SemaDecl.cpp revision d874def0f9003cb8582e97452345b2a3a4a18b6d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  // C++ [temp.res]p3:
56  //   A qualified-id that refers to a type and in which the
57  //   nested-name-specifier depends on a template-parameter (14.6.2)
58  //   shall be prefixed by the keyword typename to indicate that the
59  //   qualified-id denotes a type, forming an
60  //   elaborated-type-specifier (7.1.5.3).
61  //
62  // We therefore do not perform any name lookup up SS is a dependent
63  // scope name. FIXME: we will need to perform a special kind of
64  // lookup if the scope specifier names a member of the current
65  // instantiation.
66  if (SS && isDependentScopeSpecifier(*SS))
67    return 0;
68
69  NamedDecl *IIDecl = 0;
70  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
71                                         false, false);
72  switch (Result.getKind()) {
73  case LookupResult::NotFound:
74  case LookupResult::FoundOverloaded:
75    return 0;
76
77  case LookupResult::AmbiguousBaseSubobjectTypes:
78  case LookupResult::AmbiguousBaseSubobjects:
79  case LookupResult::AmbiguousReference:
80    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
81    return 0;
82
83  case LookupResult::Found:
84    IIDecl = Result.getAsDecl();
85    break;
86  }
87
88  if (IIDecl) {
89    QualType T;
90
91    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
92      // Check whether we can use this type
93      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
94
95      T = Context.getTypeDeclType(TD);
96    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
97      // Check whether we can use this interface.
98      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
99
100      T = Context.getObjCInterfaceType(IDecl);
101    } else
102      return 0;
103
104    if (SS)
105      T = getQualifiedNameType(*SS, T);
106
107    return T.getAsOpaquePtr();
108  }
109
110  return 0;
111}
112
113DeclContext *Sema::getContainingDC(DeclContext *DC) {
114  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
115    // A C++ out-of-line method will return to the file declaration context.
116    if (MD->isOutOfLineDefinition())
117      return MD->getLexicalDeclContext();
118
119    // A C++ inline method is parsed *after* the topmost class it was declared
120    // in is fully parsed (it's "complete").
121    // The parsing of a C++ inline method happens at the declaration context of
122    // the topmost (non-nested) class it is lexically declared in.
123    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
124    DC = MD->getParent();
125    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
126      DC = RD;
127
128    // Return the declaration context of the topmost class the inline method is
129    // declared in.
130    return DC;
131  }
132
133  if (isa<ObjCMethodDecl>(DC))
134    return Context.getTranslationUnitDecl();
135
136  return DC->getLexicalParent();
137}
138
139void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
140  assert(getContainingDC(DC) == CurContext &&
141      "The next DeclContext should be lexically contained in the current one.");
142  CurContext = DC;
143  S->setEntity(DC);
144}
145
146void Sema::PopDeclContext() {
147  assert(CurContext && "DeclContext imbalance!");
148
149  CurContext = getContainingDC(CurContext);
150}
151
152/// \brief Determine whether we allow overloading of the function
153/// PrevDecl with another declaration.
154///
155/// This routine determines whether overloading is possible, not
156/// whether some new function is actually an overload. It will return
157/// true in C++ (where we can always provide overloads) or, as an
158/// extension, in C when the previous function is already an
159/// overloaded function declaration or has the "overloadable"
160/// attribute.
161static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
162  if (Context.getLangOptions().CPlusPlus)
163    return true;
164
165  if (isa<OverloadedFunctionDecl>(PrevDecl))
166    return true;
167
168  return PrevDecl->getAttr<OverloadableAttr>() != 0;
169}
170
171/// Add this decl to the scope shadowed decl chains.
172void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
173  // Move up the scope chain until we find the nearest enclosing
174  // non-transparent context. The declaration will be introduced into this
175  // scope.
176  while (S->getEntity() &&
177         ((DeclContext *)S->getEntity())->isTransparentContext())
178    S = S->getParent();
179
180  S->AddDecl(D);
181
182  // Add scoped declarations into their context, so that they can be
183  // found later. Declarations without a context won't be inserted
184  // into any context.
185  CurContext->addDecl(D);
186
187  // C++ [basic.scope]p4:
188  //   -- exactly one declaration shall declare a class name or
189  //   enumeration name that is not a typedef name and the other
190  //   declarations shall all refer to the same object or
191  //   enumerator, or all refer to functions and function templates;
192  //   in this case the class name or enumeration name is hidden.
193  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
194    // We are pushing the name of a tag (enum or class).
195    if (CurContext->getLookupContext()
196          == TD->getDeclContext()->getLookupContext()) {
197      // We're pushing the tag into the current context, which might
198      // require some reshuffling in the identifier resolver.
199      IdentifierResolver::iterator
200        I = IdResolver.begin(TD->getDeclName()),
201        IEnd = IdResolver.end();
202      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
203        NamedDecl *PrevDecl = *I;
204        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
205             PrevDecl = *I, ++I) {
206          if (TD->declarationReplaces(*I)) {
207            // This is a redeclaration. Remove it from the chain and
208            // break out, so that we'll add in the shadowed
209            // declaration.
210            S->RemoveDecl(*I);
211            if (PrevDecl == *I) {
212              IdResolver.RemoveDecl(*I);
213              IdResolver.AddDecl(TD);
214              return;
215            } else {
216              IdResolver.RemoveDecl(*I);
217              break;
218            }
219          }
220        }
221
222        // There is already a declaration with the same name in the same
223        // scope, which is not a tag declaration. It must be found
224        // before we find the new declaration, so insert the new
225        // declaration at the end of the chain.
226        IdResolver.AddShadowedDecl(TD, PrevDecl);
227
228        return;
229      }
230    }
231  } else if (isa<FunctionDecl>(D) &&
232             AllowOverloadingOfFunction(D, Context)) {
233    // We are pushing the name of a function, which might be an
234    // overloaded name.
235    FunctionDecl *FD = cast<FunctionDecl>(D);
236    IdentifierResolver::iterator Redecl
237      = std::find_if(IdResolver.begin(FD->getDeclName()),
238                     IdResolver.end(),
239                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
240                                  FD));
241    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
242      // There is already a declaration of a function on our
243      // IdResolver chain. Replace it with this declaration.
244      S->RemoveDecl(*Redecl);
245      IdResolver.RemoveDecl(*Redecl);
246    }
247  }
248
249  IdResolver.AddDecl(D);
250}
251
252void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
253  if (S->decl_empty()) return;
254  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
255	 "Scope shouldn't contain decls!");
256
257  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
258       I != E; ++I) {
259    Decl *TmpD = static_cast<Decl*>(*I);
260    assert(TmpD && "This decl didn't get pushed??");
261
262    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
263    NamedDecl *D = cast<NamedDecl>(TmpD);
264
265    if (!D->getDeclName()) continue;
266
267    // Remove this name from our lexical scope.
268    IdResolver.RemoveDecl(D);
269  }
270}
271
272/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
273/// return 0 if one not found.
274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
275  // The third "scope" argument is 0 since we aren't enabling lazy built-in
276  // creation from this context.
277  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
278
279  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
280}
281
282/// getNonFieldDeclScope - Retrieves the innermost scope, starting
283/// from S, where a non-field would be declared. This routine copes
284/// with the difference between C and C++ scoping rules in structs and
285/// unions. For example, the following code is well-formed in C but
286/// ill-formed in C++:
287/// @code
288/// struct S6 {
289///   enum { BAR } e;
290/// };
291///
292/// void test_S6() {
293///   struct S6 a;
294///   a.e = BAR;
295/// }
296/// @endcode
297/// For the declaration of BAR, this routine will return a different
298/// scope. The scope S will be the scope of the unnamed enumeration
299/// within S6. In C++, this routine will return the scope associated
300/// with S6, because the enumeration's scope is a transparent
301/// context but structures can contain non-field names. In C, this
302/// routine will return the translation unit scope, since the
303/// enumeration's scope is a transparent context and structures cannot
304/// contain non-field names.
305Scope *Sema::getNonFieldDeclScope(Scope *S) {
306  while (((S->getFlags() & Scope::DeclScope) == 0) ||
307         (S->getEntity() &&
308          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
309         (S->isClassScope() && !getLangOptions().CPlusPlus))
310    S = S->getParent();
311  return S;
312}
313
314void Sema::InitBuiltinVaListType() {
315  if (!Context.getBuiltinVaListType().isNull())
316    return;
317
318  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
319  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
320  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
321  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
322}
323
324/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
325/// file scope.  lazily create a decl for it. ForRedeclaration is true
326/// if we're creating this built-in in anticipation of redeclaring the
327/// built-in.
328NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
329                                     Scope *S, bool ForRedeclaration,
330                                     SourceLocation Loc) {
331  Builtin::ID BID = (Builtin::ID)bid;
332
333  if (Context.BuiltinInfo.hasVAListUse(BID))
334    InitBuiltinVaListType();
335
336  Builtin::Context::GetBuiltinTypeError Error;
337  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
338  switch (Error) {
339  case Builtin::Context::GE_None:
340    // Okay
341    break;
342
343  case Builtin::Context::GE_Missing_FILE:
344    if (ForRedeclaration)
345      Diag(Loc, diag::err_implicit_decl_requires_stdio)
346        << Context.BuiltinInfo.GetName(BID);
347    return 0;
348  }
349
350  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
351    Diag(Loc, diag::ext_implicit_lib_function_decl)
352      << Context.BuiltinInfo.GetName(BID)
353      << R;
354    if (Context.BuiltinInfo.getHeaderName(BID) &&
355        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
356          != diag::MAP_IGNORE)
357      Diag(Loc, diag::note_please_include_header)
358        << Context.BuiltinInfo.getHeaderName(BID)
359        << Context.BuiltinInfo.GetName(BID);
360  }
361
362  FunctionDecl *New = FunctionDecl::Create(Context,
363                                           Context.getTranslationUnitDecl(),
364                                           Loc, II, R,
365                                           FunctionDecl::Extern, false,
366                                           /*hasPrototype=*/true);
367  New->setImplicit();
368
369  // Create Decl objects for each parameter, adding them to the
370  // FunctionDecl.
371  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
372    llvm::SmallVector<ParmVarDecl*, 16> Params;
373    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
374      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
375                                           FT->getArgType(i), VarDecl::None, 0));
376    New->setParams(Context, &Params[0], Params.size());
377  }
378
379  AddKnownFunctionAttributes(New);
380
381  // TUScope is the translation-unit scope to insert this function into.
382  // FIXME: This is hideous. We need to teach PushOnScopeChains to
383  // relate Scopes to DeclContexts, and probably eliminate CurContext
384  // entirely, but we're not there yet.
385  DeclContext *SavedContext = CurContext;
386  CurContext = Context.getTranslationUnitDecl();
387  PushOnScopeChains(New, TUScope);
388  CurContext = SavedContext;
389  return New;
390}
391
392/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
393/// everything from the standard library is defined.
394NamespaceDecl *Sema::GetStdNamespace() {
395  if (!StdNamespace) {
396    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
397    DeclContext *Global = Context.getTranslationUnitDecl();
398    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
399    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
400  }
401  return StdNamespace;
402}
403
404/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
405/// same name and scope as a previous declaration 'Old'.  Figure out
406/// how to resolve this situation, merging decls or emitting
407/// diagnostics as appropriate. Returns true if there was an error,
408/// false otherwise.
409///
410bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
411  bool objc_types = false;
412  // Allow multiple definitions for ObjC built-in typedefs.
413  // FIXME: Verify the underlying types are equivalent!
414  if (getLangOptions().ObjC1) {
415    const IdentifierInfo *TypeID = New->getIdentifier();
416    switch (TypeID->getLength()) {
417    default: break;
418    case 2:
419      if (!TypeID->isStr("id"))
420        break;
421      Context.setObjCIdType(New);
422      objc_types = true;
423      break;
424    case 5:
425      if (!TypeID->isStr("Class"))
426        break;
427      Context.setObjCClassType(New);
428      objc_types = true;
429      return false;
430    case 3:
431      if (!TypeID->isStr("SEL"))
432        break;
433      Context.setObjCSelType(New);
434      objc_types = true;
435      return false;
436    case 8:
437      if (!TypeID->isStr("Protocol"))
438        break;
439      Context.setObjCProtoType(New->getUnderlyingType());
440      objc_types = true;
441      return false;
442    }
443    // Fall through - the typedef name was not a builtin type.
444  }
445  // Verify the old decl was also a type.
446  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
447  if (!Old) {
448    Diag(New->getLocation(), diag::err_redefinition_different_kind)
449      << New->getDeclName();
450    if (!objc_types)
451      Diag(OldD->getLocation(), diag::note_previous_definition);
452    return true;
453  }
454
455  // Determine the "old" type we'll use for checking and diagnostics.
456  QualType OldType;
457  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
458    OldType = OldTypedef->getUnderlyingType();
459  else
460    OldType = Context.getTypeDeclType(Old);
461
462  // If the typedef types are not identical, reject them in all languages and
463  // with any extensions enabled.
464
465  if (OldType != New->getUnderlyingType() &&
466      Context.getCanonicalType(OldType) !=
467      Context.getCanonicalType(New->getUnderlyingType())) {
468    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
469      << New->getUnderlyingType() << OldType;
470    if (!objc_types)
471      Diag(Old->getLocation(), diag::note_previous_definition);
472    return true;
473  }
474  if (objc_types) return false;
475  if (getLangOptions().Microsoft) return false;
476
477  // C++ [dcl.typedef]p2:
478  //   In a given non-class scope, a typedef specifier can be used to
479  //   redefine the name of any type declared in that scope to refer
480  //   to the type to which it already refers.
481  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
482    return false;
483
484  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
485  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
486  // *either* declaration is in a system header. The code below implements
487  // this adhoc compatibility rule. FIXME: The following code will not
488  // work properly when compiling ".i" files (containing preprocessed output).
489  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
490    SourceManager &SrcMgr = Context.getSourceManager();
491    if (SrcMgr.isInSystemHeader(Old->getLocation()))
492      return false;
493    if (SrcMgr.isInSystemHeader(New->getLocation()))
494      return false;
495  }
496
497  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
498  Diag(Old->getLocation(), diag::note_previous_definition);
499  return true;
500}
501
502/// DeclhasAttr - returns true if decl Declaration already has the target
503/// attribute.
504static bool DeclHasAttr(const Decl *decl, const Attr *target) {
505  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
506    if (attr->getKind() == target->getKind())
507      return true;
508
509  return false;
510}
511
512/// MergeAttributes - append attributes from the Old decl to the New one.
513static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
514  Attr *attr = const_cast<Attr*>(Old->getAttrs());
515
516  while (attr) {
517    Attr *tmp = attr;
518    attr = attr->getNext();
519
520    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
521      tmp->setInherited(true);
522      New->addAttr(tmp);
523    } else {
524      tmp->setNext(0);
525      tmp->Destroy(C);
526    }
527  }
528
529  Old->invalidateAttrs();
530}
531
532/// Used in MergeFunctionDecl to keep track of function parameters in
533/// C.
534struct GNUCompatibleParamWarning {
535  ParmVarDecl *OldParm;
536  ParmVarDecl *NewParm;
537  QualType PromotedType;
538};
539
540/// MergeFunctionDecl - We just parsed a function 'New' from
541/// declarator D which has the same name and scope as a previous
542/// declaration 'Old'.  Figure out how to resolve this situation,
543/// merging decls or emitting diagnostics as appropriate.
544///
545/// In C++, New and Old must be declarations that are not
546/// overloaded. Use IsOverload to determine whether New and Old are
547/// overloaded, and to select the Old declaration that New should be
548/// merged with.
549///
550/// Returns true if there was an error, false otherwise.
551bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
552  assert(!isa<OverloadedFunctionDecl>(OldD) &&
553         "Cannot merge with an overloaded function declaration");
554
555  // Verify the old decl was also a function.
556  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
557  if (!Old) {
558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
559      << New->getDeclName();
560    Diag(OldD->getLocation(), diag::note_previous_definition);
561    return true;
562  }
563
564  // Determine whether the previous declaration was a definition,
565  // implicit declaration, or a declaration.
