SemaDecl.cpp revision dae69ef4c59fd4b75b956796909592debd7e9bc7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else if (UnresolvedUsingTypenameDecl *UUDecl =
200               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
201    // FIXME: preserve source structure information.
202    T = Context.getDependentNameType(ETK_None,
203                                     UUDecl->getTargetNestedNameSpecifier(),
204                                     &II);
205  } else {
206    // If it's not plausibly a type, suppress diagnostics.
207    Result.suppressDiagnostics();
208    return 0;
209  }
210
211  return T.getAsOpaquePtr();
212}
213
214/// isTagName() - This method is called *for error recovery purposes only*
215/// to determine if the specified name is a valid tag name ("struct foo").  If
216/// so, this returns the TST for the tag corresponding to it (TST_enum,
217/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
218/// where the user forgot to specify the tag.
219DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
220  // Do a tag name lookup in this scope.
221  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
222  LookupName(R, S, false);
223  R.suppressDiagnostics();
224  if (R.getResultKind() == LookupResult::Found)
225    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
226      switch (TD->getTagKind()) {
227      default:         return DeclSpec::TST_unspecified;
228      case TTK_Struct: return DeclSpec::TST_struct;
229      case TTK_Union:  return DeclSpec::TST_union;
230      case TTK_Class:  return DeclSpec::TST_class;
231      case TTK_Enum:   return DeclSpec::TST_enum;
232      }
233    }
234
235  return DeclSpec::TST_unspecified;
236}
237
238bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
239                                   SourceLocation IILoc,
240                                   Scope *S,
241                                   CXXScopeSpec *SS,
242                                   TypeTy *&SuggestedType) {
243  // We don't have anything to suggest (yet).
244  SuggestedType = 0;
245
246  // There may have been a typo in the name of the type. Look up typo
247  // results, in case we have something that we can suggest.
248  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
249                      NotForRedeclaration);
250
251  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
252    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
253      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
254          !Result->isInvalidDecl()) {
255        // We found a similarly-named type or interface; suggest that.
256        if (!SS || !SS->isSet())
257          Diag(IILoc, diag::err_unknown_typename_suggest)
258            << &II << Lookup.getLookupName()
259            << FixItHint::CreateReplacement(SourceRange(IILoc),
260                                            Result->getNameAsString());
261        else if (DeclContext *DC = computeDeclContext(*SS, false))
262          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
263            << &II << DC << Lookup.getLookupName() << SS->getRange()
264            << FixItHint::CreateReplacement(SourceRange(IILoc),
265                                            Result->getNameAsString());
266        else
267          llvm_unreachable("could not have corrected a typo here");
268
269        Diag(Result->getLocation(), diag::note_previous_decl)
270          << Result->getDeclName();
271
272        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
273        return true;
274      }
275    } else if (Lookup.empty()) {
276      // We corrected to a keyword.
277      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
278      Diag(IILoc, diag::err_unknown_typename_suggest)
279        << &II << Corrected;
280      return true;
281    }
282  }
283
284  if (getLangOptions().CPlusPlus) {
285    // See if II is a class template that the user forgot to pass arguments to.
286    UnqualifiedId Name;
287    Name.setIdentifier(&II, IILoc);
288    CXXScopeSpec EmptySS;
289    TemplateTy TemplateResult;
290    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
291        == TNK_Type_template) {
292      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
293      Diag(IILoc, diag::err_template_missing_args) << TplName;
294      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
295        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
296          << TplDecl->getTemplateParameters()->getSourceRange();
297      }
298      return true;
299    }
300  }
301
302  // FIXME: Should we move the logic that tries to recover from a missing tag
303  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
304
305  if (!SS || (!SS->isSet() && !SS->isInvalid()))
306    Diag(IILoc, diag::err_unknown_typename) << &II;
307  else if (DeclContext *DC = computeDeclContext(*SS, false))
308    Diag(IILoc, diag::err_typename_nested_not_found)
309      << &II << DC << SS->getRange();
310  else if (isDependentScopeSpecifier(*SS)) {
311    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
312      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
313      << SourceRange(SS->getRange().getBegin(), IILoc)
314      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
315    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
316  } else {
317    assert(SS && SS->isInvalid() &&
318           "Invalid scope specifier has already been diagnosed");
319  }
320
321  return true;
322}
323
324// Determines the context to return to after temporarily entering a
325// context.  This depends in an unnecessarily complicated way on the
326// exact ordering of callbacks from the parser.
327DeclContext *Sema::getContainingDC(DeclContext *DC) {
328
329  // Functions defined inline within classes aren't parsed until we've
330  // finished parsing the top-level class, so the top-level class is
331  // the context we'll need to return to.
332  if (isa<FunctionDecl>(DC)) {
333    DC = DC->getLexicalParent();
334
335    // A function not defined within a class will always return to its
336    // lexical context.
337    if (!isa<CXXRecordDecl>(DC))
338      return DC;
339
340    // A C++ inline method/friend is parsed *after* the topmost class
341    // it was declared in is fully parsed ("complete");  the topmost
342    // class is the context we need to return to.
343    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
344      DC = RD;
345
346    // Return the declaration context of the topmost class the inline method is
347    // declared in.
348    return DC;
349  }
350
351  if (isa<ObjCMethodDecl>(DC))
352    return Context.getTranslationUnitDecl();
353
354  return DC->getLexicalParent();
355}
356
357void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
358  assert(getContainingDC(DC) == CurContext &&
359      "The next DeclContext should be lexically contained in the current one.");
360  CurContext = DC;
361  S->setEntity(DC);
362}
363
364void Sema::PopDeclContext() {
365  assert(CurContext && "DeclContext imbalance!");
366
367  CurContext = getContainingDC(CurContext);
368}
369
370/// EnterDeclaratorContext - Used when we must lookup names in the context
371/// of a declarator's nested name specifier.
372///
373void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
374  // C++0x [basic.lookup.unqual]p13:
375  //   A name used in the definition of a static data member of class
376  //   X (after the qualified-id of the static member) is looked up as
377  //   if the name was used in a member function of X.
378  // C++0x [basic.lookup.unqual]p14:
379  //   If a variable member of a namespace is defined outside of the
380  //   scope of its namespace then any name used in the definition of
381  //   the variable member (after the declarator-id) is looked up as
382  //   if the definition of the variable member occurred in its
383  //   namespace.
384  // Both of these imply that we should push a scope whose context
385  // is the semantic context of the declaration.  We can't use
386  // PushDeclContext here because that context is not necessarily
387  // lexically contained in the current context.  Fortunately,
388  // the containing scope should have the appropriate information.
389
390  assert(!S->getEntity() && "scope already has entity");
391
392#ifndef NDEBUG
393  Scope *Ancestor = S->getParent();
394  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
395  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
396#endif
397
398  CurContext = DC;
399  S->setEntity(DC);
400}
401
402void Sema::ExitDeclaratorContext(Scope *S) {
403  assert(S->getEntity() == CurContext && "Context imbalance!");
404
405  // Switch back to the lexical context.  The safety of this is
406  // enforced by an assert in EnterDeclaratorContext.
407  Scope *Ancestor = S->getParent();
408  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
409  CurContext = (DeclContext*) Ancestor->getEntity();
410
411  // We don't need to do anything with the scope, which is going to
412  // disappear.
413}
414
415/// \brief Determine whether we allow overloading of the function
416/// PrevDecl with another declaration.
417///
418/// This routine determines whether overloading is possible, not
419/// whether some new function is actually an overload. It will return
420/// true in C++ (where we can always provide overloads) or, as an
421/// extension, in C when the previous function is already an
422/// overloaded function declaration or has the "overloadable"
423/// attribute.
424static bool AllowOverloadingOfFunction(LookupResult &Previous,
425                                       ASTContext &Context) {
426  if (Context.getLangOptions().CPlusPlus)
427    return true;
428
429  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
430    return true;
431
432  return (Previous.getResultKind() == LookupResult::Found
433          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
434}
435
436/// Add this decl to the scope shadowed decl chains.
437void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
438  // Move up the scope chain until we find the nearest enclosing
439  // non-transparent context. The declaration will be introduced into this
440  // scope.
441  while (S->getEntity() &&
442         ((DeclContext *)S->getEntity())->isTransparentContext())
443    S = S->getParent();
444
445  // Add scoped declarations into their context, so that they can be
446  // found later. Declarations without a context won't be inserted
447  // into any context.
448  if (AddToContext)
449    CurContext->addDecl(D);
450
451  // Out-of-line definitions shouldn't be pushed into scope in C++.
452  // Out-of-line variable and function definitions shouldn't even in C.
453  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
454      D->isOutOfLine())
455    return;
456
457  // Template instantiations should also not be pushed into scope.
458  if (isa<FunctionDecl>(D) &&
459      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
460    return;
461
462  // If this replaces anything in the current scope,
463  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
464                               IEnd = IdResolver.end();
465  for (; I != IEnd; ++I) {
466    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
467      S->RemoveDecl(DeclPtrTy::make(*I));
468      IdResolver.RemoveDecl(*I);
469
470      // Should only need to replace one decl.
471      break;
472    }
473  }
474
475  S->AddDecl(DeclPtrTy::make(D));
476  IdResolver.AddDecl(D);
477}
478
479bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
480  return IdResolver.isDeclInScope(D, Ctx, Context, S);
481}
482
483static bool isOutOfScopePreviousDeclaration(NamedDecl *,
484                                            DeclContext*,
485                                            ASTContext&);
486
487/// Filters out lookup results that don't fall within the given scope
488/// as determined by isDeclInScope.
