SemaDecl.cpp revision d0ebe080eee7c37e73754068b47fd90cc506e128
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isSet()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // TypenameType node to describe the type.
92        // FIXME: Record somewhere that this TypenameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
202  } else {
203    // If it's not plausibly a type, suppress diagnostics.
204    Result.suppressDiagnostics();
205    return 0;
206  }
207
208  return T.getAsOpaquePtr();
209}
210
211/// isTagName() - This method is called *for error recovery purposes only*
212/// to determine if the specified name is a valid tag name ("struct foo").  If
213/// so, this returns the TST for the tag corresponding to it (TST_enum,
214/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
215/// where the user forgot to specify the tag.
216DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
217  // Do a tag name lookup in this scope.
218  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
219  LookupName(R, S, false);
220  R.suppressDiagnostics();
221  if (R.getResultKind() == LookupResult::Found)
222    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
223      switch (TD->getTagKind()) {
224      case TagDecl::TK_struct: return DeclSpec::TST_struct;
225      case TagDecl::TK_union:  return DeclSpec::TST_union;
226      case TagDecl::TK_class:  return DeclSpec::TST_class;
227      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
228      }
229    }
230
231  return DeclSpec::TST_unspecified;
232}
233
234bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
235                                   SourceLocation IILoc,
236                                   Scope *S,
237                                   const CXXScopeSpec *SS,
238                                   TypeTy *&SuggestedType) {
239  // We don't have anything to suggest (yet).
240  SuggestedType = 0;
241
242  // There may have been a typo in the name of the type. Look up typo
243  // results, in case we have something that we can suggest.
244  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
245                      NotForRedeclaration);
246
247  // FIXME: It would be nice if we could correct for typos in built-in
248  // names, such as "itn" for "int".
249
250  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
251    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
252    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
253        !Result->isInvalidDecl()) {
254      // We found a similarly-named type or interface; suggest that.
255      if (!SS || !SS->isSet())
256        Diag(IILoc, diag::err_unknown_typename_suggest)
257          << &II << Lookup.getLookupName()
258          << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                          Result->getNameAsString());
260      else if (DeclContext *DC = computeDeclContext(*SS, false))
261        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
262          << &II << DC << Lookup.getLookupName() << SS->getRange()
263          << FixItHint::CreateReplacement(SourceRange(IILoc),
264                                          Result->getNameAsString());
265      else
266        llvm_unreachable("could not have corrected a typo here");
267
268      Diag(Result->getLocation(), diag::note_previous_decl)
269        << Result->getDeclName();
270
271      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
272      return true;
273    }
274  }
275
276  // FIXME: Should we move the logic that tries to recover from a missing tag
277  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
278
279  if (!SS || (!SS->isSet() && !SS->isInvalid()))
280    Diag(IILoc, diag::err_unknown_typename) << &II;
281  else if (DeclContext *DC = computeDeclContext(*SS, false))
282    Diag(IILoc, diag::err_typename_nested_not_found)
283      << &II << DC << SS->getRange();
284  else if (isDependentScopeSpecifier(*SS)) {
285    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
286      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
287      << SourceRange(SS->getRange().getBegin(), IILoc)
288      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
289    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
290  } else {
291    assert(SS && SS->isInvalid() &&
292           "Invalid scope specifier has already been diagnosed");
293  }
294
295  return true;
296}
297
298// Determines the context to return to after temporarily entering a
299// context.  This depends in an unnecessarily complicated way on the
300// exact ordering of callbacks from the parser.
301DeclContext *Sema::getContainingDC(DeclContext *DC) {
302
303  // Functions defined inline within classes aren't parsed until we've
304  // finished parsing the top-level class, so the top-level class is
305  // the context we'll need to return to.
306  if (isa<FunctionDecl>(DC)) {
307    DC = DC->getLexicalParent();
308
309    // A function not defined within a class will always return to its
310    // lexical context.
311    if (!isa<CXXRecordDecl>(DC))
312      return DC;
313
314    // A C++ inline method/friend is parsed *after* the topmost class
315    // it was declared in is fully parsed ("complete");  the topmost
316    // class is the context we need to return to.
317    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
318      DC = RD;
319
320    // Return the declaration context of the topmost class the inline method is
321    // declared in.
322    return DC;
323  }
324
325  if (isa<ObjCMethodDecl>(DC))
326    return Context.getTranslationUnitDecl();
327
328  return DC->getLexicalParent();
329}
330
331void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
332  assert(getContainingDC(DC) == CurContext &&
333      "The next DeclContext should be lexically contained in the current one.");
334  CurContext = DC;
335  S->setEntity(DC);
336}
337
338void Sema::PopDeclContext() {
339  assert(CurContext && "DeclContext imbalance!");
340
341  CurContext = getContainingDC(CurContext);
342}
343
344/// EnterDeclaratorContext - Used when we must lookup names in the context
345/// of a declarator's nested name specifier.
346///
347void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
348  // C++0x [basic.lookup.unqual]p13:
349  //   A name used in the definition of a static data member of class
350  //   X (after the qualified-id of the static member) is looked up as
351  //   if the name was used in a member function of X.
352  // C++0x [basic.lookup.unqual]p14:
353  //   If a variable member of a namespace is defined outside of the
354  //   scope of its namespace then any name used in the definition of
355  //   the variable member (after the declarator-id) is looked up as
356  //   if the definition of the variable member occurred in its
357  //   namespace.
358  // Both of these imply that we should push a scope whose context
359  // is the semantic context of the declaration.  We can't use
360  // PushDeclContext here because that context is not necessarily
361  // lexically contained in the current context.  Fortunately,
362  // the containing scope should have the appropriate information.
363
364  assert(!S->getEntity() && "scope already has entity");
365
366#ifndef NDEBUG
367  Scope *Ancestor = S->getParent();
368  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
369  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
370#endif
371
372  CurContext = DC;
373  S->setEntity(DC);
374}
375
376void Sema::ExitDeclaratorContext(Scope *S) {
377  assert(S->getEntity() == CurContext && "Context imbalance!");
378
379  // Switch back to the lexical context.  The safety of this is
380  // enforced by an assert in EnterDeclaratorContext.
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  CurContext = (DeclContext*) Ancestor->getEntity();
384
385  // We don't need to do anything with the scope, which is going to
386  // disappear.
387}
388
389/// \brief Determine whether we allow overloading of the function
390/// PrevDecl with another declaration.
391///
392/// This routine determines whether overloading is possible, not
393/// whether some new function is actually an overload. It will return
394/// true in C++ (where we can always provide overloads) or, as an
395/// extension, in C when the previous function is already an
396/// overloaded function declaration or has the "overloadable"
397/// attribute.
398static bool AllowOverloadingOfFunction(LookupResult &Previous,
399                                       ASTContext &Context) {
400  if (Context.getLangOptions().CPlusPlus)
401    return true;
402
403  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
404    return true;
405
406  return (Previous.getResultKind() == LookupResult::Found
407          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
408}
409
410/// Add this decl to the scope shadowed decl chains.
411void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
412  // Move up the scope chain until we find the nearest enclosing
413  // non-transparent context. The declaration will be introduced into this
414  // scope.
415  while (S->getEntity() &&
416         ((DeclContext *)S->getEntity())->isTransparentContext())
417    S = S->getParent();
418
419  // Add scoped declarations into their context, so that they can be
420  // found later. Declarations without a context won't be inserted
421  // into any context.
422  if (AddToContext)
423    CurContext->addDecl(D);
424
425  // Out-of-line definitions shouldn't be pushed into scope in C++.
426  // Out-of-line variable and function definitions shouldn't even in C.
427  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
428      D->isOutOfLine())
429    return;
430
431  // Template instantiations should also not be pushed into scope.
432  if (isa<FunctionDecl>(D) &&
433      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
434    return;
435
436  // If this replaces anything in the current scope,
437  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
438                               IEnd = IdResolver.end();
439  for (; I != IEnd; ++I) {
440    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
441      S->RemoveDecl(DeclPtrTy::make(*I));
442      IdResolver.RemoveDecl(*I);
443
444      // Should only need to replace one decl.
445      break;
446    }
447  }
448
449  S->AddDecl(DeclPtrTy::make(D));
450  IdResolver.AddDecl(D);
451}
452
453bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
454  return IdResolver.isDeclInScope(D, Ctx, Context, S);
455}
456
457static bool isOutOfScopePreviousDeclaration(NamedDecl *,
458                                            DeclContext*,
459                                            ASTContext&);
460
461/// Filters out lookup results that don't fall within the given scope
462/// as determined by isDeclInScope.
463static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
464                                 DeclContext *Ctx, Scope *S,
465                                 bool ConsiderLinkage) {
466  LookupResult::Filter F = R.makeFilter();
467  while (F.hasNext()) {
468    NamedDecl *D = F.next();
469
470    if (SemaRef.isDeclInScope(D, Ctx, S))
471      continue;
472
473    if (ConsiderLinkage &&
474        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
475      continue;
476
477    F.erase();
478  }
479
480  F.done();
481}
482
483static bool isUsingDecl(NamedDecl *D) {
484  return isa<UsingShadowDecl>(D) ||
485         isa<UnresolvedUsingTypenameDecl>(D) ||
486         isa<UnresolvedUsingValueDecl>(D);
487}
488
489/// Removes using shadow declarations from the lookup results.
490static void RemoveUsingDecls(LookupResult &R) {
491  LookupResult::Filter F = R.makeFilter();
492  while (F.hasNext())
493    if (isUsingDecl(F.next()))
494      F.erase();
495
496  F.done();
497}
498
499static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
500  if (D->isInvalidDecl())
501    return false;
502
503  if (D->isUsed() || D->hasAttr<UnusedAttr>())
504    return false;
505
506  // White-list anything that isn't a local variable.
507  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
508      !D->getDeclContext()->isFunctionOrMethod())
509    return false;
510
511  // Types of valid local variables should be complete, so this should succeed.
512  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
513
514    // White-list anything with an __attribute__((unused)) type.
515    QualType Ty = VD->getType();
516
517    // Only look at the outermost level of typedef.
518    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
519      if (TT->getDecl()->hasAttr<UnusedAttr>())
520        return false;
521    }
522
523    if (const TagType *TT = Ty->getAs<TagType>()) {
524      const TagDecl *Tag = TT->getDecl();
525      if (Tag->hasAttr<UnusedAttr>())
526        return false;
527
528      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
529        if (!RD->hasTrivialConstructor())
530          return false;
531        if (!RD->hasTrivialDestructor())
532          return false;
533      }
534    }
535
536    // TODO: __attribute__((unused)) templates?
537  }
538
539  return true;
540}
541
542void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
543  if (S->decl_empty()) return;
544  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
545         "Scope shouldn't contain decls!");
546
547  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
548       I != E; ++I) {
549    Decl *TmpD = (*I).getAs<Decl>();
550    assert(TmpD && "This decl didn't get pushed??");
551
552    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
553    NamedDecl *D = cast<NamedDecl>(TmpD);
554
555    if (!D->getDeclName()) continue;
556
557    // Diagnose unused variables in this scope.
558    if (ShouldDiagnoseUnusedDecl(D) &&
559        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
560      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
561
562    // Remove this name from our lexical scope.
563    IdResolver.RemoveDecl(D);
564  }
565}
566
567/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
568/// return 0 if one not found.
569///
570/// \param Id the name of the Objective-C class we're looking for. If
571/// typo-correction fixes this name, the Id will be updated
572/// to the fixed name.
573///
574/// \param RecoverLoc if provided, this routine will attempt to
575/// recover from a typo in the name of an existing Objective-C class
576/// and, if successful, will return the lookup that results from
577/// typo-correction.
578ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
579                                              SourceLocation RecoverLoc) {
580  // The third "scope" argument is 0 since we aren't enabling lazy built-in
581  // creation from this context.
582  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
583
584  if (!IDecl && !RecoverLoc.isInvalid()) {
585    // Perform typo correction at the given location, but only if we
586    // find an Objective-C class name.
587    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
588    if (CorrectTypo(R, TUScope, 0) &&
589        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
590      Diag(RecoverLoc, diag::err_undef_interface_suggest)
591        << Id << IDecl->getDeclName()
592        << FixItHint::CreateReplacement(RecoverLoc, IDecl->getNameAsString());
593      Diag(IDecl->getLocation(), diag::note_previous_decl)
594        << IDecl->getDeclName();
595
596      Id = IDecl->getIdentifier();
597    }
598  }
599
600  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
601}
602
603/// getNonFieldDeclScope - Retrieves the innermost scope, starting
604/// from S, where a non-field would be declared. This routine copes
605/// with the difference between C and C++ scoping rules in structs and
606/// unions. For example, the following code is well-formed in C but
607/// ill-formed in C++:
608/// @code
609/// struct S6 {
610///   enum { BAR } e;
611/// };
612///
613/// void test_S6() {
614///   struct S6 a;
615///   a.e = BAR;
616/// }
617/// @endcode
618/// For the declaration of BAR, this routine will return a different
619/// scope. The scope S will be the scope of the unnamed enumeration
620/// within S6. In C++, this routine will return the scope associated
621/// with S6, because the enumeration's scope is a transparent
622/// context but structures can contain non-field names. In C, this
623/// routine will return the translation unit scope, since the
624/// enumeration's scope is a transparent context and structures cannot
625/// contain non-field names.
626Scope *Sema::getNonFieldDeclScope(Scope *S) {
627  while (((S->getFlags() & Scope::DeclScope) == 0) ||
628         (S->getEntity() &&
629          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
630         (S->isClassScope() && !getLangOptions().CPlusPlus))
631    S = S->getParent();
632  return S;
633}
634
635void Sema::InitBuiltinVaListType() {
636  if (!Context.getBuiltinVaListType().isNull())
637    return;
638
639  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
640  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
641  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
642  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
643}
644
645/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
646/// file scope.  lazily create a decl for it. ForRedeclaration is true
647/// if we're creating this built-in in anticipation of redeclaring the
648/// built-in.
649NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
650                                     Scope *S, bool ForRedeclaration,
651                                     SourceLocation Loc) {
652  Builtin::ID BID = (Builtin::ID)bid;
653
654  if (Context.BuiltinInfo.hasVAListUse(BID))
655    InitBuiltinVaListType();
656
657  ASTContext::GetBuiltinTypeError Error;
658  QualType R = Context.GetBuiltinType(BID, Error);
659  switch (Error) {
660  case ASTContext::GE_None:
661    // Okay
662    break;
663
664  case ASTContext::GE_Missing_stdio:
665    if (ForRedeclaration)
666      Diag(Loc, diag::err_implicit_decl_requires_stdio)
667        << Context.BuiltinInfo.GetName(BID);
668    return 0;
669
670  case ASTContext::GE_Missing_setjmp:
671    if (ForRedeclaration)
672      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
673        << Context.BuiltinInfo.GetName(BID);
674    return 0;
675  }
676
677  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
678    Diag(Loc, diag::ext_implicit_lib_function_decl)
679      << Context.BuiltinInfo.GetName(BID)
680      << R;
681    if (Context.BuiltinInfo.getHeaderName(BID) &&
682        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
683          != Diagnostic::Ignored)
684      Diag(Loc, diag::note_please_include_header)
685        << Context.BuiltinInfo.getHeaderName(BID)
686        << Context.BuiltinInfo.GetName(BID);
687  }
688
689  FunctionDecl *New = FunctionDecl::Create(Context,
690                                           Context.getTranslationUnitDecl(),
691                                           Loc, II, R, /*TInfo=*/0,
692                                           FunctionDecl::Extern, false,
693                                           /*hasPrototype=*/true);
694  New->setImplicit();
695
696  // Create Decl objects for each parameter, adding them to the
697  // FunctionDecl.
698  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
699    llvm::SmallVector<ParmVarDecl*, 16> Params;
700    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
701      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
702                                           FT->getArgType(i), /*TInfo=*/0,
703                                           VarDecl::None, 0));
704    New->setParams(Params.data(), Params.size());
705  }
706
707  AddKnownFunctionAttributes(New);
708
709  // TUScope is the translation-unit scope to insert this function into.
710  // FIXME: This is hideous. We need to teach PushOnScopeChains to
711  // relate Scopes to DeclContexts, and probably eliminate CurContext
712  // entirely, but we're not there yet.
713  DeclContext *SavedContext = CurContext;
714  CurContext = Context.getTranslationUnitDecl();
715  PushOnScopeChains(New, TUScope);
716  CurContext = SavedContext;
717  return New;
718}
719
720/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
721/// same name and scope as a previous declaration 'Old'.  Figure out
722/// how to resolve this situation, merging decls or emitting
723/// diagnostics as appropriate. If there was an error, set New to be invalid.
724///
725void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
726  // If the new decl is known invalid already, don't bother doing any
727  // merging checks.
728  if (New->isInvalidDecl()) return;
729
730  // Allow multiple definitions for ObjC built-in typedefs.
731  // FIXME: Verify the underlying types are equivalent!
732  if (getLangOptions().ObjC1) {
733    const IdentifierInfo *TypeID = New->getIdentifier();
734    switch (TypeID->getLength()) {
735    default: break;
736    case 2:
737      if (!TypeID->isStr("id"))
738        break;
739      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
740      // Install the built-in type for 'id', ignoring the current definition.
741      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
742      return;
743    case 5:
744      if (!TypeID->isStr("Class"))
745        break;
746      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
747      // Install the built-in type for 'Class', ignoring the current definition.
748      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
749      return;
750    case 3:
751      if (!TypeID->isStr("SEL"))
752        break;
753      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
754      // Install the built-in type for 'SEL', ignoring the current definition.
755      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
756      return;
757    case 8:
758      if (!TypeID->isStr("Protocol"))
759        break;
760      Context.setObjCProtoType(New->getUnderlyingType());
761      return;
762    }
763    // Fall through - the typedef name was not a builtin type.
764  }
765
766  // Verify the old decl was also a type.
767  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
768  if (!Old) {
769    Diag(New->getLocation(), diag::err_redefinition_different_kind)
770      << New->getDeclName();
771
772    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
773    if (OldD->getLocation().isValid())
774      Diag(OldD->getLocation(), diag::note_previous_definition);
775
776    return New->setInvalidDecl();
777  }
778
779  // If the old declaration is invalid, just give up here.
780  if (Old->isInvalidDecl())
781    return New->setInvalidDecl();
782
783  // Determine the "old" type we'll use for checking and diagnostics.
784  QualType OldType;
785  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
786    OldType = OldTypedef->getUnderlyingType();
787  else
788    OldType = Context.getTypeDeclType(Old);
789
790  // If the typedef types are not identical, reject them in all languages and
791  // with any extensions enabled.
792
793  if (OldType != New->getUnderlyingType() &&
794      Context.getCanonicalType(OldType) !=
795      Context.getCanonicalType(New->getUnderlyingType())) {
796    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
797      << New->getUnderlyingType() << OldType;
798    if (Old->getLocation().isValid())
799      Diag(Old->getLocation(), diag::note_previous_definition);
800    return New->setInvalidDecl();
801  }
802
803  // The types match.  Link up the redeclaration chain if the old
804  // declaration was a typedef.
805  // FIXME: this is a potential source of wierdness if the type
806  // spellings don't match exactly.
807  if (isa<TypedefDecl>(Old))
808    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
809
810  if (getLangOptions().Microsoft)
811    return;
812
813  if (getLangOptions().CPlusPlus) {
814    // C++ [dcl.typedef]p2:
815    //   In a given non-class scope, a typedef specifier can be used to
816    //   redefine the name of any type declared in that scope to refer
817    //   to the type to which it already refers.
818    if (!isa<CXXRecordDecl>(CurContext))
819      return;
820
821    // C++0x [dcl.typedef]p4:
822    //   In a given class scope, a typedef specifier can be used to redefine
823    //   any class-name declared in that scope that is not also a typedef-name
824    //   to refer to the type to which it already refers.
825    //
826    // This wording came in via DR424, which was a correction to the
827    // wording in DR56, which accidentally banned code like:
828    //
829    //   struct S {
830    //     typedef struct A { } A;
831    //   };
832    //
833    // in the C++03 standard. We implement the C++0x semantics, which
834    // allow the above but disallow
835    //
836    //   struct S {
837    //     typedef int I;
838    //     typedef int I;
839    //   };
840    //
841    // since that was the intent of DR56.
842    if (!isa<TypedefDecl >(Old))
843      return;
844
845    Diag(New->getLocation(), diag::err_redefinition)
846      << New->getDeclName();
847    Diag(Old->getLocation(), diag::note_previous_definition);
848    return New->setInvalidDecl();
849  }
850
851  // If we have a redefinition of a typedef in C, emit a warning.  This warning
852  // is normally mapped to an error, but can be controlled with
853  // -Wtypedef-redefinition.  If either the original or the redefinition is
854  // in a system header, don't emit this for compatibility with GCC.
855  if (getDiagnostics().getSuppressSystemWarnings() &&
856      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
857       Context.getSourceManager().isInSystemHeader(New->getLocation())))
858    return;
859
860  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
861    << New->getDeclName();
862  Diag(Old->getLocation(), diag::note_previous_definition);
863  return;
864}
865
866/// DeclhasAttr - returns true if decl Declaration already has the target
867/// attribute.
868static bool
869DeclHasAttr(const Decl *decl, const Attr *target) {
870  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
871    if (attr->getKind() == target->getKind())
872      return true;
873
874  return false;
875}
876
877/// MergeAttributes - append attributes from the Old decl to the New one.
878static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
879  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
880    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
881      Attr *NewAttr = attr->clone(C);
882      NewAttr->setInherited(true);
883      New->addAttr(NewAttr);
884    }
885  }
886}
887
888/// Used in MergeFunctionDecl to keep track of function parameters in
889/// C.
890struct GNUCompatibleParamWarning {
891  ParmVarDecl *OldParm;
892  ParmVarDecl *NewParm;
893  QualType PromotedType;
894};
895
896
897/// getSpecialMember - get the special member enum for a method.
898static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
899                                               const CXXMethodDecl *MD) {
900  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
901    if (Ctor->isDefaultConstructor())
902      return Sema::CXXDefaultConstructor;
903    if (Ctor->isCopyConstructor())
904      return Sema::CXXCopyConstructor;
905  }
906
907  if (isa<CXXDestructorDecl>(MD))
908    return Sema::CXXDestructor;
909
910  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
911  return Sema::CXXCopyAssignment;
912}
913
914/// canREdefineFunction - checks if a function can be redefined. Currently,
915/// only extern inline functions can be redefined, and even then only in
916/// GNU89 mode.
917static bool canRedefineFunction(const FunctionDecl *FD,
918                                const LangOptions& LangOpts) {
919  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
920          FD->isInlineSpecified() &&
921          FD->getStorageClass() == FunctionDecl::Extern);
922}
923
924/// MergeFunctionDecl - We just parsed a function 'New' from
925/// declarator D which has the same name and scope as a previous
926/// declaration 'Old'.  Figure out how to resolve this situation,
927/// merging decls or emitting diagnostics as appropriate.
928///
929/// In C++, New and Old must be declarations that are not
930/// overloaded. Use IsOverload to determine whether New and Old are
931/// overloaded, and to select the Old declaration that New should be
932/// merged with.
933///
934/// Returns true if there was an error, false otherwise.
935bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
936  // Verify the old decl was also a function.
937  FunctionDecl *Old = 0;
938  if (FunctionTemplateDecl *OldFunctionTemplate
939        = dyn_cast<FunctionTemplateDecl>(OldD))
940    Old = OldFunctionTemplate->getTemplatedDecl();
941  else
942    Old = dyn_cast<FunctionDecl>(OldD);
943  if (!Old) {
944    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
945      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
946      Diag(Shadow->getTargetDecl()->getLocation(),
947           diag::note_using_decl_target);
948      Diag(Shadow->getUsingDecl()->getLocation(),
949           diag::note_using_decl) << 0;
950      return true;
951    }
952
953    Diag(New->getLocation(), diag::err_redefinition_different_kind)
954      << New->getDeclName();
955    Diag(OldD->getLocation(), diag::note_previous_definition);
956    return true;
957  }
958
959  // Determine whether the previous declaration was a definition,
960  // implicit declaration, or a declaration.
961  diag::kind PrevDiag;
962  if (Old->isThisDeclarationADefinition())
963    PrevDiag = diag::note_previous_definition;
964  else if (Old->isImplicit())
965    PrevDiag = diag::note_previous_implicit_declaration;
966  else
967    PrevDiag = diag::note_previous_declaration;
968
969  QualType OldQType = Context.getCanonicalType(Old->getType());
970  QualType NewQType = Context.getCanonicalType(New->getType());
971
972  // Don't complain about this if we're in GNU89 mode and the old function
973  // is an extern inline function.
974  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
975      New->getStorageClass() == FunctionDecl::Static &&
976      Old->getStorageClass() != FunctionDecl::Static &&
977      !canRedefineFunction(Old, getLangOptions())) {
978    Diag(New->getLocation(), diag::err_static_non_static)
979      << New;
980    Diag(Old->getLocation(), PrevDiag);
981    return true;
982  }
983
984  // If a function is first declared with a calling convention, but is
985  // later declared or defined without one, the second decl assumes the
986  // calling convention of the first.
987  //
988  // For the new decl, we have to look at the NON-canonical type to tell the
989  // difference between a function that really doesn't have a calling
990  // convention and one that is declared cdecl. That's because in
991  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
992  // because it is the default calling convention.
993  //
994  // Note also that we DO NOT return at this point, because we still have
995  // other tests to run.
996  const FunctionType *OldType = OldQType->getAs<FunctionType>();
997  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
998  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
999  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1000  if (OldTypeInfo.getCC() != CC_Default &&
1001      NewTypeInfo.getCC() == CC_Default) {
1002    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1003    New->setType(NewQType);
1004    NewQType = Context.getCanonicalType(NewQType);
1005  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1006                                     NewTypeInfo.getCC())) {
1007    // Calling conventions really aren't compatible, so complain.