566  diag::kind PrevDiag;
567  if (Old->isThisDeclarationADefinition())
568    PrevDiag = diag::note_previous_definition;
569  else if (Old->isImplicit())
570    PrevDiag = diag::note_previous_implicit_declaration;
571  else
572    PrevDiag = diag::note_previous_declaration;
573
574  QualType OldQType = Context.getCanonicalType(Old->getType());
575  QualType NewQType = Context.getCanonicalType(New->getType());
576
577  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
578      New->getStorageClass() == FunctionDecl::Static &&
579      Old->getStorageClass() != FunctionDecl::Static) {
580    Diag(New->getLocation(), diag::err_static_non_static)
581      << New;
582    Diag(Old->getLocation(), PrevDiag);
583    return true;
584  }
585
586  if (getLangOptions().CPlusPlus) {
587    // (C++98 13.1p2):
588    //   Certain function declarations cannot be overloaded:
589    //     -- Function declarations that differ only in the return type
590    //        cannot be overloaded.
591    QualType OldReturnType
592      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
593    QualType NewReturnType
594      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
595    if (OldReturnType != NewReturnType) {
596      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
597      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
598      return true;
599    }
600
601    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
602    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
603    if (OldMethod && NewMethod &&
604        OldMethod->getLexicalDeclContext() ==
605          NewMethod->getLexicalDeclContext()) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612        return true;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      unsigned NewDiag;
620      if (isa<CXXConstructorDecl>(OldMethod))
621        NewDiag = diag::err_constructor_redeclared;
622      else if (isa<CXXDestructorDecl>(NewMethod))
623        NewDiag = diag::err_destructor_redeclared;
624      else if (isa<CXXConversionDecl>(NewMethod))
625        NewDiag = diag::err_conv_function_redeclared;
626      else
627        NewDiag = diag::err_member_redeclared;
628
629      Diag(New->getLocation(), NewDiag);
630      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
631    }
632
633    // (C++98 8.3.5p3):
634    //   All declarations for a function shall agree exactly in both the
635    //   return type and the parameter-type-list.
636    if (OldQType == NewQType)
637      return MergeCompatibleFunctionDecls(New, Old);
638
639    // Fall through for conflicting redeclarations and redefinitions.
640  }
641
642  // C: Function types need to be compatible, not identical. This handles
643  // duplicate function decls like "void f(int); void f(enum X);" properly.
644  if (!getLangOptions().CPlusPlus &&
645      Context.typesAreCompatible(OldQType, NewQType)) {
646    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
647    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
648    const FunctionProtoType *OldProto = 0;
649    if (isa<FunctionNoProtoType>(NewFuncType) &&
650        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
651      // The old declaration provided a function prototype, but the
652      // new declaration does not. Merge in the prototype.
653      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
654                                                 OldProto->arg_type_end());
655      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
656                                         &ParamTypes[0], ParamTypes.size(),
657                                         OldProto->isVariadic(),
658                                         OldProto->getTypeQuals());
659      New->setType(NewQType);
660      New->setInheritedPrototype();
661
662      // Synthesize a parameter for each argument type.
663      llvm::SmallVector<ParmVarDecl*, 16> Params;
664      for (FunctionProtoType::arg_type_iterator
665             ParamType = OldProto->arg_type_begin(),
666             ParamEnd = OldProto->arg_type_end();
667           ParamType != ParamEnd; ++ParamType) {
668        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
669                                                 SourceLocation(), 0,
670                                                 *ParamType, VarDecl::None,
671                                                 0);
672        Param->setImplicit();
673        Params.push_back(Param);
674      }
675
676      New->setParams(Context, &Params[0], Params.size());
677    }
678
679    return MergeCompatibleFunctionDecls(New, Old);
680  }
681
682  // GNU C permits a K&R definition to follow a prototype declaration
683  // if the declared types of the parameters in the K&R definition
684  // match the types in the prototype declaration, even when the
685  // promoted types of the parameters from the K&R definition differ
686  // from the types in the prototype. GCC then keeps the types from
687  // the prototype.
688  if (!getLangOptions().CPlusPlus &&
689      !getLangOptions().NoExtensions &&
690      Old->hasPrototype() && !New->hasPrototype() &&
691      New->getType()->getAsFunctionProtoType() &&
692      Old->getNumParams() == New->getNumParams()) {
693    llvm::SmallVector<QualType, 16> ArgTypes;
694    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
695    const FunctionProtoType *OldProto
696      = Old->getType()->getAsFunctionProtoType();
697    const FunctionProtoType *NewProto
698      = New->getType()->getAsFunctionProtoType();
699
700    // Determine whether this is the GNU C extension.
701    bool GNUCompatible =
702      Context.typesAreCompatible(OldProto->getResultType(),
703                                 NewProto->getResultType()) &&
704      (OldProto->isVariadic() == NewProto->isVariadic());
705    for (unsigned Idx = 0, End = Old->getNumParams();
706         GNUCompatible && Idx != End; ++Idx) {
707      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
708      ParmVarDecl *NewParm = New->getParamDecl(Idx);
709      if (Context.typesAreCompatible(OldParm->getType(),
710                                     NewProto->getArgType(Idx))) {
711        ArgTypes.push_back(NewParm->getType());
712      } else if (Context.typesAreCompatible(OldParm->getType(),
713                                            NewParm->getType())) {
714        GNUCompatibleParamWarning Warn
715          = { OldParm, NewParm, NewProto->getArgType(Idx) };
716        Warnings.push_back(Warn);
717        ArgTypes.push_back(NewParm->getType());
718      } else
719        GNUCompatible = false;
720    }
721
722    if (GNUCompatible) {
723      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
724        Diag(Warnings[Warn].NewParm->getLocation(),
725             diag::ext_param_promoted_not_compatible_with_prototype)
726          << Warnings[Warn].PromotedType
727          << Warnings[Warn].OldParm->getType();
728        Diag(Warnings[Warn].OldParm->getLocation(),
729             diag::note_previous_declaration);
730      }
731
732      New->setType(Context.getFunctionType(NewProto->getResultType(),
733                                           &ArgTypes[0], ArgTypes.size(),
734                                           NewProto->isVariadic(),
735                                           NewProto->getTypeQuals()));
736      return MergeCompatibleFunctionDecls(New, Old);
737    }
738
739    // Fall through to diagnose conflicting types.
740  }
741
742  // A function that has already been declared has been redeclared or defined
743  // with a different type- show appropriate diagnostic
744  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
745    // The user has declared a builtin function with an incompatible
746    // signature.
747    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
748      // The function the user is redeclaring is a library-defined
749      // function like 'malloc' or 'printf'. Warn about the
750      // redeclaration, then ignore it.
751      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
752      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
753        << Old << Old->getType();
754      return true;
755    }
756
757    PrevDiag = diag::note_previous_builtin_declaration;
758  }
759
760  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
761  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
762  return true;
763}
764
765/// \brief Completes the merge of two function declarations that are
766/// known to be compatible.
767///
768/// This routine handles the merging of attributes and other
769/// properties of function declarations form the old declaration to
770/// the new declaration, once we know that New is in fact a
771/// redeclaration of Old.
772///
773/// \returns false
774bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
775  // Merge the attributes
776  MergeAttributes(New, Old, Context);
777
778  // Merge the storage class.
779  New->setStorageClass(Old->getStorageClass());
780
781  // FIXME: need to implement inline semantics
782
783  // Merge "pure" flag.
784  if (Old->isPure())
785    New->setPure();
786
787  // Merge the "deleted" flag.
788  if (Old->isDeleted())
789    New->setDeleted();
790
791  if (getLangOptions().CPlusPlus)
792    return MergeCXXFunctionDecl(New, Old);
793
794  return false;
795}
796
797/// MergeVarDecl - We just parsed a variable 'New' which has the same name
798/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
799/// situation, merging decls or emitting diagnostics as appropriate.
800///
801/// Tentative definition rules (C99 6.9.2p2) are checked by
802/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
803/// definitions here, since the initializer hasn't been attached.
804///
805bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
806  // Verify the old decl was also a variable.
807  VarDecl *Old = dyn_cast<VarDecl>(OldD);
808  if (!Old) {
809    Diag(New->getLocation(), diag::err_redefinition_different_kind)
810      << New->getDeclName();
811    Diag(OldD->getLocation(), diag::note_previous_definition);
812    return true;
813  }
814
815  MergeAttributes(New, Old, Context);
816
817  // Merge the types
818  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
819  if (MergedT.isNull()) {
820    Diag(New->getLocation(), diag::err_redefinition_different_type)
821      << New->getDeclName();
822    Diag(Old->getLocation(), diag::note_previous_definition);
823    return true;
824  }
825  New->setType(MergedT);
826
827  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
828  if (New->getStorageClass() == VarDecl::Static &&
829      (Old->getStorageClass() == VarDecl::None ||
830       Old->getStorageClass() == VarDecl::Extern)) {
831    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
832    Diag(Old->getLocation(), diag::note_previous_definition);
833    return true;
834  }
835  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
836  if (New->getStorageClass() != VarDecl::Static &&
837      Old->getStorageClass() == VarDecl::Static) {
838    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
839    Diag(Old->getLocation(), diag::note_previous_definition);
840    return true;
841  }
842  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
843  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
844      // Don't complain about out-of-line definitions of static members.
845      !(Old->getLexicalDeclContext()->isRecord() &&
846        !New->getLexicalDeclContext()->isRecord())) {
847    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
848    Diag(Old->getLocation(), diag::note_previous_definition);
849    return true;
850  }
851
852  // Keep a chain of previous declarations.
853  New->setPreviousDeclaration(Old);
854
855  return false;
856}
857
858/// CheckParmsForFunctionDef - Check that the parameters of the given
859/// function are appropriate for the definition of a function. This
860/// takes care of any checks that cannot be performed on the
861/// declaration itself, e.g., that the types of each of the function
862/// parameters are complete.
863bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
864  bool HasInvalidParm = false;
865  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
866    ParmVarDecl *Param = FD->getParamDecl(p);
867
868    // C99 6.7.5.3p4: the parameters in a parameter type list in a
869    // function declarator that is part of a function definition of
870    // that function shall not have incomplete type.
871    if (!Param->isInvalidDecl() &&
872        RequireCompleteType(Param->getLocation(), Param->getType(),
873                               diag::err_typecheck_decl_incomplete_type)) {
874      Param->setInvalidDecl();
875      HasInvalidParm = true;
876    }
877
878    // C99 6.9.1p5: If the declarator includes a parameter type list, the
879    // declaration of each parameter shall include an identifier.
880    if (Param->getIdentifier() == 0 &&
881        !Param->isImplicit() &&
882        !getLangOptions().CPlusPlus)
883      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
884  }
885
886  return HasInvalidParm;
887}
888
889/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
890/// no declarator (e.g. "struct foo;") is parsed.
891Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
892  TagDecl *Tag = 0;
893  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
894      DS.getTypeSpecType() == DeclSpec::TST_struct ||
895      DS.getTypeSpecType() == DeclSpec::TST_union ||
896      DS.getTypeSpecType() == DeclSpec::TST_enum)
897    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
898
899  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
900    if (!Record->getDeclName() && Record->isDefinition() &&
901        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
902      if (getLangOptions().CPlusPlus ||
903          Record->getDeclContext()->isRecord())
904        return BuildAnonymousStructOrUnion(S, DS, Record);
905
906      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
907        << DS.getSourceRange();
908    }
909
910    // Microsoft allows unnamed struct/union fields. Don't complain
911    // about them.
912    // FIXME: Should we support Microsoft's extensions in this area?
913    if (Record->getDeclName() && getLangOptions().Microsoft)
914      return Tag;
915  }
916
917  if (!DS.isMissingDeclaratorOk() &&
918      DS.getTypeSpecType() != DeclSpec::TST_error) {
919    // Warn about typedefs of enums without names, since this is an
920    // extension in both Microsoft an GNU.
921    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
922        Tag && isa<EnumDecl>(Tag)) {
923      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
924        << DS.getSourceRange();
925      return Tag;
926    }
927
928    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
929      << DS.getSourceRange();
930    return 0;
931  }
932
933  return Tag;
934}
935
936/// InjectAnonymousStructOrUnionMembers - Inject the members of the
937/// anonymous struct or union AnonRecord into the owning context Owner
938/// and scope S. This routine will be invoked just after we realize
939/// that an unnamed union or struct is actually an anonymous union or
940/// struct, e.g.,
941///
942/// @code
943/// union {
944///   int i;
945///   float f;
946/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
947///    // f into the surrounding scope.x
948/// @endcode
949///
950/// This routine is recursive, injecting the names of nested anonymous
951/// structs/unions into the owning context and scope as well.
952bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
953                                               RecordDecl *AnonRecord) {
954  bool Invalid = false;
955  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
956                               FEnd = AnonRecord->field_end();
957       F != FEnd; ++F) {
958    if ((*F)->getDeclName()) {
959      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
960                                                LookupOrdinaryName, true);
961      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
962        // C++ [class.union]p2:
963        //   The names of the members of an anonymous union shall be
964        //   distinct from the names of any other entity in the
965        //   scope in which the anonymous union is declared.
966        unsigned diagKind
967          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
968                                 : diag::err_anonymous_struct_member_redecl;
969        Diag((*F)->getLocation(), diagKind)
970          << (*F)->getDeclName();
971        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
972        Invalid = true;
973      } else {
974        // C++ [class.union]p2:
975        //   For the purpose of name lookup, after the anonymous union
976        //   definition, the members of the anonymous union are
977        //   considered to have been defined in the scope in which the
978        //   anonymous union is declared.
979        Owner->makeDeclVisibleInContext(*F);
980        S->AddDecl(*F);
981        IdResolver.AddDecl(*F);
982      }
983    } else if (const RecordType *InnerRecordType
984                 = (*F)->getType()->getAsRecordType()) {
985      RecordDecl *InnerRecord = InnerRecordType->getDecl();
986      if (InnerRecord->isAnonymousStructOrUnion())
987        Invalid = Invalid ||
988          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
989    }
990  }
991
992  return Invalid;
993}
994
995/// ActOnAnonymousStructOrUnion - Handle the declaration of an
996/// anonymous structure or union. Anonymous unions are a C++ feature
997/// (C++ [class.union]) and a GNU C extension; anonymous structures
998/// are a GNU C and GNU C++ extension.
999Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1000                                                RecordDecl *Record) {
1001  DeclContext *Owner = Record->getDeclContext();
1002
1003  // Diagnose whether this anonymous struct/union is an extension.
1004  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1005    Diag(Record->getLocation(), diag::ext_anonymous_union);
1006  else if (!Record->isUnion())
1007    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1008
1009  // C and C++ require different kinds of checks for anonymous
1010  // structs/unions.
1011  bool Invalid = false;
1012  if (getLangOptions().CPlusPlus) {
1013    const char* PrevSpec = 0;
1014    // C++ [class.union]p3:
1015    //   Anonymous unions declared in a named namespace or in the
1016    //   global namespace shall be declared static.
1017    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1018        (isa<TranslationUnitDecl>(Owner) ||
1019         (isa<NamespaceDecl>(Owner) &&
1020          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1021      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1022      Invalid = true;
1023
1024      // Recover by adding 'static'.
1025      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1026    }
1027    // C++ [class.union]p3:
1028    //   A storage class is not allowed in a declaration of an
1029    //   anonymous union in a class scope.
1030    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1031             isa<RecordDecl>(Owner)) {
1032      Diag(DS.getStorageClassSpecLoc(),
1033           diag::err_anonymous_union_with_storage_spec);
1034      Invalid = true;
1035
1036      // Recover by removing the storage specifier.
1037      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1038                             PrevSpec);
1039    }
1040
1041    // C++ [class.union]p2:
1042    //   The member-specification of an anonymous union shall only
1043    //   define non-static data members. [Note: nested types and
1044    //   functions cannot be declared within an anonymous union. ]
1045    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1046                                 MemEnd = Record->decls_end();
1047         Mem != MemEnd; ++Mem) {
1048      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1049        // C++ [class.union]p3:
1050        //   An anonymous union shall not have private or protected
1051        //   members (clause 11).
1052        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1053          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1054            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1055          Invalid = true;
1056        }
1057      } else if ((*Mem)->isImplicit()) {
1058        // Any implicit members are fine.
1059      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1060        // This is a type that showed up in an
1061        // elaborated-type-specifier inside the anonymous struct or
1062        // union, but which actually declares a type outside of the
1063        // anonymous struct or union. It's okay.
1064      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1065        if (!MemRecord->isAnonymousStructOrUnion() &&
1066            MemRecord->getDeclName()) {
1067          // This is a nested type declaration.