489static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
490                                 DeclContext *Ctx, Scope *S,
491                                 bool ConsiderLinkage) {
492  LookupResult::Filter F = R.makeFilter();
493  while (F.hasNext()) {
494    NamedDecl *D = F.next();
495
496    if (SemaRef.isDeclInScope(D, Ctx, S))
497      continue;
498
499    if (ConsiderLinkage &&
500        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
501      continue;
502
503    F.erase();
504  }
505
506  F.done();
507}
508
509static bool isUsingDecl(NamedDecl *D) {
510  return isa<UsingShadowDecl>(D) ||
511         isa<UnresolvedUsingTypenameDecl>(D) ||
512         isa<UnresolvedUsingValueDecl>(D);
513}
514
515/// Removes using shadow declarations from the lookup results.
516static void RemoveUsingDecls(LookupResult &R) {
517  LookupResult::Filter F = R.makeFilter();
518  while (F.hasNext())
519    if (isUsingDecl(F.next()))
520      F.erase();
521
522  F.done();
523}
524
525static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
526  if (D->isInvalidDecl())
527    return false;
528
529  if (D->isUsed() || D->hasAttr<UnusedAttr>())
530    return false;
531
532  // White-list anything that isn't a local variable.
533  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
534      !D->getDeclContext()->isFunctionOrMethod())
535    return false;
536
537  // Types of valid local variables should be complete, so this should succeed.
538  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
539
540    // White-list anything with an __attribute__((unused)) type.
541    QualType Ty = VD->getType();
542
543    // Only look at the outermost level of typedef.
544    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
545      if (TT->getDecl()->hasAttr<UnusedAttr>())
546        return false;
547    }
548
549    // If we failed to complete the type for some reason, or if the type is
550    // dependent, don't diagnose the variable.
551    if (Ty->isIncompleteType() || Ty->isDependentType())
552      return false;
553
554    if (const TagType *TT = Ty->getAs<TagType>()) {
555      const TagDecl *Tag = TT->getDecl();
556      if (Tag->hasAttr<UnusedAttr>())
557        return false;
558
559      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
560        // FIXME: Checking for the presence of a user-declared constructor
561        // isn't completely accurate; we'd prefer to check that the initializer
562        // has no side effects.
563        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
564          return false;
565      }
566    }
567
568    // TODO: __attribute__((unused)) templates?
569  }
570
571  return true;
572}
573
574void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
575  if (!ShouldDiagnoseUnusedDecl(D))
576    return;
577
578  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
579    Diag(D->getLocation(), diag::warn_unused_exception_param)
580    << D->getDeclName();
581  else
582    Diag(D->getLocation(), diag::warn_unused_variable)
583    << D->getDeclName();
584}
585
586void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
587  if (S->decl_empty()) return;
588  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
589         "Scope shouldn't contain decls!");
590
591  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
592       I != E; ++I) {
593    Decl *TmpD = (*I).getAs<Decl>();
594    assert(TmpD && "This decl didn't get pushed??");
595
596    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
597    NamedDecl *D = cast<NamedDecl>(TmpD);
598
599    if (!D->getDeclName()) continue;
600
601    // Diagnose unused variables in this scope.
602    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
603      DiagnoseUnusedDecl(D);
604
605    // Remove this name from our lexical scope.
606    IdResolver.RemoveDecl(D);
607  }
608}
609
610/// \brief Look for an Objective-C class in the translation unit.
611///
612/// \param Id The name of the Objective-C class we're looking for. If
613/// typo-correction fixes this name, the Id will be updated
614/// to the fixed name.
615///
616/// \param IdLoc The location of the name in the translation unit.
617///
618/// \param TypoCorrection If true, this routine will attempt typo correction
619/// if there is no class with the given name.
620///
621/// \returns The declaration of the named Objective-C class, or NULL if the
622/// class could not be found.
623ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
624                                              SourceLocation IdLoc,
625                                              bool TypoCorrection) {
626  // The third "scope" argument is 0 since we aren't enabling lazy built-in
627  // creation from this context.
628  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
629
630  if (!IDecl && TypoCorrection) {
631    // Perform typo correction at the given location, but only if we
632    // find an Objective-C class name.
633    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
634    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
635        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
636      Diag(IdLoc, diag::err_undef_interface_suggest)
637        << Id << IDecl->getDeclName()
638        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
639      Diag(IDecl->getLocation(), diag::note_previous_decl)
640        << IDecl->getDeclName();
641
642      Id = IDecl->getIdentifier();
643    }
644  }
645
646  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
647}
648
649/// getNonFieldDeclScope - Retrieves the innermost scope, starting
650/// from S, where a non-field would be declared. This routine copes
651/// with the difference between C and C++ scoping rules in structs and
652/// unions. For example, the following code is well-formed in C but
653/// ill-formed in C++:
654/// @code
655/// struct S6 {
656///   enum { BAR } e;
657/// };
658///
659/// void test_S6() {
660///   struct S6 a;
661///   a.e = BAR;
662/// }
663/// @endcode
664/// For the declaration of BAR, this routine will return a different
665/// scope. The scope S will be the scope of the unnamed enumeration
666/// within S6. In C++, this routine will return the scope associated
667/// with S6, because the enumeration's scope is a transparent
668/// context but structures can contain non-field names. In C, this
669/// routine will return the translation unit scope, since the
670/// enumeration's scope is a transparent context and structures cannot
671/// contain non-field names.
672Scope *Sema::getNonFieldDeclScope(Scope *S) {
673  while (((S->getFlags() & Scope::DeclScope) == 0) ||
674         (S->getEntity() &&
675          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
676         (S->isClassScope() && !getLangOptions().CPlusPlus))
677    S = S->getParent();
678  return S;
679}
680
681void Sema::InitBuiltinVaListType() {
682  if (!Context.getBuiltinVaListType().isNull())
683    return;
684
685  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
686  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
687                                       LookupOrdinaryName, ForRedeclaration);
688  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
689  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
690}
691
692/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
693/// file scope.  lazily create a decl for it. ForRedeclaration is true
694/// if we're creating this built-in in anticipation of redeclaring the
695/// built-in.
696NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
697                                     Scope *S, bool ForRedeclaration,
698                                     SourceLocation Loc) {
699  Builtin::ID BID = (Builtin::ID)bid;
700
701  if (Context.BuiltinInfo.hasVAListUse(BID))
702    InitBuiltinVaListType();
703
704  ASTContext::GetBuiltinTypeError Error;
705  QualType R = Context.GetBuiltinType(BID, Error);
706  switch (Error) {
707  case ASTContext::GE_None:
708    // Okay
709    break;
710
711  case ASTContext::GE_Missing_stdio:
712    if (ForRedeclaration)
713      Diag(Loc, diag::err_implicit_decl_requires_stdio)
714        << Context.BuiltinInfo.GetName(BID);
715    return 0;
716
717  case ASTContext::GE_Missing_setjmp:
718    if (ForRedeclaration)
719      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
720        << Context.BuiltinInfo.GetName(BID);
721    return 0;
722  }
723
724  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
725    Diag(Loc, diag::ext_implicit_lib_function_decl)
726      << Context.BuiltinInfo.GetName(BID)
727      << R;
728    if (Context.BuiltinInfo.getHeaderName(BID) &&
729        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
730          != Diagnostic::Ignored)
731      Diag(Loc, diag::note_please_include_header)
732        << Context.BuiltinInfo.getHeaderName(BID)
733        << Context.BuiltinInfo.GetName(BID);
734  }
735
736  FunctionDecl *New = FunctionDecl::Create(Context,
737                                           Context.getTranslationUnitDecl(),
738                                           Loc, II, R, /*TInfo=*/0,
739                                           FunctionDecl::Extern,
740                                           FunctionDecl::None, false,
741                                           /*hasPrototype=*/true);
742  New->setImplicit();
743
744  // Create Decl objects for each parameter, adding them to the
745  // FunctionDecl.
746  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
747    llvm::SmallVector<ParmVarDecl*, 16> Params;
748    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
749      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
750                                           FT->getArgType(i), /*TInfo=*/0,
751                                           VarDecl::None, VarDecl::None, 0));
752    New->setParams(Params.data(), Params.size());
753  }
754
755  AddKnownFunctionAttributes(New);
756
757  // TUScope is the translation-unit scope to insert this function into.
758  // FIXME: This is hideous. We need to teach PushOnScopeChains to
759  // relate Scopes to DeclContexts, and probably eliminate CurContext
760  // entirely, but we're not there yet.
761  DeclContext *SavedContext = CurContext;
762  CurContext = Context.getTranslationUnitDecl();
763  PushOnScopeChains(New, TUScope);
764  CurContext = SavedContext;
765  return New;
766}
767
768/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
769/// same name and scope as a previous declaration 'Old'.  Figure out
770/// how to resolve this situation, merging decls or emitting
771/// diagnostics as appropriate. If there was an error, set New to be invalid.
772///
773void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
774  // If the new decl is known invalid already, don't bother doing any
775  // merging checks.
776  if (New->isInvalidDecl()) return;
777
778  // Allow multiple definitions for ObjC built-in typedefs.
779  // FIXME: Verify the underlying types are equivalent!
780  if (getLangOptions().ObjC1) {
781    const IdentifierInfo *TypeID = New->getIdentifier();
782    switch (TypeID->getLength()) {
783    default: break;
784    case 2:
785      if (!TypeID->isStr("id"))
786        break;
787      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
788      // Install the built-in type for 'id', ignoring the current definition.
789      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
790      return;
791    case 5:
792      if (!TypeID->isStr("Class"))
793        break;
794      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
795      // Install the built-in type for 'Class', ignoring the current definition.
796      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
797      return;
798    case 3:
799      if (!TypeID->isStr("SEL"))
800        break;
801      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
802      // Install the built-in type for 'SEL', ignoring the current definition.
