the name
4540        II = 0;
4541        D.SetIdentifier(0, D.getIdentifierLoc());
4542        D.setInvalidType(true);
4543      }
4544    }
4545  }
4546
4547  // Temporarily put parameter variables in the translation unit, not
4548  // the enclosing context.  This prevents them from accidentally
4549  // looking like class members in C++.
4550  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4551                                    TInfo, parmDeclType, II,
4552                                    D.getIdentifierLoc(),
4553                                    StorageClass, StorageClassAsWritten);
4554
4555  if (D.isInvalidType())
4556    New->setInvalidDecl();
4557
4558  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4559  if (D.getCXXScopeSpec().isSet()) {
4560    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4561      << D.getCXXScopeSpec().getRange();
4562    New->setInvalidDecl();
4563  }
4564
4565  // Add the parameter declaration into this scope.
4566  S->AddDecl(New);
4567  if (II)
4568    IdResolver.AddDecl(New);
4569
4570  ProcessDeclAttributes(S, New, D);
4571
4572  if (New->hasAttr<BlocksAttr>()) {
4573    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4574  }
4575  return New;
4576}
4577
4578/// \brief Synthesizes a variable for a parameter arising from a
4579/// typedef.
4580ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4581                                              SourceLocation Loc,
4582                                              QualType T) {
4583  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4584                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4585                                           VarDecl::None, VarDecl::None, 0);
4586  Param->setImplicit();
4587  return Param;
4588}
4589
4590ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4591                                  TypeSourceInfo *TSInfo, QualType T,
4592                                  IdentifierInfo *Name,
4593                                  SourceLocation NameLoc,
4594                                  VarDecl::StorageClass StorageClass,
4595                                  VarDecl::StorageClass StorageClassAsWritten) {
4596  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4597                                         adjustParameterType(T), TSInfo,
4598                                         StorageClass, StorageClassAsWritten,
4599                                         0);
4600
4601  // Parameters can not be abstract class types.
4602  // For record types, this is done by the AbstractClassUsageDiagnoser once
4603  // the class has been completely parsed.
4604  if (!CurContext->isRecord() &&
4605      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4606                             AbstractParamType))
4607    New->setInvalidDecl();
4608
4609  // Parameter declarators cannot be interface types. All ObjC objects are
4610  // passed by reference.
4611  if (T->isObjCObjectType()) {
4612    Diag(NameLoc,
4613         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4614    New->setInvalidDecl();
4615  }
4616
4617  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4618  // duration shall not be qualified by an address-space qualifier."
4619  // Since all parameters have automatic store duration, they can not have
4620  // an address space.
4621  if (T.getAddressSpace() != 0) {
4622    Diag(NameLoc, diag::err_arg_with_address_space);
4623    New->setInvalidDecl();
4624  }
4625
4626  return New;
4627}
4628
4629void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4630                                           SourceLocation LocAfterDecls) {
4631  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4632         "Not a function declarator!");
4633  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4634
4635  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4636  // for a K&R function.
4637  if (!FTI.hasPrototype) {
4638    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4639      --i;
4640      if (FTI.ArgInfo[i].Param == 0) {
4641        llvm::SmallString<256> Code;
4642        llvm::raw_svector_ostream(Code) << "  int "
4643                                        << FTI.ArgInfo[i].Ident->getName()
4644                                        << ";\n";
4645        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4646          << FTI.ArgInfo[i].Ident
4647          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4648
4649        // Implicitly declare the argument as type 'int' for lack of a better
4650        // type.
4651        DeclSpec DS;
4652        const char* PrevSpec; // unused
4653        unsigned DiagID; // unused
4654        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4655                           PrevSpec, DiagID);
4656        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4657        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4658        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4659      }
4660    }
4661  }
4662}
4663
4664Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4665                                         Declarator &D) {
4666  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4667  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4668         "Not a function declarator!");
4669  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4670
4671  if (FTI.hasPrototype) {
4672    // FIXME: Diagnose arguments without names in C.
4673  }
4674
4675  Scope *ParentScope = FnBodyScope->getParent();
4676
4677  Decl *DP = HandleDeclarator(ParentScope, D,
4678                              MultiTemplateParamsArg(*this),
4679                              /*IsFunctionDefinition=*/true);
4680  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4681}
4682
4683static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4684  // Don't warn about invalid declarations.
4685  if (FD->isInvalidDecl())
4686    return false;
4687
4688  // Or declarations that aren't global.
4689  if (!FD->isGlobal())
4690    return false;
4691
4692  // Don't warn about C++ member functions.
4693  if (isa<CXXMethodDecl>(FD))
4694    return false;
4695
4696  // Don't warn about 'main'.
4697  if (FD->isMain())
4698    return false;
4699
4700  // Don't warn about inline functions.
4701  if (FD->isInlineSpecified())
4702    return false;
4703
4704  // Don't warn about function templates.
4705  if (FD->getDescribedFunctionTemplate())
4706    return false;
4707
4708  // Don't warn about function template specializations.
4709  if (FD->isFunctionTemplateSpecialization())
4710    return false;
4711
4712  bool MissingPrototype = true;
4713  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4714       Prev; Prev = Prev->getPreviousDeclaration()) {
4715    // Ignore any declarations that occur in function or method
4716    // scope, because they aren't visible from the header.
4717    if (Prev->getDeclContext()->isFunctionOrMethod())
4718      continue;
4719
4720    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4721    break;
4722  }
4723
4724  return MissingPrototype;
4725}
4726
4727Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4728  // Clear the last template instantiation error context.
4729  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4730
4731  if (!D)
4732    return D;
4733  FunctionDecl *FD = 0;
4734
4735  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4736    FD = FunTmpl->getTemplatedDecl();
4737  else
4738    FD = cast<FunctionDecl>(D);
4739
4740  // Enter a new function scope
4741  PushFunctionScope();
4742
4743  // See if this is a redefinition.
4744  // But don't complain if we're in GNU89 mode and the previous definition
4745  // was an extern inline function.
4746  const FunctionDecl *Definition;
4747  if (FD->hasBody(Definition) &&
4748      !canRedefineFunction(Definition, getLangOptions())) {
4749    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4750    Diag(Definition->getLocation(), diag::note_previous_definition);
4751  }
4752
4753  // Builtin functions cannot be defined.
4754  if (unsigned BuiltinID = FD->getBuiltinID()) {
4755    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4756      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4757      FD->setInvalidDecl();
4758    }
4759  }
4760
4761  // The return type of a function definition must be complete
4762  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4763  QualType ResultType = FD->getResultType();
4764  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4765      !FD->isInvalidDecl() &&
4766      RequireCompleteType(FD->getLocation(), ResultType,
4767                          diag::err_func_def_incomplete_result))
4768    FD->setInvalidDecl();
4769
4770  // GNU warning -Wmissing-prototypes:
4771  //   Warn if a global function is defined without a previous
4772  //   prototype declaration. This warning is issued even if the
4773  //   definition itself provides a prototype. The aim is to detect
4774  //   global functions that fail to be declared in header files.
4775  if (ShouldWarnAboutMissingPrototype(FD))
4776    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4777
4778  if (FnBodyScope)
4779    PushDeclContext(FnBodyScope, FD);
4780
4781  // Check the validity of our function parameters
4782  CheckParmsForFunctionDef(FD);
4783
4784  bool ShouldCheckShadow =
4785    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4786
4787  // Introduce our parameters into the function scope
4788  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4789    ParmVarDecl *Param = FD->getParamDecl(p);
4790    Param->setOwningFunction(FD);
4791
4792    // If this has an identifier, add it to the scope stack.
4793    if (Param->getIdentifier() && FnBodyScope) {
4794      if (ShouldCheckShadow)
4795        CheckShadow(FnBodyScope, Param);
4796
4797      PushOnScopeChains(Param, FnBodyScope);
4798    }
4799  }
4800
4801  // Checking attributes of current function definition
4802  // dllimport attribute.
4803  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4804  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4805    // dllimport attribute cannot be directly applied to definition.
4806    if (!DA->isInherited()) {
4807      Diag(FD->getLocation(),
4808           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4809        << "dllimport";
4810      FD->setInvalidDecl();
4811      return FD;
4812    }
4813
4814    // Visual C++ appears to not think this is an issue, so only issue
4815    // a warning when Microsoft extensions are disabled.
4816    if (!LangOpts.Microsoft) {
4817      // If a symbol previously declared dllimport is later defined, the
4818      // attribute is ignored in subsequent references, and a warning is
4819      // emitted.
4820      Diag(FD->getLocation(),
4821           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4822        << FD->getName() << "dllimport";
4823    }
4824  }
4825  return FD;
4826}
4827
4828/// \brief Given the set of return statements within a function body,
4829/// compute the variables that are subject to the named return value
4830/// optimization.
4831///
4832/// Each of the variables that is subject to the named return value
4833/// optimization will be marked as NRVO variables in the AST, and any
4834/// return statement that has a marked NRVO variable as its NRVO candidate can
4835/// use the named return value optimization.
4836///
4837/// This function applies a very simplistic algorithm for NRVO: if every return
4838/// statement in the function has the same NRVO candidate, that candidate is
4839/// the NRVO variable.
4840///
4841/// FIXME: Employ a smarter algorithm that accounts for multiple return
4842/// statements and the lifetimes of the NRVO candidates. We should be able to
4843/// find a maximal set of NRVO variables.
4844static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4845  const VarDecl *NRVOCandidate = 0;
4846  for (unsigned I = 0; I != NumReturns; ++I) {
4847    if (!Returns[I]->getNRVOCandidate())
4848      return;
4849
4850    if (!NRVOCandidate)
4851      NRVOCandidate = Returns[I]->getNRVOCandidate();
4852    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4853      return;
4854  }
4855
4856  if (NRVOCandidate)
4857    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4858}
4859
4860Decl *Sema::ActOnFinishFunctionBody(Decl *D, StmtArg BodyArg) {
4861  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4862}
4863
4864Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, StmtArg BodyArg,
4865                                         bool IsInstantiation) {
4866  Stmt *Body = BodyArg.takeAs<Stmt>();
4867
4868  FunctionDecl *FD = 0;
4869  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4870  if (FunTmpl)
4871    FD = FunTmpl->getTemplatedDecl();
4872  else
4873    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4874
4875  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4876
4877  if (FD) {
4878    FD->setBody(Body);
4879    if (FD->isMain()) {
4880      // C and C++ allow for main to automagically return 0.
