SemaDecl.cpp revision d7e19ce8fbb9c6dfa2e634f36fd8f150c3268de2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149  case LookupResult::FoundOverloaded:
150  case LookupResult::FoundUnresolvedValue:
151    Result.suppressDiagnostics();
152    return ParsedType();
153
154  case LookupResult::Ambiguous:
155    // Recover from type-hiding ambiguities by hiding the type.  We'll
156    // do the lookup again when looking for an object, and we can
157    // diagnose the error then.  If we don't do this, then the error
158    // about hiding the type will be immediately followed by an error
159    // that only makes sense if the identifier was treated like a type.
160    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
161      Result.suppressDiagnostics();
162      return ParsedType();
163    }
164
165    // Look to see if we have a type anywhere in the list of results.
166    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
167         Res != ResEnd; ++Res) {
168      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
169        if (!IIDecl ||
170            (*Res)->getLocation().getRawEncoding() <
171              IIDecl->getLocation().getRawEncoding())
172          IIDecl = *Res;
173      }
174    }
175
176    if (!IIDecl) {
177      // None of the entities we found is a type, so there is no way
178      // to even assume that the result is a type. In this case, don't
179      // complain about the ambiguity. The parser will either try to
180      // perform this lookup again (e.g., as an object name), which
181      // will produce the ambiguity, or will complain that it expected
182      // a type name.
183      Result.suppressDiagnostics();
184      return ParsedType();
185    }
186
187    // We found a type within the ambiguous lookup; diagnose the
188    // ambiguity and then return that type. This might be the right
189    // answer, or it might not be, but it suppresses any attempt to
190    // perform the name lookup again.
191    break;
192
193  case LookupResult::Found:
194    IIDecl = Result.getFoundDecl();
195    break;
196  }
197
198  assert(IIDecl && "Didn't find decl");
199
200  QualType T;
201  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
202    DiagnoseUseOfDecl(IIDecl, NameLoc);
203
204    if (T.isNull())
205      T = Context.getTypeDeclType(TD);
206
207    if (SS && SS->isNotEmpty()) {
208      if (WantNontrivialTypeSourceInfo) {
209        // Construct a type with type-source information.
210        TypeLocBuilder Builder;
211        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
212
213        T = getElaboratedType(ETK_None, *SS, T);
214        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
215        ElabTL.setKeywordLoc(SourceLocation());
216        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
217        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
218      } else {
219        T = getElaboratedType(ETK_None, *SS, T);
220      }
221    }
222  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
223    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
224    if (!HasTrailingDot)
225      T = Context.getObjCInterfaceType(IDecl);
226  }
227
228  if (T.isNull()) {
229    // If it's not plausibly a type, suppress diagnostics.
230    Result.suppressDiagnostics();
231    return ParsedType();
232  }
233  return ParsedType::make(T);
234}
235
236/// isTagName() - This method is called *for error recovery purposes only*
237/// to determine if the specified name is a valid tag name ("struct foo").  If
238/// so, this returns the TST for the tag corresponding to it (TST_enum,
239/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
240/// where the user forgot to specify the tag.
241DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
242  // Do a tag name lookup in this scope.
243  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
244  LookupName(R, S, false);
245  R.suppressDiagnostics();
246  if (R.getResultKind() == LookupResult::Found)
247    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
248      switch (TD->getTagKind()) {
249      default:         return DeclSpec::TST_unspecified;
250      case TTK_Struct: return DeclSpec::TST_struct;
251      case TTK_Union:  return DeclSpec::TST_union;
252      case TTK_Class:  return DeclSpec::TST_class;
253      case TTK_Enum:   return DeclSpec::TST_enum;
254      }
255    }
256
257  return DeclSpec::TST_unspecified;
258}
259
260/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
261/// if a CXXScopeSpec's type is equal to the type of one of the base classes
262/// then downgrade the missing typename error to a warning.
263/// This is needed for MSVC compatibility; Example:
264/// @code
265/// template<class T> class A {
266/// public:
267///   typedef int TYPE;
268/// };
269/// template<class T> class B : public A<T> {
270/// public:
271///   A<T>::TYPE a; // no typename required because A<T> is a base class.
272/// };
273/// @endcode
274bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
275  if (CurContext->isRecord()) {
276    const Type *Ty = SS->getScopeRep()->getAsType();
277
278    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
279    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
280          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
281      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
282        return true;
283  }
284  return CurContext->isFunctionOrMethod();
285}
286
287bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
288                                   SourceLocation IILoc,
289                                   Scope *S,
290                                   CXXScopeSpec *SS,
291                                   ParsedType &SuggestedType) {
292  // We don't have anything to suggest (yet).
293  SuggestedType = ParsedType();
294
295  // There may have been a typo in the name of the type. Look up typo
296  // results, in case we have something that we can suggest.
297  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
298                                             LookupOrdinaryName, S, SS, NULL,
299                                             false, CTC_Type)) {
300    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
301    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
302
303    if (Corrected.isKeyword()) {
304      // We corrected to a keyword.
305      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
306      Diag(IILoc, diag::err_unknown_typename_suggest)
307        << &II << CorrectedQuotedStr;
308      return true;
309    } else {
310      NamedDecl *Result = Corrected.getCorrectionDecl();
311      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
312          !Result->isInvalidDecl()) {
313        // We found a similarly-named type or interface; suggest that.
314        if (!SS || !SS->isSet())
315          Diag(IILoc, diag::err_unknown_typename_suggest)
316            << &II << CorrectedQuotedStr
317            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
318        else if (DeclContext *DC = computeDeclContext(*SS, false))
319          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
320            << &II << DC << CorrectedQuotedStr << SS->getRange()
321            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
322        else
323          llvm_unreachable("could not have corrected a typo here");
324
325        Diag(Result->getLocation(), diag::note_previous_decl)
326          << CorrectedQuotedStr;
327
328        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
329                                    false, false, ParsedType(),
330                                    /*NonTrivialTypeSourceInfo=*/true);
331        return true;
332      }
333    }
334  }
335
336  if (getLangOptions().CPlusPlus) {
337    // See if II is a class template that the user forgot to pass arguments to.
338    UnqualifiedId Name;
339    Name.setIdentifier(&II, IILoc);
340    CXXScopeSpec EmptySS;
341    TemplateTy TemplateResult;
342    bool MemberOfUnknownSpecialization;
343    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
344                       Name, ParsedType(), true, TemplateResult,
345                       MemberOfUnknownSpecialization) == TNK_Type_template) {
346      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
347      Diag(IILoc, diag::err_template_missing_args) << TplName;
348      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
349        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
350          << TplDecl->getTemplateParameters()->getSourceRange();
351      }
352      return true;
353    }
354  }
355
356  // FIXME: Should we move the logic that tries to recover from a missing tag
357  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
358
359  if (!SS || (!SS->isSet() && !SS->isInvalid()))
360    Diag(IILoc, diag::err_unknown_typename) << &II;
361  else if (DeclContext *DC = computeDeclContext(*SS, false))
362    Diag(IILoc, diag::err_typename_nested_not_found)
363      << &II << DC << SS->getRange();
364  else if (isDependentScopeSpecifier(*SS)) {
365    unsigned DiagID = diag::err_typename_missing;
366    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
367      DiagID = diag::warn_typename_missing;
368
369    Diag(SS->getRange().getBegin(), DiagID)
370      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
371      << SourceRange(SS->getRange().getBegin(), IILoc)
372      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
373    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
374  } else {
375    assert(SS && SS->isInvalid() &&
376           "Invalid scope specifier has already been diagnosed");
377  }
378
379  return true;
380}
381
382/// \brief Determine whether the given result set contains either a type name
383/// or
384static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
385  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
386                       NextToken.is(tok::less);
387
388  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
389    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
390      return true;
391
392    if (CheckTemplate && isa<TemplateDecl>(*I))
393      return true;
394  }
395
396  return false;
397}
398
399Sema::NameClassification Sema::ClassifyName(Scope *S,
400                                            CXXScopeSpec &SS,
401                                            IdentifierInfo *&Name,
402                                            SourceLocation NameLoc,
403                                            const Token &NextToken) {
404  DeclarationNameInfo NameInfo(Name, NameLoc);
405  ObjCMethodDecl *CurMethod = getCurMethodDecl();
406
407  if (NextToken.is(tok::coloncolon)) {
408    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
409                                QualType(), false, SS, 0, false);
410
411  }
412
413  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
414  LookupParsedName(Result, S, &SS, !CurMethod);
415
416  // Perform lookup for Objective-C instance variables (including automatically
417  // synthesized instance variables), if we're in an Objective-C method.
418  // FIXME: This lookup really, really needs to be folded in to the normal
419  // unqualified lookup mechanism.
420  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
421    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
422    if (E.get() || E.isInvalid())
423      return E;
424  }
425
426  bool SecondTry = false;
427  bool IsFilteredTemplateName = false;
428
429Corrected:
430  switch (Result.getResultKind()) {
431  case LookupResult::NotFound:
432    // If an unqualified-id is followed by a '(', then we have a function
433    // call.
434    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
435      // In C++, this is an ADL-only call.
436      // FIXME: Reference?
437      if (getLangOptions().CPlusPlus)
438        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
439
440      // C90 6.3.2.2:
441      //   If the expression that precedes the parenthesized argument list in a
442      //   function call consists solely of an identifier, and if no
443      //   declaration is visible for this identifier, the identifier is
444      //   implicitly declared exactly as if, in the innermost block containing
445      //   the function call, the declaration
446      //
447      //     extern int identifier ();
448      //
449      //   appeared.
450      //
451      // We also allow this in C99 as an extension.
452      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
453        Result.addDecl(D);
454        Result.resolveKind();
455        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
456      }
457    }
458
459    // In C, we first see whether there is a tag type by the same name, in
460    // which case it's likely that the user just forget to write "enum",
461    // "struct", or "union".
462    if (!getLangOptions().CPlusPlus && !SecondTry) {
463      Result.clear(LookupTagName);
464      LookupParsedName(Result, S, &SS);
465      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
466        const char *TagName = 0;
467        const char *FixItTagName = 0;
468        switch (Tag->getTagKind()) {
469          case TTK_Class:
470            TagName = "class";
471            FixItTagName = "class ";
472            break;
473
474          case TTK_Enum:
475            TagName = "enum";
476            FixItTagName = "enum ";
477            break;
478
479          case TTK_Struct:
480            TagName = "struct";
481            FixItTagName = "struct ";
482            break;
483
484          case TTK_Union:
485            TagName = "union";
486            FixItTagName = "union ";
487            break;
488        }
489
490        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
491          << Name << TagName << getLangOptions().CPlusPlus
492          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
493        break;
494      }
495
496      Result.clear(LookupOrdinaryName);
497    }
498
499    // Perform typo correction to determine if there is another name that is
500    // close to this name.
501    if (!SecondTry) {
502      SecondTry = true;
503      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
504                                                 Result.getLookupKind(), S, &SS)) {
505        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
506        unsigned QualifiedDiag = diag::err_no_member_suggest;
507        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
508        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
509
510        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
511        NamedDecl *UnderlyingFirstDecl
512          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
513        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
514            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
515          UnqualifiedDiag = diag::err_no_template_suggest;
516          QualifiedDiag = diag::err_no_member_template_suggest;
517        } else if (UnderlyingFirstDecl &&
518                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
520                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
521           UnqualifiedDiag = diag::err_unknown_typename_suggest;
522           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
523         }
524
525        if (SS.isEmpty())
526          Diag(NameLoc, UnqualifiedDiag)
527            << Name << CorrectedQuotedStr
528            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
529        else
530          Diag(NameLoc, QualifiedDiag)
531            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
532            << SS.getRange()
533            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
534
535        // Update the name, so that the caller has the new name.
536        Name = Corrected.getCorrectionAsIdentifierInfo();
537
538        // Also update the LookupResult...
539        // FIXME: This should probably go away at some point
540        Result.clear();
541        Result.setLookupName(Corrected.getCorrection());
542        if (FirstDecl) Result.addDecl(FirstDecl);
543
544        // Typo correction corrected to a keyword.
545        if (Corrected.isKeyword())
546          return Corrected.getCorrectionAsIdentifierInfo();
547
548        if (FirstDecl)
549          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
550            << CorrectedQuotedStr;
551
552        // If we found an Objective-C instance variable, let
553        // LookupInObjCMethod build the appropriate expression to
554        // reference the ivar.
555        // FIXME: This is a gross hack.
556        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
557          Result.clear();
558          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
559          return move(E);
560        }
561
562        goto Corrected;
563      }
564    }
565
566    // We failed to correct; just fall through and let the parser deal with it.
567    Result.suppressDiagnostics();
568    return NameClassification::Unknown();
569
570  case LookupResult::NotFoundInCurrentInstantiation:
571    // We performed name lookup into the current instantiation, and there were
572    // dependent bases, so we treat this result the same way as any other
573    // dependent nested-name-specifier.
574
575    // C++ [temp.res]p2:
576    //   A name used in a template declaration or definition and that is
577    //   dependent on a template-parameter is assumed not to name a type
578    //   unless the applicable name lookup finds a type name or the name is
579    //   qualified by the keyword typename.
580    //
581    // FIXME: If the next token is '<', we might want to ask the parser to
582    // perform some heroics to see if we actually have a
583    // template-argument-list, which would indicate a missing 'template'
584    // keyword here.
585    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
586
587  case LookupResult::Found:
588  case LookupResult::FoundOverloaded:
589  case LookupResult::FoundUnresolvedValue:
590    break;
591
592  case LookupResult::Ambiguous:
593    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
594        hasAnyAcceptableTemplateNames(Result)) {
595      // C++ [temp.local]p3:
596      //   A lookup that finds an injected-class-name (10.2) can result in an
597      //   ambiguity in certain cases (for example, if it is found in more than
598      //   one base class). If all of the injected-class-names that are found
599      //   refer to specializations of the same class template, and if the name
600      //   is followed by a template-argument-list, the reference refers to the
601      //   class template itself and not a specialization thereof, and is not
602      //   ambiguous.
603      //
604      // This filtering can make an ambiguous result into an unambiguous one,
605      // so try again after filtering out template names.
606      FilterAcceptableTemplateNames(Result);
607      if (!Result.isAmbiguous()) {
608        IsFilteredTemplateName = true;
609        break;
610      }
611    }
612
613    // Diagnose the ambiguity and return an error.
614    return NameClassification::Error();
615  }
616
617  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
618      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
619    // C++ [temp.names]p3:
620    //   After name lookup (3.4) finds that a name is a template-name or that
621    //   an operator-function-id or a literal- operator-id refers to a set of
622    //   overloaded functions any member of which is a function template if
623    //   this is followed by a <, the < is always taken as the delimiter of a
624    //   template-argument-list and never as the less-than operator.
625    if (!IsFilteredTemplateName)
626      FilterAcceptableTemplateNames(Result);
627
628    if (!Result.empty()) {
629      bool IsFunctionTemplate;
630      TemplateName Template;
631      if (Result.end() - Result.begin() > 1) {
632        IsFunctionTemplate = true;
633        Template = Context.getOverloadedTemplateName(Result.begin(),
634                                                     Result.end());
635      } else {
636        TemplateDecl *TD
637          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
638        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
639
640        if (SS.isSet() && !SS.isInvalid())
641          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
642                                                    /*TemplateKeyword=*/false,
643                                                      TD);
644        else
645          Template = TemplateName(TD);
646      }
647
648      if (IsFunctionTemplate) {
649        // Function templates always go through overload resolution, at which
650        // point we'll perform the various checks (e.g., accessibility) we need
651        // to based on which function we selected.
652        Result.suppressDiagnostics();
653
654        return NameClassification::FunctionTemplate(Template);
655      }
656
657      return NameClassification::TypeTemplate(Template);
658    }
659  }
660
661  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
662  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
663    DiagnoseUseOfDecl(Type, NameLoc);
664    QualType T = Context.getTypeDeclType(Type);
665    return ParsedType::make(T);
666  }
667
668  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
669  if (!Class) {
670    // FIXME: It's unfortunate that we don't have a Type node for handling this.
671    if (ObjCCompatibleAliasDecl *Alias
672                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
673      Class = Alias->getClassInterface();
674  }
675
676  if (Class) {
677    DiagnoseUseOfDecl(Class, NameLoc);
678
679    if (NextToken.is(tok::period)) {
680      // Interface. <something> is parsed as a property reference expression.
681      // Just return "unknown" as a fall-through for now.
682      Result.suppressDiagnostics();
683      return NameClassification::Unknown();
684    }
685
686    QualType T = Context.getObjCInterfaceType(Class);
687    return ParsedType::make(T);
688  }
689
690  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
691    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
692
693  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
694  return BuildDeclarationNameExpr(SS, Result, ADL);
695}
696
697// Determines the context to return to after temporarily entering a
698// context.  This depends in an unnecessarily complicated way on the
699// exact ordering of callbacks from the parser.
700DeclContext *Sema::getContainingDC(DeclContext *DC) {
701
702  // Functions defined inline within classes aren't parsed until we've
703  // finished parsing the top-level class, so the top-level class is
704  // the context we'll need to return to.
705  if (isa<FunctionDecl>(DC)) {
706    DC = DC->getLexicalParent();
707
708    // A function not defined within a class will always return to its
709    // lexical context.
710    if (!isa<CXXRecordDecl>(DC))
711      return DC;
712
713    // A C++ inline method/friend is parsed *after* the topmost class
714    // it was declared in is fully parsed ("complete");  the topmost
715    // class is the context we need to return to.
716    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
717      DC = RD;
718
719    // Return the declaration context of the topmost class the inline method is
720    // declared in.
721    return DC;
722  }
723
724  return DC->getLexicalParent();
725}
726
727void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
728  assert(getContainingDC(DC) == CurContext &&
729      "The next DeclContext should be lexically contained in the current one.");
730  CurContext = DC;
731  S->setEntity(DC);
732}
733
734void Sema::PopDeclContext() {
735  assert(CurContext && "DeclContext imbalance!");
736
737  CurContext = getContainingDC(CurContext);
738  assert(CurContext && "Popped translation unit!");
739}
740
741/// EnterDeclaratorContext - Used when we must lookup names in the context
742/// of a declarator's nested name specifier.
743///
744void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
745  // C++0x [basic.lookup.unqual]p13:
746  //   A name used in the definition of a static data member of class
747  //   X (after the qualified-id of the static member) is looked up as
748  //   if the name was used in a member function of X.
749  // C++0x [basic.lookup.unqual]p14:
750  //   If a variable member of a namespace is defined outside of the
751  //   scope of its namespace then any name used in the definition of
752  //   the variable member (after the declarator-id) is looked up as
753  //   if the definition of the variable member occurred in its
754  //   namespace.
755  // Both of these imply that we should push a scope whose context
756  // is the semantic context of the declaration.  We can't use
757  // PushDeclContext here because that context is not necessarily
758  // lexically contained in the current context.  Fortunately,
759  // the containing scope should have the appropriate information.
760
761  assert(!S->getEntity() && "scope already has entity");
762
763#ifndef NDEBUG
764  Scope *Ancestor = S->getParent();
765  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
766  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
767#endif
768
769  CurContext = DC;
770  S->setEntity(DC);
771}
772
773void Sema::ExitDeclaratorContext(Scope *S) {
774  assert(S->getEntity() == CurContext && "Context imbalance!");
775
776  // Switch back to the lexical context.  The safety of this is
777  // enforced by an assert in EnterDeclaratorContext.
778  Scope *Ancestor = S->getParent();
779  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
780  CurContext = (DeclContext*) Ancestor->getEntity();
781
782  // We don't need to do anything with the scope, which is going to
783  // disappear.
784}
785
786
787void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
788  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
789  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
790    // We assume that the caller has already called
791    // ActOnReenterTemplateScope
792    FD = TFD->getTemplatedDecl();
793  }
794  if (!FD)
795    return;
796
797  PushDeclContext(S, FD);
798  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
799    ParmVarDecl *Param = FD->getParamDecl(P);
800    // If the parameter has an identifier, then add it to the scope
801    if (Param->getIdentifier()) {
802      S->AddDecl(Param);
803      IdResolver.AddDecl(Param);
804    }
805  }
806}
807
808
809/// \brief Determine whether we allow overloading of the function
810/// PrevDecl with another declaration.
811///
812/// This routine determines whether overloading is possible, not
813/// whether some new function is actually an overload. It will return
814/// true in C++ (where we can always provide overloads) or, as an
815/// extension, in C when the previous function is already an
816/// overloaded function declaration or has the "overloadable"
817/// attribute.
818static bool AllowOverloadingOfFunction(LookupResult &Previous,
819                                       ASTContext &Context) {
820  if (Context.getLangOptions().CPlusPlus)
821    return true;
822
823  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
824    return true;
825
826  return (Previous.getResultKind() == LookupResult::Found
827          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
828}
829
830/// Add this decl to the scope shadowed decl chains.
831void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
832  // Move up the scope chain until we find the nearest enclosing
833  // non-transparent context. The declaration will be introduced into this
834  // scope.
835  while (S->getEntity() &&
836         ((DeclContext *)S->getEntity())->isTransparentContext())
837    S = S->getParent();
838
839  // Add scoped declarations into their context, so that they can be
840  // found later. Declarations without a context won't be inserted
841  // into any context.
842  if (AddToContext)
843    CurContext->addDecl(D);
844
845  // Out-of-line definitions shouldn't be pushed into scope in C++.
846  // Out-of-line variable and function definitions shouldn't even in C.
847  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
848      D->isOutOfLine() &&
849      !D->getDeclContext()->getRedeclContext()->Equals(
850        D->getLexicalDeclContext()->getRedeclContext()))
851    return;
852
853  // Template instantiations should also not be pushed into scope.
854  if (isa<FunctionDecl>(D) &&
855      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
856    return;
857
858  // If this replaces anything in the current scope,
859  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
860                               IEnd = IdResolver.end();
861  for (; I != IEnd; ++I) {
862    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
863      S->RemoveDecl(*I);
864      IdResolver.RemoveDecl(*I);
865
866      // Should only need to replace one decl.
867      break;
868    }
869  }
870
871  S->AddDecl(D);
872
873  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
874    // Implicitly-generated labels may end up getting generated in an order that
875    // isn't strictly lexical, which breaks name lookup. Be careful to insert
876    // the label at the appropriate place in the identifier chain.
877    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
878      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
879      if (IDC == CurContext) {
880        if (!S->isDeclScope(*I))
881          continue;
882      } else if (IDC->Encloses(CurContext))
883        break;
884    }
885
886    IdResolver.InsertDeclAfter(I, D);
887  } else {
888    IdResolver.AddDecl(D);
889  }
890}
891
892bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
893                         bool ExplicitInstantiationOrSpecialization) {
894  return IdResolver.isDeclInScope(D, Ctx, Context, S,
895                                  ExplicitInstantiationOrSpecialization);
896}
897
898Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
899  DeclContext *TargetDC = DC->getPrimaryContext();
900  do {
901    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
902      if (ScopeDC->getPrimaryContext() == TargetDC)
903        return S;
904  } while ((S = S->getParent()));
905
906  return 0;
907}
908
909static bool isOutOfScopePreviousDeclaration(NamedDecl *,
910                                            DeclContext*,
911                                            ASTContext&);
912
913/// Filters out lookup results that don't fall within the given scope
914/// as determined by isDeclInScope.
915void Sema::FilterLookupForScope(LookupResult &R,
916                                DeclContext *Ctx, Scope *S,
917                                bool ConsiderLinkage,
918                                bool ExplicitInstantiationOrSpecialization) {
919  LookupResult::Filter F = R.makeFilter();
920  while (F.hasNext()) {
921    NamedDecl *D = F.next();
922
923    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
924      continue;
925
926    if (ConsiderLinkage &&
927        isOutOfScopePreviousDeclaration(D, Ctx, Context))
928      continue;
929
930    F.erase();
931  }
932
933  F.done();
934}
935
936static bool isUsingDecl(NamedDecl *D) {
937  return isa<UsingShadowDecl>(D) ||
938         isa<UnresolvedUsingTypenameDecl>(D) ||
939         isa<UnresolvedUsingValueDecl>(D);
940}
941
942/// Removes using shadow declarations from the lookup results.
943static void RemoveUsingDecls(LookupResult &R) {
944  LookupResult::Filter F = R.makeFilter();
945  while (F.hasNext())
946    if (isUsingDecl(F.next()))
947      F.erase();
948
949  F.done();
950}
951
952/// \brief Check for this common pattern:
953/// @code
954/// class S {
955///   S(const S&); // DO NOT IMPLEMENT
956///   void operator=(const S&); // DO NOT IMPLEMENT
957/// };
958/// @endcode
959static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
960  // FIXME: Should check for private access too but access is set after we get
961  // the decl here.
962  if (D->doesThisDeclarationHaveABody())
963    return false;
964
965  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
966    return CD->isCopyConstructor();
967  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
968    return Method->isCopyAssignmentOperator();
969  return false;
970}
971
972bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
973  assert(D);
974
975  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
976    return false;
977
978  // Ignore class templates.
979  if (D->getDeclContext()->isDependentContext() ||
980      D->getLexicalDeclContext()->isDependentContext())
981    return false;
982
983  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
984    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
985      return false;
986
987    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
988      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
989        return false;
990    } else {
991      // 'static inline' functions are used in headers; don't warn.
992      if (FD->getStorageClass() == SC_Static &&
993          FD->isInlineSpecified())
994        return false;
995    }
996
997    if (FD->doesThisDeclarationHaveABody() &&
998        Context.DeclMustBeEmitted(FD))
999      return false;
1000  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1001    if (!VD->isFileVarDecl() ||
1002        VD->getType().isConstant(Context) ||
1003        Context.DeclMustBeEmitted(VD))
1004      return false;
1005
1006    if (VD->isStaticDataMember() &&
1007        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1008      return false;
1009
1010  } else {
1011    return false;
1012  }
1013
1014  // Only warn for unused decls internal to the translation unit.
1015  if (D->getLinkage() == ExternalLinkage)
1016    return false;
1017
1018  return true;
1019}
1020
1021void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1022  if (!D)
1023    return;
1024
1025  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1026    const FunctionDecl *First = FD->getFirstDeclaration();
1027    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1028      return; // First should already be in the vector.
1029  }
1030
1031  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1032    const VarDecl *First = VD->getFirstDeclaration();
1033    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1034      return; // First should already be in the vector.
1035  }
1036
1037   if (ShouldWarnIfUnusedFileScopedDecl(D))
1038     UnusedFileScopedDecls.push_back(D);
1039 }
1040
1041static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1042  if (D->isInvalidDecl())
1043    return false;
1044
1045  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1046    return false;
1047
1048  if (isa<LabelDecl>(D))
1049    return true;
1050
1051  // White-list anything that isn't a local variable.
1052  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1053      !D->getDeclContext()->isFunctionOrMethod())
1054    return false;
1055
1056  // Types of valid local variables should be complete, so this should succeed.
1057  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1058
1059    // White-list anything with an __attribute__((unused)) type.
1060    QualType Ty = VD->getType();
1061
1062    // Only look at the outermost level of typedef.
1063    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1064      if (TT->getDecl()->hasAttr<UnusedAttr>())
1065        return false;
1066    }
1067
1068    // If we failed to complete the type for some reason, or if the type is
1069    // dependent, don't diagnose the variable.
1070    if (Ty->isIncompleteType() || Ty->isDependentType())
1071      return false;
1072
1073    if (const TagType *TT = Ty->getAs<TagType>()) {
1074      const TagDecl *Tag = TT->getDecl();
1075      if (Tag->hasAttr<UnusedAttr>())
1076        return false;
1077
1078      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1079        // FIXME: Checking for the presence of a user-declared constructor
1080        // isn't completely accurate; we'd prefer to check that the initializer
1081        // has no side effects.
1082        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1083          return false;
1084      }
1085    }
1086
1087    // TODO: __attribute__((unused)) templates?
1088  }
1089
1090  return true;
1091}
1092
1093static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1094                                     FixItHint &Hint) {
1095  if (isa<LabelDecl>(D)) {
1096    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1097                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1098    if (AfterColon.isInvalid())
1099      return;
1100    Hint = FixItHint::CreateRemoval(CharSourceRange::
1101                                    getCharRange(D->getLocStart(), AfterColon));
1102  }
1103  return;
1104}
1105
1106/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1107/// unless they are marked attr(unused).
1108void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1109  FixItHint Hint;
1110  if (!ShouldDiagnoseUnusedDecl(D))
1111    return;
1112
1113  GenerateFixForUnusedDecl(D, Context, Hint);
1114
1115  unsigned DiagID;
1116  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1117    DiagID = diag::warn_unused_exception_param;
1118  else if (isa<LabelDecl>(D))
1119    DiagID = diag::warn_unused_label;
1120  else
1121    DiagID = diag::warn_unused_variable;
1122
1123  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1124}
1125
1126static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1127  // Verify that we have no forward references left.  If so, there was a goto
1128  // or address of a label taken, but no definition of it.  Label fwd
1129  // definitions are indicated with a null substmt.
1130  if (L->getStmt() == 0)
1131    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1132}
1133
1134void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1135  if (S->decl_empty()) return;
1136  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1137         "Scope shouldn't contain decls!");
1138
1139  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1140       I != E; ++I) {
1141    Decl *TmpD = (*I);
1142    assert(TmpD && "This decl didn't get pushed??");
1143
1144    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1145    NamedDecl *D = cast<NamedDecl>(TmpD);
1146
1147    if (!D->getDeclName()) continue;
1148
1149    // Diagnose unused variables in this scope.
1150    if (!S->hasErrorOccurred())
1151      DiagnoseUnusedDecl(D);
1152
1153    // If this was a forward reference to a label, verify it was defined.
1154    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1155      CheckPoppedLabel(LD, *this);
1156
1157    // Remove this name from our lexical scope.
1158    IdResolver.RemoveDecl(D);
1159  }
1160}
1161
1162/// \brief Look for an Objective-C class in the translation unit.
1163///
1164/// \param Id The name of the Objective-C class we're looking for. If
1165/// typo-correction fixes this name, the Id will be updated
1166/// to the fixed name.
1167///
1168/// \param IdLoc The location of the name in the translation unit.
1169///
1170/// \param TypoCorrection If true, this routine will attempt typo correction
1171/// if there is no class with the given name.
1172///
1173/// \returns The declaration of the named Objective-C class, or NULL if the
1174/// class could not be found.
1175ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1176                                              SourceLocation IdLoc,
1177                                              bool DoTypoCorrection) {
1178  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1179  // creation from this context.
1180  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1181
1182  if (!IDecl && DoTypoCorrection) {
1183    // Perform typo correction at the given location, but only if we
1184    // find an Objective-C class name.
1185    TypoCorrection C;
1186    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1187                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1188        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1189      Diag(IdLoc, diag::err_undef_interface_suggest)
1190        << Id << IDecl->getDeclName()
1191        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1192      Diag(IDecl->getLocation(), diag::note_previous_decl)
1193        << IDecl->getDeclName();
1194
1195      Id = IDecl->getIdentifier();
1196    }
1197  }
1198
1199  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1200}
1201
1202/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1203/// from S, where a non-field would be declared. This routine copes
1204/// with the difference between C and C++ scoping rules in structs and
1205/// unions. For example, the following code is well-formed in C but
1206/// ill-formed in C++:
1207/// @code
1208/// struct S6 {
1209///   enum { BAR } e;
1210/// };
1211///
1212/// void test_S6() {
1213///   struct S6 a;
1214///   a.e = BAR;
1215/// }
1216/// @endcode
1217/// For the declaration of BAR, this routine will return a different
1218/// scope. The scope S will be the scope of the unnamed enumeration
1219/// within S6. In C++, this routine will return the scope associated
1220/// with S6, because the enumeration's scope is a transparent
1221/// context but structures can contain non-field names. In C, this
1222/// routine will return the translation unit scope, since the
1223/// enumeration's scope is a transparent context and structures cannot
1224/// contain non-field names.
1225Scope *Sema::getNonFieldDeclScope(Scope *S) {
1226  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1227         (S->getEntity() &&
1228          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1229         (S->isClassScope() && !getLangOptions().CPlusPlus))
1230    S = S->getParent();
1231  return S;
1232}
1233
1234/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1235/// file scope.  lazily create a decl for it. ForRedeclaration is true
1236/// if we're creating this built-in in anticipation of redeclaring the
1237/// built-in.
1238NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1239                                     Scope *S, bool ForRedeclaration,
1240                                     SourceLocation Loc) {
1241  Builtin::ID BID = (Builtin::ID)bid;
1242
1243  ASTContext::GetBuiltinTypeError Error;
1244  QualType R = Context.GetBuiltinType(BID, Error);
1245  switch (Error) {
1246  case ASTContext::GE_None:
1247    // Okay
1248    break;
1249
1250  case ASTContext::GE_Missing_stdio:
1251    if (ForRedeclaration)
1252      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1253        << Context.BuiltinInfo.GetName(BID);
1254    return 0;
1255
1256  case ASTContext::GE_Missing_setjmp:
1257    if (ForRedeclaration)
1258      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1259        << Context.BuiltinInfo.GetName(BID);
1260    return 0;
1261  }
1262
1263  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1264    Diag(Loc, diag::ext_implicit_lib_function_decl)
1265      << Context.BuiltinInfo.GetName(BID)
1266      << R;
1267    if (Context.BuiltinInfo.getHeaderName(BID) &&
1268        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1269          != DiagnosticsEngine::Ignored)
1270      Diag(Loc, diag::note_please_include_header)
1271        << Context.BuiltinInfo.getHeaderName(BID)
1272        << Context.BuiltinInfo.GetName(BID);
1273  }
1274
1275  FunctionDecl *New = FunctionDecl::Create(Context,
1276                                           Context.getTranslationUnitDecl(),
1277                                           Loc, Loc, II, R, /*TInfo=*/0,
1278                                           SC_Extern,
1279                                           SC_None, false,
1280                                           /*hasPrototype=*/true);
1281  New->setImplicit();
1282
1283  // Create Decl objects for each parameter, adding them to the
1284  // FunctionDecl.
1285  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1286    SmallVector<ParmVarDecl*, 16> Params;
1287    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1288      ParmVarDecl *parm =
1289        ParmVarDecl::Create(Context, New, SourceLocation(),
1290                            SourceLocation(), 0,
1291                            FT->getArgType(i), /*TInfo=*/0,
1292                            SC_None, SC_None, 0);
1293      parm->setScopeInfo(0, i);
1294      Params.push_back(parm);
1295    }
1296    New->setParams(Params);
1297  }
1298
1299  AddKnownFunctionAttributes(New);
1300
1301  // TUScope is the translation-unit scope to insert this function into.
1302  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1303  // relate Scopes to DeclContexts, and probably eliminate CurContext
1304  // entirely, but we're not there yet.
1305  DeclContext *SavedContext = CurContext;
1306  CurContext = Context.getTranslationUnitDecl();
1307  PushOnScopeChains(New, TUScope);
1308  CurContext = SavedContext;
1309  return New;
1310}
1311
1312/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1313/// same name and scope as a previous declaration 'Old'.  Figure out
1314/// how to resolve this situation, merging decls or emitting
1315/// diagnostics as appropriate. If there was an error, set New to be invalid.
1316///
1317void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1318  // If the new decl is known invalid already, don't bother doing any
1319  // merging checks.
1320  if (New->isInvalidDecl()) return;
1321
1322  // Allow multiple definitions for ObjC built-in typedefs.
1323  // FIXME: Verify the underlying types are equivalent!
1324  if (getLangOptions().ObjC1) {
1325    const IdentifierInfo *TypeID = New->getIdentifier();
1326    switch (TypeID->getLength()) {
1327    default: break;
1328    case 2:
1329      if (!TypeID->isStr("id"))
1330        break;
1331      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1332      // Install the built-in type for 'id', ignoring the current definition.
1333      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1334      return;
1335    case 5:
1336      if (!TypeID->isStr("Class"))
1337        break;
1338      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1339      // Install the built-in type for 'Class', ignoring the current definition.
1340      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1341      return;
1342    case 3:
1343      if (!TypeID->isStr("SEL"))
1344        break;
1345      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1346      // Install the built-in type for 'SEL', ignoring the current definition.
1347      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1348      return;
1349    }
1350    // Fall through - the typedef name was not a builtin type.
1351  }
1352
1353  // Verify the old decl was also a type.
1354  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1355  if (!Old) {
1356    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1357      << New->getDeclName();
1358
1359    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1360    if (OldD->getLocation().isValid())
1361      Diag(OldD->getLocation(), diag::note_previous_definition);
1362
1363    return New->setInvalidDecl();
1364  }
1365
1366  // If the old declaration is invalid, just give up here.
1367  if (Old->isInvalidDecl())
1368    return New->setInvalidDecl();
1369
1370  // Determine the "old" type we'll use for checking and diagnostics.
1371  QualType OldType;
1372  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1373    OldType = OldTypedef->getUnderlyingType();
1374  else
1375    OldType = Context.getTypeDeclType(Old);
1376
1377  // If the typedef types are not identical, reject them in all languages and
1378  // with any extensions enabled.
1379
1380  if (OldType != New->getUnderlyingType() &&
1381      Context.getCanonicalType(OldType) !=
1382      Context.getCanonicalType(New->getUnderlyingType())) {
1383    int Kind = 0;
1384    if (isa<TypeAliasDecl>(Old))
1385      Kind = 1;
1386    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1387      << Kind << New->getUnderlyingType() << OldType;
1388    if (Old->getLocation().isValid())
1389      Diag(Old->getLocation(), diag::note_previous_definition);
1390    return New->setInvalidDecl();
1391  }
1392
1393  // The types match.  Link up the redeclaration chain if the old
1394  // declaration was a typedef.
1395  // FIXME: this is a potential source of weirdness if the type
1396  // spellings don't match exactly.
1397  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1398    New->setPreviousDeclaration(Typedef);
1399
1400  // __module_private__ is propagated to later declarations.
1401  if (Old->isModulePrivate())
1402    New->setModulePrivate();
1403  else if (New->isModulePrivate())
1404    diagnoseModulePrivateRedeclaration(New, Old);
1405
1406  if (getLangOptions().MicrosoftExt)
1407    return;
1408
1409  if (getLangOptions().CPlusPlus) {
1410    // C++ [dcl.typedef]p2:
1411    //   In a given non-class scope, a typedef specifier can be used to
1412    //   redefine the name of any type declared in that scope to refer
1413    //   to the type to which it already refers.
1414    if (!isa<CXXRecordDecl>(CurContext))
1415      return;
1416
1417    // C++0x [dcl.typedef]p4:
1418    //   In a given class scope, a typedef specifier can be used to redefine
1419    //   any class-name declared in that scope that is not also a typedef-name
1420    //   to refer to the type to which it already refers.
1421    //
1422    // This wording came in via DR424, which was a correction to the
1423    // wording in DR56, which accidentally banned code like:
1424    //
1425    //   struct S {
1426    //     typedef struct A { } A;
1427    //   };
1428    //
1429    // in the C++03 standard. We implement the C++0x semantics, which
1430    // allow the above but disallow
1431    //
1432    //   struct S {
1433    //     typedef int I;
1434    //     typedef int I;
1435    //   };
1436    //
1437    // since that was the intent of DR56.