803      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
804      return;
805    case 8:
806      if (!TypeID->isStr("Protocol"))
807        break;
808      Context.setObjCProtoType(New->getUnderlyingType());
809      return;
810    }
811    // Fall through - the typedef name was not a builtin type.
812  }
813
814  // Verify the old decl was also a type.
815  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
816  if (!Old) {
817    Diag(New->getLocation(), diag::err_redefinition_different_kind)
818      << New->getDeclName();
819
820    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
821    if (OldD->getLocation().isValid())
822      Diag(OldD->getLocation(), diag::note_previous_definition);
823
824    return New->setInvalidDecl();
825  }
826
827  // If the old declaration is invalid, just give up here.
828  if (Old->isInvalidDecl())
829    return New->setInvalidDecl();
830
831  // Determine the "old" type we'll use for checking and diagnostics.
832  QualType OldType;
833  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
834    OldType = OldTypedef->getUnderlyingType();
835  else
836    OldType = Context.getTypeDeclType(Old);
837
838  // If the typedef types are not identical, reject them in all languages and
839  // with any extensions enabled.
840
841  if (OldType != New->getUnderlyingType() &&
842      Context.getCanonicalType(OldType) !=
843      Context.getCanonicalType(New->getUnderlyingType())) {
844    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
845      << New->getUnderlyingType() << OldType;
846    if (Old->getLocation().isValid())
847      Diag(Old->getLocation(), diag::note_previous_definition);
848    return New->setInvalidDecl();
849  }
850
851  // The types match.  Link up the redeclaration chain if the old
852  // declaration was a typedef.
853  // FIXME: this is a potential source of wierdness if the type
854  // spellings don't match exactly.
855  if (isa<TypedefDecl>(Old))
856    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
857
858  if (getLangOptions().Microsoft)
859    return;
860
861  if (getLangOptions().CPlusPlus) {
862    // C++ [dcl.typedef]p2:
863    //   In a given non-class scope, a typedef specifier can be used to
864    //   redefine the name of any type declared in that scope to refer
865    //   to the type to which it already refers.
866    if (!isa<CXXRecordDecl>(CurContext))
867      return;
868
869    // C++0x [dcl.typedef]p4:
870    //   In a given class scope, a typedef specifier can be used to redefine
871    //   any class-name declared in that scope that is not also a typedef-name
872    //   to refer to the type to which it already refers.
873    //
874    // This wording came in via DR424, which was a correction to the
875    // wording in DR56, which accidentally banned code like:
876    //
877    //   struct S {
878    //     typedef struct A { } A;
879    //   };
880    //
881    // in the C++03 standard. We implement the C++0x semantics, which
882    // allow the above but disallow
883    //
884    //   struct S {
885    //     typedef int I;
886    //     typedef int I;
887    //   };
888    //
889    // since that was the intent of DR56.
890    if (!isa<TypedefDecl >(Old))
891      return;
892
893    Diag(New->getLocation(), diag::err_redefinition)
894      << New->getDeclName();
895    Diag(Old->getLocation(), diag::note_previous_definition);
896    return New->setInvalidDecl();
897  }
898
899  // If we have a redefinition of a typedef in C, emit a warning.  This warning
900  // is normally mapped to an error, but can be controlled with
901  // -Wtypedef-redefinition.  If either the original or the redefinition is
902  // in a system header, don't emit this for compatibility with GCC.
903  if (getDiagnostics().getSuppressSystemWarnings() &&
904      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
905       Context.getSourceManager().isInSystemHeader(New->getLocation())))
906    return;
907
908  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
909    << New->getDeclName();
910  Diag(Old->getLocation(), diag::note_previous_definition);
911  return;
912}
913
914/// DeclhasAttr - returns true if decl Declaration already has the target
915/// attribute.
916static bool
917DeclHasAttr(const Decl *decl, const Attr *target) {
918  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
919    if (attr->getKind() == target->getKind())
920      return true;
921
922  return false;
923}
924
925/// MergeAttributes - append attributes from the Old decl to the New one.
926static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
927  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
928    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
929      Attr *NewAttr = attr->clone(C);
930      NewAttr->setInherited(true);
931      New->addAttr(NewAttr);
932    }
933  }
934}
935
936/// Used in MergeFunctionDecl to keep track of function parameters in
937/// C.
938struct GNUCompatibleParamWarning {
939  ParmVarDecl *OldParm;
940  ParmVarDecl *NewParm;
941  QualType PromotedType;
942};
943
944
945/// getSpecialMember - get the special member enum for a method.
946Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
947  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
948    if (Ctor->isCopyConstructor())
949      return Sema::CXXCopyConstructor;
950
951    return Sema::CXXConstructor;
952  }
953
954  if (isa<CXXDestructorDecl>(MD))
955    return Sema::CXXDestructor;
956
957  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
958  return Sema::CXXCopyAssignment;
959}
960
961/// canREdefineFunction - checks if a function can be redefined. Currently,
962/// only extern inline functions can be redefined, and even then only in
963/// GNU89 mode.
964static bool canRedefineFunction(const FunctionDecl *FD,
965                                const LangOptions& LangOpts) {
966  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
967          FD->isInlineSpecified() &&
968          FD->getStorageClass() == FunctionDecl::Extern);
969}
970
971/// MergeFunctionDecl - We just parsed a function 'New' from
972/// declarator D which has the same name and scope as a previous
973/// declaration 'Old'.  Figure out how to resolve this situation,
974/// merging decls or emitting diagnostics as appropriate.
975///
976/// In C++, New and Old must be declarations that are not
977/// overloaded. Use IsOverload to determine whether New and Old are
978/// overloaded, and to select the Old declaration that New should be
979/// merged with.
980///
981/// Returns true if there was an error, false otherwise.
982bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
983  // Verify the old decl was also a function.
984  FunctionDecl *Old = 0;
985  if (FunctionTemplateDecl *OldFunctionTemplate
986        = dyn_cast<FunctionTemplateDecl>(OldD))
987    Old = OldFunctionTemplate->getTemplatedDecl();
988  else
989    Old = dyn_cast<FunctionDecl>(OldD);
990  if (!Old) {
991    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
992      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
993      Diag(Shadow->getTargetDecl()->getLocation(),
994           diag::note_using_decl_target);
995      Diag(Shadow->getUsingDecl()->getLocation(),
996           diag::note_using_decl) << 0;
997      return true;
998    }
999
1000    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1001      << New->getDeclName();
1002    Diag(OldD->getLocation(), diag::note_previous_definition);
1003    return true;
1004  }
1005
1006  // Determine whether the previous declaration was a definition,
1007  // implicit declaration, or a declaration.
1008  diag::kind PrevDiag;
1009  if (Old->isThisDeclarationADefinition())
1010    PrevDiag = diag::note_previous_definition;
1011  else if (Old->isImplicit())
1012    PrevDiag = diag::note_previous_implicit_declaration;
1013  else
1014    PrevDiag = diag::note_previous_declaration;
1015
1016  QualType OldQType = Context.getCanonicalType(Old->getType());
1017  QualType NewQType = Context.getCanonicalType(New->getType());
1018
1019  // Don't complain about this if we're in GNU89 mode and the old function
1020  // is an extern inline function.
1021  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1022      New->getStorageClass() == FunctionDecl::Static &&
1023      Old->getStorageClass() != FunctionDecl::Static &&
1024      !canRedefineFunction(Old, getLangOptions())) {
1025    Diag(New->getLocation(), diag::err_static_non_static)
1026      << New;
1027    Diag(Old->getLocation(), PrevDiag);
1028    return true;
1029  }
1030
1031  // If a function is first declared with a calling convention, but is
1032  // later declared or defined without one, the second decl assumes the
1033  // calling convention of the first.
1034  //
1035  // For the new decl, we have to look at the NON-canonical type to tell the
1036  // difference between a function that really doesn't have a calling
1037  // convention and one that is declared cdecl. That's because in
1038  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1039  // because it is the default calling convention.
1040  //
1041  // Note also that we DO NOT return at this point, because we still have
1042  // other tests to run.
1043  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1044  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1045  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1046  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1047  if (OldTypeInfo.getCC() != CC_Default &&
1048      NewTypeInfo.getCC() == CC_Default) {
1049    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1050    New->setType(NewQType);
1051    NewQType = Context.getCanonicalType(NewQType);
1052  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1053                                     NewTypeInfo.getCC())) {
1054    // Calling conventions really aren't compatible, so complain.
1055    Diag(New->getLocation(), diag::err_cconv_change)
1056      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1057      << (OldTypeInfo.getCC() == CC_Default)
1058      << (OldTypeInfo.getCC() == CC_Default ? "" :
1059          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1060    Diag(Old->getLocation(), diag::note_previous_declaration);
1061    return true;
1062  }
1063
1064  // FIXME: diagnose the other way around?
1065  if (OldType->getNoReturnAttr() &&
1066      !NewType->getNoReturnAttr()) {
1067    NewQType = Context.getNoReturnType(NewQType);
1068    New->setType(NewQType);
1069    assert(NewQType.isCanonical());
1070  }
1071
1072  if (getLangOptions().CPlusPlus) {
1073    // (C++98 13.1p2):
1074    //   Certain function declarations cannot be overloaded:
1075    //     -- Function declarations that differ only in the return type
1076    //        cannot be overloaded.
1077    QualType OldReturnType
1078      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1079    QualType NewReturnType
1080      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1081    QualType ResQT;
1082    if (OldReturnType != NewReturnType) {
1083      if (NewReturnType->isObjCObjectPointerType()
1084          && OldReturnType->isObjCObjectPointerType())
1085        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1086      if (ResQT.isNull()) {
1087        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1088        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1089        return true;
1090      }
1091      else
1092        NewQType = ResQT;
1093    }
1094
1095    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1096    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1097    if (OldMethod && NewMethod) {
1098      // Preserve triviality.