4881      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4882      FD->setHasImplicitReturnZero(true);
4883      WP.disableCheckFallThrough();
4884    }
4885
4886    if (!FD->isInvalidDecl()) {
4887      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4888
4889      // If this is a constructor, we need a vtable.
4890      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4891        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4892
4893      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4894                  FunctionScopes.back()->Returns.size());
4895    }
4896
4897    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4898  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4899    assert(MD == getCurMethodDecl() && "Method parsing confused");
4900    MD->setBody(Body);
4901    MD->setEndLoc(Body->getLocEnd());
4902    if (!MD->isInvalidDecl())
4903      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4904  } else {
4905    return 0;
4906  }
4907
4908  // Verify and clean out per-function state.
4909
4910  // Check goto/label use.
4911  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4912       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4913    LabelStmt *L = I->second;
4914
4915    // Verify that we have no forward references left.  If so, there was a goto
4916    // or address of a label taken, but no definition of it.  Label fwd
4917    // definitions are indicated with a null substmt.
4918    if (L->getSubStmt() != 0)
4919      continue;
4920
4921    // Emit error.
4922    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4923
4924    // At this point, we have gotos that use the bogus label.  Stitch it into
4925    // the function body so that they aren't leaked and that the AST is well
4926    // formed.
4927    if (Body == 0) {
4928      // The whole function wasn't parsed correctly.
4929      continue;
4930    }
4931
4932    // Otherwise, the body is valid: we want to stitch the label decl into the
4933    // function somewhere so that it is properly owned and so that the goto
4934    // has a valid target.  Do this by creating a new compound stmt with the
4935    // label in it.
4936
4937    // Give the label a sub-statement.
4938    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4939
4940    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4941                               cast<CXXTryStmt>(Body)->getTryBlock() :
4942                               cast<CompoundStmt>(Body);
4943    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4944                                          Compound->body_end());
4945    Elements.push_back(L);
4946    Compound->setStmts(Context, Elements.data(), Elements.size());
4947  }
4948
4949  if (Body) {
4950    // C++ constructors that have function-try-blocks can't have return
4951    // statements in the handlers of that block. (C++ [except.handle]p14)
4952    // Verify this.
4953    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4954      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4955
4956    // Verify that that gotos and switch cases don't jump into scopes illegally.
4957    // Verify that that gotos and switch cases don't jump into scopes illegally.
4958    if (FunctionNeedsScopeChecking() &&
4959        !dcl->isInvalidDecl() &&
4960        !hasAnyErrorsInThisFunction())
4961      DiagnoseInvalidJumps(Body);
4962
4963    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4964      if (!Destructor->getParent()->isDependentType())
4965        CheckDestructor(Destructor);
4966
4967      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4968                                             Destructor->getParent());
4969    }
4970
4971    // If any errors have occurred, clear out any temporaries that may have
4972    // been leftover. This ensures that these temporaries won't be picked up for
4973    // deletion in some later function.
4974    if (PP.getDiagnostics().hasErrorOccurred())
4975      ExprTemporaries.clear();
4976    else if (!isa<FunctionTemplateDecl>(dcl)) {
4977      // Since the body is valid, issue any analysis-based warnings that are
4978      // enabled.
4979      QualType ResultType;
4980      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4981        ResultType = FD->getResultType();
4982      }
4983      else {
4984        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4985        ResultType = MD->getResultType();
4986      }
4987      AnalysisWarnings.IssueWarnings(WP, dcl);
4988    }
4989
4990    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4991  }
4992
4993  if (!IsInstantiation)
4994    PopDeclContext();
4995
4996  PopFunctionOrBlockScope();
4997
4998  // If any errors have occurred, clear out any temporaries that may have
4999  // been leftover. This ensures that these temporaries won't be picked up for
5000  // deletion in some later function.
5001  if (getDiagnostics().hasErrorOccurred())
5002    ExprTemporaries.clear();
5003
5004  return dcl;
5005}
5006
5007/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5008/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5009NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5010                                          IdentifierInfo &II, Scope *S) {
5011  // Before we produce a declaration for an implicitly defined
5012  // function, see whether there was a locally-scoped declaration of
5013  // this name as a function or variable. If so, use that
5014  // (non-visible) declaration, and complain about it.
5015  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5016    = LocallyScopedExternalDecls.find(&II);
5017  if (Pos != LocallyScopedExternalDecls.end()) {
5018    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5019    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5020    return Pos->second;
5021  }
5022
5023  // Extension in C99.  Legal in C90, but warn about it.
5024  if (II.getName().startswith("__builtin_"))
5025    Diag(Loc, diag::warn_builtin_unknown) << &II;
5026  else if (getLangOptions().C99)
5027    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5028  else
5029    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5030
5031  // Set a Declarator for the implicit definition: int foo();
5032  const char *Dummy;
5033  DeclSpec DS;
5034  unsigned DiagID;
5035  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5036  Error = Error; // Silence warning.
5037  assert(!Error && "Error setting up implicit decl!");
5038  Declarator D(DS, Declarator::BlockContext);
5039  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5040                                             0, 0, false, SourceLocation(),
5041                                             false, 0,0,0, Loc, Loc, D),
5042                SourceLocation());
5043  D.SetIdentifier(&II, Loc);
5044
5045  // Insert this function into translation-unit scope.
5046
5047  DeclContext *PrevDC = CurContext;
5048  CurContext = Context.getTranslationUnitDecl();
5049
5050  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5051  FD->setImplicit();
5052
5053  CurContext = PrevDC;
5054
5055  AddKnownFunctionAttributes(FD);
5056
5057  return FD;
5058}
5059
5060/// \brief Adds any function attributes that we know a priori based on
5061/// the declaration of this function.
5062///
5063/// These attributes can apply both to implicitly-declared builtins
5064/// (like __builtin___printf_chk) or to library-declared functions
5065/// like NSLog or printf.
5066void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5067  if (FD->isInvalidDecl())
5068    return;
5069
5070  // If this is a built-in function, map its builtin attributes to
5071  // actual attributes.
5072  if (unsigned BuiltinID = FD->getBuiltinID()) {
5073    // Handle printf-formatting attributes.
5074    unsigned FormatIdx;
5075    bool HasVAListArg;
5076    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5077      if (!FD->getAttr<FormatAttr>())
5078        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5079                                                "printf", FormatIdx+1,
5080                                               HasVAListArg ? 0 : FormatIdx+2));
5081    }
5082    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5083                                             HasVAListArg)) {
5084     if (!FD->getAttr<FormatAttr>())
5085       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5086                                              "scanf", FormatIdx+1,
5087                                              HasVAListArg ? 0 : FormatIdx+2));
5088    }
5089
5090    // Mark const if we don't care about errno and that is the only
5091    // thing preventing the function from being const. This allows
5092    // IRgen to use LLVM intrinsics for such functions.
5093    if (!getLangOptions().MathErrno &&
5094        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5095      if (!FD->getAttr<ConstAttr>())
5096        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5097    }
5098
5099    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5100      FD->setType(Context.getNoReturnType(FD->getType()));
5101    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5102      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5103    if (Context.BuiltinInfo.isConst(BuiltinID))
5104      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5105  }
5106
5107  IdentifierInfo *Name = FD->getIdentifier();
5108  if (!Name)
5109    return;
5110  if ((!getLangOptions().CPlusPlus &&
5111       FD->getDeclContext()->isTranslationUnit()) ||
5112      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5113       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5114       LinkageSpecDecl::lang_c)) {
5115    // Okay: this could be a libc/libm/Objective-C function we know
5116    // about.
5117  } else
5118    return;
5119
5120  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5121    // FIXME: NSLog and NSLogv should be target specific
5122    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5123      // FIXME: We known better than our headers.
5124      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5125    } else
5126      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5127                                             "printf", 1,
5128                                             Name->isStr("NSLogv") ? 0 : 2));
5129  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5130    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5131    // target-specific builtins, perhaps?
5132    if (!FD->getAttr<FormatAttr>())
5133      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5134                                             "printf", 2,
5135                                             Name->isStr("vasprintf") ? 0 : 3));
5136  }
5137}
5138
5139TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5140                                    TypeSourceInfo *TInfo) {
5141  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5142  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5143
5144  if (!TInfo) {
5145    assert(D.isInvalidType() && "no declarator info for valid type");
5146    TInfo = Context.getTrivialTypeSourceInfo(T);
5147  }
5148
5149  // Scope manipulation handled by caller.
5150  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5151                                           D.getIdentifierLoc(),
5152                                           D.getIdentifier(),
5153                                           TInfo);
5154
5155  if (const TagType *TT = T->getAs<TagType>()) {
5156    TagDecl *TD = TT->getDecl();
5157
5158    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5159    // keep track of the TypedefDecl.
5160    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5161      TD->setTypedefForAnonDecl(NewTD);
5162  }
5163
5164  if (D.isInvalidType())
5165    NewTD->setInvalidDecl();
5166  return NewTD;
5167}
5168
5169
5170/// \brief Determine whether a tag with a given kind is acceptable
5171/// as a redeclaration of the given tag declaration.
5172///
5173/// \returns true if the new tag kind is acceptable, false otherwise.
5174bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5175                                        TagTypeKind NewTag,
5176                                        SourceLocation NewTagLoc,
5177                                        const IdentifierInfo &Name) {
5178  // C++ [dcl.type.elab]p3:
5179  //   The class-key or enum keyword present in the
5180  //   elaborated-type-specifier shall agree in kind with the
5181  //   declaration to which the name in the elaborated-type-specifier
5182  //   refers. This rule also applies to the form of
5183  //   elaborated-type-specifier that declares a class-name or
5184  //   friend class since it can be construed as referring to the
5185  //   definition of the class. Thus, in any
5186  //   elaborated-type-specifier, the enum keyword shall be used to
5187  //   refer to an enumeration (7.2), the union class-key shall be
5188  //   used to refer to a union (clause 9), and either the class or
5189  //   struct class-key shall be used to refer to a class (clause 9)
5190  //   declared using the class or struct class-key.
5191  TagTypeKind OldTag = Previous->getTagKind();
5192  if (OldTag == NewTag)
5193    return true;
5194
5195  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5196      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5197    // Warn about the struct/class tag mismatch.