1068          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1069            << (int)Record->isUnion();
1070          Invalid = true;
1071        }
1072      } else {
1073        // We have something that isn't a non-static data
1074        // member. Complain about it.
1075        unsigned DK = diag::err_anonymous_record_bad_member;
1076        if (isa<TypeDecl>(*Mem))
1077          DK = diag::err_anonymous_record_with_type;
1078        else if (isa<FunctionDecl>(*Mem))
1079          DK = diag::err_anonymous_record_with_function;
1080        else if (isa<VarDecl>(*Mem))
1081          DK = diag::err_anonymous_record_with_static;
1082        Diag((*Mem)->getLocation(), DK)
1083            << (int)Record->isUnion();
1084          Invalid = true;
1085      }
1086    }
1087  }
1088
1089  if (!Record->isUnion() && !Owner->isRecord()) {
1090    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1091      << (int)getLangOptions().CPlusPlus;
1092    Invalid = true;
1093  }
1094
1095  // Create a declaration for this anonymous struct/union.
1096  NamedDecl *Anon = 0;
1097  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1098    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1099                             /*IdentifierInfo=*/0,
1100                             Context.getTypeDeclType(Record),
1101                             /*BitWidth=*/0, /*Mutable=*/false);
1102    Anon->setAccess(AS_public);
1103    if (getLangOptions().CPlusPlus)
1104      FieldCollector->Add(cast<FieldDecl>(Anon));
1105  } else {
1106    VarDecl::StorageClass SC;
1107    switch (DS.getStorageClassSpec()) {
1108    default: assert(0 && "Unknown storage class!");
1109    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1110    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1111    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1112    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1113    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1114    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1115    case DeclSpec::SCS_mutable:
1116      // mutable can only appear on non-static class members, so it's always
1117      // an error here
1118      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1119      Invalid = true;
1120      SC = VarDecl::None;
1121      break;
1122    }
1123
1124    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1125                           /*IdentifierInfo=*/0,
1126                           Context.getTypeDeclType(Record),
1127                           SC, DS.getSourceRange().getBegin());
1128  }
1129  Anon->setImplicit();
1130
1131  // Add the anonymous struct/union object to the current
1132  // context. We'll be referencing this object when we refer to one of
1133  // its members.
1134  Owner->addDecl(Anon);
1135
1136  // Inject the members of the anonymous struct/union into the owning
1137  // context and into the identifier resolver chain for name lookup
1138  // purposes.
1139  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1140    Invalid = true;
1141
1142  // Mark this as an anonymous struct/union type. Note that we do not
1143  // do this until after we have already checked and injected the
1144  // members of this anonymous struct/union type, because otherwise
1145  // the members could be injected twice: once by DeclContext when it
1146  // builds its lookup table, and once by
1147  // InjectAnonymousStructOrUnionMembers.
1148  Record->setAnonymousStructOrUnion(true);
1149
1150  if (Invalid)
1151    Anon->setInvalidDecl();
1152
1153  return Anon;
1154}
1155
1156
1157/// GetNameForDeclarator - Determine the full declaration name for the
1158/// given Declarator.
1159DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1160  switch (D.getKind()) {
1161  case Declarator::DK_Abstract:
1162    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1163    return DeclarationName();
1164
1165  case Declarator::DK_Normal:
1166    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1167    return DeclarationName(D.getIdentifier());
1168
1169  case Declarator::DK_Constructor: {
1170    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1171    Ty = Context.getCanonicalType(Ty);
1172    return Context.DeclarationNames.getCXXConstructorName(Ty);
1173  }
1174
1175  case Declarator::DK_Destructor: {
1176    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1177    Ty = Context.getCanonicalType(Ty);
1178    return Context.DeclarationNames.getCXXDestructorName(Ty);
1179  }
1180
1181  case Declarator::DK_Conversion: {
1182    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1183    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1184    Ty = Context.getCanonicalType(Ty);
1185    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1186  }
1187
1188  case Declarator::DK_Operator:
1189    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1190    return Context.DeclarationNames.getCXXOperatorName(
1191                                                D.getOverloadedOperator());
1192  }
1193
1194  assert(false && "Unknown name kind");
1195  return DeclarationName();
1196}
1197
1198/// isNearlyMatchingFunction - Determine whether the C++ functions
1199/// Declaration and Definition are "nearly" matching. This heuristic
1200/// is used to improve diagnostics in the case where an out-of-line
1201/// function definition doesn't match any declaration within
1202/// the class or namespace.
1203static bool isNearlyMatchingFunction(ASTContext &Context,
1204                                     FunctionDecl *Declaration,
1205                                     FunctionDecl *Definition) {
1206  if (Declaration->param_size() != Definition->param_size())
1207    return false;
1208  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1209    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1210    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1211
1212    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1213    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1214    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1215      return false;
1216  }
1217
1218  return true;
1219}
1220
1221Sema::DeclTy *
1222Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1223                      bool IsFunctionDefinition) {
1224  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1225  DeclarationName Name = GetNameForDeclarator(D);
1226
1227  // All of these full declarators require an identifier.  If it doesn't have
1228  // one, the ParsedFreeStandingDeclSpec action should be used.
1229  if (!Name) {
1230    if (!D.getInvalidType())  // Reject this if we think it is valid.
1231      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1232           diag::err_declarator_need_ident)
1233        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1234    return 0;
1235  }
1236
1237  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1238  // we find one that is.
1239  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1240         (S->getFlags() & Scope::TemplateParamScope) != 0)
1241    S = S->getParent();
1242
1243  DeclContext *DC;
1244  NamedDecl *PrevDecl;
1245  NamedDecl *New;
1246  bool InvalidDecl = false;
1247
1248  QualType R = GetTypeForDeclarator(D, S);
1249  if (R.isNull()) {
1250    InvalidDecl = true;
1251    R = Context.IntTy;
1252  }
1253
1254  // See if this is a redefinition of a variable in the same scope.
1255  if (D.getCXXScopeSpec().isInvalid()) {
1256    DC = CurContext;
1257    PrevDecl = 0;
1258    InvalidDecl = true;
1259  } else if (!D.getCXXScopeSpec().isSet()) {
1260    LookupNameKind NameKind = LookupOrdinaryName;
1261
1262    // If the declaration we're planning to build will be a function
1263    // or object with linkage, then look for another declaration with
1264    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1265    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1266      /* Do nothing*/;
1267    else if (R->isFunctionType()) {
1268      if (CurContext->isFunctionOrMethod())
1269        NameKind = LookupRedeclarationWithLinkage;
1270    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1271      NameKind = LookupRedeclarationWithLinkage;
1272
1273    DC = CurContext;
1274    PrevDecl = LookupName(S, Name, NameKind, true,
1275                          D.getDeclSpec().getStorageClassSpec() !=
1276                            DeclSpec::SCS_static,
1277                          D.getIdentifierLoc());
1278  } else { // Something like "int foo::x;"
1279    DC = computeDeclContext(D.getCXXScopeSpec());
1280    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1281    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1282
1283    // C++ 7.3.1.2p2:
1284    // Members (including explicit specializations of templates) of a named
1285    // namespace can also be defined outside that namespace by explicit
1286    // qualification of the name being defined, provided that the entity being
1287    // defined was already declared in the namespace and the definition appears
1288    // after the point of declaration in a namespace that encloses the
1289    // declarations namespace.
1290    //
1291    // Note that we only check the context at this point. We don't yet
1292    // have enough information to make sure that PrevDecl is actually
1293    // the declaration we want to match. For example, given:
1294    //
1295    //   class X {
1296    //     void f();
1297    //     void f(float);
1298    //   };
1299    //
1300    //   void X::f(int) { } // ill-formed
1301    //
1302    // In this case, PrevDecl will point to the overload set
1303    // containing the two f's declared in X, but neither of them
1304    // matches.
1305
1306    // First check whether we named the global scope.
1307    if (isa<TranslationUnitDecl>(DC)) {
1308      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1309        << Name << D.getCXXScopeSpec().getRange();
1310    } else if (!CurContext->Encloses(DC)) {
1311      // The qualifying scope doesn't enclose the original declaration.
1312      // Emit diagnostic based on current scope.
1313      SourceLocation L = D.getIdentifierLoc();
1314      SourceRange R = D.getCXXScopeSpec().getRange();
1315      if (isa<FunctionDecl>(CurContext))
1316        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1317      else
1318        Diag(L, diag::err_invalid_declarator_scope)
1319          << Name << cast<NamedDecl>(DC) << R;
1320      InvalidDecl = true;
1321    }
1322  }
1323
1324  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1325    // Maybe we will complain about the shadowed template parameter.
1326    InvalidDecl = InvalidDecl
1327      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1328    // Just pretend that we didn't see the previous declaration.
1329    PrevDecl = 0;
1330  }
1331
1332  // In C++, the previous declaration we find might be a tag type
1333  // (class or enum). In this case, the new declaration will hide the
1334  // tag type. Note that this does does not apply if we're declaring a
1335  // typedef (C++ [dcl.typedef]p4).
1336  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1337      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1338    PrevDecl = 0;
1339
1340  bool Redeclaration = false;
1341  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1342    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1343                                 InvalidDecl, Redeclaration);
1344  } else if (R->isFunctionType()) {
1345    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1346                                  IsFunctionDefinition, InvalidDecl,
1347                                  Redeclaration);
1348  } else {
1349    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1350                                  InvalidDecl, Redeclaration);
1351  }
1352
1353  if (New == 0)
1354    return 0;
1355
1356  // If this has an identifier and is not an invalid redeclaration,
1357  // add it to the scope stack.
1358  if (Name && !(Redeclaration && InvalidDecl))
1359    PushOnScopeChains(New, S);
1360  // If any semantic error occurred, mark the decl as invalid.
1361  if (D.getInvalidType() || InvalidDecl)
1362    New->setInvalidDecl();
1363
1364  return New;
1365}
1366
1367/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1368/// types into constant array types in certain situations which would otherwise
1369/// be errors (for GCC compatibility).
1370static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1371                                                    ASTContext &Context,
1372                                                    bool &SizeIsNegative) {
1373  // This method tries to turn a variable array into a constant
1374  // array even when the size isn't an ICE.  This is necessary
1375  // for compatibility with code that depends on gcc's buggy
1376  // constant expression folding, like struct {char x[(int)(char*)2];}
1377  SizeIsNegative = false;
1378
1379  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1380    QualType Pointee = PTy->getPointeeType();
1381    QualType FixedType =
1382        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1383    if (FixedType.isNull()) return FixedType;
1384    FixedType = Context.getPointerType(FixedType);
1385    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1386    return FixedType;
1387  }
1388
1389  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1390  if (!VLATy)
1391    return QualType();
1392  // FIXME: We should probably handle this case
1393  if (VLATy->getElementType()->isVariablyModifiedType())
1394    return QualType();
1395
1396  Expr::EvalResult EvalResult;
1397  if (!VLATy->getSizeExpr() ||
1398      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1399      !EvalResult.Val.isInt())
1400    return QualType();
1401
1402  llvm::APSInt &Res = EvalResult.Val.getInt();
1403  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1404    return Context.getConstantArrayType(VLATy->getElementType(),
1405                                        Res, ArrayType::Normal, 0);
1406
1407  SizeIsNegative = true;
1408  return QualType();
1409}
1410
1411/// \brief Register the given locally-scoped external C declaration so
1412/// that it can be found later for redeclarations
1413void
1414Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1415                                       Scope *S) {
1416  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1417         "Decl is not a locally-scoped decl!");
1418  // Note that we have a locally-scoped external with this name.
1419  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1420
1421  if (!PrevDecl)
1422    return;
1423
1424  // If there was a previous declaration of this variable, it may be
1425  // in our identifier chain. Update the identifier chain with the new
1426  // declaration.
1427  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1428    // The previous declaration was found on the identifer resolver
1429    // chain, so remove it from its scope.
1430    while (S && !S->isDeclScope(PrevDecl))
1431      S = S->getParent();
1432
1433    if (S)
1434      S->RemoveDecl(PrevDecl);
1435  }
1436}
1437
1438NamedDecl*
1439Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1440                             QualType R, Decl* LastDeclarator,
1441                             Decl* PrevDecl, bool& InvalidDecl,
1442                             bool &Redeclaration) {
1443  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1444  if (D.getCXXScopeSpec().isSet()) {
1445    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1446      << D.getCXXScopeSpec().getRange();
1447    InvalidDecl = true;
1448    // Pretend we didn't see the scope specifier.
1449    DC = 0;
1450  }
1451
1452  if (getLangOptions().CPlusPlus) {
1453    // Check that there are no default arguments (C++ only).
1454    CheckExtraCXXDefaultArguments(D);
1455
1456    if (D.getDeclSpec().isVirtualSpecified())
1457      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1458           diag::err_virtual_non_function);
1459  }
1460
1461  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1462  if (!NewTD) return 0;
1463
1464  // Handle attributes prior to checking for duplicates in MergeVarDecl
1465  ProcessDeclAttributes(NewTD, D);
1466  // Merge the decl with the existing one if appropriate. If the decl is
1467  // in an outer scope, it isn't the same thing.
1468  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1469    Redeclaration = true;
1470    if (MergeTypeDefDecl(NewTD, PrevDecl))
1471      InvalidDecl = true;
1472  }
1473
1474  if (S->getFnParent() == 0) {
1475    QualType T = NewTD->getUnderlyingType();
1476    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1477    // then it shall have block scope.
1478    if (T->isVariablyModifiedType()) {
1479      bool SizeIsNegative;
1480      QualType FixedTy =
1481          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1482      if (!FixedTy.isNull()) {
1483        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1484        NewTD->setUnderlyingType(FixedTy);
1485      } else {
1486        if (SizeIsNegative)
1487          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1488        else if (T->isVariableArrayType())
1489          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1490        else
1491          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1492        InvalidDecl = true;
1493      }
1494    }
1495  }
1496  return NewTD;
1497}
1498
1499/// \brief Determines whether the given declaration is an out-of-scope
1500/// previous declaration.
1501///
1502/// This routine should be invoked when name lookup has found a
1503/// previous declaration (PrevDecl) that is not in the scope where a
1504/// new declaration by the same name is being introduced. If the new
1505/// declaration occurs in a local scope, previous declarations with
1506/// linkage may still be considered previous declarations (C99
1507/// 6.2.2p4-5, C++ [basic.link]p6).
1508///
1509/// \param PrevDecl the previous declaration found by name
1510/// lookup
1511///
1512/// \param DC the context in which the new declaration is being
1513/// declared.
1514///
1515/// \returns true if PrevDecl is an out-of-scope previous declaration
1516/// for a new delcaration with the same name.
1517static bool
1518isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1519                                ASTContext &Context) {
1520  if (!PrevDecl)
1521    return 0;
1522
1523  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1524  // case we need to check each of the overloaded functions.
1525  if (!PrevDecl->hasLinkage())
1526    return false;
1527
1528  if (Context.getLangOptions().CPlusPlus) {
1529    // C++ [basic.link]p6:
1530    //   If there is a visible declaration of an entity with linkage
1531    //   having the same name and type, ignoring entities declared
1532    //   outside the innermost enclosing namespace scope, the block
1533    //   scope declaration declares that same entity and receives the
1534    //   linkage of the previous declaration.
1535    DeclContext *OuterContext = DC->getLookupContext();
1536    if (!OuterContext->isFunctionOrMethod())
1537      // This rule only applies to block-scope declarations.
1538      return false;
1539    else {
1540      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1541      if (PrevOuterContext->isRecord())
1542        // We found a member function: ignore it.
1543        return false;
1544      else {
1545        // Find the innermost enclosing namespace for the new and
1546        // previous declarations.
1547        while (!OuterContext->isFileContext())
1548          OuterContext = OuterContext->getParent();
1549        while (!PrevOuterContext->isFileContext())
1550          PrevOuterContext = PrevOuterContext->getParent();
1551
1552        // The previous declaration is in a different namespace, so it
1553        // isn't the same function.
1554        if (OuterContext->getPrimaryContext() !=
1555            PrevOuterContext->getPrimaryContext())
1556          return false;
1557      }
1558    }
1559  }
1560
1561  return true;
1562}
1563
1564NamedDecl*
1565Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1566                              QualType R, Decl* LastDeclarator,
1567                              NamedDecl* PrevDecl, bool& InvalidDecl,
1568                              bool &Redeclaration) {
1569  DeclarationName Name = GetNameForDeclarator(D);
1570
1571  // Check that there are no default arguments (C++ only).