1438    if (!isa<TypedefNameDecl>(Old))
1439      return;
1440
1441    Diag(New->getLocation(), diag::err_redefinition)
1442      << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444    return New->setInvalidDecl();
1445  }
1446
1447  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1448  // is normally mapped to an error, but can be controlled with
1449  // -Wtypedef-redefinition.  If either the original or the redefinition is
1450  // in a system header, don't emit this for compatibility with GCC.
1451  if (getDiagnostics().getSuppressSystemWarnings() &&
1452      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1453       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1454    return;
1455
1456  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1457    << New->getDeclName();
1458  Diag(Old->getLocation(), diag::note_previous_definition);
1459  return;
1460}
1461
1462/// DeclhasAttr - returns true if decl Declaration already has the target
1463/// attribute.
1464static bool
1465DeclHasAttr(const Decl *D, const Attr *A) {
1466  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1467  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1468  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1469    if ((*i)->getKind() == A->getKind()) {
1470      if (Ann) {
1471        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1472          return true;
1473        continue;
1474      }
1475      // FIXME: Don't hardcode this check
1476      if (OA && isa<OwnershipAttr>(*i))
1477        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1478      return true;
1479    }
1480
1481  return false;
1482}
1483
1484/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1485static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1486                                ASTContext &C, bool mergeDeprecation = true) {
1487  if (!oldDecl->hasAttrs())
1488    return;
1489
1490  bool foundAny = newDecl->hasAttrs();
1491
1492  // Ensure that any moving of objects within the allocated map is done before
1493  // we process them.
1494  if (!foundAny) newDecl->setAttrs(AttrVec());
1495
1496  for (specific_attr_iterator<InheritableAttr>
1497       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1498       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1499    // Ignore deprecated/unavailable/availability attributes if requested.
1500    if (!mergeDeprecation &&
1501        (isa<DeprecatedAttr>(*i) ||
1502         isa<UnavailableAttr>(*i) ||
1503         isa<AvailabilityAttr>(*i)))
1504      continue;
1505
1506    if (!DeclHasAttr(newDecl, *i)) {
1507      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1508      newAttr->setInherited(true);
1509      newDecl->addAttr(newAttr);
1510      foundAny = true;
1511    }
1512  }
1513
1514  if (!foundAny) newDecl->dropAttrs();
1515}
1516
1517/// mergeParamDeclAttributes - Copy attributes from the old parameter
1518/// to the new one.
1519static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1520                                     const ParmVarDecl *oldDecl,
1521                                     ASTContext &C) {
1522  if (!oldDecl->hasAttrs())
1523    return;
1524
1525  bool foundAny = newDecl->hasAttrs();
1526
1527  // Ensure that any moving of objects within the allocated map is
1528  // done before we process them.
1529  if (!foundAny) newDecl->setAttrs(AttrVec());
1530
1531  for (specific_attr_iterator<InheritableParamAttr>
1532       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1533       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1534    if (!DeclHasAttr(newDecl, *i)) {
1535      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1536      newAttr->setInherited(true);
1537      newDecl->addAttr(newAttr);
1538      foundAny = true;
1539    }
1540  }
1541
1542  if (!foundAny) newDecl->dropAttrs();
1543}
1544
1545namespace {
1546
1547/// Used in MergeFunctionDecl to keep track of function parameters in
1548/// C.
1549struct GNUCompatibleParamWarning {
1550  ParmVarDecl *OldParm;
1551  ParmVarDecl *NewParm;
1552  QualType PromotedType;
1553};
1554
1555}
1556
1557/// getSpecialMember - get the special member enum for a method.
1558Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1559  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1560    if (Ctor->isDefaultConstructor())
1561      return Sema::CXXDefaultConstructor;
1562
1563    if (Ctor->isCopyConstructor())
1564      return Sema::CXXCopyConstructor;
1565
1566    if (Ctor->isMoveConstructor())
1567      return Sema::CXXMoveConstructor;
1568  } else if (isa<CXXDestructorDecl>(MD)) {
1569    return Sema::CXXDestructor;
1570  } else if (MD->isCopyAssignmentOperator()) {
1571    return Sema::CXXCopyAssignment;
1572  } else if (MD->isMoveAssignmentOperator()) {
1573    return Sema::CXXMoveAssignment;
1574  }
1575
1576  return Sema::CXXInvalid;
1577}
1578
1579/// canRedefineFunction - checks if a function can be redefined. Currently,
1580/// only extern inline functions can be redefined, and even then only in
1581/// GNU89 mode.
1582static bool canRedefineFunction(const FunctionDecl *FD,
1583                                const LangOptions& LangOpts) {
1584  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1585          !LangOpts.CPlusPlus &&
1586          FD->isInlineSpecified() &&
1587          FD->getStorageClass() == SC_Extern);
1588}
1589
1590/// MergeFunctionDecl - We just parsed a function 'New' from
1591/// declarator D which has the same name and scope as a previous
1592/// declaration 'Old'.  Figure out how to resolve this situation,
1593/// merging decls or emitting diagnostics as appropriate.
1594///
1595/// In C++, New and Old must be declarations that are not
1596/// overloaded. Use IsOverload to determine whether New and Old are
1597/// overloaded, and to select the Old declaration that New should be
1598/// merged with.
1599///
1600/// Returns true if there was an error, false otherwise.
1601bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1602  // Verify the old decl was also a function.
1603  FunctionDecl *Old = 0;
1604  if (FunctionTemplateDecl *OldFunctionTemplate
1605        = dyn_cast<FunctionTemplateDecl>(OldD))
1606    Old = OldFunctionTemplate->getTemplatedDecl();
1607  else
1608    Old = dyn_cast<FunctionDecl>(OldD);
1609  if (!Old) {
1610    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1611      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1612      Diag(Shadow->getTargetDecl()->getLocation(),
1613           diag::note_using_decl_target);
1614      Diag(Shadow->getUsingDecl()->getLocation(),
1615           diag::note_using_decl) << 0;
1616      return true;
1617    }
1618
1619    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1620      << New->getDeclName();
1621    Diag(OldD->getLocation(), diag::note_previous_definition);
1622    return true;
1623  }
1624
1625  // Determine whether the previous declaration was a definition,
1626  // implicit declaration, or a declaration.
1627  diag::kind PrevDiag;
1628  if (Old->isThisDeclarationADefinition())
1629    PrevDiag = diag::note_previous_definition;
1630  else if (Old->isImplicit())
1631    PrevDiag = diag::note_previous_implicit_declaration;
1632  else
1633    PrevDiag = diag::note_previous_declaration;
1634
1635  QualType OldQType = Context.getCanonicalType(Old->getType());
1636  QualType NewQType = Context.getCanonicalType(New->getType());
1637
1638  // Don't complain about this if we're in GNU89 mode and the old function
1639  // is an extern inline function.
1640  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1641      New->getStorageClass() == SC_Static &&
1642      Old->getStorageClass() != SC_Static &&
1643      !canRedefineFunction(Old, getLangOptions())) {
1644    if (getLangOptions().MicrosoftExt) {
1645      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1646      Diag(Old->getLocation(), PrevDiag);
1647    } else {
1648      Diag(New->getLocation(), diag::err_static_non_static) << New;
1649      Diag(Old->getLocation(), PrevDiag);
1650      return true;
1651    }
1652  }
1653
1654  // If a function is first declared with a calling convention, but is
1655  // later declared or defined without one, the second decl assumes the
1656  // calling convention of the first.
1657  //
1658  // For the new decl, we have to look at the NON-canonical type to tell the
1659  // difference between a function that really doesn't have a calling
1660  // convention and one that is declared cdecl. That's because in
1661  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1662  // because it is the default calling convention.
1663  //
1664  // Note also that we DO NOT return at this point, because we still have
1665  // other tests to run.
1666  const FunctionType *OldType = cast<FunctionType>(OldQType);
1667  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1668  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1669  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1670  bool RequiresAdjustment = false;
1671  if (OldTypeInfo.getCC() != CC_Default &&
1672      NewTypeInfo.getCC() == CC_Default) {
1673    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1674    RequiresAdjustment = true;
1675  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1676                                     NewTypeInfo.getCC())) {
1677    // Calling conventions really aren't compatible, so complain.
1678    Diag(New->getLocation(), diag::err_cconv_change)
1679      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1680      << (OldTypeInfo.getCC() == CC_Default)
1681      << (OldTypeInfo.getCC() == CC_Default ? "" :
1682          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1683    Diag(Old->getLocation(), diag::note_previous_declaration);
1684    return true;
1685  }
1686
1687  // FIXME: diagnose the other way around?
1688  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1689    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1690    RequiresAdjustment = true;
1691  }
1692
1693  // Merge regparm attribute.
1694  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1695      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1696    if (NewTypeInfo.getHasRegParm()) {
1697      Diag(New->getLocation(), diag::err_regparm_mismatch)
1698        << NewType->getRegParmType()
1699        << OldType->getRegParmType();
1700      Diag(Old->getLocation(), diag::note_previous_declaration);
1701      return true;
1702    }
1703
1704    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1705    RequiresAdjustment = true;
1706  }
1707
1708  if (RequiresAdjustment) {
1709    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1710    New->setType(QualType(NewType, 0));
1711    NewQType = Context.getCanonicalType(New->getType());
1712  }
1713
1714  if (getLangOptions().CPlusPlus) {
1715    // (C++98 13.1p2):
1716    //   Certain function declarations cannot be overloaded:
1717    //     -- Function declarations that differ only in the return type
1718    //        cannot be overloaded.
1719    QualType OldReturnType = OldType->getResultType();
1720    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1721    QualType ResQT;
1722    if (OldReturnType != NewReturnType) {
1723      if (NewReturnType->isObjCObjectPointerType()
1724          && OldReturnType->isObjCObjectPointerType())
1725        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1726      if (ResQT.isNull()) {
1727        if (New->isCXXClassMember() && New->isOutOfLine())
1728          Diag(New->getLocation(),
1729               diag::err_member_def_does_not_match_ret_type) << New;
1730        else
1731          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1732        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1733        return true;
1734      }
1735      else
1736        NewQType = ResQT;
1737    }
1738
1739    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1740    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1741    if (OldMethod && NewMethod) {
1742      // Preserve triviality.
1743      NewMethod->setTrivial(OldMethod->isTrivial());
1744
1745      // MSVC allows explicit template specialization at class scope:
1746      // 2 CXMethodDecls referring to the same function will be injected.
1747      // We don't want a redeclartion error.
1748      bool IsClassScopeExplicitSpecialization =
1749                              OldMethod->isFunctionTemplateSpecialization() &&
1750                              NewMethod->isFunctionTemplateSpecialization();
1751      bool isFriend = NewMethod->getFriendObjectKind();
1752
1753      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1754          !IsClassScopeExplicitSpecialization) {
1755        //    -- Member function declarations with the same name and the
1756        //       same parameter types cannot be overloaded if any of them
1757        //       is a static member function declaration.
1758        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1759          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1760          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1761          return true;
1762        }
1763
1764        // C++ [class.mem]p1:
1765        //   [...] A member shall not be declared twice in the
1766        //   member-specification, except that a nested class or member
1767        //   class template can be declared and then later defined.
1768        unsigned NewDiag;
1769        if (isa<CXXConstructorDecl>(OldMethod))
1770          NewDiag = diag::err_constructor_redeclared;
1771        else if (isa<CXXDestructorDecl>(NewMethod))
1772          NewDiag = diag::err_destructor_redeclared;
1773        else if (isa<CXXConversionDecl>(NewMethod))
1774          NewDiag = diag::err_conv_function_redeclared;
1775        else
1776          NewDiag = diag::err_member_redeclared;
1777
1778        Diag(New->getLocation(), NewDiag);
1779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1780
1781      // Complain if this is an explicit declaration of a special
1782      // member that was initially declared implicitly.
1783      //
1784      // As an exception, it's okay to befriend such methods in order
1785      // to permit the implicit constructor/destructor/operator calls.
1786      } else if (OldMethod->isImplicit()) {
1787        if (isFriend) {
1788          NewMethod->setImplicit();
1789        } else {
1790          Diag(NewMethod->getLocation(),
1791               diag::err_definition_of_implicitly_declared_member)
1792            << New << getSpecialMember(OldMethod);
1793          return true;
1794        }
1795      } else if (OldMethod->isExplicitlyDefaulted()) {
1796        Diag(NewMethod->getLocation(),
1797             diag::err_definition_of_explicitly_defaulted_member)
1798          << getSpecialMember(OldMethod);
1799        return true;
1800      }
1801    }
1802
1803    // (C++98 8.3.5p3):
1804    //   All declarations for a function shall agree exactly in both the
1805    //   return type and the parameter-type-list.
1806    // We also want to respect all the extended bits except noreturn.
1807
1808    // noreturn should now match unless the old type info didn't have it.
1809    QualType OldQTypeForComparison = OldQType;
1810    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1811      assert(OldQType == QualType(OldType, 0));
1812      const FunctionType *OldTypeForComparison
1813        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1814      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1815      assert(OldQTypeForComparison.isCanonical());
1816    }
1817
1818    if (OldQTypeForComparison == NewQType)
1819      return MergeCompatibleFunctionDecls(New, Old);
1820
1821    // Fall through for conflicting redeclarations and redefinitions.
1822  }
1823
1824  // C: Function types need to be compatible, not identical. This handles
1825  // duplicate function decls like "void f(int); void f(enum X);" properly.
1826  if (!getLangOptions().CPlusPlus &&
1827      Context.typesAreCompatible(OldQType, NewQType)) {
1828    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1829    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1830    const FunctionProtoType *OldProto = 0;
1831    if (isa<FunctionNoProtoType>(NewFuncType) &&
1832        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1833      // The old declaration provided a function prototype, but the
1834      // new declaration does not. Merge in the prototype.
1835      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1836      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1837                                                 OldProto->arg_type_end());
1838      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1839                                         ParamTypes.data(), ParamTypes.size(),
1840                                         OldProto->getExtProtoInfo());
1841      New->setType(NewQType);
1842      New->setHasInheritedPrototype();
1843
1844      // Synthesize a parameter for each argument type.
1845      SmallVector<ParmVarDecl*, 16> Params;
1846      for (FunctionProtoType::arg_type_iterator
1847             ParamType = OldProto->arg_type_begin(),
1848             ParamEnd = OldProto->arg_type_end();
1849           ParamType != ParamEnd; ++ParamType) {
1850        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1851                                                 SourceLocation(),
1852                                                 SourceLocation(), 0,
1853                                                 *ParamType, /*TInfo=*/0,
1854                                                 SC_None, SC_None,
1855                                                 0);
1856        Param->setScopeInfo(0, Params.size());
1857        Param->setImplicit();
1858        Params.push_back(Param);
1859      }
1860
1861      New->setParams(Params);
1862    }
1863
1864    return MergeCompatibleFunctionDecls(New, Old);
1865  }
1866
1867  // GNU C permits a K&R definition to follow a prototype declaration
1868  // if the declared types of the parameters in the K&R definition
1869  // match the types in the prototype declaration, even when the
1870  // promoted types of the parameters from the K&R definition differ
1871  // from the types in the prototype. GCC then keeps the types from
1872  // the prototype.
1873  //
1874  // If a variadic prototype is followed by a non-variadic K&R definition,
1875  // the K&R definition becomes variadic.  This is sort of an edge case, but
1876  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1877  // C99 6.9.1p8.
1878  if (!getLangOptions().CPlusPlus &&
1879      Old->hasPrototype() && !New->hasPrototype() &&
1880      New->getType()->getAs<FunctionProtoType>() &&
1881      Old->getNumParams() == New->getNumParams()) {
1882    SmallVector<QualType, 16> ArgTypes;
1883    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1884    const FunctionProtoType *OldProto
1885      = Old->getType()->getAs<FunctionProtoType>();
1886    const FunctionProtoType *NewProto
1887      = New->getType()->getAs<FunctionProtoType>();
1888
1889    // Determine whether this is the GNU C extension.
1890    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1891                                               NewProto->getResultType());
1892    bool LooseCompatible = !MergedReturn.isNull();
1893    for (unsigned Idx = 0, End = Old->getNumParams();
1894         LooseCompatible && Idx != End; ++Idx) {
1895      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1896      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1897      if (Context.typesAreCompatible(OldParm->getType(),
1898                                     NewProto->getArgType(Idx))) {
1899        ArgTypes.push_back(NewParm->getType());
1900      } else if (Context.typesAreCompatible(OldParm->getType(),
1901                                            NewParm->getType(),
1902                                            /*CompareUnqualified=*/true)) {
1903        GNUCompatibleParamWarning Warn
1904          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1905        Warnings.push_back(Warn);
1906        ArgTypes.push_back(NewParm->getType());
1907      } else
1908        LooseCompatible = false;
1909    }
1910
1911    if (LooseCompatible) {
1912      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1913        Diag(Warnings[Warn].NewParm->getLocation(),
1914             diag::ext_param_promoted_not_compatible_with_prototype)
1915          << Warnings[Warn].PromotedType
1916          << Warnings[Warn].OldParm->getType();
1917        if (Warnings[Warn].OldParm->getLocation().isValid())
1918          Diag(Warnings[Warn].OldParm->getLocation(),
1919               diag::note_previous_declaration);
1920      }
1921
1922      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1923                                           ArgTypes.size(),
1924                                           OldProto->getExtProtoInfo()));
1925      return MergeCompatibleFunctionDecls(New, Old);
1926    }
1927
1928    // Fall through to diagnose conflicting types.
1929  }
1930
1931  // A function that has already been declared has been redeclared or defined
1932  // with a different type- show appropriate diagnostic
1933  if (unsigned BuiltinID = Old->getBuiltinID()) {
1934    // The user has declared a builtin function with an incompatible
1935    // signature.
1936    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1937      // The function the user is redeclaring is a library-defined
1938      // function like 'malloc' or 'printf'. Warn about the
1939      // redeclaration, then pretend that we don't know about this
1940      // library built-in.
1941      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1942      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1943        << Old << Old->getType();
1944      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1945      Old->setInvalidDecl();
1946      return false;
1947    }
1948
1949    PrevDiag = diag::note_previous_builtin_declaration;
1950  }
1951
1952  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1953  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1954  return true;
1955}
1956
1957/// \brief Completes the merge of two function declarations that are
1958/// known to be compatible.
1959///
1960/// This routine handles the merging of attributes and other
1961/// properties of function declarations form the old declaration to
1962/// the new declaration, once we know that New is in fact a
1963/// redeclaration of Old.
1964///
1965/// \returns false
1966bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1967  // Merge the attributes
1968  mergeDeclAttributes(New, Old, Context);
1969
1970  // Merge the storage class.
1971  if (Old->getStorageClass() != SC_Extern &&
1972      Old->getStorageClass() != SC_None)
1973    New->setStorageClass(Old->getStorageClass());
1974
1975  // Merge "pure" flag.
1976  if (Old->isPure())
1977    New->setPure();
1978
1979  // __module_private__ is propagated to later declarations.
1980  if (Old->isModulePrivate())
1981    New->setModulePrivate();
1982  else if (New->isModulePrivate())
1983    diagnoseModulePrivateRedeclaration(New, Old);
1984
1985  // Merge attributes from the parameters.  These can mismatch with K&R
1986  // declarations.
1987  if (New->getNumParams() == Old->getNumParams())
1988    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1989      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1990                               Context);
1991
1992  if (getLangOptions().CPlusPlus)
1993    return MergeCXXFunctionDecl(New, Old);
1994
1995  return false;
1996}
1997
1998
1999void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2000                                const ObjCMethodDecl *oldMethod) {
2001  // We don't want to merge unavailable and deprecated attributes
2002  // except from interface to implementation.
2003  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2004
2005  // Merge the attributes.
2006  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2007
2008  // Merge attributes from the parameters.
2009  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2010  for (ObjCMethodDecl::param_iterator
2011         ni = newMethod->param_begin(), ne = newMethod->param_end();
2012       ni != ne; ++ni, ++oi)
2013    mergeParamDeclAttributes(*ni, *oi, Context);
2014
2015  CheckObjCMethodOverride(newMethod, oldMethod, true);
2016}
2017
2018/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2019/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2020/// emitting diagnostics as appropriate.
2021///
2022/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2023/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2024/// check them before the initializer is attached.
2025///
2026void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2027  if (New->isInvalidDecl() || Old->isInvalidDecl())
2028    return;
2029
2030  QualType MergedT;
2031  if (getLangOptions().CPlusPlus) {
2032    AutoType *AT = New->getType()->getContainedAutoType();
2033    if (AT && !AT->isDeduced()) {
2034      // We don't know what the new type is until the initializer is attached.
2035      return;
2036    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2037      // These could still be something that needs exception specs checked.
2038      return MergeVarDeclExceptionSpecs(New, Old);
2039    }
2040    // C++ [basic.link]p10:
2041    //   [...] the types specified by all declarations referring to a given
2042    //   object or function shall be identical, except that declarations for an
2043    //   array object can specify array types that differ by the presence or
2044    //   absence of a major array bound (8.3.4).
2045    else if (Old->getType()->isIncompleteArrayType() &&
2046             New->getType()->isArrayType()) {
2047      CanQual<ArrayType> OldArray
2048        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2049      CanQual<ArrayType> NewArray
2050        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2051      if (OldArray->getElementType() == NewArray->getElementType())
2052        MergedT = New->getType();
2053    } else if (Old->getType()->isArrayType() &&
2054             New->getType()->isIncompleteArrayType()) {
2055      CanQual<ArrayType> OldArray
2056        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2057      CanQual<ArrayType> NewArray
2058        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2059      if (OldArray->getElementType() == NewArray->getElementType())
2060        MergedT = Old->getType();
2061    } else if (New->getType()->isObjCObjectPointerType()
2062               && Old->getType()->isObjCObjectPointerType()) {
2063        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2064                                                        Old->getType());
2065    }
2066  } else {
2067    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2068  }
2069  if (MergedT.isNull()) {
2070    Diag(New->getLocation(), diag::err_redefinition_different_type)
2071      << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  New->setType(MergedT);
2076}
2077
2078/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2079/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2080/// situation, merging decls or emitting diagnostics as appropriate.
2081///
2082/// Tentative definition rules (C99 6.9.2p2) are checked by
2083/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2084/// definitions here, since the initializer hasn't been attached.
2085///
2086void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2087  // If the new decl is already invalid, don't do any other checking.
2088  if (New->isInvalidDecl())
2089    return;
2090
2091  // Verify the old decl was also a variable.
2092  VarDecl *Old = 0;
2093  if (!Previous.isSingleResult() ||
2094      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2095    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2096      << New->getDeclName();
2097    Diag(Previous.getRepresentativeDecl()->getLocation(),
2098         diag::note_previous_definition);
2099    return New->setInvalidDecl();
2100  }
2101
2102  // C++ [class.mem]p1:
2103  //   A member shall not be declared twice in the member-specification [...]
2104  //
2105  // Here, we need only consider static data members.
2106  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2107    Diag(New->getLocation(), diag::err_duplicate_member)
2108      << New->getIdentifier();
2109    Diag(Old->getLocation(), diag::note_previous_declaration);
2110    New->setInvalidDecl();
2111  }
2112
2113  mergeDeclAttributes(New, Old, Context);
2114  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2115  if (New->getAttr<WeakImportAttr>() &&
2116      Old->getStorageClass() == SC_None &&
2117      !Old->getAttr<WeakImportAttr>()) {
2118    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2119    Diag(Old->getLocation(), diag::note_previous_definition);
2120    // Remove weak_import attribute on new declaration.
2121    New->dropAttr<WeakImportAttr>();
2122  }
2123
2124  // Merge the types.
2125  MergeVarDeclTypes(New, Old);
2126  if (New->isInvalidDecl())
2127    return;
2128
2129  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2130  if (New->getStorageClass() == SC_Static &&
2131      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2132    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  // C99 6.2.2p4:
2137  //   For an identifier declared with the storage-class specifier
2138  //   extern in a scope in which a prior declaration of that
2139  //   identifier is visible,23) if the prior declaration specifies
2140  //   internal or external linkage, the linkage of the identifier at
2141  //   the later declaration is the same as the linkage specified at
2142  //   the prior declaration. If no prior declaration is visible, or
2143  //   if the prior declaration specifies no linkage, then the
2144  //   identifier has external linkage.
2145  if (New->hasExternalStorage() && Old->hasLinkage())
2146    /* Okay */;
2147  else if (New->getStorageClass() != SC_Static &&
2148           Old->getStorageClass() == SC_Static) {
2149    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2150    Diag(Old->getLocation(), diag::note_previous_definition);
2151    return New->setInvalidDecl();
2152  }
2153
2154  // Check if extern is followed by non-extern and vice-versa.
2155  if (New->hasExternalStorage() &&
2156      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161  if (Old->hasExternalStorage() &&
2162      !New->hasLinkage() && New->isLocalVarDecl()) {
2163    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2164    Diag(Old->getLocation(), diag::note_previous_definition);
2165    return New->setInvalidDecl();
2166  }
2167
2168  // __module_private__ is propagated to later declarations.
2169  if (Old->isModulePrivate())
2170    New->setModulePrivate();
2171  else if (New->isModulePrivate())
2172    diagnoseModulePrivateRedeclaration(New, Old);
2173
2174  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2175
2176  // FIXME: The test for external storage here seems wrong? We still
2177  // need to check for mismatches.
2178  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2179      // Don't complain about out-of-line definitions of static members.
2180      !(Old->getLexicalDeclContext()->isRecord() &&
2181        !New->getLexicalDeclContext()->isRecord())) {
2182    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184    return New->setInvalidDecl();
2185  }
2186
2187  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2188    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2189    Diag(Old->getLocation(), diag::note_previous_definition);
2190  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2191    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193  }
2194
2195  // C++ doesn't have tentative definitions, so go right ahead and check here.
2196  const VarDecl *Def;
2197  if (getLangOptions().CPlusPlus &&
2198      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2199      (Def = Old->getDefinition())) {
2200    Diag(New->getLocation(), diag::err_redefinition)
2201      << New->getDeclName();
2202    Diag(Def->getLocation(), diag::note_previous_definition);
2203    New->setInvalidDecl();
2204    return;
2205  }
2206  // c99 6.2.2 P4.
2207  // For an identifier declared with the storage-class specifier extern in a
2208  // scope in which a prior declaration of that identifier is visible, if
2209  // the prior declaration specifies internal or external linkage, the linkage
2210  // of the identifier at the later declaration is the same as the linkage
2211  // specified at the prior declaration.
2212  // FIXME. revisit this code.
2213  if (New->hasExternalStorage() &&
2214      Old->getLinkage() == InternalLinkage &&
2215      New->getDeclContext() == Old->getDeclContext())
2216    New->setStorageClass(Old->getStorageClass());
2217
2218  // Keep a chain of previous declarations.
2219  New->setPreviousDeclaration(Old);
2220
2221  // Inherit access appropriately.
2222  New->setAccess(Old->getAccess());
2223}
2224
2225/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2226/// no declarator (e.g. "struct foo;") is parsed.
2227Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2228                                       DeclSpec &DS) {
2229  return ParsedFreeStandingDeclSpec(S, AS, DS,
2230                                    MultiTemplateParamsArg(*this, 0, 0));
2231}
2232
2233/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2234/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2235/// parameters to cope with template friend declarations.
2236Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2237                                       DeclSpec &DS,
2238                                       MultiTemplateParamsArg TemplateParams) {
2239  Decl *TagD = 0;
2240  TagDecl *Tag = 0;
2241  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2242      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2243      DS.getTypeSpecType() == DeclSpec::TST_union ||
2244      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2245    TagD = DS.getRepAsDecl();
2246
2247    if (!TagD) // We probably had an error
2248      return 0;
2249
2250    // Note that the above type specs guarantee that the
2251    // type rep is a Decl, whereas in many of the others
2252    // it's a Type.
2253    Tag = dyn_cast<TagDecl>(TagD);
2254  }
2255
2256  if (Tag)
2257    Tag->setFreeStanding();
2258
2259  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2260    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2261    // or incomplete types shall not be restrict-qualified."
2262    if (TypeQuals & DeclSpec::TQ_restrict)
2263      Diag(DS.getRestrictSpecLoc(),
2264           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2265           << DS.getSourceRange();
2266  }
2267
2268  if (DS.isConstexprSpecified()) {
2269    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2270    // and definitions of functions and variables.
2271    if (Tag)
2272      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2273        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2274            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2275            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2276    else
2277      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2278    // Don't emit warnings after this error.
2279    return TagD;
2280  }
2281
2282  if (DS.isFriendSpecified()) {
2283    // If we're dealing with a decl but not a TagDecl, assume that
2284    // whatever routines created it handled the friendship aspect.
2285    if (TagD && !Tag)
2286      return 0;
2287    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2288  }
2289
2290  // Track whether we warned about the fact that there aren't any
2291  // declarators.
2292  bool emittedWarning = false;
2293
2294  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2295    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2296
2297    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2298        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2299      if (getLangOptions().CPlusPlus ||
2300          Record->getDeclContext()->isRecord())
2301        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2302
2303      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2304        << DS.getSourceRange();
2305      emittedWarning = true;
2306    }
2307  }
2308
2309  // Check for Microsoft C extension: anonymous struct.
2310  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2311      CurContext->isRecord() &&
2312      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2313    // Handle 2 kinds of anonymous struct:
2314    //   struct STRUCT;
2315    // and
2316    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2317    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2318    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2319        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2320         DS.getRepAsType().get()->isStructureType())) {
2321      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2322        << DS.getSourceRange();
2323      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2324    }
2325  }
2326
2327  if (getLangOptions().CPlusPlus &&
2328      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2329    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2330      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2331          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2332        Diag(Enum->getLocation(), diag::ext_no_declarators)
2333          << DS.getSourceRange();
2334        emittedWarning = true;
2335      }
2336
2337  // Skip all the checks below if we have a type error.
2338  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2339
2340  if (!DS.isMissingDeclaratorOk()) {
2341    // Warn about typedefs of enums without names, since this is an
2342    // extension in both Microsoft and GNU.
2343    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2344        Tag && isa<EnumDecl>(Tag)) {
2345      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2346        << DS.getSourceRange();
2347      return Tag;
2348    }
2349
2350    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2351      << DS.getSourceRange();
2352    emittedWarning = true;
2353  }
2354
2355  // We're going to complain about a bunch of spurious specifiers;
2356  // only do this if we're declaring a tag, because otherwise we
2357  // should be getting diag::ext_no_declarators.
2358  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2359    return TagD;
2360
2361  // Note that a linkage-specification sets a storage class, but
2362  // 'extern "C" struct foo;' is actually valid and not theoretically
2363  // useless.
2364  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2365    if (!DS.isExternInLinkageSpec())
2366      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2367        << DeclSpec::getSpecifierName(scs);
2368
2369  if (DS.isThreadSpecified())
2370    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2371  if (DS.getTypeQualifiers()) {
2372    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2373      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2374    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2375      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2376    // Restrict is covered above.
2377  }
2378  if (DS.isInlineSpecified())
2379    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2380  if (DS.isVirtualSpecified())
2381    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2382  if (DS.isExplicitSpecified())
2383    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2384
2385  if (DS.isModulePrivateSpecified() &&
2386      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2387    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2388      << Tag->getTagKind()
2389      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2390
2391  // FIXME: Warn on useless attributes
2392
2393  return TagD;
2394}
2395
2396/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2397/// builds a statement for it and returns it so it is evaluated.
2398StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2399  StmtResult R;
2400  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2401    Expr *Exp = DS.getRepAsExpr();
2402    QualType Ty = Exp->getType();
2403    if (Ty->isPointerType()) {
2404      do
2405        Ty = Ty->getAs<PointerType>()->getPointeeType();
2406      while (Ty->isPointerType());
2407    }
2408    if (Ty->isVariableArrayType()) {
2409      R = ActOnExprStmt(MakeFullExpr(Exp));
2410    }
2411  }
2412  return R;
2413}
2414
2415/// We are trying to inject an anonymous member into the given scope;
2416/// check if there's an existing declaration that can't be overloaded.
2417///
2418/// \return true if this is a forbidden redeclaration
2419static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2420                                         Scope *S,
2421                                         DeclContext *Owner,
2422                                         DeclarationName Name,
2423                                         SourceLocation NameLoc,
2424                                         unsigned diagnostic) {
2425  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2426                 Sema::ForRedeclaration);
2427  if (!SemaRef.LookupName(R, S)) return false;
2428
2429  if (R.getAsSingle<TagDecl>())
2430    return false;
2431
2432  // Pick a representative declaration.
2433  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2434  assert(PrevDecl && "Expected a non-null Decl");
2435
2436  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2437    return false;
2438
2439  SemaRef.Diag(NameLoc, diagnostic) << Name;
2440  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2441
2442  return true;
2443}
2444
2445/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2446/// anonymous struct or union AnonRecord into the owning context Owner
2447/// and scope S. This routine will be invoked just after we realize
2448/// that an unnamed union or struct is actually an anonymous union or
2449/// struct, e.g.,
2450///
2451/// @code
2452/// union {
2453///   int i;
2454///   float f;
2455/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2456///    // f into the surrounding scope.x
2457/// @endcode
2458///
2459/// This routine is recursive, injecting the names of nested anonymous
2460/// structs/unions into the owning context and scope as well.
2461static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2462                                                DeclContext *Owner,
2463                                                RecordDecl *AnonRecord,
2464                                                AccessSpecifier AS,
2465                              SmallVector<NamedDecl*, 2> &Chaining,
2466                                                      bool MSAnonStruct) {
2467  unsigned diagKind
2468    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2469                            : diag::err_anonymous_struct_member_redecl;
2470
2471  bool Invalid = false;
2472
2473  // Look every FieldDecl and IndirectFieldDecl with a name.
2474  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2475                               DEnd = AnonRecord->decls_end();
2476       D != DEnd; ++D) {
2477    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2478        cast<NamedDecl>(*D)->getDeclName()) {
2479      ValueDecl *VD = cast<ValueDecl>(*D);
2480      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2481                                       VD->getLocation(), diagKind)) {
2482        // C++ [class.union]p2:
2483        //   The names of the members of an anonymous union shall be
2484        //   distinct from the names of any other entity in the
2485        //   scope in which the anonymous union is declared.
2486        Invalid = true;
2487      } else {
2488        // C++ [class.union]p2:
2489        //   For the purpose of name lookup, after the anonymous union
2490        //   definition, the members of the anonymous union are
2491        //   considered to have been defined in the scope in which the
2492        //   anonymous union is declared.
2493        unsigned OldChainingSize = Chaining.size();
2494        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2495          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2496               PE = IF->chain_end(); PI != PE; ++PI)
2497            Chaining.push_back(*PI);
2498        else
2499          Chaining.push_back(VD);
2500
2501        assert(Chaining.size() >= 2);
2502        NamedDecl **NamedChain =
2503          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2504        for (unsigned i = 0; i < Chaining.size(); i++)
2505          NamedChain[i] = Chaining[i];
2506
2507        IndirectFieldDecl* IndirectField =
2508          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2509                                    VD->getIdentifier(), VD->getType(),
2510                                    NamedChain, Chaining.size());
2511
2512        IndirectField->setAccess(AS);
2513        IndirectField->setImplicit();
2514        SemaRef.PushOnScopeChains(IndirectField, S);
2515
2516        // That includes picking up the appropriate access specifier.
2517        if (AS != AS_none) IndirectField->setAccess(AS);
2518
2519        Chaining.resize(OldChainingSize);
2520      }
2521    }
2522  }
2523
2524  return Invalid;
2525}
2526
2527/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2528/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2529/// illegal input values are mapped to SC_None.
2530static StorageClass
2531StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2532  switch (StorageClassSpec) {
2533  case DeclSpec::SCS_unspecified:    return SC_None;
2534  case DeclSpec::SCS_extern:         return SC_Extern;
2535  case DeclSpec::SCS_static:         return SC_Static;
2536  case DeclSpec::SCS_auto:           return SC_Auto;
2537  case DeclSpec::SCS_register:       return SC_Register;
2538  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2539    // Illegal SCSs map to None: error reporting is up to the caller.
2540  case DeclSpec::SCS_mutable:        // Fall through.
2541  case DeclSpec::SCS_typedef:        return SC_None;
2542  }
2543  llvm_unreachable("unknown storage class specifier");
2544}
2545
2546/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2547/// a StorageClass. Any error reporting is up to the caller:
2548/// illegal input values are mapped to SC_None.
2549static StorageClass
2550StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2551  switch (StorageClassSpec) {
2552  case DeclSpec::SCS_unspecified:    return SC_None;
2553  case DeclSpec::SCS_extern:         return SC_Extern;
2554  case DeclSpec::SCS_static:         return SC_Static;
2555  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2556    // Illegal SCSs map to None: error reporting is up to the caller.
2557  case DeclSpec::SCS_auto:           // Fall through.
2558  case DeclSpec::SCS_mutable:        // Fall through.
2559  case DeclSpec::SCS_register:       // Fall through.
2560  case DeclSpec::SCS_typedef:        return SC_None;
2561  }
2562  llvm_unreachable("unknown storage class specifier");
2563}
2564
2565/// BuildAnonymousStructOrUnion - Handle the declaration of an
2566/// anonymous structure or union. Anonymous unions are a C++ feature
2567/// (C++ [class.union]) and a GNU C extension; anonymous structures
2568/// are a GNU C and GNU C++ extension.
2569Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2570                                             AccessSpecifier AS,
2571                                             RecordDecl *Record) {
2572  DeclContext *Owner = Record->getDeclContext();
2573
2574  // Diagnose whether this anonymous struct/union is an extension.
2575  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2576    Diag(Record->getLocation(), diag::ext_anonymous_union);
2577  else if (!Record->isUnion())
2578    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2579
2580  // C and C++ require different kinds of checks for anonymous
2581  // structs/unions.
2582  bool Invalid = false;
2583  if (getLangOptions().CPlusPlus) {
2584    const char* PrevSpec = 0;
2585    unsigned DiagID;
2586    // C++ [class.union]p3:
2587    //   Anonymous unions declared in a named namespace or in the
2588    //   global namespace shall be declared static.
2589    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2590        (isa<TranslationUnitDecl>(Owner) ||
2591         (isa<NamespaceDecl>(Owner) &&
2592          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2593      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2594      Invalid = true;
2595
2596      // Recover by adding 'static'.
2597      DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2598                             PrevSpec, DiagID);
2599    }
2600    // C++ [class.union]p3:
2601    //   A storage class is not allowed in a declaration of an
2602    //   anonymous union in a class scope.
2603    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2604             isa<RecordDecl>(Owner)) {
2605      Diag(DS.getStorageClassSpecLoc(),
2606           diag::err_anonymous_union_with_storage_spec);
2607      Invalid = true;
2608
2609      // Recover by removing the storage specifier.
2610      DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
2611                             PrevSpec, DiagID);
2612    }
2613
2614    // Ignore const/volatile/restrict qualifiers.