1099      NewMethod->setTrivial(OldMethod->isTrivial());
1100
1101      bool isFriend = NewMethod->getFriendObjectKind();
1102
1103      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1104        //    -- Member function declarations with the same name and the
1105        //       same parameter types cannot be overloaded if any of them
1106        //       is a static member function declaration.
1107        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1108          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1109          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1110          return true;
1111        }
1112
1113        // C++ [class.mem]p1:
1114        //   [...] A member shall not be declared twice in the
1115        //   member-specification, except that a nested class or member
1116        //   class template can be declared and then later defined.
1117        unsigned NewDiag;
1118        if (isa<CXXConstructorDecl>(OldMethod))
1119          NewDiag = diag::err_constructor_redeclared;
1120        else if (isa<CXXDestructorDecl>(NewMethod))
1121          NewDiag = diag::err_destructor_redeclared;
1122        else if (isa<CXXConversionDecl>(NewMethod))
1123          NewDiag = diag::err_conv_function_redeclared;
1124        else
1125          NewDiag = diag::err_member_redeclared;
1126
1127        Diag(New->getLocation(), NewDiag);
1128        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1129
1130      // Complain if this is an explicit declaration of a special
1131      // member that was initially declared implicitly.
1132      //
1133      // As an exception, it's okay to befriend such methods in order
1134      // to permit the implicit constructor/destructor/operator calls.
1135      } else if (OldMethod->isImplicit()) {
1136        if (isFriend) {
1137          NewMethod->setImplicit();
1138        } else {
1139          Diag(NewMethod->getLocation(),
1140               diag::err_definition_of_implicitly_declared_member)
1141            << New << getSpecialMember(OldMethod);
1142          return true;
1143        }
1144      }
1145    }
1146
1147    // (C++98 8.3.5p3):
1148    //   All declarations for a function shall agree exactly in both the
1149    //   return type and the parameter-type-list.
1150    // attributes should be ignored when comparing.
1151    if (Context.getNoReturnType(OldQType, false) ==
1152        Context.getNoReturnType(NewQType, false))
1153      return MergeCompatibleFunctionDecls(New, Old);
1154
1155    // Fall through for conflicting redeclarations and redefinitions.
1156  }
1157
1158  // C: Function types need to be compatible, not identical. This handles
1159  // duplicate function decls like "void f(int); void f(enum X);" properly.
1160  if (!getLangOptions().CPlusPlus &&
1161      Context.typesAreCompatible(OldQType, NewQType)) {
1162    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1163    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1164    const FunctionProtoType *OldProto = 0;
1165    if (isa<FunctionNoProtoType>(NewFuncType) &&
1166        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1167      // The old declaration provided a function prototype, but the
1168      // new declaration does not. Merge in the prototype.
1169      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1170      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1171                                                 OldProto->arg_type_end());
1172      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1173                                         ParamTypes.data(), ParamTypes.size(),
1174                                         OldProto->isVariadic(),
1175                                         OldProto->getTypeQuals(),
1176                                         false, false, 0, 0,
1177                                         OldProto->getExtInfo());
1178      New->setType(NewQType);
1179      New->setHasInheritedPrototype();
1180
1181      // Synthesize a parameter for each argument type.
1182      llvm::SmallVector<ParmVarDecl*, 16> Params;
1183      for (FunctionProtoType::arg_type_iterator
1184             ParamType = OldProto->arg_type_begin(),
1185             ParamEnd = OldProto->arg_type_end();
1186           ParamType != ParamEnd; ++ParamType) {
1187        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1188                                                 SourceLocation(), 0,
1189                                                 *ParamType, /*TInfo=*/0,
1190                                                 VarDecl::None, VarDecl::None,
1191                                                 0);
1192        Param->setImplicit();
1193        Params.push_back(Param);
1194      }
1195
1196      New->setParams(Params.data(), Params.size());
1197    }
1198
1199    return MergeCompatibleFunctionDecls(New, Old);
1200  }
1201
1202  // GNU C permits a K&R definition to follow a prototype declaration
1203  // if the declared types of the parameters in the K&R definition
1204  // match the types in the prototype declaration, even when the
1205  // promoted types of the parameters from the K&R definition differ
1206  // from the types in the prototype. GCC then keeps the types from
1207  // the prototype.
1208  //
1209  // If a variadic prototype is followed by a non-variadic K&R definition,
1210  // the K&R definition becomes variadic.  This is sort of an edge case, but
1211  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1212  // C99 6.9.1p8.
1213  if (!getLangOptions().CPlusPlus &&
1214      Old->hasPrototype() && !New->hasPrototype() &&
1215      New->getType()->getAs<FunctionProtoType>() &&
1216      Old->getNumParams() == New->getNumParams()) {
1217    llvm::SmallVector<QualType, 16> ArgTypes;
1218    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1219    const FunctionProtoType *OldProto
1220      = Old->getType()->getAs<FunctionProtoType>();
1221    const FunctionProtoType *NewProto
1222      = New->getType()->getAs<FunctionProtoType>();
1223
1224    // Determine whether this is the GNU C extension.
1225    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1226                                               NewProto->getResultType());
1227    bool LooseCompatible = !MergedReturn.isNull();
1228    for (unsigned Idx = 0, End = Old->getNumParams();
1229         LooseCompatible && Idx != End; ++Idx) {
1230      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1231      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1232      if (Context.typesAreCompatible(OldParm->getType(),
1233                                     NewProto->getArgType(Idx))) {
1234        ArgTypes.push_back(NewParm->getType());
1235      } else if (Context.typesAreCompatible(OldParm->getType(),
1236                                            NewParm->getType())) {
1237        GNUCompatibleParamWarning Warn
1238          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1239        Warnings.push_back(Warn);
1240        ArgTypes.push_back(NewParm->getType());
1241      } else
1242        LooseCompatible = false;
1243    }
1244
1245    if (LooseCompatible) {
1246      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1247        Diag(Warnings[Warn].NewParm->getLocation(),
1248             diag::ext_param_promoted_not_compatible_with_prototype)
1249          << Warnings[Warn].PromotedType
1250          << Warnings[Warn].OldParm->getType();
1251        Diag(Warnings[Warn].OldParm->getLocation(),
1252             diag::note_previous_declaration);
1253      }
1254
1255      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1256                                           ArgTypes.size(),
1257                                           OldProto->isVariadic(), 0,
1258                                           false, false, 0, 0,
1259                                           OldProto->getExtInfo()));
1260      return MergeCompatibleFunctionDecls(New, Old);
1261    }
1262
1263    // Fall through to diagnose conflicting types.
1264  }
1265
1266  // A function that has already been declared has been redeclared or defined
1267  // with a different type- show appropriate diagnostic
1268  if (unsigned BuiltinID = Old->getBuiltinID()) {
1269    // The user has declared a builtin function with an incompatible
1270    // signature.
1271    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1272      // The function the user is redeclaring is a library-defined
1273      // function like 'malloc' or 'printf'. Warn about the
1274      // redeclaration, then pretend that we don't know about this
1275      // library built-in.
1276      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1277      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1278        << Old << Old->getType();
1279      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1280      Old->setInvalidDecl();
1281      return false;
1282    }
1283
1284    PrevDiag = diag::note_previous_builtin_declaration;
1285  }
1286
1287  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1288  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1289  return true;
1290}
1291
1292/// \brief Completes the merge of two function declarations that are
1293/// known to be compatible.
1294///
1295/// This routine handles the merging of attributes and other
1296/// properties of function declarations form the old declaration to
1297/// the new declaration, once we know that New is in fact a
1298/// redeclaration of Old.
1299///
1300/// \returns false
1301bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1302  // Merge the attributes
1303  MergeAttributes(New, Old, Context);
1304
1305  // Merge the storage class.
1306  if (Old->getStorageClass() != FunctionDecl::Extern &&
1307      Old->getStorageClass() != FunctionDecl::None)
1308    New->setStorageClass(Old->getStorageClass());
1309
1310  // Merge "pure" flag.
1311  if (Old->isPure())
1312    New->setPure();
1313
1314  // Merge the "deleted" flag.
1315  if (Old->isDeleted())
1316    New->setDeleted();
1317
1318  if (getLangOptions().CPlusPlus)
1319    return MergeCXXFunctionDecl(New, Old);
1320
1321  return false;
1322}
1323
1324/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1325/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1326/// situation, merging decls or emitting diagnostics as appropriate.
1327///
1328/// Tentative definition rules (C99 6.9.2p2) are checked by
1329/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1330/// definitions here, since the initializer hasn't been attached.
1331///
1332void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1333  // If the new decl is already invalid, don't do any other checking.
1334  if (New->isInvalidDecl())
1335    return;
1336
1337  // Verify the old decl was also a variable.
1338  VarDecl *Old = 0;
1339  if (!Previous.isSingleResult() ||
1340      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1341    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1342      << New->getDeclName();
1343    Diag(Previous.getRepresentativeDecl()->getLocation(),
1344         diag::note_previous_definition);
1345    return New->setInvalidDecl();
1346  }
1347
1348  MergeAttributes(New, Old, Context);
1349
1350  // Merge the types
1351  QualType MergedT;
1352  if (getLangOptions().CPlusPlus) {
1353    if (Context.hasSameType(New->getType(), Old->getType()))
1354      MergedT = New->getType();
1355    // C++ [basic.link]p10:
1356    //   [...] the types specified by all declarations referring to a given
1357    //   object or function shall be identical, except that declarations for an
1358    //   array object can specify array types that differ by the presence or
1359    //   absence of a major array bound (8.3.4).