1572  if (getLangOptions().CPlusPlus)
1573    CheckExtraCXXDefaultArguments(D);
1574
1575  if (R.getTypePtr()->isObjCInterfaceType()) {
1576    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1577    InvalidDecl = true;
1578  }
1579
1580  VarDecl *NewVD;
1581  VarDecl::StorageClass SC;
1582  switch (D.getDeclSpec().getStorageClassSpec()) {
1583  default: assert(0 && "Unknown storage class!");
1584  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1585  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1586  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1587  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1588  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1589  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1590  case DeclSpec::SCS_mutable:
1591    // mutable can only appear on non-static class members, so it's always
1592    // an error here
1593    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1594    InvalidDecl = true;
1595    SC = VarDecl::None;
1596    break;
1597  }
1598
1599  IdentifierInfo *II = Name.getAsIdentifierInfo();
1600  if (!II) {
1601    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1602      << Name.getAsString();
1603    return 0;
1604  }
1605
1606  if (D.getDeclSpec().isVirtualSpecified())
1607    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1608         diag::err_virtual_non_function);
1609
1610  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1611  if (!DC->isRecord() && S->getFnParent() == 0) {
1612    // C99 6.9p2: The storage-class specifiers auto and register shall not
1613    // appear in the declaration specifiers in an external declaration.
1614    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1615      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1616      InvalidDecl = true;
1617    }
1618  }
1619  if (DC->isRecord() && !CurContext->isRecord()) {
1620    // This is an out-of-line definition of a static data member.
1621    if (SC == VarDecl::Static) {
1622      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1623           diag::err_static_out_of_line)
1624        << CodeModificationHint::CreateRemoval(
1625                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1626    } else if (SC == VarDecl::None)
1627      SC = VarDecl::Static;
1628  }
1629  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1630                          II, R, SC,
1631                          // FIXME: Move to DeclGroup...
1632                          D.getDeclSpec().getSourceRange().getBegin());
1633  NewVD->setThreadSpecified(ThreadSpecified);
1634  NewVD->setNextDeclarator(LastDeclarator);
1635
1636  // Set the lexical context. If the declarator has a C++ scope specifier, the
1637  // lexical context will be different from the semantic context.
1638  NewVD->setLexicalDeclContext(CurContext);
1639
1640  // Handle attributes prior to checking for duplicates in MergeVarDecl
1641  ProcessDeclAttributes(NewVD, D);
1642
1643  // Handle GNU asm-label extension (encoded as an attribute).
1644  if (Expr *E = (Expr*) D.getAsmLabel()) {
1645    // The parser guarantees this is a string.
1646    StringLiteral *SE = cast<StringLiteral>(E);
1647    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1648                                                        SE->getByteLength())));
1649  }
1650
1651  // Emit an error if an address space was applied to decl with local storage.
1652  // This includes arrays of objects with address space qualifiers, but not
1653  // automatic variables that point to other address spaces.
1654  // ISO/IEC TR 18037 S5.1.2
1655  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1656    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1657    InvalidDecl = true;
1658  }
1659
1660  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1661    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1662  }
1663
1664  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1665  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1666  if (isIllegalVLA || isIllegalVM) {
1667    bool SizeIsNegative;
1668    QualType FixedTy =
1669        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1670    if (!FixedTy.isNull()) {
1671      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1672      NewVD->setType(FixedTy);
1673    } else if (R->isVariableArrayType()) {
1674      NewVD->setInvalidDecl();
1675
1676      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1677      // FIXME: This won't give the correct result for
1678      // int a[10][n];
1679      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1680
1681      if (NewVD->isFileVarDecl())
1682        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1683          << SizeRange;
1684      else if (NewVD->getStorageClass() == VarDecl::Static)
1685        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1686          << SizeRange;
1687      else
1688        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1689            << SizeRange;
1690    } else {
1691      InvalidDecl = true;
1692
1693      if (NewVD->isFileVarDecl())
1694        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1695      else
1696        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1697    }
1698  }
1699
1700  // If name lookup finds a previous declaration that is not in the
1701  // same scope as the new declaration, this may still be an
1702  // acceptable redeclaration.
1703  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1704      !(NewVD->hasLinkage() &&
1705        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1706    PrevDecl = 0;
1707
1708  if (!PrevDecl && NewVD->isExternC(Context)) {
1709    // Since we did not find anything by this name and we're declaring
1710    // an extern "C" variable, look for a non-visible extern "C"
1711    // declaration with the same name.
1712    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1713      = LocallyScopedExternalDecls.find(Name);
1714    if (Pos != LocallyScopedExternalDecls.end())
1715      PrevDecl = Pos->second;
1716  }
1717
1718  // Merge the decl with the existing one if appropriate.
1719  if (PrevDecl) {
1720    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1721      // The user tried to define a non-static data member
1722      // out-of-line (C++ [dcl.meaning]p1).
1723      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1724        << D.getCXXScopeSpec().getRange();
1725      NewVD->Destroy(Context);
1726      return 0;
1727    }
1728
1729    Redeclaration = true;
1730    if (MergeVarDecl(NewVD, PrevDecl))
1731      InvalidDecl = true;
1732  } else if (D.getCXXScopeSpec().isSet()) {
1733    // No previous declaration in the qualifying scope.
1734    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1735      << Name << D.getCXXScopeSpec().getRange();
1736    InvalidDecl = true;
1737  }
1738
1739  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1740    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1741      << R;
1742    InvalidDecl = true;
1743  }
1744
1745
1746  // If this is a locally-scoped extern C variable, update the map of
1747  // such variables.
1748  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1749      !InvalidDecl)
1750    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1751
1752  return NewVD;
1753}
1754
1755NamedDecl*
1756Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1757                              QualType R, Decl *LastDeclarator,
1758                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1759                              bool& InvalidDecl, bool &Redeclaration) {
1760  assert(R.getTypePtr()->isFunctionType());
1761
1762  DeclarationName Name = GetNameForDeclarator(D);
1763  FunctionDecl::StorageClass SC = FunctionDecl::None;
1764  switch (D.getDeclSpec().getStorageClassSpec()) {
1765  default: assert(0 && "Unknown storage class!");
1766  case DeclSpec::SCS_auto:
1767  case DeclSpec::SCS_register:
1768  case DeclSpec::SCS_mutable:
1769    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1770         diag::err_typecheck_sclass_func);
1771    InvalidDecl = true;
1772    break;
1773  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1774  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1775  case DeclSpec::SCS_static: {
1776    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1777      // C99 6.7.1p5:
1778      //   The declaration of an identifier for a function that has
1779      //   block scope shall have no explicit storage-class specifier
1780      //   other than extern
1781      // See also (C++ [dcl.stc]p4).
1782      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1783           diag::err_static_block_func);
1784      SC = FunctionDecl::None;
1785    } else
1786      SC = FunctionDecl::Static;
1787    break;
1788  }
1789  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1790  }
1791
1792  bool isInline = D.getDeclSpec().isInlineSpecified();
1793  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1794  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1795
1796  bool isVirtualOkay = false;
1797  FunctionDecl *NewFD;
1798  if (D.getKind() == Declarator::DK_Constructor) {
1799    // This is a C++ constructor declaration.
1800    assert(DC->isRecord() &&
1801           "Constructors can only be declared in a member context");
1802
1803    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1804
1805    // Create the new declaration
1806    NewFD = CXXConstructorDecl::Create(Context,
1807                                       cast<CXXRecordDecl>(DC),
1808                                       D.getIdentifierLoc(), Name, R,
1809                                       isExplicit, isInline,
1810                                       /*isImplicitlyDeclared=*/false);
1811
1812    if (InvalidDecl)
1813      NewFD->setInvalidDecl();
1814  } else if (D.getKind() == Declarator::DK_Destructor) {
1815    // This is a C++ destructor declaration.
1816    if (DC->isRecord()) {
1817      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1818
1819      NewFD = CXXDestructorDecl::Create(Context,
1820                                        cast<CXXRecordDecl>(DC),
1821                                        D.getIdentifierLoc(), Name, R,
1822                                        isInline,
1823                                        /*isImplicitlyDeclared=*/false);
1824
1825      if (InvalidDecl)
1826        NewFD->setInvalidDecl();
1827
1828      isVirtualOkay = true;
1829    } else {
1830      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1831
1832      // Create a FunctionDecl to satisfy the function definition parsing
1833      // code path.
1834      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1835                                   Name, R, SC, isInline,
1836                                   /*hasPrototype=*/true,
1837                                   // FIXME: Move to DeclGroup...
1838                                   D.getDeclSpec().getSourceRange().getBegin());
1839      InvalidDecl = true;
1840      NewFD->setInvalidDecl();
1841    }
1842  } else if (D.getKind() == Declarator::DK_Conversion) {
1843    if (!DC->isRecord()) {
1844      Diag(D.getIdentifierLoc(),
1845           diag::err_conv_function_not_member);
1846      return 0;
1847    } else {
1848      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1849
1850      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1851                                        D.getIdentifierLoc(), Name, R,
1852                                        isInline, isExplicit);
1853
1854      if (InvalidDecl)
1855        NewFD->setInvalidDecl();
1856
1857      isVirtualOkay = true;
1858    }
1859  } else if (DC->isRecord()) {
1860    // This is a C++ method declaration.
1861    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1862                                  D.getIdentifierLoc(), Name, R,
1863                                  (SC == FunctionDecl::Static), isInline);
1864
1865    isVirtualOkay = (SC != FunctionDecl::Static);
1866  } else {
1867    // Determine whether the function was written with a
1868    // prototype. This true when:
1869    //   - we're in C++ (where every function has a prototype),
1870    //   - there is a prototype in the declarator, or
1871    //   - the type R of the function is some kind of typedef or other reference
1872    //     to a type name (which eventually refers to a function type).
1873    bool HasPrototype =
1874       getLangOptions().CPlusPlus ||
1875       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1876      !isa<FunctionType>(R.getTypePtr());
1877
1878    NewFD = FunctionDecl::Create(Context, DC,
1879                                 D.getIdentifierLoc(),
1880                                 Name, R, SC, isInline, HasPrototype,
1881                                 // FIXME: Move to DeclGroup...
1882                                 D.getDeclSpec().getSourceRange().getBegin());
1883  }
1884  NewFD->setNextDeclarator(LastDeclarator);
1885
1886  // Set the lexical context. If the declarator has a C++
1887  // scope specifier, the lexical context will be different
1888  // from the semantic context.
1889  NewFD->setLexicalDeclContext(CurContext);
1890
1891  // C++ [dcl.fct.spec]p5:
1892  //   The virtual specifier shall only be used in declarations of
1893  //   nonstatic class member functions that appear within a
1894  //   member-specification of a class declaration; see 10.3.
1895  //
1896  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1897  // function is also virtual if it overrides an already virtual
1898  // function. This is important to do here because it's part of the
1899  // declaration.
1900  if (isVirtual && !InvalidDecl) {
1901    if (!isVirtualOkay) {
1902       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1903           diag::err_virtual_non_function);
1904    } else if (!CurContext->isRecord()) {
1905      // 'virtual' was specified outside of the class.
1906      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1907        << CodeModificationHint::CreateRemoval(
1908                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1909    } else {
1910      // Okay: Add virtual to the method.
1911      cast<CXXMethodDecl>(NewFD)->setVirtual();
1912      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1913      CurClass->setAggregate(false);
1914      CurClass->setPOD(false);
1915      CurClass->setPolymorphic(true);
1916    }
1917  }
1918
1919  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1920      !CurContext->isRecord()) {
1921    // C++ [class.static]p1:
1922    //   A data or function member of a class may be declared static
1923    //   in a class definition, in which case it is a static member of
1924    //   the class.
1925
1926    // Complain about the 'static' specifier if it's on an out-of-line
1927    // member function definition.
1928    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1929         diag::err_static_out_of_line)
1930      << CodeModificationHint::CreateRemoval(
1931                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1932  }
1933
1934  // Handle GNU asm-label extension (encoded as an attribute).
1935  if (Expr *E = (Expr*) D.getAsmLabel()) {
1936    // The parser guarantees this is a string.
1937    StringLiteral *SE = cast<StringLiteral>(E);
1938    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1939                                                        SE->getByteLength())));
1940  }
1941
1942  // Copy the parameter declarations from the declarator D to
1943  // the function declaration NewFD, if they are available.
1944  if (D.getNumTypeObjects() > 0) {
1945    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1946
1947    // Create Decl objects for each parameter, adding them to the
1948    // FunctionDecl.
1949    llvm::SmallVector<ParmVarDecl*, 16> Params;
1950
1951    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1952    // function that takes no arguments, not a function that takes a
1953    // single void argument.
1954    // We let through "const void" here because Sema::GetTypeForDeclarator
1955    // already checks for that case.
1956    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1957        FTI.ArgInfo[0].Param &&
1958        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1959      // empty arg list, don't push any params.
1960      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1961
1962      // In C++, the empty parameter-type-list must be spelled "void"; a
1963      // typedef of void is not permitted.
1964      if (getLangOptions().CPlusPlus &&
1965          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1966        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1967      }
1968    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1969      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1970        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1971    }
1972
1973    NewFD->setParams(Context, &Params[0], Params.size());
1974  } else if (R->getAsTypedefType()) {
1975    // When we're declaring a function with a typedef, as in the
1976    // following example, we'll need to synthesize (unnamed)
1977    // parameters for use in the declaration.
1978    //
1979    // @code
1980    // typedef void fn(int);
1981    // fn f;
1982    // @endcode
1983    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1984    if (!FT) {
1985      // This is a typedef of a function with no prototype, so we
1986      // don't need to do anything.
1987    } else if ((FT->getNumArgs() == 0) ||
1988               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1989                FT->getArgType(0)->isVoidType())) {
1990      // This is a zero-argument function. We don't need to do anything.
1991    } else {
1992      // Synthesize a parameter for each argument type.
1993      llvm::SmallVector<ParmVarDecl*, 16> Params;
1994      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1995           ArgType != FT->arg_type_end(); ++ArgType) {
1996        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1997                                                 SourceLocation(), 0,
1998                                                 *ArgType, VarDecl::None,
1999                                                 0);
2000        Param->setImplicit();
2001        Params.push_back(Param);
2002      }
2003
2004      NewFD->setParams(Context, &Params[0], Params.size());
2005    }
2006  }
2007
2008  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2009    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2010  else if (isa<CXXDestructorDecl>(NewFD)) {
2011    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2012    Record->setUserDeclaredDestructor(true);
2013    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2014    // user-defined destructor.
2015    Record->setPOD(false);
2016  } else if (CXXConversionDecl *Conversion =
2017             dyn_cast<CXXConversionDecl>(NewFD))
2018    ActOnConversionDeclarator(Conversion);
2019
2020  // Extra checking for C++ overloaded operators (C++ [over.oper]).
2021  if (NewFD->isOverloadedOperator() &&
2022      CheckOverloadedOperatorDeclaration(NewFD))
2023    NewFD->setInvalidDecl();
2024
2025  // If name lookup finds a previous declaration that is not in the
2026  // same scope as the new declaration, this may still be an
2027  // acceptable redeclaration.
2028  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2029      !(NewFD->hasLinkage() &&
2030        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2031    PrevDecl = 0;
2032
2033  if (!PrevDecl && NewFD->isExternC(Context)) {
2034    // Since we did not find anything by this name and we're declaring
2035    // an extern "C" function, look for a non-visible extern "C"
2036    // declaration with the same name.
2037    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2038      = LocallyScopedExternalDecls.find(Name);
2039    if (Pos != LocallyScopedExternalDecls.end())
2040      PrevDecl = Pos->second;
2041  }
2042
2043  // Merge or overload the declaration with an existing declaration of
2044  // the same name, if appropriate.
2045  bool OverloadableAttrRequired = false;
2046  if (PrevDecl) {
2047    // Determine whether NewFD is an overload of PrevDecl or
2048    // a declaration that requires merging. If it's an overload,
2049    // there's no more work to do here; we'll just add the new
2050    // function to the scope.
2051    OverloadedFunctionDecl::function_iterator MatchedDecl;
2052
2053    if (!getLangOptions().CPlusPlus &&
2054        AllowOverloadingOfFunction(PrevDecl, Context)) {
2055      OverloadableAttrRequired = true;
2056
2057      // Functions marked "overloadable" must have a prototype (that
2058      // we can't get through declaration merging).