2615    if (DS.getTypeQualifiers()) {
2616      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2617        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2618          << Record->isUnion() << 0
2619          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2620      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2621        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2622          << Record->isUnion() << 1
2623          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2624      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2625        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2626          << Record->isUnion() << 2
2627          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2628
2629      DS.ClearTypeQualifiers();
2630    }
2631
2632    // C++ [class.union]p2:
2633    //   The member-specification of an anonymous union shall only
2634    //   define non-static data members. [Note: nested types and
2635    //   functions cannot be declared within an anonymous union. ]
2636    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2637                                 MemEnd = Record->decls_end();
2638         Mem != MemEnd; ++Mem) {
2639      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2640        // C++ [class.union]p3:
2641        //   An anonymous union shall not have private or protected
2642        //   members (clause 11).
2643        assert(FD->getAccess() != AS_none);
2644        if (FD->getAccess() != AS_public) {
2645          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2646            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2647          Invalid = true;
2648        }
2649
2650        // C++ [class.union]p1
2651        //   An object of a class with a non-trivial constructor, a non-trivial
2652        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2653        //   assignment operator cannot be a member of a union, nor can an
2654        //   array of such objects.
2655        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2656          Invalid = true;
2657      } else if ((*Mem)->isImplicit()) {
2658        // Any implicit members are fine.
2659      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2660        // This is a type that showed up in an
2661        // elaborated-type-specifier inside the anonymous struct or
2662        // union, but which actually declares a type outside of the
2663        // anonymous struct or union. It's okay.
2664      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2665        if (!MemRecord->isAnonymousStructOrUnion() &&
2666            MemRecord->getDeclName()) {
2667          // Visual C++ allows type definition in anonymous struct or union.
2668          if (getLangOptions().MicrosoftExt)
2669            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2670              << (int)Record->isUnion();
2671          else {
2672            // This is a nested type declaration.
2673            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2674              << (int)Record->isUnion();
2675            Invalid = true;
2676          }
2677        }
2678      } else if (isa<AccessSpecDecl>(*Mem)) {
2679        // Any access specifier is fine.
2680      } else {
2681        // We have something that isn't a non-static data
2682        // member. Complain about it.
2683        unsigned DK = diag::err_anonymous_record_bad_member;
2684        if (isa<TypeDecl>(*Mem))
2685          DK = diag::err_anonymous_record_with_type;
2686        else if (isa<FunctionDecl>(*Mem))
2687          DK = diag::err_anonymous_record_with_function;
2688        else if (isa<VarDecl>(*Mem))
2689          DK = diag::err_anonymous_record_with_static;
2690
2691        // Visual C++ allows type definition in anonymous struct or union.
2692        if (getLangOptions().MicrosoftExt &&
2693            DK == diag::err_anonymous_record_with_type)
2694          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2695            << (int)Record->isUnion();
2696        else {
2697          Diag((*Mem)->getLocation(), DK)
2698              << (int)Record->isUnion();
2699          Invalid = true;
2700        }
2701      }
2702    }
2703  }
2704
2705  if (!Record->isUnion() && !Owner->isRecord()) {
2706    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2707      << (int)getLangOptions().CPlusPlus;
2708    Invalid = true;
2709  }
2710
2711  // Mock up a declarator.
2712  Declarator Dc(DS, Declarator::MemberContext);
2713  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2714  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2715
2716  // Create a declaration for this anonymous struct/union.
2717  NamedDecl *Anon = 0;
2718  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2719    Anon = FieldDecl::Create(Context, OwningClass,
2720                             DS.getSourceRange().getBegin(),
2721                             Record->getLocation(),
2722                             /*IdentifierInfo=*/0,
2723                             Context.getTypeDeclType(Record),
2724                             TInfo,
2725                             /*BitWidth=*/0, /*Mutable=*/false,
2726                             /*HasInit=*/false);
2727    Anon->setAccess(AS);
2728    if (getLangOptions().CPlusPlus)
2729      FieldCollector->Add(cast<FieldDecl>(Anon));
2730  } else {
2731    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2732    assert(SCSpec != DeclSpec::SCS_typedef &&
2733           "Parser allowed 'typedef' as storage class VarDecl.");
2734    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2735    if (SCSpec == DeclSpec::SCS_mutable) {
2736      // mutable can only appear on non-static class members, so it's always
2737      // an error here
2738      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2739      Invalid = true;
2740      SC = SC_None;
2741    }
2742    SCSpec = DS.getStorageClassSpecAsWritten();
2743    VarDecl::StorageClass SCAsWritten
2744      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2745
2746    Anon = VarDecl::Create(Context, Owner,
2747                           DS.getSourceRange().getBegin(),
2748                           Record->getLocation(), /*IdentifierInfo=*/0,
2749                           Context.getTypeDeclType(Record),
2750                           TInfo, SC, SCAsWritten);
2751
2752    // Default-initialize the implicit variable. This initialization will be
2753    // trivial in almost all cases, except if a union member has an in-class
2754    // initializer:
2755    //   union { int n = 0; };
2756    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2757  }
2758  Anon->setImplicit();
2759
2760  // Add the anonymous struct/union object to the current
2761  // context. We'll be referencing this object when we refer to one of
2762  // its members.
2763  Owner->addDecl(Anon);
2764
2765  // Inject the members of the anonymous struct/union into the owning
2766  // context and into the identifier resolver chain for name lookup
2767  // purposes.
2768  SmallVector<NamedDecl*, 2> Chain;
2769  Chain.push_back(Anon);
2770
2771  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2772                                          Chain, false))
2773    Invalid = true;
2774
2775  // Mark this as an anonymous struct/union type. Note that we do not
2776  // do this until after we have already checked and injected the
2777  // members of this anonymous struct/union type, because otherwise
2778  // the members could be injected twice: once by DeclContext when it
2779  // builds its lookup table, and once by
2780  // InjectAnonymousStructOrUnionMembers.
2781  Record->setAnonymousStructOrUnion(true);
2782
2783  if (Invalid)
2784    Anon->setInvalidDecl();
2785
2786  return Anon;
2787}
2788
2789/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2790/// Microsoft C anonymous structure.
2791/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2792/// Example:
2793///
2794/// struct A { int a; };
2795/// struct B { struct A; int b; };
2796///
2797/// void foo() {
2798///   B var;
2799///   var.a = 3;
2800/// }
2801///
2802Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2803                                           RecordDecl *Record) {
2804
2805  // If there is no Record, get the record via the typedef.
2806  if (!Record)
2807    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2808
2809  // Mock up a declarator.
2810  Declarator Dc(DS, Declarator::TypeNameContext);
2811  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2812  assert(TInfo && "couldn't build declarator info for anonymous struct");
2813
2814  // Create a declaration for this anonymous struct.
2815  NamedDecl* Anon = FieldDecl::Create(Context,
2816                             cast<RecordDecl>(CurContext),
2817                             DS.getSourceRange().getBegin(),
2818                             DS.getSourceRange().getBegin(),
2819                             /*IdentifierInfo=*/0,
2820                             Context.getTypeDeclType(Record),
2821                             TInfo,
2822                             /*BitWidth=*/0, /*Mutable=*/false,
2823                             /*HasInit=*/false);
2824  Anon->setImplicit();
2825
2826  // Add the anonymous struct object to the current context.
2827  CurContext->addDecl(Anon);
2828
2829  // Inject the members of the anonymous struct into the current
2830  // context and into the identifier resolver chain for name lookup
2831  // purposes.
2832  SmallVector<NamedDecl*, 2> Chain;
2833  Chain.push_back(Anon);
2834
2835  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2836                                          Record->getDefinition(),
2837                                          AS_none, Chain, true))
2838    Anon->setInvalidDecl();
2839
2840  return Anon;
2841}
2842
2843/// GetNameForDeclarator - Determine the full declaration name for the
2844/// given Declarator.
2845DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2846  return GetNameFromUnqualifiedId(D.getName());
2847}
2848
2849/// \brief Retrieves the declaration name from a parsed unqualified-id.
2850DeclarationNameInfo
2851Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2852  DeclarationNameInfo NameInfo;
2853  NameInfo.setLoc(Name.StartLocation);
2854
2855  switch (Name.getKind()) {
2856
2857  case UnqualifiedId::IK_ImplicitSelfParam:
2858  case UnqualifiedId::IK_Identifier:
2859    NameInfo.setName(Name.Identifier);
2860    NameInfo.setLoc(Name.StartLocation);
2861    return NameInfo;
2862
2863  case UnqualifiedId::IK_OperatorFunctionId:
2864    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2865                                           Name.OperatorFunctionId.Operator));
2866    NameInfo.setLoc(Name.StartLocation);
2867    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2868      = Name.OperatorFunctionId.SymbolLocations[0];
2869    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2870      = Name.EndLocation.getRawEncoding();
2871    return NameInfo;
2872
2873  case UnqualifiedId::IK_LiteralOperatorId:
2874    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2875                                                           Name.Identifier));
2876    NameInfo.setLoc(Name.StartLocation);
2877    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2878    return NameInfo;
2879
2880  case UnqualifiedId::IK_ConversionFunctionId: {
2881    TypeSourceInfo *TInfo;
2882    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2883    if (Ty.isNull())
2884      return DeclarationNameInfo();
2885    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2886                                               Context.getCanonicalType(Ty)));
2887    NameInfo.setLoc(Name.StartLocation);
2888    NameInfo.setNamedTypeInfo(TInfo);
2889    return NameInfo;
2890  }
2891
2892  case UnqualifiedId::IK_ConstructorName: {
2893    TypeSourceInfo *TInfo;
2894    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2895    if (Ty.isNull())
2896      return DeclarationNameInfo();
2897    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2898                                              Context.getCanonicalType(Ty)));
2899    NameInfo.setLoc(Name.StartLocation);
2900    NameInfo.setNamedTypeInfo(TInfo);
2901    return NameInfo;
2902  }
2903
2904  case UnqualifiedId::IK_ConstructorTemplateId: {
2905    // In well-formed code, we can only have a constructor
2906    // template-id that refers to the current context, so go there
2907    // to find the actual type being constructed.
2908    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2909    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2910      return DeclarationNameInfo();
2911
2912    // Determine the type of the class being constructed.
2913    QualType CurClassType = Context.getTypeDeclType(CurClass);
2914
2915    // FIXME: Check two things: that the template-id names the same type as
2916    // CurClassType, and that the template-id does not occur when the name
2917    // was qualified.
2918
2919    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2920                                    Context.getCanonicalType(CurClassType)));
2921    NameInfo.setLoc(Name.StartLocation);
2922    // FIXME: should we retrieve TypeSourceInfo?
2923    NameInfo.setNamedTypeInfo(0);
2924    return NameInfo;
2925  }
2926
2927  case UnqualifiedId::IK_DestructorName: {
2928    TypeSourceInfo *TInfo;
2929    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2930    if (Ty.isNull())
2931      return DeclarationNameInfo();
2932    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2933                                              Context.getCanonicalType(Ty)));
2934    NameInfo.setLoc(Name.StartLocation);
2935    NameInfo.setNamedTypeInfo(TInfo);
2936    return NameInfo;
2937  }
2938
2939  case UnqualifiedId::IK_TemplateId: {
2940    TemplateName TName = Name.TemplateId->Template.get();
2941    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2942    return Context.getNameForTemplate(TName, TNameLoc);
2943  }
2944
2945  } // switch (Name.getKind())
2946
2947  llvm_unreachable("Unknown name kind");
2948}
2949
2950static QualType getCoreType(QualType Ty) {
2951  do {
2952    if (Ty->isPointerType() || Ty->isReferenceType())
2953      Ty = Ty->getPointeeType();
2954    else if (Ty->isArrayType())
2955      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2956    else
2957      return Ty.withoutLocalFastQualifiers();
2958  } while (true);
2959}
2960
2961/// hasSimilarParameters - Determine whether the C++ functions Declaration
2962/// and Definition have "nearly" matching parameters. This heuristic is
2963/// used to improve diagnostics in the case where an out-of-line function
2964/// definition doesn't match any declaration within the class or namespace.
2965/// Also sets Params to the list of indices to the parameters that differ
2966/// between the declaration and the definition. If hasSimilarParameters
2967/// returns true and Params is empty, then all of the parameters match.
2968static bool hasSimilarParameters(ASTContext &Context,
2969                                     FunctionDecl *Declaration,
2970                                     FunctionDecl *Definition,
2971                                     llvm::SmallVectorImpl<unsigned> &Params) {
2972  Params.clear();
2973  if (Declaration->param_size() != Definition->param_size())
2974    return false;
2975  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2976    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2977    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2978
2979    // The parameter types are identical
2980    if (Context.hasSameType(DefParamTy, DeclParamTy))
2981      continue;
2982
2983    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2984    QualType DefParamBaseTy = getCoreType(DefParamTy);
2985    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2986    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2987
2988    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2989        (DeclTyName && DeclTyName == DefTyName))
2990      Params.push_back(Idx);
2991    else  // The two parameters aren't even close
2992      return false;
2993  }
2994
2995  return true;
2996}
2997
2998/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2999/// declarator needs to be rebuilt in the current instantiation.
3000/// Any bits of declarator which appear before the name are valid for
3001/// consideration here.  That's specifically the type in the decl spec
3002/// and the base type in any member-pointer chunks.
3003static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3004                                                    DeclarationName Name) {
3005  // The types we specifically need to rebuild are:
3006  //   - typenames, typeofs, and decltypes
3007  //   - types which will become injected class names
3008  // Of course, we also need to rebuild any type referencing such a
3009  // type.  It's safest to just say "dependent", but we call out a
3010  // few cases here.
3011
3012  DeclSpec &DS = D.getMutableDeclSpec();
3013  switch (DS.getTypeSpecType()) {
3014  case DeclSpec::TST_typename:
3015  case DeclSpec::TST_typeofType:
3016  case DeclSpec::TST_decltype:
3017  case DeclSpec::TST_underlyingType:
3018  case DeclSpec::TST_atomic: {
3019    // Grab the type from the parser.
3020    TypeSourceInfo *TSI = 0;
3021    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3022    if (T.isNull() || !T->isDependentType()) break;
3023
3024    // Make sure there's a type source info.  This isn't really much
3025    // of a waste; most dependent types should have type source info
3026    // attached already.
3027    if (!TSI)
3028      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3029
3030    // Rebuild the type in the current instantiation.
3031    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3032    if (!TSI) return true;
3033
3034    // Store the new type back in the decl spec.
3035    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3036    DS.UpdateTypeRep(LocType);
3037    break;
3038  }
3039
3040  case DeclSpec::TST_typeofExpr: {
3041    Expr *E = DS.getRepAsExpr();
3042    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3043    if (Result.isInvalid()) return true;
3044    DS.UpdateExprRep(Result.get());
3045    break;
3046  }
3047
3048  default:
3049    // Nothing to do for these decl specs.
3050    break;
3051  }
3052
3053  // It doesn't matter what order we do this in.
3054  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3055    DeclaratorChunk &Chunk = D.getTypeObject(I);
3056
3057    // The only type information in the declarator which can come
3058    // before the declaration name is the base type of a member
3059    // pointer.
3060    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3061      continue;
3062
3063    // Rebuild the scope specifier in-place.
3064    CXXScopeSpec &SS = Chunk.Mem.Scope();
3065    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3066      return true;
3067  }
3068
3069  return false;
3070}
3071
3072Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3073  D.setFunctionDefinition(false);
3074  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3075}
3076
3077/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3078///   If T is the name of a class, then each of the following shall have a
3079///   name different from T:
3080///     - every static data member of class T;
3081///     - every member function of class T
3082///     - every member of class T that is itself a type;
3083/// \returns true if the declaration name violates these rules.
3084bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3085                                   DeclarationNameInfo NameInfo) {
3086  DeclarationName Name = NameInfo.getName();
3087
3088  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3089    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3090      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3091      return true;
3092    }
3093
3094  return false;
3095}
3096
3097Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3098                             MultiTemplateParamsArg TemplateParamLists) {
3099  // TODO: consider using NameInfo for diagnostic.
3100  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3101  DeclarationName Name = NameInfo.getName();
3102
3103  // All of these full declarators require an identifier.  If it doesn't have
3104  // one, the ParsedFreeStandingDeclSpec action should be used.
3105  if (!Name) {
3106    if (!D.isInvalidType())  // Reject this if we think it is valid.
3107      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3108           diag::err_declarator_need_ident)
3109        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3110    return 0;
3111  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3112    return 0;
3113
3114  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3115  // we find one that is.
3116  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3117         (S->getFlags() & Scope::TemplateParamScope) != 0)
3118    S = S->getParent();
3119
3120  DeclContext *DC = CurContext;
3121  if (D.getCXXScopeSpec().isInvalid())
3122    D.setInvalidType();
3123  else if (D.getCXXScopeSpec().isSet()) {
3124    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3125                                        UPPC_DeclarationQualifier))
3126      return 0;
3127
3128    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3129    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3130    if (!DC) {
3131      // If we could not compute the declaration context, it's because the
3132      // declaration context is dependent but does not refer to a class,
3133      // class template, or class template partial specialization. Complain
3134      // and return early, to avoid the coming semantic disaster.
3135      Diag(D.getIdentifierLoc(),
3136           diag::err_template_qualified_declarator_no_match)
3137        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3138        << D.getCXXScopeSpec().getRange();
3139      return 0;
3140    }
3141    bool IsDependentContext = DC->isDependentContext();
3142
3143    if (!IsDependentContext &&
3144        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3145      return 0;
3146
3147    if (isa<CXXRecordDecl>(DC)) {
3148      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3149        Diag(D.getIdentifierLoc(),
3150             diag::err_member_def_undefined_record)
3151          << Name << DC << D.getCXXScopeSpec().getRange();
3152        D.setInvalidType();
3153      } else if (isa<CXXRecordDecl>(CurContext) &&
3154                 !D.getDeclSpec().isFriendSpecified()) {
3155        // The user provided a superfluous scope specifier inside a class
3156        // definition:
3157        //
3158        // class X {
3159        //   void X::f();
3160        // };
3161        if (CurContext->Equals(DC))
3162          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3163            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3164        else
3165          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3166            << Name << D.getCXXScopeSpec().getRange();
3167
3168        // Pretend that this qualifier was not here.
3169        D.getCXXScopeSpec().clear();
3170      }
3171    }
3172
3173    // Check whether we need to rebuild the type of the given
3174    // declaration in the current instantiation.
3175    if (EnteringContext && IsDependentContext &&
3176        TemplateParamLists.size() != 0) {
3177      ContextRAII SavedContext(*this, DC);
3178      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3179        D.setInvalidType();
3180    }
3181  }
3182
3183  if (DiagnoseClassNameShadow(DC, NameInfo))
3184    // If this is a typedef, we'll end up spewing multiple diagnostics.
3185    // Just return early; it's safer.
3186    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3187      return 0;
3188
3189  NamedDecl *New;
3190
3191  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3192  QualType R = TInfo->getType();
3193
3194  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3195                                      UPPC_DeclarationType))
3196    D.setInvalidType();
3197
3198  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3199                        ForRedeclaration);
3200
3201  // See if this is a redefinition of a variable in the same scope.
3202  if (!D.getCXXScopeSpec().isSet()) {
3203    bool IsLinkageLookup = false;
3204
3205    // If the declaration we're planning to build will be a function
3206    // or object with linkage, then look for another declaration with
3207    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3208    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3209      /* Do nothing*/;
3210    else if (R->isFunctionType()) {
3211      if (CurContext->isFunctionOrMethod() ||
3212          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3213        IsLinkageLookup = true;
3214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3215      IsLinkageLookup = true;
3216    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3217             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3218      IsLinkageLookup = true;
3219
3220    if (IsLinkageLookup)
3221      Previous.clear(LookupRedeclarationWithLinkage);
3222
3223    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3224  } else { // Something like "int foo::x;"
3225    LookupQualifiedName(Previous, DC);
3226
3227    // Don't consider using declarations as previous declarations for
3228    // out-of-line members.
3229    RemoveUsingDecls(Previous);
3230
3231    // C++ 7.3.1.2p2:
3232    // Members (including explicit specializations of templates) of a named
3233    // namespace can also be defined outside that namespace by explicit
3234    // qualification of the name being defined, provided that the entity being
3235    // defined was already declared in the namespace and the definition appears
3236    // after the point of declaration in a namespace that encloses the
3237    // declarations namespace.
3238    //
3239    // Note that we only check the context at this point. We don't yet
3240    // have enough information to make sure that PrevDecl is actually
3241    // the declaration we want to match. For example, given:
3242    //
3243    //   class X {
3244    //     void f();
3245    //     void f(float);
3246    //   };
3247    //
3248    //   void X::f(int) { } // ill-formed
3249    //
3250    // In this case, PrevDecl will point to the overload set
3251    // containing the two f's declared in X, but neither of them
3252    // matches.
3253
3254    // First check whether we named the global scope.
3255    if (isa<TranslationUnitDecl>(DC)) {
3256      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3257        << Name << D.getCXXScopeSpec().getRange();
3258    } else {
3259      DeclContext *Cur = CurContext;
3260      while (isa<LinkageSpecDecl>(Cur))
3261        Cur = Cur->getParent();
3262      if (!Cur->Encloses(DC)) {
3263        // The qualifying scope doesn't enclose the original declaration.
3264        // Emit diagnostic based on current scope.
3265        SourceLocation L = D.getIdentifierLoc();
3266        SourceRange R = D.getCXXScopeSpec().getRange();
3267        if (isa<FunctionDecl>(Cur))
3268          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3269        else
3270          Diag(L, diag::err_invalid_declarator_scope)
3271            << Name << cast<NamedDecl>(DC) << R;
3272        D.setInvalidType();
3273      }
3274    }
3275  }
3276
3277  if (Previous.isSingleResult() &&
3278      Previous.getFoundDecl()->isTemplateParameter()) {
3279    // Maybe we will complain about the shadowed template parameter.
3280    if (!D.isInvalidType())
3281      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3282                                          Previous.getFoundDecl()))
3283        D.setInvalidType();
3284
3285    // Just pretend that we didn't see the previous declaration.
3286    Previous.clear();
3287  }
3288
3289  // In C++, the previous declaration we find might be a tag type
3290  // (class or enum). In this case, the new declaration will hide the
3291  // tag type. Note that this does does not apply if we're declaring a
3292  // typedef (C++ [dcl.typedef]p4).
3293  if (Previous.isSingleTagDecl() &&
3294      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3295    Previous.clear();
3296
3297  bool AddToScope = true;
3298  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3299    if (TemplateParamLists.size()) {
3300      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3301      return 0;
3302    }
3303
3304    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3305  } else if (R->isFunctionType()) {
3306    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3307                                  move(TemplateParamLists),
3308                                  AddToScope);
3309  } else {
3310    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3311                                  move(TemplateParamLists));
3312  }
3313
3314  if (New == 0)
3315    return 0;
3316
3317  // If this has an identifier and is not an invalid redeclaration or
3318  // function template specialization, add it to the scope stack.
3319  if (New->getDeclName() && AddToScope &&
3320       !(D.isRedeclaration() && New->isInvalidDecl()))
3321    PushOnScopeChains(New, S);
3322
3323  return New;
3324}
3325
3326/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3327/// types into constant array types in certain situations which would otherwise
3328/// be errors (for GCC compatibility).
3329static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3330                                                    ASTContext &Context,
3331                                                    bool &SizeIsNegative,
3332                                                    llvm::APSInt &Oversized) {
3333  // This method tries to turn a variable array into a constant
3334  // array even when the size isn't an ICE.  This is necessary
3335  // for compatibility with code that depends on gcc's buggy
3336  // constant expression folding, like struct {char x[(int)(char*)2];}
3337  SizeIsNegative = false;
3338  Oversized = 0;
3339
3340  if (T->isDependentType())
3341    return QualType();
3342
3343  QualifierCollector Qs;
3344  const Type *Ty = Qs.strip(T);
3345
3346  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3347    QualType Pointee = PTy->getPointeeType();
3348    QualType FixedType =
3349        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3350                                            Oversized);
3351    if (FixedType.isNull()) return FixedType;
3352    FixedType = Context.getPointerType(FixedType);
3353    return Qs.apply(Context, FixedType);
3354  }
3355  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3356    QualType Inner = PTy->getInnerType();
3357    QualType FixedType =
3358        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3359                                            Oversized);
3360    if (FixedType.isNull()) return FixedType;
3361    FixedType = Context.getParenType(FixedType);
3362    return Qs.apply(Context, FixedType);
3363  }
3364
3365  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3366  if (!VLATy)
3367    return QualType();
3368  // FIXME: We should probably handle this case
3369  if (VLATy->getElementType()->isVariablyModifiedType())
3370    return QualType();
3371
3372  Expr::EvalResult EvalResult;
3373  if (!VLATy->getSizeExpr() ||
3374      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3375      !EvalResult.Val.isInt())
3376    return QualType();
3377
3378  // Check whether the array size is negative.
3379  llvm::APSInt &Res = EvalResult.Val.getInt();
3380  if (Res.isSigned() && Res.isNegative()) {
3381    SizeIsNegative = true;
3382    return QualType();
3383  }
3384
3385  // Check whether the array is too large to be addressed.
3386  unsigned ActiveSizeBits
3387    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3388                                              Res);
3389  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3390    Oversized = Res;
3391    return QualType();
3392  }
3393
3394  return Context.getConstantArrayType(VLATy->getElementType(),
3395                                      Res, ArrayType::Normal, 0);
3396}
3397
3398/// \brief Register the given locally-scoped external C declaration so
3399/// that it can be found later for redeclarations
3400void
3401Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3402                                       const LookupResult &Previous,
3403                                       Scope *S) {
3404  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3405         "Decl is not a locally-scoped decl!");
3406  // Note that we have a locally-scoped external with this name.
3407  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3408
3409  if (!Previous.isSingleResult())
3410    return;
3411
3412  NamedDecl *PrevDecl = Previous.getFoundDecl();
3413
3414  // If there was a previous declaration of this variable, it may be
3415  // in our identifier chain. Update the identifier chain with the new
3416  // declaration.
3417  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3418    // The previous declaration was found on the identifer resolver
3419    // chain, so remove it from its scope.
3420
3421    if (S->isDeclScope(PrevDecl)) {
3422      // Special case for redeclarations in the SAME scope.
3423      // Because this declaration is going to be added to the identifier chain
3424      // later, we should temporarily take it OFF the chain.
3425      IdResolver.RemoveDecl(ND);
3426
3427    } else {
3428      // Find the scope for the original declaration.
3429      while (S && !S->isDeclScope(PrevDecl))
3430        S = S->getParent();
3431    }
3432
3433    if (S)
3434      S->RemoveDecl(PrevDecl);
3435  }
3436}
3437
3438llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3439Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3440  if (ExternalSource) {
3441    // Load locally-scoped external decls from the external source.
3442    SmallVector<NamedDecl *, 4> Decls;
3443    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3444    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3445      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3446        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3447      if (Pos == LocallyScopedExternalDecls.end())
3448        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3449    }
3450  }
3451
3452  return LocallyScopedExternalDecls.find(Name);
3453}
3454
3455/// \brief Diagnose function specifiers on a declaration of an identifier that
3456/// does not identify a function.
3457void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3458  // FIXME: We should probably indicate the identifier in question to avoid
3459  // confusion for constructs like "inline int a(), b;"
3460  if (D.getDeclSpec().isInlineSpecified())
3461    Diag(D.getDeclSpec().getInlineSpecLoc(),
3462         diag::err_inline_non_function);
3463
3464  if (D.getDeclSpec().isVirtualSpecified())
3465    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3466         diag::err_virtual_non_function);
3467
3468  if (D.getDeclSpec().isExplicitSpecified())
3469    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3470         diag::err_explicit_non_function);
3471}
3472
3473NamedDecl*
3474Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3475                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3476  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3477  if (D.getCXXScopeSpec().isSet()) {
3478    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3479      << D.getCXXScopeSpec().getRange();
3480    D.setInvalidType();
3481    // Pretend we didn't see the scope specifier.
3482    DC = CurContext;
3483    Previous.clear();
3484  }
3485
3486  if (getLangOptions().CPlusPlus) {
3487    // Check that there are no default arguments (C++ only).
3488    CheckExtraCXXDefaultArguments(D);
3489  }
3490
3491  DiagnoseFunctionSpecifiers(D);
3492
3493  if (D.getDeclSpec().isThreadSpecified())
3494    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3495  if (D.getDeclSpec().isConstexprSpecified())
3496    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3497      << 1;
3498
3499  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3500    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3501      << D.getName().getSourceRange();
3502    return 0;
3503  }
3504
3505  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3506  if (!NewTD) return 0;
3507
3508  // Handle attributes prior to checking for duplicates in MergeVarDecl
3509  ProcessDeclAttributes(S, NewTD, D);
3510
3511  CheckTypedefForVariablyModifiedType(S, NewTD);
3512
3513  bool Redeclaration = D.isRedeclaration();
3514  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3515  D.setRedeclaration(Redeclaration);
3516  return ND;
3517}
3518
3519void
3520Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3521  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3522  // then it shall have block scope.
3523  // Note that variably modified types must be fixed before merging the decl so
3524  // that redeclarations will match.
3525  QualType T = NewTD->getUnderlyingType();
3526  if (T->isVariablyModifiedType()) {
3527    getCurFunction()->setHasBranchProtectedScope();
3528
3529    if (S->getFnParent() == 0) {
3530      bool SizeIsNegative;
3531      llvm::APSInt Oversized;
3532      QualType FixedTy =
3533          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3534                                              Oversized);
3535      if (!FixedTy.isNull()) {
3536        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3537        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3538      } else {
3539        if (SizeIsNegative)
3540          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3541        else if (T->isVariableArrayType())
3542          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3543        else if (Oversized.getBoolValue())
3544          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3545        else
3546          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3547        NewTD->setInvalidDecl();
3548      }
3549    }
3550  }
3551}
3552
3553
3554/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3555/// declares a typedef-name, either using the 'typedef' type specifier or via
3556/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3557NamedDecl*
3558Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3559                           LookupResult &Previous, bool &Redeclaration) {
3560  // Merge the decl with the existing one if appropriate. If the decl is
3561  // in an outer scope, it isn't the same thing.
3562  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3563                       /*ExplicitInstantiationOrSpecialization=*/false);
3564  if (!Previous.empty()) {
3565    Redeclaration = true;
3566    MergeTypedefNameDecl(NewTD, Previous);
3567  }
3568
3569  // If this is the C FILE type, notify the AST context.
3570  if (IdentifierInfo *II = NewTD->getIdentifier())
3571    if (!NewTD->isInvalidDecl() &&
3572        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3573      if (II->isStr("FILE"))
3574        Context.setFILEDecl(NewTD);
3575      else if (II->isStr("jmp_buf"))
3576        Context.setjmp_bufDecl(NewTD);
3577      else if (II->isStr("sigjmp_buf"))
3578        Context.setsigjmp_bufDecl(NewTD);
3579      else if (II->isStr("__builtin_va_list"))
3580        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3581    }
3582
3583  return NewTD;
3584}
3585
3586/// \brief Determines whether the given declaration is an out-of-scope
3587/// previous declaration.
3588///
3589/// This routine should be invoked when name lookup has found a
3590/// previous declaration (PrevDecl) that is not in the scope where a
3591/// new declaration by the same name is being introduced. If the new
3592/// declaration occurs in a local scope, previous declarations with
3593/// linkage may still be considered previous declarations (C99
3594/// 6.2.2p4-5, C++ [basic.link]p6).
3595///
3596/// \param PrevDecl the previous declaration found by name
3597/// lookup
3598///
3599/// \param DC the context in which the new declaration is being
3600/// declared.
3601///
3602/// \returns true if PrevDecl is an out-of-scope previous declaration
3603/// for a new delcaration with the same name.
3604static bool
3605isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3606                                ASTContext &Context) {
3607  if (!PrevDecl)
3608    return false;
3609
3610  if (!PrevDecl->hasLinkage())
3611    return false;
3612
3613  if (Context.getLangOptions().CPlusPlus) {
3614    // C++ [basic.link]p6:
3615    //   If there is a visible declaration of an entity with linkage
3616    //   having the same name and type, ignoring entities declared
3617    //   outside the innermost enclosing namespace scope, the block
3618    //   scope declaration declares that same entity and receives the
3619    //   linkage of the previous declaration.
3620    DeclContext *OuterContext = DC->getRedeclContext();
3621    if (!OuterContext->isFunctionOrMethod())
3622      // This rule only applies to block-scope declarations.
3623      return false;
3624
3625    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3626    if (PrevOuterContext->isRecord())
3627      // We found a member function: ignore it.
3628      return false;
3629
3630    // Find the innermost enclosing namespace for the new and
3631    // previous declarations.
3632    OuterContext = OuterContext->getEnclosingNamespaceContext();
3633    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3634
3635    // The previous declaration is in a different namespace, so it
3636    // isn't the same function.
3637    if (!OuterContext->Equals(PrevOuterContext))
3638      return false;
3639  }
3640
3641  return true;
3642}
3643
3644static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3645  CXXScopeSpec &SS = D.getCXXScopeSpec();
3646  if (!SS.isSet()) return;
3647  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3648}
3649
3650bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3651  QualType type = decl->getType();
3652  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3653  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3654    // Various kinds of declaration aren't allowed to be __autoreleasing.
3655    unsigned kind = -1U;
3656    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3657      if (var->hasAttr<BlocksAttr>())
3658        kind = 0; // __block
3659      else if (!var->hasLocalStorage())
3660        kind = 1; // global
3661    } else if (isa<ObjCIvarDecl>(decl)) {
3662      kind = 3; // ivar
3663    } else if (isa<FieldDecl>(decl)) {
3664      kind = 2; // field
3665    }
3666
3667    if (kind != -1U) {
3668      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3669        << kind;
3670    }
3671  } else if (lifetime == Qualifiers::OCL_None) {
3672    // Try to infer lifetime.
3673    if (!type->isObjCLifetimeType())
3674      return false;
3675
3676    lifetime = type->getObjCARCImplicitLifetime();
3677    type = Context.getLifetimeQualifiedType(type, lifetime);
3678    decl->setType(type);
3679  }
3680
3681  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3682    // Thread-local variables cannot have lifetime.
3683    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3684        var->isThreadSpecified()) {
3685      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3686        << var->getType();
3687      return true;
3688    }
3689  }
3690
3691  return false;
3692}
3693
3694NamedDecl*
3695Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3696                              TypeSourceInfo *TInfo, LookupResult &Previous,
3697                              MultiTemplateParamsArg TemplateParamLists) {
3698  QualType R = TInfo->getType();
3699  DeclarationName Name = GetNameForDeclarator(D).getName();
3700
3701  // Check that there are no default arguments (C++ only).
3702  if (getLangOptions().CPlusPlus)
3703    CheckExtraCXXDefaultArguments(D);
3704
3705  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3706  assert(SCSpec != DeclSpec::SCS_typedef &&
3707         "Parser allowed 'typedef' as storage class VarDecl.");
3708  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3709  if (SCSpec == DeclSpec::SCS_mutable) {
3710    // mutable can only appear on non-static class members, so it's always
3711    // an error here
3712    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3713    D.setInvalidType();
3714    SC = SC_None;
3715  }
3716  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3717  VarDecl::StorageClass SCAsWritten
3718    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3719
3720  IdentifierInfo *II = Name.getAsIdentifierInfo();
3721  if (!II) {
3722    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3723      << Name;
3724    return 0;
3725  }
3726
3727  DiagnoseFunctionSpecifiers(D);
3728
3729  if (!DC->isRecord() && S->getFnParent() == 0) {
3730    // C99 6.9p2: The storage-class specifiers auto and register shall not
3731    // appear in the declaration specifiers in an external declaration.
3732    if (SC == SC_Auto || SC == SC_Register) {
3733
3734      // If this is a register variable with an asm label specified, then this
3735      // is a GNU extension.
3736      if (SC == SC_Register && D.getAsmLabel())
3737        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3738      else
3739        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3740      D.setInvalidType();
3741    }
3742  }
3743
3744  if (getLangOptions().OpenCL) {
3745    // Set up the special work-group-local storage class for variables in the
3746    // OpenCL __local address space.
3747    if (R.getAddressSpace() == LangAS::opencl_local)
3748      SC = SC_OpenCLWorkGroupLocal;
3749  }
3750
3751  bool isExplicitSpecialization = false;
3752  VarDecl *NewVD;
3753  if (!getLangOptions().CPlusPlus) {
3754    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3755                            D.getIdentifierLoc(), II,
3756                            R, TInfo, SC, SCAsWritten);
3757
3758    if (D.isInvalidType())
3759      NewVD->setInvalidDecl();
3760  } else {
3761    if (DC->isRecord() && !CurContext->isRecord()) {
3762      // This is an out-of-line definition of a static data member.
3763      if (SC == SC_Static) {
3764        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3765             diag::err_static_out_of_line)
3766          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3767      } else if (SC == SC_None)
3768        SC = SC_Static;
3769    }
3770    if (SC == SC_Static) {
3771      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3772        if (RD->isLocalClass())
3773          Diag(D.getIdentifierLoc(),
3774               diag::err_static_data_member_not_allowed_in_local_class)
3775            << Name << RD->getDeclName();
3776
3777        // C++ [class.union]p1: If a union contains a static data member,
3778        // the program is ill-formed.
3779        //
3780        // We also disallow static data members in anonymous structs.
3781        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3782          Diag(D.getIdentifierLoc(),
3783               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3784            << Name << RD->isUnion();
3785      }
3786    }
3787
3788    // Match up the template parameter lists with the scope specifier, then
3789    // determine whether we have a template or a template specialization.
3790    isExplicitSpecialization = false;
3791    bool Invalid = false;
3792    if (TemplateParameterList *TemplateParams
3793        = MatchTemplateParametersToScopeSpecifier(
3794                                  D.getDeclSpec().getSourceRange().getBegin(),
3795                                                  D.getIdentifierLoc(),
3796                                                  D.getCXXScopeSpec(),
3797                                                  TemplateParamLists.get(),
3798                                                  TemplateParamLists.size(),
3799                                                  /*never a friend*/ false,
3800                                                  isExplicitSpecialization,
3801                                                  Invalid)) {
3802      if (TemplateParams->size() > 0) {
3803        // There is no such thing as a variable template.
3804        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3805          << II
3806          << SourceRange(TemplateParams->getTemplateLoc(),
3807                         TemplateParams->getRAngleLoc());
3808        return 0;
3809      } else {
3810        // There is an extraneous 'template<>' for this variable. Complain
3811        // about it, but allow the declaration of the variable.
3812        Diag(TemplateParams->getTemplateLoc(),
3813             diag::err_template_variable_noparams)
3814          << II
3815          << SourceRange(TemplateParams->getTemplateLoc(),
3816                         TemplateParams->getRAngleLoc());
3817      }
3818    }
3819
3820    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3821                            D.getIdentifierLoc(), II,
3822                            R, TInfo, SC, SCAsWritten);
3823
3824    // If this decl has an auto type in need of deduction, make a note of the
3825    // Decl so we can diagnose uses of it in its own initializer.