1008    Diag(New->getLocation(), diag::err_cconv_change)
1009      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1010      << (OldTypeInfo.getCC() == CC_Default)
1011      << (OldTypeInfo.getCC() == CC_Default ? "" :
1012          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1013    Diag(Old->getLocation(), diag::note_previous_declaration);
1014    return true;
1015  }
1016
1017  // FIXME: diagnose the other way around?
1018  if (OldType->getNoReturnAttr() &&
1019      !NewType->getNoReturnAttr()) {
1020    NewQType = Context.getNoReturnType(NewQType);
1021    New->setType(NewQType);
1022    assert(NewQType.isCanonical());
1023  }
1024
1025  if (getLangOptions().CPlusPlus) {
1026    // (C++98 13.1p2):
1027    //   Certain function declarations cannot be overloaded:
1028    //     -- Function declarations that differ only in the return type
1029    //        cannot be overloaded.
1030    QualType OldReturnType
1031      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1032    QualType NewReturnType
1033      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1034    if (OldReturnType != NewReturnType) {
1035      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1036      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1037      return true;
1038    }
1039
1040    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1041    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1042    if (OldMethod && NewMethod) {
1043      if (!NewMethod->getFriendObjectKind() &&
1044          NewMethod->getLexicalDeclContext()->isRecord()) {
1045        //    -- Member function declarations with the same name and the
1046        //       same parameter types cannot be overloaded if any of them
1047        //       is a static member function declaration.
1048        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1049          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1050          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1051          return true;
1052        }
1053
1054        // C++ [class.mem]p1:
1055        //   [...] A member shall not be declared twice in the
1056        //   member-specification, except that a nested class or member
1057        //   class template can be declared and then later defined.
1058        unsigned NewDiag;
1059        if (isa<CXXConstructorDecl>(OldMethod))
1060          NewDiag = diag::err_constructor_redeclared;
1061        else if (isa<CXXDestructorDecl>(NewMethod))
1062          NewDiag = diag::err_destructor_redeclared;
1063        else if (isa<CXXConversionDecl>(NewMethod))
1064          NewDiag = diag::err_conv_function_redeclared;
1065        else
1066          NewDiag = diag::err_member_redeclared;
1067
1068        Diag(New->getLocation(), NewDiag);
1069        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1070      } else {
1071        if (OldMethod->isImplicit()) {
1072          Diag(NewMethod->getLocation(),
1073               diag::err_definition_of_implicitly_declared_member)
1074          << New << getSpecialMember(Context, OldMethod);
1075
1076          Diag(OldMethod->getLocation(),
1077               diag::note_previous_implicit_declaration);
1078          return true;
1079        }
1080      }
1081    }
1082
1083    // (C++98 8.3.5p3):
1084    //   All declarations for a function shall agree exactly in both the
1085    //   return type and the parameter-type-list.
1086    // attributes should be ignored when comparing.
1087    if (Context.getNoReturnType(OldQType, false) ==
1088        Context.getNoReturnType(NewQType, false))
1089      return MergeCompatibleFunctionDecls(New, Old);
1090
1091    // Fall through for conflicting redeclarations and redefinitions.
1092  }
1093
1094  // C: Function types need to be compatible, not identical. This handles
1095  // duplicate function decls like "void f(int); void f(enum X);" properly.
1096  if (!getLangOptions().CPlusPlus &&
1097      Context.typesAreCompatible(OldQType, NewQType)) {
1098    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1099    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1100    const FunctionProtoType *OldProto = 0;
1101    if (isa<FunctionNoProtoType>(NewFuncType) &&
1102        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1103      // The old declaration provided a function prototype, but the
1104      // new declaration does not. Merge in the prototype.
1105      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1106      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1107                                                 OldProto->arg_type_end());
1108      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1109                                         ParamTypes.data(), ParamTypes.size(),
1110                                         OldProto->isVariadic(),
1111                                         OldProto->getTypeQuals(),
1112                                         false, false, 0, 0,
1113                                         OldProto->getExtInfo());
1114      New->setType(NewQType);
1115      New->setHasInheritedPrototype();
1116
1117      // Synthesize a parameter for each argument type.
1118      llvm::SmallVector<ParmVarDecl*, 16> Params;
1119      for (FunctionProtoType::arg_type_iterator
1120             ParamType = OldProto->arg_type_begin(),
1121             ParamEnd = OldProto->arg_type_end();
1122           ParamType != ParamEnd; ++ParamType) {
1123        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1124                                                 SourceLocation(), 0,
1125                                                 *ParamType, /*TInfo=*/0,
1126                                                 VarDecl::None, 0);
1127        Param->setImplicit();
1128        Params.push_back(Param);
1129      }
1130
1131      New->setParams(Params.data(), Params.size());
1132    }
1133
1134    return MergeCompatibleFunctionDecls(New, Old);
1135  }
1136
1137  // GNU C permits a K&R definition to follow a prototype declaration
1138  // if the declared types of the parameters in the K&R definition
1139  // match the types in the prototype declaration, even when the
1140  // promoted types of the parameters from the K&R definition differ
1141  // from the types in the prototype. GCC then keeps the types from
1142  // the prototype.
1143  //
1144  // If a variadic prototype is followed by a non-variadic K&R definition,
1145  // the K&R definition becomes variadic.  This is sort of an edge case, but
1146  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1147  // C99 6.9.1p8.
1148  if (!getLangOptions().CPlusPlus &&
1149      Old->hasPrototype() && !New->hasPrototype() &&
1150      New->getType()->getAs<FunctionProtoType>() &&
1151      Old->getNumParams() == New->getNumParams()) {
1152    llvm::SmallVector<QualType, 16> ArgTypes;
1153    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1154    const FunctionProtoType *OldProto
1155      = Old->getType()->getAs<FunctionProtoType>();
1156    const FunctionProtoType *NewProto
1157      = New->getType()->getAs<FunctionProtoType>();
1158
1159    // Determine whether this is the GNU C extension.
1160    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1161                                               NewProto->getResultType());
1162    bool LooseCompatible = !MergedReturn.isNull();
1163    for (unsigned Idx = 0, End = Old->getNumParams();
1164         LooseCompatible && Idx != End; ++Idx) {
1165      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1166      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1167      if (Context.typesAreCompatible(OldParm->getType(),
1168                                     NewProto->getArgType(Idx))) {
1169        ArgTypes.push_back(NewParm->getType());
1170      } else if (Context.typesAreCompatible(OldParm->getType(),
1171                                            NewParm->getType())) {
1172        GNUCompatibleParamWarning Warn
1173          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1174        Warnings.push_back(Warn);
1175        ArgTypes.push_back(NewParm->getType());
1176      } else
1177        LooseCompatible = false;
1178    }
1179
1180    if (LooseCompatible) {
1181      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1182        Diag(Warnings[Warn].NewParm->getLocation(),
1183             diag::ext_param_promoted_not_compatible_with_prototype)
1184          << Warnings[Warn].PromotedType
1185          << Warnings[Warn].OldParm->getType();
1186        Diag(Warnings[Warn].OldParm->getLocation(),
1187             diag::note_previous_declaration);
1188      }
1189
1190      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1191                                           ArgTypes.size(),
1192                                           OldProto->isVariadic(), 0,
1193                                           false, false, 0, 0,
1194                                           OldProto->getExtInfo()));
1195      return MergeCompatibleFunctionDecls(New, Old);
1196    }
1197
1198    // Fall through to diagnose conflicting types.
1199  }
1200
1201  // A function that has already been declared has been redeclared or defined
1202  // with a different type- show appropriate diagnostic
1203  if (unsigned BuiltinID = Old->getBuiltinID()) {
1204    // The user has declared a builtin function with an incompatible
1205    // signature.
1206    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1207      // The function the user is redeclaring is a library-defined
1208      // function like 'malloc' or 'printf'. Warn about the
1209      // redeclaration, then pretend that we don't know about this
1210      // library built-in.
1211      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1212      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1213        << Old << Old->getType();
1214      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1215      Old->setInvalidDecl();
1216      return false;
1217    }
1218
1219    PrevDiag = diag::note_previous_builtin_declaration;
1220  }
1221
1222  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1223  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224  return true;
1225}
1226
1227/// \brief Completes the merge of two function declarations that are
1228/// known to be compatible.
1229///
1230/// This routine handles the merging of attributes and other
1231/// properties of function declarations form the old declaration to
1232/// the new declaration, once we know that New is in fact a
1233/// redeclaration of Old.
1234///
1235/// \returns false
1236bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1237  // Merge the attributes
1238  MergeAttributes(New, Old, Context);
1239
1240  // Merge the storage class.
1241  if (Old->getStorageClass() != FunctionDecl::Extern &&
1242      Old->getStorageClass() != FunctionDecl::None)
1243    New->setStorageClass(Old->getStorageClass());
1244
1245  // Merge "pure" flag.
1246  if (Old->isPure())
1247    New->setPure();
1248
1249  // Merge the "deleted" flag.
1250  if (Old->isDeleted())
1251    New->setDeleted();
1252
1253  if (getLangOptions().CPlusPlus)
1254    return MergeCXXFunctionDecl(New, Old);
1255
1256  return false;
1257}
1258
1259/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1260/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1261/// situation, merging decls or emitting diagnostics as appropriate.
1262///
1263/// Tentative definition rules (C99 6.9.2p2) are checked by
1264/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1265/// definitions here, since the initializer hasn't been attached.
1266///
1267void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1268  // If the new decl is already invalid, don't do any other checking.
1269  if (New->isInvalidDecl())
1270    return;
1271
1272  // Verify the old decl was also a variable.
1273  VarDecl *Old = 0;
1274  if (!Previous.isSingleResult() ||
1275      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1276    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1277      << New->getDeclName();
1278    Diag(Previous.getRepresentativeDecl()->getLocation(),
1279         diag::note_previous_definition);
1280    return New->setInvalidDecl();
1281  }
1282
1283  MergeAttributes(New, Old, Context);
1284
1285  // Merge the types
1286  QualType MergedT;
1287  if (getLangOptions().CPlusPlus) {
1288    if (Context.hasSameType(New->getType(), Old->getType()))
1289      MergedT = New->getType();
1290    // C++ [basic.link]p10:
1291    //   [...] the types specified by all declarations referring to a given
1292    //   object or function shall be identical, except that declarations for an
1293    //   array object can specify array types that differ by the presence or
1294    //   absence of a major array bound (8.3.4).
1295    else if (Old->getType()->isIncompleteArrayType() &&
1296             New->getType()->isArrayType()) {
1297      CanQual<ArrayType> OldArray
1298        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1299      CanQual<ArrayType> NewArray
1300        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1301      if (OldArray->getElementType() == NewArray->getElementType())
1302        MergedT = New->getType();
1303    } else if (Old->getType()->isArrayType() &&
1304             New->getType()->isIncompleteArrayType()) {
1305      CanQual<ArrayType> OldArray
1306        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1307      CanQual<ArrayType> NewArray
1308        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1309      if (OldArray->getElementType() == NewArray->getElementType())
1310        MergedT = Old->getType();
1311    }
1312  } else {
1313    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1314  }
1315  if (MergedT.isNull()) {
1316    Diag(New->getLocation(), diag::err_redefinition_different_type)
1317      << New->getDeclName();
1318    Diag(Old->getLocation(), diag::note_previous_definition);
1319    return New->setInvalidDecl();
1320  }
1321  New->setType(MergedT);
1322
1323  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1324  if (New->getStorageClass() == VarDecl::Static &&
1325      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1326    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1327    Diag(Old->getLocation(), diag::note_previous_definition);
1328    return New->setInvalidDecl();
1329  }
1330  // C99 6.2.2p4:
1331  //   For an identifier declared with the storage-class specifier
1332  //   extern in a scope in which a prior declaration of that
1333  //   identifier is visible,23) if the prior declaration specifies
1334  //   internal or external linkage, the linkage of the identifier at
1335  //   the later declaration is the same as the linkage specified at
1336  //   the prior declaration. If no prior declaration is visible, or
1337  //   if the prior declaration specifies no linkage, then the
1338  //   identifier has external linkage.
1339  if (New->hasExternalStorage() && Old->hasLinkage())
1340    /* Okay */;
1341  else if (New->getStorageClass() != VarDecl::Static &&
1342           Old->getStorageClass() == VarDecl::Static) {
1343    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1344    Diag(Old->getLocation(), diag::note_previous_definition);
1345    return New->setInvalidDecl();
1346  }
1347
1348  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1349
1350  // FIXME: The test for external storage here seems wrong? We still
1351  // need to check for mismatches.
1352  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1353      // Don't complain about out-of-line definitions of static members.
1354      !(Old->getLexicalDeclContext()->isRecord() &&
1355        !New->getLexicalDeclContext()->isRecord())) {
1356    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1357    Diag(Old->getLocation(), diag::note_previous_definition);
1358    return New->setInvalidDecl();
1359  }
1360
1361  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1362    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1363    Diag(Old->getLocation(), diag::note_previous_definition);
1364  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1365    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1366    Diag(Old->getLocation(), diag::note_previous_definition);
1367  }
1368
1369  // C++ doesn't have tentative definitions, so go right ahead and check here.
1370  const VarDecl *Def;
1371  if (getLangOptions().CPlusPlus &&
1372      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1373      (Def = Old->getDefinition())) {
1374    Diag(New->getLocation(), diag::err_redefinition)
1375      << New->getDeclName();
1376    Diag(Def->getLocation(), diag::note_previous_definition);
1377    New->setInvalidDecl();
1378    return;
1379  }
1380
1381  // Keep a chain of previous declarations.
1382  New->setPreviousDeclaration(Old);
1383
1384  // Inherit access appropriately.
1385  New->setAccess(Old->getAccess());
1386}
1387
1388/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1389/// no declarator (e.g. "struct foo;") is parsed.
1390Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1391  // FIXME: Error on auto/register at file scope
1392  // FIXME: Error on inline/virtual/explicit
1393  // FIXME: Warn on useless __thread
1394  // FIXME: Warn on useless const/volatile
1395  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1396  // FIXME: Warn on useless attributes
1397  Decl *TagD = 0;
1398  TagDecl *Tag = 0;
1399  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1400      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1401      DS.getTypeSpecType() == DeclSpec::TST_union ||
1402      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1403    TagD = static_cast<Decl *>(DS.getTypeRep());
1404
1405    if (!TagD) // We probably had an error
1406      return DeclPtrTy();
1407
1408    // Note that the above type specs guarantee that the
1409    // type rep is a Decl, whereas in many of the others
1410    // it's a Type.
1411    Tag = dyn_cast<TagDecl>(TagD);
1412  }
1413
1414  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1415    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1416    // or incomplete types shall not be restrict-qualified."
1417    if (TypeQuals & DeclSpec::TQ_restrict)
1418      Diag(DS.getRestrictSpecLoc(),
1419           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1420           << DS.getSourceRange();
1421  }
1422
1423  if (DS.isFriendSpecified()) {
1424    // If we're dealing with a class template decl, assume that the
1425    // template routines are handling it.
1426    if (TagD && isa<ClassTemplateDecl>(TagD))
1427      return DeclPtrTy();
1428    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1429  }
1430
1431  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1432    // If there are attributes in the DeclSpec, apply them to the record.
1433    if (const AttributeList *AL = DS.getAttributes())
1434      ProcessDeclAttributeList(S, Record, AL);
1435
1436    if (!Record->getDeclName() && Record->isDefinition() &&
1437        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1438      if (getLangOptions().CPlusPlus ||
1439          Record->getDeclContext()->isRecord())
1440        return BuildAnonymousStructOrUnion(S, DS, Record);
1441
1442      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1443        << DS.getSourceRange();
1444    }
1445
1446    // Microsoft allows unnamed struct/union fields. Don't complain
1447    // about them.
1448    // FIXME: Should we support Microsoft's extensions in this area?
1449    if (Record->getDeclName() && getLangOptions().Microsoft)
1450      return DeclPtrTy::make(Tag);
1451  }
1452
1453  if (!DS.isMissingDeclaratorOk() &&
1454      DS.getTypeSpecType() != DeclSpec::TST_error) {
1455    // Warn about typedefs of enums without names, since this is an
1456    // extension in both Microsoft an GNU.
1457    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1458        Tag && isa<EnumDecl>(Tag)) {
1459      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1460        << DS.getSourceRange();
1461      return DeclPtrTy::make(Tag);
1462    }
1463
1464    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1465      << DS.getSourceRange();
1466    return DeclPtrTy();
1467  }
1468
1469  return DeclPtrTy::make(Tag);
1470}
1471
1472/// We are trying to inject an anonymous member into the given scope;
1473/// check if there's an existing declaration that can't be overloaded.
1474///
1475/// \return true if this is a forbidden redeclaration
1476static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1477                                         Scope *S,
1478                                         DeclContext *Owner,
1479                                         DeclarationName Name,
1480                                         SourceLocation NameLoc,
1481                                         unsigned diagnostic) {
1482  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1483                 Sema::ForRedeclaration);
1484  if (!SemaRef.LookupName(R, S)) return false;
1485
1486  if (R.getAsSingle<TagDecl>())
1487    return false;
1488
1489  // Pick a representative declaration.
1490  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1491  if (PrevDecl && Owner->isRecord()) {
1492    RecordDecl *Record = cast<RecordDecl>(Owner);
1493    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1494      return false;
1495  }
1496
1497  SemaRef.Diag(NameLoc, diagnostic) << Name;
1498  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1499
1500  return true;
1501}
1502
1503/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1504/// anonymous struct or union AnonRecord into the owning context Owner
1505/// and scope S. This routine will be invoked just after we realize
1506/// that an unnamed union or struct is actually an anonymous union or
1507/// struct, e.g.,
1508///
1509/// @code
1510/// union {
1511///   int i;
1512///   float f;
1513/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1514///    // f into the surrounding scope.x
1515/// @endcode
1516///
1517/// This routine is recursive, injecting the names of nested anonymous
1518/// structs/unions into the owning context and scope as well.
1519bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1520                                               RecordDecl *AnonRecord) {
1521  unsigned diagKind
1522    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1523                            : diag::err_anonymous_struct_member_redecl;
1524
1525  bool Invalid = false;
1526  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1527                               FEnd = AnonRecord->field_end();
1528       F != FEnd; ++F) {
1529    if ((*F)->getDeclName()) {
1530      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1531                                       (*F)->getLocation(), diagKind)) {
1532        // C++ [class.union]p2:
1533        //   The names of the members of an anonymous union shall be
1534        //   distinct from the names of any other entity in the
1535        //   scope in which the anonymous union is declared.
1536        Invalid = true;
1537      } else {
1538        // C++ [class.union]p2:
1539        //   For the purpose of name lookup, after the anonymous union
1540        //   definition, the members of the anonymous union are
1541        //   considered to have been defined in the scope in which the
1542        //   anonymous union is declared.
1543        Owner->makeDeclVisibleInContext(*F);
1544        S->AddDecl(DeclPtrTy::make(*F));
1545        IdResolver.AddDecl(*F);
1546      }
1547    } else if (const RecordType *InnerRecordType
1548                 = (*F)->getType()->getAs<RecordType>()) {
1549      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1550      if (InnerRecord->isAnonymousStructOrUnion())
1551        Invalid = Invalid ||
1552          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1553    }
1554  }
1555
1556  return Invalid;
1557}
1558
1559/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1560/// anonymous structure or union. Anonymous unions are a C++ feature
1561/// (C++ [class.union]) and a GNU C extension; anonymous structures
1562/// are a GNU C and GNU C++ extension.
1563Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1564                                                  RecordDecl *Record) {
1565  DeclContext *Owner = Record->getDeclContext();
1566
1567  // Diagnose whether this anonymous struct/union is an extension.
1568  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1569    Diag(Record->getLocation(), diag::ext_anonymous_union);
1570  else if (!Record->isUnion())
1571    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1572
1573  // C and C++ require different kinds of checks for anonymous
1574  // structs/unions.
1575  bool Invalid = false;
1576  if (getLangOptions().CPlusPlus) {
1577    const char* PrevSpec = 0;
1578    unsigned DiagID;
1579    // C++ [class.union]p3:
1580    //   Anonymous unions declared in a named namespace or in the
1581    //   global namespace shall be declared static.
1582    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1583        (isa<TranslationUnitDecl>(Owner) ||
1584         (isa<NamespaceDecl>(Owner) &&
1585          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1586      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1587      Invalid = true;
1588
1589      // Recover by adding 'static'.
1590      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1591                             PrevSpec, DiagID);
1592    }
1593    // C++ [class.union]p3:
1594    //   A storage class is not allowed in a declaration of an
1595    //   anonymous union in a class scope.
1596    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1597             isa<RecordDecl>(Owner)) {
1598      Diag(DS.getStorageClassSpecLoc(),
1599           diag::err_anonymous_union_with_storage_spec);
1600      Invalid = true;
1601
1602      // Recover by removing the storage specifier.
1603      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1604                             PrevSpec, DiagID);
1605    }
1606
1607    // C++ [class.union]p2:
1608    //   The member-specification of an anonymous union shall only
1609    //   define non-static data members. [Note: nested types and
1610    //   functions cannot be declared within an anonymous union. ]
1611    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1612                                 MemEnd = Record->decls_end();
1613         Mem != MemEnd; ++Mem) {
1614      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1615        // C++ [class.union]p3:
1616        //   An anonymous union shall not have private or protected
1617        //   members (clause 11).
1618        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1619          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1620            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1621          Invalid = true;
1622        }
1623      } else if ((*Mem)->isImplicit()) {
1624        // Any implicit members are fine.
1625      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1626        // This is a type that showed up in an
1627        // elaborated-type-specifier inside the anonymous struct or
1628        // union, but which actually declares a type outside of the
1629        // anonymous struct or union. It's okay.
1630      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1631        if (!MemRecord->isAnonymousStructOrUnion() &&
1632            MemRecord->getDeclName()) {
1633          // This is a nested type declaration.
1634          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1635            << (int)Record->isUnion();
1636          Invalid = true;
1637        }
1638      } else {
1639        // We have something that isn't a non-static data
1640        // member. Complain about it.
1641        unsigned DK = diag::err_anonymous_record_bad_member;
1642        if (isa<TypeDecl>(*Mem))
1643          DK = diag::err_anonymous_record_with_type;
1644        else if (isa<FunctionDecl>(*Mem))
1645          DK = diag::err_anonymous_record_with_function;
1646        else if (isa<VarDecl>(*Mem))
1647          DK = diag::err_anonymous_record_with_static;
1648        Diag((*Mem)->getLocation(), DK)
1649            << (int)Record->isUnion();
1650          Invalid = true;
1651      }
1652    }
1653  }
1654
1655  if (!Record->isUnion() && !Owner->isRecord()) {
1656    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1657      << (int)getLangOptions().CPlusPlus;
1658    Invalid = true;
1659  }
1660
1661  // Mock up a declarator.
1662  Declarator Dc(DS, Declarator::TypeNameContext);
1663  TypeSourceInfo *TInfo = 0;
1664  GetTypeForDeclarator(Dc, S, &TInfo);
1665  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1666
1667  // Create a declaration for this anonymous struct/union.
1668  NamedDecl *Anon = 0;
1669  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1670    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1671                             /*IdentifierInfo=*/0,
1672                             Context.getTypeDeclType(Record),
1673                             TInfo,
1674                             /*BitWidth=*/0, /*Mutable=*/false);
1675    Anon->setAccess(AS_public);
1676    if (getLangOptions().CPlusPlus)
1677      FieldCollector->Add(cast<FieldDecl>(Anon));
1678  } else {
1679    VarDecl::StorageClass SC;
1680    switch (DS.getStorageClassSpec()) {
1681    default: assert(0 && "Unknown storage class!");
1682    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1683    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1684    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1685    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1686    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1687    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1688    case DeclSpec::SCS_mutable:
1689      // mutable can only appear on non-static class members, so it's always
1690      // an error here
1691      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1692      Invalid = true;
1693      SC = VarDecl::None;
1694      break;
1695    }
1696
1697    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1698                           /*IdentifierInfo=*/0,
1699                           Context.getTypeDeclType(Record),
1700                           TInfo,
1701                           SC);
1702  }
1703  Anon->setImplicit();
1704
1705  // Add the anonymous struct/union object to the current
1706  // context. We'll be referencing this object when we refer to one of
1707  // its members.
1708  Owner->addDecl(Anon);
1709
1710  // Inject the members of the anonymous struct/union into the owning
1711  // context and into the identifier resolver chain for name lookup
1712  // purposes.
1713  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1714    Invalid = true;
1715
1716  // Mark this as an anonymous struct/union type. Note that we do not
1717  // do this until after we have already checked and injected the
1718  // members of this anonymous struct/union type, because otherwise
1719  // the members could be injected twice: once by DeclContext when it
1720  // builds its lookup table, and once by
1721  // InjectAnonymousStructOrUnionMembers.
1722  Record->setAnonymousStructOrUnion(true);
1723
1724  if (Invalid)
1725    Anon->setInvalidDecl();
1726
1727  return DeclPtrTy::make(Anon);
1728}
1729
1730
1731/// GetNameForDeclarator - Determine the full declaration name for the
1732/// given Declarator.