2059      if (!R->getAsFunctionProtoType()) {
2060        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2061          << NewFD;
2062        InvalidDecl = true;
2063        Redeclaration = true;
2064
2065        // Turn this into a variadic function with no parameters.
2066        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
2067                                    0, 0, true, 0);
2068        NewFD->setType(R);
2069      }
2070    }
2071
2072    if (PrevDecl &&
2073        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2074         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2075      Redeclaration = true;
2076      Decl *OldDecl = PrevDecl;
2077
2078      // If PrevDecl was an overloaded function, extract the
2079      // FunctionDecl that matched.
2080      if (isa<OverloadedFunctionDecl>(PrevDecl))
2081        OldDecl = *MatchedDecl;
2082
2083      // NewFD and PrevDecl represent declarations that need to be
2084      // merged.
2085      if (MergeFunctionDecl(NewFD, OldDecl))
2086        InvalidDecl = true;
2087
2088      if (!InvalidDecl) {
2089        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2090
2091        // An out-of-line member function declaration must also be a
2092        // definition (C++ [dcl.meaning]p1).
2093        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2094            !InvalidDecl) {
2095          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2096            << D.getCXXScopeSpec().getRange();
2097          NewFD->setInvalidDecl();
2098        }
2099      }
2100    }
2101  }
2102
2103  if (D.getCXXScopeSpec().isSet() &&
2104      (!PrevDecl || !Redeclaration)) {
2105    // The user tried to provide an out-of-line definition for a
2106    // function that is a member of a class or namespace, but there
2107    // was no such member function declared (C++ [class.mfct]p2,
2108    // C++ [namespace.memdef]p2). For example:
2109    //
2110    // class X {
2111    //   void f() const;
2112    // };
2113    //
2114    // void X::f() { } // ill-formed
2115    //
2116    // Complain about this problem, and attempt to suggest close
2117    // matches (e.g., those that differ only in cv-qualifiers and
2118    // whether the parameter types are references).
2119    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2120      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2121    InvalidDecl = true;
2122
2123    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2124                                            true);
2125    assert(!Prev.isAmbiguous() &&
2126           "Cannot have an ambiguity in previous-declaration lookup");
2127    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2128         Func != FuncEnd; ++Func) {
2129      if (isa<FunctionDecl>(*Func) &&
2130          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2131        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2132    }
2133
2134    PrevDecl = 0;
2135  }
2136
2137  // Handle attributes. We need to have merged decls when handling attributes
2138  // (for example to check for conflicts, etc).
2139  ProcessDeclAttributes(NewFD, D);
2140  AddKnownFunctionAttributes(NewFD);
2141
2142  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2143    // If a function name is overloadable in C, then every function
2144    // with that name must be marked "overloadable".
2145    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2146      << Redeclaration << NewFD;
2147    if (PrevDecl)
2148      Diag(PrevDecl->getLocation(),
2149           diag::note_attribute_overloadable_prev_overload);
2150    NewFD->addAttr(::new (Context) OverloadableAttr());
2151  }
2152
2153  if (getLangOptions().CPlusPlus) {
2154    // In C++, check default arguments now that we have merged decls. Unless
2155    // the lexical context is the class, because in this case this is done
2156    // during delayed parsing anyway.
2157    if (!CurContext->isRecord())
2158      CheckCXXDefaultArguments(NewFD);
2159
2160    // An out-of-line member function declaration must also be a
2161    // definition (C++ [dcl.meaning]p1).
2162    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2163      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2164        << D.getCXXScopeSpec().getRange();
2165      InvalidDecl = true;
2166    }
2167  }
2168
2169  // If this is a locally-scoped extern C function, update the
2170  // map of such names.
2171  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2172      && !InvalidDecl)
2173    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2174
2175  return NewFD;
2176}
2177
2178bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2179  // FIXME: Need strict checking.  In C89, we need to check for
2180  // any assignment, increment, decrement, function-calls, or
2181  // commas outside of a sizeof.  In C99, it's the same list,
2182  // except that the aforementioned are allowed in unevaluated
2183  // expressions.  Everything else falls under the
2184  // "may accept other forms of constant expressions" exception.
2185  // (We never end up here for C++, so the constant expression
2186  // rules there don't matter.)
2187  if (Init->isConstantInitializer(Context))
2188    return false;
2189  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2190    << Init->getSourceRange();
2191  return true;
2192}
2193
2194void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2195  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2196}
2197
2198/// AddInitializerToDecl - Adds the initializer Init to the
2199/// declaration dcl. If DirectInit is true, this is C++ direct
2200/// initialization rather than copy initialization.
2201void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2202  Decl *RealDecl = static_cast<Decl *>(dcl);
2203  // If there is no declaration, there was an error parsing it.  Just ignore
2204  // the initializer.
2205  if (RealDecl == 0)
2206    return;
2207
2208  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2209    // With declarators parsed the way they are, the parser cannot
2210    // distinguish between a normal initializer and a pure-specifier.
2211    // Thus this grotesque test.
2212    IntegerLiteral *IL;
2213    Expr *Init = static_cast<Expr *>(init.get());
2214    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2215        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2216      if (Method->isVirtual())
2217        Method->setPure();
2218      else {
2219        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2220          << Method->getDeclName() << Init->getSourceRange();
2221        Method->setInvalidDecl();
2222      }
2223    } else {
2224      Diag(Method->getLocation(), diag::err_member_function_initialization)
2225        << Method->getDeclName() << Init->getSourceRange();
2226      Method->setInvalidDecl();
2227    }
2228    return;
2229  }
2230
2231  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2232  if (!VDecl) {
2233    if (getLangOptions().CPlusPlus &&
2234        RealDecl->getLexicalDeclContext()->isRecord() &&
2235        isa<NamedDecl>(RealDecl))
2236      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2237        << cast<NamedDecl>(RealDecl)->getDeclName();
2238    else
2239      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2240    RealDecl->setInvalidDecl();
2241    return;
2242  }
2243
2244  const VarDecl *Def = 0;
2245  if (VDecl->getDefinition(Def)) {
2246    Diag(VDecl->getLocation(), diag::err_redefinition)
2247      << VDecl->getDeclName();
2248    Diag(Def->getLocation(), diag::note_previous_definition);
2249    VDecl->setInvalidDecl();
2250    return;
2251  }
2252
2253  // Take ownership of the expression, now that we're sure we have somewhere
2254  // to put it.
2255  Expr *Init = static_cast<Expr *>(init.release());
2256  assert(Init && "missing initializer");
2257
2258  // Get the decls type and save a reference for later, since
2259  // CheckInitializerTypes may change it.
2260  QualType DclT = VDecl->getType(), SavT = DclT;
2261  if (VDecl->isBlockVarDecl()) {
2262    VarDecl::StorageClass SC = VDecl->getStorageClass();
2263    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2264      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2265      VDecl->setInvalidDecl();
2266    } else if (!VDecl->isInvalidDecl()) {
2267      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2268                                VDecl->getDeclName(), DirectInit))
2269        VDecl->setInvalidDecl();
2270
2271      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2272      // Don't check invalid declarations to avoid emitting useless diagnostics.
2273      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2274        if (SC == VarDecl::Static) // C99 6.7.8p4.
2275          CheckForConstantInitializer(Init, DclT);
2276      }
2277    }
2278  } else if (VDecl->isStaticDataMember() &&
2279             VDecl->getLexicalDeclContext()->isRecord()) {
2280    // This is an in-class initialization for a static data member, e.g.,
2281    //
2282    // struct S {
2283    //   static const int value = 17;
2284    // };
2285
2286    // Attach the initializer
2287    VDecl->setInit(Init);
2288
2289    // C++ [class.mem]p4:
2290    //   A member-declarator can contain a constant-initializer only
2291    //   if it declares a static member (9.4) of const integral or
2292    //   const enumeration type, see 9.4.2.
2293    QualType T = VDecl->getType();
2294    if (!T->isDependentType() &&
2295        (!Context.getCanonicalType(T).isConstQualified() ||
2296         !T->isIntegralType())) {
2297      Diag(VDecl->getLocation(), diag::err_member_initialization)
2298        << VDecl->getDeclName() << Init->getSourceRange();
2299      VDecl->setInvalidDecl();
2300    } else {
2301      // C++ [class.static.data]p4:
2302      //   If a static data member is of const integral or const
2303      //   enumeration type, its declaration in the class definition
2304      //   can specify a constant-initializer which shall be an
2305      //   integral constant expression (5.19).
2306      if (!Init->isTypeDependent() &&
2307          !Init->getType()->isIntegralType()) {
2308        // We have a non-dependent, non-integral or enumeration type.
2309        Diag(Init->getSourceRange().getBegin(),
2310             diag::err_in_class_initializer_non_integral_type)
2311          << Init->getType() << Init->getSourceRange();
2312        VDecl->setInvalidDecl();
2313      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2314        // Check whether the expression is a constant expression.
2315        llvm::APSInt Value;
2316        SourceLocation Loc;
2317        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2318          Diag(Loc, diag::err_in_class_initializer_non_constant)
2319            << Init->getSourceRange();
2320          VDecl->setInvalidDecl();
2321        }
2322      }
2323    }
2324  } else if (VDecl->isFileVarDecl()) {
2325    if (VDecl->getStorageClass() == VarDecl::Extern)
2326      Diag(VDecl->getLocation(), diag::warn_extern_init);
2327    if (!VDecl->isInvalidDecl())
2328      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2329                                VDecl->getDeclName(), DirectInit))
2330        VDecl->setInvalidDecl();
2331
2332    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2333    // Don't check invalid declarations to avoid emitting useless diagnostics.
2334    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2335      // C99 6.7.8p4. All file scoped initializers need to be constant.
2336      CheckForConstantInitializer(Init, DclT);
2337    }
2338  }
2339  // If the type changed, it means we had an incomplete type that was
2340  // completed by the initializer. For example:
2341  //   int ary[] = { 1, 3, 5 };
2342  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2343  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2344    VDecl->setType(DclT);
2345    Init->setType(DclT);
2346  }
2347
2348  // Attach the initializer to the decl.
2349  VDecl->setInit(Init);
2350  return;
2351}
2352
2353void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2354  Decl *RealDecl = static_cast<Decl *>(dcl);
2355
2356  // If there is no declaration, there was an error parsing it. Just ignore it.
2357  if (RealDecl == 0)
2358    return;
2359
2360  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2361    QualType Type = Var->getType();
2362    // C++ [dcl.init.ref]p3:
2363    //   The initializer can be omitted for a reference only in a
2364    //   parameter declaration (8.3.5), in the declaration of a
2365    //   function return type, in the declaration of a class member
2366    //   within its class declaration (9.2), and where the extern
2367    //   specifier is explicitly used.
2368    if (Type->isReferenceType() &&
2369        Var->getStorageClass() != VarDecl::Extern &&
2370        Var->getStorageClass() != VarDecl::PrivateExtern) {
2371      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2372        << Var->getDeclName()
2373        << SourceRange(Var->getLocation(), Var->getLocation());
2374      Var->setInvalidDecl();
2375      return;
2376    }
2377
2378    // C++ [dcl.init]p9:
2379    //
2380    //   If no initializer is specified for an object, and the object
2381    //   is of (possibly cv-qualified) non-POD class type (or array
2382    //   thereof), the object shall be default-initialized; if the
2383    //   object is of const-qualified type, the underlying class type
2384    //   shall have a user-declared default constructor.
2385    if (getLangOptions().CPlusPlus) {
2386      QualType InitType = Type;
2387      if (const ArrayType *Array = Context.getAsArrayType(Type))
2388        InitType = Array->getElementType();
2389      if (Var->getStorageClass() != VarDecl::Extern &&
2390          Var->getStorageClass() != VarDecl::PrivateExtern &&
2391          InitType->isRecordType()) {
2392        const CXXConstructorDecl *Constructor = 0;
2393        if (!RequireCompleteType(Var->getLocation(), InitType,
2394                                    diag::err_invalid_incomplete_type_use))
2395          Constructor
2396            = PerformInitializationByConstructor(InitType, 0, 0,
2397                                                 Var->getLocation(),
2398                                               SourceRange(Var->getLocation(),
2399                                                           Var->getLocation()),
2400                                                 Var->getDeclName(),
2401                                                 IK_Default);
2402        if (!Constructor)
2403          Var->setInvalidDecl();
2404      }
2405    }
2406
2407#if 0
2408    // FIXME: Temporarily disabled because we are not properly parsing
2409    // linkage specifications on declarations, e.g.,
2410    //
2411    //   extern "C" const CGPoint CGPointerZero;
2412    //
2413    // C++ [dcl.init]p9:
2414    //
2415    //     If no initializer is specified for an object, and the
2416    //     object is of (possibly cv-qualified) non-POD class type (or
2417    //     array thereof), the object shall be default-initialized; if
2418    //     the object is of const-qualified type, the underlying class
2419    //     type shall have a user-declared default
2420    //     constructor. Otherwise, if no initializer is specified for
2421    //     an object, the object and its subobjects, if any, have an
2422    //     indeterminate initial value; if the object or any of its
2423    //     subobjects are of const-qualified type, the program is
2424    //     ill-formed.
2425    //
2426    // This isn't technically an error in C, so we don't diagnose it.
2427    //
2428    // FIXME: Actually perform the POD/user-defined default
2429    // constructor check.
2430    if (getLangOptions().CPlusPlus &&
2431        Context.getCanonicalType(Type).isConstQualified() &&
2432        Var->getStorageClass() != VarDecl::Extern)
2433      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2434        << Var->getName()
2435        << SourceRange(Var->getLocation(), Var->getLocation());
2436#endif
2437  }
2438}
2439
2440/// The declarators are chained together backwards, reverse the list.
2441Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2442  // Often we have single declarators, handle them quickly.
2443  Decl *Group = static_cast<Decl*>(group);
2444  if (Group == 0)
2445    return 0;
2446
2447  Decl *NewGroup = 0;
2448  if (Group->getNextDeclarator() == 0)
2449    NewGroup = Group;
2450  else { // reverse the list.
2451    while (Group) {
2452      Decl *Next = Group->getNextDeclarator();
2453      Group->setNextDeclarator(NewGroup);
2454      NewGroup = Group;
2455      Group = Next;
2456    }
2457  }
2458  // Perform semantic analysis that depends on having fully processed both
2459  // the declarator and initializer.
2460  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2461    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2462    if (!IDecl)
2463      continue;
2464    QualType T = IDecl->getType();
2465
2466    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2467    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2468    if (IDecl->isBlockVarDecl() &&
2469        IDecl->getStorageClass() != VarDecl::Extern) {
2470      if (!IDecl->isInvalidDecl() &&
2471          RequireCompleteType(IDecl->getLocation(), T,
2472                                 diag::err_typecheck_decl_incomplete_type))
2473        IDecl->setInvalidDecl();
2474    }
2475    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2476    // object that has file scope without an initializer, and without a
2477    // storage-class specifier or with the storage-class specifier "static",
2478    // constitutes a tentative definition. Note: A tentative definition with
2479    // external linkage is valid (C99 6.2.2p5).
2480    if (IDecl->isTentativeDefinition(Context)) {
2481      QualType CheckType = T;
2482      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2483
2484      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2485      if (ArrayT) {
2486        CheckType = ArrayT->getElementType();
2487        DiagID = diag::err_illegal_decl_array_incomplete_type;
2488      }
2489
2490      if (IDecl->isInvalidDecl()) {
2491        // Do nothing with invalid declarations
2492      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2493                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2494        // C99 6.9.2p3: If the declaration of an identifier for an object is
2495        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2496        // declared type shall not be an incomplete type.
2497        IDecl->setInvalidDecl();
2498      }
2499    }
2500  }
2501  return NewGroup;
2502}
2503
2504/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2505/// to introduce parameters into function prototype scope.
2506Sema::DeclTy *
2507Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2508  const DeclSpec &DS = D.getDeclSpec();
2509
2510  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2511  VarDecl::StorageClass StorageClass = VarDecl::None;
2512  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2513    StorageClass = VarDecl::Register;
2514  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2515    Diag(DS.getStorageClassSpecLoc(),
2516         diag::err_invalid_storage_class_in_func_decl);
2517    D.getMutableDeclSpec().ClearStorageClassSpecs();
2518  }
2519  if (DS.isThreadSpecified()) {
2520    Diag(DS.getThreadSpecLoc(),
2521         diag::err_invalid_storage_class_in_func_decl);
2522    D.getMutableDeclSpec().ClearStorageClassSpecs();
2523  }
2524
2525  // Check that there are no default arguments inside the type of this
2526  // parameter (C++ only).