3826    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3827        R->getContainedAutoType())
3828      ParsingInitForAutoVars.insert(NewVD);
3829
3830    if (D.isInvalidType() || Invalid)
3831      NewVD->setInvalidDecl();
3832
3833    SetNestedNameSpecifier(NewVD, D);
3834
3835    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3836      NewVD->setTemplateParameterListsInfo(Context,
3837                                           TemplateParamLists.size(),
3838                                           TemplateParamLists.release());
3839    }
3840
3841    if (D.getDeclSpec().isConstexprSpecified()) {
3842      // FIXME: once we know whether there's an initializer, apply this to
3843      // static data members too.
3844      if (!NewVD->isStaticDataMember() &&
3845          !NewVD->isThisDeclarationADefinition()) {
3846        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3847        // of a variable. Suggest replacing it with 'const' if appropriate.
3848        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3849        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3850        // If the declarator is complex, we need to move the keyword to the
3851        // innermost chunk as we switch it from 'constexpr' to 'const'.
3852        int Kind = DeclaratorChunk::Paren;
3853        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3854          Kind = D.getTypeObject(I).Kind;
3855          if (Kind != DeclaratorChunk::Paren)
3856            break;
3857        }
3858        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3859            Kind == DeclaratorChunk::Reference)
3860          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3861            << FixItHint::CreateRemoval(ConstexprRange);
3862        else if (Kind == DeclaratorChunk::Paren)
3863          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3864            << FixItHint::CreateReplacement(ConstexprRange, "const");
3865        else
3866          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3867            << FixItHint::CreateRemoval(ConstexprRange)
3868            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3869      } else {
3870        NewVD->setConstexpr(true);
3871      }
3872    }
3873  }
3874
3875  // Set the lexical context. If the declarator has a C++ scope specifier, the
3876  // lexical context will be different from the semantic context.
3877  NewVD->setLexicalDeclContext(CurContext);
3878
3879  if (D.getDeclSpec().isThreadSpecified()) {
3880    if (NewVD->hasLocalStorage())
3881      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3882    else if (!Context.getTargetInfo().isTLSSupported())
3883      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3884    else
3885      NewVD->setThreadSpecified(true);
3886  }
3887
3888  if (D.getDeclSpec().isModulePrivateSpecified()) {
3889    if (isExplicitSpecialization)
3890      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3891        << 2
3892        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3893    else if (NewVD->hasLocalStorage())
3894      Diag(NewVD->getLocation(), diag::err_module_private_local)
3895        << 0 << NewVD->getDeclName()
3896        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3897        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3898    else
3899      NewVD->setModulePrivate();
3900  }
3901
3902  // Handle attributes prior to checking for duplicates in MergeVarDecl
3903  ProcessDeclAttributes(S, NewVD, D);
3904
3905  // In auto-retain/release, infer strong retension for variables of
3906  // retainable type.
3907  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3908    NewVD->setInvalidDecl();
3909
3910  // Handle GNU asm-label extension (encoded as an attribute).
3911  if (Expr *E = (Expr*)D.getAsmLabel()) {
3912    // The parser guarantees this is a string.
3913    StringLiteral *SE = cast<StringLiteral>(E);
3914    StringRef Label = SE->getString();
3915    if (S->getFnParent() != 0) {
3916      switch (SC) {
3917      case SC_None:
3918      case SC_Auto:
3919        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3920        break;
3921      case SC_Register:
3922        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3923          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3924        break;
3925      case SC_Static:
3926      case SC_Extern:
3927      case SC_PrivateExtern:
3928      case SC_OpenCLWorkGroupLocal:
3929        break;
3930      }
3931    }
3932
3933    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3934                                                Context, Label));
3935  }
3936
3937  // Diagnose shadowed variables before filtering for scope.
3938  if (!D.getCXXScopeSpec().isSet())
3939    CheckShadow(S, NewVD, Previous);
3940
3941  // Don't consider existing declarations that are in a different
3942  // scope and are out-of-semantic-context declarations (if the new
3943  // declaration has linkage).
3944  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3945                       isExplicitSpecialization);
3946
3947  if (!getLangOptions().CPlusPlus) {
3948    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
3949  } else {
3950    // Merge the decl with the existing one if appropriate.
3951    if (!Previous.empty()) {
3952      if (Previous.isSingleResult() &&
3953          isa<FieldDecl>(Previous.getFoundDecl()) &&
3954          D.getCXXScopeSpec().isSet()) {
3955        // The user tried to define a non-static data member
3956        // out-of-line (C++ [dcl.meaning]p1).
3957        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3958          << D.getCXXScopeSpec().getRange();
3959        Previous.clear();
3960        NewVD->setInvalidDecl();
3961      }
3962    } else if (D.getCXXScopeSpec().isSet()) {
3963      // No previous declaration in the qualifying scope.
3964      Diag(D.getIdentifierLoc(), diag::err_no_member)
3965        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3966        << D.getCXXScopeSpec().getRange();
3967      NewVD->setInvalidDecl();
3968    }
3969
3970    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
3971
3972    // This is an explicit specialization of a static data member. Check it.
3973    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3974        CheckMemberSpecialization(NewVD, Previous))
3975      NewVD->setInvalidDecl();
3976  }
3977
3978  // attributes declared post-definition are currently ignored
3979  // FIXME: This should be handled in attribute merging, not
3980  // here.
3981  if (Previous.isSingleResult()) {
3982    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3983    if (Def && (Def = Def->getDefinition()) &&
3984        Def != NewVD && D.hasAttributes()) {
3985      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3986      Diag(Def->getLocation(), diag::note_previous_definition);
3987    }
3988  }
3989
3990  // If this is a locally-scoped extern C variable, update the map of
3991  // such variables.
3992  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3993      !NewVD->isInvalidDecl())
3994    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3995
3996  // If there's a #pragma GCC visibility in scope, and this isn't a class
3997  // member, set the visibility of this variable.
3998  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3999    AddPushedVisibilityAttribute(NewVD);
4000
4001  MarkUnusedFileScopedDecl(NewVD);
4002
4003  return NewVD;
4004}
4005
4006/// \brief Diagnose variable or built-in function shadowing.  Implements
4007/// -Wshadow.
4008///
4009/// This method is called whenever a VarDecl is added to a "useful"
4010/// scope.
4011///
4012/// \param S the scope in which the shadowing name is being declared
4013/// \param R the lookup of the name
4014///
4015void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4016  // Return if warning is ignored.
4017  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4018        DiagnosticsEngine::Ignored)
4019    return;
4020
4021  // Don't diagnose declarations at file scope.
4022  if (D->hasGlobalStorage())
4023    return;
4024
4025  DeclContext *NewDC = D->getDeclContext();
4026
4027  // Only diagnose if we're shadowing an unambiguous field or variable.
4028  if (R.getResultKind() != LookupResult::Found)
4029    return;
4030
4031  NamedDecl* ShadowedDecl = R.getFoundDecl();
4032  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4033    return;
4034
4035  // Fields are not shadowed by variables in C++ static methods.
4036  if (isa<FieldDecl>(ShadowedDecl))
4037    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4038      if (MD->isStatic())
4039        return;
4040
4041  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4042    if (shadowedVar->isExternC()) {
4043      // For shadowing external vars, make sure that we point to the global
4044      // declaration, not a locally scoped extern declaration.
4045      for (VarDecl::redecl_iterator
4046             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4047           I != E; ++I)
4048        if (I->isFileVarDecl()) {
4049          ShadowedDecl = *I;
4050          break;
4051        }
4052    }
4053
4054  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4055
4056  // Only warn about certain kinds of shadowing for class members.
4057  if (NewDC && NewDC->isRecord()) {
4058    // In particular, don't warn about shadowing non-class members.
4059    if (!OldDC->isRecord())
4060      return;
4061
4062    // TODO: should we warn about static data members shadowing
4063    // static data members from base classes?
4064
4065    // TODO: don't diagnose for inaccessible shadowed members.
4066    // This is hard to do perfectly because we might friend the
4067    // shadowing context, but that's just a false negative.
4068  }
4069
4070  // Determine what kind of declaration we're shadowing.
4071  unsigned Kind;
4072  if (isa<RecordDecl>(OldDC)) {
4073    if (isa<FieldDecl>(ShadowedDecl))
4074      Kind = 3; // field
4075    else
4076      Kind = 2; // static data member
4077  } else if (OldDC->isFileContext())
4078    Kind = 1; // global
4079  else
4080    Kind = 0; // local
4081
4082  DeclarationName Name = R.getLookupName();
4083
4084  // Emit warning and note.
4085  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4086  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4087}
4088
4089/// \brief Check -Wshadow without the advantage of a previous lookup.
4090void Sema::CheckShadow(Scope *S, VarDecl *D) {
4091  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4092        DiagnosticsEngine::Ignored)
4093    return;
4094
4095  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4096                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4097  LookupName(R, S);
4098  CheckShadow(S, D, R);
4099}
4100
4101/// \brief Perform semantic checking on a newly-created variable
4102/// declaration.
4103///
4104/// This routine performs all of the type-checking required for a
4105/// variable declaration once it has been built. It is used both to
4106/// check variables after they have been parsed and their declarators
4107/// have been translated into a declaration, and to check variables
4108/// that have been instantiated from a template.
4109///
4110/// Sets NewVD->isInvalidDecl() if an error was encountered.
4111///
4112/// Returns true if the variable declaration is a redeclaration.
4113bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4114                                    LookupResult &Previous) {
4115  // If the decl is already known invalid, don't check it.
4116  if (NewVD->isInvalidDecl())
4117    return false;
4118
4119  QualType T = NewVD->getType();
4120
4121  if (T->isObjCObjectType()) {
4122    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4123      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4124    T = Context.getObjCObjectPointerType(T);
4125    NewVD->setType(T);
4126  }
4127
4128  // Emit an error if an address space was applied to decl with local storage.
4129  // This includes arrays of objects with address space qualifiers, but not
4130  // automatic variables that point to other address spaces.
4131  // ISO/IEC TR 18037 S5.1.2
4132  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4133    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4134    NewVD->setInvalidDecl();
4135    return false;
4136  }
4137
4138  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4139      && !NewVD->hasAttr<BlocksAttr>()) {
4140    if (getLangOptions().getGC() != LangOptions::NonGC)
4141      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4142    else
4143      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4144  }
4145
4146  bool isVM = T->isVariablyModifiedType();
4147  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4148      NewVD->hasAttr<BlocksAttr>())
4149    getCurFunction()->setHasBranchProtectedScope();
4150
4151  if ((isVM && NewVD->hasLinkage()) ||
4152      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4153    bool SizeIsNegative;
4154    llvm::APSInt Oversized;
4155    QualType FixedTy =
4156        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4157                                            Oversized);
4158
4159    if (FixedTy.isNull() && T->isVariableArrayType()) {
4160      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4161      // FIXME: This won't give the correct result for
4162      // int a[10][n];
4163      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4164
4165      if (NewVD->isFileVarDecl())
4166        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4167        << SizeRange;
4168      else if (NewVD->getStorageClass() == SC_Static)
4169        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4170        << SizeRange;
4171      else
4172        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4173        << SizeRange;
4174      NewVD->setInvalidDecl();
4175      return false;
4176    }
4177
4178    if (FixedTy.isNull()) {
4179      if (NewVD->isFileVarDecl())
4180        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4181      else
4182        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4183      NewVD->setInvalidDecl();
4184      return false;
4185    }
4186
4187    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4188    NewVD->setType(FixedTy);
4189  }
4190
4191  if (Previous.empty() && NewVD->isExternC()) {
4192    // Since we did not find anything by this name and we're declaring
4193    // an extern "C" variable, look for a non-visible extern "C"
4194    // declaration with the same name.
4195    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4196      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4197    if (Pos != LocallyScopedExternalDecls.end())
4198      Previous.addDecl(Pos->second);
4199  }
4200
4201  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4202    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4203      << T;
4204    NewVD->setInvalidDecl();
4205    return false;
4206  }
4207
4208  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4209    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4210    NewVD->setInvalidDecl();
4211    return false;
4212  }
4213
4214  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4215    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4216    NewVD->setInvalidDecl();
4217    return false;
4218  }
4219
4220  // Function pointers and references cannot have qualified function type, only
4221  // function pointer-to-members can do that.
4222  QualType Pointee;
4223  unsigned PtrOrRef = 0;
4224  if (const PointerType *Ptr = T->getAs<PointerType>())
4225    Pointee = Ptr->getPointeeType();
4226  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4227    Pointee = Ref->getPointeeType();
4228    PtrOrRef = 1;
4229  }
4230  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4231      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4232    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4233        << PtrOrRef;
4234    NewVD->setInvalidDecl();
4235    return false;
4236  }
4237
4238  if (!Previous.empty()) {
4239    MergeVarDecl(NewVD, Previous);
4240    return true;
4241  }
4242  return false;
4243}
4244
4245/// \brief Data used with FindOverriddenMethod
4246struct FindOverriddenMethodData {
4247  Sema *S;
4248  CXXMethodDecl *Method;
4249};
4250
4251/// \brief Member lookup function that determines whether a given C++
4252/// method overrides a method in a base class, to be used with
4253/// CXXRecordDecl::lookupInBases().
4254static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4255                                 CXXBasePath &Path,
4256                                 void *UserData) {
4257  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4258
4259  FindOverriddenMethodData *Data
4260    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4261
4262  DeclarationName Name = Data->Method->getDeclName();
4263
4264  // FIXME: Do we care about other names here too?
4265  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4266    // We really want to find the base class destructor here.
4267    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4268    CanQualType CT = Data->S->Context.getCanonicalType(T);
4269
4270    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4271  }
4272
4273  for (Path.Decls = BaseRecord->lookup(Name);
4274       Path.Decls.first != Path.Decls.second;
4275       ++Path.Decls.first) {
4276    NamedDecl *D = *Path.Decls.first;
4277    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4278      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4279        return true;
4280    }
4281  }
4282
4283  return false;
4284}
4285
4286/// AddOverriddenMethods - See if a method overrides any in the base classes,
4287/// and if so, check that it's a valid override and remember it.
4288bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4289  // Look for virtual methods in base classes that this method might override.
4290  CXXBasePaths Paths;
4291  FindOverriddenMethodData Data;
4292  Data.Method = MD;
4293  Data.S = this;
4294  bool AddedAny = false;
4295  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4296    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4297         E = Paths.found_decls_end(); I != E; ++I) {
4298      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4299        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4300        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4301            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4302            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4303          AddedAny = true;
4304        }
4305      }
4306    }
4307  }
4308
4309  return AddedAny;
4310}
4311
4312namespace {
4313  // Struct for holding all of the extra arguments needed by
4314  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4315  struct ActOnFDArgs {
4316    Scope *S;
4317    Declarator &D;
4318    DeclContext *DC;
4319    TypeSourceInfo *TInfo;
4320    MultiTemplateParamsArg TemplateParamLists;
4321    bool AddToScope;
4322  };
4323}
4324
4325/// \brief Generate diagnostics for an invalid function redeclaration.
4326///
4327/// This routine handles generating the diagnostic messages for an invalid
4328/// function redeclaration, including finding possible similar declarations
4329/// or performing typo correction if there are no previous declarations with
4330/// the same name.
4331///
4332/// Returns a NamedDecl iff typo correction was performed and substituting in
4333/// the new declaration name does not cause new errors.
4334static NamedDecl* DiagnoseInvalidRedeclaration(
4335    Sema &S, LookupResult &Previous, FunctionDecl *NewFD, bool isFriendDecl,
4336    ActOnFDArgs &ExtraArgs) {
4337  assert(NewFD->getDeclContext() == ExtraArgs.DC && "NewFD has different DeclContext!");
4338  NamedDecl *Result = NULL;
4339  DeclarationName Name = NewFD->getDeclName();
4340  DeclContext *NewDC = NewFD->getDeclContext();
4341  LookupResult Prev(S, Name, NewFD->getLocation(),
4342                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4343  llvm::SmallVector<unsigned, 1> MismatchedParams;
4344  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4345  TypoCorrection Correction;
4346  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4347                                  : diag::err_member_def_does_not_match;
4348
4349  NewFD->setInvalidDecl();
4350  S.LookupQualifiedName(Prev, NewDC);
4351  assert(!Prev.isAmbiguous() &&
4352         "Cannot have an ambiguity in previous-declaration lookup");
4353  if (!Prev.empty()) {
4354    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4355         Func != FuncEnd; ++Func) {
4356      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4357      if (FD && hasSimilarParameters(S.Context, FD, NewFD, MismatchedParams)) {
4358        // Add 1 to the index so that 0 can mean the mismatch didn't
4359        // involve a parameter
4360        unsigned ParamNum =
4361            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4362        NearMatches.push_back(std::make_pair(FD, ParamNum));
4363      }
4364    }
4365  // If the qualified name lookup yielded nothing, try typo correction
4366  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4367                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4368             Correction.getCorrection() != Name) {
4369    // Trap errors.
4370    Sema::SFINAETrap Trap(S);
4371
4372    // Set up everything for the call to ActOnFunctionDeclarator
4373    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4374                              ExtraArgs.D.getIdentifierLoc());
4375    Previous.clear();
4376    Previous.setLookupName(Correction.getCorrection());
4377    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4378                                    CDeclEnd = Correction.end();
4379         CDecl != CDeclEnd; ++CDecl) {
4380      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4381      if (FD && hasSimilarParameters(S.Context, FD, NewFD, MismatchedParams)) {
4382        Previous.addDecl(FD);
4383      }
4384    }
4385    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4386    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4387    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4388    // eliminate the need for the parameter pack ExtraArgs.
4389    Result = S.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D, ExtraArgs.DC,
4390                                       ExtraArgs.TInfo, Previous,
4391                                       ExtraArgs.TemplateParamLists,
4392                                       ExtraArgs.AddToScope);
4393    if (Trap.hasErrorOccurred()) {
4394      // Pretend the typo correction never occurred
4395      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4396                                ExtraArgs.D.getIdentifierLoc());
4397      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4398      Previous.clear();
4399      Previous.setLookupName(Name);
4400      Result = NULL;
4401    } else {
4402      for (LookupResult::iterator Func = Previous.begin(),
4403                               FuncEnd = Previous.end();
4404           Func != FuncEnd; ++Func) {
4405        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4406          NearMatches.push_back(std::make_pair(FD, 0));
4407      }
4408    }
4409    if (NearMatches.empty()) {
4410      // Ignore the correction if it didn't yield any close FunctionDecl matches
4411      Correction = TypoCorrection();
4412    } else {
4413      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4414                             : diag::err_member_def_does_not_match_suggest;
4415    }
4416  }
4417
4418  if (Correction)
4419    S.Diag(NewFD->getLocation(), DiagMsg)
4420        << Name << NewDC << Correction.getQuoted(S.getLangOptions())
4421        << FixItHint::CreateReplacement(
4422            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4423  else
4424    S.Diag(NewFD->getLocation(), DiagMsg) << Name << NewDC << NewFD->getLocation();
4425
4426  bool NewFDisConst = false;
4427  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4428    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4429
4430  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4431       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4432       NearMatch != NearMatchEnd; ++NearMatch) {
4433    FunctionDecl *FD = NearMatch->first;
4434    bool FDisConst = false;
4435    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4436      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4437
4438    if (unsigned Idx = NearMatch->second) {
4439      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4440      S.Diag(FDParam->getTypeSpecStartLoc(),
4441             diag::note_member_def_close_param_match)
4442          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4443    } else if (Correction) {
4444      S.Diag(FD->getLocation(), diag::note_previous_decl)
4445          << Correction.getQuoted(S.getLangOptions());
4446    } else if (FDisConst != NewFDisConst) {
4447      S.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4448          << NewFDisConst << FD->getSourceRange().getEnd();
4449    } else
4450      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4451  }
4452  return Result;
4453}
4454
4455static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
4456  switch (D.getDeclSpec().getStorageClassSpec()) {
4457  default: llvm_unreachable("Unknown storage class!");
4458  case DeclSpec::SCS_auto:
4459  case DeclSpec::SCS_register:
4460  case DeclSpec::SCS_mutable:
4461    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4462                 diag::err_typecheck_sclass_func);
4463    D.setInvalidType();
4464    break;
4465  case DeclSpec::SCS_unspecified: break;
4466  case DeclSpec::SCS_extern: return SC_Extern;
4467  case DeclSpec::SCS_static: {
4468    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4469      // C99 6.7.1p5:
4470      //   The declaration of an identifier for a function that has
4471      //   block scope shall have no explicit storage-class specifier
4472      //   other than extern
4473      // See also (C++ [dcl.stc]p4).
4474      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4475                   diag::err_static_block_func);
4476      break;
4477    } else
4478      return SC_Static;
4479  }
4480  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4481  }
4482
4483  // No explicit storage class has already been returned
4484  return SC_None;
4485}
4486
4487static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4488                                           DeclContext *DC, QualType &R,
4489                                           TypeSourceInfo *TInfo,
4490                                           FunctionDecl::StorageClass SC,
4491                                           bool &IsVirtualOkay) {
4492  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4493  DeclarationName Name = NameInfo.getName();
4494
4495  FunctionDecl *NewFD = 0;
4496  bool isInline = D.getDeclSpec().isInlineSpecified();
4497  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4498  FunctionDecl::StorageClass SCAsWritten
4499    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4500
4501  if (!SemaRef.getLangOptions().CPlusPlus) {
4502    // Determine whether the function was written with a
4503    // prototype. This true when:
4504    //   - there is a prototype in the declarator, or
4505    //   - the type R of the function is some kind of typedef or other reference
4506    //     to a type name (which eventually refers to a function type).
4507    bool HasPrototype =
4508      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4509      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4510
4511    NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getSourceRange().getBegin(),
4512                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4513                                 HasPrototype);
4514    if (D.isInvalidType())
4515      NewFD->setInvalidDecl();
4516
4517    // Set the lexical context.
4518    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4519
4520    return NewFD;
4521  }
4522
4523  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4524  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4525
4526  // Check that the return type is not an abstract class type.
4527  // For record types, this is done by the AbstractClassUsageDiagnoser once
4528  // the class has been completely parsed.
4529  if (!DC->isRecord() &&
4530      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4531                                     R->getAs<FunctionType>()->getResultType(),
4532                                     diag::err_abstract_type_in_decl,
4533                                     SemaRef.AbstractReturnType))
4534    D.setInvalidType();
4535
4536  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4537    // This is a C++ constructor declaration.
4538    assert(DC->isRecord() &&
4539           "Constructors can only be declared in a member context");
4540
4541    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4542    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4543                                      D.getSourceRange().getBegin(), NameInfo,
4544                                      R, TInfo, isExplicit, isInline,
4545                                      /*isImplicitlyDeclared=*/false,
4546                                      isConstexpr);
4547
4548  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4549    // This is a C++ destructor declaration.
4550    if (DC->isRecord()) {
4551      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4552      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4553      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4554                                        SemaRef.Context, Record,
4555                                        D.getSourceRange().getBegin(),
4556                                        NameInfo, R, TInfo, isInline,
4557                                        /*isImplicitlyDeclared=*/false);
4558
4559      // If the class is complete, then we now create the implicit exception
4560      // specification. If the class is incomplete or dependent, we can't do
4561      // it yet.
4562      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4563          Record->getDefinition() && !Record->isBeingDefined() &&
4564          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4565        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4566      }
4567
4568      IsVirtualOkay = true;
4569      return NewDD;
4570
4571    } else {
4572      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4573      D.setInvalidType();
4574
4575      // Create a FunctionDecl to satisfy the function definition parsing
4576      // code path.
4577      return FunctionDecl::Create(SemaRef.Context, DC,
4578                                  D.getSourceRange().getBegin(),
4579                                  D.getIdentifierLoc(), Name, R, TInfo,
4580                                  SC, SCAsWritten, isInline,
4581                                  /*hasPrototype=*/true, isConstexpr);
4582    }
4583
4584  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4585    if (!DC->isRecord()) {
4586      SemaRef.Diag(D.getIdentifierLoc(),
4587           diag::err_conv_function_not_member);
4588      return 0;
4589    }
4590
4591    SemaRef.CheckConversionDeclarator(D, R, SC);
4592    IsVirtualOkay = true;
4593    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4594                                     D.getSourceRange().getBegin(), NameInfo,
4595                                     R, TInfo, isInline, isExplicit,
4596                                     isConstexpr, SourceLocation());
4597
4598  } else if (DC->isRecord()) {
4599    // If the name of the function is the same as the name of the record,
4600    // then this must be an invalid constructor that has a return type.
4601    // (The parser checks for a return type and makes the declarator a
4602    // constructor if it has no return type).
4603    if (Name.getAsIdentifierInfo() &&
4604        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4605      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4606        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4607        << SourceRange(D.getIdentifierLoc());
4608      return 0;
4609    }
4610
4611    bool isStatic = SC == SC_Static;
4612
4613    // [class.free]p1:
4614    // Any allocation function for a class T is a static member
4615    // (even if not explicitly declared static).
4616    if (Name.getCXXOverloadedOperator() == OO_New ||
4617        Name.getCXXOverloadedOperator() == OO_Array_New)
4618      isStatic = true;
4619
4620    // [class.free]p6 Any deallocation function for a class X is a static member
4621    // (even if not explicitly declared static).
4622    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4623        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4624      isStatic = true;
4625
4626    IsVirtualOkay = !isStatic;
4627
4628    // This is a C++ method declaration.
4629    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4630                                 D.getSourceRange().getBegin(), NameInfo, R,
4631                                 TInfo, isStatic, SCAsWritten, isInline,
4632                                 isConstexpr, SourceLocation());
4633
4634  } else {
4635    // Determine whether the function was written with a
4636    // prototype. This true when:
4637    //   - we're in C++ (where every function has a prototype),
4638    return FunctionDecl::Create(SemaRef.Context, DC,
4639                                D.getSourceRange().getBegin(),
4640                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4641                                true/*HasPrototype*/, isConstexpr);
4642  }
4643}
4644
4645NamedDecl*
4646Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4647                              TypeSourceInfo *TInfo, LookupResult &Previous,
4648                              MultiTemplateParamsArg TemplateParamLists,
4649                              bool &AddToScope) {
4650  QualType R = TInfo->getType();
4651
4652  assert(R.getTypePtr()->isFunctionType());
4653
4654  // TODO: consider using NameInfo for diagnostic.
4655  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4656  DeclarationName Name = NameInfo.getName();
4657  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4658
4659  if (D.getDeclSpec().isThreadSpecified())
4660    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4661
4662  // Do not allow returning a objc interface by-value.
4663  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4664    Diag(D.getIdentifierLoc(),
4665         diag::err_object_cannot_be_passed_returned_by_value) << 0
4666    << R->getAs<FunctionType>()->getResultType()
4667    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4668
4669    QualType T = R->getAs<FunctionType>()->getResultType();
4670    T = Context.getObjCObjectPointerType(T);
4671    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4672      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4673      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4674                                  FPT->getNumArgs(), EPI);
4675    }
4676    else if (isa<FunctionNoProtoType>(R))
4677      R = Context.getFunctionNoProtoType(T);
4678  }
4679
4680  bool isFriend = false;
4681  FunctionTemplateDecl *FunctionTemplate = 0;
4682  bool isExplicitSpecialization = false;
4683  bool isFunctionTemplateSpecialization = false;
4684  bool isDependentClassScopeExplicitSpecialization = false;
4685  bool isVirtualOkay = false;
4686
4687  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4688                                              isVirtualOkay);
4689  if (!NewFD) return 0;
4690
4691  if (getLangOptions().CPlusPlus) {
4692    bool isInline = D.getDeclSpec().isInlineSpecified();
4693    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4694    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4695    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4696    isFriend = D.getDeclSpec().isFriendSpecified();
4697    if (isFriend && !isInline && D.isFunctionDefinition()) {
4698      // C++ [class.friend]p5
4699      //   A function can be defined in a friend declaration of a
4700      //   class . . . . Such a function is implicitly inline.
4701      NewFD->setImplicitlyInline();
4702    }
4703
4704    SetNestedNameSpecifier(NewFD, D);
4705    isExplicitSpecialization = false;
4706    isFunctionTemplateSpecialization = false;
4707    if (D.isInvalidType())
4708      NewFD->setInvalidDecl();
4709
4710    // Set the lexical context. If the declarator has a C++
4711    // scope specifier, or is the object of a friend declaration, the
4712    // lexical context will be different from the semantic context.
4713    NewFD->setLexicalDeclContext(CurContext);
4714
4715    // Match up the template parameter lists with the scope specifier, then
4716    // determine whether we have a template or a template specialization.
4717    bool Invalid = false;
4718    if (TemplateParameterList *TemplateParams
4719          = MatchTemplateParametersToScopeSpecifier(
4720                                  D.getDeclSpec().getSourceRange().getBegin(),
4721                                  D.getIdentifierLoc(),
4722                                  D.getCXXScopeSpec(),
4723                                  TemplateParamLists.get(),
4724                                  TemplateParamLists.size(),
4725                                  isFriend,
4726                                  isExplicitSpecialization,
4727                                  Invalid)) {
4728      if (TemplateParams->size() > 0) {
4729        // This is a function template
4730
4731        // Check that we can declare a template here.
4732        if (CheckTemplateDeclScope(S, TemplateParams))
4733          return 0;
4734
4735        // A destructor cannot be a template.
4736        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4737          Diag(NewFD->getLocation(), diag::err_destructor_template);
4738          return 0;
4739        }
4740
4741        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4742                                                        NewFD->getLocation(),
4743                                                        Name, TemplateParams,
4744                                                        NewFD);
4745        FunctionTemplate->setLexicalDeclContext(CurContext);
4746        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4747
4748        // For source fidelity, store the other template param lists.
4749        if (TemplateParamLists.size() > 1) {
4750          NewFD->setTemplateParameterListsInfo(Context,
4751                                               TemplateParamLists.size() - 1,
4752                                               TemplateParamLists.release());
4753        }
4754      } else {
4755        // This is a function template specialization.
4756        isFunctionTemplateSpecialization = true;
4757        // For source fidelity, store all the template param lists.
4758        NewFD->setTemplateParameterListsInfo(Context,
4759                                             TemplateParamLists.size(),
4760                                             TemplateParamLists.release());
4761
4762        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4763        if (isFriend) {
4764          // We want to remove the "template<>", found here.
4765          SourceRange RemoveRange = TemplateParams->getSourceRange();
4766
4767          // If we remove the template<> and the name is not a
4768          // template-id, we're actually silently creating a problem:
4769          // the friend declaration will refer to an untemplated decl,
4770          // and clearly the user wants a template specialization.  So
4771          // we need to insert '<>' after the name.
4772          SourceLocation InsertLoc;
4773          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4774            InsertLoc = D.getName().getSourceRange().getEnd();
4775            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4776          }
4777
4778          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4779            << Name << RemoveRange
4780            << FixItHint::CreateRemoval(RemoveRange)
4781            << FixItHint::CreateInsertion(InsertLoc, "<>");
4782        }
4783      }
4784    }
4785    else {
4786      // All template param lists were matched against the scope specifier:
4787      // this is NOT (an explicit specialization of) a template.
4788      if (TemplateParamLists.size() > 0)
4789        // For source fidelity, store all the template param lists.
4790        NewFD->setTemplateParameterListsInfo(Context,
4791                                             TemplateParamLists.size(),
4792                                             TemplateParamLists.release());
4793    }
4794
4795    if (Invalid) {
4796      NewFD->setInvalidDecl();
4797      if (FunctionTemplate)
4798        FunctionTemplate->setInvalidDecl();
4799    }
4800
4801    // C++ [dcl.fct.spec]p5:
4802    //   The virtual specifier shall only be used in declarations of
4803    //   nonstatic class member functions that appear within a
4804    //   member-specification of a class declaration; see 10.3.
4805    //
4806    if (isVirtual && !NewFD->isInvalidDecl()) {
4807      if (!isVirtualOkay) {
4808        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4809             diag::err_virtual_non_function);
4810      } else if (!CurContext->isRecord()) {
4811        // 'virtual' was specified outside of the class.
4812        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4813             diag::err_virtual_out_of_class)
4814          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4815      } else if (NewFD->getDescribedFunctionTemplate()) {
4816        // C++ [temp.mem]p3:
4817        //  A member function template shall not be virtual.
4818        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4819             diag::err_virtual_member_function_template)
4820          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4821      } else {
4822        // Okay: Add virtual to the method.
4823        NewFD->setVirtualAsWritten(true);
4824      }
4825    }
4826
4827    // C++ [dcl.fct.spec]p3:
4828    //  The inline specifier shall not appear on a block scope function declaration.
4829    if (isInline && !NewFD->isInvalidDecl()) {
4830      if (CurContext->isFunctionOrMethod()) {
4831        // 'inline' is not allowed on block scope function declaration.
4832        Diag(D.getDeclSpec().getInlineSpecLoc(),
4833             diag::err_inline_declaration_block_scope) << Name
4834          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4835      }
4836    }
4837
4838    // C++ [dcl.fct.spec]p6:
4839    //  The explicit specifier shall be used only in the declaration of a
4840    //  constructor or conversion function within its class definition; see 12.3.1
4841    //  and 12.3.2.
4842    if (isExplicit && !NewFD->isInvalidDecl()) {
4843      if (!CurContext->isRecord()) {
4844        // 'explicit' was specified outside of the class.
4845        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4846             diag::err_explicit_out_of_class)
4847          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4848      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4849                 !isa<CXXConversionDecl>(NewFD)) {
4850        // 'explicit' was specified on a function that wasn't a constructor
4851        // or conversion function.
4852        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4853             diag::err_explicit_non_ctor_or_conv_function)
4854          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4855      }
4856    }
4857
4858    if (isConstexpr) {
4859      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4860      // are implicitly inline.
4861      NewFD->setImplicitlyInline();
4862
4863      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4864      // be either constructors or to return a literal type. Therefore,
4865      // destructors cannot be declared constexpr.
4866      if (isa<CXXDestructorDecl>(NewFD))
4867        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4868    }
4869
4870    // If __module_private__ was specified, mark the function accordingly.
4871    if (D.getDeclSpec().isModulePrivateSpecified()) {
4872      if (isFunctionTemplateSpecialization) {
4873        SourceLocation ModulePrivateLoc
4874          = D.getDeclSpec().getModulePrivateSpecLoc();
4875        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4876          << 0
4877          << FixItHint::CreateRemoval(ModulePrivateLoc);
4878      } else {
4879        NewFD->setModulePrivate();
4880        if (FunctionTemplate)
4881          FunctionTemplate->setModulePrivate();
4882      }
4883    }
4884
4885    if (isFriend) {
4886      // For now, claim that the objects have no previous declaration.
4887      if (FunctionTemplate) {
4888        FunctionTemplate->setObjectOfFriendDecl(false);
4889        FunctionTemplate->setAccess(AS_public);
4890      }
4891      NewFD->setObjectOfFriendDecl(false);
4892      NewFD->setAccess(AS_public);
4893    }
4894
4895    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4896        D.isFunctionDefinition()) {
4897      // A method is implicitly inline if it's defined in its class
4898      // definition.
4899      NewFD->setImplicitlyInline();
4900    }
4901
4902    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4903        !CurContext->isRecord()) {
4904      // C++ [class.static]p1:
4905      //   A data or function member of a class may be declared static
4906      //   in a class definition, in which case it is a static member of
4907      //   the class.
4908
4909      // Complain about the 'static' specifier if it's on an out-of-line
4910      // member function definition.
4911      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4912           diag::err_static_out_of_line)
4913        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4914    }
4915  }
4916
4917  // Filter out previous declarations that don't match the scope.
4918  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4919                       isExplicitSpecialization ||
4920                       isFunctionTemplateSpecialization);
4921
4922  // Handle GNU asm-label extension (encoded as an attribute).
4923  if (Expr *E = (Expr*) D.getAsmLabel()) {
4924    // The parser guarantees this is a string.
4925    StringLiteral *SE = cast<StringLiteral>(E);
4926    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4927                                                SE->getString()));
4928  }
4929
4930  // Copy the parameter declarations from the declarator D to the function
4931  // declaration NewFD, if they are available.  First scavenge them into Params.
4932  SmallVector<ParmVarDecl*, 16> Params;
4933  if (D.isFunctionDeclarator()) {
4934    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4935
4936    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4937    // function that takes no arguments, not a function that takes a
4938    // single void argument.
4939    // We let through "const void" here because Sema::GetTypeForDeclarator
4940    // already checks for that case.
4941    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4942        FTI.ArgInfo[0].Param &&
4943        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4944      // Empty arg list, don't push any params.
4945      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4946
4947      // In C++, the empty parameter-type-list must be spelled "void"; a
4948      // typedef of void is not permitted.
4949      if (getLangOptions().CPlusPlus &&
4950          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4951        bool IsTypeAlias = false;
4952        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4953          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4954        else if (const TemplateSpecializationType *TST =
4955                   Param->getType()->getAs<TemplateSpecializationType>())
4956          IsTypeAlias = TST->isTypeAlias();
4957        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4958          << IsTypeAlias;
4959      }
4960    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4961      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4962        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4963        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4964        Param->setDeclContext(NewFD);
4965        Params.push_back(Param);
4966
4967        if (Param->isInvalidDecl())
4968          NewFD->setInvalidDecl();
4969      }
4970    }
4971
4972  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4973    // When we're declaring a function with a typedef, typeof, etc as in the
4974    // following example, we'll need to synthesize (unnamed)
4975    // parameters for use in the declaration.
4976    //
4977    // @code
4978    // typedef void fn(int);
4979    // fn f;
4980    // @endcode
4981
4982    // Synthesize a parameter for each argument type.
4983    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4984         AE = FT->arg_type_end(); AI != AE; ++AI) {
4985      ParmVarDecl *Param =
4986        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4987      Param->setScopeInfo(0, Params.size());
4988      Params.push_back(Param);
4989    }
4990  } else {
4991    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4992           "Should not need args for typedef of non-prototype fn");
4993  }
4994  // Finally, we know we have the right number of parameters, install them.
4995  NewFD->setParams(Params);
4996
4997  // Process the non-inheritable attributes on this declaration.
4998  ProcessDeclAttributes(S, NewFD, D,
4999                        /*NonInheritable=*/true, /*Inheritable=*/false);
5000
5001  if (!getLangOptions().CPlusPlus) {
5002    // Perform semantic checking on the function declaration.
5003    bool isExplicitSpecialization=false;
5004    if (!NewFD->isInvalidDecl()) {
5005      if (NewFD->getResultType()->isVariablyModifiedType()) {
5006        // Functions returning a variably modified type violate C99 6.7.5.2p2
5007        // because all functions have linkage.
5008        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5009        NewFD->setInvalidDecl();
5010      } else {
5011        if (NewFD->isMain())
5012          CheckMain(NewFD, D.getDeclSpec());
5013        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5014                                                    isExplicitSpecialization));
5015      }
5016    }
5017    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5018            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5019           "previous declaration set still overloaded");
5020  } else {
5021    // If the declarator is a template-id, translate the parser's template
5022    // argument list into our AST format.