1733DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1734  return GetNameFromUnqualifiedId(D.getName());
1735}
1736
1737/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1738DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1739  switch (Name.getKind()) {
1740    case UnqualifiedId::IK_Identifier:
1741      return DeclarationName(Name.Identifier);
1742
1743    case UnqualifiedId::IK_OperatorFunctionId:
1744      return Context.DeclarationNames.getCXXOperatorName(
1745                                              Name.OperatorFunctionId.Operator);
1746
1747    case UnqualifiedId::IK_LiteralOperatorId:
1748      return Context.DeclarationNames.getCXXLiteralOperatorName(
1749                                                               Name.Identifier);
1750
1751    case UnqualifiedId::IK_ConversionFunctionId: {
1752      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1753      if (Ty.isNull())
1754        return DeclarationName();
1755
1756      return Context.DeclarationNames.getCXXConversionFunctionName(
1757                                                  Context.getCanonicalType(Ty));
1758    }
1759
1760    case UnqualifiedId::IK_ConstructorName: {
1761      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1762      if (Ty.isNull())
1763        return DeclarationName();
1764
1765      return Context.DeclarationNames.getCXXConstructorName(
1766                                                  Context.getCanonicalType(Ty));
1767    }
1768
1769    case UnqualifiedId::IK_ConstructorTemplateId: {
1770      // In well-formed code, we can only have a constructor
1771      // template-id that refers to the current context, so go there
1772      // to find the actual type being constructed.
1773      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1774      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1775        return DeclarationName();
1776
1777      // Determine the type of the class being constructed.
1778      QualType CurClassType = Context.getTypeDeclType(CurClass);
1779
1780      // FIXME: Check two things: that the template-id names the same type as
1781      // CurClassType, and that the template-id does not occur when the name
1782      // was qualified.
1783
1784      return Context.DeclarationNames.getCXXConstructorName(
1785                                       Context.getCanonicalType(CurClassType));
1786    }
1787
1788    case UnqualifiedId::IK_DestructorName: {
1789      QualType Ty = GetTypeFromParser(Name.DestructorName);
1790      if (Ty.isNull())
1791        return DeclarationName();
1792
1793      return Context.DeclarationNames.getCXXDestructorName(
1794                                                           Context.getCanonicalType(Ty));
1795    }
1796
1797    case UnqualifiedId::IK_TemplateId: {
1798      TemplateName TName
1799        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1800      return Context.getNameForTemplate(TName);
1801    }
1802  }
1803
1804  assert(false && "Unknown name kind");
1805  return DeclarationName();
1806}
1807
1808/// isNearlyMatchingFunction - Determine whether the C++ functions
1809/// Declaration and Definition are "nearly" matching. This heuristic
1810/// is used to improve diagnostics in the case where an out-of-line
1811/// function definition doesn't match any declaration within
1812/// the class or namespace.
1813static bool isNearlyMatchingFunction(ASTContext &Context,
1814                                     FunctionDecl *Declaration,
1815                                     FunctionDecl *Definition) {
1816  if (Declaration->param_size() != Definition->param_size())
1817    return false;
1818  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1819    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1820    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1821
1822    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1823                                        DefParamTy.getNonReferenceType()))
1824      return false;
1825  }
1826
1827  return true;
1828}
1829
1830Sema::DeclPtrTy
1831Sema::HandleDeclarator(Scope *S, Declarator &D,
1832                       MultiTemplateParamsArg TemplateParamLists,
1833                       bool IsFunctionDefinition) {
1834  DeclarationName Name = GetNameForDeclarator(D);
1835
1836  // All of these full declarators require an identifier.  If it doesn't have
1837  // one, the ParsedFreeStandingDeclSpec action should be used.
1838  if (!Name) {
1839    if (!D.isInvalidType())  // Reject this if we think it is valid.
1840      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1841           diag::err_declarator_need_ident)
1842        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1843    return DeclPtrTy();
1844  }
1845
1846  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1847  // we find one that is.
1848  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1849         (S->getFlags() & Scope::TemplateParamScope) != 0)
1850    S = S->getParent();
1851
1852  // If this is an out-of-line definition of a member of a class template
1853  // or class template partial specialization, we may need to rebuild the
1854  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1855  // for more information.
1856  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1857  // handle expressions properly.
1858  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1859  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1860      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1861      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1862       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1863       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1864       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1865    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1866      // FIXME: Preserve type source info.
1867      QualType T = GetTypeFromParser(DS.getTypeRep());
1868
1869      DeclContext *SavedContext = CurContext;
1870      CurContext = DC;
1871      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1872      CurContext = SavedContext;
1873
1874      if (T.isNull())
1875        return DeclPtrTy();
1876      DS.UpdateTypeRep(T.getAsOpaquePtr());
1877    }
1878  }
1879
1880  DeclContext *DC;
1881  NamedDecl *New;
1882
1883  TypeSourceInfo *TInfo = 0;
1884  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1885
1886  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1887                        ForRedeclaration);
1888
1889  // See if this is a redefinition of a variable in the same scope.
1890  if (D.getCXXScopeSpec().isInvalid()) {
1891    DC = CurContext;
1892    D.setInvalidType();
1893  } else if (!D.getCXXScopeSpec().isSet()) {
1894    bool IsLinkageLookup = false;
1895
1896    // If the declaration we're planning to build will be a function
1897    // or object with linkage, then look for another declaration with
1898    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1899    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1900      /* Do nothing*/;
1901    else if (R->isFunctionType()) {
1902      if (CurContext->isFunctionOrMethod() ||
1903          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1904        IsLinkageLookup = true;
1905    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1906      IsLinkageLookup = true;
1907    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1908             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1909      IsLinkageLookup = true;
1910
1911    if (IsLinkageLookup)
1912      Previous.clear(LookupRedeclarationWithLinkage);
1913
1914    DC = CurContext;
1915    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1916  } else { // Something like "int foo::x;"
1917    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1918
1919    if (!DC) {
1920      // If we could not compute the declaration context, it's because the
1921      // declaration context is dependent but does not refer to a class,
1922      // class template, or class template partial specialization. Complain
1923      // and return early, to avoid the coming semantic disaster.
1924      Diag(D.getIdentifierLoc(),
1925           diag::err_template_qualified_declarator_no_match)
1926        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1927        << D.getCXXScopeSpec().getRange();
1928      return DeclPtrTy();
1929    }
1930
1931    if (!DC->isDependentContext() &&
1932        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1933      return DeclPtrTy();
1934
1935    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1936      Diag(D.getIdentifierLoc(),
1937           diag::err_member_def_undefined_record)
1938        << Name << DC << D.getCXXScopeSpec().getRange();
1939      D.setInvalidType();
1940    }
1941
1942    LookupQualifiedName(Previous, DC);
1943
1944    // Don't consider using declarations as previous declarations for
1945    // out-of-line members.
1946    RemoveUsingDecls(Previous);
1947
1948    // C++ 7.3.1.2p2:
1949    // Members (including explicit specializations of templates) of a named
1950    // namespace can also be defined outside that namespace by explicit
1951    // qualification of the name being defined, provided that the entity being
1952    // defined was already declared in the namespace and the definition appears
1953    // after the point of declaration in a namespace that encloses the
1954    // declarations namespace.
1955    //
1956    // Note that we only check the context at this point. We don't yet
1957    // have enough information to make sure that PrevDecl is actually
1958    // the declaration we want to match. For example, given:
1959    //
1960    //   class X {
1961    //     void f();
1962    //     void f(float);
1963    //   };
1964    //
1965    //   void X::f(int) { } // ill-formed
1966    //
1967    // In this case, PrevDecl will point to the overload set
1968    // containing the two f's declared in X, but neither of them
1969    // matches.
1970
1971    // First check whether we named the global scope.
1972    if (isa<TranslationUnitDecl>(DC)) {
1973      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1974        << Name << D.getCXXScopeSpec().getRange();
1975    } else {
1976      DeclContext *Cur = CurContext;
1977      while (isa<LinkageSpecDecl>(Cur))
1978        Cur = Cur->getParent();
1979      if (!Cur->Encloses(DC)) {
1980        // The qualifying scope doesn't enclose the original declaration.
1981        // Emit diagnostic based on current scope.
1982        SourceLocation L = D.getIdentifierLoc();
1983        SourceRange R = D.getCXXScopeSpec().getRange();
1984        if (isa<FunctionDecl>(Cur))
1985          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1986        else
1987          Diag(L, diag::err_invalid_declarator_scope)
1988            << Name << cast<NamedDecl>(DC) << R;
1989        D.setInvalidType();
1990      }
1991    }
1992  }
1993
1994  if (Previous.isSingleResult() &&
1995      Previous.getFoundDecl()->isTemplateParameter()) {
1996    // Maybe we will complain about the shadowed template parameter.
1997    if (!D.isInvalidType())
1998      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1999                                          Previous.getFoundDecl()))
2000        D.setInvalidType();
2001
2002    // Just pretend that we didn't see the previous declaration.
2003    Previous.clear();
2004  }
2005
2006  // In C++, the previous declaration we find might be a tag type
2007  // (class or enum). In this case, the new declaration will hide the
2008  // tag type. Note that this does does not apply if we're declaring a
2009  // typedef (C++ [dcl.typedef]p4).
2010  if (Previous.isSingleTagDecl() &&
2011      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2012    Previous.clear();
2013
2014  bool Redeclaration = false;
2015  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2016    if (TemplateParamLists.size()) {
2017      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2018      return DeclPtrTy();
2019    }
2020
2021    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2022  } else if (R->isFunctionType()) {
2023    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2024                                  move(TemplateParamLists),
2025                                  IsFunctionDefinition, Redeclaration);
2026  } else {
2027    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2028                                  move(TemplateParamLists),
2029                                  Redeclaration);
2030  }
2031
2032  if (New == 0)
2033    return DeclPtrTy();
2034
2035  // If this has an identifier and is not an invalid redeclaration or
2036  // function template specialization, add it to the scope stack.
2037  if (Name && !(Redeclaration && New->isInvalidDecl()))
2038    PushOnScopeChains(New, S);
2039
2040  return DeclPtrTy::make(New);
2041}
2042
2043/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2044/// types into constant array types in certain situations which would otherwise
2045/// be errors (for GCC compatibility).
2046static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2047                                                    ASTContext &Context,
2048                                                    bool &SizeIsNegative) {
2049  // This method tries to turn a variable array into a constant
2050  // array even when the size isn't an ICE.  This is necessary
2051  // for compatibility with code that depends on gcc's buggy
2052  // constant expression folding, like struct {char x[(int)(char*)2];}
2053  SizeIsNegative = false;
2054
2055  QualifierCollector Qs;
2056  const Type *Ty = Qs.strip(T);
2057
2058  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2059    QualType Pointee = PTy->getPointeeType();
2060    QualType FixedType =
2061        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2062    if (FixedType.isNull()) return FixedType;
2063    FixedType = Context.getPointerType(FixedType);
2064    return Qs.apply(FixedType);
2065  }
2066
2067  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2068  if (!VLATy)
2069    return QualType();
2070  // FIXME: We should probably handle this case
2071  if (VLATy->getElementType()->isVariablyModifiedType())
2072    return QualType();
2073
2074  Expr::EvalResult EvalResult;
2075  if (!VLATy->getSizeExpr() ||
2076      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2077      !EvalResult.Val.isInt())
2078    return QualType();
2079
2080  llvm::APSInt &Res = EvalResult.Val.getInt();
2081  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2082    // TODO: preserve the size expression in declarator info
2083    return Context.getConstantArrayType(VLATy->getElementType(),
2084                                        Res, ArrayType::Normal, 0);
2085  }
2086
2087  SizeIsNegative = true;
2088  return QualType();
2089}
2090
2091/// \brief Register the given locally-scoped external C declaration so
2092/// that it can be found later for redeclarations
2093void
2094Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2095                                       const LookupResult &Previous,
2096                                       Scope *S) {
2097  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2098         "Decl is not a locally-scoped decl!");
2099  // Note that we have a locally-scoped external with this name.
2100  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2101
2102  if (!Previous.isSingleResult())
2103    return;
2104
2105  NamedDecl *PrevDecl = Previous.getFoundDecl();
2106
2107  // If there was a previous declaration of this variable, it may be
2108  // in our identifier chain. Update the identifier chain with the new
2109  // declaration.
2110  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2111    // The previous declaration was found on the identifer resolver
2112    // chain, so remove it from its scope.
2113    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2114      S = S->getParent();
2115
2116    if (S)
2117      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2118  }
2119}
2120
2121/// \brief Diagnose function specifiers on a declaration of an identifier that
2122/// does not identify a function.
2123void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2124  // FIXME: We should probably indicate the identifier in question to avoid
2125  // confusion for constructs like "inline int a(), b;"
2126  if (D.getDeclSpec().isInlineSpecified())
2127    Diag(D.getDeclSpec().getInlineSpecLoc(),
2128         diag::err_inline_non_function);
2129
2130  if (D.getDeclSpec().isVirtualSpecified())
2131    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2132         diag::err_virtual_non_function);
2133
2134  if (D.getDeclSpec().isExplicitSpecified())
2135    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2136         diag::err_explicit_non_function);
2137}
2138
2139NamedDecl*
2140Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2141                             QualType R,  TypeSourceInfo *TInfo,
2142                             LookupResult &Previous, bool &Redeclaration) {
2143  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2144  if (D.getCXXScopeSpec().isSet()) {
2145    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2146      << D.getCXXScopeSpec().getRange();
2147    D.setInvalidType();
2148    // Pretend we didn't see the scope specifier.
2149    DC = CurContext;
2150    Previous.clear();
2151  }
2152
2153  if (getLangOptions().CPlusPlus) {
2154    // Check that there are no default arguments (C++ only).
2155    CheckExtraCXXDefaultArguments(D);
2156  }
2157
2158  DiagnoseFunctionSpecifiers(D);
2159
2160  if (D.getDeclSpec().isThreadSpecified())
2161    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2162
2163  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2164  if (!NewTD) return 0;
2165
2166  // Handle attributes prior to checking for duplicates in MergeVarDecl
2167  ProcessDeclAttributes(S, NewTD, D);
2168
2169  // Merge the decl with the existing one if appropriate. If the decl is
2170  // in an outer scope, it isn't the same thing.
2171  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2172  if (!Previous.empty()) {
2173    Redeclaration = true;
2174    MergeTypeDefDecl(NewTD, Previous);
2175  }
2176
2177  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2178  // then it shall have block scope.
2179  QualType T = NewTD->getUnderlyingType();
2180  if (T->isVariablyModifiedType()) {
2181    FunctionNeedsScopeChecking() = true;
2182
2183    if (S->getFnParent() == 0) {
2184      bool SizeIsNegative;
2185      QualType FixedTy =
2186          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2187      if (!FixedTy.isNull()) {
2188        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2189        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2190      } else {
2191        if (SizeIsNegative)
2192          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2193        else if (T->isVariableArrayType())
2194          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2195        else
2196          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2197        NewTD->setInvalidDecl();
2198      }
2199    }
2200  }
2201
2202  // If this is the C FILE type, notify the AST context.
2203  if (IdentifierInfo *II = NewTD->getIdentifier())
2204    if (!NewTD->isInvalidDecl() &&
2205        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2206      if (II->isStr("FILE"))
2207        Context.setFILEDecl(NewTD);
2208      else if (II->isStr("jmp_buf"))
2209        Context.setjmp_bufDecl(NewTD);
2210      else if (II->isStr("sigjmp_buf"))
2211        Context.setsigjmp_bufDecl(NewTD);
2212    }
2213
2214  return NewTD;
2215}
2216
2217/// \brief Determines whether the given declaration is an out-of-scope
2218/// previous declaration.
2219///
2220/// This routine should be invoked when name lookup has found a
2221/// previous declaration (PrevDecl) that is not in the scope where a
2222/// new declaration by the same name is being introduced. If the new
2223/// declaration occurs in a local scope, previous declarations with
2224/// linkage may still be considered previous declarations (C99
2225/// 6.2.2p4-5, C++ [basic.link]p6).
2226///
2227/// \param PrevDecl the previous declaration found by name
2228/// lookup
2229///
2230/// \param DC the context in which the new declaration is being
2231/// declared.
2232///
2233/// \returns true if PrevDecl is an out-of-scope previous declaration
2234/// for a new delcaration with the same name.
2235static bool
2236isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2237                                ASTContext &Context) {
2238  if (!PrevDecl)
2239    return 0;
2240
2241  if (!PrevDecl->hasLinkage())
2242    return false;
2243
2244  if (Context.getLangOptions().CPlusPlus) {
2245    // C++ [basic.link]p6:
2246    //   If there is a visible declaration of an entity with linkage
2247    //   having the same name and type, ignoring entities declared
2248    //   outside the innermost enclosing namespace scope, the block
2249    //   scope declaration declares that same entity and receives the
2250    //   linkage of the previous declaration.
2251    DeclContext *OuterContext = DC->getLookupContext();
2252    if (!OuterContext->isFunctionOrMethod())
2253      // This rule only applies to block-scope declarations.
2254      return false;
2255    else {
2256      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2257      if (PrevOuterContext->isRecord())
2258        // We found a member function: ignore it.
2259        return false;
2260      else {
2261        // Find the innermost enclosing namespace for the new and
2262        // previous declarations.
2263        while (!OuterContext->isFileContext())
2264          OuterContext = OuterContext->getParent();
2265        while (!PrevOuterContext->isFileContext())
2266          PrevOuterContext = PrevOuterContext->getParent();
2267
2268        // The previous declaration is in a different namespace, so it
2269        // isn't the same function.
2270        if (OuterContext->getPrimaryContext() !=
2271            PrevOuterContext->getPrimaryContext())
2272          return false;
2273      }
2274    }
2275  }
2276
2277  return true;
2278}
2279
2280static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2281  CXXScopeSpec &SS = D.getCXXScopeSpec();
2282  if (!SS.isSet()) return;
2283  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2284                       SS.getRange());
2285}
2286
2287NamedDecl*
2288Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2289                              QualType R, TypeSourceInfo *TInfo,
2290                              LookupResult &Previous,
2291                              MultiTemplateParamsArg TemplateParamLists,
2292                              bool &Redeclaration) {
2293  DeclarationName Name = GetNameForDeclarator(D);
2294
2295  // Check that there are no default arguments (C++ only).
2296  if (getLangOptions().CPlusPlus)
2297    CheckExtraCXXDefaultArguments(D);
2298
2299  VarDecl *NewVD;
2300  VarDecl::StorageClass SC;
2301  switch (D.getDeclSpec().getStorageClassSpec()) {
2302  default: assert(0 && "Unknown storage class!");
2303  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2304  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2305  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2306  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2307  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2308  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2309  case DeclSpec::SCS_mutable:
2310    // mutable can only appear on non-static class members, so it's always
2311    // an error here
2312    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2313    D.setInvalidType();
2314    SC = VarDecl::None;
2315    break;
2316  }
2317
2318  IdentifierInfo *II = Name.getAsIdentifierInfo();
2319  if (!II) {
2320    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2321      << Name.getAsString();
2322    return 0;
2323  }
2324
2325  DiagnoseFunctionSpecifiers(D);
2326
2327  if (!DC->isRecord() && S->getFnParent() == 0) {
2328    // C99 6.9p2: The storage-class specifiers auto and register shall not
2329    // appear in the declaration specifiers in an external declaration.
2330    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2331
2332      // If this is a register variable with an asm label specified, then this
2333      // is a GNU extension.
2334      if (SC == VarDecl::Register && D.getAsmLabel())
2335        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2336      else
2337        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2338      D.setInvalidType();
2339    }
2340  }
2341  if (DC->isRecord() && !CurContext->isRecord()) {
2342    // This is an out-of-line definition of a static data member.
2343    if (SC == VarDecl::Static) {
2344      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2345           diag::err_static_out_of_line)
2346        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2347    } else if (SC == VarDecl::None)
2348      SC = VarDecl::Static;
2349  }
2350  if (SC == VarDecl::Static) {
2351    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2352      if (RD->isLocalClass())
2353        Diag(D.getIdentifierLoc(),
2354             diag::err_static_data_member_not_allowed_in_local_class)
2355          << Name << RD->getDeclName();
2356    }
2357  }
2358
2359  // Match up the template parameter lists with the scope specifier, then
2360  // determine whether we have a template or a template specialization.
2361  bool isExplicitSpecialization = false;
2362  if (TemplateParameterList *TemplateParams
2363        = MatchTemplateParametersToScopeSpecifier(
2364                                  D.getDeclSpec().getSourceRange().getBegin(),
2365                                                  D.getCXXScopeSpec(),
2366                        (TemplateParameterList**)TemplateParamLists.get(),
2367                                                   TemplateParamLists.size(),
2368                                                  isExplicitSpecialization)) {
2369    if (TemplateParams->size() > 0) {
2370      // There is no such thing as a variable template.
2371      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2372        << II
2373        << SourceRange(TemplateParams->getTemplateLoc(),
2374                       TemplateParams->getRAngleLoc());
2375      return 0;
2376    } else {
2377      // There is an extraneous 'template<>' for this variable. Complain
2378      // about it, but allow the declaration of the variable.
2379      Diag(TemplateParams->getTemplateLoc(),
2380           diag::err_template_variable_noparams)
2381        << II
2382        << SourceRange(TemplateParams->getTemplateLoc(),
2383                       TemplateParams->getRAngleLoc());
2384
2385      isExplicitSpecialization = true;
2386    }
2387  }
2388
2389  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2390                          II, R, TInfo, SC);
2391
2392  if (D.isInvalidType())
2393    NewVD->setInvalidDecl();
2394
2395  SetNestedNameSpecifier(NewVD, D);
2396
2397  if (D.getDeclSpec().isThreadSpecified()) {
2398    if (NewVD->hasLocalStorage())
2399      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2400    else if (!Context.Target.isTLSSupported())
2401      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2402    else
2403      NewVD->setThreadSpecified(true);
2404  }
2405
2406  // Set the lexical context. If the declarator has a C++ scope specifier, the
2407  // lexical context will be different from the semantic context.
2408  NewVD->setLexicalDeclContext(CurContext);
2409
2410  // Handle attributes prior to checking for duplicates in MergeVarDecl
2411  ProcessDeclAttributes(S, NewVD, D);
2412
2413  // Handle GNU asm-label extension (encoded as an attribute).
2414  if (Expr *E = (Expr*) D.getAsmLabel()) {
2415    // The parser guarantees this is a string.
2416    StringLiteral *SE = cast<StringLiteral>(E);
2417    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2418  }
2419
2420  // Diagnose shadowed variables before filtering for scope.
2421  if (!D.getCXXScopeSpec().isSet())
2422    CheckShadow(S, NewVD, Previous);
2423
2424  // Don't consider existing declarations that are in a different
2425  // scope and are out-of-semantic-context declarations (if the new
2426  // declaration has linkage).
2427  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2428
2429  // Merge the decl with the existing one if appropriate.
2430  if (!Previous.empty()) {
2431    if (Previous.isSingleResult() &&
2432        isa<FieldDecl>(Previous.getFoundDecl()) &&
2433        D.getCXXScopeSpec().isSet()) {
2434      // The user tried to define a non-static data member
2435      // out-of-line (C++ [dcl.meaning]p1).
2436      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2437        << D.getCXXScopeSpec().getRange();
2438      Previous.clear();
2439      NewVD->setInvalidDecl();
2440    }
2441  } else if (D.getCXXScopeSpec().isSet()) {
2442    // No previous declaration in the qualifying scope.
2443    Diag(D.getIdentifierLoc(), diag::err_no_member)
2444      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2445      << D.getCXXScopeSpec().getRange();
2446    NewVD->setInvalidDecl();
2447  }
2448
2449  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2450
2451  // This is an explicit specialization of a static data member. Check it.
2452  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2453      CheckMemberSpecialization(NewVD, Previous))
2454    NewVD->setInvalidDecl();
2455
2456  // attributes declared post-definition are currently ignored
2457  if (Previous.isSingleResult()) {
2458    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2459    if (Def && (Def = Def->getDefinition()) &&
2460        Def != NewVD && D.hasAttributes()) {
2461      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2462      Diag(Def->getLocation(), diag::note_previous_definition);
2463    }
2464  }
2465
2466  // If this is a locally-scoped extern C variable, update the map of
2467  // such variables.
2468  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2469      !NewVD->isInvalidDecl())
2470    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2471
2472  return NewVD;
2473}
2474
2475/// \brief Diagnose variable or built-in function shadowing.  Implements
2476/// -Wshadow.
2477///
2478/// This method is called whenever a VarDecl is added to a "useful"
2479/// scope.
2480///
2481/// \param S the scope in which the shadowing name is being declared
2482/// \param R the lookup of the name
2483///
2484void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2485  // Return if warning is ignored.
2486  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2487    return;
2488
2489  // Don't diagnose declarations at file scope.  The scope might not
2490  // have a DeclContext if (e.g.) we're parsing a function prototype.
2491  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2492  if (NewDC && NewDC->isFileContext())
2493    return;
2494
2495  // Only diagnose if we're shadowing an unambiguous field or variable.
2496  if (R.getResultKind() != LookupResult::Found)
2497    return;
2498
2499  NamedDecl* ShadowedDecl = R.getFoundDecl();
2500  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2501    return;
2502
2503  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2504
2505  // Only warn about certain kinds of shadowing for class members.
2506  if (NewDC && NewDC->isRecord()) {
2507    // In particular, don't warn about shadowing non-class members.
2508    if (!OldDC->isRecord())
2509      return;
2510
2511    // TODO: should we warn about static data members shadowing
2512    // static data members from base classes?
2513
2514    // TODO: don't diagnose for inaccessible shadowed members.
2515    // This is hard to do perfectly because we might friend the
2516    // shadowing context, but that's just a false negative.
2517  }
2518
2519  // Determine what kind of declaration we're shadowing.
2520  unsigned Kind;
2521  if (isa<RecordDecl>(OldDC)) {
2522    if (isa<FieldDecl>(ShadowedDecl))
2523      Kind = 3; // field
2524    else
2525      Kind = 2; // static data member
2526  } else if (OldDC->isFileContext())
2527    Kind = 1; // global
2528  else
2529    Kind = 0; // local
2530
2531  DeclarationName Name = R.getLookupName();
2532
2533  // Emit warning and note.