5198    bool isTemplate = false;
5199    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5200      isTemplate = Record->getDescribedClassTemplate();
5201
5202    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5203      << (NewTag == TTK_Class)
5204      << isTemplate << &Name
5205      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5206                              OldTag == TTK_Class? "class" : "struct");
5207    Diag(Previous->getLocation(), diag::note_previous_use);
5208    return true;
5209  }
5210  return false;
5211}
5212
5213/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5214/// former case, Name will be non-null.  In the later case, Name will be null.
5215/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5216/// reference/declaration/definition of a tag.
5217Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5218                               SourceLocation KWLoc, CXXScopeSpec &SS,
5219                               IdentifierInfo *Name, SourceLocation NameLoc,
5220                               AttributeList *Attr, AccessSpecifier AS,
5221                               MultiTemplateParamsArg TemplateParameterLists,
5222                               bool &OwnedDecl, bool &IsDependent) {
5223  // If this is not a definition, it must have a name.
5224  assert((Name != 0 || TUK == TUK_Definition) &&
5225         "Nameless record must be a definition!");
5226
5227  OwnedDecl = false;
5228  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5229
5230  // FIXME: Check explicit specializations more carefully.
5231  bool isExplicitSpecialization = false;
5232  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5233  bool Invalid = false;
5234  if (TUK != TUK_Reference) {
5235    if (TemplateParameterList *TemplateParams
5236          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5237                        (TemplateParameterList**)TemplateParameterLists.get(),
5238                                              TemplateParameterLists.size(),
5239                                                    TUK == TUK_Friend,
5240                                                    isExplicitSpecialization,
5241                                                    Invalid)) {
5242      // All but one template parameter lists have been matching.
5243      --NumMatchedTemplateParamLists;
5244
5245      if (TemplateParams->size() > 0) {
5246        // This is a declaration or definition of a class template (which may
5247        // be a member of another template).
5248        if (Invalid)
5249          return 0;
5250
5251        OwnedDecl = false;
5252        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5253                                               SS, Name, NameLoc, Attr,
5254                                               TemplateParams,
5255                                               AS);
5256        TemplateParameterLists.release();
5257        return Result.get();
5258      } else {
5259        // The "template<>" header is extraneous.
5260        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5261          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5262        isExplicitSpecialization = true;
5263      }
5264    }
5265  }
5266
5267  DeclContext *SearchDC = CurContext;
5268  DeclContext *DC = CurContext;
5269  bool isStdBadAlloc = false;
5270
5271  RedeclarationKind Redecl = ForRedeclaration;
5272  if (TUK == TUK_Friend || TUK == TUK_Reference)
5273    Redecl = NotForRedeclaration;
5274
5275  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5276
5277  if (Name && SS.isNotEmpty()) {
5278    // We have a nested-name tag ('struct foo::bar').
5279
5280    // Check for invalid 'foo::'.
5281    if (SS.isInvalid()) {
5282      Name = 0;
5283      goto CreateNewDecl;
5284    }
5285
5286    // If this is a friend or a reference to a class in a dependent
5287    // context, don't try to make a decl for it.
5288    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5289      DC = computeDeclContext(SS, false);
5290      if (!DC) {
5291        IsDependent = true;
5292        return 0;
5293      }
5294    } else {
5295      DC = computeDeclContext(SS, true);
5296      if (!DC) {
5297        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5298          << SS.getRange();
5299        return 0;
5300      }
5301    }
5302
5303    if (RequireCompleteDeclContext(SS, DC))
5304      return 0;
5305
5306    SearchDC = DC;
5307    // Look-up name inside 'foo::'.
5308    LookupQualifiedName(Previous, DC);
5309
5310    if (Previous.isAmbiguous())
5311      return 0;
5312
5313    if (Previous.empty()) {
5314      // Name lookup did not find anything. However, if the
5315      // nested-name-specifier refers to the current instantiation,
5316      // and that current instantiation has any dependent base
5317      // classes, we might find something at instantiation time: treat
5318      // this as a dependent elaborated-type-specifier.
5319      if (Previous.wasNotFoundInCurrentInstantiation()) {
5320        IsDependent = true;
5321        return 0;
5322      }
5323
5324      // A tag 'foo::bar' must already exist.
5325      Diag(NameLoc, diag::err_not_tag_in_scope)
5326        << Kind << Name << DC << SS.getRange();
5327      Name = 0;
5328      Invalid = true;
5329      goto CreateNewDecl;
5330    }
5331  } else if (Name) {
5332    // If this is a named struct, check to see if there was a previous forward
5333    // declaration or definition.
5334    // FIXME: We're looking into outer scopes here, even when we
5335    // shouldn't be. Doing so can result in ambiguities that we
5336    // shouldn't be diagnosing.
5337    LookupName(Previous, S);
5338
5339    // Note:  there used to be some attempt at recovery here.
5340    if (Previous.isAmbiguous())
5341      return 0;
5342
5343    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5344      // FIXME: This makes sure that we ignore the contexts associated
5345      // with C structs, unions, and enums when looking for a matching
5346      // tag declaration or definition. See the similar lookup tweak
5347      // in Sema::LookupName; is there a better way to deal with this?
5348      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5349        SearchDC = SearchDC->getParent();
5350    }
5351  }
5352
5353  if (Previous.isSingleResult() &&
5354      Previous.getFoundDecl()->isTemplateParameter()) {
5355    // Maybe we will complain about the shadowed template parameter.
5356    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5357    // Just pretend that we didn't see the previous declaration.
5358    Previous.clear();
5359  }
5360
5361  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5362      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5363    // This is a declaration of or a reference to "std::bad_alloc".
5364    isStdBadAlloc = true;
5365
5366    if (Previous.empty() && StdBadAlloc) {
5367      // std::bad_alloc has been implicitly declared (but made invisible to
5368      // name lookup). Fill in this implicit declaration as the previous
5369      // declaration, so that the declarations get chained appropriately.
5370      Previous.addDecl(getStdBadAlloc());
5371    }
5372  }
5373
5374  // If we didn't find a previous declaration, and this is a reference
5375  // (or friend reference), move to the correct scope.  In C++, we
5376  // also need to do a redeclaration lookup there, just in case
5377  // there's a shadow friend decl.
5378  if (Name && Previous.empty() &&
5379      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5380    if (Invalid) goto CreateNewDecl;
5381    assert(SS.isEmpty());
5382
5383    if (TUK == TUK_Reference) {
5384      // C++ [basic.scope.pdecl]p5:
5385      //   -- for an elaborated-type-specifier of the form
5386      //
5387      //          class-key identifier
5388      //
5389      //      if the elaborated-type-specifier is used in the
5390      //      decl-specifier-seq or parameter-declaration-clause of a
5391      //      function defined in namespace scope, the identifier is
5392      //      declared as a class-name in the namespace that contains
5393      //      the declaration; otherwise, except as a friend
5394      //      declaration, the identifier is declared in the smallest
5395      //      non-class, non-function-prototype scope that contains the
5396      //      declaration.
5397      //
5398      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5399      // C structs and unions.
5400      //
5401      // It is an error in C++ to declare (rather than define) an enum
5402      // type, including via an elaborated type specifier.  We'll
5403      // diagnose that later; for now, declare the enum in the same
5404      // scope as we would have picked for any other tag type.
5405      //
5406      // GNU C also supports this behavior as part of its incomplete
5407      // enum types extension, while GNU C++ does not.
5408      //
5409      // Find the context where we'll be declaring the tag.
5410      // FIXME: We would like to maintain the current DeclContext as the
5411      // lexical context,
5412      while (SearchDC->isRecord())
5413        SearchDC = SearchDC->getParent();
5414
5415      // Find the scope where we'll be declaring the tag.
5416      while (S->isClassScope() ||
5417             (getLangOptions().CPlusPlus &&
5418              S->isFunctionPrototypeScope()) ||
5419             ((S->getFlags() & Scope::DeclScope) == 0) ||
5420             (S->getEntity() &&
5421              ((DeclContext *)S->getEntity())->isTransparentContext()))
5422        S = S->getParent();
5423    } else {
5424      assert(TUK == TUK_Friend);
5425      // C++ [namespace.memdef]p3:
5426      //   If a friend declaration in a non-local class first declares a
5427      //   class or function, the friend class or function is a member of
5428      //   the innermost enclosing namespace.
5429      SearchDC = SearchDC->getEnclosingNamespaceContext();
5430    }
5431
5432    // In C++, we need to do a redeclaration lookup to properly
5433    // diagnose some problems.
5434    if (getLangOptions().CPlusPlus) {
5435      Previous.setRedeclarationKind(ForRedeclaration);
5436      LookupQualifiedName(Previous, SearchDC);
5437    }
5438  }
5439
5440  if (!Previous.empty()) {
5441    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5442
5443    // It's okay to have a tag decl in the same scope as a typedef
5444    // which hides a tag decl in the same scope.  Finding this
5445    // insanity with a redeclaration lookup can only actually happen
5446    // in C++.
5447    //
5448    // This is also okay for elaborated-type-specifiers, which is
5449    // technically forbidden by the current standard but which is
5450    // okay according to the likely resolution of an open issue;
5451    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5452    if (getLangOptions().CPlusPlus) {
5453      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5454        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5455          TagDecl *Tag = TT->getDecl();
5456          if (Tag->getDeclName() == Name &&
5457              Tag->getDeclContext()->getLookupContext()
5458                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5459            PrevDecl = Tag;
5460            Previous.clear();
5461            Previous.addDecl(Tag);
5462          }
5463        }
5464      }
5465    }
5466
5467    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5468      // If this is a use of a previous tag, or if the tag is already declared
5469      // in the same scope (so that the definition/declaration completes or
5470      // rementions the tag), reuse the decl.
5471      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5472          isDeclInScope(PrevDecl, SearchDC, S)) {
5473        // Make sure that this wasn't declared as an enum and now used as a
5474        // struct or something similar.
5475        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5476          bool SafeToContinue
5477            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5478               Kind != TTK_Enum);
5479          if (SafeToContinue)
5480            Diag(KWLoc, diag::err_use_with_wrong_tag)
5481              << Name
5482              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5483                                              PrevTagDecl->getKindName());
5484          else
5485            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5486          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5487
5488          if (SafeToContinue)
5489            Kind = PrevTagDecl->getTagKind();
5490          else {
5491            // Recover by making this an anonymous redefinition.