5023    bool HasExplicitTemplateArgs = false;
5024    TemplateArgumentListInfo TemplateArgs;
5025    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5026      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5027      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5028      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5029      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5030                                         TemplateId->getTemplateArgs(),
5031                                         TemplateId->NumArgs);
5032      translateTemplateArguments(TemplateArgsPtr,
5033                                 TemplateArgs);
5034      TemplateArgsPtr.release();
5035
5036      HasExplicitTemplateArgs = true;
5037
5038      if (NewFD->isInvalidDecl()) {
5039        HasExplicitTemplateArgs = false;
5040      } else if (FunctionTemplate) {
5041        // Function template with explicit template arguments.
5042        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5043          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5044
5045        HasExplicitTemplateArgs = false;
5046      } else if (!isFunctionTemplateSpecialization &&
5047                 !D.getDeclSpec().isFriendSpecified()) {
5048        // We have encountered something that the user meant to be a
5049        // specialization (because it has explicitly-specified template
5050        // arguments) but that was not introduced with a "template<>" (or had
5051        // too few of them).
5052        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5053          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5054          << FixItHint::CreateInsertion(
5055                                        D.getDeclSpec().getSourceRange().getBegin(),
5056                                                  "template<> ");
5057        isFunctionTemplateSpecialization = true;
5058      } else {
5059        // "friend void foo<>(int);" is an implicit specialization decl.
5060        isFunctionTemplateSpecialization = true;
5061      }
5062    } else if (isFriend && isFunctionTemplateSpecialization) {
5063      // This combination is only possible in a recovery case;  the user
5064      // wrote something like:
5065      //   template <> friend void foo(int);
5066      // which we're recovering from as if the user had written:
5067      //   friend void foo<>(int);
5068      // Go ahead and fake up a template id.
5069      HasExplicitTemplateArgs = true;
5070        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5071      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5072    }
5073
5074    // If it's a friend (and only if it's a friend), it's possible
5075    // that either the specialized function type or the specialized
5076    // template is dependent, and therefore matching will fail.  In
5077    // this case, don't check the specialization yet.
5078    bool InstantiationDependent = false;
5079    if (isFunctionTemplateSpecialization && isFriend &&
5080        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5081         TemplateSpecializationType::anyDependentTemplateArguments(
5082            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5083            InstantiationDependent))) {
5084      assert(HasExplicitTemplateArgs &&
5085             "friend function specialization without template args");
5086      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5087                                                       Previous))
5088        NewFD->setInvalidDecl();
5089    } else if (isFunctionTemplateSpecialization) {
5090      if (CurContext->isDependentContext() && CurContext->isRecord()
5091          && !isFriend) {
5092        isDependentClassScopeExplicitSpecialization = true;
5093        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5094          diag::ext_function_specialization_in_class :
5095          diag::err_function_specialization_in_class)
5096          << NewFD->getDeclName();
5097      } else if (CheckFunctionTemplateSpecialization(NewFD,
5098                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5099                                                     Previous))
5100        NewFD->setInvalidDecl();
5101
5102      // C++ [dcl.stc]p1:
5103      //   A storage-class-specifier shall not be specified in an explicit
5104      //   specialization (14.7.3)
5105      if (SC != SC_None) {
5106        if (SC != NewFD->getStorageClass())
5107          Diag(NewFD->getLocation(),
5108               diag::err_explicit_specialization_inconsistent_storage_class)
5109            << SC
5110            << FixItHint::CreateRemoval(
5111                                      D.getDeclSpec().getStorageClassSpecLoc());
5112
5113        else
5114          Diag(NewFD->getLocation(),
5115               diag::ext_explicit_specialization_storage_class)
5116            << FixItHint::CreateRemoval(
5117                                      D.getDeclSpec().getStorageClassSpecLoc());
5118      }
5119
5120    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5121      if (CheckMemberSpecialization(NewFD, Previous))
5122          NewFD->setInvalidDecl();
5123    }
5124
5125    // Perform semantic checking on the function declaration.
5126    if (!isDependentClassScopeExplicitSpecialization) {
5127      if (NewFD->isInvalidDecl()) {
5128        // If this is a class member, mark the class invalid immediately.
5129        // This avoids some consistency errors later.
5130        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5131          methodDecl->getParent()->setInvalidDecl();
5132      } else {
5133        if (NewFD->isMain())
5134          CheckMain(NewFD, D.getDeclSpec());
5135        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5136                                                    isExplicitSpecialization));
5137      }
5138    }
5139
5140    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5141            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5142           "previous declaration set still overloaded");
5143
5144    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5145        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5146      NewFD->setInvalidDecl();
5147
5148    NamedDecl *PrincipalDecl = (FunctionTemplate
5149                                ? cast<NamedDecl>(FunctionTemplate)
5150                                : NewFD);
5151
5152    if (isFriend && D.isRedeclaration()) {
5153      AccessSpecifier Access = AS_public;
5154      if (!NewFD->isInvalidDecl())
5155        Access = NewFD->getPreviousDeclaration()->getAccess();
5156
5157      NewFD->setAccess(Access);
5158      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5159
5160      PrincipalDecl->setObjectOfFriendDecl(true);
5161    }
5162
5163    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5164        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5165      PrincipalDecl->setNonMemberOperator();
5166
5167    // If we have a function template, check the template parameter
5168    // list. This will check and merge default template arguments.
5169    if (FunctionTemplate) {
5170      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5171      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5172                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5173                            D.getDeclSpec().isFriendSpecified()
5174                              ? (D.isFunctionDefinition()
5175                                   ? TPC_FriendFunctionTemplateDefinition
5176                                   : TPC_FriendFunctionTemplate)
5177                              : (D.getCXXScopeSpec().isSet() &&
5178                                 DC && DC->isRecord() &&
5179                                 DC->isDependentContext())
5180                                  ? TPC_ClassTemplateMember
5181                                  : TPC_FunctionTemplate);
5182    }
5183
5184    if (NewFD->isInvalidDecl()) {
5185      // Ignore all the rest of this.
5186    } else if (!D.isRedeclaration()) {
5187      struct ActOnFDArgs ExtraArgs = { S, D, DC, TInfo, TemplateParamLists,
5188                                       AddToScope };
5189      // Fake up an access specifier if it's supposed to be a class member.
5190      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5191        NewFD->setAccess(AS_public);
5192
5193      // Qualified decls generally require a previous declaration.
5194      if (D.getCXXScopeSpec().isSet()) {
5195        // ...with the major exception of templated-scope or
5196        // dependent-scope friend declarations.
5197
5198        // TODO: we currently also suppress this check in dependent
5199        // contexts because (1) the parameter depth will be off when
5200        // matching friend templates and (2) we might actually be
5201        // selecting a friend based on a dependent factor.  But there
5202        // are situations where these conditions don't apply and we
5203        // can actually do this check immediately.
5204        if (isFriend &&
5205            (TemplateParamLists.size() ||
5206             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5207             CurContext->isDependentContext())) {
5208          // ignore these
5209        } else {
5210          // The user tried to provide an out-of-line definition for a
5211          // function that is a member of a class or namespace, but there
5212          // was no such member function declared (C++ [class.mfct]p2,
5213          // C++ [namespace.memdef]p2). For example:
5214          //
5215          // class X {
5216          //   void f() const;
5217          // };
5218          //
5219          // void X::f() { } // ill-formed
5220          //
5221          // Complain about this problem, and attempt to suggest close
5222          // matches (e.g., those that differ only in cv-qualifiers and
5223          // whether the parameter types are references).
5224
5225          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5226                                                               NewFD, false,
5227                                                               ExtraArgs)) {
5228            AddToScope = ExtraArgs.AddToScope;
5229            return Result;
5230          }
5231        }
5232
5233        // Unqualified local friend declarations are required to resolve
5234        // to something.
5235      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5236        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5237                                                             NewFD, true,
5238                                                             ExtraArgs)) {
5239          AddToScope = ExtraArgs.AddToScope;
5240          return Result;
5241        }
5242      }
5243
5244    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5245               !isFriend && !isFunctionTemplateSpecialization &&
5246               !isExplicitSpecialization) {
5247      // An out-of-line member function declaration must also be a
5248      // definition (C++ [dcl.meaning]p1).
5249      // Note that this is not the case for explicit specializations of
5250      // function templates or member functions of class templates, per
5251      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5252      // for compatibility with old SWIG code which likes to generate them.
5253      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5254        << D.getCXXScopeSpec().getRange();
5255    }
5256  }
5257
5258
5259  // Handle attributes. We need to have merged decls when handling attributes
5260  // (for example to check for conflicts, etc).
5261  // FIXME: This needs to happen before we merge declarations. Then,
5262  // let attribute merging cope with attribute conflicts.
5263  ProcessDeclAttributes(S, NewFD, D,
5264                        /*NonInheritable=*/false, /*Inheritable=*/true);
5265
5266  // attributes declared post-definition are currently ignored
5267  // FIXME: This should happen during attribute merging
5268  if (D.isRedeclaration() && Previous.isSingleResult()) {
5269    const FunctionDecl *Def;
5270    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5271    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5272      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5273      Diag(Def->getLocation(), diag::note_previous_definition);
5274    }
5275  }
5276
5277  AddKnownFunctionAttributes(NewFD);
5278
5279  if (NewFD->hasAttr<OverloadableAttr>() &&
5280      !NewFD->getType()->getAs<FunctionProtoType>()) {
5281    Diag(NewFD->getLocation(),
5282         diag::err_attribute_overloadable_no_prototype)
5283      << NewFD;
5284
5285    // Turn this into a variadic function with no parameters.
5286    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5287    FunctionProtoType::ExtProtoInfo EPI;
5288    EPI.Variadic = true;
5289    EPI.ExtInfo = FT->getExtInfo();
5290
5291    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5292    NewFD->setType(R);
5293  }
5294
5295  // If there's a #pragma GCC visibility in scope, and this isn't a class
5296  // member, set the visibility of this function.
5297  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5298    AddPushedVisibilityAttribute(NewFD);
5299
5300  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5301  // marking the function.
5302  AddCFAuditedAttribute(NewFD);
5303
5304  // If this is a locally-scoped extern C function, update the
5305  // map of such names.
5306  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5307      && !NewFD->isInvalidDecl())
5308    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5309
5310  // Set this FunctionDecl's range up to the right paren.
5311  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5312
5313  if (getLangOptions().CPlusPlus) {
5314    if (FunctionTemplate) {
5315      if (NewFD->isInvalidDecl())
5316        FunctionTemplate->setInvalidDecl();
5317      return FunctionTemplate;
5318    }
5319  }
5320
5321  MarkUnusedFileScopedDecl(NewFD);
5322
5323  if (getLangOptions().CUDA)
5324    if (IdentifierInfo *II = NewFD->getIdentifier())
5325      if (!NewFD->isInvalidDecl() &&
5326          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5327        if (II->isStr("cudaConfigureCall")) {
5328          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5329            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5330
5331          Context.setcudaConfigureCallDecl(NewFD);
5332        }
5333      }
5334
5335  // Here we have an function template explicit specialization at class scope.
5336  // The actually specialization will be postponed to template instatiation
5337  // time via the ClassScopeFunctionSpecializationDecl node.
5338  if (isDependentClassScopeExplicitSpecialization) {
5339    ClassScopeFunctionSpecializationDecl *NewSpec =
5340                         ClassScopeFunctionSpecializationDecl::Create(
5341                                Context, CurContext,  SourceLocation(),
5342                                cast<CXXMethodDecl>(NewFD));
5343    CurContext->addDecl(NewSpec);
5344    AddToScope = false;
5345  }
5346
5347  return NewFD;
5348}
5349
5350/// \brief Perform semantic checking of a new function declaration.
5351///
5352/// Performs semantic analysis of the new function declaration
5353/// NewFD. This routine performs all semantic checking that does not
5354/// require the actual declarator involved in the declaration, and is
5355/// used both for the declaration of functions as they are parsed
5356/// (called via ActOnDeclarator) and for the declaration of functions
5357/// that have been instantiated via C++ template instantiation (called
5358/// via InstantiateDecl).
5359///
5360/// \param IsExplicitSpecialiation whether this new function declaration is
5361/// an explicit specialization of the previous declaration.
5362///
5363/// This sets NewFD->isInvalidDecl() to true if there was an error.
5364///
5365/// Returns true if the function declaration is a redeclaration.
5366bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5367                                    LookupResult &Previous,
5368                                    bool IsExplicitSpecialization) {
5369  assert(!NewFD->getResultType()->isVariablyModifiedType()
5370         && "Variably modified return types are not handled here");
5371
5372  // Check for a previous declaration of this name.
5373  if (Previous.empty() && NewFD->isExternC()) {
5374    // Since we did not find anything by this name and we're declaring
5375    // an extern "C" function, look for a non-visible extern "C"
5376    // declaration with the same name.
5377    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5378      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5379    if (Pos != LocallyScopedExternalDecls.end())
5380      Previous.addDecl(Pos->second);
5381  }
5382
5383  bool Redeclaration = false;
5384
5385  // Merge or overload the declaration with an existing declaration of
5386  // the same name, if appropriate.
5387  if (!Previous.empty()) {
5388    // Determine whether NewFD is an overload of PrevDecl or
5389    // a declaration that requires merging. If it's an overload,
5390    // there's no more work to do here; we'll just add the new
5391    // function to the scope.
5392
5393    NamedDecl *OldDecl = 0;
5394    if (!AllowOverloadingOfFunction(Previous, Context)) {
5395      Redeclaration = true;
5396      OldDecl = Previous.getFoundDecl();
5397    } else {
5398      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5399                            /*NewIsUsingDecl*/ false)) {
5400      case Ovl_Match:
5401        Redeclaration = true;
5402        break;
5403
5404      case Ovl_NonFunction:
5405        Redeclaration = true;
5406        break;
5407
5408      case Ovl_Overload:
5409        Redeclaration = false;
5410        break;
5411      }
5412
5413      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5414        // If a function name is overloadable in C, then every function
5415        // with that name must be marked "overloadable".
5416        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5417          << Redeclaration << NewFD;
5418        NamedDecl *OverloadedDecl = 0;
5419        if (Redeclaration)
5420          OverloadedDecl = OldDecl;
5421        else if (!Previous.empty())
5422          OverloadedDecl = Previous.getRepresentativeDecl();
5423        if (OverloadedDecl)
5424          Diag(OverloadedDecl->getLocation(),
5425               diag::note_attribute_overloadable_prev_overload);
5426        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5427                                                        Context));
5428      }
5429    }
5430
5431    if (Redeclaration) {
5432      // NewFD and OldDecl represent declarations that need to be
5433      // merged.
5434      if (MergeFunctionDecl(NewFD, OldDecl)) {
5435        NewFD->setInvalidDecl();
5436        return Redeclaration;
5437      }
5438
5439      Previous.clear();
5440      Previous.addDecl(OldDecl);
5441
5442      if (FunctionTemplateDecl *OldTemplateDecl
5443                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5444        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5445        FunctionTemplateDecl *NewTemplateDecl
5446          = NewFD->getDescribedFunctionTemplate();
5447        assert(NewTemplateDecl && "Template/non-template mismatch");
5448        if (CXXMethodDecl *Method
5449              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5450          Method->setAccess(OldTemplateDecl->getAccess());
5451          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5452        }
5453
5454        // If this is an explicit specialization of a member that is a function
5455        // template, mark it as a member specialization.
5456        if (IsExplicitSpecialization &&
5457            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5458          NewTemplateDecl->setMemberSpecialization();
5459          assert(OldTemplateDecl->isMemberSpecialization());
5460        }
5461
5462        if (OldTemplateDecl->isModulePrivate())
5463          NewTemplateDecl->setModulePrivate();
5464
5465      } else {
5466        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5467          NewFD->setAccess(OldDecl->getAccess());
5468        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5469      }
5470    }
5471  }
5472
5473  // Semantic checking for this function declaration (in isolation).
5474  if (getLangOptions().CPlusPlus) {
5475    // C++-specific checks.
5476    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5477      CheckConstructor(Constructor);
5478    } else if (CXXDestructorDecl *Destructor =
5479                dyn_cast<CXXDestructorDecl>(NewFD)) {
5480      CXXRecordDecl *Record = Destructor->getParent();
5481      QualType ClassType = Context.getTypeDeclType(Record);
5482
5483      // FIXME: Shouldn't we be able to perform this check even when the class
5484      // type is dependent? Both gcc and edg can handle that.
5485      if (!ClassType->isDependentType()) {
5486        DeclarationName Name
5487          = Context.DeclarationNames.getCXXDestructorName(
5488                                        Context.getCanonicalType(ClassType));
5489        if (NewFD->getDeclName() != Name) {
5490          Diag(NewFD->getLocation(), diag::err_destructor_name);
5491          NewFD->setInvalidDecl();
5492          return Redeclaration;
5493        }
5494      }
5495    } else if (CXXConversionDecl *Conversion
5496               = dyn_cast<CXXConversionDecl>(NewFD)) {
5497      ActOnConversionDeclarator(Conversion);
5498    }
5499
5500    // Find any virtual functions that this function overrides.
5501    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5502      if (!Method->isFunctionTemplateSpecialization() &&
5503          !Method->getDescribedFunctionTemplate()) {
5504        if (AddOverriddenMethods(Method->getParent(), Method)) {
5505          // If the function was marked as "static", we have a problem.
5506          if (NewFD->getStorageClass() == SC_Static) {
5507            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5508              << NewFD->getDeclName();
5509            for (CXXMethodDecl::method_iterator
5510                      Overridden = Method->begin_overridden_methods(),
5511                   OverriddenEnd = Method->end_overridden_methods();
5512                 Overridden != OverriddenEnd;
5513                 ++Overridden) {
5514              Diag((*Overridden)->getLocation(),
5515                   diag::note_overridden_virtual_function);
5516            }
5517          }
5518        }
5519      }
5520    }
5521
5522    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5523    if (NewFD->isOverloadedOperator() &&
5524        CheckOverloadedOperatorDeclaration(NewFD)) {
5525      NewFD->setInvalidDecl();
5526      return Redeclaration;
5527    }
5528
5529    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5530    if (NewFD->getLiteralIdentifier() &&
5531        CheckLiteralOperatorDeclaration(NewFD)) {
5532      NewFD->setInvalidDecl();
5533      return Redeclaration;
5534    }
5535
5536    // In C++, check default arguments now that we have merged decls. Unless
5537    // the lexical context is the class, because in this case this is done
5538    // during delayed parsing anyway.
5539    if (!CurContext->isRecord())
5540      CheckCXXDefaultArguments(NewFD);
5541
5542    // If this function declares a builtin function, check the type of this
5543    // declaration against the expected type for the builtin.
5544    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5545      ASTContext::GetBuiltinTypeError Error;
5546      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5547      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5548        // The type of this function differs from the type of the builtin,
5549        // so forget about the builtin entirely.
5550        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5551      }
5552    }
5553  }
5554  return Redeclaration;
5555}
5556
5557void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5558  // C++ [basic.start.main]p3:  A program that declares main to be inline
5559  //   or static is ill-formed.
5560  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5561  //   shall not appear in a declaration of main.
5562  // static main is not an error under C99, but we should warn about it.
5563  if (FD->getStorageClass() == SC_Static)
5564    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5565         ? diag::err_static_main : diag::warn_static_main)
5566      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5567  if (FD->isInlineSpecified())
5568    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5569      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5570
5571  QualType T = FD->getType();
5572  assert(T->isFunctionType() && "function decl is not of function type");
5573  const FunctionType* FT = T->getAs<FunctionType>();
5574
5575  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5576    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5577    FD->setInvalidDecl(true);
5578  }
5579
5580  // Treat protoless main() as nullary.
5581  if (isa<FunctionNoProtoType>(FT)) return;
5582
5583  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5584  unsigned nparams = FTP->getNumArgs();
5585  assert(FD->getNumParams() == nparams);
5586
5587  bool HasExtraParameters = (nparams > 3);
5588
5589  // Darwin passes an undocumented fourth argument of type char**.  If
5590  // other platforms start sprouting these, the logic below will start
5591  // getting shifty.
5592  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5593    HasExtraParameters = false;
5594
5595  if (HasExtraParameters) {
5596    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5597    FD->setInvalidDecl(true);
5598    nparams = 3;
5599  }
5600
5601  // FIXME: a lot of the following diagnostics would be improved
5602  // if we had some location information about types.
5603
5604  QualType CharPP =
5605    Context.getPointerType(Context.getPointerType(Context.CharTy));
5606  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5607
5608  for (unsigned i = 0; i < nparams; ++i) {
5609    QualType AT = FTP->getArgType(i);
5610
5611    bool mismatch = true;
5612
5613    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5614      mismatch = false;
5615    else if (Expected[i] == CharPP) {
5616      // As an extension, the following forms are okay:
5617      //   char const **
5618      //   char const * const *
5619      //   char * const *
5620
5621      QualifierCollector qs;
5622      const PointerType* PT;
5623      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5624          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5625          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5626        qs.removeConst();
5627        mismatch = !qs.empty();
5628      }
5629    }
5630
5631    if (mismatch) {
5632      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5633      // TODO: suggest replacing given type with expected type
5634      FD->setInvalidDecl(true);
5635    }
5636  }
5637
5638  if (nparams == 1 && !FD->isInvalidDecl()) {
5639    Diag(FD->getLocation(), diag::warn_main_one_arg);
5640  }
5641
5642  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5643    Diag(FD->getLocation(), diag::err_main_template_decl);
5644    FD->setInvalidDecl();
5645  }
5646}
5647
5648bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5649  // FIXME: Need strict checking.  In C89, we need to check for
5650  // any assignment, increment, decrement, function-calls, or
5651  // commas outside of a sizeof.  In C99, it's the same list,
5652  // except that the aforementioned are allowed in unevaluated
5653  // expressions.  Everything else falls under the
5654  // "may accept other forms of constant expressions" exception.
5655  // (We never end up here for C++, so the constant expression
5656  // rules there don't matter.)
5657  if (Init->isConstantInitializer(Context, false))
5658    return false;
5659  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5660    << Init->getSourceRange();
5661  return true;
5662}
5663
5664namespace {
5665  // Visits an initialization expression to see if OrigDecl is evaluated in
5666  // its own initialization and throws a warning if it does.
5667  class SelfReferenceChecker
5668      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5669    Sema &S;
5670    Decl *OrigDecl;
5671    bool isRecordType;
5672    bool isPODType;
5673
5674  public:
5675    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5676
5677    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5678                                                    S(S), OrigDecl(OrigDecl) {
5679      isPODType = false;
5680      isRecordType = false;
5681      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5682        isPODType = VD->getType().isPODType(S.Context);
5683        isRecordType = VD->getType()->isRecordType();
5684      }
5685    }
5686
5687    void VisitExpr(Expr *E) {
5688      if (isa<ObjCMessageExpr>(*E)) return;
5689      if (isRecordType) {
5690        Expr *expr = E;
5691        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5692          ValueDecl *VD = ME->getMemberDecl();
5693          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5694          expr = ME->getBase();
5695        }
5696        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5697          HandleDeclRefExpr(DRE);
5698          return;
5699        }
5700      }
5701      Inherited::VisitExpr(E);
5702    }
5703
5704    void VisitMemberExpr(MemberExpr *E) {
5705      if (E->getType()->canDecayToPointerType()) return;
5706      if (isa<FieldDecl>(E->getMemberDecl()))
5707        if (DeclRefExpr *DRE
5708              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5709          HandleDeclRefExpr(DRE);
5710          return;
5711        }
5712      Inherited::VisitMemberExpr(E);
5713    }
5714
5715    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5716      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5717          (isRecordType && E->getCastKind() == CK_NoOp)) {
5718        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5719        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5720          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5721        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5722          HandleDeclRefExpr(DRE);
5723          return;
5724        }
5725      }
5726      Inherited::VisitImplicitCastExpr(E);
5727    }
5728
5729    void VisitUnaryOperator(UnaryOperator *E) {
5730      // For POD record types, addresses of its own members are well-defined.
5731      if (isRecordType && isPODType) return;
5732      Inherited::VisitUnaryOperator(E);
5733    }
5734
5735    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5736      Decl* ReferenceDecl = DRE->getDecl();
5737      if (OrigDecl != ReferenceDecl) return;
5738      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5739                          Sema::NotForRedeclaration);
5740      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5741                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5742                              << Result.getLookupName()
5743                              << OrigDecl->getLocation()
5744                              << DRE->getSourceRange());
5745    }
5746  };
5747}
5748
5749/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5750void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5751  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5752}
5753
5754/// AddInitializerToDecl - Adds the initializer Init to the
5755/// declaration dcl. If DirectInit is true, this is C++ direct
5756/// initialization rather than copy initialization.
5757void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5758                                bool DirectInit, bool TypeMayContainAuto) {
5759  // If there is no declaration, there was an error parsing it.  Just ignore
5760  // the initializer.
5761  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5762    return;
5763
5764  // Check for self-references within variable initializers.
5765  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5766    // Variables declared within a function/method body are handled
5767    // by a dataflow analysis.
5768    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5769      CheckSelfReference(RealDecl, Init);
5770  }
5771  else {
5772    CheckSelfReference(RealDecl, Init);
5773  }
5774
5775  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5776    // With declarators parsed the way they are, the parser cannot
5777    // distinguish between a normal initializer and a pure-specifier.
5778    // Thus this grotesque test.
5779    IntegerLiteral *IL;
5780    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5781        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5782      CheckPureMethod(Method, Init->getSourceRange());
5783    else {
5784      Diag(Method->getLocation(), diag::err_member_function_initialization)
5785        << Method->getDeclName() << Init->getSourceRange();
5786      Method->setInvalidDecl();
5787    }
5788    return;
5789  }
5790
5791  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5792  if (!VDecl) {
5793    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5794    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5795    RealDecl->setInvalidDecl();
5796    return;
5797  }
5798
5799  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5800  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5801    TypeSourceInfo *DeducedType = 0;
5802    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5803      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5804        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5805        << Init->getSourceRange();
5806    if (!DeducedType) {
5807      RealDecl->setInvalidDecl();
5808      return;
5809    }
5810    VDecl->setTypeSourceInfo(DeducedType);
5811    VDecl->setType(DeducedType->getType());
5812
5813    // In ARC, infer lifetime.
5814    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5815      VDecl->setInvalidDecl();
5816
5817    // If this is a redeclaration, check that the type we just deduced matches
5818    // the previously declared type.
5819    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5820      MergeVarDeclTypes(VDecl, Old);
5821  }
5822
5823
5824  // A definition must end up with a complete type, which means it must be
5825  // complete with the restriction that an array type might be completed by the
5826  // initializer; note that later code assumes this restriction.
5827  QualType BaseDeclType = VDecl->getType();
5828  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5829    BaseDeclType = Array->getElementType();
5830  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5831                          diag::err_typecheck_decl_incomplete_type)) {
5832    RealDecl->setInvalidDecl();
5833    return;
5834  }
5835
5836  // The variable can not have an abstract class type.
5837  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5838                             diag::err_abstract_type_in_decl,
5839                             AbstractVariableType))
5840    VDecl->setInvalidDecl();
5841
5842  const VarDecl *Def;
5843  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5844    Diag(VDecl->getLocation(), diag::err_redefinition)
5845      << VDecl->getDeclName();
5846    Diag(Def->getLocation(), diag::note_previous_definition);
5847    VDecl->setInvalidDecl();
5848    return;
5849  }
5850
5851  const VarDecl* PrevInit = 0;
5852  if (getLangOptions().CPlusPlus) {
5853    // C++ [class.static.data]p4
5854    //   If a static data member is of const integral or const
5855    //   enumeration type, its declaration in the class definition can
5856    //   specify a constant-initializer which shall be an integral
5857    //   constant expression (5.19). In that case, the member can appear
5858    //   in integral constant expressions. The member shall still be
5859    //   defined in a namespace scope if it is used in the program and the
5860    //   namespace scope definition shall not contain an initializer.
5861    //
5862    // We already performed a redefinition check above, but for static
5863    // data members we also need to check whether there was an in-class
5864    // declaration with an initializer.
5865    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5866      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5867      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5868      return;
5869    }
5870
5871    if (VDecl->hasLocalStorage())
5872      getCurFunction()->setHasBranchProtectedScope();
5873
5874    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5875      VDecl->setInvalidDecl();
5876      return;
5877    }
5878  }
5879
5880  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5881  // a kernel function cannot be initialized."
5882  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5883    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5884    VDecl->setInvalidDecl();
5885    return;
5886  }
5887
5888  // Capture the variable that is being initialized and the style of
5889  // initialization.
5890  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5891
5892  // FIXME: Poor source location information.
5893  InitializationKind Kind
5894    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5895                                                   Init->getLocStart(),
5896                                                   Init->getLocEnd())
5897                : InitializationKind::CreateCopy(VDecl->getLocation(),
5898                                                 Init->getLocStart());
5899
5900  // Get the decls type and save a reference for later, since
5901  // CheckInitializerTypes may change it.
5902  QualType DclT = VDecl->getType(), SavT = DclT;
5903  if (VDecl->isLocalVarDecl()) {
5904    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5905      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5906      VDecl->setInvalidDecl();
5907    } else if (!VDecl->isInvalidDecl()) {
5908      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5909      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5910                                                MultiExprArg(*this, &Init, 1),
5911                                                &DclT);
5912      if (Result.isInvalid()) {
5913        VDecl->setInvalidDecl();
5914        return;
5915      }
5916
5917      Init = Result.takeAs<Expr>();
5918
5919      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5920      // Don't check invalid declarations to avoid emitting useless diagnostics.
5921      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5922        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5923          CheckForConstantInitializer(Init, DclT);
5924      }
5925    }
5926  } else if (VDecl->isStaticDataMember() &&
5927             VDecl->getLexicalDeclContext()->isRecord()) {
5928    // This is an in-class initialization for a static data member, e.g.,
5929    //
5930    // struct S {
5931    //   static const int value = 17;
5932    // };
5933
5934    // Try to perform the initialization regardless.
5935    if (!VDecl->isInvalidDecl()) {
5936      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5937      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5938                                          MultiExprArg(*this, &Init, 1),
5939                                          &DclT);
5940      if (Result.isInvalid()) {
5941        VDecl->setInvalidDecl();
5942        return;
5943      }
5944
5945      Init = Result.takeAs<Expr>();
5946    }
5947
5948    // C++ [class.mem]p4:
5949    //   A member-declarator can contain a constant-initializer only
5950    //   if it declares a static member (9.4) of const integral or
5951    //   const enumeration type, see 9.4.2.
5952    //
5953    // C++0x [class.static.data]p3:
5954    //   If a non-volatile const static data member is of integral or
5955    //   enumeration type, its declaration in the class definition can
5956    //   specify a brace-or-equal-initializer in which every initalizer-clause
5957    //   that is an assignment-expression is a constant expression. A static
5958    //   data member of literal type can be declared in the class definition
5959    //   with the constexpr specifier; if so, its declaration shall specify a
5960    //   brace-or-equal-initializer in which every initializer-clause that is
5961    //   an assignment-expression is a constant expression.
5962    QualType T = VDecl->getType();
5963
5964    // Do nothing on dependent types.
5965    if (T->isDependentType()) {
5966
5967    // Allow any 'static constexpr' members, whether or not they are of literal
5968    // type. We separately check that the initializer is a constant expression,
5969    // which implicitly requires the member to be of literal type.
5970    } else if (VDecl->isConstexpr()) {
5971
5972    // Require constness.
5973    } else if (!T.isConstQualified()) {
5974      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5975        << Init->getSourceRange();
5976      VDecl->setInvalidDecl();
5977
5978    // We allow integer constant expressions in all cases.
5979    } else if (T->isIntegralOrEnumerationType()) {
5980      // Check whether the expression is a constant expression.
5981      SourceLocation Loc;
5982      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
5983        // In C++0x, a non-constexpr const static data member with an
5984        // in-class initializer cannot be volatile.
5985        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
5986      else if (Init->isValueDependent())
5987        ; // Nothing to check.
5988      else if (Init->isIntegerConstantExpr(Context, &Loc))
5989        ; // Ok, it's an ICE!
5990      else if (Init->isEvaluatable(Context)) {
5991        // If we can constant fold the initializer through heroics, accept it,
5992        // but report this as a use of an extension for -pedantic.
5993        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5994          << Init->getSourceRange();
5995      } else {
5996        // Otherwise, this is some crazy unknown case.  Report the issue at the
5997        // location provided by the isIntegerConstantExpr failed check.
5998        Diag(Loc, diag::err_in_class_initializer_non_constant)
5999          << Init->getSourceRange();
6000        VDecl->setInvalidDecl();
6001      }
6002
6003    // We allow floating-point constants as an extension.
6004    } else if (T->isFloatingType()) { // also permits complex, which is ok
6005      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6006        << T << Init->getSourceRange();
6007      if (getLangOptions().CPlusPlus0x)
6008        Diag(VDecl->getLocation(),
6009             diag::note_in_class_initializer_float_type_constexpr)
6010          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6011
6012      if (!Init->isValueDependent() &&
6013          !Init->isConstantInitializer(Context, false)) {
6014        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6015          << Init->getSourceRange();
6016        VDecl->setInvalidDecl();
6017      }
6018
6019    // Suggest adding 'constexpr' in C++0x for literal types.
6020    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6021      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6022        << T << Init->getSourceRange()
6023        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6024      VDecl->setConstexpr(true);
6025
6026    } else {
6027      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6028        << T << Init->getSourceRange();
6029      VDecl->setInvalidDecl();
6030    }
6031  } else if (VDecl->isFileVarDecl()) {
6032    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6033        (!getLangOptions().CPlusPlus ||
6034         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6035      Diag(VDecl->getLocation(), diag::warn_extern_init);
6036    if (!VDecl->isInvalidDecl()) {
6037      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6038      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6039                                                MultiExprArg(*this, &Init, 1),
6040                                                &DclT);
6041      if (Result.isInvalid()) {
6042        VDecl->setInvalidDecl();
6043        return;
6044      }
6045
6046      Init = Result.takeAs<Expr>();
6047    }
6048
6049    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6050    // Don't check invalid declarations to avoid emitting useless diagnostics.
6051    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6052      // C99 6.7.8p4. All file scoped initializers need to be constant.
6053      CheckForConstantInitializer(Init, DclT);
6054    }
6055  }
6056  // If the type changed, it means we had an incomplete type that was
6057  // completed by the initializer. For example:
6058  //   int ary[] = { 1, 3, 5 };
6059  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6060  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6061    VDecl->setType(DclT);
6062    Init->setType(DclT);
6063  }
6064
6065  // Check any implicit conversions within the expression.
6066  CheckImplicitConversions(Init, VDecl->getLocation());
6067
6068  if (!VDecl->isInvalidDecl())
6069    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6070
6071  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6072      !VDecl->getType()->isDependentType() &&
6073      !Init->isTypeDependent() && !Init->isValueDependent() &&
6074      !Init->isConstantInitializer(Context,
6075                                   VDecl->getType()->isReferenceType())) {
6076    // FIXME: Improve this diagnostic to explain why the initializer is not
6077    // a constant expression.
6078    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6079      << VDecl << Init->getSourceRange();
6080  }
6081
6082  Init = MaybeCreateExprWithCleanups(Init);
6083  // Attach the initializer to the decl.
6084  VDecl->setInit(Init);
6085
6086  CheckCompleteVariableDeclaration(VDecl);
6087}
6088
6089/// ActOnInitializerError - Given that there was an error parsing an
6090/// initializer for the given declaration, try to return to some form
6091/// of sanity.
6092void Sema::ActOnInitializerError(Decl *D) {
6093  // Our main concern here is re-establishing invariants like "a
6094  // variable's type is either dependent or complete".
6095  if (!D || D->isInvalidDecl()) return;
6096
6097  VarDecl *VD = dyn_cast<VarDecl>(D);
6098  if (!VD) return;
6099
6100  // Auto types are meaningless if we can't make sense of the initializer.
6101  if (ParsingInitForAutoVars.count(D)) {
6102    D->setInvalidDecl();
6103    return;
6104  }
6105
6106  QualType Ty = VD->getType();
6107  if (Ty->isDependentType()) return;
6108
6109  // Require a complete type.
6110  if (RequireCompleteType(VD->getLocation(),
6111                          Context.getBaseElementType(Ty),
6112                          diag::err_typecheck_decl_incomplete_type)) {
6113    VD->setInvalidDecl();
6114    return;
6115  }
6116
6117  // Require an abstract type.
6118  if (RequireNonAbstractType(VD->getLocation(), Ty,
6119                             diag::err_abstract_type_in_decl,
6120                             AbstractVariableType)) {
6121    VD->setInvalidDecl();
6122    return;
6123  }
6124
6125  // Don't bother complaining about constructors or destructors,
6126  // though.
6127}
6128
6129void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6130                                  bool TypeMayContainAuto) {
6131  // If there is no declaration, there was an error parsing it. Just ignore it.
6132  if (RealDecl == 0)
6133    return;
6134
6135  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6136    QualType Type = Var->getType();
6137
6138    // C++0x [dcl.spec.auto]p3
6139    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6140      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6141        << Var->getDeclName() << Type;
6142      Var->setInvalidDecl();
6143      return;
6144    }
6145
6146    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6147    // have an initializer.
6148    // C++0x [class.static.data]p3: A static data member can be declared with
6149    // the constexpr specifier; if so, its declaration shall specify
6150    // a brace-or-equal-initializer.
6151    //
6152    // A static data member's definition may inherit an initializer from an
6153    // in-class declaration.
6154    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6155      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6156        << Var->getDeclName();
6157      Var->setInvalidDecl();
6158      return;
6159    }
6160
6161    switch (Var->isThisDeclarationADefinition()) {
6162    case VarDecl::Definition:
6163      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6164        break;
6165
6166      // We have an out-of-line definition of a static data member
6167      // that has an in-class initializer, so we type-check this like
6168      // a declaration.
6169      //
6170      // Fall through
6171
6172    case VarDecl::DeclarationOnly:
6173      // It's only a declaration.
6174
6175      // Block scope. C99 6.7p7: If an identifier for an object is
6176      // declared with no linkage (C99 6.2.2p6), the type for the
6177      // object shall be complete.
6178      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6179          !Var->getLinkage() && !Var->isInvalidDecl() &&
6180          RequireCompleteType(Var->getLocation(), Type,
6181                              diag::err_typecheck_decl_incomplete_type))
6182        Var->setInvalidDecl();
6183
6184      // Make sure that the type is not abstract.
6185      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6186          RequireNonAbstractType(Var->getLocation(), Type,
6187                                 diag::err_abstract_type_in_decl,
6188                                 AbstractVariableType))
6189        Var->setInvalidDecl();
6190      return;
6191
6192    case VarDecl::TentativeDefinition:
6193      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6194      // object that has file scope without an initializer, and without a
6195      // storage-class specifier or with the storage-class specifier "static",
6196      // constitutes a tentative definition. Note: A tentative definition with
6197      // external linkage is valid (C99 6.2.2p5).