2534  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2535  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2536}
2537
2538/// \brief Check -Wshadow without the advantage of a previous lookup.
2539void Sema::CheckShadow(Scope *S, VarDecl *D) {
2540  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2541                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2542  LookupName(R, S);
2543  CheckShadow(S, D, R);
2544}
2545
2546/// \brief Perform semantic checking on a newly-created variable
2547/// declaration.
2548///
2549/// This routine performs all of the type-checking required for a
2550/// variable declaration once it has been built. It is used both to
2551/// check variables after they have been parsed and their declarators
2552/// have been translated into a declaration, and to check variables
2553/// that have been instantiated from a template.
2554///
2555/// Sets NewVD->isInvalidDecl() if an error was encountered.
2556void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2557                                    LookupResult &Previous,
2558                                    bool &Redeclaration) {
2559  // If the decl is already known invalid, don't check it.
2560  if (NewVD->isInvalidDecl())
2561    return;
2562
2563  QualType T = NewVD->getType();
2564
2565  if (T->isObjCInterfaceType()) {
2566    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2567    return NewVD->setInvalidDecl();
2568  }
2569
2570  // Emit an error if an address space was applied to decl with local storage.
2571  // This includes arrays of objects with address space qualifiers, but not
2572  // automatic variables that point to other address spaces.
2573  // ISO/IEC TR 18037 S5.1.2
2574  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2575    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2576    return NewVD->setInvalidDecl();
2577  }
2578
2579  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2580      && !NewVD->hasAttr<BlocksAttr>())
2581    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2582
2583  bool isVM = T->isVariablyModifiedType();
2584  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2585      NewVD->hasAttr<BlocksAttr>() ||
2586      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2587      // However, this turns on the scope checker for everything with a variable
2588      // which may impact compile time.  See if we can find a better solution
2589      // to this, perhaps only checking functions that contain gotos in C++?
2590      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2591    FunctionNeedsScopeChecking() = true;
2592
2593  if ((isVM && NewVD->hasLinkage()) ||
2594      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2595    bool SizeIsNegative;
2596    QualType FixedTy =
2597        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2598
2599    if (FixedTy.isNull() && T->isVariableArrayType()) {
2600      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2601      // FIXME: This won't give the correct result for
2602      // int a[10][n];
2603      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2604
2605      if (NewVD->isFileVarDecl())
2606        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2607        << SizeRange;
2608      else if (NewVD->getStorageClass() == VarDecl::Static)
2609        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2610        << SizeRange;
2611      else
2612        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2613        << SizeRange;
2614      return NewVD->setInvalidDecl();
2615    }
2616
2617    if (FixedTy.isNull()) {
2618      if (NewVD->isFileVarDecl())
2619        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2620      else
2621        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2622      return NewVD->setInvalidDecl();
2623    }
2624
2625    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2626    NewVD->setType(FixedTy);
2627  }
2628
2629  if (Previous.empty() && NewVD->isExternC()) {
2630    // Since we did not find anything by this name and we're declaring
2631    // an extern "C" variable, look for a non-visible extern "C"
2632    // declaration with the same name.
2633    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2634      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2635    if (Pos != LocallyScopedExternalDecls.end())
2636      Previous.addDecl(Pos->second);
2637  }
2638
2639  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2640    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2641      << T;
2642    return NewVD->setInvalidDecl();
2643  }
2644
2645  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2646    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2647    return NewVD->setInvalidDecl();
2648  }
2649
2650  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2651    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2652    return NewVD->setInvalidDecl();
2653  }
2654
2655  if (!Previous.empty()) {
2656    Redeclaration = true;
2657    MergeVarDecl(NewVD, Previous);
2658  }
2659}
2660
2661/// \brief Data used with FindOverriddenMethod
2662struct FindOverriddenMethodData {
2663  Sema *S;
2664  CXXMethodDecl *Method;
2665};
2666
2667/// \brief Member lookup function that determines whether a given C++
2668/// method overrides a method in a base class, to be used with
2669/// CXXRecordDecl::lookupInBases().
2670static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2671                                 CXXBasePath &Path,
2672                                 void *UserData) {
2673  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2674
2675  FindOverriddenMethodData *Data
2676    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2677
2678  DeclarationName Name = Data->Method->getDeclName();
2679
2680  // FIXME: Do we care about other names here too?
2681  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2682    // We really want to find the base class constructor here.
2683    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2684    CanQualType CT = Data->S->Context.getCanonicalType(T);
2685
2686    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2687  }
2688
2689  for (Path.Decls = BaseRecord->lookup(Name);
2690       Path.Decls.first != Path.Decls.second;
2691       ++Path.Decls.first) {
2692    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2693      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2694        return true;
2695    }
2696  }
2697
2698  return false;
2699}
2700
2701/// AddOverriddenMethods - See if a method overrides any in the base classes,
2702/// and if so, check that it's a valid override and remember it.
2703void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2704  // Look for virtual methods in base classes that this method might override.
2705  CXXBasePaths Paths;
2706  FindOverriddenMethodData Data;
2707  Data.Method = MD;
2708  Data.S = this;
2709  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2710    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2711         E = Paths.found_decls_end(); I != E; ++I) {
2712      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2713        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2714            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2715            !CheckOverridingFunctionAttributes(MD, OldMD))
2716          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2717      }
2718    }
2719  }
2720}
2721
2722NamedDecl*
2723Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2724                              QualType R, TypeSourceInfo *TInfo,
2725                              LookupResult &Previous,
2726                              MultiTemplateParamsArg TemplateParamLists,
2727                              bool IsFunctionDefinition, bool &Redeclaration) {
2728  assert(R.getTypePtr()->isFunctionType());
2729
2730  DeclarationName Name = GetNameForDeclarator(D);
2731  FunctionDecl::StorageClass SC = FunctionDecl::None;
2732  switch (D.getDeclSpec().getStorageClassSpec()) {
2733  default: assert(0 && "Unknown storage class!");
2734  case DeclSpec::SCS_auto:
2735  case DeclSpec::SCS_register:
2736  case DeclSpec::SCS_mutable:
2737    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2738         diag::err_typecheck_sclass_func);
2739    D.setInvalidType();
2740    break;
2741  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2742  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2743  case DeclSpec::SCS_static: {
2744    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2745      // C99 6.7.1p5:
2746      //   The declaration of an identifier for a function that has
2747      //   block scope shall have no explicit storage-class specifier
2748      //   other than extern
2749      // See also (C++ [dcl.stc]p4).
2750      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2751           diag::err_static_block_func);
2752      SC = FunctionDecl::None;
2753    } else
2754      SC = FunctionDecl::Static;
2755    break;
2756  }
2757  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2758  }
2759
2760  if (D.getDeclSpec().isThreadSpecified())
2761    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2762
2763  bool isFriend = D.getDeclSpec().isFriendSpecified();
2764  bool isInline = D.getDeclSpec().isInlineSpecified();
2765  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2766  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2767
2768  // Check that the return type is not an abstract class type.
2769  // For record types, this is done by the AbstractClassUsageDiagnoser once
2770  // the class has been completely parsed.
2771  if (!DC->isRecord() &&
2772      RequireNonAbstractType(D.getIdentifierLoc(),
2773                             R->getAs<FunctionType>()->getResultType(),
2774                             diag::err_abstract_type_in_decl,
2775                             AbstractReturnType))
2776    D.setInvalidType();
2777
2778  // Do not allow returning a objc interface by-value.
2779  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2780    Diag(D.getIdentifierLoc(),
2781         diag::err_object_cannot_be_passed_returned_by_value) << 0
2782      << R->getAs<FunctionType>()->getResultType();
2783    D.setInvalidType();
2784  }
2785
2786  bool isVirtualOkay = false;
2787  FunctionDecl *NewFD;
2788
2789  if (isFriend) {
2790    // C++ [class.friend]p5
2791    //   A function can be defined in a friend declaration of a
2792    //   class . . . . Such a function is implicitly inline.
2793    isInline |= IsFunctionDefinition;
2794  }
2795
2796  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2797    // This is a C++ constructor declaration.
2798    assert(DC->isRecord() &&
2799           "Constructors can only be declared in a member context");
2800
2801    R = CheckConstructorDeclarator(D, R, SC);
2802
2803    // Create the new declaration
2804    NewFD = CXXConstructorDecl::Create(Context,
2805                                       cast<CXXRecordDecl>(DC),
2806                                       D.getIdentifierLoc(), Name, R, TInfo,
2807                                       isExplicit, isInline,
2808                                       /*isImplicitlyDeclared=*/false);
2809  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2810    // This is a C++ destructor declaration.
2811    if (DC->isRecord()) {
2812      R = CheckDestructorDeclarator(D, SC);
2813
2814      NewFD = CXXDestructorDecl::Create(Context,
2815                                        cast<CXXRecordDecl>(DC),
2816                                        D.getIdentifierLoc(), Name, R,
2817                                        isInline,
2818                                        /*isImplicitlyDeclared=*/false);
2819      NewFD->setTypeSourceInfo(TInfo);
2820
2821      isVirtualOkay = true;
2822    } else {
2823      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2824
2825      // Create a FunctionDecl to satisfy the function definition parsing
2826      // code path.
2827      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2828                                   Name, R, TInfo, SC, isInline,
2829                                   /*hasPrototype=*/true);
2830      D.setInvalidType();
2831    }
2832  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2833    if (!DC->isRecord()) {
2834      Diag(D.getIdentifierLoc(),
2835           diag::err_conv_function_not_member);
2836      return 0;
2837    }
2838
2839    CheckConversionDeclarator(D, R, SC);
2840    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2841                                      D.getIdentifierLoc(), Name, R, TInfo,
2842                                      isInline, isExplicit);
2843
2844    isVirtualOkay = true;
2845  } else if (DC->isRecord()) {
2846    // If the of the function is the same as the name of the record, then this
2847    // must be an invalid constructor that has a return type.
2848    // (The parser checks for a return type and makes the declarator a
2849    // constructor if it has no return type).
2850    // must have an invalid constructor that has a return type
2851    if (Name.getAsIdentifierInfo() &&
2852        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2853      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2854        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2855        << SourceRange(D.getIdentifierLoc());
2856      return 0;
2857    }
2858
2859    bool isStatic = SC == FunctionDecl::Static;
2860
2861    // [class.free]p1:
2862    // Any allocation function for a class T is a static member
2863    // (even if not explicitly declared static).
2864    if (Name.getCXXOverloadedOperator() == OO_New ||
2865        Name.getCXXOverloadedOperator() == OO_Array_New)
2866      isStatic = true;
2867
2868    // [class.free]p6 Any deallocation function for a class X is a static member
2869    // (even if not explicitly declared static).
2870    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2871        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2872      isStatic = true;
2873
2874    // This is a C++ method declaration.
2875    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2876                                  D.getIdentifierLoc(), Name, R, TInfo,
2877                                  isStatic, isInline);
2878
2879    isVirtualOkay = !isStatic;
2880  } else {
2881    // Determine whether the function was written with a
2882    // prototype. This true when:
2883    //   - we're in C++ (where every function has a prototype),
2884    //   - there is a prototype in the declarator, or
2885    //   - the type R of the function is some kind of typedef or other reference
2886    //     to a type name (which eventually refers to a function type).
2887    bool HasPrototype =
2888       getLangOptions().CPlusPlus ||
2889       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2890       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2891
2892    NewFD = FunctionDecl::Create(Context, DC,
2893                                 D.getIdentifierLoc(),
2894                                 Name, R, TInfo, SC, isInline, HasPrototype);
2895  }
2896
2897  if (D.isInvalidType())
2898    NewFD->setInvalidDecl();
2899
2900  SetNestedNameSpecifier(NewFD, D);
2901
2902  // Set the lexical context. If the declarator has a C++
2903  // scope specifier, or is the object of a friend declaration, the
2904  // lexical context will be different from the semantic context.
2905  NewFD->setLexicalDeclContext(CurContext);
2906
2907  // Match up the template parameter lists with the scope specifier, then
2908  // determine whether we have a template or a template specialization.
2909  FunctionTemplateDecl *FunctionTemplate = 0;
2910  bool isExplicitSpecialization = false;
2911  bool isFunctionTemplateSpecialization = false;
2912  if (TemplateParameterList *TemplateParams
2913        = MatchTemplateParametersToScopeSpecifier(
2914                                  D.getDeclSpec().getSourceRange().getBegin(),
2915                                  D.getCXXScopeSpec(),
2916                           (TemplateParameterList**)TemplateParamLists.get(),
2917                                                  TemplateParamLists.size(),
2918                                                  isExplicitSpecialization)) {
2919    if (TemplateParams->size() > 0) {
2920      // This is a function template
2921
2922      // Check that we can declare a template here.
2923      if (CheckTemplateDeclScope(S, TemplateParams))
2924        return 0;
2925
2926      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2927                                                      NewFD->getLocation(),
2928                                                      Name, TemplateParams,
2929                                                      NewFD);
2930      FunctionTemplate->setLexicalDeclContext(CurContext);
2931      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2932    } else {
2933      // This is a function template specialization.
2934      isFunctionTemplateSpecialization = true;
2935
2936      // C++0x [temp.expl.spec]p20 forbids "template<> void foo(int);".
2937      if (isFriend && isFunctionTemplateSpecialization) {
2938        // We want to remove the "template<>", found here.
2939        SourceRange RemoveRange = TemplateParams->getSourceRange();
2940
2941        // If we remove the template<> and the name is not a
2942        // template-id, we're actually silently creating a problem:
2943        // the friend declaration will refer to an untemplated decl,
2944        // and clearly the user wants a template specialization.  So
2945        // we need to insert '<>' after the name.
2946        SourceLocation InsertLoc;
2947        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2948          InsertLoc = D.getName().getSourceRange().getEnd();
2949          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2950        }
2951
2952        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2953          << Name << RemoveRange
2954          << FixItHint::CreateRemoval(RemoveRange)
2955          << FixItHint::CreateInsertion(InsertLoc, "<>");
2956      }
2957    }
2958
2959    // FIXME: Free this memory properly.
2960    TemplateParamLists.release();
2961  }
2962
2963  // C++ [dcl.fct.spec]p5:
2964  //   The virtual specifier shall only be used in declarations of
2965  //   nonstatic class member functions that appear within a
2966  //   member-specification of a class declaration; see 10.3.
2967  //
2968  if (isVirtual && !NewFD->isInvalidDecl()) {
2969    if (!isVirtualOkay) {
2970       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2971           diag::err_virtual_non_function);
2972    } else if (!CurContext->isRecord()) {
2973      // 'virtual' was specified outside of the class.
2974      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2975        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
2976    } else {
2977      // Okay: Add virtual to the method.
2978      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2979      CurClass->setMethodAsVirtual(NewFD);
2980    }
2981  }
2982
2983  // C++ [dcl.fct.spec]p6:
2984  //  The explicit specifier shall be used only in the declaration of a
2985  //  constructor or conversion function within its class definition; see 12.3.1
2986  //  and 12.3.2.
2987  if (isExplicit && !NewFD->isInvalidDecl()) {
2988    if (!CurContext->isRecord()) {
2989      // 'explicit' was specified outside of the class.
2990      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2991           diag::err_explicit_out_of_class)
2992        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
2993    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2994               !isa<CXXConversionDecl>(NewFD)) {
2995      // 'explicit' was specified on a function that wasn't a constructor
2996      // or conversion function.
2997      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2998           diag::err_explicit_non_ctor_or_conv_function)
2999        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3000    }
3001  }
3002
3003  // Filter out previous declarations that don't match the scope.
3004  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3005
3006  if (isFriend) {
3007    // DC is the namespace in which the function is being declared.
3008    assert((DC->isFileContext() || !Previous.empty()) &&
3009           "previously-undeclared friend function being created "
3010           "in a non-namespace context");
3011
3012    // For now, claim that the objects have no previous declaration.
3013    if (FunctionTemplate) {
3014      FunctionTemplate->setObjectOfFriendDecl(false);
3015      FunctionTemplate->setAccess(AS_public);
3016    } else {
3017      NewFD->setObjectOfFriendDecl(false);
3018    }
3019
3020    NewFD->setAccess(AS_public);
3021  }
3022
3023  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3024      !CurContext->isRecord()) {
3025    // C++ [class.static]p1:
3026    //   A data or function member of a class may be declared static
3027    //   in a class definition, in which case it is a static member of
3028    //   the class.
3029
3030    // Complain about the 'static' specifier if it's on an out-of-line
3031    // member function definition.
3032    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3033         diag::err_static_out_of_line)
3034      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3035  }
3036
3037  // Handle GNU asm-label extension (encoded as an attribute).
3038  if (Expr *E = (Expr*) D.getAsmLabel()) {
3039    // The parser guarantees this is a string.
3040    StringLiteral *SE = cast<StringLiteral>(E);
3041    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3042  }
3043
3044  // Copy the parameter declarations from the declarator D to the function
3045  // declaration NewFD, if they are available.  First scavenge them into Params.
3046  llvm::SmallVector<ParmVarDecl*, 16> Params;
3047  if (D.getNumTypeObjects() > 0) {
3048    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3049
3050    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3051    // function that takes no arguments, not a function that takes a
3052    // single void argument.
3053    // We let through "const void" here because Sema::GetTypeForDeclarator
3054    // already checks for that case.
3055    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3056        FTI.ArgInfo[0].Param &&
3057        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3058      // Empty arg list, don't push any params.
3059      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3060
3061      // In C++, the empty parameter-type-list must be spelled "void"; a
3062      // typedef of void is not permitted.
3063      if (getLangOptions().CPlusPlus &&
3064          Param->getType().getUnqualifiedType() != Context.VoidTy)
3065        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3066      // FIXME: Leaks decl?
3067    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3068      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3069        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3070        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3071        Param->setDeclContext(NewFD);
3072        Params.push_back(Param);
3073      }
3074    }
3075
3076  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3077    // When we're declaring a function with a typedef, typeof, etc as in the
3078    // following example, we'll need to synthesize (unnamed)
3079    // parameters for use in the declaration.
3080    //
3081    // @code
3082    // typedef void fn(int);
3083    // fn f;
3084    // @endcode
3085
3086    // Synthesize a parameter for each argument type.
3087    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3088         AE = FT->arg_type_end(); AI != AE; ++AI) {
3089      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3090                                               SourceLocation(), 0,
3091                                               *AI, /*TInfo=*/0,
3092                                               VarDecl::None, 0);
3093      Param->setImplicit();
3094      Params.push_back(Param);
3095    }
3096  } else {
3097    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3098           "Should not need args for typedef of non-prototype fn");
3099  }
3100  // Finally, we know we have the right number of parameters, install them.
3101  NewFD->setParams(Params.data(), Params.size());
3102
3103  // If the declarator is a template-id, translate the parser's template
3104  // argument list into our AST format.
3105  bool HasExplicitTemplateArgs = false;
3106  TemplateArgumentListInfo TemplateArgs;
3107  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3108    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3109    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3110    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3111    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3112                                       TemplateId->getTemplateArgs(),
3113                                       TemplateId->NumArgs);
3114    translateTemplateArguments(TemplateArgsPtr,
3115                               TemplateArgs);
3116    TemplateArgsPtr.release();
3117
3118    HasExplicitTemplateArgs = true;
3119
3120    if (FunctionTemplate) {
3121      // FIXME: Diagnose function template with explicit template
3122      // arguments.
3123      HasExplicitTemplateArgs = false;
3124    } else if (!isFunctionTemplateSpecialization &&
3125               !D.getDeclSpec().isFriendSpecified()) {
3126      // We have encountered something that the user meant to be a
3127      // specialization (because it has explicitly-specified template
3128      // arguments) but that was not introduced with a "template<>" (or had
3129      // too few of them).
3130      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3131        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3132        << FixItHint::CreateInsertion(
3133                                   D.getDeclSpec().getSourceRange().getBegin(),
3134                                                 "template<> ");
3135      isFunctionTemplateSpecialization = true;
3136    } else {
3137      // "friend void foo<>(int);" is an implicit specialization decl.
3138      isFunctionTemplateSpecialization = true;
3139    }
3140  }
3141
3142  if (isFunctionTemplateSpecialization) {
3143    if (isFriend && NewFD->getType()->isDependentType()) {
3144      // FIXME: When we see a friend of a function template
3145      // specialization with a dependent type, we can't match it now;
3146      // for now, we just drop it, until we have a reasonable way to
3147      // represent the parsed-but-not-matched friend function template
3148      // specialization in the AST.
3149      return 0;
3150    } else if (CheckFunctionTemplateSpecialization(NewFD,
3151                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3152                                                 Previous))
3153      NewFD->setInvalidDecl();
3154  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3155             CheckMemberSpecialization(NewFD, Previous))
3156    NewFD->setInvalidDecl();
3157
3158  // Perform semantic checking on the function declaration.
3159  bool OverloadableAttrRequired = false; // FIXME: HACK!
3160  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3161                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3162
3163  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3164          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3165         "previous declaration set still overloaded");
3166
3167  if (isFriend && Redeclaration) {
3168    AccessSpecifier Access = NewFD->getPreviousDeclaration()->getAccess();
3169    if (FunctionTemplate) {
3170      FunctionTemplate->setObjectOfFriendDecl(true);
3171      FunctionTemplate->setAccess(Access);
3172    } else {
3173      NewFD->setObjectOfFriendDecl(true);
3174    }
3175    NewFD->setAccess(Access);
3176  }
3177
3178  // If we have a function template, check the template parameter
3179  // list. This will check and merge default template arguments.
3180  if (FunctionTemplate) {
3181    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3182    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3183                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3184             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3185                                                : TPC_FunctionTemplate);
3186  }
3187
3188  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3189    // Fake up an access specifier if it's supposed to be a class member.
3190    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3191      NewFD->setAccess(AS_public);
3192
3193    // An out-of-line member function declaration must also be a
3194    // definition (C++ [dcl.meaning]p1).
3195    // Note that this is not the case for explicit specializations of
3196    // function templates or member functions of class templates, per
3197    // C++ [temp.expl.spec]p2.
3198    if (!IsFunctionDefinition && !isFriend &&
3199        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3200      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3201        << D.getCXXScopeSpec().getRange();
3202      NewFD->setInvalidDecl();
3203    } else if (!Redeclaration &&
3204               !(isFriend && CurContext->isDependentContext())) {
3205      // The user tried to provide an out-of-line definition for a
3206      // function that is a member of a class or namespace, but there
3207      // was no such member function declared (C++ [class.mfct]p2,
3208      // C++ [namespace.memdef]p2). For example:
3209      //
3210      // class X {
3211      //   void f() const;
3212      // };
3213      //
3214      // void X::f() { } // ill-formed
3215      //
3216      // Complain about this problem, and attempt to suggest close
3217      // matches (e.g., those that differ only in cv-qualifiers and
3218      // whether the parameter types are references).
3219      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3220        << Name << DC << D.getCXXScopeSpec().getRange();
3221      NewFD->setInvalidDecl();
3222
3223      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3224                        ForRedeclaration);
3225      LookupQualifiedName(Prev, DC);
3226      assert(!Prev.isAmbiguous() &&
3227             "Cannot have an ambiguity in previous-declaration lookup");
3228      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3229           Func != FuncEnd; ++Func) {
3230        if (isa<FunctionDecl>(*Func) &&
3231            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3232          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3233      }
3234    }
3235  }
3236
3237  // Handle attributes. We need to have merged decls when handling attributes
3238  // (for example to check for conflicts, etc).
3239  // FIXME: This needs to happen before we merge declarations. Then,
3240  // let attribute merging cope with attribute conflicts.
3241  ProcessDeclAttributes(S, NewFD, D);
3242
3243  // attributes declared post-definition are currently ignored
3244  if (Redeclaration && Previous.isSingleResult()) {
3245    const FunctionDecl *Def;
3246    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3247    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3248      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3249      Diag(Def->getLocation(), diag::note_previous_definition);
3250    }
3251  }
3252
3253  AddKnownFunctionAttributes(NewFD);
3254
3255  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3256    // If a function name is overloadable in C, then every function
3257    // with that name must be marked "overloadable".
3258    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3259      << Redeclaration << NewFD;
3260    if (!Previous.empty())
3261      Diag(Previous.getRepresentativeDecl()->getLocation(),
3262           diag::note_attribute_overloadable_prev_overload);
3263    NewFD->addAttr(::new (Context) OverloadableAttr());
3264  }
3265
3266  // If this is a locally-scoped extern C function, update the
3267  // map of such names.
3268  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3269      && !NewFD->isInvalidDecl())
3270    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3271
3272  // Set this FunctionDecl's range up to the right paren.
3273  NewFD->setLocEnd(D.getSourceRange().getEnd());
3274
3275  if (FunctionTemplate && NewFD->isInvalidDecl())
3276    FunctionTemplate->setInvalidDecl();
3277
3278  if (FunctionTemplate)
3279    return FunctionTemplate;
3280
3281
3282  // Keep track of static, non-inlined function definitions that
3283  // have not been used. We will warn later.
3284  // FIXME: Also include static functions declared but not defined.
3285  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3286      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3287      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3288    UnusedStaticFuncs.push_back(NewFD);
3289
3290  return NewFD;
3291}
3292
3293/// \brief Perform semantic checking of a new function declaration.
3294///
3295/// Performs semantic analysis of the new function declaration
3296/// NewFD. This routine performs all semantic checking that does not
3297/// require the actual declarator involved in the declaration, and is
3298/// used both for the declaration of functions as they are parsed
3299/// (called via ActOnDeclarator) and for the declaration of functions
3300/// that have been instantiated via C++ template instantiation (called
3301/// via InstantiateDecl).
3302///
3303/// \param IsExplicitSpecialiation whether this new function declaration is
3304/// an explicit specialization of the previous declaration.