5492            Name = 0;
5493            Previous.clear();
5494            Invalid = true;
5495          }
5496        }
5497
5498        if (!Invalid) {
5499          // If this is a use, just return the declaration we found.
5500
5501          // FIXME: In the future, return a variant or some other clue
5502          // for the consumer of this Decl to know it doesn't own it.
5503          // For our current ASTs this shouldn't be a problem, but will
5504          // need to be changed with DeclGroups.
5505          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5506              TUK == TUK_Friend)
5507            return PrevTagDecl;
5508
5509          // Diagnose attempts to redefine a tag.
5510          if (TUK == TUK_Definition) {
5511            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5512              // If we're defining a specialization and the previous definition
5513              // is from an implicit instantiation, don't emit an error
5514              // here; we'll catch this in the general case below.
5515              if (!isExplicitSpecialization ||
5516                  !isa<CXXRecordDecl>(Def) ||
5517                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5518                                               == TSK_ExplicitSpecialization) {
5519                Diag(NameLoc, diag::err_redefinition) << Name;
5520                Diag(Def->getLocation(), diag::note_previous_definition);
5521                // If this is a redefinition, recover by making this
5522                // struct be anonymous, which will make any later
5523                // references get the previous definition.
5524                Name = 0;
5525                Previous.clear();
5526                Invalid = true;
5527              }
5528            } else {
5529              // If the type is currently being defined, complain
5530              // about a nested redefinition.
5531              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5532              if (Tag->isBeingDefined()) {
5533                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5534                Diag(PrevTagDecl->getLocation(),
5535                     diag::note_previous_definition);
5536                Name = 0;
5537                Previous.clear();
5538                Invalid = true;
5539              }
5540            }
5541
5542            // Okay, this is definition of a previously declared or referenced
5543            // tag PrevDecl. We're going to create a new Decl for it.
5544          }
5545        }
5546        // If we get here we have (another) forward declaration or we
5547        // have a definition.  Just create a new decl.
5548
5549      } else {
5550        // If we get here, this is a definition of a new tag type in a nested
5551        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5552        // new decl/type.  We set PrevDecl to NULL so that the entities
5553        // have distinct types.
5554        Previous.clear();
5555      }
5556      // If we get here, we're going to create a new Decl. If PrevDecl
5557      // is non-NULL, it's a definition of the tag declared by
5558      // PrevDecl. If it's NULL, we have a new definition.
5559
5560
5561    // Otherwise, PrevDecl is not a tag, but was found with tag
5562    // lookup.  This is only actually possible in C++, where a few
5563    // things like templates still live in the tag namespace.
5564    } else {
5565      assert(getLangOptions().CPlusPlus);
5566
5567      // Use a better diagnostic if an elaborated-type-specifier
5568      // found the wrong kind of type on the first
5569      // (non-redeclaration) lookup.
5570      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5571          !Previous.isForRedeclaration()) {
5572        unsigned Kind = 0;
5573        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5574        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5575        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5576        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5577        Invalid = true;
5578
5579      // Otherwise, only diagnose if the declaration is in scope.
5580      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5581        // do nothing
5582
5583      // Diagnose implicit declarations introduced by elaborated types.
5584      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5585        unsigned Kind = 0;
5586        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5587        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5588        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5589        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5590        Invalid = true;
5591
5592      // Otherwise it's a declaration.  Call out a particularly common
5593      // case here.
5594      } else if (isa<TypedefDecl>(PrevDecl)) {
5595        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5596          << Name
5597          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5598        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5599        Invalid = true;
5600
5601      // Otherwise, diagnose.
5602      } else {
5603        // The tag name clashes with something else in the target scope,
5604        // issue an error and recover by making this tag be anonymous.
5605        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5606        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5607        Name = 0;
5608        Invalid = true;
5609      }
5610
5611      // The existing declaration isn't relevant to us; we're in a
5612      // new scope, so clear out the previous declaration.
5613      Previous.clear();
5614    }
5615  }
5616
5617CreateNewDecl:
5618
5619  TagDecl *PrevDecl = 0;
5620  if (Previous.isSingleResult())
5621    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5622
5623  // If there is an identifier, use the location of the identifier as the
5624  // location of the decl, otherwise use the location of the struct/union
5625  // keyword.
5626  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5627
5628  // Otherwise, create a new declaration. If there is a previous
5629  // declaration of the same entity, the two will be linked via
5630  // PrevDecl.
5631  TagDecl *New;
5632
5633  if (Kind == TTK_Enum) {
5634    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5635    // enum X { A, B, C } D;    D should chain to X.
5636    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5637                           cast_or_null<EnumDecl>(PrevDecl));
5638    // If this is an undefined enum, warn.
5639    if (TUK != TUK_Definition && !Invalid) {
5640      TagDecl *Def;
5641      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5642        Diag(Loc, diag::ext_forward_ref_enum_def)
5643          << New;
5644        Diag(Def->getLocation(), diag::note_previous_definition);
5645      } else {
5646        Diag(Loc,
5647             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5648                                       : diag::ext_forward_ref_enum);
5649      }
5650    }
5651  } else {
5652    // struct/union/class
5653
5654    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5655    // struct X { int A; } D;    D should chain to X.
5656    if (getLangOptions().CPlusPlus) {
5657      // FIXME: Look for a way to use RecordDecl for simple structs.
5658      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5659                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5660
5661      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5662        StdBadAlloc = cast<CXXRecordDecl>(New);
5663    } else
5664      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5665                               cast_or_null<RecordDecl>(PrevDecl));
5666  }
5667
5668  // Maybe add qualifier info.
5669  if (SS.isNotEmpty()) {
5670    if (SS.isSet()) {
5671      NestedNameSpecifier *NNS
5672        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5673      New->setQualifierInfo(NNS, SS.getRange());
5674      if (NumMatchedTemplateParamLists > 0) {
5675        New->setTemplateParameterListsInfo(Context,
5676                                           NumMatchedTemplateParamLists,
5677                    (TemplateParameterList**) TemplateParameterLists.release());
5678      }
5679    }
5680    else
5681      Invalid = true;
5682  }
5683
5684  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5685    // Add alignment attributes if necessary; these attributes are checked when
5686    // the ASTContext lays out the structure.
5687    //
5688    // It is important for implementing the correct semantics that this
5689    // happen here (in act on tag decl). The #pragma pack stack is
5690    // maintained as a result of parser callbacks which can occur at
5691    // many points during the parsing of a struct declaration (because
5692    // the #pragma tokens are effectively skipped over during the
5693    // parsing of the struct).
5694    AddAlignmentAttributesForRecord(RD);
5695  }
5696
5697  // If this is a specialization of a member class (of a class template),
5698  // check the specialization.
5699  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5700    Invalid = true;
5701
5702  if (Invalid)
5703    New->setInvalidDecl();
5704
5705  if (Attr)
5706    ProcessDeclAttributeList(S, New, Attr);
5707
5708  // If we're declaring or defining a tag in function prototype scope
5709  // in C, note that this type can only be used within the function.
5710  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5711    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5712
5713  // Set the lexical context. If the tag has a C++ scope specifier, the
5714  // lexical context will be different from the semantic context.
5715  New->setLexicalDeclContext(CurContext);
5716
5717  // Mark this as a friend decl if applicable.
5718  if (TUK == TUK_Friend)
5719    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5720
5721  // Set the access specifier.
5722  if (!Invalid && SearchDC->isRecord())
5723    SetMemberAccessSpecifier(New, PrevDecl, AS);
5724
5725  if (TUK == TUK_Definition)
5726    New->startDefinition();
5727
5728  // If this has an identifier, add it to the scope stack.
5729  if (TUK == TUK_Friend) {
5730    // We might be replacing an existing declaration in the lookup tables;
5731    // if so, borrow its access specifier.
5732    if (PrevDecl)
5733      New->setAccess(PrevDecl->getAccess());
5734
5735    DeclContext *DC = New->getDeclContext()->getLookupContext();
5736    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5737    if (Name) // can be null along some error paths
5738      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5739        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5740  } else if (Name) {
5741    S = getNonFieldDeclScope(S);
5742    PushOnScopeChains(New, S);
5743  } else {
5744    CurContext->addDecl(New);
5745  }
5746
5747  // If this is the C FILE type, notify the AST context.
5748  if (IdentifierInfo *II = New->getIdentifier())
5749    if (!New->isInvalidDecl() &&
5750        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5751        II->isStr("FILE"))
5752      Context.setFILEDecl(New);
5753
5754  OwnedDecl = true;
5755  return New;
5756}
5757
5758void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5759  AdjustDeclIfTemplate(TagD);
5760  TagDecl *Tag = cast<TagDecl>(TagD);
5761
5762  // Enter the tag context.
5763  PushDeclContext(S, Tag);
5764}
5765
5766void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5767                                           SourceLocation LBraceLoc) {
5768  AdjustDeclIfTemplate(TagD);
5769  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5770
5771  FieldCollector->StartClass();
5772
5773  if (!Record->getIdentifier())
5774    return;
5775
5776  // C++ [class]p2:
5777  //   [...] The class-name is also inserted into the scope of the
5778  //   class itself; this is known as the injected-class-name. For
5779  //   purposes of access checking, the injected-class-name is treated
5780  //   as if it were a public member name.
5781  CXXRecordDecl *InjectedClassName
5782    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5783                            CurContext, Record->getLocation(),
5784                            Record->getIdentifier(),
5785                            Record->getTagKeywordLoc(),
5786                            Record);
5787  InjectedClassName->setImplicit();
5788  InjectedClassName->setAccess(AS_public);
5789  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5790      InjectedClassName->setDescribedClassTemplate(Template);
5791  PushOnScopeChains(InjectedClassName, S);
5792  assert(InjectedClassName->isInjectedClassName() &&
5793         "Broken injected-class-name");
5794}
5795
5796void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5797                                    SourceLocation RBraceLoc) {
5798  AdjustDeclIfTemplate(TagD);
5799  TagDecl *Tag = cast<TagDecl>(TagD);
5800  Tag->setRBraceLoc(RBraceLoc);
5801
5802  if (isa<CXXRecordDecl>(Tag))
5803    FieldCollector->FinishClass();
5804
5805  // Exit this scope of this tag's definition.
5806  PopDeclContext();
5807
5808  // Notify the consumer that we've defined a tag.