6198      if (!Var->isInvalidDecl()) {
6199        if (const IncompleteArrayType *ArrayT
6200                                    = Context.getAsIncompleteArrayType(Type)) {
6201          if (RequireCompleteType(Var->getLocation(),
6202                                  ArrayT->getElementType(),
6203                                  diag::err_illegal_decl_array_incomplete_type))
6204            Var->setInvalidDecl();
6205        } else if (Var->getStorageClass() == SC_Static) {
6206          // C99 6.9.2p3: If the declaration of an identifier for an object is
6207          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6208          // declared type shall not be an incomplete type.
6209          // NOTE: code such as the following
6210          //     static struct s;
6211          //     struct s { int a; };
6212          // is accepted by gcc. Hence here we issue a warning instead of
6213          // an error and we do not invalidate the static declaration.
6214          // NOTE: to avoid multiple warnings, only check the first declaration.
6215          if (Var->getPreviousDeclaration() == 0)
6216            RequireCompleteType(Var->getLocation(), Type,
6217                                diag::ext_typecheck_decl_incomplete_type);
6218        }
6219      }
6220
6221      // Record the tentative definition; we're done.
6222      if (!Var->isInvalidDecl())
6223        TentativeDefinitions.push_back(Var);
6224      return;
6225    }
6226
6227    // Provide a specific diagnostic for uninitialized variable
6228    // definitions with incomplete array type.
6229    if (Type->isIncompleteArrayType()) {
6230      Diag(Var->getLocation(),
6231           diag::err_typecheck_incomplete_array_needs_initializer);
6232      Var->setInvalidDecl();
6233      return;
6234    }
6235
6236    // Provide a specific diagnostic for uninitialized variable
6237    // definitions with reference type.
6238    if (Type->isReferenceType()) {
6239      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6240        << Var->getDeclName()
6241        << SourceRange(Var->getLocation(), Var->getLocation());
6242      Var->setInvalidDecl();
6243      return;
6244    }
6245
6246    // Do not attempt to type-check the default initializer for a
6247    // variable with dependent type.
6248    if (Type->isDependentType())
6249      return;
6250
6251    if (Var->isInvalidDecl())
6252      return;
6253
6254    if (RequireCompleteType(Var->getLocation(),
6255                            Context.getBaseElementType(Type),
6256                            diag::err_typecheck_decl_incomplete_type)) {
6257      Var->setInvalidDecl();
6258      return;
6259    }
6260
6261    // The variable can not have an abstract class type.
6262    if (RequireNonAbstractType(Var->getLocation(), Type,
6263                               diag::err_abstract_type_in_decl,
6264                               AbstractVariableType)) {
6265      Var->setInvalidDecl();
6266      return;
6267    }
6268
6269    // Check for jumps past the implicit initializer.  C++0x
6270    // clarifies that this applies to a "variable with automatic
6271    // storage duration", not a "local variable".
6272    // C++0x [stmt.dcl]p3
6273    //   A program that jumps from a point where a variable with automatic
6274    //   storage duration is not in scope to a point where it is in scope is
6275    //   ill-formed unless the variable has scalar type, class type with a
6276    //   trivial default constructor and a trivial destructor, a cv-qualified
6277    //   version of one of these types, or an array of one of the preceding
6278    //   types and is declared without an initializer.
6279    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6280      if (const RecordType *Record
6281            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6282        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6283        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6284            (getLangOptions().CPlusPlus0x &&
6285             (!CXXRecord->hasTrivialDefaultConstructor() ||
6286              !CXXRecord->hasTrivialDestructor())))
6287          getCurFunction()->setHasBranchProtectedScope();
6288      }
6289    }
6290
6291    // C++03 [dcl.init]p9:
6292    //   If no initializer is specified for an object, and the
6293    //   object is of (possibly cv-qualified) non-POD class type (or
6294    //   array thereof), the object shall be default-initialized; if
6295    //   the object is of const-qualified type, the underlying class
6296    //   type shall have a user-declared default
6297    //   constructor. Otherwise, if no initializer is specified for
6298    //   a non- static object, the object and its subobjects, if
6299    //   any, have an indeterminate initial value); if the object
6300    //   or any of its subobjects are of const-qualified type, the
6301    //   program is ill-formed.
6302    // C++0x [dcl.init]p11:
6303    //   If no initializer is specified for an object, the object is
6304    //   default-initialized; [...].
6305    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6306    InitializationKind Kind
6307      = InitializationKind::CreateDefault(Var->getLocation());
6308
6309    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6310    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6311                                      MultiExprArg(*this, 0, 0));
6312    if (Init.isInvalid())
6313      Var->setInvalidDecl();
6314    else if (Init.get())
6315      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6316
6317    CheckCompleteVariableDeclaration(Var);
6318  }
6319}
6320
6321void Sema::ActOnCXXForRangeDecl(Decl *D) {
6322  VarDecl *VD = dyn_cast<VarDecl>(D);
6323  if (!VD) {
6324    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6325    D->setInvalidDecl();
6326    return;
6327  }
6328
6329  VD->setCXXForRangeDecl(true);
6330
6331  // for-range-declaration cannot be given a storage class specifier.
6332  int Error = -1;
6333  switch (VD->getStorageClassAsWritten()) {
6334  case SC_None:
6335    break;
6336  case SC_Extern:
6337    Error = 0;
6338    break;
6339  case SC_Static:
6340    Error = 1;
6341    break;
6342  case SC_PrivateExtern:
6343    Error = 2;
6344    break;
6345  case SC_Auto:
6346    Error = 3;
6347    break;
6348  case SC_Register:
6349    Error = 4;
6350    break;
6351  case SC_OpenCLWorkGroupLocal:
6352    llvm_unreachable("Unexpected storage class");
6353  }
6354  if (VD->isConstexpr())
6355    Error = 5;
6356  if (Error != -1) {
6357    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6358      << VD->getDeclName() << Error;
6359    D->setInvalidDecl();
6360  }
6361}
6362
6363void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6364  if (var->isInvalidDecl()) return;
6365
6366  // In ARC, don't allow jumps past the implicit initialization of a
6367  // local retaining variable.
6368  if (getLangOptions().ObjCAutoRefCount &&
6369      var->hasLocalStorage()) {
6370    switch (var->getType().getObjCLifetime()) {
6371    case Qualifiers::OCL_None:
6372    case Qualifiers::OCL_ExplicitNone:
6373    case Qualifiers::OCL_Autoreleasing:
6374      break;
6375
6376    case Qualifiers::OCL_Weak:
6377    case Qualifiers::OCL_Strong:
6378      getCurFunction()->setHasBranchProtectedScope();
6379      break;
6380    }
6381  }
6382
6383  // All the following checks are C++ only.
6384  if (!getLangOptions().CPlusPlus) return;
6385
6386  QualType baseType = Context.getBaseElementType(var->getType());
6387  if (baseType->isDependentType()) return;
6388
6389  // __block variables might require us to capture a copy-initializer.
6390  if (var->hasAttr<BlocksAttr>()) {
6391    // It's currently invalid to ever have a __block variable with an
6392    // array type; should we diagnose that here?
6393
6394    // Regardless, we don't want to ignore array nesting when
6395    // constructing this copy.
6396    QualType type = var->getType();
6397
6398    if (type->isStructureOrClassType()) {
6399      SourceLocation poi = var->getLocation();
6400      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6401      ExprResult result =
6402        PerformCopyInitialization(
6403                        InitializedEntity::InitializeBlock(poi, type, false),
6404                                  poi, Owned(varRef));
6405      if (!result.isInvalid()) {
6406        result = MaybeCreateExprWithCleanups(result);
6407        Expr *init = result.takeAs<Expr>();
6408        Context.setBlockVarCopyInits(var, init);
6409      }
6410    }
6411  }
6412
6413  // Check for global constructors.
6414  if (!var->getDeclContext()->isDependentContext() &&
6415      var->hasGlobalStorage() &&
6416      !var->isStaticLocal() &&
6417      var->getInit() &&
6418      !var->getInit()->isConstantInitializer(Context,
6419                                             baseType->isReferenceType()))
6420    Diag(var->getLocation(), diag::warn_global_constructor)
6421      << var->getInit()->getSourceRange();
6422
6423  // Require the destructor.
6424  if (const RecordType *recordType = baseType->getAs<RecordType>())
6425    FinalizeVarWithDestructor(var, recordType);
6426}
6427
6428/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6429/// any semantic actions necessary after any initializer has been attached.
6430void
6431Sema::FinalizeDeclaration(Decl *ThisDecl) {
6432  // Note that we are no longer parsing the initializer for this declaration.
6433  ParsingInitForAutoVars.erase(ThisDecl);
6434}
6435
6436Sema::DeclGroupPtrTy
6437Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6438                              Decl **Group, unsigned NumDecls) {
6439  SmallVector<Decl*, 8> Decls;
6440
6441  if (DS.isTypeSpecOwned())
6442    Decls.push_back(DS.getRepAsDecl());
6443
6444  for (unsigned i = 0; i != NumDecls; ++i)
6445    if (Decl *D = Group[i])
6446      Decls.push_back(D);
6447
6448  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6449                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6450}
6451
6452/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6453/// group, performing any necessary semantic checking.
6454Sema::DeclGroupPtrTy
6455Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6456                           bool TypeMayContainAuto) {
6457  // C++0x [dcl.spec.auto]p7:
6458  //   If the type deduced for the template parameter U is not the same in each
6459  //   deduction, the program is ill-formed.
6460  // FIXME: When initializer-list support is added, a distinction is needed
6461  // between the deduced type U and the deduced type which 'auto' stands for.
6462  //   auto a = 0, b = { 1, 2, 3 };
6463  // is legal because the deduced type U is 'int' in both cases.
6464  if (TypeMayContainAuto && NumDecls > 1) {
6465    QualType Deduced;
6466    CanQualType DeducedCanon;
6467    VarDecl *DeducedDecl = 0;
6468    for (unsigned i = 0; i != NumDecls; ++i) {
6469      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6470        AutoType *AT = D->getType()->getContainedAutoType();
6471        // Don't reissue diagnostics when instantiating a template.
6472        if (AT && D->isInvalidDecl())
6473          break;
6474        if (AT && AT->isDeduced()) {
6475          QualType U = AT->getDeducedType();
6476          CanQualType UCanon = Context.getCanonicalType(U);
6477          if (Deduced.isNull()) {
6478            Deduced = U;
6479            DeducedCanon = UCanon;
6480            DeducedDecl = D;
6481          } else if (DeducedCanon != UCanon) {
6482            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6483                 diag::err_auto_different_deductions)
6484              << Deduced << DeducedDecl->getDeclName()
6485              << U << D->getDeclName()
6486              << DeducedDecl->getInit()->getSourceRange()
6487              << D->getInit()->getSourceRange();
6488            D->setInvalidDecl();
6489            break;
6490          }
6491        }
6492      }
6493    }
6494  }
6495
6496  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6497}
6498
6499
6500/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6501/// to introduce parameters into function prototype scope.
6502Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6503  const DeclSpec &DS = D.getDeclSpec();
6504
6505  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6506  VarDecl::StorageClass StorageClass = SC_None;
6507  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6508  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6509    StorageClass = SC_Register;
6510    StorageClassAsWritten = SC_Register;
6511  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6512    Diag(DS.getStorageClassSpecLoc(),
6513         diag::err_invalid_storage_class_in_func_decl);
6514    D.getMutableDeclSpec().ClearStorageClassSpecs();
6515  }
6516
6517  if (D.getDeclSpec().isThreadSpecified())
6518    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6519  if (D.getDeclSpec().isConstexprSpecified())
6520    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6521      << 0;
6522
6523  DiagnoseFunctionSpecifiers(D);
6524
6525  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6526  QualType parmDeclType = TInfo->getType();
6527
6528  if (getLangOptions().CPlusPlus) {
6529    // Check that there are no default arguments inside the type of this
6530    // parameter.
6531    CheckExtraCXXDefaultArguments(D);
6532
6533    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6534    if (D.getCXXScopeSpec().isSet()) {
6535      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6536        << D.getCXXScopeSpec().getRange();
6537      D.getCXXScopeSpec().clear();
6538    }
6539  }
6540
6541  // Ensure we have a valid name
6542  IdentifierInfo *II = 0;
6543  if (D.hasName()) {
6544    II = D.getIdentifier();
6545    if (!II) {
6546      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6547        << GetNameForDeclarator(D).getName().getAsString();
6548      D.setInvalidType(true);
6549    }
6550  }
6551
6552  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6553  if (II) {
6554    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6555                   ForRedeclaration);
6556    LookupName(R, S);
6557    if (R.isSingleResult()) {
6558      NamedDecl *PrevDecl = R.getFoundDecl();
6559      if (PrevDecl->isTemplateParameter()) {
6560        // Maybe we will complain about the shadowed template parameter.
6561        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6562        // Just pretend that we didn't see the previous declaration.
6563        PrevDecl = 0;
6564      } else if (S->isDeclScope(PrevDecl)) {
6565        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6566        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6567
6568        // Recover by removing the name
6569        II = 0;
6570        D.SetIdentifier(0, D.getIdentifierLoc());
6571        D.setInvalidType(true);
6572      }
6573    }
6574  }
6575
6576  // Temporarily put parameter variables in the translation unit, not
6577  // the enclosing context.  This prevents them from accidentally
6578  // looking like class members in C++.
6579  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6580                                    D.getSourceRange().getBegin(),
6581                                    D.getIdentifierLoc(), II,
6582                                    parmDeclType, TInfo,
6583                                    StorageClass, StorageClassAsWritten);
6584
6585  if (D.isInvalidType())
6586    New->setInvalidDecl();
6587
6588  assert(S->isFunctionPrototypeScope());
6589  assert(S->getFunctionPrototypeDepth() >= 1);
6590  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6591                    S->getNextFunctionPrototypeIndex());
6592
6593  // Add the parameter declaration into this scope.
6594  S->AddDecl(New);
6595  if (II)
6596    IdResolver.AddDecl(New);
6597
6598  ProcessDeclAttributes(S, New, D);
6599
6600  if (D.getDeclSpec().isModulePrivateSpecified())
6601    Diag(New->getLocation(), diag::err_module_private_local)
6602      << 1 << New->getDeclName()
6603      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6604      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6605
6606  if (New->hasAttr<BlocksAttr>()) {
6607    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6608  }
6609  return New;
6610}
6611
6612/// \brief Synthesizes a variable for a parameter arising from a
6613/// typedef.
6614ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6615                                              SourceLocation Loc,
6616                                              QualType T) {
6617  /* FIXME: setting StartLoc == Loc.
6618     Would it be worth to modify callers so as to provide proper source
6619     location for the unnamed parameters, embedding the parameter's type? */
6620  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6621                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6622                                           SC_None, SC_None, 0);
6623  Param->setImplicit();
6624  return Param;
6625}
6626
6627void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6628                                    ParmVarDecl * const *ParamEnd) {
6629  // Don't diagnose unused-parameter errors in template instantiations; we
6630  // will already have done so in the template itself.
6631  if (!ActiveTemplateInstantiations.empty())
6632    return;
6633
6634  for (; Param != ParamEnd; ++Param) {
6635    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6636        !(*Param)->hasAttr<UnusedAttr>()) {
6637      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6638        << (*Param)->getDeclName();
6639    }
6640  }
6641}
6642
6643void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6644                                                  ParmVarDecl * const *ParamEnd,
6645                                                  QualType ReturnTy,
6646                                                  NamedDecl *D) {
6647  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6648    return;
6649
6650  // Warn if the return value is pass-by-value and larger than the specified
6651  // threshold.
6652  if (ReturnTy.isPODType(Context)) {
6653    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6654    if (Size > LangOpts.NumLargeByValueCopy)
6655      Diag(D->getLocation(), diag::warn_return_value_size)
6656          << D->getDeclName() << Size;
6657  }
6658
6659  // Warn if any parameter is pass-by-value and larger than the specified
6660  // threshold.
6661  for (; Param != ParamEnd; ++Param) {
6662    QualType T = (*Param)->getType();
6663    if (!T.isPODType(Context))
6664      continue;
6665    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6666    if (Size > LangOpts.NumLargeByValueCopy)
6667      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6668          << (*Param)->getDeclName() << Size;
6669  }
6670}
6671
6672ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6673                                  SourceLocation NameLoc, IdentifierInfo *Name,
6674                                  QualType T, TypeSourceInfo *TSInfo,
6675                                  VarDecl::StorageClass StorageClass,
6676                                  VarDecl::StorageClass StorageClassAsWritten) {
6677  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6678  if (getLangOptions().ObjCAutoRefCount &&
6679      T.getObjCLifetime() == Qualifiers::OCL_None &&
6680      T->isObjCLifetimeType()) {
6681
6682    Qualifiers::ObjCLifetime lifetime;
6683
6684    // Special cases for arrays:
6685    //   - if it's const, use __unsafe_unretained
6686    //   - otherwise, it's an error
6687    if (T->isArrayType()) {
6688      if (!T.isConstQualified()) {
6689        DelayedDiagnostics.add(
6690            sema::DelayedDiagnostic::makeForbiddenType(
6691            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6692      }
6693      lifetime = Qualifiers::OCL_ExplicitNone;
6694    } else {
6695      lifetime = T->getObjCARCImplicitLifetime();
6696    }
6697    T = Context.getLifetimeQualifiedType(T, lifetime);
6698  }
6699
6700  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6701                                         Context.getAdjustedParameterType(T),
6702                                         TSInfo,
6703                                         StorageClass, StorageClassAsWritten,
6704                                         0);
6705
6706  // Parameters can not be abstract class types.
6707  // For record types, this is done by the AbstractClassUsageDiagnoser once
6708  // the class has been completely parsed.
6709  if (!CurContext->isRecord() &&
6710      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6711                             AbstractParamType))
6712    New->setInvalidDecl();
6713
6714  // Parameter declarators cannot be interface types. All ObjC objects are
6715  // passed by reference.
6716  if (T->isObjCObjectType()) {
6717    Diag(NameLoc,
6718         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6719      << FixItHint::CreateInsertion(NameLoc, "*");
6720    T = Context.getObjCObjectPointerType(T);
6721    New->setType(T);
6722  }
6723
6724  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6725  // duration shall not be qualified by an address-space qualifier."
6726  // Since all parameters have automatic store duration, they can not have
6727  // an address space.
6728  if (T.getAddressSpace() != 0) {
6729    Diag(NameLoc, diag::err_arg_with_address_space);
6730    New->setInvalidDecl();
6731  }
6732
6733  return New;
6734}
6735
6736void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6737                                           SourceLocation LocAfterDecls) {
6738  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6739
6740  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6741  // for a K&R function.
6742  if (!FTI.hasPrototype) {
6743    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6744      --i;
6745      if (FTI.ArgInfo[i].Param == 0) {
6746        llvm::SmallString<256> Code;
6747        llvm::raw_svector_ostream(Code) << "  int "
6748                                        << FTI.ArgInfo[i].Ident->getName()
6749                                        << ";\n";
6750        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6751          << FTI.ArgInfo[i].Ident
6752          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6753
6754        // Implicitly declare the argument as type 'int' for lack of a better
6755        // type.
6756        AttributeFactory attrs;
6757        DeclSpec DS(attrs);
6758        const char* PrevSpec; // unused
6759        unsigned DiagID; // unused
6760        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6761                           PrevSpec, DiagID);
6762        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6763        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6764        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6765      }
6766    }
6767  }
6768}
6769
6770Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6771                                         Declarator &D) {
6772  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6773  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6774  Scope *ParentScope = FnBodyScope->getParent();
6775
6776  D.setFunctionDefinition(true);
6777  Decl *DP = HandleDeclarator(ParentScope, D,
6778                              MultiTemplateParamsArg(*this));
6779  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6780}
6781
6782static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6783  // Don't warn about invalid declarations.
6784  if (FD->isInvalidDecl())
6785    return false;
6786
6787  // Or declarations that aren't global.
6788  if (!FD->isGlobal())
6789    return false;
6790
6791  // Don't warn about C++ member functions.
6792  if (isa<CXXMethodDecl>(FD))
6793    return false;
6794
6795  // Don't warn about 'main'.
6796  if (FD->isMain())
6797    return false;
6798
6799  // Don't warn about inline functions.
6800  if (FD->isInlined())
6801    return false;
6802
6803  // Don't warn about function templates.
6804  if (FD->getDescribedFunctionTemplate())
6805    return false;
6806
6807  // Don't warn about function template specializations.
6808  if (FD->isFunctionTemplateSpecialization())
6809    return false;
6810
6811  bool MissingPrototype = true;
6812  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6813       Prev; Prev = Prev->getPreviousDeclaration()) {
6814    // Ignore any declarations that occur in function or method
6815    // scope, because they aren't visible from the header.
6816    if (Prev->getDeclContext()->isFunctionOrMethod())
6817      continue;
6818
6819    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6820    break;
6821  }
6822
6823  return MissingPrototype;
6824}
6825
6826void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6827  // Don't complain if we're in GNU89 mode and the previous definition
6828  // was an extern inline function.
6829  const FunctionDecl *Definition;
6830  if (FD->isDefined(Definition) &&
6831      !canRedefineFunction(Definition, getLangOptions())) {
6832    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6833        Definition->getStorageClass() == SC_Extern)
6834      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6835        << FD->getDeclName() << getLangOptions().CPlusPlus;
6836    else
6837      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6838    Diag(Definition->getLocation(), diag::note_previous_definition);
6839  }
6840}
6841
6842Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6843  // Clear the last template instantiation error context.
6844  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6845
6846  if (!D)
6847    return D;
6848  FunctionDecl *FD = 0;
6849
6850  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6851    FD = FunTmpl->getTemplatedDecl();
6852  else
6853    FD = cast<FunctionDecl>(D);
6854
6855  // Enter a new function scope
6856  PushFunctionScope();
6857
6858  // See if this is a redefinition.
6859  if (!FD->isLateTemplateParsed())
6860    CheckForFunctionRedefinition(FD);
6861
6862  // Builtin functions cannot be defined.
6863  if (unsigned BuiltinID = FD->getBuiltinID()) {
6864    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6865      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6866      FD->setInvalidDecl();
6867    }
6868  }
6869
6870  // The return type of a function definition must be complete
6871  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6872  QualType ResultType = FD->getResultType();
6873  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6874      !FD->isInvalidDecl() &&
6875      RequireCompleteType(FD->getLocation(), ResultType,
6876                          diag::err_func_def_incomplete_result))
6877    FD->setInvalidDecl();
6878
6879  // GNU warning -Wmissing-prototypes:
6880  //   Warn if a global function is defined without a previous
6881  //   prototype declaration. This warning is issued even if the
6882  //   definition itself provides a prototype. The aim is to detect
6883  //   global functions that fail to be declared in header files.
6884  if (ShouldWarnAboutMissingPrototype(FD))
6885    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6886
6887  if (FnBodyScope)
6888    PushDeclContext(FnBodyScope, FD);
6889
6890  // Check the validity of our function parameters
6891  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6892                           /*CheckParameterNames=*/true);
6893
6894  // Introduce our parameters into the function scope
6895  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6896    ParmVarDecl *Param = FD->getParamDecl(p);
6897    Param->setOwningFunction(FD);
6898
6899    // If this has an identifier, add it to the scope stack.
6900    if (Param->getIdentifier() && FnBodyScope) {
6901      CheckShadow(FnBodyScope, Param);
6902
6903      PushOnScopeChains(Param, FnBodyScope);
6904    }
6905  }
6906
6907  // Checking attributes of current function definition
6908  // dllimport attribute.
6909  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6910  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6911    // dllimport attribute cannot be directly applied to definition.
6912    // Microsoft accepts dllimport for functions defined within class scope.
6913    if (!DA->isInherited() &&
6914        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6915      Diag(FD->getLocation(),
6916           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6917        << "dllimport";
6918      FD->setInvalidDecl();
6919      return FD;
6920    }
6921
6922    // Visual C++ appears to not think this is an issue, so only issue
6923    // a warning when Microsoft extensions are disabled.
6924    if (!LangOpts.MicrosoftExt) {
6925      // If a symbol previously declared dllimport is later defined, the
6926      // attribute is ignored in subsequent references, and a warning is
6927      // emitted.
6928      Diag(FD->getLocation(),
6929           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6930        << FD->getName() << "dllimport";
6931    }
6932  }
6933  return FD;
6934}
6935
6936/// \brief Given the set of return statements within a function body,
6937/// compute the variables that are subject to the named return value
6938/// optimization.
6939///
6940/// Each of the variables that is subject to the named return value
6941/// optimization will be marked as NRVO variables in the AST, and any
6942/// return statement that has a marked NRVO variable as its NRVO candidate can
6943/// use the named return value optimization.
6944///
6945/// This function applies a very simplistic algorithm for NRVO: if every return
6946/// statement in the function has the same NRVO candidate, that candidate is
6947/// the NRVO variable.
6948///
6949/// FIXME: Employ a smarter algorithm that accounts for multiple return
6950/// statements and the lifetimes of the NRVO candidates. We should be able to
6951/// find a maximal set of NRVO variables.
6952void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6953  ReturnStmt **Returns = Scope->Returns.data();
6954
6955  const VarDecl *NRVOCandidate = 0;
6956  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6957    if (!Returns[I]->getNRVOCandidate())
6958      return;
6959
6960    if (!NRVOCandidate)
6961      NRVOCandidate = Returns[I]->getNRVOCandidate();
6962    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6963      return;
6964  }
6965
6966  if (NRVOCandidate)
6967    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6968}
6969
6970Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6971  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6972}
6973
6974Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6975                                    bool IsInstantiation) {
6976  FunctionDecl *FD = 0;
6977  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6978  if (FunTmpl)
6979    FD = FunTmpl->getTemplatedDecl();
6980  else
6981    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6982
6983  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6984  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6985
6986  if (FD) {
6987    FD->setBody(Body);
6988    if (FD->isMain()) {
6989      // C and C++ allow for main to automagically return 0.
6990      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6991      FD->setHasImplicitReturnZero(true);
6992      WP.disableCheckFallThrough();
6993    } else if (FD->hasAttr<NakedAttr>()) {
6994      // If the function is marked 'naked', don't complain about missing return
6995      // statements.
6996      WP.disableCheckFallThrough();
6997    }
6998
6999    // MSVC permits the use of pure specifier (=0) on function definition,
7000    // defined at class scope, warn about this non standard construct.
7001    if (getLangOptions().MicrosoftExt && FD->isPure())
7002      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7003
7004    if (!FD->isInvalidDecl()) {
7005      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7006      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7007                                             FD->getResultType(), FD);
7008
7009      // If this is a constructor, we need a vtable.
7010      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7011        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7012
7013      computeNRVO(Body, getCurFunction());
7014    }
7015
7016    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7017  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7018    assert(MD == getCurMethodDecl() && "Method parsing confused");
7019    MD->setBody(Body);
7020    if (Body)
7021      MD->setEndLoc(Body->getLocEnd());
7022    if (!MD->isInvalidDecl()) {
7023      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7024      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7025                                             MD->getResultType(), MD);
7026
7027      if (Body)
7028        computeNRVO(Body, getCurFunction());
7029    }
7030    if (ObjCShouldCallSuperDealloc) {
7031      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7032      ObjCShouldCallSuperDealloc = false;
7033    }
7034    if (ObjCShouldCallSuperFinalize) {
7035      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7036      ObjCShouldCallSuperFinalize = false;
7037    }
7038  } else {
7039    return 0;
7040  }
7041
7042  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7043         "ObjC methods, which should have been handled in the block above.");
7044  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7045         "ObjC methods, which should have been handled in the block above.");
7046
7047  // Verify and clean out per-function state.
7048  if (Body) {
7049    // C++ constructors that have function-try-blocks can't have return
7050    // statements in the handlers of that block. (C++ [except.handle]p14)
7051    // Verify this.
7052    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7053      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7054
7055    // Verify that gotos and switch cases don't jump into scopes illegally.
7056    if (getCurFunction()->NeedsScopeChecking() &&
7057        !dcl->isInvalidDecl() &&
7058        !hasAnyUnrecoverableErrorsInThisFunction())
7059      DiagnoseInvalidJumps(Body);
7060
7061    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7062      if (!Destructor->getParent()->isDependentType())
7063        CheckDestructor(Destructor);
7064
7065      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7066                                             Destructor->getParent());
7067    }
7068
7069    // If any errors have occurred, clear out any temporaries that may have
7070    // been leftover. This ensures that these temporaries won't be picked up for
7071    // deletion in some later function.
7072    if (PP.getDiagnostics().hasErrorOccurred() ||
7073        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7074      ExprTemporaries.clear();
7075      ExprNeedsCleanups = false;
7076    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7077      // Since the body is valid, issue any analysis-based warnings that are
7078      // enabled.
7079      ActivePolicy = &WP;
7080    }
7081
7082    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7083        !CheckConstexprFunctionBody(FD, Body))
7084      FD->setInvalidDecl();
7085
7086    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7087    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7088  }
7089
7090  if (!IsInstantiation)
7091    PopDeclContext();
7092
7093  PopFunctionOrBlockScope(ActivePolicy, dcl);
7094
7095  // If any errors have occurred, clear out any temporaries that may have
7096  // been leftover. This ensures that these temporaries won't be picked up for
7097  // deletion in some later function.
7098  if (getDiagnostics().hasErrorOccurred()) {
7099    ExprTemporaries.clear();
7100    ExprNeedsCleanups = false;
7101  }
7102
7103  return dcl;
7104}
7105
7106
7107/// When we finish delayed parsing of an attribute, we must attach it to the
7108/// relevant Decl.
7109void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7110                                       ParsedAttributes &Attrs) {
7111  ProcessDeclAttributeList(S, D, Attrs.getList());
7112}
7113
7114
7115/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7116/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7117NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7118                                          IdentifierInfo &II, Scope *S) {
7119  // Before we produce a declaration for an implicitly defined
7120  // function, see whether there was a locally-scoped declaration of
7121  // this name as a function or variable. If so, use that
7122  // (non-visible) declaration, and complain about it.
7123  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7124    = findLocallyScopedExternalDecl(&II);
7125  if (Pos != LocallyScopedExternalDecls.end()) {
7126    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7127    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7128    return Pos->second;
7129  }
7130
7131  // Extension in C99.  Legal in C90, but warn about it.
7132  if (II.getName().startswith("__builtin_"))
7133    Diag(Loc, diag::warn_builtin_unknown) << &II;
7134  else if (getLangOptions().C99)
7135    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7136  else
7137    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7138
7139  // Set a Declarator for the implicit definition: int foo();
7140  const char *Dummy;
7141  AttributeFactory attrFactory;
7142  DeclSpec DS(attrFactory);
7143  unsigned DiagID;
7144  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7145  (void)Error; // Silence warning.
7146  assert(!Error && "Error setting up implicit decl!");
7147  Declarator D(DS, Declarator::BlockContext);
7148  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7149                                             0, 0, true, SourceLocation(),
7150                                             SourceLocation(),
7151                                             EST_None, SourceLocation(),
7152                                             0, 0, 0, 0, Loc, Loc, D),
7153                DS.getAttributes(),
7154                SourceLocation());
7155  D.SetIdentifier(&II, Loc);
7156
7157  // Insert this function into translation-unit scope.
7158
7159  DeclContext *PrevDC = CurContext;
7160  CurContext = Context.getTranslationUnitDecl();
7161
7162  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7163  FD->setImplicit();
7164
7165  CurContext = PrevDC;
7166
7167  AddKnownFunctionAttributes(FD);
7168
7169  return FD;
7170}
7171
7172/// \brief Adds any function attributes that we know a priori based on
7173/// the declaration of this function.
7174///
7175/// These attributes can apply both to implicitly-declared builtins
7176/// (like __builtin___printf_chk) or to library-declared functions
7177/// like NSLog or printf.
7178///
7179/// We need to check for duplicate attributes both here and where user-written
7180/// attributes are applied to declarations.
7181void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7182  if (FD->isInvalidDecl())
7183    return;
7184
7185  // If this is a built-in function, map its builtin attributes to
7186  // actual attributes.
7187  if (unsigned BuiltinID = FD->getBuiltinID()) {
7188    // Handle printf-formatting attributes.
7189    unsigned FormatIdx;
7190    bool HasVAListArg;
7191    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7192      if (!FD->getAttr<FormatAttr>())
7193        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7194                                                "printf", FormatIdx+1,
7195                                               HasVAListArg ? 0 : FormatIdx+2));
7196    }
7197    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7198                                             HasVAListArg)) {
7199     if (!FD->getAttr<FormatAttr>())
7200       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7201                                              "scanf", FormatIdx+1,
7202                                              HasVAListArg ? 0 : FormatIdx+2));
7203    }
7204
7205    // Mark const if we don't care about errno and that is the only
7206    // thing preventing the function from being const. This allows
7207    // IRgen to use LLVM intrinsics for such functions.
7208    if (!getLangOptions().MathErrno &&
7209        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7210      if (!FD->getAttr<ConstAttr>())
7211        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7212    }
7213
7214    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7215      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7216    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7217      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7218  }
7219
7220  IdentifierInfo *Name = FD->getIdentifier();
7221  if (!Name)
7222    return;
7223  if ((!getLangOptions().CPlusPlus &&
7224       FD->getDeclContext()->isTranslationUnit()) ||
7225      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7226       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7227       LinkageSpecDecl::lang_c)) {
7228    // Okay: this could be a libc/libm/Objective-C function we know
7229    // about.
7230  } else
7231    return;
7232
7233  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7234    // FIXME: NSLog and NSLogv should be target specific
7235    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7236      // FIXME: We known better than our headers.
7237      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7238    } else
7239      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7240                                             "printf", 1,
7241                                             Name->isStr("NSLogv") ? 0 : 2));
7242  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7243    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7244    // target-specific builtins, perhaps?
7245    if (!FD->getAttr<FormatAttr>())
7246      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7247                                             "printf", 2,
7248                                             Name->isStr("vasprintf") ? 0 : 3));
7249  }
7250}
7251
7252TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7253                                    TypeSourceInfo *TInfo) {
7254  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7255  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7256
7257  if (!TInfo) {
7258    assert(D.isInvalidType() && "no declarator info for valid type");
7259    TInfo = Context.getTrivialTypeSourceInfo(T);
7260  }
7261
7262  // Scope manipulation handled by caller.
7263  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7264                                           D.getSourceRange().getBegin(),
7265                                           D.getIdentifierLoc(),
7266                                           D.getIdentifier(),
7267                                           TInfo);
7268
7269  // Bail out immediately if we have an invalid declaration.
7270  if (D.isInvalidType()) {
7271    NewTD->setInvalidDecl();
7272    return NewTD;
7273  }
7274
7275  if (D.getDeclSpec().isModulePrivateSpecified()) {
7276    if (CurContext->isFunctionOrMethod())
7277      Diag(NewTD->getLocation(), diag::err_module_private_local)
7278        << 2 << NewTD->getDeclName()
7279        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7280        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7281    else
7282      NewTD->setModulePrivate();
7283  }
7284
7285  // C++ [dcl.typedef]p8:
7286  //   If the typedef declaration defines an unnamed class (or
7287  //   enum), the first typedef-name declared by the declaration
7288  //   to be that class type (or enum type) is used to denote the
7289  //   class type (or enum type) for linkage purposes only.
7290  // We need to check whether the type was declared in the declaration.
7291  switch (D.getDeclSpec().getTypeSpecType()) {
7292  case TST_enum:
7293  case TST_struct:
7294  case TST_union:
7295  case TST_class: {
7296    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7297
7298    // Do nothing if the tag is not anonymous or already has an
7299    // associated typedef (from an earlier typedef in this decl group).
7300    if (tagFromDeclSpec->getIdentifier()) break;
7301    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7302
7303    // A well-formed anonymous tag must always be a TUK_Definition.
7304    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7305
7306    // The type must match the tag exactly;  no qualifiers allowed.
7307    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7308      break;
7309
7310    // Otherwise, set this is the anon-decl typedef for the tag.
7311    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7312    break;
7313  }
7314
7315  default:
7316    break;
7317  }
7318
7319  return NewTD;
7320}
7321
7322
7323/// \brief Determine whether a tag with a given kind is acceptable
7324/// as a redeclaration of the given tag declaration.
7325///
7326/// \returns true if the new tag kind is acceptable, false otherwise.
7327bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7328                                        TagTypeKind NewTag, bool isDefinition,
7329                                        SourceLocation NewTagLoc,
7330                                        const IdentifierInfo &Name) {
7331  // C++ [dcl.type.elab]p3:
7332  //   The class-key or enum keyword present in the
7333  //   elaborated-type-specifier shall agree in kind with the
7334  //   declaration to which the name in the elaborated-type-specifier
7335  //   refers. This rule also applies to the form of
7336  //   elaborated-type-specifier that declares a class-name or
7337  //   friend class since it can be construed as referring to the
7338  //   definition of the class. Thus, in any
7339  //   elaborated-type-specifier, the enum keyword shall be used to
7340  //   refer to an enumeration (7.2), the union class-key shall be
7341  //   used to refer to a union (clause 9), and either the class or
7342  //   struct class-key shall be used to refer to a class (clause 9)
7343  //   declared using the class or struct class-key.
7344  TagTypeKind OldTag = Previous->getTagKind();
7345  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7346    if (OldTag == NewTag)
7347      return true;
7348
7349  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7350      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7351    // Warn about the struct/class tag mismatch.
7352    bool isTemplate = false;
7353    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7354      isTemplate = Record->getDescribedClassTemplate();
7355
7356    if (!ActiveTemplateInstantiations.empty()) {
7357      // In a template instantiation, do not offer fix-its for tag mismatches
7358      // since they usually mess up the template instead of fixing the problem.
7359      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7360        << (NewTag == TTK_Class) << isTemplate << &Name;
7361      return true;
7362    }
7363
7364    if (isDefinition) {
7365      // On definitions, check previous tags and issue a fix-it for each
7366      // one that doesn't match the current tag.
7367      if (Previous->getDefinition()) {
7368        // Don't suggest fix-its for redefinitions.
7369        return true;
7370      }
7371
7372      bool previousMismatch = false;
7373      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7374           E(Previous->redecls_end()); I != E; ++I) {
7375        if (I->getTagKind() != NewTag) {
7376          if (!previousMismatch) {
7377            previousMismatch = true;
7378            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7379              << (NewTag == TTK_Class) << isTemplate << &Name;
7380          }
7381          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7382            << (NewTag == TTK_Class)
7383            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7384                                            NewTag == TTK_Class?
7385                                            "class" : "struct");
7386        }
7387      }
7388      return true;
7389    }
7390
7391    // Check for a previous definition.  If current tag and definition
7392    // are same type, do nothing.  If no definition, but disagree with
7393    // with previous tag type, give a warning, but no fix-it.
7394    const TagDecl *Redecl = Previous->getDefinition() ?
7395                            Previous->getDefinition() : Previous;
7396    if (Redecl->getTagKind() == NewTag) {
7397      return true;
7398    }
7399
7400    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7401      << (NewTag == TTK_Class)
7402      << isTemplate << &Name;
7403    Diag(Redecl->getLocation(), diag::note_previous_use);
7404
7405    // If there is a previous defintion, suggest a fix-it.