1360    else if (Old->getType()->isIncompleteArrayType() &&
1361             New->getType()->isArrayType()) {
1362      CanQual<ArrayType> OldArray
1363        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1364      CanQual<ArrayType> NewArray
1365        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1366      if (OldArray->getElementType() == NewArray->getElementType())
1367        MergedT = New->getType();
1368    } else if (Old->getType()->isArrayType() &&
1369             New->getType()->isIncompleteArrayType()) {
1370      CanQual<ArrayType> OldArray
1371        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1372      CanQual<ArrayType> NewArray
1373        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1374      if (OldArray->getElementType() == NewArray->getElementType())
1375        MergedT = Old->getType();
1376    } else if (New->getType()->isObjCObjectPointerType()
1377               && Old->getType()->isObjCObjectPointerType()) {
1378        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1379    }
1380  } else {
1381    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1382  }
1383  if (MergedT.isNull()) {
1384    Diag(New->getLocation(), diag::err_redefinition_different_type)
1385      << New->getDeclName();
1386    Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389  New->setType(MergedT);
1390
1391  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1392  if (New->getStorageClass() == VarDecl::Static &&
1393      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1394    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1395    Diag(Old->getLocation(), diag::note_previous_definition);
1396    return New->setInvalidDecl();
1397  }
1398  // C99 6.2.2p4:
1399  //   For an identifier declared with the storage-class specifier
1400  //   extern in a scope in which a prior declaration of that
1401  //   identifier is visible,23) if the prior declaration specifies
1402  //   internal or external linkage, the linkage of the identifier at
1403  //   the later declaration is the same as the linkage specified at
1404  //   the prior declaration. If no prior declaration is visible, or
1405  //   if the prior declaration specifies no linkage, then the
1406  //   identifier has external linkage.
1407  if (New->hasExternalStorage() && Old->hasLinkage())
1408    /* Okay */;
1409  else if (New->getStorageClass() != VarDecl::Static &&
1410           Old->getStorageClass() == VarDecl::Static) {
1411    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1412    Diag(Old->getLocation(), diag::note_previous_definition);
1413    return New->setInvalidDecl();
1414  }
1415
1416  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1417
1418  // FIXME: The test for external storage here seems wrong? We still
1419  // need to check for mismatches.
1420  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1421      // Don't complain about out-of-line definitions of static members.
1422      !(Old->getLexicalDeclContext()->isRecord() &&
1423        !New->getLexicalDeclContext()->isRecord())) {
1424    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1425    Diag(Old->getLocation(), diag::note_previous_definition);
1426    return New->setInvalidDecl();
1427  }
1428
1429  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1430    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1431    Diag(Old->getLocation(), diag::note_previous_definition);
1432  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1433    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1434    Diag(Old->getLocation(), diag::note_previous_definition);
1435  }
1436
1437  // C++ doesn't have tentative definitions, so go right ahead and check here.
1438  const VarDecl *Def;
1439  if (getLangOptions().CPlusPlus &&
1440      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1441      (Def = Old->getDefinition())) {
1442    Diag(New->getLocation(), diag::err_redefinition)
1443      << New->getDeclName();
1444    Diag(Def->getLocation(), diag::note_previous_definition);
1445    New->setInvalidDecl();
1446    return;
1447  }
1448
1449  // Keep a chain of previous declarations.
1450  New->setPreviousDeclaration(Old);
1451
1452  // Inherit access appropriately.
1453  New->setAccess(Old->getAccess());
1454}
1455
1456/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1457/// no declarator (e.g. "struct foo;") is parsed.
1458Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1459  // FIXME: Error on auto/register at file scope
1460  // FIXME: Error on inline/virtual/explicit
1461  // FIXME: Warn on useless __thread
1462  // FIXME: Warn on useless const/volatile
1463  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1464  // FIXME: Warn on useless attributes
1465  Decl *TagD = 0;
1466  TagDecl *Tag = 0;
1467  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1468      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1469      DS.getTypeSpecType() == DeclSpec::TST_union ||
1470      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1471    TagD = static_cast<Decl *>(DS.getTypeRep());
1472
1473    if (!TagD) // We probably had an error
1474      return DeclPtrTy();
1475
1476    // Note that the above type specs guarantee that the
1477    // type rep is a Decl, whereas in many of the others
1478    // it's a Type.
1479    Tag = dyn_cast<TagDecl>(TagD);
1480  }
1481
1482  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1483    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1484    // or incomplete types shall not be restrict-qualified."
1485    if (TypeQuals & DeclSpec::TQ_restrict)
1486      Diag(DS.getRestrictSpecLoc(),
1487           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1488           << DS.getSourceRange();
1489  }
1490
1491  if (DS.isFriendSpecified()) {
1492    // If we're dealing with a class template decl, assume that the
1493    // template routines are handling it.
1494    if (TagD && isa<ClassTemplateDecl>(TagD))
1495      return DeclPtrTy();
1496    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1497  }
1498
1499  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1500    // If there are attributes in the DeclSpec, apply them to the record.
1501    if (const AttributeList *AL = DS.getAttributes())
1502      ProcessDeclAttributeList(S, Record, AL);
1503
1504    if (!Record->getDeclName() && Record->isDefinition() &&
1505        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1506      if (getLangOptions().CPlusPlus ||
1507          Record->getDeclContext()->isRecord())
1508        return BuildAnonymousStructOrUnion(S, DS, Record);
1509
1510      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1511        << DS.getSourceRange();
1512    }
1513
1514    // Microsoft allows unnamed struct/union fields. Don't complain
1515    // about them.
1516    // FIXME: Should we support Microsoft's extensions in this area?
1517    if (Record->getDeclName() && getLangOptions().Microsoft)
1518      return DeclPtrTy::make(Tag);
1519  }
1520
1521  if (!DS.isMissingDeclaratorOk() &&
1522      DS.getTypeSpecType() != DeclSpec::TST_error) {
1523    // Warn about typedefs of enums without names, since this is an
1524    // extension in both Microsoft an GNU.
1525    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1526        Tag && isa<EnumDecl>(Tag)) {
1527      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1528        << DS.getSourceRange();
1529      return DeclPtrTy::make(Tag);
1530    }
1531
1532    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1533      << DS.getSourceRange();
1534  }
1535
1536  return DeclPtrTy::make(Tag);
1537}
1538
1539/// We are trying to inject an anonymous member into the given scope;
1540/// check if there's an existing declaration that can't be overloaded.
1541///
1542/// \return true if this is a forbidden redeclaration
1543static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1544                                         Scope *S,
1545                                         DeclContext *Owner,
1546                                         DeclarationName Name,
1547                                         SourceLocation NameLoc,
1548                                         unsigned diagnostic) {
1549  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1550                 Sema::ForRedeclaration);
1551  if (!SemaRef.LookupName(R, S)) return false;
1552
1553  if (R.getAsSingle<TagDecl>())
1554    return false;
1555
1556  // Pick a representative declaration.
1557  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1558  if (PrevDecl && Owner->isRecord()) {
1559    RecordDecl *Record = cast<RecordDecl>(Owner);
1560    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1561      return false;
1562  }
1563
1564  SemaRef.Diag(NameLoc, diagnostic) << Name;
1565  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1566
1567  return true;
1568}
1569
1570/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1571/// anonymous struct or union AnonRecord into the owning context Owner
1572/// and scope S. This routine will be invoked just after we realize
1573/// that an unnamed union or struct is actually an anonymous union or
1574/// struct, e.g.,
1575///
1576/// @code
1577/// union {
1578///   int i;
1579///   float f;
1580/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1581///    // f into the surrounding scope.x
1582/// @endcode
1583///
1584/// This routine is recursive, injecting the names of nested anonymous
1585/// structs/unions into the owning context and scope as well.
1586bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1587                                               RecordDecl *AnonRecord) {
1588  unsigned diagKind
1589    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1590                            : diag::err_anonymous_struct_member_redecl;
1591
1592  bool Invalid = false;
1593  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1594                               FEnd = AnonRecord->field_end();
1595       F != FEnd; ++F) {
1596    if ((*F)->getDeclName()) {
1597      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1598                                       (*F)->getLocation(), diagKind)) {
1599        // C++ [class.union]p2:
1600        //   The names of the members of an anonymous union shall be
1601        //   distinct from the names of any other entity in the
1602        //   scope in which the anonymous union is declared.
1603        Invalid = true;
1604      } else {
1605        // C++ [class.union]p2:
1606        //   For the purpose of name lookup, after the anonymous union
1607        //   definition, the members of the anonymous union are
1608        //   considered to have been defined in the scope in which the
1609        //   anonymous union is declared.
1610        Owner->makeDeclVisibleInContext(*F);
1611        S->AddDecl(DeclPtrTy::make(*F));
1612        IdResolver.AddDecl(*F);
1613      }
1614    } else if (const RecordType *InnerRecordType
1615                 = (*F)->getType()->getAs<RecordType>()) {
1616      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1617      if (InnerRecord->isAnonymousStructOrUnion())
1618        Invalid = Invalid ||
1619          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1620    }
1621  }
1622
1623  return Invalid;
1624}
1625
1626/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1627/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1628/// illegal input values are mapped to VarDecl::None.
1629/// If the input declaration context is a linkage specification
1630/// with no braces, then Extern is mapped to None.
1631static VarDecl::StorageClass
1632StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1633                                      DeclContext *DC) {
1634  switch (StorageClassSpec) {
1635  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1636  case DeclSpec::SCS_extern:
1637    // If the current context is a C++ linkage specification
1638    // having no braces, then the keyword "extern" is properly part
1639    // of the linkage specification itself, rather than being
1640    // the written storage class specifier.