5809  Consumer.HandleTagDeclDefinition(Tag);
5810}
5811
5812void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5813  AdjustDeclIfTemplate(TagD);
5814  TagDecl *Tag = cast<TagDecl>(TagD);
5815  Tag->setInvalidDecl();
5816
5817  // We're undoing ActOnTagStartDefinition here, not
5818  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5819  // the FieldCollector.
5820
5821  PopDeclContext();
5822}
5823
5824// Note that FieldName may be null for anonymous bitfields.
5825bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5826                          QualType FieldTy, const Expr *BitWidth,
5827                          bool *ZeroWidth) {
5828  // Default to true; that shouldn't confuse checks for emptiness
5829  if (ZeroWidth)
5830    *ZeroWidth = true;
5831
5832  // C99 6.7.2.1p4 - verify the field type.
5833  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5834  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5835    // Handle incomplete types with specific error.
5836    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5837      return true;
5838    if (FieldName)
5839      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5840        << FieldName << FieldTy << BitWidth->getSourceRange();
5841    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5842      << FieldTy << BitWidth->getSourceRange();
5843  }
5844
5845  // If the bit-width is type- or value-dependent, don't try to check
5846  // it now.
5847  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5848    return false;
5849
5850  llvm::APSInt Value;
5851  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5852    return true;
5853
5854  if (Value != 0 && ZeroWidth)
5855    *ZeroWidth = false;
5856
5857  // Zero-width bitfield is ok for anonymous field.
5858  if (Value == 0 && FieldName)
5859    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5860
5861  if (Value.isSigned() && Value.isNegative()) {
5862    if (FieldName)
5863      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5864               << FieldName << Value.toString(10);
5865    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5866      << Value.toString(10);
5867  }
5868
5869  if (!FieldTy->isDependentType()) {
5870    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5871    if (Value.getZExtValue() > TypeSize) {
5872      if (!getLangOptions().CPlusPlus) {
5873        if (FieldName)
5874          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5875            << FieldName << (unsigned)Value.getZExtValue()
5876            << (unsigned)TypeSize;
5877
5878        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5879          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5880      }
5881
5882      if (FieldName)
5883        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5884          << FieldName << (unsigned)Value.getZExtValue()
5885          << (unsigned)TypeSize;
5886      else
5887        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5888          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5889    }
5890  }
5891
5892  return false;
5893}
5894
5895/// ActOnField - Each field of a struct/union/class is passed into this in order
5896/// to create a FieldDecl object for it.
5897Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5898                                 SourceLocation DeclStart,
5899                                 Declarator &D, ExprTy *BitfieldWidth) {
5900  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5901                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5902                               AS_public);
5903  return Res;
5904}
5905
5906/// HandleField - Analyze a field of a C struct or a C++ data member.
5907///
5908FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5909                             SourceLocation DeclStart,
5910                             Declarator &D, Expr *BitWidth,
5911                             AccessSpecifier AS) {
5912  IdentifierInfo *II = D.getIdentifier();
5913  SourceLocation Loc = DeclStart;
5914  if (II) Loc = D.getIdentifierLoc();
5915
5916  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5917  QualType T = TInfo->getType();
5918  if (getLangOptions().CPlusPlus)
5919    CheckExtraCXXDefaultArguments(D);
5920
5921  DiagnoseFunctionSpecifiers(D);
5922
5923  if (D.getDeclSpec().isThreadSpecified())
5924    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5925
5926  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5927                                         ForRedeclaration);
5928
5929  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5930    // Maybe we will complain about the shadowed template parameter.
5931    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5932    // Just pretend that we didn't see the previous declaration.
5933    PrevDecl = 0;
5934  }
5935
5936  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5937    PrevDecl = 0;
5938
5939  bool Mutable
5940    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5941  SourceLocation TSSL = D.getSourceRange().getBegin();
5942  FieldDecl *NewFD
5943    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5944                     AS, PrevDecl, &D);
5945
5946  if (NewFD->isInvalidDecl())
5947    Record->setInvalidDecl();
5948
5949  if (NewFD->isInvalidDecl() && PrevDecl) {
5950    // Don't introduce NewFD into scope; there's already something
5951    // with the same name in the same scope.
5952  } else if (II) {
5953    PushOnScopeChains(NewFD, S);
5954  } else
5955    Record->addDecl(NewFD);
5956
5957  return NewFD;
5958}
5959
5960/// \brief Build a new FieldDecl and check its well-formedness.
5961///
5962/// This routine builds a new FieldDecl given the fields name, type,
5963/// record, etc. \p PrevDecl should refer to any previous declaration
5964/// with the same name and in the same scope as the field to be
5965/// created.
5966///
5967/// \returns a new FieldDecl.
5968///
5969/// \todo The Declarator argument is a hack. It will be removed once
5970FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5971                                TypeSourceInfo *TInfo,
5972                                RecordDecl *Record, SourceLocation Loc,
5973                                bool Mutable, Expr *BitWidth,
5974                                SourceLocation TSSL,
5975                                AccessSpecifier AS, NamedDecl *PrevDecl,
5976                                Declarator *D) {
5977  IdentifierInfo *II = Name.getAsIdentifierInfo();
5978  bool InvalidDecl = false;
5979  if (D) InvalidDecl = D->isInvalidType();
5980
5981  // If we receive a broken type, recover by assuming 'int' and
5982  // marking this declaration as invalid.
5983  if (T.isNull()) {
5984    InvalidDecl = true;
5985    T = Context.IntTy;
5986  }
5987
5988  QualType EltTy = Context.getBaseElementType(T);
5989  if (!EltTy->isDependentType() &&
5990      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
5991    // Fields of incomplete type force their record to be invalid.
5992    Record->setInvalidDecl();
5993    InvalidDecl = true;
5994  }
5995
5996  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5997  // than a variably modified type.
5998  if (!InvalidDecl && T->isVariablyModifiedType()) {
5999    bool SizeIsNegative;
6000    llvm::APSInt Oversized;
6001    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6002                                                           SizeIsNegative,
6003                                                           Oversized);
6004    if (!FixedTy.isNull()) {
6005      Diag(Loc, diag::warn_illegal_constant_array_size);
6006      T = FixedTy;
6007    } else {
6008      if (SizeIsNegative)
6009        Diag(Loc, diag::err_typecheck_negative_array_size);
6010      else if (Oversized.getBoolValue())
6011        Diag(Loc, diag::err_array_too_large)
6012          << Oversized.toString(10);
6013      else
6014        Diag(Loc, diag::err_typecheck_field_variable_size);
6015      InvalidDecl = true;
6016    }
6017  }
6018
6019  // Fields can not have abstract class types
6020  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6021                                             diag::err_abstract_type_in_decl,
6022                                             AbstractFieldType))
6023    InvalidDecl = true;
6024
6025  bool ZeroWidth = false;
6026  // If this is declared as a bit-field, check the bit-field.
6027  if (!InvalidDecl && BitWidth &&
6028      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6029    InvalidDecl = true;
6030    DeleteExpr(BitWidth);
6031    BitWidth = 0;
6032    ZeroWidth = false;
6033  }
6034
6035  // Check that 'mutable' is consistent with the type of the declaration.
6036  if (!InvalidDecl && Mutable) {
6037    unsigned DiagID = 0;
6038    if (T->isReferenceType())
6039      DiagID = diag::err_mutable_reference;
6040    else if (T.isConstQualified())
6041      DiagID = diag::err_mutable_const;
6042
6043    if (DiagID) {
6044      SourceLocation ErrLoc = Loc;
6045      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6046        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6047      Diag(ErrLoc, DiagID);
6048      Mutable = false;
6049      InvalidDecl = true;
6050    }
6051  }
6052
6053  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6054                                       BitWidth, Mutable);
6055  if (InvalidDecl)
6056    NewFD->setInvalidDecl();
6057
6058  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6059    Diag(Loc, diag::err_duplicate_member) << II;
6060    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6061    NewFD->setInvalidDecl();
6062  }
6063
6064  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6065    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6066
6067    if (!T->isPODType())
6068      CXXRecord->setPOD(false);
6069    if (!ZeroWidth)
6070      CXXRecord->setEmpty(false);
6071
6072    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6073      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6074      if (RDecl->getDefinition()) {
6075        if (!RDecl->hasTrivialConstructor())
6076          CXXRecord->setHasTrivialConstructor(false);
6077        if (!RDecl->hasTrivialCopyConstructor())
6078          CXXRecord->setHasTrivialCopyConstructor(false);
6079        if (!RDecl->hasTrivialCopyAssignment())
6080          CXXRecord->setHasTrivialCopyAssignment(false);
6081        if (!RDecl->hasTrivialDestructor())
6082          CXXRecord->setHasTrivialDestructor(false);
6083
6084        // C++ 9.5p1: An object of a class with a non-trivial
6085        // constructor, a non-trivial copy constructor, a non-trivial
6086        // destructor, or a non-trivial copy assignment operator
6087        // cannot be a member of a union, nor can an array of such
6088        // objects.
6089        // TODO: C++0x alters this restriction significantly.
6090        if (Record->isUnion() && CheckNontrivialField(NewFD))
6091          NewFD->setInvalidDecl();
6092      }
6093    }
6094  }
6095
6096  // FIXME: We need to pass in the attributes given an AST
6097  // representation, not a parser representation.
6098  if (D)
6099    // FIXME: What to pass instead of TUScope?
6100    ProcessDeclAttributes(TUScope, NewFD, *D);
6101
6102  if (T.isObjCGCWeak())
6103    Diag(Loc, diag::warn_attribute_weak_on_field);
6104
6105  NewFD->setAccess(AS);
6106
6107  // C++ [dcl.init.aggr]p1:
6108  //   An aggregate is an array or a class (clause 9) with [...] no
6109  //   private or protected non-static data members (clause 11).
6110  // A POD must be an aggregate.
6111  if (getLangOptions().CPlusPlus &&
6112      (AS == AS_private || AS == AS_protected)) {
6113    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6114    CXXRecord->setAggregate(false);
6115    CXXRecord->setPOD(false);
6116  }
6117
6118  return NewFD;
6119}
6120
6121bool Sema::CheckNontrivialField(FieldDecl *FD) {
6122  assert(FD);
6123  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6124
6125  if (FD->isInvalidDecl())
6126    return true;
6127
6128  QualType EltTy = Context.getBaseElementType(FD->getType());
6129  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6130    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6131    if (RDecl->getDefinition()) {
6132      // We check for copy constructors before constructors
6133      // because otherwise we'll never get complaints about
6134      // copy constructors.