7406    if (Previous->getDefinition()) {
7407        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7408          << (Redecl->getTagKind() == TTK_Class)
7409          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7410                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7411    }
7412
7413    return true;
7414  }
7415  return false;
7416}
7417
7418/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7419/// former case, Name will be non-null.  In the later case, Name will be null.
7420/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7421/// reference/declaration/definition of a tag.
7422Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7423                     SourceLocation KWLoc, CXXScopeSpec &SS,
7424                     IdentifierInfo *Name, SourceLocation NameLoc,
7425                     AttributeList *Attr, AccessSpecifier AS,
7426                     SourceLocation ModulePrivateLoc,
7427                     MultiTemplateParamsArg TemplateParameterLists,
7428                     bool &OwnedDecl, bool &IsDependent,
7429                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7430                     TypeResult UnderlyingType) {
7431  // If this is not a definition, it must have a name.
7432  assert((Name != 0 || TUK == TUK_Definition) &&
7433         "Nameless record must be a definition!");
7434  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7435
7436  OwnedDecl = false;
7437  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7438
7439  // FIXME: Check explicit specializations more carefully.
7440  bool isExplicitSpecialization = false;
7441  bool Invalid = false;
7442
7443  // We only need to do this matching if we have template parameters
7444  // or a scope specifier, which also conveniently avoids this work
7445  // for non-C++ cases.
7446  if (TemplateParameterLists.size() > 0 ||
7447      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7448    if (TemplateParameterList *TemplateParams
7449          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7450                                                TemplateParameterLists.get(),
7451                                                TemplateParameterLists.size(),
7452                                                    TUK == TUK_Friend,
7453                                                    isExplicitSpecialization,
7454                                                    Invalid)) {
7455      if (TemplateParams->size() > 0) {
7456        // This is a declaration or definition of a class template (which may
7457        // be a member of another template).
7458
7459        if (Invalid)
7460          return 0;
7461
7462        OwnedDecl = false;
7463        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7464                                               SS, Name, NameLoc, Attr,
7465                                               TemplateParams, AS,
7466                                               ModulePrivateLoc,
7467                                           TemplateParameterLists.size() - 1,
7468                 (TemplateParameterList**) TemplateParameterLists.release());
7469        return Result.get();
7470      } else {
7471        // The "template<>" header is extraneous.
7472        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7473          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7474        isExplicitSpecialization = true;
7475      }
7476    }
7477  }
7478
7479  // Figure out the underlying type if this a enum declaration. We need to do
7480  // this early, because it's needed to detect if this is an incompatible
7481  // redeclaration.
7482  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7483
7484  if (Kind == TTK_Enum) {
7485    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7486      // No underlying type explicitly specified, or we failed to parse the
7487      // type, default to int.
7488      EnumUnderlying = Context.IntTy.getTypePtr();
7489    else if (UnderlyingType.get()) {
7490      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7491      // integral type; any cv-qualification is ignored.
7492      TypeSourceInfo *TI = 0;
7493      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7494      EnumUnderlying = TI;
7495
7496      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7497
7498      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7499        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7500          << T;
7501        // Recover by falling back to int.
7502        EnumUnderlying = Context.IntTy.getTypePtr();
7503      }
7504
7505      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7506                                          UPPC_FixedUnderlyingType))
7507        EnumUnderlying = Context.IntTy.getTypePtr();
7508
7509    } else if (getLangOptions().MicrosoftExt)
7510      // Microsoft enums are always of int type.
7511      EnumUnderlying = Context.IntTy.getTypePtr();
7512  }
7513
7514  DeclContext *SearchDC = CurContext;
7515  DeclContext *DC = CurContext;
7516  bool isStdBadAlloc = false;
7517
7518  RedeclarationKind Redecl = ForRedeclaration;
7519  if (TUK == TUK_Friend || TUK == TUK_Reference)
7520    Redecl = NotForRedeclaration;
7521
7522  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7523
7524  if (Name && SS.isNotEmpty()) {
7525    // We have a nested-name tag ('struct foo::bar').
7526
7527    // Check for invalid 'foo::'.
7528    if (SS.isInvalid()) {
7529      Name = 0;
7530      goto CreateNewDecl;
7531    }
7532
7533    // If this is a friend or a reference to a class in a dependent
7534    // context, don't try to make a decl for it.
7535    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7536      DC = computeDeclContext(SS, false);
7537      if (!DC) {
7538        IsDependent = true;
7539        return 0;
7540      }
7541    } else {
7542      DC = computeDeclContext(SS, true);
7543      if (!DC) {
7544        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7545          << SS.getRange();
7546        return 0;
7547      }
7548    }
7549
7550    if (RequireCompleteDeclContext(SS, DC))
7551      return 0;
7552
7553    SearchDC = DC;
7554    // Look-up name inside 'foo::'.
7555    LookupQualifiedName(Previous, DC);
7556
7557    if (Previous.isAmbiguous())
7558      return 0;
7559
7560    if (Previous.empty()) {
7561      // Name lookup did not find anything. However, if the
7562      // nested-name-specifier refers to the current instantiation,
7563      // and that current instantiation has any dependent base
7564      // classes, we might find something at instantiation time: treat
7565      // this as a dependent elaborated-type-specifier.
7566      // But this only makes any sense for reference-like lookups.
7567      if (Previous.wasNotFoundInCurrentInstantiation() &&
7568          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7569        IsDependent = true;
7570        return 0;
7571      }
7572
7573      // A tag 'foo::bar' must already exist.
7574      Diag(NameLoc, diag::err_not_tag_in_scope)
7575        << Kind << Name << DC << SS.getRange();
7576      Name = 0;
7577      Invalid = true;
7578      goto CreateNewDecl;
7579    }
7580  } else if (Name) {
7581    // If this is a named struct, check to see if there was a previous forward
7582    // declaration or definition.
7583    // FIXME: We're looking into outer scopes here, even when we
7584    // shouldn't be. Doing so can result in ambiguities that we
7585    // shouldn't be diagnosing.
7586    LookupName(Previous, S);
7587
7588    if (Previous.isAmbiguous() &&
7589        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7590      LookupResult::Filter F = Previous.makeFilter();
7591      while (F.hasNext()) {
7592        NamedDecl *ND = F.next();
7593        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7594          F.erase();
7595      }
7596      F.done();
7597    }
7598
7599    // Note:  there used to be some attempt at recovery here.
7600    if (Previous.isAmbiguous())
7601      return 0;
7602
7603    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7604      // FIXME: This makes sure that we ignore the contexts associated
7605      // with C structs, unions, and enums when looking for a matching
7606      // tag declaration or definition. See the similar lookup tweak
7607      // in Sema::LookupName; is there a better way to deal with this?
7608      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7609        SearchDC = SearchDC->getParent();
7610    }
7611  } else if (S->isFunctionPrototypeScope()) {
7612    // If this is an enum declaration in function prototype scope, set its
7613    // initial context to the translation unit.
7614    SearchDC = Context.getTranslationUnitDecl();
7615  }
7616
7617  if (Previous.isSingleResult() &&
7618      Previous.getFoundDecl()->isTemplateParameter()) {
7619    // Maybe we will complain about the shadowed template parameter.
7620    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7621    // Just pretend that we didn't see the previous declaration.
7622    Previous.clear();
7623  }
7624
7625  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7626      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7627    // This is a declaration of or a reference to "std::bad_alloc".
7628    isStdBadAlloc = true;
7629
7630    if (Previous.empty() && StdBadAlloc) {
7631      // std::bad_alloc has been implicitly declared (but made invisible to
7632      // name lookup). Fill in this implicit declaration as the previous
7633      // declaration, so that the declarations get chained appropriately.
7634      Previous.addDecl(getStdBadAlloc());
7635    }
7636  }
7637
7638  // If we didn't find a previous declaration, and this is a reference
7639  // (or friend reference), move to the correct scope.  In C++, we
7640  // also need to do a redeclaration lookup there, just in case
7641  // there's a shadow friend decl.
7642  if (Name && Previous.empty() &&
7643      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7644    if (Invalid) goto CreateNewDecl;
7645    assert(SS.isEmpty());
7646
7647    if (TUK == TUK_Reference) {
7648      // C++ [basic.scope.pdecl]p5:
7649      //   -- for an elaborated-type-specifier of the form
7650      //
7651      //          class-key identifier
7652      //
7653      //      if the elaborated-type-specifier is used in the
7654      //      decl-specifier-seq or parameter-declaration-clause of a
7655      //      function defined in namespace scope, the identifier is
7656      //      declared as a class-name in the namespace that contains
7657      //      the declaration; otherwise, except as a friend
7658      //      declaration, the identifier is declared in the smallest
7659      //      non-class, non-function-prototype scope that contains the
7660      //      declaration.
7661      //
7662      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7663      // C structs and unions.
7664      //
7665      // It is an error in C++ to declare (rather than define) an enum
7666      // type, including via an elaborated type specifier.  We'll
7667      // diagnose that later; for now, declare the enum in the same
7668      // scope as we would have picked for any other tag type.
7669      //
7670      // GNU C also supports this behavior as part of its incomplete
7671      // enum types extension, while GNU C++ does not.
7672      //
7673      // Find the context where we'll be declaring the tag.
7674      // FIXME: We would like to maintain the current DeclContext as the
7675      // lexical context,
7676      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7677        SearchDC = SearchDC->getParent();
7678
7679      // Find the scope where we'll be declaring the tag.
7680      while (S->isClassScope() ||
7681             (getLangOptions().CPlusPlus &&
7682              S->isFunctionPrototypeScope()) ||
7683             ((S->getFlags() & Scope::DeclScope) == 0) ||
7684             (S->getEntity() &&
7685              ((DeclContext *)S->getEntity())->isTransparentContext()))
7686        S = S->getParent();
7687    } else {
7688      assert(TUK == TUK_Friend);
7689      // C++ [namespace.memdef]p3:
7690      //   If a friend declaration in a non-local class first declares a
7691      //   class or function, the friend class or function is a member of
7692      //   the innermost enclosing namespace.
7693      SearchDC = SearchDC->getEnclosingNamespaceContext();
7694    }
7695
7696    // In C++, we need to do a redeclaration lookup to properly
7697    // diagnose some problems.
7698    if (getLangOptions().CPlusPlus) {
7699      Previous.setRedeclarationKind(ForRedeclaration);
7700      LookupQualifiedName(Previous, SearchDC);
7701    }
7702  }
7703
7704  if (!Previous.empty()) {
7705    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7706
7707    // It's okay to have a tag decl in the same scope as a typedef
7708    // which hides a tag decl in the same scope.  Finding this
7709    // insanity with a redeclaration lookup can only actually happen
7710    // in C++.
7711    //
7712    // This is also okay for elaborated-type-specifiers, which is
7713    // technically forbidden by the current standard but which is
7714    // okay according to the likely resolution of an open issue;
7715    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7716    if (getLangOptions().CPlusPlus) {
7717      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7718        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7719          TagDecl *Tag = TT->getDecl();
7720          if (Tag->getDeclName() == Name &&
7721              Tag->getDeclContext()->getRedeclContext()
7722                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7723            PrevDecl = Tag;
7724            Previous.clear();
7725            Previous.addDecl(Tag);
7726            Previous.resolveKind();
7727          }
7728        }
7729      }
7730    }
7731
7732    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7733      // If this is a use of a previous tag, or if the tag is already declared
7734      // in the same scope (so that the definition/declaration completes or
7735      // rementions the tag), reuse the decl.
7736      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7737          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7738        // Make sure that this wasn't declared as an enum and now used as a
7739        // struct or something similar.
7740        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7741                                          TUK == TUK_Definition, KWLoc,
7742                                          *Name)) {
7743          bool SafeToContinue
7744            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7745               Kind != TTK_Enum);
7746          if (SafeToContinue)
7747            Diag(KWLoc, diag::err_use_with_wrong_tag)
7748              << Name
7749              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7750                                              PrevTagDecl->getKindName());
7751          else
7752            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7753          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7754
7755          if (SafeToContinue)
7756            Kind = PrevTagDecl->getTagKind();
7757          else {
7758            // Recover by making this an anonymous redefinition.
7759            Name = 0;
7760            Previous.clear();
7761            Invalid = true;
7762          }
7763        }
7764
7765        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7766          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7767
7768          // All conflicts with previous declarations are recovered by
7769          // returning the previous declaration.
7770          if (ScopedEnum != PrevEnum->isScoped()) {
7771            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7772              << PrevEnum->isScoped();
7773            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7774            return PrevTagDecl;
7775          }
7776          else if (EnumUnderlying && PrevEnum->isFixed()) {
7777            QualType T;
7778            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7779                T = TI->getType();
7780            else
7781                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7782
7783            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7784              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7785                   diag::err_enum_redeclare_type_mismatch)
7786                << T
7787                << PrevEnum->getIntegerType();
7788              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7789              return PrevTagDecl;
7790            }
7791          }
7792          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7793            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7794              << PrevEnum->isFixed();
7795            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7796            return PrevTagDecl;
7797          }
7798        }
7799
7800        if (!Invalid) {
7801          // If this is a use, just return the declaration we found.
7802
7803          // FIXME: In the future, return a variant or some other clue
7804          // for the consumer of this Decl to know it doesn't own it.
7805          // For our current ASTs this shouldn't be a problem, but will
7806          // need to be changed with DeclGroups.
7807          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7808               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7809            return PrevTagDecl;
7810
7811          // Diagnose attempts to redefine a tag.
7812          if (TUK == TUK_Definition) {
7813            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7814              // If we're defining a specialization and the previous definition
7815              // is from an implicit instantiation, don't emit an error
7816              // here; we'll catch this in the general case below.
7817              if (!isExplicitSpecialization ||
7818                  !isa<CXXRecordDecl>(Def) ||
7819                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7820                                               == TSK_ExplicitSpecialization) {
7821                Diag(NameLoc, diag::err_redefinition) << Name;
7822                Diag(Def->getLocation(), diag::note_previous_definition);
7823                // If this is a redefinition, recover by making this
7824                // struct be anonymous, which will make any later
7825                // references get the previous definition.
7826                Name = 0;
7827                Previous.clear();
7828                Invalid = true;
7829              }
7830            } else {
7831              // If the type is currently being defined, complain
7832              // about a nested redefinition.
7833              const TagType *Tag
7834                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7835              if (Tag->isBeingDefined()) {
7836                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7837                Diag(PrevTagDecl->getLocation(),
7838                     diag::note_previous_definition);
7839                Name = 0;
7840                Previous.clear();
7841                Invalid = true;
7842              }
7843            }
7844
7845            // Okay, this is definition of a previously declared or referenced
7846            // tag PrevDecl. We're going to create a new Decl for it.
7847          }
7848        }
7849        // If we get here we have (another) forward declaration or we
7850        // have a definition.  Just create a new decl.
7851
7852      } else {
7853        // If we get here, this is a definition of a new tag type in a nested
7854        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7855        // new decl/type.  We set PrevDecl to NULL so that the entities
7856        // have distinct types.
7857        Previous.clear();
7858      }
7859      // If we get here, we're going to create a new Decl. If PrevDecl
7860      // is non-NULL, it's a definition of the tag declared by
7861      // PrevDecl. If it's NULL, we have a new definition.
7862
7863
7864    // Otherwise, PrevDecl is not a tag, but was found with tag
7865    // lookup.  This is only actually possible in C++, where a few
7866    // things like templates still live in the tag namespace.
7867    } else {
7868      assert(getLangOptions().CPlusPlus);
7869
7870      // Use a better diagnostic if an elaborated-type-specifier
7871      // found the wrong kind of type on the first
7872      // (non-redeclaration) lookup.
7873      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7874          !Previous.isForRedeclaration()) {
7875        unsigned Kind = 0;
7876        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7877        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7878        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7879        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7880        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7881        Invalid = true;
7882
7883      // Otherwise, only diagnose if the declaration is in scope.
7884      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7885                                isExplicitSpecialization)) {
7886        // do nothing
7887
7888      // Diagnose implicit declarations introduced by elaborated types.
7889      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7890        unsigned Kind = 0;
7891        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7892        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7893        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7894        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7895        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7896        Invalid = true;
7897
7898      // Otherwise it's a declaration.  Call out a particularly common
7899      // case here.
7900      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7901        unsigned Kind = 0;
7902        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7903        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7904          << Name << Kind << TND->getUnderlyingType();
7905        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7906        Invalid = true;
7907
7908      // Otherwise, diagnose.
7909      } else {
7910        // The tag name clashes with something else in the target scope,
7911        // issue an error and recover by making this tag be anonymous.
7912        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7913        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7914        Name = 0;
7915        Invalid = true;
7916      }
7917
7918      // The existing declaration isn't relevant to us; we're in a
7919      // new scope, so clear out the previous declaration.
7920      Previous.clear();
7921    }
7922  }
7923
7924CreateNewDecl:
7925
7926  TagDecl *PrevDecl = 0;
7927  if (Previous.isSingleResult())
7928    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7929
7930  // If there is an identifier, use the location of the identifier as the
7931  // location of the decl, otherwise use the location of the struct/union
7932  // keyword.
7933  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7934
7935  // Otherwise, create a new declaration. If there is a previous
7936  // declaration of the same entity, the two will be linked via
7937  // PrevDecl.
7938  TagDecl *New;
7939
7940  bool IsForwardReference = false;
7941  if (Kind == TTK_Enum) {
7942    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7943    // enum X { A, B, C } D;    D should chain to X.
7944    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7945                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7946                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7947    // If this is an undefined enum, warn.
7948    if (TUK != TUK_Definition && !Invalid) {
7949      TagDecl *Def;
7950      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7951        // C++0x: 7.2p2: opaque-enum-declaration.
7952        // Conflicts are diagnosed above. Do nothing.
7953      }
7954      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7955        Diag(Loc, diag::ext_forward_ref_enum_def)
7956          << New;
7957        Diag(Def->getLocation(), diag::note_previous_definition);
7958      } else {
7959        unsigned DiagID = diag::ext_forward_ref_enum;
7960        if (getLangOptions().MicrosoftExt)
7961          DiagID = diag::ext_ms_forward_ref_enum;
7962        else if (getLangOptions().CPlusPlus)
7963          DiagID = diag::err_forward_ref_enum;
7964        Diag(Loc, DiagID);
7965
7966        // If this is a forward-declared reference to an enumeration, make a
7967        // note of it; we won't actually be introducing the declaration into
7968        // the declaration context.
7969        if (TUK == TUK_Reference)
7970          IsForwardReference = true;
7971      }
7972    }
7973
7974    if (EnumUnderlying) {
7975      EnumDecl *ED = cast<EnumDecl>(New);
7976      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7977        ED->setIntegerTypeSourceInfo(TI);
7978      else
7979        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7980      ED->setPromotionType(ED->getIntegerType());
7981    }
7982
7983  } else {
7984    // struct/union/class
7985
7986    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7987    // struct X { int A; } D;    D should chain to X.
7988    if (getLangOptions().CPlusPlus) {
7989      // FIXME: Look for a way to use RecordDecl for simple structs.
7990      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7991                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7992
7993      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7994        StdBadAlloc = cast<CXXRecordDecl>(New);
7995    } else
7996      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7997                               cast_or_null<RecordDecl>(PrevDecl));
7998  }
7999
8000  // Maybe add qualifier info.
8001  if (SS.isNotEmpty()) {
8002    if (SS.isSet()) {
8003      New->setQualifierInfo(SS.getWithLocInContext(Context));
8004      if (TemplateParameterLists.size() > 0) {
8005        New->setTemplateParameterListsInfo(Context,
8006                                           TemplateParameterLists.size(),
8007                    (TemplateParameterList**) TemplateParameterLists.release());
8008      }
8009    }
8010    else
8011      Invalid = true;
8012  }
8013
8014  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8015    // Add alignment attributes if necessary; these attributes are checked when
8016    // the ASTContext lays out the structure.
8017    //
8018    // It is important for implementing the correct semantics that this
8019    // happen here (in act on tag decl). The #pragma pack stack is
8020    // maintained as a result of parser callbacks which can occur at
8021    // many points during the parsing of a struct declaration (because
8022    // the #pragma tokens are effectively skipped over during the
8023    // parsing of the struct).
8024    AddAlignmentAttributesForRecord(RD);
8025
8026    AddMsStructLayoutForRecord(RD);
8027  }
8028
8029  if (PrevDecl && PrevDecl->isModulePrivate())
8030    New->setModulePrivate();
8031  else if (ModulePrivateLoc.isValid()) {
8032    if (isExplicitSpecialization)
8033      Diag(New->getLocation(), diag::err_module_private_specialization)
8034        << 2
8035        << FixItHint::CreateRemoval(ModulePrivateLoc);
8036    else if (PrevDecl && !PrevDecl->isModulePrivate())
8037      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8038    // __module_private__ does not apply to local classes. However, we only
8039    // diagnose this as an error when the declaration specifiers are
8040    // freestanding. Here, we just ignore the __module_private__.
8041    // foobar
8042    else if (!SearchDC->isFunctionOrMethod())
8043      New->setModulePrivate();
8044  }
8045
8046  // If this is a specialization of a member class (of a class template),
8047  // check the specialization.
8048  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8049    Invalid = true;
8050
8051  if (Invalid)
8052    New->setInvalidDecl();
8053
8054  if (Attr)
8055    ProcessDeclAttributeList(S, New, Attr);
8056
8057  // If we're declaring or defining a tag in function prototype scope
8058  // in C, note that this type can only be used within the function.
8059  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8060    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8061
8062  // Set the lexical context. If the tag has a C++ scope specifier, the
8063  // lexical context will be different from the semantic context.
8064  New->setLexicalDeclContext(CurContext);
8065
8066  // Mark this as a friend decl if applicable.
8067  // In Microsoft mode, a friend declaration also acts as a forward
8068  // declaration so we always pass true to setObjectOfFriendDecl to make
8069  // the tag name visible.
8070  if (TUK == TUK_Friend)
8071    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8072                               getLangOptions().MicrosoftExt);
8073
8074  // Set the access specifier.
8075  if (!Invalid && SearchDC->isRecord())
8076    SetMemberAccessSpecifier(New, PrevDecl, AS);
8077
8078  if (TUK == TUK_Definition)
8079    New->startDefinition();
8080
8081  // If this has an identifier, add it to the scope stack.
8082  if (TUK == TUK_Friend) {
8083    // We might be replacing an existing declaration in the lookup tables;
8084    // if so, borrow its access specifier.
8085    if (PrevDecl)
8086      New->setAccess(PrevDecl->getAccess());
8087
8088    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8089    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8090    if (Name) // can be null along some error paths
8091      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8092        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8093  } else if (Name) {
8094    S = getNonFieldDeclScope(S);
8095    PushOnScopeChains(New, S, !IsForwardReference);
8096    if (IsForwardReference)
8097      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8098
8099  } else {
8100    CurContext->addDecl(New);
8101  }
8102
8103  // If this is the C FILE type, notify the AST context.
8104  if (IdentifierInfo *II = New->getIdentifier())
8105    if (!New->isInvalidDecl() &&
8106        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8107        II->isStr("FILE"))
8108      Context.setFILEDecl(New);
8109
8110  OwnedDecl = true;
8111  return New;
8112}
8113
8114void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8115  AdjustDeclIfTemplate(TagD);
8116  TagDecl *Tag = cast<TagDecl>(TagD);
8117
8118  // Enter the tag context.
8119  PushDeclContext(S, Tag);
8120}
8121
8122Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8123  assert(isa<ObjCContainerDecl>(IDecl) &&
8124         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8125  DeclContext *OCD = cast<DeclContext>(IDecl);
8126  assert(getContainingDC(OCD) == CurContext &&
8127      "The next DeclContext should be lexically contained in the current one.");
8128  CurContext = OCD;
8129  return IDecl;
8130}
8131
8132void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8133                                           SourceLocation FinalLoc,
8134                                           SourceLocation LBraceLoc) {
8135  AdjustDeclIfTemplate(TagD);
8136  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8137
8138  FieldCollector->StartClass();
8139
8140  if (!Record->getIdentifier())
8141    return;
8142
8143  if (FinalLoc.isValid())
8144    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8145
8146  // C++ [class]p2:
8147  //   [...] The class-name is also inserted into the scope of the
8148  //   class itself; this is known as the injected-class-name. For
8149  //   purposes of access checking, the injected-class-name is treated
8150  //   as if it were a public member name.
8151  CXXRecordDecl *InjectedClassName
8152    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8153                            Record->getLocStart(), Record->getLocation(),
8154                            Record->getIdentifier(),
8155                            /*PrevDecl=*/0,
8156                            /*DelayTypeCreation=*/true);
8157  Context.getTypeDeclType(InjectedClassName, Record);
8158  InjectedClassName->setImplicit();
8159  InjectedClassName->setAccess(AS_public);
8160  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8161      InjectedClassName->setDescribedClassTemplate(Template);
8162  PushOnScopeChains(InjectedClassName, S);
8163  assert(InjectedClassName->isInjectedClassName() &&
8164         "Broken injected-class-name");
8165}
8166
8167void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8168                                    SourceLocation RBraceLoc) {
8169  AdjustDeclIfTemplate(TagD);
8170  TagDecl *Tag = cast<TagDecl>(TagD);
8171  Tag->setRBraceLoc(RBraceLoc);
8172
8173  if (isa<CXXRecordDecl>(Tag))
8174    FieldCollector->FinishClass();
8175
8176  // Exit this scope of this tag's definition.
8177  PopDeclContext();
8178
8179  // Notify the consumer that we've defined a tag.
8180  Consumer.HandleTagDeclDefinition(Tag);
8181}
8182
8183void Sema::ActOnObjCContainerFinishDefinition() {
8184  // Exit this scope of this interface definition.
8185  PopDeclContext();
8186}
8187
8188void Sema::ActOnObjCTemporaryExitContainerContext() {
8189  OriginalLexicalContext = CurContext;
8190  ActOnObjCContainerFinishDefinition();
8191}
8192
8193void Sema::ActOnObjCReenterContainerContext() {
8194  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8195  OriginalLexicalContext = 0;
8196}
8197
8198void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8199  AdjustDeclIfTemplate(TagD);
8200  TagDecl *Tag = cast<TagDecl>(TagD);
8201  Tag->setInvalidDecl();
8202
8203  // We're undoing ActOnTagStartDefinition here, not
8204  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8205  // the FieldCollector.
8206
8207  PopDeclContext();
8208}
8209
8210// Note that FieldName may be null for anonymous bitfields.
8211bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8212                          QualType FieldTy, const Expr *BitWidth,
8213                          bool *ZeroWidth) {
8214  // Default to true; that shouldn't confuse checks for emptiness
8215  if (ZeroWidth)
8216    *ZeroWidth = true;
8217
8218  // C99 6.7.2.1p4 - verify the field type.
8219  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8220  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8221    // Handle incomplete types with specific error.
8222    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8223      return true;
8224    if (FieldName)
8225      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8226        << FieldName << FieldTy << BitWidth->getSourceRange();
8227    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8228      << FieldTy << BitWidth->getSourceRange();
8229  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8230                                             UPPC_BitFieldWidth))
8231    return true;
8232
8233  // If the bit-width is type- or value-dependent, don't try to check
8234  // it now.
8235  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8236    return false;
8237
8238  llvm::APSInt Value;
8239  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8240    return true;
8241
8242  if (Value != 0 && ZeroWidth)
8243    *ZeroWidth = false;
8244
8245  // Zero-width bitfield is ok for anonymous field.
8246  if (Value == 0 && FieldName)
8247    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8248
8249  if (Value.isSigned() && Value.isNegative()) {
8250    if (FieldName)
8251      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8252               << FieldName << Value.toString(10);
8253    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8254      << Value.toString(10);
8255  }
8256
8257  if (!FieldTy->isDependentType()) {
8258    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8259    if (Value.getZExtValue() > TypeSize) {
8260      if (!getLangOptions().CPlusPlus) {
8261        if (FieldName)
8262          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8263            << FieldName << (unsigned)Value.getZExtValue()
8264            << (unsigned)TypeSize;
8265
8266        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8267          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8268      }
8269
8270      if (FieldName)
8271        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8272          << FieldName << (unsigned)Value.getZExtValue()
8273          << (unsigned)TypeSize;
8274      else
8275        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8276          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8277    }
8278  }
8279
8280  return false;
8281}
8282
8283/// ActOnField - Each field of a C struct/union is passed into this in order
8284/// to create a FieldDecl object for it.
8285Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8286                       Declarator &D, Expr *BitfieldWidth) {
8287  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8288                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8289                               /*HasInit=*/false, AS_public);
8290  return Res;
8291}
8292
8293/// HandleField - Analyze a field of a C struct or a C++ data member.
8294///
8295FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8296                             SourceLocation DeclStart,
8297                             Declarator &D, Expr *BitWidth, bool HasInit,
8298                             AccessSpecifier AS) {
8299  IdentifierInfo *II = D.getIdentifier();
8300  SourceLocation Loc = DeclStart;
8301  if (II) Loc = D.getIdentifierLoc();
8302
8303  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8304  QualType T = TInfo->getType();
8305  if (getLangOptions().CPlusPlus) {
8306    CheckExtraCXXDefaultArguments(D);
8307
8308    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8309                                        UPPC_DataMemberType)) {
8310      D.setInvalidType();
8311      T = Context.IntTy;
8312      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8313    }
8314  }
8315
8316  DiagnoseFunctionSpecifiers(D);
8317
8318  if (D.getDeclSpec().isThreadSpecified())
8319    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8320  if (D.getDeclSpec().isConstexprSpecified())
8321    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8322      << 2;
8323
8324  // Check to see if this name was declared as a member previously
8325  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8326  LookupName(Previous, S);
8327  assert((Previous.empty() || Previous.isOverloadedResult() ||
8328          Previous.isSingleResult())
8329    && "Lookup of member name should be either overloaded, single or null");
8330
8331  // If the name is overloaded then get any declaration else get the single result
8332  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8333    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8334
8335  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8336    // Maybe we will complain about the shadowed template parameter.
8337    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8338    // Just pretend that we didn't see the previous declaration.
8339    PrevDecl = 0;
8340  }
8341
8342  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8343    PrevDecl = 0;
8344
8345  bool Mutable
8346    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8347  SourceLocation TSSL = D.getSourceRange().getBegin();
8348  FieldDecl *NewFD
8349    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8350                     TSSL, AS, PrevDecl, &D);
8351
8352  if (NewFD->isInvalidDecl())
8353    Record->setInvalidDecl();
8354
8355  if (D.getDeclSpec().isModulePrivateSpecified())
8356    NewFD->setModulePrivate();
8357
8358  if (NewFD->isInvalidDecl() && PrevDecl) {
8359    // Don't introduce NewFD into scope; there's already something
8360    // with the same name in the same scope.
8361  } else if (II) {
8362    PushOnScopeChains(NewFD, S);
8363  } else
8364    Record->addDecl(NewFD);
8365
8366  return NewFD;
8367}
8368
8369/// \brief Build a new FieldDecl and check its well-formedness.
8370///
8371/// This routine builds a new FieldDecl given the fields name, type,
8372/// record, etc. \p PrevDecl should refer to any previous declaration
8373/// with the same name and in the same scope as the field to be
8374/// created.
8375///
8376/// \returns a new FieldDecl.
8377///
8378/// \todo The Declarator argument is a hack. It will be removed once
8379FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8380                                TypeSourceInfo *TInfo,
8381                                RecordDecl *Record, SourceLocation Loc,
8382                                bool Mutable, Expr *BitWidth, bool HasInit,
8383                                SourceLocation TSSL,
8384                                AccessSpecifier AS, NamedDecl *PrevDecl,
8385                                Declarator *D) {
8386  IdentifierInfo *II = Name.getAsIdentifierInfo();
8387  bool InvalidDecl = false;
8388  if (D) InvalidDecl = D->isInvalidType();
8389
8390  // If we receive a broken type, recover by assuming 'int' and
8391  // marking this declaration as invalid.
8392  if (T.isNull()) {
8393    InvalidDecl = true;
8394    T = Context.IntTy;
8395  }
8396
8397  QualType EltTy = Context.getBaseElementType(T);
8398  if (!EltTy->isDependentType() &&
8399      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8400    // Fields of incomplete type force their record to be invalid.
8401    Record->setInvalidDecl();
8402    InvalidDecl = true;
8403  }
8404
8405  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8406  // than a variably modified type.
8407  if (!InvalidDecl && T->isVariablyModifiedType()) {
8408    bool SizeIsNegative;
8409    llvm::APSInt Oversized;
8410    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8411                                                           SizeIsNegative,
8412                                                           Oversized);
8413    if (!FixedTy.isNull()) {
8414      Diag(Loc, diag::warn_illegal_constant_array_size);
8415      T = FixedTy;
8416    } else {
8417      if (SizeIsNegative)
8418        Diag(Loc, diag::err_typecheck_negative_array_size);
8419      else if (Oversized.getBoolValue())
8420        Diag(Loc, diag::err_array_too_large)
8421          << Oversized.toString(10);
8422      else
8423        Diag(Loc, diag::err_typecheck_field_variable_size);
8424      InvalidDecl = true;
8425    }
8426  }
8427
8428  // Fields can not have abstract class types
8429  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8430                                             diag::err_abstract_type_in_decl,
8431                                             AbstractFieldType))
8432    InvalidDecl = true;
8433
8434  bool ZeroWidth = false;
8435  // If this is declared as a bit-field, check the bit-field.
8436  if (!InvalidDecl && BitWidth &&
8437      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8438    InvalidDecl = true;
8439    BitWidth = 0;
8440    ZeroWidth = false;
8441  }
8442
8443  // Check that 'mutable' is consistent with the type of the declaration.
8444  if (!InvalidDecl && Mutable) {
8445    unsigned DiagID = 0;
8446    if (T->isReferenceType())
8447      DiagID = diag::err_mutable_reference;
8448    else if (T.isConstQualified())
8449      DiagID = diag::err_mutable_const;
8450
8451    if (DiagID) {
8452      SourceLocation ErrLoc = Loc;
8453      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8454        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8455      Diag(ErrLoc, DiagID);
8456      Mutable = false;
8457      InvalidDecl = true;
8458    }
8459  }
8460
8461  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8462                                       BitWidth, Mutable, HasInit);
8463  if (InvalidDecl)
8464    NewFD->setInvalidDecl();
8465
8466  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8467    Diag(Loc, diag::err_duplicate_member) << II;
8468    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8469    NewFD->setInvalidDecl();
8470  }
8471
8472  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8473    if (Record->isUnion()) {
8474      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8475        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8476        if (RDecl->getDefinition()) {
8477          // C++ [class.union]p1: An object of a class with a non-trivial
8478          // constructor, a non-trivial copy constructor, a non-trivial
8479          // destructor, or a non-trivial copy assignment operator
8480          // cannot be a member of a union, nor can an array of such
8481          // objects.
8482          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8483            NewFD->setInvalidDecl();
8484        }
8485      }
8486
8487      // C++ [class.union]p1: If a union contains a member of reference type,
8488      // the program is ill-formed.
8489      if (EltTy->isReferenceType()) {
8490        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8491          << NewFD->getDeclName() << EltTy;
8492        NewFD->setInvalidDecl();
8493      }
8494    }
8495  }
8496
8497  // FIXME: We need to pass in the attributes given an AST
8498  // representation, not a parser representation.
8499  if (D)
8500    // FIXME: What to pass instead of TUScope?
8501    ProcessDeclAttributes(TUScope, NewFD, *D);
8502
8503  // In auto-retain/release, infer strong retension for fields of
8504  // retainable type.
8505  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8506    NewFD->setInvalidDecl();
8507
8508  if (T.isObjCGCWeak())
8509    Diag(Loc, diag::warn_attribute_weak_on_field);
8510
8511  NewFD->setAccess(AS);
8512  return NewFD;
8513}
8514
8515bool Sema::CheckNontrivialField(FieldDecl *FD) {
8516  assert(FD);
8517  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8518
8519  if (FD->isInvalidDecl())
8520    return true;
8521
8522  QualType EltTy = Context.getBaseElementType(FD->getType());
8523  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8524    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8525    if (RDecl->getDefinition()) {
8526      // We check for copy constructors before constructors
8527      // because otherwise we'll never get complaints about
8528      // copy constructors.
8529
8530      CXXSpecialMember member = CXXInvalid;
8531      if (!RDecl->hasTrivialCopyConstructor())
8532        member = CXXCopyConstructor;
8533      else if (!RDecl->hasTrivialDefaultConstructor())
8534        member = CXXDefaultConstructor;
8535      else if (!RDecl->hasTrivialCopyAssignment())
8536        member = CXXCopyAssignment;
8537      else if (!RDecl->hasTrivialDestructor())
8538        member = CXXDestructor;
8539
8540      if (member != CXXInvalid) {
8541        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8542          // Objective-C++ ARC: it is an error to have a non-trivial field of
8543          // a union. However, system headers in Objective-C programs
8544          // occasionally have Objective-C lifetime objects within unions,
8545          // and rather than cause the program to fail, we make those
8546          // members unavailable.
8547          SourceLocation Loc = FD->getLocation();
8548          if (getSourceManager().isInSystemHeader(Loc)) {
8549            if (!FD->hasAttr<UnavailableAttr>())
8550              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8551                                  "this system field has retaining ownership"));
8552            return false;
8553          }
8554        }
8555
8556        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8557              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8558        DiagnoseNontrivial(RT, member);
8559        return true;
8560      }
8561    }
8562  }
8563
8564  return false;
8565}
8566
8567/// DiagnoseNontrivial - Given that a class has a non-trivial
8568/// special member, figure out why.
8569void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8570  QualType QT(T, 0U);
8571  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8572
8573  // Check whether the member was user-declared.
8574  switch (member) {
8575  case CXXInvalid:
8576    break;
8577
8578  case CXXDefaultConstructor:
8579    if (RD->hasUserDeclaredConstructor()) {
8580      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8581      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8582        const FunctionDecl *body = 0;
8583        ci->hasBody(body);
8584        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8585          SourceLocation CtorLoc = ci->getLocation();
8586          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8587          return;
8588        }
8589      }
8590
8591      llvm_unreachable("found no user-declared constructors");
8592    }
8593    break;
8594
8595  case CXXCopyConstructor:
8596    if (RD->hasUserDeclaredCopyConstructor()) {
8597      SourceLocation CtorLoc =
8598        RD->getCopyConstructor(0)->getLocation();
8599      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8600      return;
8601    }
8602    break;
8603
8604  case CXXMoveConstructor:
8605    if (RD->hasUserDeclaredMoveConstructor()) {
8606      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8607      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8608      return;
8609    }
8610    break;
8611
8612  case CXXCopyAssignment:
8613    if (RD->hasUserDeclaredCopyAssignment()) {
8614      // FIXME: this should use the location of the copy
8615      // assignment, not the type.
8616      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8617      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8618      return;
8619    }
8620    break;
8621
8622  case CXXMoveAssignment:
8623    if (RD->hasUserDeclaredMoveAssignment()) {
8624      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8625      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8626      return;
8627    }
8628    break;
8629
8630  case CXXDestructor:
8631    if (RD->hasUserDeclaredDestructor()) {
8632      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8633      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8634      return;
8635    }
8636    break;
8637  }
8638
8639  typedef CXXRecordDecl::base_class_iterator base_iter;
8640
8641  // Virtual bases and members inhibit trivial copying/construction,
8642  // but not trivial destruction.