2527  if (getLangOptions().CPlusPlus)
2528    CheckExtraCXXDefaultArguments(D);
2529
2530  // In this context, we *do not* check D.getInvalidType(). If the declarator
2531  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2532  // though it will not reflect the user specified type.
2533  QualType parmDeclType = GetTypeForDeclarator(D, S);
2534
2535  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2536
2537  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2538  // Can this happen for params?  We already checked that they don't conflict
2539  // among each other.  Here they can only shadow globals, which is ok.
2540  IdentifierInfo *II = D.getIdentifier();
2541  if (II) {
2542    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2543      if (PrevDecl->isTemplateParameter()) {
2544        // Maybe we will complain about the shadowed template parameter.
2545        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2546        // Just pretend that we didn't see the previous declaration.
2547        PrevDecl = 0;
2548      } else if (S->isDeclScope(PrevDecl)) {
2549        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2550
2551        // Recover by removing the name
2552        II = 0;
2553        D.SetIdentifier(0, D.getIdentifierLoc());
2554      }
2555    }
2556  }
2557
2558  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2559  // Doing the promotion here has a win and a loss. The win is the type for
2560  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2561  // code generator). The loss is the orginal type isn't preserved. For example:
2562  //
2563  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2564  //    int blockvardecl[5];
2565  //    sizeof(parmvardecl);  // size == 4
2566  //    sizeof(blockvardecl); // size == 20
2567  // }
2568  //
2569  // For expressions, all implicit conversions are captured using the
2570  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2571  //
2572  // FIXME: If a source translation tool needs to see the original type, then
2573  // we need to consider storing both types (in ParmVarDecl)...
2574  //
2575  if (parmDeclType->isArrayType()) {
2576    // int x[restrict 4] ->  int *restrict
2577    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2578  } else if (parmDeclType->isFunctionType())
2579    parmDeclType = Context.getPointerType(parmDeclType);
2580
2581  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2582                                         D.getIdentifierLoc(), II,
2583                                         parmDeclType, StorageClass,
2584                                         0);
2585
2586  if (D.getInvalidType())
2587    New->setInvalidDecl();
2588
2589  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2590  if (D.getCXXScopeSpec().isSet()) {
2591    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2592      << D.getCXXScopeSpec().getRange();
2593    New->setInvalidDecl();
2594  }
2595  // Parameter declarators cannot be interface types. All ObjC objects are
2596  // passed by reference.
2597  if (parmDeclType->isObjCInterfaceType()) {
2598    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2599         << "passed";
2600    New->setInvalidDecl();
2601  }
2602
2603  // Add the parameter declaration into this scope.
2604  S->AddDecl(New);
2605  if (II)
2606    IdResolver.AddDecl(New);
2607
2608  ProcessDeclAttributes(New, D);
2609  return New;
2610
2611}
2612
2613void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2614  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2615         "Not a function declarator!");
2616  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2617
2618  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2619  // for a K&R function.
2620  if (!FTI.hasPrototype) {
2621    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2622      if (FTI.ArgInfo[i].Param == 0) {
2623        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2624          << FTI.ArgInfo[i].Ident;
2625        // Implicitly declare the argument as type 'int' for lack of a better
2626        // type.
2627        DeclSpec DS;
2628        const char* PrevSpec; // unused
2629        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2630                           PrevSpec);
2631        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2632        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2633        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2634      }
2635    }
2636  }
2637}
2638
2639Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2640  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2641  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2642         "Not a function declarator!");
2643  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2644
2645  if (FTI.hasPrototype) {
2646    // FIXME: Diagnose arguments without names in C.
2647  }
2648
2649  Scope *ParentScope = FnBodyScope->getParent();
2650
2651  return ActOnStartOfFunctionDef(FnBodyScope,
2652                                 ActOnDeclarator(ParentScope, D, 0,
2653                                                 /*IsFunctionDefinition=*/true));
2654}
2655
2656Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2657  Decl *decl = static_cast<Decl*>(D);
2658  FunctionDecl *FD = cast<FunctionDecl>(decl);
2659
2660  // See if this is a redefinition.
2661  const FunctionDecl *Definition;
2662  if (FD->getBody(Definition)) {
2663    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2664    Diag(Definition->getLocation(), diag::note_previous_definition);
2665  }
2666
2667  // Builtin functions cannot be defined.
2668  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2669    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2670      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2671      FD->setInvalidDecl();
2672    }
2673  }
2674
2675  // The return type of a function definition must be complete
2676  // (C99 6.9.1p3)
2677  if (FD->getResultType()->isIncompleteType() &&
2678      !FD->getResultType()->isVoidType()) {
2679    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2680    FD->setInvalidDecl();
2681  }
2682
2683  PushDeclContext(FnBodyScope, FD);
2684
2685  // Check the validity of our function parameters
2686  CheckParmsForFunctionDef(FD);
2687
2688  // Introduce our parameters into the function scope
2689  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2690    ParmVarDecl *Param = FD->getParamDecl(p);
2691    Param->setOwningFunction(FD);
2692
2693    // If this has an identifier, add it to the scope stack.
2694    if (Param->getIdentifier())
2695      PushOnScopeChains(Param, FnBodyScope);
2696  }
2697
2698  // Checking attributes of current function definition
2699  // dllimport attribute.
2700  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2701    // dllimport attribute cannot be applied to definition.
2702    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2703      Diag(FD->getLocation(),
2704           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2705        << "dllimport";
2706      FD->setInvalidDecl();
2707      return FD;
2708    } else {
2709      // If a symbol previously declared dllimport is later defined, the
2710      // attribute is ignored in subsequent references, and a warning is
2711      // emitted.
2712      Diag(FD->getLocation(),
2713           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2714        << FD->getNameAsCString() << "dllimport";
2715    }
2716  }
2717  return FD;
2718}
2719
2720static bool StatementCreatesScope(Stmt* S) {
2721  bool result = false;
2722  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2723    for (DeclStmt::decl_iterator i = DS->decl_begin();
2724         i != DS->decl_end(); ++i) {
2725      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2726        result |= D->getType()->isVariablyModifiedType();
2727        result |= !!D->getAttr<CleanupAttr>();
2728      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2729        result |= D->getUnderlyingType()->isVariablyModifiedType();
2730      }
2731    }
2732  }
2733
2734  return result;
2735}
2736
2737void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2738                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2739                                    std::vector<void*>& ScopeStack,
2740                                    Stmt* CurStmt,
2741                                    Stmt* ParentCompoundStmt) {
2742  for (Stmt::child_iterator i = CurStmt->child_begin();
2743       i != CurStmt->child_end(); ++i) {
2744    if (!*i) continue;
2745    if (StatementCreatesScope(*i))  {
2746      ScopeStack.push_back(*i);
2747      PopScopeMap[*i] = ParentCompoundStmt;
2748    } else if (isa<LabelStmt>(CurStmt)) {
2749      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2750    }
2751    if (isa<DeclStmt>(*i)) continue;
2752    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2753    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2754                             *i, CurCompound);
2755  }
2756
2757  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2758    ScopeStack.pop_back();
2759  }
2760}
2761
2762void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2763                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2764                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2765                                   std::vector<void*>& ScopeStack,
2766                                   Stmt* CurStmt) {
2767  for (Stmt::child_iterator i = CurStmt->child_begin();
2768       i != CurStmt->child_end(); ++i) {
2769    if (!*i) continue;
2770    if (StatementCreatesScope(*i))  {
2771      ScopeStack.push_back(*i);
2772    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2773      void* LScope = LabelScopeMap[GS->getLabel()];
2774      if (LScope) {
2775        bool foundScopeInStack = false;
2776        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2777          if (LScope == ScopeStack[i-1]) {
2778            foundScopeInStack = true;
2779            break;
2780          }
2781        }
2782        if (!foundScopeInStack) {
2783          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2784        }
2785      }
2786    }
2787    if (isa<DeclStmt>(*i)) continue;
2788    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2789                            ScopeStack, *i);
2790  }
2791
2792  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2793    ScopeStack.pop_back();
2794  }
2795}
2796
2797Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2798  Decl *dcl = static_cast<Decl *>(D);
2799  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2800  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2801    FD->setBody(cast<CompoundStmt>(Body));
2802    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2803  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2804    assert(MD == getCurMethodDecl() && "Method parsing confused");
2805    MD->setBody(cast<CompoundStmt>(Body));
2806  } else {
2807    Body->Destroy(Context);
2808    return 0;
2809  }
2810  PopDeclContext();
2811  // Verify and clean out per-function state.
2812
2813  bool HaveLabels = !LabelMap.empty();
2814  // Check goto/label use.
2815  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2816       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2817    // Verify that we have no forward references left.  If so, there was a goto
2818    // or address of a label taken, but no definition of it.  Label fwd
2819    // definitions are indicated with a null substmt.
2820    if (I->second->getSubStmt() == 0) {
2821      LabelStmt *L = I->second;
2822      // Emit error.
2823      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2824
2825      // At this point, we have gotos that use the bogus label.  Stitch it into
2826      // the function body so that they aren't leaked and that the AST is well
2827      // formed.
2828      if (Body) {
2829#if 0
2830        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2831        // and the AST is malformed anyway.  We should just blow away 'L'.
2832        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2833        cast<CompoundStmt>(Body)->push_back(L);
2834#else
2835        L->Destroy(Context);
2836#endif
2837      } else {
2838        // The whole function wasn't parsed correctly, just delete this.
2839        L->Destroy(Context);
2840      }
2841    }
2842  }
2843  LabelMap.clear();
2844
2845  if (!Body) return D;
2846
2847  if (HaveLabels) {
2848    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2849    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2850    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2851    std::vector<void*> ScopeStack;
2852    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2853    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2854  }
2855
2856  return D;
2857}
2858
2859/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2860/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2861NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2862                                          IdentifierInfo &II, Scope *S) {
2863  // Before we produce a declaration for an implicitly defined
2864  // function, see whether there was a locally-scoped declaration of
2865  // this name as a function or variable. If so, use that
2866  // (non-visible) declaration, and complain about it.
2867  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2868    = LocallyScopedExternalDecls.find(&II);
2869  if (Pos != LocallyScopedExternalDecls.end()) {
2870    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2871    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2872    return Pos->second;
2873  }
2874
2875  // Extension in C99.  Legal in C90, but warn about it.
2876  if (getLangOptions().C99)
2877    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2878  else
2879    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2880
2881  // FIXME: handle stuff like:
2882  // void foo() { extern float X(); }
2883  // void bar() { X(); }  <-- implicit decl for X in another scope.
2884
2885  // Set a Declarator for the implicit definition: int foo();
2886  const char *Dummy;
2887  DeclSpec DS;
2888  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2889  Error = Error; // Silence warning.
2890  assert(!Error && "Error setting up implicit decl!");
2891  Declarator D(DS, Declarator::BlockContext);
2892  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2893                                             0, 0, 0, Loc, D),
2894                SourceLocation());
2895  D.SetIdentifier(&II, Loc);
2896
2897  // Insert this function into translation-unit scope.
2898
2899  DeclContext *PrevDC = CurContext;
2900  CurContext = Context.getTranslationUnitDecl();
2901
2902  FunctionDecl *FD =
2903    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2904  FD->setImplicit();
2905
2906  CurContext = PrevDC;
2907
2908  AddKnownFunctionAttributes(FD);
2909
2910  return FD;
2911}
2912
2913/// \brief Adds any function attributes that we know a priori based on
2914/// the declaration of this function.
2915///
2916/// These attributes can apply both to implicitly-declared builtins
2917/// (like __builtin___printf_chk) or to library-declared functions
2918/// like NSLog or printf.
2919void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2920  if (FD->isInvalidDecl())
2921    return;
2922
2923  // If this is a built-in function, map its builtin attributes to
2924  // actual attributes.
2925  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2926    // Handle printf-formatting attributes.
2927    unsigned FormatIdx;
2928    bool HasVAListArg;
2929    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2930      if (!FD->getAttr<FormatAttr>())
2931        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2932                                               FormatIdx + 2));
2933    }
2934
2935    // Mark const if we don't care about errno and that is the only
2936    // thing preventing the function from being const. This allows
2937    // IRgen to use LLVM intrinsics for such functions.
2938    if (!getLangOptions().MathErrno &&
2939        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2940      if (!FD->getAttr<ConstAttr>())
2941        FD->addAttr(::new (Context) ConstAttr());
2942    }
2943  }
2944
2945  IdentifierInfo *Name = FD->getIdentifier();
2946  if (!Name)
2947    return;
2948  if ((!getLangOptions().CPlusPlus &&
2949       FD->getDeclContext()->isTranslationUnit()) ||
2950      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2951       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2952       LinkageSpecDecl::lang_c)) {
2953    // Okay: this could be a libc/libm/Objective-C function we know
2954    // about.
2955  } else
2956    return;
2957
2958  unsigned KnownID;
2959  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2960    if (KnownFunctionIDs[KnownID] == Name)
2961      break;
2962
2963  switch (KnownID) {
2964  case id_NSLog:
2965  case id_NSLogv:
2966    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2967      // FIXME: We known better than our headers.
2968      const_cast<FormatAttr *>(Format)->setType("printf");
2969    } else
2970      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2971    break;
2972
2973  case id_asprintf:
2974  case id_vasprintf:
2975    if (!FD->getAttr<FormatAttr>())
2976      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2977    break;
2978
2979  default:
2980    // Unknown function or known function without any attributes to
2981    // add. Do nothing.
2982    break;
2983  }
2984}
2985
2986TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2987                                    Decl *LastDeclarator) {
2988  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2989  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2990
2991  // Scope manipulation handled by caller.
2992  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2993                                           D.getIdentifierLoc(),
2994                                           D.getIdentifier(),
2995                                           T);
2996
2997  if (TagType *TT = dyn_cast<TagType>(T)) {
2998    TagDecl *TD = TT->getDecl();
2999
3000    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3001    // keep track of the TypedefDecl.
3002    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3003      TD->setTypedefForAnonDecl(NewTD);
3004  }
3005
3006  NewTD->setNextDeclarator(LastDeclarator);
3007  if (D.getInvalidType())
3008    NewTD->setInvalidDecl();
3009  return NewTD;
3010}
3011
3012/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3013/// former case, Name will be non-null.  In the later case, Name will be null.
3014/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3015/// reference/declaration/definition of a tag.
3016Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3017                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3018                             IdentifierInfo *Name, SourceLocation NameLoc,
3019                             AttributeList *Attr) {
3020  // If this is not a definition, it must have a name.
3021  assert((Name != 0 || TK == TK_Definition) &&
3022         "Nameless record must be a definition!");
3023
3024  TagDecl::TagKind Kind;
3025  switch (TagSpec) {
3026  default: assert(0 && "Unknown tag type!");
3027  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3028  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3029  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3030  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3031  }
3032
3033  DeclContext *SearchDC = CurContext;
3034  DeclContext *DC = CurContext;
3035  NamedDecl *PrevDecl = 0;
3036
3037  bool Invalid = false;
3038
3039  if (Name && SS.isNotEmpty()) {
3040    // We have a nested-name tag ('struct foo::bar').
3041
3042    // Check for invalid 'foo::'.
3043    if (SS.isInvalid()) {
3044      Name = 0;
3045      goto CreateNewDecl;
3046    }
3047
3048    // FIXME: RequireCompleteDeclContext(SS)?
3049    DC = computeDeclContext(SS);
3050    SearchDC = DC;
3051    // Look-up name inside 'foo::'.
3052    PrevDecl = dyn_cast_or_null<TagDecl>(
3053                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3054
3055    // A tag 'foo::bar' must already exist.
3056    if (PrevDecl == 0) {
3057      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3058      Name = 0;
3059      goto CreateNewDecl;
3060    }
3061  } else if (Name) {
3062    // If this is a named struct, check to see if there was a previous forward
3063    // declaration or definition.
3064    // FIXME: We're looking into outer scopes here, even when we
3065    // shouldn't be. Doing so can result in ambiguities that we
3066    // shouldn't be diagnosing.