6135
6136      CXXSpecialMember member = CXXInvalid;
6137      if (!RDecl->hasTrivialCopyConstructor())
6138        member = CXXCopyConstructor;
6139      else if (!RDecl->hasTrivialConstructor())
6140        member = CXXConstructor;
6141      else if (!RDecl->hasTrivialCopyAssignment())
6142        member = CXXCopyAssignment;
6143      else if (!RDecl->hasTrivialDestructor())
6144        member = CXXDestructor;
6145
6146      if (member != CXXInvalid) {
6147        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6148              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6149        DiagnoseNontrivial(RT, member);
6150        return true;
6151      }
6152    }
6153  }
6154
6155  return false;
6156}
6157
6158/// DiagnoseNontrivial - Given that a class has a non-trivial
6159/// special member, figure out why.
6160void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6161  QualType QT(T, 0U);
6162  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6163
6164  // Check whether the member was user-declared.
6165  switch (member) {
6166  case CXXInvalid:
6167    break;
6168
6169  case CXXConstructor:
6170    if (RD->hasUserDeclaredConstructor()) {
6171      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6172      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6173        const FunctionDecl *body = 0;
6174        ci->hasBody(body);
6175        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6176          SourceLocation CtorLoc = ci->getLocation();
6177          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6178          return;
6179        }
6180      }
6181
6182      assert(0 && "found no user-declared constructors");
6183      return;
6184    }
6185    break;
6186
6187  case CXXCopyConstructor:
6188    if (RD->hasUserDeclaredCopyConstructor()) {
6189      SourceLocation CtorLoc =
6190        RD->getCopyConstructor(Context, 0)->getLocation();
6191      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6192      return;
6193    }
6194    break;
6195
6196  case CXXCopyAssignment:
6197    if (RD->hasUserDeclaredCopyAssignment()) {
6198      // FIXME: this should use the location of the copy
6199      // assignment, not the type.
6200      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6201      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6202      return;
6203    }
6204    break;
6205
6206  case CXXDestructor:
6207    if (RD->hasUserDeclaredDestructor()) {
6208      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6209      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6210      return;
6211    }
6212    break;
6213  }
6214
6215  typedef CXXRecordDecl::base_class_iterator base_iter;
6216
6217  // Virtual bases and members inhibit trivial copying/construction,
6218  // but not trivial destruction.
6219  if (member != CXXDestructor) {
6220    // Check for virtual bases.  vbases includes indirect virtual bases,
6221    // so we just iterate through the direct bases.
6222    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6223      if (bi->isVirtual()) {
6224        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6225        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6226        return;
6227      }
6228
6229    // Check for virtual methods.
6230    typedef CXXRecordDecl::method_iterator meth_iter;
6231    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6232         ++mi) {
6233      if (mi->isVirtual()) {
6234        SourceLocation MLoc = mi->getSourceRange().getBegin();
6235        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6236        return;
6237      }
6238    }
6239  }
6240
6241  bool (CXXRecordDecl::*hasTrivial)() const;
6242  switch (member) {
6243  case CXXConstructor:
6244    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6245  case CXXCopyConstructor:
6246    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6247  case CXXCopyAssignment:
6248    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6249  case CXXDestructor:
6250    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6251  default:
6252    assert(0 && "unexpected special member"); return;
6253  }
6254
6255  // Check for nontrivial bases (and recurse).
6256  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6257    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6258    assert(BaseRT && "Don't know how to handle dependent bases");
6259    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6260    if (!(BaseRecTy->*hasTrivial)()) {
6261      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6262      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6263      DiagnoseNontrivial(BaseRT, member);
6264      return;
6265    }
6266  }
6267
6268  // Check for nontrivial members (and recurse).
6269  typedef RecordDecl::field_iterator field_iter;
6270  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6271       ++fi) {
6272    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6273    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6274      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6275
6276      if (!(EltRD->*hasTrivial)()) {
6277        SourceLocation FLoc = (*fi)->getLocation();
6278        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6279        DiagnoseNontrivial(EltRT, member);
6280        return;
6281      }
6282    }
6283  }
6284
6285  assert(0 && "found no explanation for non-trivial member");
6286}
6287
6288/// TranslateIvarVisibility - Translate visibility from a token ID to an
6289///  AST enum value.
6290static ObjCIvarDecl::AccessControl
6291TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6292  switch (ivarVisibility) {
6293  default: assert(0 && "Unknown visitibility kind");
6294  case tok::objc_private: return ObjCIvarDecl::Private;
6295  case tok::objc_public: return ObjCIvarDecl::Public;
6296  case tok::objc_protected: return ObjCIvarDecl::Protected;
6297  case tok::objc_package: return ObjCIvarDecl::Package;
6298  }
6299}
6300
6301/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6302/// in order to create an IvarDecl object for it.
6303Decl *Sema::ActOnIvar(Scope *S,
6304                                SourceLocation DeclStart,
6305                                Decl *IntfDecl,
6306                                Declarator &D, ExprTy *BitfieldWidth,
6307                                tok::ObjCKeywordKind Visibility) {
6308
6309  IdentifierInfo *II = D.getIdentifier();
6310  Expr *BitWidth = (Expr*)BitfieldWidth;
6311  SourceLocation Loc = DeclStart;
6312  if (II) Loc = D.getIdentifierLoc();
6313
6314  // FIXME: Unnamed fields can be handled in various different ways, for
6315  // example, unnamed unions inject all members into the struct namespace!
6316
6317  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6318  QualType T = TInfo->getType();
6319
6320  if (BitWidth) {
6321    // 6.7.2.1p3, 6.7.2.1p4
6322    if (VerifyBitField(Loc, II, T, BitWidth)) {
6323      D.setInvalidType();
6324      DeleteExpr(BitWidth);
6325      BitWidth = 0;
6326    }
6327  } else {
6328    // Not a bitfield.
6329
6330    // validate II.
6331
6332  }
6333  if (T->isReferenceType()) {
6334    Diag(Loc, diag::err_ivar_reference_type);
6335    D.setInvalidType();
6336  }
6337  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6338  // than a variably modified type.
6339  else if (T->isVariablyModifiedType()) {
6340    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6341    D.setInvalidType();
6342  }
6343
6344  // Get the visibility (access control) for this ivar.
6345  ObjCIvarDecl::AccessControl ac =
6346    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6347                                        : ObjCIvarDecl::None;
6348  // Must set ivar's DeclContext to its enclosing interface.
6349  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6350  ObjCContainerDecl *EnclosingContext;
6351  if (ObjCImplementationDecl *IMPDecl =
6352      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6353    // Case of ivar declared in an implementation. Context is that of its class.
6354    EnclosingContext = IMPDecl->getClassInterface();
6355    assert(EnclosingContext && "Implementation has no class interface!");
6356  } else {
6357    if (ObjCCategoryDecl *CDecl =
6358        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6359      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6360        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6361        return 0;
6362      }
6363    }
6364    EnclosingContext = EnclosingDecl;
6365  }
6366
6367  // Construct the decl.
6368  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6369                                             EnclosingContext, Loc, II, T,
6370                                             TInfo, ac, (Expr *)BitfieldWidth);
6371
6372  if (II) {
6373    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6374                                           ForRedeclaration);
6375    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6376        && !isa<TagDecl>(PrevDecl)) {
6377      Diag(Loc, diag::err_duplicate_member) << II;
6378      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6379      NewID->setInvalidDecl();
6380    }
6381  }
6382
6383  // Process attributes attached to the ivar.
6384  ProcessDeclAttributes(S, NewID, D);
6385
6386  if (D.isInvalidType())
6387    NewID->setInvalidDecl();
6388
6389  if (II) {
6390    // FIXME: When interfaces are DeclContexts, we'll need to add
6391    // these to the interface.
6392    S->AddDecl(NewID);
6393    IdResolver.AddDecl(NewID);
6394  }
6395
6396  return NewID;
6397}
6398
6399void Sema::ActOnFields(Scope* S,
6400                       SourceLocation RecLoc, Decl *EnclosingDecl,
6401                       Decl **Fields, unsigned NumFields,
6402                       SourceLocation LBrac, SourceLocation RBrac,
6403                       AttributeList *Attr) {
6404  assert(EnclosingDecl && "missing record or interface decl");
6405
6406  // If the decl this is being inserted into is invalid, then it may be a
6407  // redeclaration or some other bogus case.  Don't try to add fields to it.
6408  if (EnclosingDecl->isInvalidDecl()) {
6409    // FIXME: Deallocate fields?
6410    return;
6411  }
6412
6413
6414  // Verify that all the fields are okay.
6415  unsigned NumNamedMembers = 0;
6416  llvm::SmallVector<FieldDecl*, 32> RecFields;
6417
6418  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6419  for (unsigned i = 0; i != NumFields; ++i) {
6420    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6421
6422    // Get the type for the field.
6423    Type *FDTy = FD->getType().getTypePtr();
6424
6425    if (!FD->isAnonymousStructOrUnion()) {
6426      // Remember all fields written by the user.
6427      RecFields.push_back(FD);
6428    }
6429
6430    // If the field is already invalid for some reason, don't emit more
6431    // diagnostics about it.
6432    if (FD->isInvalidDecl()) {
6433      EnclosingDecl->setInvalidDecl();
6434      continue;
6435    }
6436
6437    // C99 6.7.2.1p2:
6438    //   A structure or union shall not contain a member with
6439    //   incomplete or function type (hence, a structure shall not
6440    //   contain an instance of itself, but may contain a pointer to
6441    //   an instance of itself), except that the last member of a
6442    //   structure with more than one named member may have incomplete
6443    //   array type; such a structure (and any union containing,
6444    //   possibly recursively, a member that is such a structure)
6445    //   shall not be a member of a structure or an element of an
6446    //   array.
6447    if (FDTy->isFunctionType()) {
6448      // Field declared as a function.
6449      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6450        << FD->getDeclName();
6451      FD->setInvalidDecl();
6452      EnclosingDecl->setInvalidDecl();
6453      continue;
6454    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6455               Record && Record->isStruct()) {
6456      // Flexible array member.