1641    return (DC && isa<LinkageSpecDecl>(DC) &&
1642            !cast<LinkageSpecDecl>(DC)->hasBraces())
1643      ? VarDecl::None : VarDecl::Extern;
1644  case DeclSpec::SCS_static:         return VarDecl::Static;
1645  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1646  case DeclSpec::SCS_register:       return VarDecl::Register;
1647  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1648    // Illegal SCSs map to None: error reporting is up to the caller.
1649  case DeclSpec::SCS_mutable:        // Fall through.
1650  case DeclSpec::SCS_typedef:        return VarDecl::None;
1651  }
1652  llvm_unreachable("unknown storage class specifier");
1653}
1654
1655/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1656/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1657/// illegal input values are mapped to FunctionDecl::None.
1658/// If the input declaration context is a linkage specification
1659/// with no braces, then Extern is mapped to None.
1660static FunctionDecl::StorageClass
1661StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1662                                           DeclContext *DC) {
1663  switch (StorageClassSpec) {
1664  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1665  case DeclSpec::SCS_extern:
1666    // If the current context is a C++ linkage specification
1667    // having no braces, then the keyword "extern" is properly part
1668    // of the linkage specification itself, rather than being
1669    // the written storage class specifier.
1670    return (DC && isa<LinkageSpecDecl>(DC) &&
1671            !cast<LinkageSpecDecl>(DC)->hasBraces())
1672      ? FunctionDecl::None : FunctionDecl::Extern;
1673  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1674  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1675    // Illegal SCSs map to None: error reporting is up to the caller.
1676  case DeclSpec::SCS_auto:           // Fall through.
1677  case DeclSpec::SCS_mutable:        // Fall through.
1678  case DeclSpec::SCS_register:       // Fall through.
1679  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1680  }
1681  llvm_unreachable("unknown storage class specifier");
1682}
1683
1684/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1685/// anonymous structure or union. Anonymous unions are a C++ feature
1686/// (C++ [class.union]) and a GNU C extension; anonymous structures
1687/// are a GNU C and GNU C++ extension.
1688Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1689                                                  RecordDecl *Record) {
1690  DeclContext *Owner = Record->getDeclContext();
1691
1692  // Diagnose whether this anonymous struct/union is an extension.
1693  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1694    Diag(Record->getLocation(), diag::ext_anonymous_union);
1695  else if (!Record->isUnion())
1696    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1697
1698  // C and C++ require different kinds of checks for anonymous
1699  // structs/unions.
1700  bool Invalid = false;
1701  if (getLangOptions().CPlusPlus) {
1702    const char* PrevSpec = 0;
1703    unsigned DiagID;
1704    // C++ [class.union]p3:
1705    //   Anonymous unions declared in a named namespace or in the
1706    //   global namespace shall be declared static.
1707    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1708        (isa<TranslationUnitDecl>(Owner) ||
1709         (isa<NamespaceDecl>(Owner) &&
1710          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1711      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1712      Invalid = true;
1713
1714      // Recover by adding 'static'.
1715      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1716                             PrevSpec, DiagID);
1717    }
1718    // C++ [class.union]p3:
1719    //   A storage class is not allowed in a declaration of an
1720    //   anonymous union in a class scope.
1721    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1722             isa<RecordDecl>(Owner)) {
1723      Diag(DS.getStorageClassSpecLoc(),
1724           diag::err_anonymous_union_with_storage_spec);
1725      Invalid = true;
1726
1727      // Recover by removing the storage specifier.
1728      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1729                             PrevSpec, DiagID);
1730    }
1731
1732    // C++ [class.union]p2:
1733    //   The member-specification of an anonymous union shall only
1734    //   define non-static data members. [Note: nested types and
1735    //   functions cannot be declared within an anonymous union. ]
1736    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1737                                 MemEnd = Record->decls_end();
1738         Mem != MemEnd; ++Mem) {
1739      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1740        // C++ [class.union]p3:
1741        //   An anonymous union shall not have private or protected
1742        //   members (clause 11).
1743        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1744          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1745            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1746          Invalid = true;
1747        }
1748      } else if ((*Mem)->isImplicit()) {
1749        // Any implicit members are fine.
1750      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1751        // This is a type that showed up in an
1752        // elaborated-type-specifier inside the anonymous struct or
1753        // union, but which actually declares a type outside of the
1754        // anonymous struct or union. It's okay.
1755      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1756        if (!MemRecord->isAnonymousStructOrUnion() &&
1757            MemRecord->getDeclName()) {
1758          // This is a nested type declaration.
1759          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1760            << (int)Record->isUnion();
1761          Invalid = true;
1762        }
1763      } else {
1764        // We have something that isn't a non-static data
1765        // member. Complain about it.
1766        unsigned DK = diag::err_anonymous_record_bad_member;
1767        if (isa<TypeDecl>(*Mem))
1768          DK = diag::err_anonymous_record_with_type;
1769        else if (isa<FunctionDecl>(*Mem))
1770          DK = diag::err_anonymous_record_with_function;
1771        else if (isa<VarDecl>(*Mem))
1772          DK = diag::err_anonymous_record_with_static;
1773        Diag((*Mem)->getLocation(), DK)
1774            << (int)Record->isUnion();
1775          Invalid = true;
1776      }
1777    }
1778  }
1779
1780  if (!Record->isUnion() && !Owner->isRecord()) {
1781    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1782      << (int)getLangOptions().CPlusPlus;
1783    Invalid = true;
1784  }
1785
1786  // Mock up a declarator.
1787  Declarator Dc(DS, Declarator::TypeNameContext);
1788  TypeSourceInfo *TInfo = 0;
1789  GetTypeForDeclarator(Dc, S, &TInfo);
1790  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1791
1792  // Create a declaration for this anonymous struct/union.
1793  NamedDecl *Anon = 0;
1794  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1795    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1796                             /*IdentifierInfo=*/0,
1797                             Context.getTypeDeclType(Record),
1798                             TInfo,
1799                             /*BitWidth=*/0, /*Mutable=*/false);
1800    Anon->setAccess(AS_public);
1801    if (getLangOptions().CPlusPlus) {
1802      FieldCollector->Add(cast<FieldDecl>(Anon));
1803      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1804        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1805    }
1806  } else {
1807    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1808    assert(SCSpec != DeclSpec::SCS_typedef &&
1809           "Parser allowed 'typedef' as storage class VarDecl.");
1810    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1811    if (SCSpec == DeclSpec::SCS_mutable) {
1812      // mutable can only appear on non-static class members, so it's always
1813      // an error here
1814      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1815      Invalid = true;
1816      SC = VarDecl::None;
1817    }
1818    SCSpec = DS.getStorageClassSpecAsWritten();
1819    VarDecl::StorageClass SCAsWritten
1820      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1821
1822    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1823                           /*IdentifierInfo=*/0,
1824                           Context.getTypeDeclType(Record),
1825                           TInfo, SC, SCAsWritten);
1826  }
1827  Anon->setImplicit();
1828
1829  // Add the anonymous struct/union object to the current
1830  // context. We'll be referencing this object when we refer to one of
1831  // its members.
1832  Owner->addDecl(Anon);
1833
1834  // Inject the members of the anonymous struct/union into the owning
1835  // context and into the identifier resolver chain for name lookup
1836  // purposes.
1837  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1838    Invalid = true;
1839
1840  // Mark this as an anonymous struct/union type. Note that we do not
1841  // do this until after we have already checked and injected the
1842  // members of this anonymous struct/union type, because otherwise
1843  // the members could be injected twice: once by DeclContext when it
1844  // builds its lookup table, and once by
1845  // InjectAnonymousStructOrUnionMembers.
1846  Record->setAnonymousStructOrUnion(true);
1847
1848  if (Invalid)
1849    Anon->setInvalidDecl();
1850
1851  return DeclPtrTy::make(Anon);
1852}
1853
1854
1855/// GetNameForDeclarator - Determine the full declaration name for the
1856/// given Declarator.
1857DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1858  return GetNameFromUnqualifiedId(D.getName());
1859}
1860
1861/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1862DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1863  switch (Name.getKind()) {
1864    case UnqualifiedId::IK_Identifier:
1865      return DeclarationName(Name.Identifier);
1866
1867    case UnqualifiedId::IK_OperatorFunctionId:
1868      return Context.DeclarationNames.getCXXOperatorName(
1869                                              Name.OperatorFunctionId.Operator);
1870
1871    case UnqualifiedId::IK_LiteralOperatorId:
1872      return Context.DeclarationNames.getCXXLiteralOperatorName(
1873                                                               Name.Identifier);
1874
1875    case UnqualifiedId::IK_ConversionFunctionId: {
1876      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1877      if (Ty.isNull())
1878        return DeclarationName();
1879
1880      return Context.DeclarationNames.getCXXConversionFunctionName(
1881                                                  Context.getCanonicalType(Ty));
1882    }
1883
1884    case UnqualifiedId::IK_ConstructorName: {
1885      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1886      if (Ty.isNull())
1887        return DeclarationName();
1888
1889      return Context.DeclarationNames.getCXXConstructorName(
1890                                                  Context.getCanonicalType(Ty));
1891    }
1892
1893    case UnqualifiedId::IK_ConstructorTemplateId: {
1894      // In well-formed code, we can only have a constructor
1895      // template-id that refers to the current context, so go there
1896      // to find the actual type being constructed.
1897      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1898      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1899        return DeclarationName();
1900
1901      // Determine the type of the class being constructed.