3305///
3306/// This sets NewFD->isInvalidDecl() to true if there was an error.
3307void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3308                                    LookupResult &Previous,
3309                                    bool IsExplicitSpecialization,
3310                                    bool &Redeclaration,
3311                                    bool &OverloadableAttrRequired) {
3312  // If NewFD is already known erroneous, don't do any of this checking.
3313  if (NewFD->isInvalidDecl())
3314    return;
3315
3316  if (NewFD->getResultType()->isVariablyModifiedType()) {
3317    // Functions returning a variably modified type violate C99 6.7.5.2p2
3318    // because all functions have linkage.
3319    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3320    return NewFD->setInvalidDecl();
3321  }
3322
3323  if (NewFD->isMain())
3324    CheckMain(NewFD);
3325
3326  // Check for a previous declaration of this name.
3327  if (Previous.empty() && NewFD->isExternC()) {
3328    // Since we did not find anything by this name and we're declaring
3329    // an extern "C" function, look for a non-visible extern "C"
3330    // declaration with the same name.
3331    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3332      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3333    if (Pos != LocallyScopedExternalDecls.end())
3334      Previous.addDecl(Pos->second);
3335  }
3336
3337  // Merge or overload the declaration with an existing declaration of
3338  // the same name, if appropriate.
3339  if (!Previous.empty()) {
3340    // Determine whether NewFD is an overload of PrevDecl or
3341    // a declaration that requires merging. If it's an overload,
3342    // there's no more work to do here; we'll just add the new
3343    // function to the scope.
3344
3345    NamedDecl *OldDecl = 0;
3346    if (!AllowOverloadingOfFunction(Previous, Context)) {
3347      Redeclaration = true;
3348      OldDecl = Previous.getFoundDecl();
3349    } else {
3350      if (!getLangOptions().CPlusPlus) {
3351        OverloadableAttrRequired = true;
3352
3353        // Functions marked "overloadable" must have a prototype (that
3354        // we can't get through declaration merging).
3355        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3356          Diag(NewFD->getLocation(),
3357               diag::err_attribute_overloadable_no_prototype)
3358            << NewFD;
3359          Redeclaration = true;
3360
3361          // Turn this into a variadic function with no parameters.
3362          QualType R = Context.getFunctionType(
3363                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3364                     0, 0, true, 0, false, false, 0, 0,
3365                     FunctionType::ExtInfo());
3366          NewFD->setType(R);
3367          return NewFD->setInvalidDecl();
3368        }
3369      }
3370
3371      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3372      case Ovl_Match:
3373        Redeclaration = true;
3374        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3375          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3376          Redeclaration = false;
3377        }
3378        break;
3379
3380      case Ovl_NonFunction:
3381        Redeclaration = true;
3382        break;
3383
3384      case Ovl_Overload:
3385        Redeclaration = false;
3386        break;
3387      }
3388    }
3389
3390    if (Redeclaration) {
3391      // NewFD and OldDecl represent declarations that need to be
3392      // merged.
3393      if (MergeFunctionDecl(NewFD, OldDecl))
3394        return NewFD->setInvalidDecl();
3395
3396      Previous.clear();
3397      Previous.addDecl(OldDecl);
3398
3399      if (FunctionTemplateDecl *OldTemplateDecl
3400                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3401        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3402        FunctionTemplateDecl *NewTemplateDecl
3403          = NewFD->getDescribedFunctionTemplate();
3404        assert(NewTemplateDecl && "Template/non-template mismatch");
3405        if (CXXMethodDecl *Method
3406              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3407          Method->setAccess(OldTemplateDecl->getAccess());
3408          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3409        }
3410
3411        // If this is an explicit specialization of a member that is a function
3412        // template, mark it as a member specialization.
3413        if (IsExplicitSpecialization &&
3414            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3415          NewTemplateDecl->setMemberSpecialization();
3416          assert(OldTemplateDecl->isMemberSpecialization());
3417        }
3418      } else {
3419        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3420          NewFD->setAccess(OldDecl->getAccess());
3421        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3422      }
3423    }
3424  }
3425
3426  // Semantic checking for this function declaration (in isolation).
3427  if (getLangOptions().CPlusPlus) {
3428    // C++-specific checks.
3429    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3430      CheckConstructor(Constructor);
3431    } else if (CXXDestructorDecl *Destructor =
3432                dyn_cast<CXXDestructorDecl>(NewFD)) {
3433      CXXRecordDecl *Record = Destructor->getParent();
3434      QualType ClassType = Context.getTypeDeclType(Record);
3435
3436      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3437      // type is dependent? Both gcc and edg can handle that.
3438      if (!ClassType->isDependentType()) {
3439        DeclarationName Name
3440          = Context.DeclarationNames.getCXXDestructorName(
3441                                        Context.getCanonicalType(ClassType));
3442        if (NewFD->getDeclName() != Name) {
3443          Diag(NewFD->getLocation(), diag::err_destructor_name);
3444          return NewFD->setInvalidDecl();
3445        }
3446      }
3447
3448      Record->setUserDeclaredDestructor(true);
3449      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3450      // user-defined destructor.
3451      Record->setPOD(false);
3452
3453      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3454      // declared destructor.
3455      // FIXME: C++0x: don't do this for "= default" destructors
3456      Record->setHasTrivialDestructor(false);
3457    } else if (CXXConversionDecl *Conversion
3458               = dyn_cast<CXXConversionDecl>(NewFD)) {
3459      ActOnConversionDeclarator(Conversion);
3460    }
3461
3462    // Find any virtual functions that this function overrides.
3463    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3464      if (!Method->isFunctionTemplateSpecialization() &&
3465          !Method->getDescribedFunctionTemplate())
3466        AddOverriddenMethods(Method->getParent(), Method);
3467    }
3468
3469    // Additional checks for the destructor; make sure we do this after we
3470    // figure out whether the destructor is virtual.
3471    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3472      if (!Destructor->getParent()->isDependentType())
3473        CheckDestructor(Destructor);
3474
3475    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3476    if (NewFD->isOverloadedOperator() &&
3477        CheckOverloadedOperatorDeclaration(NewFD))
3478      return NewFD->setInvalidDecl();
3479
3480    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3481    if (NewFD->getLiteralIdentifier() &&
3482        CheckLiteralOperatorDeclaration(NewFD))
3483      return NewFD->setInvalidDecl();
3484
3485    // In C++, check default arguments now that we have merged decls. Unless
3486    // the lexical context is the class, because in this case this is done
3487    // during delayed parsing anyway.
3488    if (!CurContext->isRecord())
3489      CheckCXXDefaultArguments(NewFD);
3490  }
3491}
3492
3493void Sema::CheckMain(FunctionDecl* FD) {
3494  // C++ [basic.start.main]p3:  A program that declares main to be inline
3495  //   or static is ill-formed.
3496  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3497  //   shall not appear in a declaration of main.
3498  // static main is not an error under C99, but we should warn about it.
3499  bool isInline = FD->isInlineSpecified();
3500  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3501  if (isInline || isStatic) {
3502    unsigned diagID = diag::warn_unusual_main_decl;
3503    if (isInline || getLangOptions().CPlusPlus)
3504      diagID = diag::err_unusual_main_decl;
3505
3506    int which = isStatic + (isInline << 1) - 1;
3507    Diag(FD->getLocation(), diagID) << which;
3508  }
3509
3510  QualType T = FD->getType();
3511  assert(T->isFunctionType() && "function decl is not of function type");
3512  const FunctionType* FT = T->getAs<FunctionType>();
3513
3514  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3515    // TODO: add a replacement fixit to turn the return type into 'int'.
3516    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3517    FD->setInvalidDecl(true);
3518  }
3519
3520  // Treat protoless main() as nullary.
3521  if (isa<FunctionNoProtoType>(FT)) return;
3522
3523  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3524  unsigned nparams = FTP->getNumArgs();
3525  assert(FD->getNumParams() == nparams);
3526
3527  bool HasExtraParameters = (nparams > 3);
3528
3529  // Darwin passes an undocumented fourth argument of type char**.  If
3530  // other platforms start sprouting these, the logic below will start
3531  // getting shifty.
3532  if (nparams == 4 &&
3533      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3534    HasExtraParameters = false;
3535
3536  if (HasExtraParameters) {
3537    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3538    FD->setInvalidDecl(true);
3539    nparams = 3;
3540  }
3541
3542  // FIXME: a lot of the following diagnostics would be improved
3543  // if we had some location information about types.
3544
3545  QualType CharPP =
3546    Context.getPointerType(Context.getPointerType(Context.CharTy));
3547  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3548
3549  for (unsigned i = 0; i < nparams; ++i) {
3550    QualType AT = FTP->getArgType(i);
3551
3552    bool mismatch = true;
3553
3554    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3555      mismatch = false;
3556    else if (Expected[i] == CharPP) {
3557      // As an extension, the following forms are okay:
3558      //   char const **
3559      //   char const * const *
3560      //   char * const *
3561
3562      QualifierCollector qs;
3563      const PointerType* PT;
3564      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3565          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3566          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3567        qs.removeConst();
3568        mismatch = !qs.empty();
3569      }
3570    }
3571
3572    if (mismatch) {
3573      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3574      // TODO: suggest replacing given type with expected type
3575      FD->setInvalidDecl(true);
3576    }
3577  }
3578
3579  if (nparams == 1 && !FD->isInvalidDecl()) {
3580    Diag(FD->getLocation(), diag::warn_main_one_arg);
3581  }
3582}
3583
3584bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3585  // FIXME: Need strict checking.  In C89, we need to check for
3586  // any assignment, increment, decrement, function-calls, or
3587  // commas outside of a sizeof.  In C99, it's the same list,
3588  // except that the aforementioned are allowed in unevaluated
3589  // expressions.  Everything else falls under the
3590  // "may accept other forms of constant expressions" exception.
3591  // (We never end up here for C++, so the constant expression
3592  // rules there don't matter.)
3593  if (Init->isConstantInitializer(Context))
3594    return false;
3595  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3596    << Init->getSourceRange();
3597  return true;
3598}
3599
3600void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3601  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3602}
3603
3604/// AddInitializerToDecl - Adds the initializer Init to the
3605/// declaration dcl. If DirectInit is true, this is C++ direct
3606/// initialization rather than copy initialization.
3607void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3608  Decl *RealDecl = dcl.getAs<Decl>();
3609  // If there is no declaration, there was an error parsing it.  Just ignore
3610  // the initializer.
3611  if (RealDecl == 0)
3612    return;
3613
3614  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3615    // With declarators parsed the way they are, the parser cannot
3616    // distinguish between a normal initializer and a pure-specifier.
3617    // Thus this grotesque test.
3618    IntegerLiteral *IL;
3619    Expr *Init = static_cast<Expr *>(init.get());
3620    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3621        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3622      CheckPureMethod(Method, Init->getSourceRange());
3623    else {
3624      Diag(Method->getLocation(), diag::err_member_function_initialization)
3625        << Method->getDeclName() << Init->getSourceRange();
3626      Method->setInvalidDecl();
3627    }
3628    return;
3629  }
3630
3631  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3632  if (!VDecl) {
3633    if (getLangOptions().CPlusPlus &&
3634        RealDecl->getLexicalDeclContext()->isRecord() &&
3635        isa<NamedDecl>(RealDecl))
3636      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3637        << cast<NamedDecl>(RealDecl)->getDeclName();
3638    else
3639      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3640    RealDecl->setInvalidDecl();
3641    return;
3642  }
3643
3644  // A definition must end up with a complete type, which means it must be
3645  // complete with the restriction that an array type might be completed by the
3646  // initializer; note that later code assumes this restriction.
3647  QualType BaseDeclType = VDecl->getType();
3648  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3649    BaseDeclType = Array->getElementType();
3650  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3651                          diag::err_typecheck_decl_incomplete_type)) {
3652    RealDecl->setInvalidDecl();
3653    return;
3654  }
3655
3656  // The variable can not have an abstract class type.
3657  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3658                             diag::err_abstract_type_in_decl,
3659                             AbstractVariableType))
3660    VDecl->setInvalidDecl();
3661
3662  const VarDecl *Def;
3663  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3664    Diag(VDecl->getLocation(), diag::err_redefinition)
3665      << VDecl->getDeclName();
3666    Diag(Def->getLocation(), diag::note_previous_definition);
3667    VDecl->setInvalidDecl();
3668    return;
3669  }
3670
3671  // Take ownership of the expression, now that we're sure we have somewhere
3672  // to put it.
3673  Expr *Init = init.takeAs<Expr>();
3674  assert(Init && "missing initializer");
3675
3676  // Capture the variable that is being initialized and the style of
3677  // initialization.
3678  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3679
3680  // FIXME: Poor source location information.
3681  InitializationKind Kind
3682    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3683                                                   Init->getLocStart(),
3684                                                   Init->getLocEnd())
3685                : InitializationKind::CreateCopy(VDecl->getLocation(),
3686                                                 Init->getLocStart());
3687
3688  // Get the decls type and save a reference for later, since
3689  // CheckInitializerTypes may change it.
3690  QualType DclT = VDecl->getType(), SavT = DclT;
3691  if (VDecl->isBlockVarDecl()) {
3692    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3693      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3694      VDecl->setInvalidDecl();
3695    } else if (!VDecl->isInvalidDecl()) {
3696      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3697      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3698                                          MultiExprArg(*this, (void**)&Init, 1),
3699                                                &DclT);
3700      if (Result.isInvalid()) {
3701        VDecl->setInvalidDecl();
3702        return;
3703      }
3704
3705      Init = Result.takeAs<Expr>();
3706
3707      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3708      // Don't check invalid declarations to avoid emitting useless diagnostics.
3709      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3710        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3711          CheckForConstantInitializer(Init, DclT);
3712      }
3713    }
3714  } else if (VDecl->isStaticDataMember() &&
3715             VDecl->getLexicalDeclContext()->isRecord()) {
3716    // This is an in-class initialization for a static data member, e.g.,
3717    //
3718    // struct S {
3719    //   static const int value = 17;
3720    // };
3721
3722    // Attach the initializer
3723    VDecl->setInit(Init);
3724
3725    // C++ [class.mem]p4:
3726    //   A member-declarator can contain a constant-initializer only
3727    //   if it declares a static member (9.4) of const integral or
3728    //   const enumeration type, see 9.4.2.
3729    QualType T = VDecl->getType();
3730    if (!T->isDependentType() &&
3731        (!Context.getCanonicalType(T).isConstQualified() ||
3732         !T->isIntegralType())) {
3733      Diag(VDecl->getLocation(), diag::err_member_initialization)
3734        << VDecl->getDeclName() << Init->getSourceRange();
3735      VDecl->setInvalidDecl();
3736    } else {
3737      // C++ [class.static.data]p4:
3738      //   If a static data member is of const integral or const
3739      //   enumeration type, its declaration in the class definition
3740      //   can specify a constant-initializer which shall be an
3741      //   integral constant expression (5.19).
3742      if (!Init->isTypeDependent() &&
3743          !Init->getType()->isIntegralType()) {
3744        // We have a non-dependent, non-integral or enumeration type.
3745        Diag(Init->getSourceRange().getBegin(),
3746             diag::err_in_class_initializer_non_integral_type)
3747          << Init->getType() << Init->getSourceRange();
3748        VDecl->setInvalidDecl();
3749      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3750        // Check whether the expression is a constant expression.
3751        llvm::APSInt Value;
3752        SourceLocation Loc;
3753        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3754          Diag(Loc, diag::err_in_class_initializer_non_constant)
3755            << Init->getSourceRange();
3756          VDecl->setInvalidDecl();
3757        } else if (!VDecl->getType()->isDependentType())
3758          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3759      }
3760    }
3761  } else if (VDecl->isFileVarDecl()) {
3762    if (VDecl->getStorageClass() == VarDecl::Extern)
3763      Diag(VDecl->getLocation(), diag::warn_extern_init);
3764    if (!VDecl->isInvalidDecl()) {
3765      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3766      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3767                                          MultiExprArg(*this, (void**)&Init, 1),
3768                                                &DclT);
3769      if (Result.isInvalid()) {
3770        VDecl->setInvalidDecl();
3771        return;
3772      }
3773
3774      Init = Result.takeAs<Expr>();
3775    }
3776
3777    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3778    // Don't check invalid declarations to avoid emitting useless diagnostics.
3779    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3780      // C99 6.7.8p4. All file scoped initializers need to be constant.
3781      CheckForConstantInitializer(Init, DclT);
3782    }
3783  }
3784  // If the type changed, it means we had an incomplete type that was
3785  // completed by the initializer. For example:
3786  //   int ary[] = { 1, 3, 5 };
3787  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3788  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3789    VDecl->setType(DclT);
3790    Init->setType(DclT);
3791  }
3792
3793  Init = MaybeCreateCXXExprWithTemporaries(Init);
3794  // Attach the initializer to the decl.
3795  VDecl->setInit(Init);
3796
3797  if (getLangOptions().CPlusPlus) {
3798    // Make sure we mark the destructor as used if necessary.
3799    QualType InitType = VDecl->getType();
3800    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3801      InitType = Context.getBaseElementType(Array);
3802    if (const RecordType *Record = InitType->getAs<RecordType>())
3803      FinalizeVarWithDestructor(VDecl, Record);
3804  }
3805
3806  return;
3807}
3808
3809/// ActOnInitializerError - Given that there was an error parsing an
3810/// initializer for the given declaration, try to return to some form
3811/// of sanity.
3812void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3813  // Our main concern here is re-establishing invariants like "a
3814  // variable's type is either dependent or complete".
3815  Decl *D = dcl.getAs<Decl>();
3816  if (!D || D->isInvalidDecl()) return;
3817
3818  VarDecl *VD = dyn_cast<VarDecl>(D);
3819  if (!VD) return;
3820
3821  QualType Ty = VD->getType();
3822  if (Ty->isDependentType()) return;
3823
3824  // Require a complete type.
3825  if (RequireCompleteType(VD->getLocation(),
3826                          Context.getBaseElementType(Ty),
3827                          diag::err_typecheck_decl_incomplete_type)) {
3828    VD->setInvalidDecl();
3829    return;
3830  }
3831
3832  // Require an abstract type.
3833  if (RequireNonAbstractType(VD->getLocation(), Ty,
3834                             diag::err_abstract_type_in_decl,
3835                             AbstractVariableType)) {
3836    VD->setInvalidDecl();
3837    return;
3838  }
3839
3840  // Don't bother complaining about constructors or destructors,
3841  // though.
3842}
3843
3844void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3845                                  bool TypeContainsUndeducedAuto) {
3846  Decl *RealDecl = dcl.getAs<Decl>();
3847
3848  // If there is no declaration, there was an error parsing it. Just ignore it.
3849  if (RealDecl == 0)
3850    return;
3851
3852  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3853    QualType Type = Var->getType();
3854
3855    // C++0x [dcl.spec.auto]p3
3856    if (TypeContainsUndeducedAuto) {
3857      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3858        << Var->getDeclName() << Type;
3859      Var->setInvalidDecl();
3860      return;
3861    }
3862
3863    switch (Var->isThisDeclarationADefinition()) {
3864    case VarDecl::Definition:
3865      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3866        break;
3867
3868      // We have an out-of-line definition of a static data member
3869      // that has an in-class initializer, so we type-check this like
3870      // a declaration.
3871      //
3872      // Fall through
3873
3874    case VarDecl::DeclarationOnly:
3875      // It's only a declaration.
3876
3877      // Block scope. C99 6.7p7: If an identifier for an object is
3878      // declared with no linkage (C99 6.2.2p6), the type for the
3879      // object shall be complete.
3880      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3881          !Var->getLinkage() && !Var->isInvalidDecl() &&
3882          RequireCompleteType(Var->getLocation(), Type,
3883                              diag::err_typecheck_decl_incomplete_type))
3884        Var->setInvalidDecl();
3885
3886      // Make sure that the type is not abstract.
3887      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3888          RequireNonAbstractType(Var->getLocation(), Type,
3889                                 diag::err_abstract_type_in_decl,
3890                                 AbstractVariableType))
3891        Var->setInvalidDecl();
3892      return;
3893
3894    case VarDecl::TentativeDefinition:
3895      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3896      // object that has file scope without an initializer, and without a
3897      // storage-class specifier or with the storage-class specifier "static",
3898      // constitutes a tentative definition. Note: A tentative definition with
3899      // external linkage is valid (C99 6.2.2p5).
3900      if (!Var->isInvalidDecl()) {
3901        if (const IncompleteArrayType *ArrayT
3902                                    = Context.getAsIncompleteArrayType(Type)) {
3903          if (RequireCompleteType(Var->getLocation(),
3904                                  ArrayT->getElementType(),
3905                                  diag::err_illegal_decl_array_incomplete_type))
3906            Var->setInvalidDecl();
3907        } else if (Var->getStorageClass() == VarDecl::Static) {
3908          // C99 6.9.2p3: If the declaration of an identifier for an object is
3909          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3910          // declared type shall not be an incomplete type.
3911          // NOTE: code such as the following
3912          //     static struct s;
3913          //     struct s { int a; };
3914          // is accepted by gcc. Hence here we issue a warning instead of
3915          // an error and we do not invalidate the static declaration.
3916          // NOTE: to avoid multiple warnings, only check the first declaration.
3917          if (Var->getPreviousDeclaration() == 0)
3918            RequireCompleteType(Var->getLocation(), Type,
3919                                diag::ext_typecheck_decl_incomplete_type);
3920        }
3921      }
3922
3923      // Record the tentative definition; we're done.
3924      if (!Var->isInvalidDecl())
3925        TentativeDefinitions.push_back(Var);
3926      return;
3927    }
3928
3929    // Provide a specific diagnostic for uninitialized variable
3930    // definitions with incomplete array type.
3931    if (Type->isIncompleteArrayType()) {
3932      Diag(Var->getLocation(),
3933           diag::err_typecheck_incomplete_array_needs_initializer);
3934      Var->setInvalidDecl();
3935      return;
3936    }
3937
3938   // Provide a specific diagnostic for uninitialized variable
3939   // definitions with reference type.
3940   if (Type->isReferenceType()) {
3941     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3942       << Var->getDeclName()
3943       << SourceRange(Var->getLocation(), Var->getLocation());
3944     Var->setInvalidDecl();
3945     return;
3946   }
3947
3948    // Do not attempt to type-check the default initializer for a
3949    // variable with dependent type.
3950    if (Type->isDependentType())
3951      return;
3952
3953    if (Var->isInvalidDecl())
3954      return;
3955
3956    if (RequireCompleteType(Var->getLocation(),
3957                            Context.getBaseElementType(Type),
3958                            diag::err_typecheck_decl_incomplete_type)) {
3959      Var->setInvalidDecl();
3960      return;
3961    }
3962
3963    // The variable can not have an abstract class type.
3964    if (RequireNonAbstractType(Var->getLocation(), Type,
3965                               diag::err_abstract_type_in_decl,
3966                               AbstractVariableType)) {
3967      Var->setInvalidDecl();
3968      return;
3969    }
3970
3971    const RecordType *Record
3972      = Context.getBaseElementType(Type)->getAs<RecordType>();
3973    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
3974        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
3975      // C++03 [dcl.init]p9:
3976      //   If no initializer is specified for an object, and the
3977      //   object is of (possibly cv-qualified) non-POD class type (or
3978      //   array thereof), the object shall be default-initialized; if
3979      //   the object is of const-qualified type, the underlying class
3980      //   type shall have a user-declared default
3981      //   constructor. Otherwise, if no initializer is specified for
3982      //   a non- static object, the object and its subobjects, if
3983      //   any, have an indeterminate initial value); if the object
3984      //   or any of its subobjects are of const-qualified type, the
3985      //   program is ill-formed.
3986      // FIXME: DPG thinks it is very fishy that C++0x disables this.
3987    } else {
3988      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3989      InitializationKind Kind
3990        = InitializationKind::CreateDefault(Var->getLocation());
3991
3992      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3993      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3994                                              MultiExprArg(*this, 0, 0));
3995      if (Init.isInvalid())
3996        Var->setInvalidDecl();
3997      else if (Init.get())
3998        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3999    }
4000
4001    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4002      FinalizeVarWithDestructor(Var, Record);
4003  }
4004}
4005
4006Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4007                                                   DeclPtrTy *Group,
4008                                                   unsigned NumDecls) {
4009  llvm::SmallVector<Decl*, 8> Decls;
4010
4011  if (DS.isTypeSpecOwned())
4012    Decls.push_back((Decl*)DS.getTypeRep());
4013
4014  for (unsigned i = 0; i != NumDecls; ++i)
4015    if (Decl *D = Group[i].getAs<Decl>())
4016      Decls.push_back(D);
4017
4018  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4019                                                   Decls.data(), Decls.size()));
4020}
4021
4022
4023/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4024/// to introduce parameters into function prototype scope.
4025Sema::DeclPtrTy
4026Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4027  const DeclSpec &DS = D.getDeclSpec();
4028
4029  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4030  VarDecl::StorageClass StorageClass = VarDecl::None;
4031  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4032    StorageClass = VarDecl::Register;
4033  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4034    Diag(DS.getStorageClassSpecLoc(),
4035         diag::err_invalid_storage_class_in_func_decl);
4036    D.getMutableDeclSpec().ClearStorageClassSpecs();
4037  }
4038
4039  if (D.getDeclSpec().isThreadSpecified())
4040    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4041
4042  DiagnoseFunctionSpecifiers(D);
4043
4044  // Check that there are no default arguments inside the type of this
4045  // parameter (C++ only).
4046  if (getLangOptions().CPlusPlus)
4047    CheckExtraCXXDefaultArguments(D);
4048
4049  TypeSourceInfo *TInfo = 0;
4050  TagDecl *OwnedDecl = 0;
4051  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4052
4053  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4054    // C++ [dcl.fct]p6:
4055    //   Types shall not be defined in return or parameter types.