6457      if (NumNamedMembers < 1) {
6458        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6459          << FD->getDeclName();
6460        FD->setInvalidDecl();
6461        EnclosingDecl->setInvalidDecl();
6462        continue;
6463      }
6464      if (!FD->getType()->isDependentType() &&
6465          !Context.getBaseElementType(FD->getType())->isPODType()) {
6466        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6467          << FD->getDeclName() << FD->getType();
6468        FD->setInvalidDecl();
6469        EnclosingDecl->setInvalidDecl();
6470        continue;
6471      }
6472
6473      // Okay, we have a legal flexible array member at the end of the struct.
6474      if (Record)
6475        Record->setHasFlexibleArrayMember(true);
6476    } else if (!FDTy->isDependentType() &&
6477               RequireCompleteType(FD->getLocation(), FD->getType(),
6478                                   diag::err_field_incomplete)) {
6479      // Incomplete type
6480      FD->setInvalidDecl();
6481      EnclosingDecl->setInvalidDecl();
6482      continue;
6483    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6484      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6485        // If this is a member of a union, then entire union becomes "flexible".
6486        if (Record && Record->isUnion()) {
6487          Record->setHasFlexibleArrayMember(true);
6488        } else {
6489          // If this is a struct/class and this is not the last element, reject
6490          // it.  Note that GCC supports variable sized arrays in the middle of
6491          // structures.
6492          if (i != NumFields-1)
6493            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6494              << FD->getDeclName() << FD->getType();
6495          else {
6496            // We support flexible arrays at the end of structs in
6497            // other structs as an extension.
6498            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6499              << FD->getDeclName();
6500            if (Record)
6501              Record->setHasFlexibleArrayMember(true);
6502          }
6503        }
6504      }
6505      if (Record && FDTTy->getDecl()->hasObjectMember())
6506        Record->setHasObjectMember(true);
6507    } else if (FDTy->isObjCObjectType()) {
6508      /// A field cannot be an Objective-c object
6509      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6510      FD->setInvalidDecl();
6511      EnclosingDecl->setInvalidDecl();
6512      continue;
6513    } else if (getLangOptions().ObjC1 &&
6514               getLangOptions().getGCMode() != LangOptions::NonGC &&
6515               Record &&
6516               (FD->getType()->isObjCObjectPointerType() ||
6517                FD->getType().isObjCGCStrong()))
6518      Record->setHasObjectMember(true);
6519    else if (Context.getAsArrayType(FD->getType())) {
6520      QualType BaseType = Context.getBaseElementType(FD->getType());
6521      if (Record && BaseType->isRecordType() &&
6522          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6523        Record->setHasObjectMember(true);
6524    }
6525    // Keep track of the number of named members.
6526    if (FD->getIdentifier())
6527      ++NumNamedMembers;
6528  }
6529
6530  // Okay, we successfully defined 'Record'.
6531  if (Record) {
6532    Record->completeDefinition();
6533  } else {
6534    ObjCIvarDecl **ClsFields =
6535      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6536    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6537      ID->setLocEnd(RBrac);
6538      // Add ivar's to class's DeclContext.
6539      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6540        ClsFields[i]->setLexicalDeclContext(ID);
6541        ID->addDecl(ClsFields[i]);
6542      }
6543      // Must enforce the rule that ivars in the base classes may not be
6544      // duplicates.
6545      if (ID->getSuperClass())
6546        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6547    } else if (ObjCImplementationDecl *IMPDecl =
6548                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6549      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6550      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6551        // Ivar declared in @implementation never belongs to the implementation.
6552        // Only it is in implementation's lexical context.
6553        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6554      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6555    } else if (ObjCCategoryDecl *CDecl =
6556                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6557      // case of ivars in class extension; all other cases have been
6558      // reported as errors elsewhere.
6559      // FIXME. Class extension does not have a LocEnd field.
6560      // CDecl->setLocEnd(RBrac);
6561      // Add ivar's to class extension's DeclContext.
6562      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6563        ClsFields[i]->setLexicalDeclContext(CDecl);
6564        CDecl->addDecl(ClsFields[i]);
6565      }
6566    }
6567  }
6568
6569  if (Attr)
6570    ProcessDeclAttributeList(S, Record, Attr);
6571
6572  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6573  // set the visibility of this record.
6574  if (Record && !Record->getDeclContext()->isRecord())
6575    AddPushedVisibilityAttribute(Record);
6576}
6577
6578/// \brief Determine whether the given integral value is representable within
6579/// the given type T.
6580static bool isRepresentableIntegerValue(ASTContext &Context,
6581                                        llvm::APSInt &Value,
6582                                        QualType T) {
6583  assert(T->isIntegralType(Context) && "Integral type required!");
6584  unsigned BitWidth = Context.getIntWidth(T);
6585
6586  if (Value.isUnsigned() || Value.isNonNegative())
6587    return Value.getActiveBits() < BitWidth;
6588
6589  return Value.getMinSignedBits() <= BitWidth;
6590}
6591
6592// \brief Given an integral type, return the next larger integral type
6593// (or a NULL type of no such type exists).
6594static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6595  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6596  // enum checking below.
6597  assert(T->isIntegralType(Context) && "Integral type required!");
6598  const unsigned NumTypes = 4;
6599  QualType SignedIntegralTypes[NumTypes] = {
6600    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6601  };
6602  QualType UnsignedIntegralTypes[NumTypes] = {
6603    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6604    Context.UnsignedLongLongTy
6605  };
6606
6607  unsigned BitWidth = Context.getTypeSize(T);
6608  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6609                                            : UnsignedIntegralTypes;
6610  for (unsigned I = 0; I != NumTypes; ++I)
6611    if (Context.getTypeSize(Types[I]) > BitWidth)
6612      return Types[I];
6613
6614  return QualType();
6615}
6616
6617EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6618                                          EnumConstantDecl *LastEnumConst,
6619                                          SourceLocation IdLoc,
6620                                          IdentifierInfo *Id,
6621                                          ExprArg val) {
6622  Expr *Val = (Expr *)val.get();
6623
6624  unsigned IntWidth = Context.Target.getIntWidth();
6625  llvm::APSInt EnumVal(IntWidth);
6626  QualType EltTy;
6627  if (Val) {
6628    if (Enum->isDependentType() || Val->isTypeDependent())
6629      EltTy = Context.DependentTy;
6630    else {
6631      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6632      SourceLocation ExpLoc;
6633      if (!Val->isValueDependent() &&
6634          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6635        Val = 0;
6636      } else {
6637        if (!getLangOptions().CPlusPlus) {
6638          // C99 6.7.2.2p2:
6639          //   The expression that defines the value of an enumeration constant
6640          //   shall be an integer constant expression that has a value
6641          //   representable as an int.
6642
6643          // Complain if the value is not representable in an int.
6644          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6645            Diag(IdLoc, diag::ext_enum_value_not_int)
6646              << EnumVal.toString(10) << Val->getSourceRange()
6647              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6648          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6649            // Force the type of the expression to 'int'.
6650            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6651
6652            if (Val != val.get()) {
6653              val.release();
6654              val = Val;
6655            }
6656          }
6657        }
6658
6659        // C++0x [dcl.enum]p5:
6660        //   If the underlying type is not fixed, the type of each enumerator
6661        //   is the type of its initializing value:
6662        //     - If an initializer is specified for an enumerator, the
6663        //       initializing value has the same type as the expression.
6664        EltTy = Val->getType();
6665      }
6666    }
6667  }
6668
6669  if (!Val) {
6670    if (Enum->isDependentType())
6671      EltTy = Context.DependentTy;
6672    else if (!LastEnumConst) {
6673      // C++0x [dcl.enum]p5:
6674      //   If the underlying type is not fixed, the type of each enumerator
6675      //   is the type of its initializing value:
6676      //     - If no initializer is specified for the first enumerator, the
6677      //       initializing value has an unspecified integral type.
6678      //
6679      // GCC uses 'int' for its unspecified integral type, as does
6680      // C99 6.7.2.2p3.
6681      EltTy = Context.IntTy;
6682    } else {
6683      // Assign the last value + 1.
6684      EnumVal = LastEnumConst->getInitVal();
6685      ++EnumVal;
6686      EltTy = LastEnumConst->getType();
6687
6688      // Check for overflow on increment.
6689      if (EnumVal < LastEnumConst->getInitVal()) {
6690        // C++0x [dcl.enum]p5:
6691        //   If the underlying type is not fixed, the type of each enumerator
6692        //   is the type of its initializing value:
6693        //
6694        //     - Otherwise the type of the initializing value is the same as
6695        //       the type of the initializing value of the preceding enumerator
6696        //       unless the incremented value is not representable in that type,
6697        //       in which case the type is an unspecified integral type
6698        //       sufficient to contain the incremented value. If no such type
6699        //       exists, the program is ill-formed.
6700        QualType T = getNextLargerIntegralType(Context, EltTy);
6701        if (T.isNull()) {
6702          // There is no integral type larger enough to represent this
6703          // value. Complain, then allow the value to wrap around.
6704          EnumVal = LastEnumConst->getInitVal();
6705          EnumVal.zext(EnumVal.getBitWidth() * 2);
6706          Diag(IdLoc, diag::warn_enumerator_too_large)
6707            << EnumVal.toString(10);
6708        } else {
6709          EltTy = T;
6710        }
6711
6712        // Retrieve the last enumerator's value, extent that type to the
6713        // type that is supposed to be large enough to represent the incremented
6714        // value, then increment.
6715        EnumVal = LastEnumConst->getInitVal();
6716        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6717        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6718        ++EnumVal;
6719
6720        // If we're not in C++, diagnose the overflow of enumerator values,
6721        // which in C99 means that the enumerator value is not representable in
6722        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6723        // permits enumerator values that are representable in some larger
6724        // integral type.
6725        if (!getLangOptions().CPlusPlus && !T.isNull())
6726          Diag(IdLoc, diag::warn_enum_value_overflow);
6727      } else if (!getLangOptions().CPlusPlus &&
6728                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6729        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6730        Diag(IdLoc, diag::ext_enum_value_not_int)
6731          << EnumVal.toString(10) << 1;
6732      }
6733    }
6734  }
6735
6736  if (!EltTy->isDependentType()) {
6737    // Make the enumerator value match the signedness and size of the
6738    // enumerator's type.