1902      QualType CurClassType = Context.getTypeDeclType(CurClass);
1903
1904      // FIXME: Check two things: that the template-id names the same type as
1905      // CurClassType, and that the template-id does not occur when the name
1906      // was qualified.
1907
1908      return Context.DeclarationNames.getCXXConstructorName(
1909                                       Context.getCanonicalType(CurClassType));
1910    }
1911
1912    case UnqualifiedId::IK_DestructorName: {
1913      QualType Ty = GetTypeFromParser(Name.DestructorName);
1914      if (Ty.isNull())
1915        return DeclarationName();
1916
1917      return Context.DeclarationNames.getCXXDestructorName(
1918                                                           Context.getCanonicalType(Ty));
1919    }
1920
1921    case UnqualifiedId::IK_TemplateId: {
1922      TemplateName TName
1923        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1924      return Context.getNameForTemplate(TName);
1925    }
1926  }
1927
1928  assert(false && "Unknown name kind");
1929  return DeclarationName();
1930}
1931
1932/// isNearlyMatchingFunction - Determine whether the C++ functions
1933/// Declaration and Definition are "nearly" matching. This heuristic
1934/// is used to improve diagnostics in the case where an out-of-line
1935/// function definition doesn't match any declaration within
1936/// the class or namespace.
1937static bool isNearlyMatchingFunction(ASTContext &Context,
1938                                     FunctionDecl *Declaration,
1939                                     FunctionDecl *Definition) {
1940  if (Declaration->param_size() != Definition->param_size())
1941    return false;
1942  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1943    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1944    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1945
1946    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1947                                        DefParamTy.getNonReferenceType()))
1948      return false;
1949  }
1950
1951  return true;
1952}
1953
1954/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1955/// declarator needs to be rebuilt in the current instantiation.
1956/// Any bits of declarator which appear before the name are valid for
1957/// consideration here.  That's specifically the type in the decl spec
1958/// and the base type in any member-pointer chunks.
1959static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1960                                                    DeclarationName Name) {
1961  // The types we specifically need to rebuild are:
1962  //   - typenames, typeofs, and decltypes
1963  //   - types which will become injected class names
1964  // Of course, we also need to rebuild any type referencing such a
1965  // type.  It's safest to just say "dependent", but we call out a
1966  // few cases here.
1967
1968  DeclSpec &DS = D.getMutableDeclSpec();
1969  switch (DS.getTypeSpecType()) {
1970  case DeclSpec::TST_typename:
1971  case DeclSpec::TST_typeofType:
1972  case DeclSpec::TST_typeofExpr:
1973  case DeclSpec::TST_decltype: {
1974    // Grab the type from the parser.
1975    TypeSourceInfo *TSI = 0;
1976    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1977    if (T.isNull() || !T->isDependentType()) break;
1978
1979    // Make sure there's a type source info.  This isn't really much
1980    // of a waste; most dependent types should have type source info
1981    // attached already.
1982    if (!TSI)
1983      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
1984
1985    // Rebuild the type in the current instantiation.
1986    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
1987    if (!TSI) return true;
1988
1989    // Store the new type back in the decl spec.
1990    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
1991    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
1992    break;
1993  }
1994
1995  default:
1996    // Nothing to do for these decl specs.
1997    break;
1998  }
1999
2000  // It doesn't matter what order we do this in.
2001  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2002    DeclaratorChunk &Chunk = D.getTypeObject(I);
2003
2004    // The only type information in the declarator which can come
2005    // before the declaration name is the base type of a member
2006    // pointer.
2007    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2008      continue;
2009
2010    // Rebuild the scope specifier in-place.
2011    CXXScopeSpec &SS = Chunk.Mem.Scope();
2012    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2013      return true;
2014  }
2015
2016  return false;
2017}
2018
2019Sema::DeclPtrTy
2020Sema::HandleDeclarator(Scope *S, Declarator &D,
2021                       MultiTemplateParamsArg TemplateParamLists,
2022                       bool IsFunctionDefinition) {
2023  DeclarationName Name = GetNameForDeclarator(D);
2024
2025  // All of these full declarators require an identifier.  If it doesn't have
2026  // one, the ParsedFreeStandingDeclSpec action should be used.
2027  if (!Name) {
2028    if (!D.isInvalidType())  // Reject this if we think it is valid.
2029      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2030           diag::err_declarator_need_ident)
2031        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2032    return DeclPtrTy();
2033  }
2034
2035  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2036  // we find one that is.
2037  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2038         (S->getFlags() & Scope::TemplateParamScope) != 0)
2039    S = S->getParent();
2040
2041  DeclContext *DC = CurContext;
2042  if (D.getCXXScopeSpec().isInvalid())
2043    D.setInvalidType();
2044  else if (D.getCXXScopeSpec().isSet()) {
2045    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2046    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2047    if (!DC) {
2048      // If we could not compute the declaration context, it's because the
2049      // declaration context is dependent but does not refer to a class,
2050      // class template, or class template partial specialization. Complain
2051      // and return early, to avoid the coming semantic disaster.
2052      Diag(D.getIdentifierLoc(),
2053           diag::err_template_qualified_declarator_no_match)
2054        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2055        << D.getCXXScopeSpec().getRange();
2056      return DeclPtrTy();
2057    }
2058
2059    bool IsDependentContext = DC->isDependentContext();
2060
2061    if (!IsDependentContext &&
2062        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2063      return DeclPtrTy();
2064
2065    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2066      Diag(D.getIdentifierLoc(),
2067           diag::err_member_def_undefined_record)
2068        << Name << DC << D.getCXXScopeSpec().getRange();
2069      D.setInvalidType();
2070    }
2071
2072    // Check whether we need to rebuild the type of the given
2073    // declaration in the current instantiation.
2074    if (EnteringContext && IsDependentContext &&
2075        TemplateParamLists.size() != 0) {
2076      ContextRAII SavedContext(*this, DC);
2077      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2078        D.setInvalidType();
2079    }
2080  }
2081
2082  NamedDecl *New;
2083
2084  TypeSourceInfo *TInfo = 0;
2085  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2086
2087  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2088                        ForRedeclaration);
2089
2090  // See if this is a redefinition of a variable in the same scope.
2091  if (!D.getCXXScopeSpec().isSet()) {
2092    bool IsLinkageLookup = false;
2093
2094    // If the declaration we're planning to build will be a function
2095    // or object with linkage, then look for another declaration with
2096    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2097    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2098      /* Do nothing*/;
2099    else if (R->isFunctionType()) {
2100      if (CurContext->isFunctionOrMethod() ||
2101          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2102        IsLinkageLookup = true;
2103    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2104      IsLinkageLookup = true;
2105    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2106             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2107      IsLinkageLookup = true;
2108
2109    if (IsLinkageLookup)
2110      Previous.clear(LookupRedeclarationWithLinkage);
2111
2112    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2113  } else { // Something like "int foo::x;"
2114    LookupQualifiedName(Previous, DC);
2115
2116    // Don't consider using declarations as previous declarations for
2117    // out-of-line members.
2118    RemoveUsingDecls(Previous);
2119
2120    // C++ 7.3.1.2p2:
2121    // Members (including explicit specializations of templates) of a named
2122    // namespace can also be defined outside that namespace by explicit
2123    // qualification of the name being defined, provided that the entity being
2124    // defined was already declared in the namespace and the definition appears
2125    // after the point of declaration in a namespace that encloses the
2126    // declarations namespace.
2127    //
2128    // Note that we only check the context at this point. We don't yet
2129    // have enough information to make sure that PrevDecl is actually
2130    // the declaration we want to match. For example, given:
2131    //
2132    //   class X {
2133    //     void f();
2134    //     void f(float);
2135    //   };
2136    //
2137    //   void X::f(int) { } // ill-formed
2138    //
2139    // In this case, PrevDecl will point to the overload set
2140    // containing the two f's declared in X, but neither of them
2141    // matches.
2142
2143    // First check whether we named the global scope.
2144    if (isa<TranslationUnitDecl>(DC)) {
2145      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2146        << Name << D.getCXXScopeSpec().getRange();
2147    } else {
2148      DeclContext *Cur = CurContext;
2149      while (isa<LinkageSpecDecl>(Cur))
2150        Cur = Cur->getParent();
2151      if (!Cur->Encloses(DC)) {
2152        // The qualifying scope doesn't enclose the original declaration.
2153        // Emit diagnostic based on current scope.
2154        SourceLocation L = D.getIdentifierLoc();
2155        SourceRange R = D.getCXXScopeSpec().getRange();
2156        if (isa<FunctionDecl>(Cur))
2157          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2158        else
2159          Diag(L, diag::err_invalid_declarator_scope)
2160            << Name << cast<NamedDecl>(DC) << R;
2161        D.setInvalidType();
2162      }
2163    }
2164  }
2165
2166  if (Previous.isSingleResult() &&
2167      Previous.getFoundDecl()->isTemplateParameter()) {
2168    // Maybe we will complain about the shadowed template parameter.
2169    if (!D.isInvalidType())
2170      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2171                                          Previous.getFoundDecl()))
2172        D.setInvalidType();
2173
2174    // Just pretend that we didn't see the previous declaration.
2175    Previous.clear();
2176  }
2177
2178  // In C++, the previous declaration we find might be a tag type
2179  // (class or enum). In this case, the new declaration will hide the
2180  // tag type. Note that this does does not apply if we're declaring a
2181  // typedef (C++ [dcl.typedef]p4).