3067    LookupResult R = LookupName(S, Name, LookupTagName,
3068                                /*RedeclarationOnly=*/(TK != TK_Reference));
3069    if (R.isAmbiguous()) {
3070      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3071      // FIXME: This is not best way to recover from case like:
3072      //
3073      // struct S s;
3074      //
3075      // causes needless err_ovl_no_viable_function_in_init latter.
3076      Name = 0;
3077      PrevDecl = 0;
3078      Invalid = true;
3079    }
3080    else
3081      PrevDecl = R;
3082
3083    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3084      // FIXME: This makes sure that we ignore the contexts associated
3085      // with C structs, unions, and enums when looking for a matching
3086      // tag declaration or definition. See the similar lookup tweak
3087      // in Sema::LookupName; is there a better way to deal with this?
3088      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3089        SearchDC = SearchDC->getParent();
3090    }
3091  }
3092
3093  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3094    // Maybe we will complain about the shadowed template parameter.
3095    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3096    // Just pretend that we didn't see the previous declaration.
3097    PrevDecl = 0;
3098  }
3099
3100  if (PrevDecl) {
3101    // Check whether the previous declaration is usable.
3102    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3103
3104    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3105      // If this is a use of a previous tag, or if the tag is already declared
3106      // in the same scope (so that the definition/declaration completes or
3107      // rementions the tag), reuse the decl.
3108      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3109        // Make sure that this wasn't declared as an enum and now used as a
3110        // struct or something similar.
3111        if (PrevTagDecl->getTagKind() != Kind) {
3112          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3113          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3114          // Recover by making this an anonymous redefinition.
3115          Name = 0;
3116          PrevDecl = 0;
3117          Invalid = true;
3118        } else {
3119          // If this is a use, just return the declaration we found.
3120
3121          // FIXME: In the future, return a variant or some other clue
3122          // for the consumer of this Decl to know it doesn't own it.
3123          // For our current ASTs this shouldn't be a problem, but will
3124          // need to be changed with DeclGroups.
3125          if (TK == TK_Reference)
3126            return PrevDecl;
3127
3128          // Diagnose attempts to redefine a tag.
3129          if (TK == TK_Definition) {
3130            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3131              Diag(NameLoc, diag::err_redefinition) << Name;
3132              Diag(Def->getLocation(), diag::note_previous_definition);
3133              // If this is a redefinition, recover by making this
3134              // struct be anonymous, which will make any later
3135              // references get the previous definition.
3136              Name = 0;
3137              PrevDecl = 0;
3138              Invalid = true;
3139            } else {
3140              // If the type is currently being defined, complain
3141              // about a nested redefinition.
3142              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3143              if (Tag->isBeingDefined()) {
3144                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3145                Diag(PrevTagDecl->getLocation(),
3146                     diag::note_previous_definition);
3147                Name = 0;
3148                PrevDecl = 0;
3149                Invalid = true;
3150              }
3151            }
3152
3153            // Okay, this is definition of a previously declared or referenced
3154            // tag PrevDecl. We're going to create a new Decl for it.
3155          }
3156        }
3157        // If we get here we have (another) forward declaration or we
3158        // have a definition.  Just create a new decl.
3159      } else {
3160        // If we get here, this is a definition of a new tag type in a nested
3161        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3162        // new decl/type.  We set PrevDecl to NULL so that the entities
3163        // have distinct types.
3164        PrevDecl = 0;
3165      }
3166      // If we get here, we're going to create a new Decl. If PrevDecl
3167      // is non-NULL, it's a definition of the tag declared by
3168      // PrevDecl. If it's NULL, we have a new definition.
3169    } else {
3170      // PrevDecl is a namespace, template, or anything else
3171      // that lives in the IDNS_Tag identifier namespace.
3172      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3173        // The tag name clashes with a namespace name, issue an error and
3174        // recover by making this tag be anonymous.
3175        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3176        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3177        Name = 0;
3178        PrevDecl = 0;
3179        Invalid = true;
3180      } else {
3181        // The existing declaration isn't relevant to us; we're in a
3182        // new scope, so clear out the previous declaration.
3183        PrevDecl = 0;
3184      }
3185    }
3186  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3187             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3188    // C.scope.pdecl]p5:
3189    //   -- for an elaborated-type-specifier of the form
3190    //
3191    //          class-key identifier
3192    //
3193    //      if the elaborated-type-specifier is used in the
3194    //      decl-specifier-seq or parameter-declaration-clause of a
3195    //      function defined in namespace scope, the identifier is
3196    //      declared as a class-name in the namespace that contains
3197    //      the declaration; otherwise, except as a friend
3198    //      declaration, the identifier is declared in the smallest
3199    //      non-class, non-function-prototype scope that contains the
3200    //      declaration.
3201    //
3202    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3203    // C structs and unions.
3204    //
3205    // GNU C also supports this behavior as part of its incomplete
3206    // enum types extension, while GNU C++ does not.
3207    //
3208    // Find the context where we'll be declaring the tag.
3209    // FIXME: We would like to maintain the current DeclContext as the
3210    // lexical context,
3211    while (SearchDC->isRecord())
3212      SearchDC = SearchDC->getParent();
3213
3214    // Find the scope where we'll be declaring the tag.
3215    while (S->isClassScope() ||
3216           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3217           ((S->getFlags() & Scope::DeclScope) == 0) ||
3218           (S->getEntity() &&
3219            ((DeclContext *)S->getEntity())->isTransparentContext()))
3220      S = S->getParent();
3221  }
3222
3223CreateNewDecl:
3224
3225  // If there is an identifier, use the location of the identifier as the
3226  // location of the decl, otherwise use the location of the struct/union
3227  // keyword.
3228  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3229
3230  // Otherwise, create a new declaration. If there is a previous
3231  // declaration of the same entity, the two will be linked via
3232  // PrevDecl.
3233  TagDecl *New;
3234
3235  if (Kind == TagDecl::TK_enum) {
3236    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3237    // enum X { A, B, C } D;    D should chain to X.
3238    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3239                           cast_or_null<EnumDecl>(PrevDecl));
3240    // If this is an undefined enum, warn.
3241    if (TK != TK_Definition && !Invalid)  {
3242      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3243                                              : diag::ext_forward_ref_enum;
3244      Diag(Loc, DK);
3245    }
3246  } else {
3247    // struct/union/class
3248
3249    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3250    // struct X { int A; } D;    D should chain to X.
3251    if (getLangOptions().CPlusPlus)
3252      // FIXME: Look for a way to use RecordDecl for simple structs.
3253      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3254                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3255    else
3256      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3257                               cast_or_null<RecordDecl>(PrevDecl));
3258  }
3259
3260  if (Kind != TagDecl::TK_enum) {
3261    // Handle #pragma pack: if the #pragma pack stack has non-default
3262    // alignment, make up a packed attribute for this decl. These
3263    // attributes are checked when the ASTContext lays out the
3264    // structure.
3265    //
3266    // It is important for implementing the correct semantics that this
3267    // happen here (in act on tag decl). The #pragma pack stack is
3268    // maintained as a result of parser callbacks which can occur at
3269    // many points during the parsing of a struct declaration (because
3270    // the #pragma tokens are effectively skipped over during the
3271    // parsing of the struct).
3272    if (unsigned Alignment = getPragmaPackAlignment())
3273      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3274  }
3275
3276  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3277    // C++ [dcl.typedef]p3:
3278    //   [...] Similarly, in a given scope, a class or enumeration
3279    //   shall not be declared with the same name as a typedef-name
3280    //   that is declared in that scope and refers to a type other
3281    //   than the class or enumeration itself.
3282    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3283    TypedefDecl *PrevTypedef = 0;
3284    if (Lookup.getKind() == LookupResult::Found)
3285      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3286
3287    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3288        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3289          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3290      Diag(Loc, diag::err_tag_definition_of_typedef)
3291        << Context.getTypeDeclType(New)
3292        << PrevTypedef->getUnderlyingType();
3293      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3294      Invalid = true;
3295    }
3296  }
3297
3298  if (Invalid)
3299    New->setInvalidDecl();
3300
3301  if (Attr)
3302    ProcessDeclAttributeList(New, Attr);
3303
3304  // If we're declaring or defining a tag in function prototype scope
3305  // in C, note that this type can only be used within the function.
3306  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3307    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3308
3309  // Set the lexical context. If the tag has a C++ scope specifier, the
3310  // lexical context will be different from the semantic context.
3311  New->setLexicalDeclContext(CurContext);
3312
3313  if (TK == TK_Definition)
3314    New->startDefinition();
3315
3316  // If this has an identifier, add it to the scope stack.
3317  if (Name) {
3318    S = getNonFieldDeclScope(S);
3319    PushOnScopeChains(New, S);
3320  } else {
3321    CurContext->addDecl(New);
3322  }
3323
3324  return New;
3325}
3326
3327void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3328  AdjustDeclIfTemplate(TagD);
3329  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3330
3331  // Enter the tag context.
3332  PushDeclContext(S, Tag);
3333
3334  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3335    FieldCollector->StartClass();
3336
3337    if (Record->getIdentifier()) {
3338      // C++ [class]p2:
3339      //   [...] The class-name is also inserted into the scope of the
3340      //   class itself; this is known as the injected-class-name. For
3341      //   purposes of access checking, the injected-class-name is treated
3342      //   as if it were a public member name.
3343      RecordDecl *InjectedClassName
3344        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3345                                CurContext, Record->getLocation(),
3346                                Record->getIdentifier(), Record);
3347      InjectedClassName->setImplicit();
3348      PushOnScopeChains(InjectedClassName, S);
3349    }
3350  }
3351}
3352
3353void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3354  AdjustDeclIfTemplate(TagD);
3355  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3356
3357  if (isa<CXXRecordDecl>(Tag))
3358    FieldCollector->FinishClass();
3359
3360  // Exit this scope of this tag's definition.
3361  PopDeclContext();
3362
3363  // Notify the consumer that we've defined a tag.
3364  Consumer.HandleTagDeclDefinition(Tag);
3365}
3366
3367bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3368                          QualType FieldTy, const Expr *BitWidth) {
3369  // C99 6.7.2.1p4 - verify the field type.
3370  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3371  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3372    // Handle incomplete types with specific error.
3373    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3374      return true;
3375    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3376      << FieldName << FieldTy << BitWidth->getSourceRange();
3377  }
3378
3379  // If the bit-width is type- or value-dependent, don't try to check
3380  // it now.
3381  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3382    return false;
3383
3384  llvm::APSInt Value;
3385  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3386    return true;
3387
3388  // Zero-width bitfield is ok for anonymous field.
3389  if (Value == 0 && FieldName)
3390    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3391
3392  if (Value.isSigned() && Value.isNegative())
3393    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3394             << FieldName << Value.toString(10);
3395
3396  if (!FieldTy->isDependentType()) {
3397    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3398    // FIXME: We won't need the 0 size once we check that the field type is valid.
3399    if (TypeSize && Value.getZExtValue() > TypeSize)
3400      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3401        << FieldName << (unsigned)TypeSize;
3402  }
3403
3404  return false;
3405}
3406
3407/// ActOnField - Each field of a struct/union/class is passed into this in order
3408/// to create a FieldDecl object for it.
3409Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3410                               SourceLocation DeclStart,
3411                               Declarator &D, ExprTy *BitfieldWidth) {
3412
3413  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3414                     static_cast<Expr*>(BitfieldWidth),
3415                     AS_public);
3416}
3417
3418/// HandleField - Analyze a field of a C struct or a C++ data member.
3419///
3420FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3421                             SourceLocation DeclStart,
3422                             Declarator &D, Expr *BitWidth,
3423                             AccessSpecifier AS) {
3424  IdentifierInfo *II = D.getIdentifier();
3425  SourceLocation Loc = DeclStart;
3426  if (II) Loc = D.getIdentifierLoc();
3427
3428  QualType T = GetTypeForDeclarator(D, S);
3429
3430  if (getLangOptions().CPlusPlus) {
3431    CheckExtraCXXDefaultArguments(D);
3432
3433    if (D.getDeclSpec().isVirtualSpecified())
3434      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3435           diag::err_virtual_non_function);
3436  }
3437
3438  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3439  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3440    PrevDecl = 0;
3441
3442  FieldDecl *NewFD
3443    = CheckFieldDecl(II, T, Record, Loc,
3444               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3445                     BitWidth, AS, PrevDecl, &D);
3446  if (NewFD->isInvalidDecl() && PrevDecl) {
3447    // Don't introduce NewFD into scope; there's already something
3448    // with the same name in the same scope.
3449  } else if (II) {
3450    PushOnScopeChains(NewFD, S);
3451  } else
3452    Record->addDecl(NewFD);
3453
3454  return NewFD;
3455}
3456
3457/// \brief Build a new FieldDecl and check its well-formedness.
3458///
3459/// This routine builds a new FieldDecl given the fields name, type,
3460/// record, etc. \p PrevDecl should refer to any previous declaration
3461/// with the same name and in the same scope as the field to be
3462/// created.
3463///
3464/// \returns a new FieldDecl.
3465///
3466/// \todo The Declarator argument is a hack. It will be removed once
3467FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3468                                RecordDecl *Record, SourceLocation Loc,
3469                                bool Mutable, Expr *BitWidth,
3470                                AccessSpecifier AS, NamedDecl *PrevDecl,
3471                                Declarator *D) {
3472  IdentifierInfo *II = Name.getAsIdentifierInfo();
3473  bool InvalidDecl = false;
3474
3475  // If we receive a broken type, recover by assuming 'int' and
3476  // marking this declaration as invalid.
3477  if (T.isNull()) {
3478    InvalidDecl = true;
3479    T = Context.IntTy;
3480  }
3481
3482  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3483  // than a variably modified type.
3484  if (T->isVariablyModifiedType()) {
3485    bool SizeIsNegative;
3486    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3487                                                           SizeIsNegative);
3488    if (!FixedTy.isNull()) {
3489      Diag(Loc, diag::warn_illegal_constant_array_size);
3490      T = FixedTy;
3491    } else {
3492      if (SizeIsNegative)
3493        Diag(Loc, diag::err_typecheck_negative_array_size);
3494      else
3495        Diag(Loc, diag::err_typecheck_field_variable_size);
3496      T = Context.IntTy;
3497      InvalidDecl = true;
3498    }
3499  }
3500
3501  // If this is declared as a bit-field, check the bit-field.
3502  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3503    InvalidDecl = true;
3504    DeleteExpr(BitWidth);
3505    BitWidth = 0;
3506  }
3507
3508  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3509                                       Mutable);
3510
3511  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3512    Diag(Loc, diag::err_duplicate_member) << II;
3513    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3514    NewFD->setInvalidDecl();
3515    Record->setInvalidDecl();
3516  }
3517
3518  if (getLangOptions().CPlusPlus && !T->isPODType())
3519    cast<CXXRecordDecl>(Record)->setPOD(false);
3520
3521  // FIXME: We need to pass in the attributes given an AST
3522  // representation, not a parser representation.
3523  if (D)
3524    ProcessDeclAttributes(NewFD, *D);
3525
3526  if (T.isObjCGCWeak())
3527    Diag(Loc, diag::warn_attribute_weak_on_field);
3528
3529  if (InvalidDecl)
3530    NewFD->setInvalidDecl();
3531
3532  NewFD->setAccess(AS);
3533
3534  // C++ [dcl.init.aggr]p1:
3535  //   An aggregate is an array or a class (clause 9) with [...] no
3536  //   private or protected non-static data members (clause 11).
3537  // A POD must be an aggregate.
3538  if (getLangOptions().CPlusPlus &&
3539      (AS == AS_private || AS == AS_protected)) {
3540    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3541    CXXRecord->setAggregate(false);
3542    CXXRecord->setPOD(false);
3543  }
3544
3545  return NewFD;
3546}
3547
3548/// TranslateIvarVisibility - Translate visibility from a token ID to an
3549///  AST enum value.
3550static ObjCIvarDecl::AccessControl
3551TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3552  switch (ivarVisibility) {
3553  default: assert(0 && "Unknown visitibility kind");
3554  case tok::objc_private: return ObjCIvarDecl::Private;
3555  case tok::objc_public: return ObjCIvarDecl::Public;
3556  case tok::objc_protected: return ObjCIvarDecl::Protected;
3557  case tok::objc_package: return ObjCIvarDecl::Package;
3558  }
3559}
3560
3561/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3562/// in order to create an IvarDecl object for it.