8643  if (member != CXXDestructor) {
8644    // Check for virtual bases.  vbases includes indirect virtual bases,
8645    // so we just iterate through the direct bases.
8646    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8647      if (bi->isVirtual()) {
8648        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8649        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8650        return;
8651      }
8652
8653    // Check for virtual methods.
8654    typedef CXXRecordDecl::method_iterator meth_iter;
8655    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8656         ++mi) {
8657      if (mi->isVirtual()) {
8658        SourceLocation MLoc = mi->getSourceRange().getBegin();
8659        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8660        return;
8661      }
8662    }
8663  }
8664
8665  bool (CXXRecordDecl::*hasTrivial)() const;
8666  switch (member) {
8667  case CXXDefaultConstructor:
8668    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8669  case CXXCopyConstructor:
8670    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8671  case CXXCopyAssignment:
8672    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8673  case CXXDestructor:
8674    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8675  default:
8676    llvm_unreachable("unexpected special member");
8677  }
8678
8679  // Check for nontrivial bases (and recurse).
8680  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8681    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8682    assert(BaseRT && "Don't know how to handle dependent bases");
8683    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8684    if (!(BaseRecTy->*hasTrivial)()) {
8685      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8686      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8687      DiagnoseNontrivial(BaseRT, member);
8688      return;
8689    }
8690  }
8691
8692  // Check for nontrivial members (and recurse).
8693  typedef RecordDecl::field_iterator field_iter;
8694  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8695       ++fi) {
8696    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8697    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8698      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8699
8700      if (!(EltRD->*hasTrivial)()) {
8701        SourceLocation FLoc = (*fi)->getLocation();
8702        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8703        DiagnoseNontrivial(EltRT, member);
8704        return;
8705      }
8706    }
8707
8708    if (EltTy->isObjCLifetimeType()) {
8709      switch (EltTy.getObjCLifetime()) {
8710      case Qualifiers::OCL_None:
8711      case Qualifiers::OCL_ExplicitNone:
8712        break;
8713
8714      case Qualifiers::OCL_Autoreleasing:
8715      case Qualifiers::OCL_Weak:
8716      case Qualifiers::OCL_Strong:
8717        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8718          << QT << EltTy.getObjCLifetime();
8719        return;
8720      }
8721    }
8722  }
8723
8724  llvm_unreachable("found no explanation for non-trivial member");
8725}
8726
8727/// TranslateIvarVisibility - Translate visibility from a token ID to an
8728///  AST enum value.
8729static ObjCIvarDecl::AccessControl
8730TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8731  switch (ivarVisibility) {
8732  default: llvm_unreachable("Unknown visitibility kind");
8733  case tok::objc_private: return ObjCIvarDecl::Private;
8734  case tok::objc_public: return ObjCIvarDecl::Public;
8735  case tok::objc_protected: return ObjCIvarDecl::Protected;
8736  case tok::objc_package: return ObjCIvarDecl::Package;
8737  }
8738}
8739
8740/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8741/// in order to create an IvarDecl object for it.
8742Decl *Sema::ActOnIvar(Scope *S,
8743                                SourceLocation DeclStart,
8744                                Declarator &D, Expr *BitfieldWidth,
8745                                tok::ObjCKeywordKind Visibility) {
8746
8747  IdentifierInfo *II = D.getIdentifier();
8748  Expr *BitWidth = (Expr*)BitfieldWidth;
8749  SourceLocation Loc = DeclStart;
8750  if (II) Loc = D.getIdentifierLoc();
8751
8752  // FIXME: Unnamed fields can be handled in various different ways, for
8753  // example, unnamed unions inject all members into the struct namespace!
8754
8755  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8756  QualType T = TInfo->getType();
8757
8758  if (BitWidth) {
8759    // 6.7.2.1p3, 6.7.2.1p4
8760    if (VerifyBitField(Loc, II, T, BitWidth)) {
8761      D.setInvalidType();
8762      BitWidth = 0;
8763    }
8764  } else {
8765    // Not a bitfield.
8766
8767    // validate II.
8768
8769  }
8770  if (T->isReferenceType()) {
8771    Diag(Loc, diag::err_ivar_reference_type);
8772    D.setInvalidType();
8773  }
8774  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8775  // than a variably modified type.
8776  else if (T->isVariablyModifiedType()) {
8777    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8778    D.setInvalidType();
8779  }
8780
8781  // Get the visibility (access control) for this ivar.
8782  ObjCIvarDecl::AccessControl ac =
8783    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8784                                        : ObjCIvarDecl::None;
8785  // Must set ivar's DeclContext to its enclosing interface.
8786  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8787  ObjCContainerDecl *EnclosingContext;
8788  if (ObjCImplementationDecl *IMPDecl =
8789      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8790    if (!LangOpts.ObjCNonFragileABI2) {
8791    // Case of ivar declared in an implementation. Context is that of its class.
8792      EnclosingContext = IMPDecl->getClassInterface();
8793      assert(EnclosingContext && "Implementation has no class interface!");
8794    }
8795    else
8796      EnclosingContext = EnclosingDecl;
8797  } else {
8798    if (ObjCCategoryDecl *CDecl =
8799        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8800      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8801        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8802        return 0;
8803      }
8804    }
8805    EnclosingContext = EnclosingDecl;
8806  }
8807
8808  // Construct the decl.
8809  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8810                                             DeclStart, Loc, II, T,
8811                                             TInfo, ac, (Expr *)BitfieldWidth);
8812
8813  if (II) {
8814    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8815                                           ForRedeclaration);
8816    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8817        && !isa<TagDecl>(PrevDecl)) {
8818      Diag(Loc, diag::err_duplicate_member) << II;
8819      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8820      NewID->setInvalidDecl();
8821    }
8822  }
8823
8824  // Process attributes attached to the ivar.
8825  ProcessDeclAttributes(S, NewID, D);
8826
8827  if (D.isInvalidType())
8828    NewID->setInvalidDecl();
8829
8830  // In ARC, infer 'retaining' for ivars of retainable type.
8831  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8832    NewID->setInvalidDecl();
8833
8834  if (D.getDeclSpec().isModulePrivateSpecified())
8835    NewID->setModulePrivate();
8836
8837  if (II) {
8838    // FIXME: When interfaces are DeclContexts, we'll need to add
8839    // these to the interface.
8840    S->AddDecl(NewID);
8841    IdResolver.AddDecl(NewID);
8842  }
8843
8844  return NewID;
8845}
8846
8847/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8848/// class and class extensions. For every class @interface and class
8849/// extension @interface, if the last ivar is a bitfield of any type,
8850/// then add an implicit `char :0` ivar to the end of that interface.
8851void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8852                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8853  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8854    return;
8855
8856  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8857  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8858
8859  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8860    return;
8861  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8862  if (!ID) {
8863    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8864      if (!CD->IsClassExtension())
8865        return;
8866    }
8867    // No need to add this to end of @implementation.
8868    else
8869      return;
8870  }
8871  // All conditions are met. Add a new bitfield to the tail end of ivars.
8872  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8873  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8874
8875  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8876                              DeclLoc, DeclLoc, 0,
8877                              Context.CharTy,
8878                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8879                                                               DeclLoc),
8880                              ObjCIvarDecl::Private, BW,
8881                              true);
8882  AllIvarDecls.push_back(Ivar);
8883}
8884
8885void Sema::ActOnFields(Scope* S,
8886                       SourceLocation RecLoc, Decl *EnclosingDecl,
8887                       llvm::ArrayRef<Decl *> Fields,
8888                       SourceLocation LBrac, SourceLocation RBrac,
8889                       AttributeList *Attr) {
8890  assert(EnclosingDecl && "missing record or interface decl");
8891
8892  // If the decl this is being inserted into is invalid, then it may be a
8893  // redeclaration or some other bogus case.  Don't try to add fields to it.
8894  if (EnclosingDecl->isInvalidDecl())
8895    return;
8896
8897  // Verify that all the fields are okay.
8898  unsigned NumNamedMembers = 0;
8899  SmallVector<FieldDecl*, 32> RecFields;
8900
8901  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8902  bool ARCErrReported = false;
8903  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8904       i != end; ++i) {
8905    FieldDecl *FD = cast<FieldDecl>(*i);
8906
8907    // Get the type for the field.
8908    const Type *FDTy = FD->getType().getTypePtr();
8909
8910    if (!FD->isAnonymousStructOrUnion()) {
8911      // Remember all fields written by the user.
8912      RecFields.push_back(FD);
8913    }
8914
8915    // If the field is already invalid for some reason, don't emit more
8916    // diagnostics about it.
8917    if (FD->isInvalidDecl()) {
8918      EnclosingDecl->setInvalidDecl();
8919      continue;
8920    }
8921
8922    // C99 6.7.2.1p2:
8923    //   A structure or union shall not contain a member with
8924    //   incomplete or function type (hence, a structure shall not
8925    //   contain an instance of itself, but may contain a pointer to
8926    //   an instance of itself), except that the last member of a
8927    //   structure with more than one named member may have incomplete
8928    //   array type; such a structure (and any union containing,
8929    //   possibly recursively, a member that is such a structure)
8930    //   shall not be a member of a structure or an element of an
8931    //   array.
8932    if (FDTy->isFunctionType()) {
8933      // Field declared as a function.
8934      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8935        << FD->getDeclName();
8936      FD->setInvalidDecl();
8937      EnclosingDecl->setInvalidDecl();
8938      continue;
8939    } else if (FDTy->isIncompleteArrayType() && Record &&
8940               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8941                ((getLangOptions().MicrosoftExt ||
8942                  getLangOptions().CPlusPlus) &&
8943                 (i + 1 == Fields.end() || Record->isUnion())))) {
8944      // Flexible array member.
8945      // Microsoft and g++ is more permissive regarding flexible array.
8946      // It will accept flexible array in union and also
8947      // as the sole element of a struct/class.
8948      if (getLangOptions().MicrosoftExt) {
8949        if (Record->isUnion())
8950          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8951            << FD->getDeclName();
8952        else if (Fields.size() == 1)
8953          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8954            << FD->getDeclName() << Record->getTagKind();
8955      } else if (getLangOptions().CPlusPlus) {
8956        if (Record->isUnion())
8957          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8958            << FD->getDeclName();
8959        else if (Fields.size() == 1)
8960          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8961            << FD->getDeclName() << Record->getTagKind();
8962      } else if (NumNamedMembers < 1) {
8963        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8964          << FD->getDeclName();
8965        FD->setInvalidDecl();
8966        EnclosingDecl->setInvalidDecl();
8967        continue;
8968      }
8969      if (!FD->getType()->isDependentType() &&
8970          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8971        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8972          << FD->getDeclName() << FD->getType();
8973        FD->setInvalidDecl();
8974        EnclosingDecl->setInvalidDecl();
8975        continue;
8976      }
8977      // Okay, we have a legal flexible array member at the end of the struct.
8978      if (Record)
8979        Record->setHasFlexibleArrayMember(true);
8980    } else if (!FDTy->isDependentType() &&
8981               RequireCompleteType(FD->getLocation(), FD->getType(),
8982                                   diag::err_field_incomplete)) {
8983      // Incomplete type
8984      FD->setInvalidDecl();
8985      EnclosingDecl->setInvalidDecl();
8986      continue;
8987    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8988      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8989        // If this is a member of a union, then entire union becomes "flexible".
8990        if (Record && Record->isUnion()) {
8991          Record->setHasFlexibleArrayMember(true);
8992        } else {
8993          // If this is a struct/class and this is not the last element, reject
8994          // it.  Note that GCC supports variable sized arrays in the middle of
8995          // structures.
8996          if (i + 1 != Fields.end())
8997            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8998              << FD->getDeclName() << FD->getType();
8999          else {
9000            // We support flexible arrays at the end of structs in
9001            // other structs as an extension.
9002            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9003              << FD->getDeclName();
9004            if (Record)
9005              Record->setHasFlexibleArrayMember(true);
9006          }
9007        }
9008      }
9009      if (Record && FDTTy->getDecl()->hasObjectMember())
9010        Record->setHasObjectMember(true);
9011    } else if (FDTy->isObjCObjectType()) {
9012      /// A field cannot be an Objective-c object
9013      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9014        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9015      QualType T = Context.getObjCObjectPointerType(FD->getType());
9016      FD->setType(T);
9017    }
9018    else if (!getLangOptions().CPlusPlus) {
9019      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9020        // It's an error in ARC if a field has lifetime.
9021        // We don't want to report this in a system header, though,
9022        // so we just make the field unavailable.
9023        // FIXME: that's really not sufficient; we need to make the type
9024        // itself invalid to, say, initialize or copy.
9025        QualType T = FD->getType();
9026        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9027        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9028          SourceLocation loc = FD->getLocation();
9029          if (getSourceManager().isInSystemHeader(loc)) {
9030            if (!FD->hasAttr<UnavailableAttr>()) {
9031              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9032                                "this system field has retaining ownership"));
9033            }
9034          } else {
9035            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9036          }
9037          ARCErrReported = true;
9038        }
9039      }
9040      else if (getLangOptions().ObjC1 &&
9041               getLangOptions().getGC() != LangOptions::NonGC &&
9042               Record && !Record->hasObjectMember()) {
9043        if (FD->getType()->isObjCObjectPointerType() ||
9044            FD->getType().isObjCGCStrong())
9045          Record->setHasObjectMember(true);
9046        else if (Context.getAsArrayType(FD->getType())) {
9047          QualType BaseType = Context.getBaseElementType(FD->getType());
9048          if (BaseType->isRecordType() &&
9049              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9050            Record->setHasObjectMember(true);
9051          else if (BaseType->isObjCObjectPointerType() ||
9052                   BaseType.isObjCGCStrong())
9053                 Record->setHasObjectMember(true);
9054        }
9055      }
9056    }
9057    // Keep track of the number of named members.
9058    if (FD->getIdentifier())
9059      ++NumNamedMembers;
9060  }
9061
9062  // Okay, we successfully defined 'Record'.
9063  if (Record) {
9064    bool Completed = false;
9065    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9066      if (!CXXRecord->isInvalidDecl()) {
9067        // Set access bits correctly on the directly-declared conversions.
9068        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9069        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9070             I != E; ++I)
9071          Convs->setAccess(I, (*I)->getAccess());
9072
9073        if (!CXXRecord->isDependentType()) {
9074          // Objective-C Automatic Reference Counting:
9075          //   If a class has a non-static data member of Objective-C pointer
9076          //   type (or array thereof), it is a non-POD type and its
9077          //   default constructor (if any), copy constructor, copy assignment
9078          //   operator, and destructor are non-trivial.
9079          //
9080          // This rule is also handled by CXXRecordDecl::completeDefinition().
9081          // However, here we check whether this particular class is only
9082          // non-POD because of the presence of an Objective-C pointer member.
9083          // If so, objects of this type cannot be shared between code compiled
9084          // with instant objects and code compiled with manual retain/release.
9085          if (getLangOptions().ObjCAutoRefCount &&
9086              CXXRecord->hasObjectMember() &&
9087              CXXRecord->getLinkage() == ExternalLinkage) {
9088            if (CXXRecord->isPOD()) {
9089              Diag(CXXRecord->getLocation(),
9090                   diag::warn_arc_non_pod_class_with_object_member)
9091               << CXXRecord;
9092            } else {
9093              // FIXME: Fix-Its would be nice here, but finding a good location
9094              // for them is going to be tricky.
9095              if (CXXRecord->hasTrivialCopyConstructor())
9096                Diag(CXXRecord->getLocation(),
9097                     diag::warn_arc_trivial_member_function_with_object_member)
9098                  << CXXRecord << 0;
9099              if (CXXRecord->hasTrivialCopyAssignment())
9100                Diag(CXXRecord->getLocation(),
9101                     diag::warn_arc_trivial_member_function_with_object_member)
9102                << CXXRecord << 1;
9103              if (CXXRecord->hasTrivialDestructor())
9104                Diag(CXXRecord->getLocation(),
9105                     diag::warn_arc_trivial_member_function_with_object_member)
9106                << CXXRecord << 2;
9107            }
9108          }
9109
9110          // Adjust user-defined destructor exception spec.
9111          if (getLangOptions().CPlusPlus0x &&
9112              CXXRecord->hasUserDeclaredDestructor())
9113            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9114
9115          // Add any implicitly-declared members to this class.
9116          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9117
9118          // If we have virtual base classes, we may end up finding multiple
9119          // final overriders for a given virtual function. Check for this
9120          // problem now.
9121          if (CXXRecord->getNumVBases()) {
9122            CXXFinalOverriderMap FinalOverriders;
9123            CXXRecord->getFinalOverriders(FinalOverriders);
9124
9125            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9126                                             MEnd = FinalOverriders.end();
9127                 M != MEnd; ++M) {
9128              for (OverridingMethods::iterator SO = M->second.begin(),
9129                                            SOEnd = M->second.end();
9130                   SO != SOEnd; ++SO) {
9131                assert(SO->second.size() > 0 &&
9132                       "Virtual function without overridding functions?");
9133                if (SO->second.size() == 1)
9134                  continue;
9135
9136                // C++ [class.virtual]p2:
9137                //   In a derived class, if a virtual member function of a base
9138                //   class subobject has more than one final overrider the
9139                //   program is ill-formed.
9140                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9141                  << (NamedDecl *)M->first << Record;
9142                Diag(M->first->getLocation(),
9143                     diag::note_overridden_virtual_function);
9144                for (OverridingMethods::overriding_iterator
9145                          OM = SO->second.begin(),
9146                       OMEnd = SO->second.end();
9147                     OM != OMEnd; ++OM)
9148                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9149                    << (NamedDecl *)M->first << OM->Method->getParent();
9150
9151                Record->setInvalidDecl();
9152              }
9153            }
9154            CXXRecord->completeDefinition(&FinalOverriders);
9155            Completed = true;
9156          }
9157        }
9158      }
9159    }
9160
9161    if (!Completed)
9162      Record->completeDefinition();
9163
9164    // Now that the record is complete, do any delayed exception spec checks
9165    // we were missing.
9166    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9167      const CXXDestructorDecl *Dtor =
9168              DelayedDestructorExceptionSpecChecks.back().first;
9169      if (Dtor->getParent() != Record)
9170        break;
9171
9172      assert(!Dtor->getParent()->isDependentType() &&
9173          "Should not ever add destructors of templates into the list.");
9174      CheckOverridingFunctionExceptionSpec(Dtor,
9175          DelayedDestructorExceptionSpecChecks.back().second);
9176      DelayedDestructorExceptionSpecChecks.pop_back();
9177    }
9178
9179  } else {
9180    ObjCIvarDecl **ClsFields =
9181      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9182    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9183      ID->setLocEnd(RBrac);
9184      // Add ivar's to class's DeclContext.
9185      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9186        ClsFields[i]->setLexicalDeclContext(ID);
9187        ID->addDecl(ClsFields[i]);
9188      }
9189      // Must enforce the rule that ivars in the base classes may not be
9190      // duplicates.
9191      if (ID->getSuperClass())
9192        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9193    } else if (ObjCImplementationDecl *IMPDecl =
9194                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9195      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9196      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9197        // Ivar declared in @implementation never belongs to the implementation.
9198        // Only it is in implementation's lexical context.
9199        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9200      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9201    } else if (ObjCCategoryDecl *CDecl =
9202                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9203      // case of ivars in class extension; all other cases have been
9204      // reported as errors elsewhere.
9205      // FIXME. Class extension does not have a LocEnd field.
9206      // CDecl->setLocEnd(RBrac);
9207      // Add ivar's to class extension's DeclContext.
9208      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9209        ClsFields[i]->setLexicalDeclContext(CDecl);
9210        CDecl->addDecl(ClsFields[i]);
9211      }
9212    }
9213  }
9214
9215  if (Attr)
9216    ProcessDeclAttributeList(S, Record, Attr);
9217
9218  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9219  // set the visibility of this record.
9220  if (Record && !Record->getDeclContext()->isRecord())
9221    AddPushedVisibilityAttribute(Record);
9222}
9223
9224/// \brief Determine whether the given integral value is representable within
9225/// the given type T.
9226static bool isRepresentableIntegerValue(ASTContext &Context,
9227                                        llvm::APSInt &Value,
9228                                        QualType T) {
9229  assert(T->isIntegralType(Context) && "Integral type required!");
9230  unsigned BitWidth = Context.getIntWidth(T);
9231
9232  if (Value.isUnsigned() || Value.isNonNegative()) {
9233    if (T->isSignedIntegerOrEnumerationType())
9234      --BitWidth;
9235    return Value.getActiveBits() <= BitWidth;
9236  }
9237  return Value.getMinSignedBits() <= BitWidth;
9238}
9239
9240// \brief Given an integral type, return the next larger integral type
9241// (or a NULL type of no such type exists).
9242static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9243  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9244  // enum checking below.
9245  assert(T->isIntegralType(Context) && "Integral type required!");
9246  const unsigned NumTypes = 4;
9247  QualType SignedIntegralTypes[NumTypes] = {
9248    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9249  };
9250  QualType UnsignedIntegralTypes[NumTypes] = {
9251    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9252    Context.UnsignedLongLongTy
9253  };
9254
9255  unsigned BitWidth = Context.getTypeSize(T);
9256  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9257                                                        : UnsignedIntegralTypes;
9258  for (unsigned I = 0; I != NumTypes; ++I)
9259    if (Context.getTypeSize(Types[I]) > BitWidth)
9260      return Types[I];
9261
9262  return QualType();
9263}
9264
9265EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9266                                          EnumConstantDecl *LastEnumConst,
9267                                          SourceLocation IdLoc,
9268                                          IdentifierInfo *Id,
9269                                          Expr *Val) {
9270  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9271  llvm::APSInt EnumVal(IntWidth);
9272  QualType EltTy;
9273
9274  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9275    Val = 0;
9276
9277  if (Val) {
9278    if (Enum->isDependentType() || Val->isTypeDependent())
9279      EltTy = Context.DependentTy;
9280    else {
9281      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9282      SourceLocation ExpLoc;
9283      if (!Val->isValueDependent() &&
9284          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9285        Val = 0;
9286      } else {
9287        if (!getLangOptions().CPlusPlus) {
9288          // C99 6.7.2.2p2:
9289          //   The expression that defines the value of an enumeration constant
9290          //   shall be an integer constant expression that has a value
9291          //   representable as an int.
9292
9293          // Complain if the value is not representable in an int.
9294          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9295            Diag(IdLoc, diag::ext_enum_value_not_int)
9296              << EnumVal.toString(10) << Val->getSourceRange()
9297              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9298          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9299            // Force the type of the expression to 'int'.
9300            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9301          }
9302        }
9303
9304        if (Enum->isFixed()) {
9305          EltTy = Enum->getIntegerType();
9306
9307          // C++0x [dcl.enum]p5:
9308          //   ... if the initializing value of an enumerator cannot be
9309          //   represented by the underlying type, the program is ill-formed.
9310          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9311            if (getLangOptions().MicrosoftExt) {
9312              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9313              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9314            } else
9315              Diag(IdLoc, diag::err_enumerator_too_large)
9316                << EltTy;
9317          } else
9318            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9319        }
9320        else {
9321          // C++0x [dcl.enum]p5:
9322          //   If the underlying type is not fixed, the type of each enumerator
9323          //   is the type of its initializing value:
9324          //     - If an initializer is specified for an enumerator, the
9325          //       initializing value has the same type as the expression.
9326          EltTy = Val->getType();
9327        }
9328      }
9329    }
9330  }
9331
9332  if (!Val) {
9333    if (Enum->isDependentType())
9334      EltTy = Context.DependentTy;
9335    else if (!LastEnumConst) {
9336      // C++0x [dcl.enum]p5:
9337      //   If the underlying type is not fixed, the type of each enumerator
9338      //   is the type of its initializing value:
9339      //     - If no initializer is specified for the first enumerator, the
9340      //       initializing value has an unspecified integral type.
9341      //
9342      // GCC uses 'int' for its unspecified integral type, as does
9343      // C99 6.7.2.2p3.
9344      if (Enum->isFixed()) {
9345        EltTy = Enum->getIntegerType();
9346      }
9347      else {
9348        EltTy = Context.IntTy;
9349      }
9350    } else {
9351      // Assign the last value + 1.
9352      EnumVal = LastEnumConst->getInitVal();
9353      ++EnumVal;
9354      EltTy = LastEnumConst->getType();
9355
9356      // Check for overflow on increment.
9357      if (EnumVal < LastEnumConst->getInitVal()) {
9358        // C++0x [dcl.enum]p5:
9359        //   If the underlying type is not fixed, the type of each enumerator
9360        //   is the type of its initializing value:
9361        //
9362        //     - Otherwise the type of the initializing value is the same as
9363        //       the type of the initializing value of the preceding enumerator
9364        //       unless the incremented value is not representable in that type,
9365        //       in which case the type is an unspecified integral type
9366        //       sufficient to contain the incremented value. If no such type
9367        //       exists, the program is ill-formed.
9368        QualType T = getNextLargerIntegralType(Context, EltTy);
9369        if (T.isNull() || Enum->isFixed()) {
9370          // There is no integral type larger enough to represent this
9371          // value. Complain, then allow the value to wrap around.
9372          EnumVal = LastEnumConst->getInitVal();
9373          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9374          ++EnumVal;
9375          if (Enum->isFixed())
9376            // When the underlying type is fixed, this is ill-formed.
9377            Diag(IdLoc, diag::err_enumerator_wrapped)
9378              << EnumVal.toString(10)
9379              << EltTy;
9380          else
9381            Diag(IdLoc, diag::warn_enumerator_too_large)
9382              << EnumVal.toString(10);
9383        } else {
9384          EltTy = T;
9385        }
9386
9387        // Retrieve the last enumerator's value, extent that type to the
9388        // type that is supposed to be large enough to represent the incremented
9389        // value, then increment.
9390        EnumVal = LastEnumConst->getInitVal();
9391        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9392        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9393        ++EnumVal;
9394
9395        // If we're not in C++, diagnose the overflow of enumerator values,
9396        // which in C99 means that the enumerator value is not representable in
9397        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9398        // permits enumerator values that are representable in some larger
9399        // integral type.
9400        if (!getLangOptions().CPlusPlus && !T.isNull())
9401          Diag(IdLoc, diag::warn_enum_value_overflow);
9402      } else if (!getLangOptions().CPlusPlus &&
9403                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9404        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9405        Diag(IdLoc, diag::ext_enum_value_not_int)
9406          << EnumVal.toString(10) << 1;
9407      }
9408    }
9409  }
9410
9411  if (!EltTy->isDependentType()) {
9412    // Make the enumerator value match the signedness and size of the
9413    // enumerator's type.
9414    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9415    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9416  }
9417
9418  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9419                                  Val, EnumVal);
9420}
9421
9422
9423Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9424                              SourceLocation IdLoc, IdentifierInfo *Id,
9425                              AttributeList *Attr,
9426                              SourceLocation EqualLoc, Expr *val) {
9427  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9428  EnumConstantDecl *LastEnumConst =
9429    cast_or_null<EnumConstantDecl>(lastEnumConst);
9430  Expr *Val = static_cast<Expr*>(val);
9431
9432  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9433  // we find one that is.
9434  S = getNonFieldDeclScope(S);
9435
9436  // Verify that there isn't already something declared with this name in this
9437  // scope.
9438  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9439                                         ForRedeclaration);
9440  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9441    // Maybe we will complain about the shadowed template parameter.
9442    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9443    // Just pretend that we didn't see the previous declaration.
9444    PrevDecl = 0;
9445  }
9446
9447  if (PrevDecl) {
9448    // When in C++, we may get a TagDecl with the same name; in this case the
9449    // enum constant will 'hide' the tag.
9450    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9451           "Received TagDecl when not in C++!");
9452    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9453      if (isa<EnumConstantDecl>(PrevDecl))
9454        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9455      else
9456        Diag(IdLoc, diag::err_redefinition) << Id;
9457      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9458      return 0;
9459    }
9460  }
9461
9462  // C++ [class.mem]p13:
9463  //   If T is the name of a class, then each of the following shall have a
9464  //   name different from T:
9465  //     - every enumerator of every member of class T that is an enumerated
9466  //       type
9467  if (CXXRecordDecl *Record
9468                      = dyn_cast<CXXRecordDecl>(
9469                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9470    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9471      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9472
9473  EnumConstantDecl *New =
9474    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9475
9476  if (New) {
9477    // Process attributes.
9478    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9479
9480    // Register this decl in the current scope stack.
9481    New->setAccess(TheEnumDecl->getAccess());
9482    PushOnScopeChains(New, S);
9483  }
9484
9485  return New;
9486}
9487
9488void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9489                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9490                         Decl **Elements, unsigned NumElements,
9491                         Scope *S, AttributeList *Attr) {
9492  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9493  QualType EnumType = Context.getTypeDeclType(Enum);
9494
9495  if (Attr)
9496    ProcessDeclAttributeList(S, Enum, Attr);
9497
9498  if (Enum->isDependentType()) {
9499    for (unsigned i = 0; i != NumElements; ++i) {
9500      EnumConstantDecl *ECD =
9501        cast_or_null<EnumConstantDecl>(Elements[i]);
9502      if (!ECD) continue;
9503
9504      ECD->setType(EnumType);
9505    }
9506
9507    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9508    return;
9509  }
9510
9511  // TODO: If the result value doesn't fit in an int, it must be a long or long
9512  // long value.  ISO C does not support this, but GCC does as an extension,
9513  // emit a warning.
9514  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9515  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9516  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9517
9518  // Verify that all the values are okay, compute the size of the values, and
9519  // reverse the list.
9520  unsigned NumNegativeBits = 0;
9521  unsigned NumPositiveBits = 0;
9522
9523  // Keep track of whether all elements have type int.
9524  bool AllElementsInt = true;
9525
9526  for (unsigned i = 0; i != NumElements; ++i) {
9527    EnumConstantDecl *ECD =
9528      cast_or_null<EnumConstantDecl>(Elements[i]);
9529    if (!ECD) continue;  // Already issued a diagnostic.
9530
9531    const llvm::APSInt &InitVal = ECD->getInitVal();
9532
9533    // Keep track of the size of positive and negative values.
9534    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9535      NumPositiveBits = std::max(NumPositiveBits,
9536                                 (unsigned)InitVal.getActiveBits());
9537    else
9538      NumNegativeBits = std::max(NumNegativeBits,
9539                                 (unsigned)InitVal.getMinSignedBits());
9540
9541    // Keep track of whether every enum element has type int (very commmon).
9542    if (AllElementsInt)
9543      AllElementsInt = ECD->getType() == Context.IntTy;
9544  }
9545
9546  // Figure out the type that should be used for this enum.
9547  QualType BestType;
9548  unsigned BestWidth;
9549
9550  // C++0x N3000 [conv.prom]p3:
9551  //   An rvalue of an unscoped enumeration type whose underlying
9552  //   type is not fixed can be converted to an rvalue of the first
9553  //   of the following types that can represent all the values of
9554  //   the enumeration: int, unsigned int, long int, unsigned long
9555  //   int, long long int, or unsigned long long int.
9556  // C99 6.4.4.3p2:
9557  //   An identifier declared as an enumeration constant has type int.
9558  // The C99 rule is modified by a gcc extension
9559  QualType BestPromotionType;
9560
9561  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9562  // -fshort-enums is the equivalent to specifying the packed attribute on all
9563  // enum definitions.
9564  if (LangOpts.ShortEnums)
9565    Packed = true;
9566
9567  if (Enum->isFixed()) {
9568    BestType = BestPromotionType = Enum->getIntegerType();
9569    // We don't need to set BestWidth, because BestType is going to be the type
9570    // of the enumerators, but we do anyway because otherwise some compilers
9571    // warn that it might be used uninitialized.
9572    BestWidth = CharWidth;
9573  }
9574  else if (NumNegativeBits) {
9575    // If there is a negative value, figure out the smallest integer type (of
9576    // int/long/longlong) that fits.
9577    // If it's packed, check also if it fits a char or a short.
9578    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9579      BestType = Context.SignedCharTy;
9580      BestWidth = CharWidth;
9581    } else if (Packed && NumNegativeBits <= ShortWidth &&
9582               NumPositiveBits < ShortWidth) {
9583      BestType = Context.ShortTy;
9584      BestWidth = ShortWidth;
9585    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9586      BestType = Context.IntTy;
9587      BestWidth = IntWidth;
9588    } else {
9589      BestWidth = Context.getTargetInfo().getLongWidth();
9590
9591      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9592        BestType = Context.LongTy;
9593      } else {
9594        BestWidth = Context.getTargetInfo().getLongLongWidth();
9595
9596        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9597          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9598        BestType = Context.LongLongTy;
9599      }
9600    }
9601    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9602  } else {
9603    // If there is no negative value, figure out the smallest type that fits
9604    // all of the enumerator values.
9605    // If it's packed, check also if it fits a char or a short.
9606    if (Packed && NumPositiveBits <= CharWidth) {
9607      BestType = Context.UnsignedCharTy;
9608      BestPromotionType = Context.IntTy;
9609      BestWidth = CharWidth;
9610    } else if (Packed && NumPositiveBits <= ShortWidth) {
9611      BestType = Context.UnsignedShortTy;
9612      BestPromotionType = Context.IntTy;
9613      BestWidth = ShortWidth;
9614    } else if (NumPositiveBits <= IntWidth) {
9615      BestType = Context.UnsignedIntTy;
9616      BestWidth = IntWidth;
9617      BestPromotionType
9618        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9619                           ? Context.UnsignedIntTy : Context.IntTy;
9620    } else if (NumPositiveBits <=
9621               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9622      BestType = Context.UnsignedLongTy;
9623      BestPromotionType
9624        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9625                           ? Context.UnsignedLongTy : Context.LongTy;
9626    } else {
9627      BestWidth = Context.getTargetInfo().getLongLongWidth();
9628      assert(NumPositiveBits <= BestWidth &&
9629             "How could an initializer get larger than ULL?");
9630      BestType = Context.UnsignedLongLongTy;
9631      BestPromotionType
9632        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9633                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9634    }
9635  }
9636
9637  // Loop over all of the enumerator constants, changing their types to match
9638  // the type of the enum if needed.
9639  for (unsigned i = 0; i != NumElements; ++i) {
9640    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9641    if (!ECD) continue;  // Already issued a diagnostic.
9642
9643    // Standard C says the enumerators have int type, but we allow, as an
9644    // extension, the enumerators to be larger than int size.  If each
9645    // enumerator value fits in an int, type it as an int, otherwise type it the
9646    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9647    // that X has type 'int', not 'unsigned'.
9648
9649    // Determine whether the value fits into an int.
9650    llvm::APSInt InitVal = ECD->getInitVal();
9651
9652    // If it fits into an integer type, force it.  Otherwise force it to match
9653    // the enum decl type.
9654    QualType NewTy;
9655    unsigned NewWidth;
9656    bool NewSign;
9657    if (!getLangOptions().CPlusPlus &&
9658        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9659      NewTy = Context.IntTy;
9660      NewWidth = IntWidth;
9661      NewSign = true;
9662    } else if (ECD->getType() == BestType) {
9663      // Already the right type!
9664      if (getLangOptions().CPlusPlus)
9665        // C++ [dcl.enum]p4: Following the closing brace of an
9666        // enum-specifier, each enumerator has the type of its
9667        // enumeration.
9668        ECD->setType(EnumType);
9669      continue;
9670    } else {
9671      NewTy = BestType;
9672      NewWidth = BestWidth;
9673      NewSign = BestType->isSignedIntegerOrEnumerationType();
9674    }
9675
9676    // Adjust the APSInt value.
9677    InitVal = InitVal.extOrTrunc(NewWidth);
9678    InitVal.setIsSigned(NewSign);
9679    ECD->setInitVal(InitVal);
9680
9681    // Adjust the Expr initializer and type.
9682    if (ECD->getInitExpr() &&
9683        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9684      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9685                                                CK_IntegralCast,
9686                                                ECD->getInitExpr(),
9687                                                /*base paths*/ 0,
9688                                                VK_RValue));
9689    if (getLangOptions().CPlusPlus)
9690      // C++ [dcl.enum]p4: Following the closing brace of an
9691      // enum-specifier, each enumerator has the type of its
9692      // enumeration.
9693      ECD->setType(EnumType);
9694    else
9695      ECD->setType(NewTy);
9696  }
9697
9698  Enum->completeDefinition(BestType, BestPromotionType,
9699                           NumPositiveBits, NumNegativeBits);
9700}
9701
9702Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9703                                  SourceLocation StartLoc,
9704                                  SourceLocation EndLoc) {
9705  StringLiteral *AsmString = cast<StringLiteral>(expr);
9706
9707  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9708                                                   AsmString, StartLoc,
9709                                                   EndLoc);
9710  CurContext->addDecl(New);
9711  return New;
9712}
9713
9714DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9715                                   IdentifierInfo &ModuleName,
9716                                   SourceLocation ModuleNameLoc) {
9717  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9718                                                     ModuleName, ModuleNameLoc);
9719  if (!Module)
9720    return true;
9721
9722  // FIXME: Actually create a declaration to describe the module import.
9723  (void)Module;
9724  return DeclResult((Decl *)0);
9725}
9726
9727void
9728Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9729                                         SourceLocation ModulePrivateKeyword) {
9730  assert(!Old->isModulePrivate() && "Old is module-private!");
9731
9732  Diag(New->getLocation(), diag::err_module_private_follows_public)
9733    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9734  Diag(Old->getLocation(), diag::note_previous_declaration)
9735    << Old->getDeclName();
9736
9737  // Drop the __module_private__ from the new declaration, since it's invalid.
9738  New->setModulePrivate(false);
9739}
9740
9741void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9742                             SourceLocation PragmaLoc,
9743                             SourceLocation NameLoc) {
9744  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9745
9746  if (PrevDecl) {
9747    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9748  } else {
9749    (void)WeakUndeclaredIdentifiers.insert(
9750      std::pair<IdentifierInfo*,WeakInfo>
9751        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9752  }
9753}
9754
9755void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9756                                IdentifierInfo* AliasName,
9757                                SourceLocation PragmaLoc,
9758                                SourceLocation NameLoc,
9759                                SourceLocation AliasNameLoc) {
9760  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9761                                    LookupOrdinaryName);
9762  WeakInfo W = WeakInfo(Name, NameLoc);
9763
9764  if (PrevDecl) {
9765    if (!PrevDecl->hasAttr<AliasAttr>())
9766      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9767        DeclApplyPragmaWeak(TUScope, ND, W);
9768  } else {
9769    (void)WeakUndeclaredIdentifiers.insert(
9770      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9771  }
9772}
9773
9774Decl *Sema::getObjCDeclContext() const {
9775  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9776}
9777
9778AvailabilityResult Sema::getCurContextAvailability() const {
9779  const Decl *D = cast<Decl>(getCurLexicalContext());
9780  // A category implicitly has the availability of the interface.
9781  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9782    D = CatD->getClassInterface();
9783
9784  return D->getAvailability();
9785}
9786