6739    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6740    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6741  }
6742
6743  val.release();
6744  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6745                                  Val, EnumVal);
6746}
6747
6748
6749Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6750                                        Decl *lastEnumConst,
6751                                        SourceLocation IdLoc,
6752                                        IdentifierInfo *Id,
6753                                        SourceLocation EqualLoc, ExprTy *val) {
6754  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6755  EnumConstantDecl *LastEnumConst =
6756    cast_or_null<EnumConstantDecl>(lastEnumConst);
6757  Expr *Val = static_cast<Expr*>(val);
6758
6759  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6760  // we find one that is.
6761  S = getNonFieldDeclScope(S);
6762
6763  // Verify that there isn't already something declared with this name in this
6764  // scope.
6765  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6766                                         ForRedeclaration);
6767  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6768    // Maybe we will complain about the shadowed template parameter.
6769    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6770    // Just pretend that we didn't see the previous declaration.
6771    PrevDecl = 0;
6772  }
6773
6774  if (PrevDecl) {
6775    // When in C++, we may get a TagDecl with the same name; in this case the
6776    // enum constant will 'hide' the tag.
6777    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6778           "Received TagDecl when not in C++!");
6779    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6780      if (isa<EnumConstantDecl>(PrevDecl))
6781        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6782      else
6783        Diag(IdLoc, diag::err_redefinition) << Id;
6784      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6785      return 0;
6786    }
6787  }
6788
6789  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6790                                            IdLoc, Id, Owned(Val));
6791
6792  // Register this decl in the current scope stack.
6793  if (New) {
6794    New->setAccess(TheEnumDecl->getAccess());
6795    PushOnScopeChains(New, S);
6796  }
6797
6798  return New;
6799}
6800
6801void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6802                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6803                         Decl **Elements, unsigned NumElements,
6804                         Scope *S, AttributeList *Attr) {
6805  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6806  QualType EnumType = Context.getTypeDeclType(Enum);
6807
6808  if (Attr)
6809    ProcessDeclAttributeList(S, Enum, Attr);
6810
6811  if (Enum->isDependentType()) {
6812    for (unsigned i = 0; i != NumElements; ++i) {
6813      EnumConstantDecl *ECD =
6814        cast_or_null<EnumConstantDecl>(Elements[i]);
6815      if (!ECD) continue;
6816
6817      ECD->setType(EnumType);
6818    }
6819
6820    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6821    return;
6822  }
6823
6824  // TODO: If the result value doesn't fit in an int, it must be a long or long
6825  // long value.  ISO C does not support this, but GCC does as an extension,
6826  // emit a warning.
6827  unsigned IntWidth = Context.Target.getIntWidth();
6828  unsigned CharWidth = Context.Target.getCharWidth();
6829  unsigned ShortWidth = Context.Target.getShortWidth();
6830
6831  // Verify that all the values are okay, compute the size of the values, and
6832  // reverse the list.
6833  unsigned NumNegativeBits = 0;
6834  unsigned NumPositiveBits = 0;
6835
6836  // Keep track of whether all elements have type int.
6837  bool AllElementsInt = true;
6838
6839  for (unsigned i = 0; i != NumElements; ++i) {
6840    EnumConstantDecl *ECD =
6841      cast_or_null<EnumConstantDecl>(Elements[i]);
6842    if (!ECD) continue;  // Already issued a diagnostic.
6843
6844    const llvm::APSInt &InitVal = ECD->getInitVal();
6845
6846    // Keep track of the size of positive and negative values.
6847    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6848      NumPositiveBits = std::max(NumPositiveBits,
6849                                 (unsigned)InitVal.getActiveBits());
6850    else
6851      NumNegativeBits = std::max(NumNegativeBits,
6852                                 (unsigned)InitVal.getMinSignedBits());
6853
6854    // Keep track of whether every enum element has type int (very commmon).
6855    if (AllElementsInt)
6856      AllElementsInt = ECD->getType() == Context.IntTy;
6857  }
6858
6859  // Figure out the type that should be used for this enum.
6860  // FIXME: Support -fshort-enums.
6861  QualType BestType;
6862  unsigned BestWidth;
6863
6864  // C++0x N3000 [conv.prom]p3:
6865  //   An rvalue of an unscoped enumeration type whose underlying
6866  //   type is not fixed can be converted to an rvalue of the first
6867  //   of the following types that can represent all the values of
6868  //   the enumeration: int, unsigned int, long int, unsigned long
6869  //   int, long long int, or unsigned long long int.
6870  // C99 6.4.4.3p2:
6871  //   An identifier declared as an enumeration constant has type int.
6872  // The C99 rule is modified by a gcc extension
6873  QualType BestPromotionType;
6874
6875  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6876
6877  if (NumNegativeBits) {
6878    // If there is a negative value, figure out the smallest integer type (of
6879    // int/long/longlong) that fits.
6880    // If it's packed, check also if it fits a char or a short.
6881    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6882      BestType = Context.SignedCharTy;
6883      BestWidth = CharWidth;
6884    } else if (Packed && NumNegativeBits <= ShortWidth &&
6885               NumPositiveBits < ShortWidth) {
6886      BestType = Context.ShortTy;
6887      BestWidth = ShortWidth;
6888    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6889      BestType = Context.IntTy;
6890      BestWidth = IntWidth;
6891    } else {
6892      BestWidth = Context.Target.getLongWidth();
6893
6894      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6895        BestType = Context.LongTy;
6896      } else {
6897        BestWidth = Context.Target.getLongLongWidth();
6898
6899        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6900          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6901        BestType = Context.LongLongTy;
6902      }
6903    }
6904    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6905  } else {
6906    // If there is no negative value, figure out the smallest type that fits
6907    // all of the enumerator values.
6908    // If it's packed, check also if it fits a char or a short.
6909    if (Packed && NumPositiveBits <= CharWidth) {
6910      BestType = Context.UnsignedCharTy;
6911      BestPromotionType = Context.IntTy;
6912      BestWidth = CharWidth;
6913    } else if (Packed && NumPositiveBits <= ShortWidth) {
6914      BestType = Context.UnsignedShortTy;
6915      BestPromotionType = Context.IntTy;
6916      BestWidth = ShortWidth;
6917    } else if (NumPositiveBits <= IntWidth) {
6918      BestType = Context.UnsignedIntTy;
6919      BestWidth = IntWidth;
6920      BestPromotionType
6921        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6922                           ? Context.UnsignedIntTy : Context.IntTy;
6923    } else if (NumPositiveBits <=
6924               (BestWidth = Context.Target.getLongWidth())) {
6925      BestType = Context.UnsignedLongTy;
6926      BestPromotionType
6927        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6928                           ? Context.UnsignedLongTy : Context.LongTy;
6929    } else {
6930      BestWidth = Context.Target.getLongLongWidth();
6931      assert(NumPositiveBits <= BestWidth &&
6932             "How could an initializer get larger than ULL?");
6933      BestType = Context.UnsignedLongLongTy;
6934      BestPromotionType
6935        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6936                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6937    }
6938  }
6939
6940  // Loop over all of the enumerator constants, changing their types to match
6941  // the type of the enum if needed.
6942  for (unsigned i = 0; i != NumElements; ++i) {
6943    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
6944    if (!ECD) continue;  // Already issued a diagnostic.
6945
6946    // Standard C says the enumerators have int type, but we allow, as an
6947    // extension, the enumerators to be larger than int size.  If each
6948    // enumerator value fits in an int, type it as an int, otherwise type it the
6949    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6950    // that X has type 'int', not 'unsigned'.
6951
6952    // Determine whether the value fits into an int.
6953    llvm::APSInt InitVal = ECD->getInitVal();
6954
6955    // If it fits into an integer type, force it.  Otherwise force it to match
6956    // the enum decl type.
6957    QualType NewTy;
6958    unsigned NewWidth;
6959    bool NewSign;
6960    if (!getLangOptions().CPlusPlus &&
6961        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6962      NewTy = Context.IntTy;
6963      NewWidth = IntWidth;
6964      NewSign = true;
6965    } else if (ECD->getType() == BestType) {
6966      // Already the right type!
6967      if (getLangOptions().CPlusPlus)
6968        // C++ [dcl.enum]p4: Following the closing brace of an
6969        // enum-specifier, each enumerator has the type of its
6970        // enumeration.
6971        ECD->setType(EnumType);
6972      continue;
6973    } else {
6974      NewTy = BestType;
6975      NewWidth = BestWidth;
6976      NewSign = BestType->isSignedIntegerType();
6977    }
6978
6979    // Adjust the APSInt value.
6980    InitVal.extOrTrunc(NewWidth);
6981    InitVal.setIsSigned(NewSign);
6982    ECD->setInitVal(InitVal);
6983
6984    // Adjust the Expr initializer and type.
6985    if (ECD->getInitExpr())
6986      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6987                                                CastExpr::CK_IntegralCast,
6988                                                ECD->getInitExpr(),
6989                                                /*base paths*/ 0,
6990                                                ImplicitCastExpr::RValue));
6991    if (getLangOptions().CPlusPlus)
6992      // C++ [dcl.enum]p4: Following the closing brace of an
6993      // enum-specifier, each enumerator has the type of its
6994      // enumeration.
6995      ECD->setType(EnumType);
6996    else
6997      ECD->setType(NewTy);
6998  }
6999
7000  Enum->completeDefinition(BestType, BestPromotionType,
7001                           NumPositiveBits, NumNegativeBits);
7002}
7003
7004Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr) {
7005  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
7006
7007  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7008                                                   Loc, AsmString);
7009  CurContext->addDecl(New);
7010  return New;
7011}
7012
7013void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7014                             SourceLocation PragmaLoc,
7015                             SourceLocation NameLoc) {
7016  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7017
7018  if (PrevDecl) {
7019    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7020  } else {
7021    (void)WeakUndeclaredIdentifiers.insert(
7022      std::pair<IdentifierInfo*,WeakInfo>
7023        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7024  }
7025}
7026
7027void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7028                                IdentifierInfo* AliasName,
7029                                SourceLocation PragmaLoc,
7030                                SourceLocation NameLoc,
7031                                SourceLocation AliasNameLoc) {
7032  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7033                                    LookupOrdinaryName);
7034  WeakInfo W = WeakInfo(Name, NameLoc);
7035
7036  if (PrevDecl) {
7037    if (!PrevDecl->hasAttr<AliasAttr>())
7038      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7039        DeclApplyPragmaWeak(TUScope, ND, W);
7040  } else {
7041    (void)WeakUndeclaredIdentifiers.insert(
7042      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7043  }
7044}
7045