3563Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3564                              SourceLocation DeclStart,
3565                              Declarator &D, ExprTy *BitfieldWidth,
3566                              tok::ObjCKeywordKind Visibility) {
3567
3568  IdentifierInfo *II = D.getIdentifier();
3569  Expr *BitWidth = (Expr*)BitfieldWidth;
3570  SourceLocation Loc = DeclStart;
3571  if (II) Loc = D.getIdentifierLoc();
3572
3573  // FIXME: Unnamed fields can be handled in various different ways, for
3574  // example, unnamed unions inject all members into the struct namespace!
3575
3576  QualType T = GetTypeForDeclarator(D, S);
3577  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3578  bool InvalidDecl = false;
3579
3580  if (BitWidth) {
3581    // 6.7.2.1p3, 6.7.2.1p4
3582    if (VerifyBitField(Loc, II, T, BitWidth)) {
3583      InvalidDecl = true;
3584      DeleteExpr(BitWidth);
3585      BitWidth = 0;
3586    }
3587  } else {
3588    // Not a bitfield.
3589
3590    // validate II.
3591
3592  }
3593
3594  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3595  // than a variably modified type.
3596  if (T->isVariablyModifiedType()) {
3597    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3598    InvalidDecl = true;
3599  }
3600
3601  // Get the visibility (access control) for this ivar.
3602  ObjCIvarDecl::AccessControl ac =
3603    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3604                                        : ObjCIvarDecl::None;
3605
3606  // Construct the decl.
3607  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3608                                             (Expr *)BitfieldWidth);
3609
3610  if (II) {
3611    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3612    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3613        && !isa<TagDecl>(PrevDecl)) {
3614      Diag(Loc, diag::err_duplicate_member) << II;
3615      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3616      NewID->setInvalidDecl();
3617    }
3618  }
3619
3620  // Process attributes attached to the ivar.
3621  ProcessDeclAttributes(NewID, D);
3622
3623  if (D.getInvalidType() || InvalidDecl)
3624    NewID->setInvalidDecl();
3625
3626  if (II) {
3627    // FIXME: When interfaces are DeclContexts, we'll need to add
3628    // these to the interface.
3629    S->AddDecl(NewID);
3630    IdResolver.AddDecl(NewID);
3631  }
3632
3633  return NewID;
3634}
3635
3636void Sema::ActOnFields(Scope* S,
3637                       SourceLocation RecLoc, DeclTy *RecDecl,
3638                       DeclTy **Fields, unsigned NumFields,
3639                       SourceLocation LBrac, SourceLocation RBrac,
3640                       AttributeList *Attr) {
3641  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3642  assert(EnclosingDecl && "missing record or interface decl");
3643
3644  // If the decl this is being inserted into is invalid, then it may be a
3645  // redeclaration or some other bogus case.  Don't try to add fields to it.
3646  if (EnclosingDecl->isInvalidDecl()) {
3647    // FIXME: Deallocate fields?
3648    return;
3649  }
3650
3651
3652  // Verify that all the fields are okay.
3653  unsigned NumNamedMembers = 0;
3654  llvm::SmallVector<FieldDecl*, 32> RecFields;
3655
3656  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3657  for (unsigned i = 0; i != NumFields; ++i) {
3658    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3659    assert(FD && "missing field decl");
3660
3661    // Get the type for the field.
3662    Type *FDTy = FD->getType().getTypePtr();
3663
3664    if (!FD->isAnonymousStructOrUnion()) {
3665      // Remember all fields written by the user.
3666      RecFields.push_back(FD);
3667    }
3668
3669    // If the field is already invalid for some reason, don't emit more
3670    // diagnostics about it.
3671    if (FD->isInvalidDecl())
3672      continue;
3673
3674    // C99 6.7.2.1p2 - A field may not be a function type.
3675    if (FDTy->isFunctionType()) {
3676      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3677        << FD->getDeclName();
3678      FD->setInvalidDecl();
3679      EnclosingDecl->setInvalidDecl();
3680      continue;
3681    }
3682    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3683    if (FDTy->isIncompleteType()) {
3684      if (!Record) {  // Incomplete ivar type is always an error.
3685        RequireCompleteType(FD->getLocation(), FD->getType(),
3686                               diag::err_field_incomplete);
3687        FD->setInvalidDecl();
3688        EnclosingDecl->setInvalidDecl();
3689        continue;
3690      }
3691      if (i != NumFields-1 ||                   // ... that the last member ...
3692          !Record->isStruct() ||  // ... of a structure ...
3693          !FDTy->isArrayType()) {         //... may have incomplete array type.
3694        RequireCompleteType(FD->getLocation(), FD->getType(),
3695                               diag::err_field_incomplete);
3696        FD->setInvalidDecl();
3697        EnclosingDecl->setInvalidDecl();
3698        continue;
3699      }
3700      if (NumNamedMembers < 1) {  //... must have more than named member ...
3701        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3702          << FD->getDeclName();
3703        FD->setInvalidDecl();
3704        EnclosingDecl->setInvalidDecl();
3705        continue;
3706      }
3707      // Okay, we have a legal flexible array member at the end of the struct.
3708      if (Record)
3709        Record->setHasFlexibleArrayMember(true);
3710    }
3711    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3712    /// field of another structure or the element of an array.
3713    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3714      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3715        // If this is a member of a union, then entire union becomes "flexible".
3716        if (Record && Record->isUnion()) {
3717          Record->setHasFlexibleArrayMember(true);
3718        } else {
3719          // If this is a struct/class and this is not the last element, reject
3720          // it.  Note that GCC supports variable sized arrays in the middle of
3721          // structures.
3722          if (i != NumFields-1)
3723            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3724              << FD->getDeclName();
3725          else {
3726            // We support flexible arrays at the end of structs in
3727            // other structs as an extension.
3728            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3729              << FD->getDeclName();
3730            if (Record)
3731              Record->setHasFlexibleArrayMember(true);
3732          }
3733        }
3734      }
3735    }
3736    /// A field cannot be an Objective-c object
3737    if (FDTy->isObjCInterfaceType()) {
3738      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3739      FD->setInvalidDecl();
3740      EnclosingDecl->setInvalidDecl();
3741      continue;
3742    }
3743    // Keep track of the number of named members.
3744    if (FD->getIdentifier())
3745      ++NumNamedMembers;
3746  }
3747
3748  // Okay, we successfully defined 'Record'.
3749  if (Record) {
3750    Record->completeDefinition(Context);
3751  } else {
3752    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3753    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3754      ID->setIVarList(ClsFields, RecFields.size(), Context);
3755      ID->setLocEnd(RBrac);
3756
3757      // Must enforce the rule that ivars in the base classes may not be
3758      // duplicates.
3759      if (ID->getSuperClass()) {
3760        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3761             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3762          ObjCIvarDecl* Ivar = (*IVI);
3763          IdentifierInfo *II = Ivar->getIdentifier();
3764          ObjCIvarDecl* prevIvar =
3765            ID->getSuperClass()->lookupInstanceVariable(II);
3766          if (prevIvar) {
3767            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3768            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3769          }
3770        }
3771      }
3772    } else if (ObjCImplementationDecl *IMPDecl =
3773                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3774      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3775      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3776      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3777    }
3778  }
3779
3780  if (Attr)
3781    ProcessDeclAttributeList(Record, Attr);
3782}
3783
3784EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3785                                          EnumConstantDecl *LastEnumConst,
3786                                          SourceLocation IdLoc,
3787                                          IdentifierInfo *Id,
3788                                          ExprArg val) {
3789  Expr *Val = (Expr *)val.get();
3790
3791  llvm::APSInt EnumVal(32);
3792  QualType EltTy;
3793  if (Val && !Val->isTypeDependent()) {
3794    // Make sure to promote the operand type to int.
3795    UsualUnaryConversions(Val);
3796    if (Val != val.get()) {
3797      val.release();
3798      val = Val;
3799    }
3800
3801    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3802    SourceLocation ExpLoc;
3803    if (!Val->isValueDependent() &&
3804        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3805      Val = 0;
3806    } else {
3807      EltTy = Val->getType();
3808    }
3809  }
3810
3811  if (!Val) {
3812    if (LastEnumConst) {
3813      // Assign the last value + 1.
3814      EnumVal = LastEnumConst->getInitVal();
3815      ++EnumVal;
3816
3817      // Check for overflow on increment.
3818      if (EnumVal < LastEnumConst->getInitVal())
3819        Diag(IdLoc, diag::warn_enum_value_overflow);
3820
3821      EltTy = LastEnumConst->getType();
3822    } else {
3823      // First value, set to zero.
3824      EltTy = Context.IntTy;
3825      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3826    }
3827  }
3828
3829  val.release();
3830  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3831                                  Val, EnumVal);
3832}
3833
3834
3835Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3836                                      DeclTy *lastEnumConst,
3837                                      SourceLocation IdLoc, IdentifierInfo *Id,
3838                                      SourceLocation EqualLoc, ExprTy *val) {
3839  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3840  EnumConstantDecl *LastEnumConst =
3841    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3842  Expr *Val = static_cast<Expr*>(val);
3843
3844  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3845  // we find one that is.
3846  S = getNonFieldDeclScope(S);
3847
3848  // Verify that there isn't already something declared with this name in this
3849  // scope.
3850  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3851  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3852    // Maybe we will complain about the shadowed template parameter.
3853    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3854    // Just pretend that we didn't see the previous declaration.
3855    PrevDecl = 0;
3856  }
3857
3858  if (PrevDecl) {
3859    // When in C++, we may get a TagDecl with the same name; in this case the
3860    // enum constant will 'hide' the tag.
3861    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3862           "Received TagDecl when not in C++!");
3863    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3864      if (isa<EnumConstantDecl>(PrevDecl))
3865        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3866      else
3867        Diag(IdLoc, diag::err_redefinition) << Id;
3868      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3869      if (Val) Val->Destroy(Context);
3870      return 0;
3871    }
3872  }
3873
3874  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
3875                                            IdLoc, Id, Owned(Val));
3876
3877  // Register this decl in the current scope stack.
3878  if (New)
3879    PushOnScopeChains(New, S);
3880
3881  return New;
3882}
3883
3884// FIXME: For consistency with ActOnFields(), we should have the parser
3885// pass in the source location for the left/right braces.
3886void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3887                         DeclTy **Elements, unsigned NumElements) {
3888  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3889  QualType EnumType = Context.getTypeDeclType(Enum);
3890
3891  // TODO: If the result value doesn't fit in an int, it must be a long or long
3892  // long value.  ISO C does not support this, but GCC does as an extension,
3893  // emit a warning.
3894  unsigned IntWidth = Context.Target.getIntWidth();
3895
3896  // Verify that all the values are okay, compute the size of the values, and
3897  // reverse the list.
3898  unsigned NumNegativeBits = 0;
3899  unsigned NumPositiveBits = 0;
3900
3901  // Keep track of whether all elements have type int.
3902  bool AllElementsInt = true;
3903
3904  for (unsigned i = 0; i != NumElements; ++i) {
3905    EnumConstantDecl *ECD =
3906      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3907    if (!ECD) continue;  // Already issued a diagnostic.
3908
3909    // If the enum value doesn't fit in an int, emit an extension warning.
3910    const llvm::APSInt &InitVal = ECD->getInitVal();
3911    assert(InitVal.getBitWidth() >= IntWidth &&
3912           "Should have promoted value to int");
3913    if (InitVal.getBitWidth() > IntWidth) {
3914      llvm::APSInt V(InitVal);
3915      V.trunc(IntWidth);
3916      V.extend(InitVal.getBitWidth());
3917      if (V != InitVal)
3918        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3919          << InitVal.toString(10);
3920    }
3921
3922    // Keep track of the size of positive and negative values.
3923    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3924      NumPositiveBits = std::max(NumPositiveBits,
3925                                 (unsigned)InitVal.getActiveBits());
3926    else
3927      NumNegativeBits = std::max(NumNegativeBits,
3928                                 (unsigned)InitVal.getMinSignedBits());
3929
3930    // Keep track of whether every enum element has type int (very commmon).
3931    if (AllElementsInt)
3932      AllElementsInt = ECD->getType() == Context.IntTy;
3933  }
3934
3935  // Figure out the type that should be used for this enum.
3936  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3937  QualType BestType;
3938  unsigned BestWidth;
3939
3940  if (NumNegativeBits) {
3941    // If there is a negative value, figure out the smallest integer type (of
3942    // int/long/longlong) that fits.
3943    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3944      BestType = Context.IntTy;
3945      BestWidth = IntWidth;
3946    } else {
3947      BestWidth = Context.Target.getLongWidth();
3948
3949      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3950        BestType = Context.LongTy;
3951      else {
3952        BestWidth = Context.Target.getLongLongWidth();
3953
3954        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3955          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3956        BestType = Context.LongLongTy;
3957      }
3958    }
3959  } else {
3960    // If there is no negative value, figure out which of uint, ulong, ulonglong
3961    // fits.
3962    if (NumPositiveBits <= IntWidth) {
3963      BestType = Context.UnsignedIntTy;
3964      BestWidth = IntWidth;
3965    } else if (NumPositiveBits <=
3966               (BestWidth = Context.Target.getLongWidth())) {
3967      BestType = Context.UnsignedLongTy;
3968    } else {
3969      BestWidth = Context.Target.getLongLongWidth();
3970      assert(NumPositiveBits <= BestWidth &&
3971             "How could an initializer get larger than ULL?");
3972      BestType = Context.UnsignedLongLongTy;
3973    }
3974  }
3975
3976  // Loop over all of the enumerator constants, changing their types to match
3977  // the type of the enum if needed.
3978  for (unsigned i = 0; i != NumElements; ++i) {
3979    EnumConstantDecl *ECD =
3980      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3981    if (!ECD) continue;  // Already issued a diagnostic.
3982
3983    // Standard C says the enumerators have int type, but we allow, as an
3984    // extension, the enumerators to be larger than int size.  If each
3985    // enumerator value fits in an int, type it as an int, otherwise type it the
3986    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3987    // that X has type 'int', not 'unsigned'.
3988    if (ECD->getType() == Context.IntTy) {
3989      // Make sure the init value is signed.
3990      llvm::APSInt IV = ECD->getInitVal();
3991      IV.setIsSigned(true);
3992      ECD->setInitVal(IV);
3993
3994      if (getLangOptions().CPlusPlus)
3995        // C++ [dcl.enum]p4: Following the closing brace of an
3996        // enum-specifier, each enumerator has the type of its
3997        // enumeration.
3998        ECD->setType(EnumType);
3999      continue;  // Already int type.
4000    }
4001
4002    // Determine whether the value fits into an int.
4003    llvm::APSInt InitVal = ECD->getInitVal();
4004    bool FitsInInt;
4005    if (InitVal.isUnsigned() || !InitVal.isNegative())
4006      FitsInInt = InitVal.getActiveBits() < IntWidth;
4007    else
4008      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4009
4010    // If it fits into an integer type, force it.  Otherwise force it to match
4011    // the enum decl type.
4012    QualType NewTy;
4013    unsigned NewWidth;
4014    bool NewSign;
4015    if (FitsInInt) {
4016      NewTy = Context.IntTy;
4017      NewWidth = IntWidth;
4018      NewSign = true;
4019    } else if (ECD->getType() == BestType) {
4020      // Already the right type!
4021      if (getLangOptions().CPlusPlus)
4022        // C++ [dcl.enum]p4: Following the closing brace of an
4023        // enum-specifier, each enumerator has the type of its
4024        // enumeration.
4025        ECD->setType(EnumType);
4026      continue;
4027    } else {
4028      NewTy = BestType;
4029      NewWidth = BestWidth;
4030      NewSign = BestType->isSignedIntegerType();
4031    }
4032
4033    // Adjust the APSInt value.
4034    InitVal.extOrTrunc(NewWidth);
4035    InitVal.setIsSigned(NewSign);
4036    ECD->setInitVal(InitVal);
4037
4038    // Adjust the Expr initializer and type.
4039    if (ECD->getInitExpr())
4040      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4041                                                      /*isLvalue=*/false));
4042    if (getLangOptions().CPlusPlus)
4043      // C++ [dcl.enum]p4: Following the closing brace of an
4044      // enum-specifier, each enumerator has the type of its
4045      // enumeration.
4046      ECD->setType(EnumType);
4047    else
4048      ECD->setType(NewTy);
4049  }
4050
4051  Enum->completeDefinition(Context, BestType);
4052}
4053
4054Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4055                                          ExprArg expr) {
4056  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4057
4058  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4059}
4060
4061