4056    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4057      << Context.getTypeDeclType(OwnedDecl);
4058  }
4059
4060  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4061  IdentifierInfo *II = D.getIdentifier();
4062  if (II) {
4063    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4064                   ForRedeclaration);
4065    LookupName(R, S);
4066    if (R.isSingleResult()) {
4067      NamedDecl *PrevDecl = R.getFoundDecl();
4068      if (PrevDecl->isTemplateParameter()) {
4069        // Maybe we will complain about the shadowed template parameter.
4070        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4071        // Just pretend that we didn't see the previous declaration.
4072        PrevDecl = 0;
4073      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4074        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4075        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4076
4077        // Recover by removing the name
4078        II = 0;
4079        D.SetIdentifier(0, D.getIdentifierLoc());
4080        D.setInvalidType(true);
4081      }
4082    }
4083  }
4084
4085  // Parameters can not be abstract class types.
4086  // For record types, this is done by the AbstractClassUsageDiagnoser once
4087  // the class has been completely parsed.
4088  if (!CurContext->isRecord() &&
4089      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4090                             diag::err_abstract_type_in_decl,
4091                             AbstractParamType))
4092    D.setInvalidType(true);
4093
4094  QualType T = adjustParameterType(parmDeclType);
4095
4096  // Temporarily put parameter variables in the translation unit, not
4097  // the enclosing context.  This prevents them from accidentally
4098  // looking like class members in C++.
4099  DeclContext *DC = Context.getTranslationUnitDecl();
4100
4101  ParmVarDecl *New
4102    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
4103                          T, TInfo, StorageClass, 0);
4104
4105  if (D.isInvalidType())
4106    New->setInvalidDecl();
4107
4108  // Parameter declarators cannot be interface types. All ObjC objects are
4109  // passed by reference.
4110  if (T->isObjCInterfaceType()) {
4111    Diag(D.getIdentifierLoc(),
4112         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4113    New->setInvalidDecl();
4114  }
4115
4116  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4117  if (D.getCXXScopeSpec().isSet()) {
4118    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4119      << D.getCXXScopeSpec().getRange();
4120    New->setInvalidDecl();
4121  }
4122
4123  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4124  // duration shall not be qualified by an address-space qualifier."
4125  // Since all parameters have automatic store duration, they can not have
4126  // an address space.
4127  if (T.getAddressSpace() != 0) {
4128    Diag(D.getIdentifierLoc(),
4129         diag::err_arg_with_address_space);
4130    New->setInvalidDecl();
4131  }
4132
4133
4134  // Add the parameter declaration into this scope.
4135  S->AddDecl(DeclPtrTy::make(New));
4136  if (II)
4137    IdResolver.AddDecl(New);
4138
4139  ProcessDeclAttributes(S, New, D);
4140
4141  if (New->hasAttr<BlocksAttr>()) {
4142    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4143  }
4144  return DeclPtrTy::make(New);
4145}
4146
4147void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4148  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4149  Param->setDeclContext(CurContext);
4150}
4151
4152void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4153                                           SourceLocation LocAfterDecls) {
4154  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4155         "Not a function declarator!");
4156  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4157
4158  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4159  // for a K&R function.
4160  if (!FTI.hasPrototype) {
4161    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4162      --i;
4163      if (FTI.ArgInfo[i].Param == 0) {
4164        llvm::SmallString<256> Code;
4165        llvm::raw_svector_ostream(Code) << "  int "
4166                                        << FTI.ArgInfo[i].Ident->getName()
4167                                        << ";\n";
4168        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4169          << FTI.ArgInfo[i].Ident
4170          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4171
4172        // Implicitly declare the argument as type 'int' for lack of a better
4173        // type.
4174        DeclSpec DS;
4175        const char* PrevSpec; // unused
4176        unsigned DiagID; // unused
4177        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4178                           PrevSpec, DiagID);
4179        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4180        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4181        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4182      }
4183    }
4184  }
4185}
4186
4187Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4188                                              Declarator &D) {
4189  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4190  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4191         "Not a function declarator!");
4192  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4193
4194  if (FTI.hasPrototype) {
4195    // FIXME: Diagnose arguments without names in C.
4196  }
4197
4198  Scope *ParentScope = FnBodyScope->getParent();
4199
4200  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4201                                  MultiTemplateParamsArg(*this),
4202                                  /*IsFunctionDefinition=*/true);
4203  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4204}
4205
4206static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4207  // Don't warn about invalid declarations.
4208  if (FD->isInvalidDecl())
4209    return false;
4210
4211  // Or declarations that aren't global.
4212  if (!FD->isGlobal())
4213    return false;
4214
4215  // Don't warn about C++ member functions.
4216  if (isa<CXXMethodDecl>(FD))
4217    return false;
4218
4219  // Don't warn about 'main'.
4220  if (FD->isMain())
4221    return false;
4222
4223  // Don't warn about inline functions.
4224  if (FD->isInlineSpecified())
4225    return false;
4226
4227  // Don't warn about function templates.
4228  if (FD->getDescribedFunctionTemplate())
4229    return false;
4230
4231  // Don't warn about function template specializations.
4232  if (FD->isFunctionTemplateSpecialization())
4233    return false;
4234
4235  bool MissingPrototype = true;
4236  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4237       Prev; Prev = Prev->getPreviousDeclaration()) {
4238    // Ignore any declarations that occur in function or method
4239    // scope, because they aren't visible from the header.
4240    if (Prev->getDeclContext()->isFunctionOrMethod())
4241      continue;
4242
4243    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4244    break;
4245  }
4246
4247  return MissingPrototype;
4248}
4249
4250Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4251  // Clear the last template instantiation error context.
4252  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4253
4254  if (!D)
4255    return D;
4256  FunctionDecl *FD = 0;
4257
4258  if (FunctionTemplateDecl *FunTmpl
4259        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4260    FD = FunTmpl->getTemplatedDecl();
4261  else
4262    FD = cast<FunctionDecl>(D.getAs<Decl>());
4263
4264  // Enter a new function scope
4265  PushFunctionScope();
4266
4267  // See if this is a redefinition.
4268  // But don't complain if we're in GNU89 mode and the previous definition
4269  // was an extern inline function.
4270  const FunctionDecl *Definition;
4271  if (FD->getBody(Definition) &&
4272      !canRedefineFunction(Definition, getLangOptions())) {
4273    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4274    Diag(Definition->getLocation(), diag::note_previous_definition);
4275  }
4276
4277  // Builtin functions cannot be defined.
4278  if (unsigned BuiltinID = FD->getBuiltinID()) {
4279    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4280      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4281      FD->setInvalidDecl();
4282    }
4283  }
4284
4285  // The return type of a function definition must be complete
4286  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4287  QualType ResultType = FD->getResultType();
4288  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4289      !FD->isInvalidDecl() &&
4290      RequireCompleteType(FD->getLocation(), ResultType,
4291                          diag::err_func_def_incomplete_result))
4292    FD->setInvalidDecl();
4293
4294  // GNU warning -Wmissing-prototypes:
4295  //   Warn if a global function is defined without a previous
4296  //   prototype declaration. This warning is issued even if the
4297  //   definition itself provides a prototype. The aim is to detect
4298  //   global functions that fail to be declared in header files.
4299  if (ShouldWarnAboutMissingPrototype(FD))
4300    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4301
4302  if (FnBodyScope)
4303    PushDeclContext(FnBodyScope, FD);
4304
4305  // Check the validity of our function parameters
4306  CheckParmsForFunctionDef(FD);
4307
4308  bool ShouldCheckShadow =
4309    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4310
4311  // Introduce our parameters into the function scope
4312  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4313    ParmVarDecl *Param = FD->getParamDecl(p);
4314    Param->setOwningFunction(FD);
4315
4316    // If this has an identifier, add it to the scope stack.
4317    if (Param->getIdentifier() && FnBodyScope) {
4318      if (ShouldCheckShadow)
4319        CheckShadow(FnBodyScope, Param);
4320
4321      PushOnScopeChains(Param, FnBodyScope);
4322    }
4323  }
4324
4325  // Checking attributes of current function definition
4326  // dllimport attribute.
4327  if (FD->getAttr<DLLImportAttr>() &&
4328      (!FD->getAttr<DLLExportAttr>())) {
4329    // dllimport attribute cannot be applied to definition.
4330    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4331      Diag(FD->getLocation(),
4332           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4333        << "dllimport";
4334      FD->setInvalidDecl();
4335      return DeclPtrTy::make(FD);
4336    }
4337
4338    // Visual C++ appears to not think this is an issue, so only issue
4339    // a warning when Microsoft extensions are disabled.
4340    if (!LangOpts.Microsoft) {
4341      // If a symbol previously declared dllimport is later defined, the
4342      // attribute is ignored in subsequent references, and a warning is
4343      // emitted.
4344      Diag(FD->getLocation(),
4345           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4346        << FD->getNameAsCString() << "dllimport";
4347    }
4348  }
4349  return DeclPtrTy::make(FD);
4350}
4351
4352Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4353  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4354}
4355
4356Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4357                                              bool IsInstantiation) {
4358  Decl *dcl = D.getAs<Decl>();
4359  Stmt *Body = BodyArg.takeAs<Stmt>();
4360
4361  FunctionDecl *FD = 0;
4362  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4363  if (FunTmpl)
4364    FD = FunTmpl->getTemplatedDecl();
4365  else
4366    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4367
4368  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4369
4370  if (FD) {
4371    FD->setBody(Body);
4372    if (FD->isMain()) {
4373      // C and C++ allow for main to automagically return 0.
4374      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4375      FD->setHasImplicitReturnZero(true);
4376      WP.disableCheckFallThrough();
4377    }
4378
4379    if (!FD->isInvalidDecl())
4380      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4381
4382    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4383      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4384
4385    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4386  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4387    assert(MD == getCurMethodDecl() && "Method parsing confused");
4388    MD->setBody(Body);
4389    MD->setEndLoc(Body->getLocEnd());
4390    if (!MD->isInvalidDecl())
4391      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4392  } else {
4393    Body->Destroy(Context);
4394    return DeclPtrTy();
4395  }
4396
4397  // Verify and clean out per-function state.
4398
4399  // Check goto/label use.
4400  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4401       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4402    LabelStmt *L = I->second;
4403
4404    // Verify that we have no forward references left.  If so, there was a goto
4405    // or address of a label taken, but no definition of it.  Label fwd
4406    // definitions are indicated with a null substmt.
4407    if (L->getSubStmt() != 0)
4408      continue;
4409
4410    // Emit error.
4411    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4412
4413    // At this point, we have gotos that use the bogus label.  Stitch it into
4414    // the function body so that they aren't leaked and that the AST is well
4415    // formed.
4416    if (Body == 0) {
4417      // The whole function wasn't parsed correctly, just delete this.
4418      L->Destroy(Context);
4419      continue;
4420    }
4421
4422    // Otherwise, the body is valid: we want to stitch the label decl into the
4423    // function somewhere so that it is properly owned and so that the goto
4424    // has a valid target.  Do this by creating a new compound stmt with the
4425    // label in it.
4426
4427    // Give the label a sub-statement.
4428    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4429
4430    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4431                               cast<CXXTryStmt>(Body)->getTryBlock() :
4432                               cast<CompoundStmt>(Body);
4433    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4434                                          Compound->body_end());
4435    Elements.push_back(L);
4436    Compound->setStmts(Context, Elements.data(), Elements.size());
4437  }
4438
4439  if (Body) {
4440    // C++ constructors that have function-try-blocks can't have return
4441    // statements in the handlers of that block. (C++ [except.handle]p14)
4442    // Verify this.
4443    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4444      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4445
4446    // Verify that that gotos and switch cases don't jump into scopes illegally.
4447    // Verify that that gotos and switch cases don't jump into scopes illegally.
4448    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4449      DiagnoseInvalidJumps(Body);
4450
4451    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4452      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4453                                             Destructor->getParent());
4454
4455    // If any errors have occurred, clear out any temporaries that may have
4456    // been leftover. This ensures that these temporaries won't be picked up for
4457    // deletion in some later function.
4458    if (PP.getDiagnostics().hasErrorOccurred())
4459      ExprTemporaries.clear();
4460    else if (!isa<FunctionTemplateDecl>(dcl)) {
4461      // Since the body is valid, issue any analysis-based warnings that are
4462      // enabled.
4463      QualType ResultType;
4464      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4465        ResultType = FD->getResultType();
4466      }
4467      else {
4468        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4469        ResultType = MD->getResultType();
4470      }
4471      AnalysisWarnings.IssueWarnings(WP, dcl);
4472    }
4473
4474    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4475  }
4476
4477  if (!IsInstantiation)
4478    PopDeclContext();
4479
4480  PopFunctionOrBlockScope();
4481
4482  // If any errors have occurred, clear out any temporaries that may have
4483  // been leftover. This ensures that these temporaries won't be picked up for
4484  // deletion in some later function.
4485  if (getDiagnostics().hasErrorOccurred())
4486    ExprTemporaries.clear();
4487
4488  return D;
4489}
4490
4491/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4492/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4493NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4494                                          IdentifierInfo &II, Scope *S) {
4495  // Before we produce a declaration for an implicitly defined
4496  // function, see whether there was a locally-scoped declaration of
4497  // this name as a function or variable. If so, use that
4498  // (non-visible) declaration, and complain about it.
4499  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4500    = LocallyScopedExternalDecls.find(&II);
4501  if (Pos != LocallyScopedExternalDecls.end()) {
4502    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4503    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4504    return Pos->second;
4505  }
4506
4507  // Extension in C99.  Legal in C90, but warn about it.
4508  if (II.getName().startswith("__builtin_"))
4509    Diag(Loc, diag::warn_builtin_unknown) << &II;
4510  else if (getLangOptions().C99)
4511    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4512  else
4513    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4514
4515  // Set a Declarator for the implicit definition: int foo();
4516  const char *Dummy;
4517  DeclSpec DS;
4518  unsigned DiagID;
4519  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4520  Error = Error; // Silence warning.
4521  assert(!Error && "Error setting up implicit decl!");
4522  Declarator D(DS, Declarator::BlockContext);
4523  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4524                                             0, 0, false, SourceLocation(),
4525                                             false, 0,0,0, Loc, Loc, D),
4526                SourceLocation());
4527  D.SetIdentifier(&II, Loc);
4528
4529  // Insert this function into translation-unit scope.
4530
4531  DeclContext *PrevDC = CurContext;
4532  CurContext = Context.getTranslationUnitDecl();
4533
4534  FunctionDecl *FD =
4535 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4536  FD->setImplicit();
4537
4538  CurContext = PrevDC;
4539
4540  AddKnownFunctionAttributes(FD);
4541
4542  return FD;
4543}
4544
4545/// \brief Adds any function attributes that we know a priori based on
4546/// the declaration of this function.
4547///
4548/// These attributes can apply both to implicitly-declared builtins
4549/// (like __builtin___printf_chk) or to library-declared functions
4550/// like NSLog or printf.
4551void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4552  if (FD->isInvalidDecl())
4553    return;
4554
4555  // If this is a built-in function, map its builtin attributes to
4556  // actual attributes.
4557  if (unsigned BuiltinID = FD->getBuiltinID()) {
4558    // Handle printf-formatting attributes.
4559    unsigned FormatIdx;
4560    bool HasVAListArg;
4561    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4562      if (!FD->getAttr<FormatAttr>())
4563        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4564                                               HasVAListArg ? 0 : FormatIdx+2));
4565    }
4566
4567    // Mark const if we don't care about errno and that is the only
4568    // thing preventing the function from being const. This allows
4569    // IRgen to use LLVM intrinsics for such functions.
4570    if (!getLangOptions().MathErrno &&
4571        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4572      if (!FD->getAttr<ConstAttr>())
4573        FD->addAttr(::new (Context) ConstAttr());
4574    }
4575
4576    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4577      FD->setType(Context.getNoReturnType(FD->getType()));
4578    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4579      FD->addAttr(::new (Context) NoThrowAttr());
4580    if (Context.BuiltinInfo.isConst(BuiltinID))
4581      FD->addAttr(::new (Context) ConstAttr());
4582  }
4583
4584  IdentifierInfo *Name = FD->getIdentifier();
4585  if (!Name)
4586    return;
4587  if ((!getLangOptions().CPlusPlus &&
4588       FD->getDeclContext()->isTranslationUnit()) ||
4589      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4590       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4591       LinkageSpecDecl::lang_c)) {
4592    // Okay: this could be a libc/libm/Objective-C function we know
4593    // about.
4594  } else
4595    return;
4596
4597  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4598    // FIXME: NSLog and NSLogv should be target specific
4599    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4600      // FIXME: We known better than our headers.
4601      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4602    } else
4603      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4604                                             Name->isStr("NSLogv") ? 0 : 2));
4605  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4606    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4607    // target-specific builtins, perhaps?
4608    if (!FD->getAttr<FormatAttr>())
4609      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4610                                             Name->isStr("vasprintf") ? 0 : 3));
4611  }
4612}
4613
4614TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4615                                    TypeSourceInfo *TInfo) {
4616  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4617  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4618
4619  if (!TInfo) {
4620    assert(D.isInvalidType() && "no declarator info for valid type");
4621    TInfo = Context.getTrivialTypeSourceInfo(T);
4622  }
4623
4624  // Scope manipulation handled by caller.
4625  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4626                                           D.getIdentifierLoc(),
4627                                           D.getIdentifier(),
4628                                           TInfo);
4629
4630  if (const TagType *TT = T->getAs<TagType>()) {
4631    TagDecl *TD = TT->getDecl();
4632
4633    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4634    // keep track of the TypedefDecl.
4635    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4636      TD->setTypedefForAnonDecl(NewTD);
4637  }
4638
4639  if (D.isInvalidType())
4640    NewTD->setInvalidDecl();
4641  return NewTD;
4642}
4643
4644
4645/// \brief Determine whether a tag with a given kind is acceptable
4646/// as a redeclaration of the given tag declaration.
4647///
4648/// \returns true if the new tag kind is acceptable, false otherwise.
4649bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4650                                        TagDecl::TagKind NewTag,
4651                                        SourceLocation NewTagLoc,
4652                                        const IdentifierInfo &Name) {
4653  // C++ [dcl.type.elab]p3:
4654  //   The class-key or enum keyword present in the
4655  //   elaborated-type-specifier shall agree in kind with the
4656  //   declaration to which the name in theelaborated-type-specifier
4657  //   refers. This rule also applies to the form of
4658  //   elaborated-type-specifier that declares a class-name or
4659  //   friend class since it can be construed as referring to the
4660  //   definition of the class. Thus, in any
4661  //   elaborated-type-specifier, the enum keyword shall be used to
4662  //   refer to an enumeration (7.2), the union class-keyshall be
4663  //   used to refer to a union (clause 9), and either the class or
4664  //   struct class-key shall be used to refer to a class (clause 9)
4665  //   declared using the class or struct class-key.
4666  TagDecl::TagKind OldTag = Previous->getTagKind();
4667  if (OldTag == NewTag)
4668    return true;
4669
4670  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4671      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4672    // Warn about the struct/class tag mismatch.
4673    bool isTemplate = false;
4674    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4675      isTemplate = Record->getDescribedClassTemplate();
4676
4677    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4678      << (NewTag == TagDecl::TK_class)
4679      << isTemplate << &Name
4680      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4681                              OldTag == TagDecl::TK_class? "class" : "struct");
4682    Diag(Previous->getLocation(), diag::note_previous_use);
4683    return true;
4684  }
4685  return false;
4686}
4687
4688/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4689/// former case, Name will be non-null.  In the later case, Name will be null.
4690/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4691/// reference/declaration/definition of a tag.
4692Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4693                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4694                               IdentifierInfo *Name, SourceLocation NameLoc,
4695                               AttributeList *Attr, AccessSpecifier AS,
4696                               MultiTemplateParamsArg TemplateParameterLists,
4697                               bool &OwnedDecl, bool &IsDependent) {
4698  // If this is not a definition, it must have a name.
4699  assert((Name != 0 || TUK == TUK_Definition) &&
4700         "Nameless record must be a definition!");
4701
4702  OwnedDecl = false;
4703  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4704
4705  // FIXME: Check explicit specializations more carefully.
4706  bool isExplicitSpecialization = false;
4707  if (TUK != TUK_Reference) {
4708    if (TemplateParameterList *TemplateParams
4709          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4710                        (TemplateParameterList**)TemplateParameterLists.get(),
4711                                              TemplateParameterLists.size(),
4712                                                    isExplicitSpecialization)) {
4713      if (TemplateParams->size() > 0) {
4714        // This is a declaration or definition of a class template (which may
4715        // be a member of another template).
4716        OwnedDecl = false;
4717        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4718                                               SS, Name, NameLoc, Attr,
4719                                               TemplateParams,
4720                                               AS);
4721        TemplateParameterLists.release();
4722        return Result.get();
4723      } else {
4724        // The "template<>" header is extraneous.
4725        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4726          << ElaboratedType::getNameForTagKind(Kind) << Name;
4727        isExplicitSpecialization = true;
4728      }
4729    }
4730
4731    TemplateParameterLists.release();
4732  }
4733
4734  DeclContext *SearchDC = CurContext;
4735  DeclContext *DC = CurContext;
4736  bool isStdBadAlloc = false;
4737  bool Invalid = false;
4738
4739  RedeclarationKind Redecl = ForRedeclaration;
4740  if (TUK == TUK_Friend || TUK == TUK_Reference)
4741    Redecl = NotForRedeclaration;
4742
4743  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4744
4745  if (Name && SS.isNotEmpty()) {
4746    // We have a nested-name tag ('struct foo::bar').
4747
4748    // Check for invalid 'foo::'.
4749    if (SS.isInvalid()) {
4750      Name = 0;
4751      goto CreateNewDecl;
4752    }
4753
4754    // If this is a friend or a reference to a class in a dependent
4755    // context, don't try to make a decl for it.
4756    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4757      DC = computeDeclContext(SS, false);
4758      if (!DC) {
4759        IsDependent = true;
4760        return DeclPtrTy();
4761      }
4762    }
4763
4764    if (RequireCompleteDeclContext(SS))
4765      return DeclPtrTy::make((Decl *)0);
4766
4767    DC = computeDeclContext(SS, true);
4768    SearchDC = DC;
4769    // Look-up name inside 'foo::'.
4770    LookupQualifiedName(Previous, DC);
4771
4772    if (Previous.isAmbiguous())
4773      return DeclPtrTy();
4774
4775    if (Previous.empty()) {
4776      // Name lookup did not find anything. However, if the
4777      // nested-name-specifier refers to the current instantiation,
4778      // and that current instantiation has any dependent base
4779      // classes, we might find something at instantiation time: treat
4780      // this as a dependent elaborated-type-specifier.
4781      if (Previous.wasNotFoundInCurrentInstantiation()) {
4782        IsDependent = true;
4783        return DeclPtrTy();
4784      }
4785
4786      // A tag 'foo::bar' must already exist.
4787      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4788      Name = 0;
4789      Invalid = true;
4790      goto CreateNewDecl;
4791    }
4792  } else if (Name) {
4793    // If this is a named struct, check to see if there was a previous forward
4794    // declaration or definition.
4795    // FIXME: We're looking into outer scopes here, even when we
4796    // shouldn't be. Doing so can result in ambiguities that we
4797    // shouldn't be diagnosing.
4798    LookupName(Previous, S);
4799
4800    // Note:  there used to be some attempt at recovery here.
4801    if (Previous.isAmbiguous())
4802      return DeclPtrTy();
4803
4804    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4805      // FIXME: This makes sure that we ignore the contexts associated
4806      // with C structs, unions, and enums when looking for a matching
4807      // tag declaration or definition. See the similar lookup tweak
4808      // in Sema::LookupName; is there a better way to deal with this?
4809      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4810        SearchDC = SearchDC->getParent();
4811    }
4812  }
4813
4814  if (Previous.isSingleResult() &&
4815      Previous.getFoundDecl()->isTemplateParameter()) {
4816    // Maybe we will complain about the shadowed template parameter.
4817    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4818    // Just pretend that we didn't see the previous declaration.
4819    Previous.clear();
4820  }
4821
4822  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4823      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4824    // This is a declaration of or a reference to "std::bad_alloc".
4825    isStdBadAlloc = true;
4826
4827    if (Previous.empty() && StdBadAlloc) {
4828      // std::bad_alloc has been implicitly declared (but made invisible to
4829      // name lookup). Fill in this implicit declaration as the previous
4830      // declaration, so that the declarations get chained appropriately.
4831      Previous.addDecl(StdBadAlloc);
4832    }
4833  }
4834
4835  // If we didn't find a previous declaration, and this is a reference
4836  // (or friend reference), move to the correct scope.  In C++, we
4837  // also need to do a redeclaration lookup there, just in case
4838  // there's a shadow friend decl.
4839  if (Name && Previous.empty() &&
4840      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4841    if (Invalid) goto CreateNewDecl;
4842    assert(SS.isEmpty());
4843
4844    if (TUK == TUK_Reference) {
4845      // C++ [basic.scope.pdecl]p5:
4846      //   -- for an elaborated-type-specifier of the form
4847      //
4848      //          class-key identifier
4849      //
4850      //      if the elaborated-type-specifier is used in the
4851      //      decl-specifier-seq or parameter-declaration-clause of a
4852      //      function defined in namespace scope, the identifier is
4853      //      declared as a class-name in the namespace that contains
4854      //      the declaration; otherwise, except as a friend
4855      //      declaration, the identifier is declared in the smallest
4856      //      non-class, non-function-prototype scope that contains the
4857      //      declaration.
4858      //
4859      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4860      // C structs and unions.
4861      //
4862      // It is an error in C++ to declare (rather than define) an enum
4863      // type, including via an elaborated type specifier.  We'll
4864      // diagnose that later; for now, declare the enum in the same
4865      // scope as we would have picked for any other tag type.
4866      //
4867      // GNU C also supports this behavior as part of its incomplete
4868      // enum types extension, while GNU C++ does not.
4869      //
4870      // Find the context where we'll be declaring the tag.
4871      // FIXME: We would like to maintain the current DeclContext as the
4872      // lexical context,
4873      while (SearchDC->isRecord())
4874        SearchDC = SearchDC->getParent();
4875
4876      // Find the scope where we'll be declaring the tag.
4877      while (S->isClassScope() ||
4878             (getLangOptions().CPlusPlus &&
4879              S->isFunctionPrototypeScope()) ||
4880             ((S->getFlags() & Scope::DeclScope) == 0) ||
4881             (S->getEntity() &&
4882              ((DeclContext *)S->getEntity())->isTransparentContext()))
4883        S = S->getParent();
4884    } else {
4885      assert(TUK == TUK_Friend);
4886      // C++ [namespace.memdef]p3:
4887      //   If a friend declaration in a non-local class first declares a
4888      //   class or function, the friend class or function is a member of
4889      //   the innermost enclosing namespace.
4890      SearchDC = SearchDC->getEnclosingNamespaceContext();
4891
4892      // Look up through our scopes until we find one with an entity which
4893      // matches our declaration context.
4894      while (S->getEntity() &&
4895             ((DeclContext *)S->getEntity())->getPrimaryContext() != SearchDC) {
4896        S = S->getParent();
4897        assert(S && "No enclosing scope matching the enclosing namespace.");
4898      }
4899    }
4900
4901    // In C++, look for a shadow friend decl.
4902    if (getLangOptions().CPlusPlus) {
4903      Previous.setRedeclarationKind(ForRedeclaration);
4904      LookupQualifiedName(Previous, SearchDC);
4905    }
4906  }
4907
4908  if (!Previous.empty()) {
4909    assert(Previous.isSingleResult());
4910    NamedDecl *PrevDecl = Previous.getFoundDecl();
4911    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4912      // If this is a use of a previous tag, or if the tag is already declared
4913      // in the same scope (so that the definition/declaration completes or
4914      // rementions the tag), reuse the decl.
4915      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4916          isDeclInScope(PrevDecl, SearchDC, S)) {
4917        // Make sure that this wasn't declared as an enum and now used as a
4918        // struct or something similar.
4919        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4920          bool SafeToContinue
4921            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4922               Kind != TagDecl::TK_enum);
4923          if (SafeToContinue)
4924            Diag(KWLoc, diag::err_use_with_wrong_tag)
4925              << Name
4926              << FixItHint::CreateReplacement(SourceRange(KWLoc),
4927                                              PrevTagDecl->getKindName());
4928          else
4929            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4930          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4931
4932          if (SafeToContinue)
4933            Kind = PrevTagDecl->getTagKind();
4934          else {
4935            // Recover by making this an anonymous redefinition.
4936            Name = 0;
4937            Previous.clear();
4938            Invalid = true;
4939          }
4940        }
4941
4942        if (!Invalid) {
4943          // If this is a use, just return the declaration we found.
4944
4945          // FIXME: In the future, return a variant or some other clue
4946          // for the consumer of this Decl to know it doesn't own it.
4947          // For our current ASTs this shouldn't be a problem, but will
4948          // need to be changed with DeclGroups.
4949          if (TUK == TUK_Reference || TUK == TUK_Friend)
4950            return DeclPtrTy::make(PrevTagDecl);
4951
4952          // Diagnose attempts to redefine a tag.
4953          if (TUK == TUK_Definition) {
4954            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4955              // If we're defining a specialization and the previous definition
4956              // is from an implicit instantiation, don't emit an error
4957              // here; we'll catch this in the general case below.
4958              if (!isExplicitSpecialization ||
4959                  !isa<CXXRecordDecl>(Def) ||
4960                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4961                                               == TSK_ExplicitSpecialization) {
4962                Diag(NameLoc, diag::err_redefinition) << Name;
4963                Diag(Def->getLocation(), diag::note_previous_definition);
4964                // If this is a redefinition, recover by making this
4965                // struct be anonymous, which will make any later
4966                // references get the previous definition.
4967                Name = 0;
4968                Previous.clear();
4969                Invalid = true;
4970              }
4971            } else {
4972              // If the type is currently being defined, complain
4973              // about a nested redefinition.
4974              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4975              if (Tag->isBeingDefined()) {
4976                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4977                Diag(PrevTagDecl->getLocation(),
4978                     diag::note_previous_definition);
4979                Name = 0;
4980                Previous.clear();
4981                Invalid = true;
4982              }
4983            }
4984
4985            // Okay, this is definition of a previously declared or referenced
4986            // tag PrevDecl. We're going to create a new Decl for it.
4987          }
4988        }
4989        // If we get here we have (another) forward declaration or we
4990        // have a definition.  Just create a new decl.
4991
4992      } else {
4993        // If we get here, this is a definition of a new tag type in a nested
4994        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4995        // new decl/type.  We set PrevDecl to NULL so that the entities
4996        // have distinct types.
4997        Previous.clear();
4998      }
4999      // If we get here, we're going to create a new Decl. If PrevDecl
5000      // is non-NULL, it's a definition of the tag declared by
5001      // PrevDecl. If it's NULL, we have a new definition.
5002    } else {
5003      // PrevDecl is a namespace, template, or anything else
5004      // that lives in the IDNS_Tag identifier namespace.
5005      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5006          isDeclInScope(PrevDecl, SearchDC, S)) {
5007        // The tag name clashes with a namespace name, issue an error and
5008        // recover by making this tag be anonymous.
5009        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5010        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5011        Name = 0;
5012        Previous.clear();
5013        Invalid = true;
5014      } else {
5015        // The existing declaration isn't relevant to us; we're in a
5016        // new scope, so clear out the previous declaration.
5017        Previous.clear();
5018      }
5019    }
5020  }
5021
5022CreateNewDecl:
5023
5024  TagDecl *PrevDecl = 0;
5025  if (Previous.isSingleResult())
5026    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5027
5028  // If there is an identifier, use the location of the identifier as the
5029  // location of the decl, otherwise use the location of the struct/union
5030  // keyword.
5031  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5032
5033  // Otherwise, create a new declaration. If there is a previous
5034  // declaration of the same entity, the two will be linked via
5035  // PrevDecl.
5036  TagDecl *New;
5037
5038  if (Kind == TagDecl::TK_enum) {
5039    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5040    // enum X { A, B, C } D;    D should chain to X.
5041    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5042                           cast_or_null<EnumDecl>(PrevDecl));
5043    // If this is an undefined enum, warn.
5044    if (TUK != TUK_Definition && !Invalid)  {
5045      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5046                                              : diag::ext_forward_ref_enum;
5047      Diag(Loc, DK);
5048    }
5049  } else {
5050    // struct/union/class
5051
5052    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5053    // struct X { int A; } D;    D should chain to X.
5054    if (getLangOptions().CPlusPlus) {
5055      // FIXME: Look for a way to use RecordDecl for simple structs.
5056      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5057                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5058
5059      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5060        StdBadAlloc = cast<CXXRecordDecl>(New);
5061    } else
5062      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5063                               cast_or_null<RecordDecl>(PrevDecl));
5064  }
5065
5066  // Maybe add qualifier info.
5067  if (SS.isNotEmpty()) {
5068    NestedNameSpecifier *NNS
5069      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5070    New->setQualifierInfo(NNS, SS.getRange());
5071  }
5072
5073  if (Kind != TagDecl::TK_enum) {
5074    // Handle #pragma pack: if the #pragma pack stack has non-default
5075    // alignment, make up a packed attribute for this decl. These
5076    // attributes are checked when the ASTContext lays out the
5077    // structure.
5078    //
5079    // It is important for implementing the correct semantics that this
5080    // happen here (in act on tag decl). The #pragma pack stack is
5081    // maintained as a result of parser callbacks which can occur at
5082    // many points during the parsing of a struct declaration (because
5083    // the #pragma tokens are effectively skipped over during the
5084    // parsing of the struct).
5085    if (unsigned Alignment = getPragmaPackAlignment())
5086      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5087  }
5088
5089  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5090    // C++ [dcl.typedef]p3:
5091    //   [...] Similarly, in a given scope, a class or enumeration
5092    //   shall not be declared with the same name as a typedef-name
5093    //   that is declared in that scope and refers to a type other
5094    //   than the class or enumeration itself.
5095    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5096                        ForRedeclaration);
5097    LookupName(Lookup, S);
5098    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5099    NamedDecl *PrevTypedefNamed = PrevTypedef;
5100    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5101        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5102          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5103      Diag(Loc, diag::err_tag_definition_of_typedef)
5104        << Context.getTypeDeclType(New)
5105        << PrevTypedef->getUnderlyingType();
5106      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5107      Invalid = true;
5108    }
5109  }
5110
5111  // If this is a specialization of a member class (of a class template),
5112  // check the specialization.
5113  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5114    Invalid = true;
5115
5116  if (Invalid)
5117    New->setInvalidDecl();
5118
5119  if (Attr)
5120    ProcessDeclAttributeList(S, New, Attr);
5121
5122  // If we're declaring or defining a tag in function prototype scope
5123  // in C, note that this type can only be used within the function.
5124  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5125    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5126
5127  // Set the lexical context. If the tag has a C++ scope specifier, the
5128  // lexical context will be different from the semantic context.
5129  New->setLexicalDeclContext(CurContext);
5130
5131  // Mark this as a friend decl if applicable.
5132  if (TUK == TUK_Friend)
5133    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5134
5135  // Set the access specifier.
5136  if (!Invalid && SearchDC->isRecord())
5137    SetMemberAccessSpecifier(New, PrevDecl, AS);
5138
5139  if (TUK == TUK_Definition)
5140    New->startDefinition();
5141
5142  // If this has an identifier, add it to the scope stack.
5143  if (TUK == TUK_Friend) {
5144    // We might be replacing an existing declaration in the lookup tables;
5145    // if so, borrow its access specifier.
5146    if (PrevDecl)
5147      New->setAccess(PrevDecl->getAccess());
5148
5149    DeclContext *DC = New->getDeclContext()->getLookupContext();
5150    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5151    if (Name) // can be null along some error paths
5152      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5153        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5154  } else if (Name) {
5155    S = getNonFieldDeclScope(S);
5156    PushOnScopeChains(New, S);
5157  } else {
5158    CurContext->addDecl(New);
5159  }
5160
5161  // If this is the C FILE type, notify the AST context.
5162  if (IdentifierInfo *II = New->getIdentifier())
5163    if (!New->isInvalidDecl() &&
5164        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5165        II->isStr("FILE"))
5166      Context.setFILEDecl(New);
5167
5168  OwnedDecl = true;
5169  return DeclPtrTy::make(New);
5170}
5171
5172void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5173  AdjustDeclIfTemplate(TagD);
5174  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5175
5176  // Enter the tag context.
5177  PushDeclContext(S, Tag);
5178}
5179
5180void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5181                                           SourceLocation LBraceLoc) {
5182  AdjustDeclIfTemplate(TagD);
5183  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5184
5185  FieldCollector->StartClass();
5186
5187  if (!Record->getIdentifier())
5188    return;
5189
5190  // C++ [class]p2:
5191  //   [...] The class-name is also inserted into the scope of the
5192  //   class itself; this is known as the injected-class-name. For
5193  //   purposes of access checking, the injected-class-name is treated
5194  //   as if it were a public member name.
5195  CXXRecordDecl *InjectedClassName
5196    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5197                            CurContext, Record->getLocation(),
5198                            Record->getIdentifier(),
5199                            Record->getTagKeywordLoc(),
5200                            Record);
5201  InjectedClassName->setImplicit();
5202  InjectedClassName->setAccess(AS_public);
5203  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5204      InjectedClassName->setDescribedClassTemplate(Template);
5205  PushOnScopeChains(InjectedClassName, S);
5206  assert(InjectedClassName->isInjectedClassName() &&
5207         "Broken injected-class-name");
5208}
5209
5210// Traverses the class and any nested classes, making a note of any
5211// dynamic classes that have no key function so that we can mark all of
5212// their virtual member functions as "used" at the end of the translation
5213// unit. This ensures that all functions needed by the vtable will get
5214// instantiated/synthesized.
5215static void
5216RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5217                                      SourceLocation Loc) {
5218  // We don't look at dependent or undefined classes.
5219  if (Record->isDependentContext() || !Record->isDefinition())
5220    return;
5221
5222  if (Record->isDynamicClass()) {
5223    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5224
5225    if (!KeyFunction)
5226      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5227                                                                   Loc));
5228
5229    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5230        && Record->getLinkage() == ExternalLinkage)
5231      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5232  }
5233  for (DeclContext::decl_iterator D = Record->decls_begin(),
5234                               DEnd = Record->decls_end();
5235       D != DEnd; ++D) {
5236    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5237      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5238  }
5239}
5240
5241void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5242                                    SourceLocation RBraceLoc) {
5243  AdjustDeclIfTemplate(TagD);
5244  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5245  Tag->setRBraceLoc(RBraceLoc);
5246
5247  if (isa<CXXRecordDecl>(Tag))
5248    FieldCollector->FinishClass();
5249
5250  // Exit this scope of this tag's definition.
5251  PopDeclContext();
5252
5253  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5254    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5255                                          RBraceLoc);
5256
5257  // Notify the consumer that we've defined a tag.
5258  Consumer.HandleTagDeclDefinition(Tag);
5259}
5260
5261void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5262  AdjustDeclIfTemplate(TagD);
5263  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5264  Tag->setInvalidDecl();
5265
5266  // We're undoing ActOnTagStartDefinition here, not
5267  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5268  // the FieldCollector.
5269
5270  PopDeclContext();
5271}
5272
5273// Note that FieldName may be null for anonymous bitfields.
5274bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5275                          QualType FieldTy, const Expr *BitWidth,
5276                          bool *ZeroWidth) {
5277  // Default to true; that shouldn't confuse checks for emptiness
5278  if (ZeroWidth)
5279    *ZeroWidth = true;
5280
5281  // C99 6.7.2.1p4 - verify the field type.
5282  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5283  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5284    // Handle incomplete types with specific error.
5285    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5286      return true;
5287    if (FieldName)
5288      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5289        << FieldName << FieldTy << BitWidth->getSourceRange();
5290    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5291      << FieldTy << BitWidth->getSourceRange();
5292  }
5293
5294  // If the bit-width is type- or value-dependent, don't try to check
5295  // it now.
5296  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5297    return false;
5298
5299  llvm::APSInt Value;
5300  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5301    return true;
5302
5303  if (Value != 0 && ZeroWidth)
5304    *ZeroWidth = false;
5305
5306  // Zero-width bitfield is ok for anonymous field.
5307  if (Value == 0 && FieldName)
5308    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5309
5310  if (Value.isSigned() && Value.isNegative()) {
5311    if (FieldName)
5312      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5313               << FieldName << Value.toString(10);
5314    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5315      << Value.toString(10);
5316  }
5317
5318  if (!FieldTy->isDependentType()) {
5319    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5320    if (Value.getZExtValue() > TypeSize) {
5321      if (FieldName)
5322        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5323          << FieldName << (unsigned)TypeSize;
5324      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5325        << (unsigned)TypeSize;
5326    }
5327  }
5328
5329  return false;
5330}
5331
5332/// ActOnField - Each field of a struct/union/class is passed into this in order
5333/// to create a FieldDecl object for it.
5334Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5335                                 SourceLocation DeclStart,
5336                                 Declarator &D, ExprTy *BitfieldWidth) {
5337  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5338                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5339                               AS_public);
5340  return DeclPtrTy::make(Res);
5341}
5342
5343/// HandleField - Analyze a field of a C struct or a C++ data member.
5344///
5345FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5346                             SourceLocation DeclStart,
5347                             Declarator &D, Expr *BitWidth,
5348                             AccessSpecifier AS) {
5349  IdentifierInfo *II = D.getIdentifier();
5350  SourceLocation Loc = DeclStart;
5351  if (II) Loc = D.getIdentifierLoc();
5352
5353  TypeSourceInfo *TInfo = 0;
5354  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5355  if (getLangOptions().CPlusPlus)
5356    CheckExtraCXXDefaultArguments(D);
5357
5358  DiagnoseFunctionSpecifiers(D);
5359
5360  if (D.getDeclSpec().isThreadSpecified())
5361    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5362
5363  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5364                                         ForRedeclaration);
5365
5366  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5367    // Maybe we will complain about the shadowed template parameter.
5368    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5369    // Just pretend that we didn't see the previous declaration.
5370    PrevDecl = 0;
5371  }
5372
5373  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5374    PrevDecl = 0;
5375
5376  bool Mutable
5377    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5378  SourceLocation TSSL = D.getSourceRange().getBegin();
5379  FieldDecl *NewFD
5380    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5381                     AS, PrevDecl, &D);
5382
5383  if (NewFD->isInvalidDecl())
5384    Record->setInvalidDecl();
5385
5386  if (NewFD->isInvalidDecl() && PrevDecl) {
5387    // Don't introduce NewFD into scope; there's already something
5388    // with the same name in the same scope.
5389  } else if (II) {
5390    PushOnScopeChains(NewFD, S);
5391  } else
5392    Record->addDecl(NewFD);
5393
5394  return NewFD;
5395}
5396
5397/// \brief Build a new FieldDecl and check its well-formedness.
5398///
5399/// This routine builds a new FieldDecl given the fields name, type,
5400/// record, etc. \p PrevDecl should refer to any previous declaration
5401/// with the same name and in the same scope as the field to be
5402/// created.
5403///
5404/// \returns a new FieldDecl.
5405///
5406/// \todo The Declarator argument is a hack. It will be removed once
5407FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5408                                TypeSourceInfo *TInfo,
5409                                RecordDecl *Record, SourceLocation Loc,
5410                                bool Mutable, Expr *BitWidth,
5411                                SourceLocation TSSL,
5412                                AccessSpecifier AS, NamedDecl *PrevDecl,
5413                                Declarator *D) {
5414  IdentifierInfo *II = Name.getAsIdentifierInfo();
5415  bool InvalidDecl = false;
5416  if (D) InvalidDecl = D->isInvalidType();
5417
5418  // If we receive a broken type, recover by assuming 'int' and
5419  // marking this declaration as invalid.
5420  if (T.isNull()) {
5421    InvalidDecl = true;
5422    T = Context.IntTy;
5423  }
5424
5425  QualType EltTy = Context.getBaseElementType(T);
5426  if (!EltTy->isDependentType() &&
5427      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5428    InvalidDecl = true;
5429
5430  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5431  // than a variably modified type.
5432  if (!InvalidDecl && T->isVariablyModifiedType()) {
5433    bool SizeIsNegative;
5434    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5435                                                           SizeIsNegative);
5436    if (!FixedTy.isNull()) {
5437      Diag(Loc, diag::warn_illegal_constant_array_size);
5438      T = FixedTy;
5439    } else {
5440      if (SizeIsNegative)
5441        Diag(Loc, diag::err_typecheck_negative_array_size);
5442      else
5443        Diag(Loc, diag::err_typecheck_field_variable_size);
5444      InvalidDecl = true;
5445    }
5446  }
5447
5448  // Fields can not have abstract class types
5449  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5450                                             diag::err_abstract_type_in_decl,
5451                                             AbstractFieldType))
5452    InvalidDecl = true;
5453
5454  bool ZeroWidth = false;
5455  // If this is declared as a bit-field, check the bit-field.
5456  if (!InvalidDecl && BitWidth &&
5457      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5458    InvalidDecl = true;
5459    DeleteExpr(BitWidth);
5460    BitWidth = 0;
5461    ZeroWidth = false;
5462  }
5463
5464  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5465                                       BitWidth, Mutable);
5466  if (InvalidDecl)
5467    NewFD->setInvalidDecl();
5468
5469  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5470    Diag(Loc, diag::err_duplicate_member) << II;
5471    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5472    NewFD->setInvalidDecl();
5473  }
5474
5475  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5476    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5477
5478    if (!T->isPODType())
5479      CXXRecord->setPOD(false);
5480    if (!ZeroWidth)
5481      CXXRecord->setEmpty(false);
5482
5483    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5484      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5485
5486      if (!RDecl->hasTrivialConstructor())
5487        CXXRecord->setHasTrivialConstructor(false);
5488      if (!RDecl->hasTrivialCopyConstructor())
5489        CXXRecord->setHasTrivialCopyConstructor(false);
5490      if (!RDecl->hasTrivialCopyAssignment())
5491        CXXRecord->setHasTrivialCopyAssignment(false);
5492      if (!RDecl->hasTrivialDestructor())
5493        CXXRecord->setHasTrivialDestructor(false);
5494
5495      // C++ 9.5p1: An object of a class with a non-trivial
5496      // constructor, a non-trivial copy constructor, a non-trivial
5497      // destructor, or a non-trivial copy assignment operator
5498      // cannot be a member of a union, nor can an array of such
5499      // objects.
5500      // TODO: C++0x alters this restriction significantly.
5501      if (Record->isUnion()) {
5502        // We check for copy constructors before constructors
5503        // because otherwise we'll never get complaints about
5504        // copy constructors.
5505
5506        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5507
5508        CXXSpecialMember member;
5509        if (!RDecl->hasTrivialCopyConstructor())
5510          member = CXXCopyConstructor;
5511        else if (!RDecl->hasTrivialConstructor())
5512          member = CXXDefaultConstructor;
5513        else if (!RDecl->hasTrivialCopyAssignment())
5514          member = CXXCopyAssignment;
5515        else if (!RDecl->hasTrivialDestructor())
5516          member = CXXDestructor;
5517        else
5518          member = invalid;
5519
5520        if (member != invalid) {
5521          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5522          DiagnoseNontrivial(RT, member);
5523          NewFD->setInvalidDecl();
5524        }
5525      }
5526    }
5527  }
5528
5529  // FIXME: We need to pass in the attributes given an AST
5530  // representation, not a parser representation.
5531  if (D)
5532    // FIXME: What to pass instead of TUScope?
5533    ProcessDeclAttributes(TUScope, NewFD, *D);
5534
5535  if (T.isObjCGCWeak())
5536    Diag(Loc, diag::warn_attribute_weak_on_field);
5537
5538  NewFD->setAccess(AS);
5539
5540  // C++ [dcl.init.aggr]p1:
5541  //   An aggregate is an array or a class (clause 9) with [...] no
5542  //   private or protected non-static data members (clause 11).
5543  // A POD must be an aggregate.
5544  if (getLangOptions().CPlusPlus &&
5545      (AS == AS_private || AS == AS_protected)) {
5546    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5547    CXXRecord->setAggregate(false);
5548    CXXRecord->setPOD(false);
5549  }
5550
5551  return NewFD;
5552}
5553
5554/// DiagnoseNontrivial - Given that a class has a non-trivial
5555/// special member, figure out why.
5556void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5557  QualType QT(T, 0U);
5558  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5559
5560  // Check whether the member was user-declared.
5561  switch (member) {
5562  case CXXDefaultConstructor:
5563    if (RD->hasUserDeclaredConstructor()) {
5564      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5565      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5566        const FunctionDecl *body = 0;
5567        ci->getBody(body);
5568        if (!body ||
5569            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5570          SourceLocation CtorLoc = ci->getLocation();
5571          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5572          return;
5573        }
5574      }
5575
5576      assert(0 && "found no user-declared constructors");
5577      return;
5578    }
5579    break;
5580
5581  case CXXCopyConstructor:
5582    if (RD->hasUserDeclaredCopyConstructor()) {
5583      SourceLocation CtorLoc =
5584        RD->getCopyConstructor(Context, 0)->getLocation();
5585      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5586      return;
5587    }
5588    break;
5589
5590  case CXXCopyAssignment:
5591    if (RD->hasUserDeclaredCopyAssignment()) {
5592      // FIXME: this should use the location of the copy
5593      // assignment, not the type.
5594      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5595      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5596      return;
5597    }
5598    break;
5599
5600  case CXXDestructor:
5601    if (RD->hasUserDeclaredDestructor()) {
5602      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5603      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5604      return;
5605    }
5606    break;
5607  }
5608
5609  typedef CXXRecordDecl::base_class_iterator base_iter;
5610
5611  // Virtual bases and members inhibit trivial copying/construction,
5612  // but not trivial destruction.
5613  if (member != CXXDestructor) {
5614    // Check for virtual bases.  vbases includes indirect virtual bases,
5615    // so we just iterate through the direct bases.
5616    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5617      if (bi->isVirtual()) {
5618        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5619        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5620        return;
5621      }
5622
5623    // Check for virtual methods.
5624    typedef CXXRecordDecl::method_iterator meth_iter;
5625    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5626         ++mi) {
5627      if (mi->isVirtual()) {
5628        SourceLocation MLoc = mi->getSourceRange().getBegin();
5629        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5630        return;
5631      }
5632    }
5633  }
5634
5635  bool (CXXRecordDecl::*hasTrivial)() const;
5636  switch (member) {
5637  case CXXDefaultConstructor:
5638    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5639  case CXXCopyConstructor:
5640    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5641  case CXXCopyAssignment:
5642    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5643  case CXXDestructor:
5644    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5645  default:
5646    assert(0 && "unexpected special member"); return;
5647  }
5648
5649  // Check for nontrivial bases (and recurse).
5650  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5651    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5652    assert(BaseRT && "Don't know how to handle dependent bases");
5653    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5654    if (!(BaseRecTy->*hasTrivial)()) {
5655      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5656      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5657      DiagnoseNontrivial(BaseRT, member);
5658      return;
5659    }
5660  }
5661
5662  // Check for nontrivial members (and recurse).
5663  typedef RecordDecl::field_iterator field_iter;
5664  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5665       ++fi) {
5666    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5667    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5668      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5669
5670      if (!(EltRD->*hasTrivial)()) {
5671        SourceLocation FLoc = (*fi)->getLocation();
5672        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5673        DiagnoseNontrivial(EltRT, member);
5674        return;
5675      }
5676    }
5677  }
5678
5679  assert(0 && "found no explanation for non-trivial member");
5680}
5681
5682/// TranslateIvarVisibility - Translate visibility from a token ID to an
5683///  AST enum value.
5684static ObjCIvarDecl::AccessControl
5685TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5686  switch (ivarVisibility) {
5687  default: assert(0 && "Unknown visitibility kind");
5688  case tok::objc_private: return ObjCIvarDecl::Private;
5689  case tok::objc_public: return ObjCIvarDecl::Public;
5690  case tok::objc_protected: return ObjCIvarDecl::Protected;
5691  case tok::objc_package: return ObjCIvarDecl::Package;
5692  }
5693}
5694
5695/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5696/// in order to create an IvarDecl object for it.
5697Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5698                                SourceLocation DeclStart,
5699                                DeclPtrTy IntfDecl,
5700                                Declarator &D, ExprTy *BitfieldWidth,
5701                                tok::ObjCKeywordKind Visibility) {
5702
5703  IdentifierInfo *II = D.getIdentifier();
5704  Expr *BitWidth = (Expr*)BitfieldWidth;
5705  SourceLocation Loc = DeclStart;
5706  if (II) Loc = D.getIdentifierLoc();
5707
5708  // FIXME: Unnamed fields can be handled in various different ways, for
5709  // example, unnamed unions inject all members into the struct namespace!
5710
5711  TypeSourceInfo *TInfo = 0;
5712  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5713
5714  if (BitWidth) {
5715    // 6.7.2.1p3, 6.7.2.1p4
5716    if (VerifyBitField(Loc, II, T, BitWidth)) {
5717      D.setInvalidType();
5718      DeleteExpr(BitWidth);
5719      BitWidth = 0;
5720    }
5721  } else {
5722    // Not a bitfield.
5723
5724    // validate II.
5725
5726  }
5727
5728  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5729  // than a variably modified type.
5730  if (T->isVariablyModifiedType()) {
5731    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5732    D.setInvalidType();
5733  }
5734
5735  // Get the visibility (access control) for this ivar.
5736  ObjCIvarDecl::AccessControl ac =
5737    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5738                                        : ObjCIvarDecl::None;
5739  // Must set ivar's DeclContext to its enclosing interface.
5740  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5741  DeclContext *EnclosingContext;
5742  if (ObjCImplementationDecl *IMPDecl =
5743      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5744    // Case of ivar declared in an implementation. Context is that of its class.
5745    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5746    assert(IDecl && "No class- ActOnIvar");
5747    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5748  } else
5749    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5750  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5751
5752  // Construct the decl.
5753  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5754                                             EnclosingContext, Loc, II, T,
5755                                             TInfo, ac, (Expr *)BitfieldWidth);
5756
5757  if (II) {
5758    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5759                                           ForRedeclaration);
5760    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5761        && !isa<TagDecl>(PrevDecl)) {
5762      Diag(Loc, diag::err_duplicate_member) << II;
5763      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5764      NewID->setInvalidDecl();
5765    }
5766  }
5767
5768  // Process attributes attached to the ivar.
5769  ProcessDeclAttributes(S, NewID, D);
5770
5771  if (D.isInvalidType())
5772    NewID->setInvalidDecl();
5773
5774  if (II) {
5775    // FIXME: When interfaces are DeclContexts, we'll need to add
5776    // these to the interface.
5777    S->AddDecl(DeclPtrTy::make(NewID));
5778    IdResolver.AddDecl(NewID);
5779  }
5780
5781  return DeclPtrTy::make(NewID);
5782}
5783
5784void Sema::ActOnFields(Scope* S,
5785                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5786                       DeclPtrTy *Fields, unsigned NumFields,
5787                       SourceLocation LBrac, SourceLocation RBrac,
5788                       AttributeList *Attr) {
5789  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5790  assert(EnclosingDecl && "missing record or interface decl");
5791
5792  // If the decl this is being inserted into is invalid, then it may be a
5793  // redeclaration or some other bogus case.  Don't try to add fields to it.
5794  if (EnclosingDecl->isInvalidDecl()) {
5795    // FIXME: Deallocate fields?
5796    return;
5797  }
5798
5799
5800  // Verify that all the fields are okay.
5801  unsigned NumNamedMembers = 0;
5802  llvm::SmallVector<FieldDecl*, 32> RecFields;
5803
5804  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5805  for (unsigned i = 0; i != NumFields; ++i) {
5806    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5807
5808    // Get the type for the field.
5809    Type *FDTy = FD->getType().getTypePtr();
5810
5811    if (!FD->isAnonymousStructOrUnion()) {
5812      // Remember all fields written by the user.
5813      RecFields.push_back(FD);
5814    }
5815
5816    // If the field is already invalid for some reason, don't emit more
5817    // diagnostics about it.
5818    if (FD->isInvalidDecl()) {
5819      EnclosingDecl->setInvalidDecl();
5820      continue;
5821    }
5822
5823    // C99 6.7.2.1p2:
5824    //   A structure or union shall not contain a member with
5825    //   incomplete or function type (hence, a structure shall not
5826    //   contain an instance of itself, but may contain a pointer to
5827    //   an instance of itself), except that the last member of a
5828    //   structure with more than one named member may have incomplete
5829    //   array type; such a structure (and any union containing,
5830    //   possibly recursively, a member that is such a structure)
5831    //   shall not be a member of a structure or an element of an
5832    //   array.
5833    if (FDTy->isFunctionType()) {
5834      // Field declared as a function.
5835      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5836        << FD->getDeclName();
5837      FD->setInvalidDecl();
5838      EnclosingDecl->setInvalidDecl();
5839      continue;
5840    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5841               Record && Record->isStruct()) {
5842      // Flexible array member.
5843      if (NumNamedMembers < 1) {
5844        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5845          << FD->getDeclName();
5846        FD->setInvalidDecl();
5847        EnclosingDecl->setInvalidDecl();
5848        continue;
5849      }
5850      // Okay, we have a legal flexible array member at the end of the struct.
5851      if (Record)
5852        Record->setHasFlexibleArrayMember(true);
5853    } else if (!FDTy->isDependentType() &&
5854               RequireCompleteType(FD->getLocation(), FD->getType(),
5855                                   diag::err_field_incomplete)) {
5856      // Incomplete type
5857      FD->setInvalidDecl();
5858      EnclosingDecl->setInvalidDecl();
5859      continue;
5860    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5861      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5862        // If this is a member of a union, then entire union becomes "flexible".
5863        if (Record && Record->isUnion()) {
5864          Record->setHasFlexibleArrayMember(true);
5865        } else {
5866          // If this is a struct/class and this is not the last element, reject
5867          // it.  Note that GCC supports variable sized arrays in the middle of
5868          // structures.
5869          if (i != NumFields-1)
5870            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5871              << FD->getDeclName() << FD->getType();
5872          else {
5873            // We support flexible arrays at the end of structs in
5874            // other structs as an extension.
5875            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5876              << FD->getDeclName();
5877            if (Record)
5878              Record->setHasFlexibleArrayMember(true);
5879          }
5880        }
5881      }
5882      if (Record && FDTTy->getDecl()->hasObjectMember())
5883        Record->setHasObjectMember(true);
5884    } else if (FDTy->isObjCInterfaceType()) {
5885      /// A field cannot be an Objective-c object
5886      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5887      FD->setInvalidDecl();
5888      EnclosingDecl->setInvalidDecl();
5889      continue;
5890    } else if (getLangOptions().ObjC1 &&
5891               getLangOptions().getGCMode() != LangOptions::NonGC &&
5892               Record &&
5893               (FD->getType()->isObjCObjectPointerType() ||
5894                FD->getType().isObjCGCStrong()))
5895      Record->setHasObjectMember(true);
5896    // Keep track of the number of named members.
5897    if (FD->getIdentifier())
5898      ++NumNamedMembers;
5899  }
5900
5901  // Okay, we successfully defined 'Record'.
5902  if (Record) {
5903    Record->completeDefinition();
5904  } else {
5905    ObjCIvarDecl **ClsFields =
5906      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5907    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5908      ID->setLocEnd(RBrac);
5909      // Add ivar's to class's DeclContext.
5910      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5911        ClsFields[i]->setLexicalDeclContext(ID);
5912        ID->addDecl(ClsFields[i]);
5913      }
5914      // Must enforce the rule that ivars in the base classes may not be
5915      // duplicates.
5916      if (ID->getSuperClass())
5917        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5918    } else if (ObjCImplementationDecl *IMPDecl =
5919                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5920      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5921      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5922        // Ivar declared in @implementation never belongs to the implementation.
5923        // Only it is in implementation's lexical context.
5924        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5925      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5926    } else if (ObjCCategoryDecl *CDecl =
5927                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5928      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension())
5929        Diag(LBrac, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5930      else {
5931        // FIXME. Class extension does not have a LocEnd field.
5932        // CDecl->setLocEnd(RBrac);
5933        // Add ivar's to class extension's DeclContext.
5934        for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5935          ClsFields[i]->setLexicalDeclContext(CDecl);
5936          CDecl->addDecl(ClsFields[i]);
5937        }
5938      }
5939    }
5940  }
5941
5942  if (Attr)
5943    ProcessDeclAttributeList(S, Record, Attr);
5944}
5945
5946/// \brief Determine whether the given integral value is representable within
5947/// the given type T.
5948static bool isRepresentableIntegerValue(ASTContext &Context,
5949                                        llvm::APSInt &Value,
5950                                        QualType T) {
5951  assert(T->isIntegralType() && "Integral type required!");
5952  unsigned BitWidth = Context.getTypeSize(T);
5953
5954  if (Value.isUnsigned() || Value.isNonNegative())
5955    return Value.getActiveBits() < BitWidth;
5956
5957  return Value.getMinSignedBits() <= BitWidth;
5958}
5959
5960// \brief Given an integral type, return the next larger integral type
5961// (or a NULL type of no such type exists).
5962static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5963  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5964  // enum checking below.
5965  assert(T->isIntegralType() && "Integral type required!");
5966  const unsigned NumTypes = 4;
5967  QualType SignedIntegralTypes[NumTypes] = {
5968    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5969  };
5970  QualType UnsignedIntegralTypes[NumTypes] = {
5971    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5972    Context.UnsignedLongLongTy
5973  };
5974
5975  unsigned BitWidth = Context.getTypeSize(T);
5976  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5977                                            : UnsignedIntegralTypes;
5978  for (unsigned I = 0; I != NumTypes; ++I)
5979    if (Context.getTypeSize(Types[I]) > BitWidth)
5980      return Types[I];
5981
5982  return QualType();
5983}
5984
5985EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5986                                          EnumConstantDecl *LastEnumConst,
5987                                          SourceLocation IdLoc,
5988                                          IdentifierInfo *Id,
5989                                          ExprArg val) {
5990  Expr *Val = (Expr *)val.get();
5991
5992  unsigned IntWidth = Context.Target.getIntWidth();
5993  llvm::APSInt EnumVal(IntWidth);
5994  QualType EltTy;
5995  if (Val) {
5996    if (Enum->isDependentType() || Val->isTypeDependent())
5997      EltTy = Context.DependentTy;
5998    else {
5999      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6000      SourceLocation ExpLoc;
6001      if (!Val->isValueDependent() &&
6002          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6003        Val = 0;
6004      } else {
6005        if (!getLangOptions().CPlusPlus) {
6006          // C99 6.7.2.2p2:
6007          //   The expression that defines the value of an enumeration constant
6008          //   shall be an integer constant expression that has a value
6009          //   representable as an int.
6010
6011          // Complain if the value is not representable in an int.
6012          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6013            Diag(IdLoc, diag::ext_enum_value_not_int)
6014              << EnumVal.toString(10) << Val->getSourceRange()
6015              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6016          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6017            // Force the type of the expression to 'int'.
6018            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6019
6020            if (Val != val.get()) {
6021              val.release();
6022              val = Val;
6023            }
6024          }
6025        }
6026
6027        // C++0x [dcl.enum]p5:
6028        //   If the underlying type is not fixed, the type of each enumerator
6029        //   is the type of its initializing value:
6030        //     - If an initializer is specified for an enumerator, the
6031        //       initializing value has the same type as the expression.
6032        EltTy = Val->getType();
6033      }
6034    }
6035  }
6036
6037  if (!Val) {
6038    if (Enum->isDependentType())
6039      EltTy = Context.DependentTy;
6040    else if (!LastEnumConst) {
6041      // C++0x [dcl.enum]p5:
6042      //   If the underlying type is not fixed, the type of each enumerator
6043      //   is the type of its initializing value:
6044      //     - If no initializer is specified for the first enumerator, the
6045      //       initializing value has an unspecified integral type.
6046      //
6047      // GCC uses 'int' for its unspecified integral type, as does
6048      // C99 6.7.2.2p3.
6049      EltTy = Context.IntTy;
6050    } else {
6051      // Assign the last value + 1.
6052      EnumVal = LastEnumConst->getInitVal();
6053      ++EnumVal;
6054      EltTy = LastEnumConst->getType();
6055
6056      // Check for overflow on increment.
6057      if (EnumVal < LastEnumConst->getInitVal()) {
6058        // C++0x [dcl.enum]p5:
6059        //   If the underlying type is not fixed, the type of each enumerator
6060        //   is the type of its initializing value:
6061        //
6062        //     - Otherwise the type of the initializing value is the same as
6063        //       the type of the initializing value of the preceding enumerator
6064        //       unless the incremented value is not representable in that type,
6065        //       in which case the type is an unspecified integral type
6066        //       sufficient to contain the incremented value. If no such type
6067        //       exists, the program is ill-formed.
6068        QualType T = getNextLargerIntegralType(Context, EltTy);
6069        if (T.isNull()) {
6070          // There is no integral type larger enough to represent this
6071          // value. Complain, then allow the value to wrap around.
6072          EnumVal = LastEnumConst->getInitVal();
6073          EnumVal.zext(EnumVal.getBitWidth() * 2);
6074          Diag(IdLoc, diag::warn_enumerator_too_large)
6075            << EnumVal.toString(10);
6076        } else {
6077          EltTy = T;
6078        }
6079
6080        // Retrieve the last enumerator's value, extent that type to the
6081        // type that is supposed to be large enough to represent the incremented
6082        // value, then increment.
6083        EnumVal = LastEnumConst->getInitVal();
6084        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6085        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6086        ++EnumVal;
6087
6088        // If we're not in C++, diagnose the overflow of enumerator values,
6089        // which in C99 means that the enumerator value is not representable in
6090        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6091        // permits enumerator values that are representable in some larger
6092        // integral type.
6093        if (!getLangOptions().CPlusPlus && !T.isNull())
6094          Diag(IdLoc, diag::warn_enum_value_overflow);
6095      } else if (!getLangOptions().CPlusPlus &&
6096                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6097        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6098        Diag(IdLoc, diag::ext_enum_value_not_int)
6099          << EnumVal.toString(10) << 1;
6100      }
6101    }
6102  }
6103
6104  if (!EltTy->isDependentType()) {
6105    // Make the enumerator value match the signedness and size of the
6106    // enumerator's type.
6107    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6108    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6109  }
6110
6111  val.release();
6112  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6113                                  Val, EnumVal);
6114}
6115
6116
6117Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6118                                        DeclPtrTy lastEnumConst,
6119                                        SourceLocation IdLoc,
6120                                        IdentifierInfo *Id,
6121                                        SourceLocation EqualLoc, ExprTy *val) {
6122  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6123  EnumConstantDecl *LastEnumConst =
6124    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6125  Expr *Val = static_cast<Expr*>(val);
6126
6127  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6128  // we find one that is.
6129  S = getNonFieldDeclScope(S);
6130
6131  // Verify that there isn't already something declared with this name in this
6132  // scope.
6133  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6134                                         ForRedeclaration);
6135  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6136    // Maybe we will complain about the shadowed template parameter.
6137    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6138    // Just pretend that we didn't see the previous declaration.
6139    PrevDecl = 0;
6140  }
6141
6142  if (PrevDecl) {
6143    // When in C++, we may get a TagDecl with the same name; in this case the
6144    // enum constant will 'hide' the tag.
6145    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6146           "Received TagDecl when not in C++!");
6147    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6148      if (isa<EnumConstantDecl>(PrevDecl))
6149        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6150      else
6151        Diag(IdLoc, diag::err_redefinition) << Id;
6152      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6153      if (Val) Val->Destroy(Context);
6154      return DeclPtrTy();
6155    }
6156  }
6157
6158  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6159                                            IdLoc, Id, Owned(Val));
6160
6161  // Register this decl in the current scope stack.
6162  if (New) {
6163    New->setAccess(TheEnumDecl->getAccess());
6164    PushOnScopeChains(New, S);
6165  }
6166
6167  return DeclPtrTy::make(New);
6168}
6169
6170void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6171                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6172                         DeclPtrTy *Elements, unsigned NumElements,
6173                         Scope *S, AttributeList *Attr) {
6174  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6175  QualType EnumType = Context.getTypeDeclType(Enum);
6176
6177  if (Attr)
6178    ProcessDeclAttributeList(S, Enum, Attr);
6179
6180  if (Enum->isDependentType()) {
6181    for (unsigned i = 0; i != NumElements; ++i) {
6182      EnumConstantDecl *ECD =
6183        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6184      if (!ECD) continue;
6185
6186      ECD->setType(EnumType);
6187    }
6188
6189    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6190    return;
6191  }
6192
6193  // TODO: If the result value doesn't fit in an int, it must be a long or long
6194  // long value.  ISO C does not support this, but GCC does as an extension,
6195  // emit a warning.
6196  unsigned IntWidth = Context.Target.getIntWidth();
6197  unsigned CharWidth = Context.Target.getCharWidth();
6198  unsigned ShortWidth = Context.Target.getShortWidth();
6199
6200  // Verify that all the values are okay, compute the size of the values, and
6201  // reverse the list.
6202  unsigned NumNegativeBits = 0;
6203  unsigned NumPositiveBits = 0;
6204
6205  // Keep track of whether all elements have type int.
6206  bool AllElementsInt = true;
6207
6208  for (unsigned i = 0; i != NumElements; ++i) {
6209    EnumConstantDecl *ECD =
6210      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6211    if (!ECD) continue;  // Already issued a diagnostic.
6212
6213    const llvm::APSInt &InitVal = ECD->getInitVal();
6214
6215    // Keep track of the size of positive and negative values.
6216    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6217      NumPositiveBits = std::max(NumPositiveBits,
6218                                 (unsigned)InitVal.getActiveBits());
6219    else
6220      NumNegativeBits = std::max(NumNegativeBits,
6221                                 (unsigned)InitVal.getMinSignedBits());
6222
6223    // Keep track of whether every enum element has type int (very commmon).
6224    if (AllElementsInt)
6225      AllElementsInt = ECD->getType() == Context.IntTy;
6226  }
6227
6228  // Figure out the type that should be used for this enum.
6229  // FIXME: Support -fshort-enums.
6230  QualType BestType;
6231  unsigned BestWidth;
6232
6233  // C++0x N3000 [conv.prom]p3:
6234  //   An rvalue of an unscoped enumeration type whose underlying
6235  //   type is not fixed can be converted to an rvalue of the first
6236  //   of the following types that can represent all the values of
6237  //   the enumeration: int, unsigned int, long int, unsigned long
6238  //   int, long long int, or unsigned long long int.
6239  // C99 6.4.4.3p2:
6240  //   An identifier declared as an enumeration constant has type int.
6241  // The C99 rule is modified by a gcc extension
6242  QualType BestPromotionType;
6243
6244  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6245
6246  if (NumNegativeBits) {
6247    // If there is a negative value, figure out the smallest integer type (of
6248    // int/long/longlong) that fits.
6249    // If it's packed, check also if it fits a char or a short.
6250    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6251      BestType = Context.SignedCharTy;
6252      BestWidth = CharWidth;
6253    } else if (Packed && NumNegativeBits <= ShortWidth &&
6254               NumPositiveBits < ShortWidth) {
6255      BestType = Context.ShortTy;
6256      BestWidth = ShortWidth;
6257    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6258      BestType = Context.IntTy;
6259      BestWidth = IntWidth;
6260    } else {
6261      BestWidth = Context.Target.getLongWidth();
6262
6263      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6264        BestType = Context.LongTy;
6265      } else {
6266        BestWidth = Context.Target.getLongLongWidth();
6267
6268        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6269          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6270        BestType = Context.LongLongTy;
6271      }
6272    }
6273    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6274  } else {
6275    // If there is no negative value, figure out the smallest type that fits
6276    // all of the enumerator values.
6277    // If it's packed, check also if it fits a char or a short.
6278    if (Packed && NumPositiveBits <= CharWidth) {
6279      BestType = Context.UnsignedCharTy;
6280      BestPromotionType = Context.IntTy;
6281      BestWidth = CharWidth;
6282    } else if (Packed && NumPositiveBits <= ShortWidth) {
6283      BestType = Context.UnsignedShortTy;
6284      BestPromotionType = Context.IntTy;
6285      BestWidth = ShortWidth;
6286    } else if (NumPositiveBits <= IntWidth) {
6287      BestType = Context.UnsignedIntTy;
6288      BestWidth = IntWidth;
6289      BestPromotionType
6290        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6291                           ? Context.UnsignedIntTy : Context.IntTy;
6292    } else if (NumPositiveBits <=
6293               (BestWidth = Context.Target.getLongWidth())) {
6294      BestType = Context.UnsignedLongTy;
6295      BestPromotionType
6296        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6297                           ? Context.UnsignedLongTy : Context.LongTy;
6298    } else {
6299      BestWidth = Context.Target.getLongLongWidth();
6300      assert(NumPositiveBits <= BestWidth &&
6301             "How could an initializer get larger than ULL?");
6302      BestType = Context.UnsignedLongLongTy;
6303      BestPromotionType
6304        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6305                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6306    }
6307  }
6308
6309  // Loop over all of the enumerator constants, changing their types to match
6310  // the type of the enum if needed.
6311  for (unsigned i = 0; i != NumElements; ++i) {
6312    EnumConstantDecl *ECD =
6313      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6314    if (!ECD) continue;  // Already issued a diagnostic.
6315
6316    // Standard C says the enumerators have int type, but we allow, as an
6317    // extension, the enumerators to be larger than int size.  If each
6318    // enumerator value fits in an int, type it as an int, otherwise type it the
6319    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6320    // that X has type 'int', not 'unsigned'.
6321
6322    // Determine whether the value fits into an int.
6323    llvm::APSInt InitVal = ECD->getInitVal();
6324
6325    // If it fits into an integer type, force it.  Otherwise force it to match
6326    // the enum decl type.
6327    QualType NewTy;
6328    unsigned NewWidth;
6329    bool NewSign;
6330    if (!getLangOptions().CPlusPlus &&
6331        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6332      NewTy = Context.IntTy;
6333      NewWidth = IntWidth;
6334      NewSign = true;
6335    } else if (ECD->getType() == BestType) {
6336      // Already the right type!
6337      if (getLangOptions().CPlusPlus)
6338        // C++ [dcl.enum]p4: Following the closing brace of an
6339        // enum-specifier, each enumerator has the type of its
6340        // enumeration.
6341        ECD->setType(EnumType);
6342      continue;
6343    } else {
6344      NewTy = BestType;
6345      NewWidth = BestWidth;
6346      NewSign = BestType->isSignedIntegerType();
6347    }
6348
6349    // Adjust the APSInt value.
6350    InitVal.extOrTrunc(NewWidth);
6351    InitVal.setIsSigned(NewSign);
6352    ECD->setInitVal(InitVal);
6353
6354    // Adjust the Expr initializer and type.
6355    if (ECD->getInitExpr())
6356      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6357                                                      CastExpr::CK_IntegralCast,
6358                                                      ECD->getInitExpr(),
6359                                                      /*isLvalue=*/false));
6360    if (getLangOptions().CPlusPlus)
6361      // C++ [dcl.enum]p4: Following the closing brace of an
6362      // enum-specifier, each enumerator has the type of its
6363      // enumeration.
6364      ECD->setType(EnumType);
6365    else
6366      ECD->setType(NewTy);
6367  }
6368
6369  Enum->completeDefinition(BestType, BestPromotionType);
6370}
6371
6372Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6373                                            ExprArg expr) {
6374  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6375
6376  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6377                                                   Loc, AsmString);
6378  CurContext->addDecl(New);
6379  return DeclPtrTy::make(New);
6380}
6381
6382void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6383                             SourceLocation PragmaLoc,
6384                             SourceLocation NameLoc) {
6385  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6386
6387  if (PrevDecl) {
6388    PrevDecl->addAttr(::new (Context) WeakAttr());
6389  } else {
6390    (void)WeakUndeclaredIdentifiers.insert(
6391      std::pair<IdentifierInfo*,WeakInfo>
6392        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6393  }
6394}
6395
6396void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6397                                IdentifierInfo* AliasName,
6398                                SourceLocation PragmaLoc,
6399                                SourceLocation NameLoc,
6400                                SourceLocation AliasNameLoc) {
6401  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6402  WeakInfo W = WeakInfo(Name, NameLoc);
6403
6404  if (PrevDecl) {
6405    if (!PrevDecl->hasAttr<AliasAttr>())
6406      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6407        DeclApplyPragmaWeak(TUScope, ND, W);
6408  } else {
6409    (void)WeakUndeclaredIdentifiers.insert(
6410      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6411  }
6412}
6413