2182  if (Previous.isSingleTagDecl() &&
2183      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2184    Previous.clear();
2185
2186  bool Redeclaration = false;
2187  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2188    if (TemplateParamLists.size()) {
2189      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2190      return DeclPtrTy();
2191    }
2192
2193    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2194  } else if (R->isFunctionType()) {
2195    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2196                                  move(TemplateParamLists),
2197                                  IsFunctionDefinition, Redeclaration);
2198  } else {
2199    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2200                                  move(TemplateParamLists),
2201                                  Redeclaration);
2202  }
2203
2204  if (New == 0)
2205    return DeclPtrTy();
2206
2207  // If this has an identifier and is not an invalid redeclaration or
2208  // function template specialization, add it to the scope stack.
2209  if (Name && !(Redeclaration && New->isInvalidDecl()))
2210    PushOnScopeChains(New, S);
2211
2212  return DeclPtrTy::make(New);
2213}
2214
2215/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2216/// types into constant array types in certain situations which would otherwise
2217/// be errors (for GCC compatibility).
2218static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2219                                                    ASTContext &Context,
2220                                                    bool &SizeIsNegative) {
2221  // This method tries to turn a variable array into a constant
2222  // array even when the size isn't an ICE.  This is necessary
2223  // for compatibility with code that depends on gcc's buggy
2224  // constant expression folding, like struct {char x[(int)(char*)2];}
2225  SizeIsNegative = false;
2226
2227  QualifierCollector Qs;
2228  const Type *Ty = Qs.strip(T);
2229
2230  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2231    QualType Pointee = PTy->getPointeeType();
2232    QualType FixedType =
2233        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2234    if (FixedType.isNull()) return FixedType;
2235    FixedType = Context.getPointerType(FixedType);
2236    return Qs.apply(FixedType);
2237  }
2238
2239  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2240  if (!VLATy)
2241    return QualType();
2242  // FIXME: We should probably handle this case
2243  if (VLATy->getElementType()->isVariablyModifiedType())
2244    return QualType();
2245
2246  Expr::EvalResult EvalResult;
2247  if (!VLATy->getSizeExpr() ||
2248      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2249      !EvalResult.Val.isInt())
2250    return QualType();
2251
2252  llvm::APSInt &Res = EvalResult.Val.getInt();
2253  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2254    // TODO: preserve the size expression in declarator info
2255    return Context.getConstantArrayType(VLATy->getElementType(),
2256                                        Res, ArrayType::Normal, 0);
2257  }
2258
2259  SizeIsNegative = true;
2260  return QualType();
2261}
2262
2263/// \brief Register the given locally-scoped external C declaration so
2264/// that it can be found later for redeclarations
2265void
2266Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2267                                       const LookupResult &Previous,
2268                                       Scope *S) {
2269  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2270         "Decl is not a locally-scoped decl!");
2271  // Note that we have a locally-scoped external with this name.
2272  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2273
2274  if (!Previous.isSingleResult())
2275    return;
2276
2277  NamedDecl *PrevDecl = Previous.getFoundDecl();
2278
2279  // If there was a previous declaration of this variable, it may be
2280  // in our identifier chain. Update the identifier chain with the new
2281  // declaration.
2282  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2283    // The previous declaration was found on the identifer resolver
2284    // chain, so remove it from its scope.
2285    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2286      S = S->getParent();
2287
2288    if (S)
2289      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2290  }
2291}
2292
2293/// \brief Diagnose function specifiers on a declaration of an identifier that
2294/// does not identify a function.
2295void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2296  // FIXME: We should probably indicate the identifier in question to avoid
2297  // confusion for constructs like "inline int a(), b;"
2298  if (D.getDeclSpec().isInlineSpecified())
2299    Diag(D.getDeclSpec().getInlineSpecLoc(),
2300         diag::err_inline_non_function);
2301
2302  if (D.getDeclSpec().isVirtualSpecified())
2303    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2304         diag::err_virtual_non_function);
2305
2306  if (D.getDeclSpec().isExplicitSpecified())
2307    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2308         diag::err_explicit_non_function);
2309}
2310
2311NamedDecl*
2312Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2313                             QualType R,  TypeSourceInfo *TInfo,
2314                             LookupResult &Previous, bool &Redeclaration) {
2315  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2316  if (D.getCXXScopeSpec().isSet()) {
2317    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2318      << D.getCXXScopeSpec().getRange();
2319    D.setInvalidType();
2320    // Pretend we didn't see the scope specifier.
2321    DC = CurContext;
2322    Previous.clear();
2323  }
2324
2325  if (getLangOptions().CPlusPlus) {
2326    // Check that there are no default arguments (C++ only).
2327    CheckExtraCXXDefaultArguments(D);
2328  }
2329
2330  DiagnoseFunctionSpecifiers(D);
2331
2332  if (D.getDeclSpec().isThreadSpecified())
2333    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2334
2335  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2336  if (!NewTD) return 0;
2337
2338  // Handle attributes prior to checking for duplicates in MergeVarDecl
2339  ProcessDeclAttributes(S, NewTD, D);
2340
2341  // Merge the decl with the existing one if appropriate. If the decl is
2342  // in an outer scope, it isn't the same thing.
2343  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2344  if (!Previous.empty()) {
2345    Redeclaration = true;
2346    MergeTypeDefDecl(NewTD, Previous);
2347  }
2348
2349  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2350  // then it shall have block scope.
2351  QualType T = NewTD->getUnderlyingType();
2352  if (T->isVariablyModifiedType()) {
2353    FunctionNeedsScopeChecking() = true;
2354
2355    if (S->getFnParent() == 0) {
2356      bool SizeIsNegative;
2357      QualType FixedTy =
2358          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2359      if (!FixedTy.isNull()) {
2360        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2361        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2362      } else {
2363        if (SizeIsNegative)
2364          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2365        else if (T->isVariableArrayType())
2366          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2367        else
2368          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2369        NewTD->setInvalidDecl();
2370      }
2371    }
2372  }
2373
2374  // If this is the C FILE type, notify the AST context.
2375  if (IdentifierInfo *II = NewTD->getIdentifier())
2376    if (!NewTD->isInvalidDecl() &&
2377        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2378      if (II->isStr("FILE"))
2379        Context.setFILEDecl(NewTD);
2380      else if (II->isStr("jmp_buf"))
2381        Context.setjmp_bufDecl(NewTD);
2382      else if (II->isStr("sigjmp_buf"))
2383        Context.setsigjmp_bufDecl(NewTD);
2384    }
2385
2386  return NewTD;
2387}
2388
2389/// \brief Determines whether the given declaration is an out-of-scope
2390/// previous declaration.
2391///
2392/// This routine should be invoked when name lookup has found a
2393/// previous declaration (PrevDecl) that is not in the scope where a
2394/// new declaration by the same name is being introduced. If the new
2395/// declaration occurs in a local scope, previous declarations with
2396/// linkage may still be considered previous declarations (C99
2397/// 6.2.2p4-5, C++ [basic.link]p6).
2398///
2399/// \param PrevDecl the previous declaration found by name
2400/// lookup
2401///
2402/// \param DC the context in which the new declaration is being
2403/// declared.
2404///
2405/// \returns true if PrevDecl is an out-of-scope previous declaration
2406/// for a new delcaration with the same name.
2407static bool
2408isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2409                                ASTContext &Context) {
2410  if (!PrevDecl)
2411    return 0;
2412
2413  if (!PrevDecl->hasLinkage())
2414    return false;
2415
2416  if (Context.getLangOptions().CPlusPlus) {
2417    // C++ [basic.link]p6:
2418    //   If there is a visible declaration of an entity with linkage
2419    //   having the same name and type, ignoring entities declared
2420    //   outside the innermost enclosing namespace scope, the block
2421    //   scope declaration declares that same entity and receives the
2422    //   linkage of the previous declaration.
2423    DeclContext *OuterContext = DC->getLookupContext();
2424    if (!OuterContext->isFunctionOrMethod())
2425      // This rule only applies to block-scope declarations.
2426      return false;
2427    else {
2428      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2429      if (PrevOuterContext->isRecord())
2430        // We found a member function: ignore it.
2431        return false;
2432      else {
2433        // Find the innermost enclosing namespace for the new and
2434        // previous declarations.
2435        while (!OuterContext->isFileContext())
2436          OuterContext = OuterContext->getParent();
2437        while (!PrevOuterContext->isFileContext())
2438          PrevOuterContext = PrevOuterContext->getParent();
2439
2440        // The previous declaration is in a different namespace, so it
2441        // isn't the same function.
2442        if (OuterContext->getPrimaryContext() !=
2443            PrevOuterContext->getPrimaryContext())
2444          return false;
2445      }
2446    }
2447  }
2448
2449  return true;
2450}
2451
2452static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2453  CXXScopeSpec &SS = D.getCXXScopeSpec();
2454  if (!SS.isSet()) return;
2455  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2456                       SS.getRange());
2457}
2458
2459NamedDecl*
2460Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2461                              QualType R, TypeSourceInfo *TInfo,
2462                              LookupResult &Previous,
2463                              MultiTemplateParamsArg TemplateParamLists,
2464                              bool &Redeclaration) {
2465  DeclarationName Name = GetNameForDeclarator(D);
2466
2467  // Check that there are no default arguments (C++ only).
2468  if (getLangOptions().CPlusPlus)
2469    CheckExtraCXXDefaultArguments(D);
2470
2471  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2472  assert(SCSpec != DeclSpec::SCS_typedef &&
2473         "Parser allowed 'typedef' as storage class VarDecl.");
2474  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2475  if (SCSpec == DeclSpec::SCS_mutable) {
2476    // mutable can only appear on non-static class members, so it's always
2477    // an error here
2478    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2479    D.setInvalidType();
2480    SC = VarDecl::None;
2481  }
2482  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2483  VarDecl::StorageClass SCAsWritten
2484    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2485
2486  IdentifierInfo *II = Name.getAsIdentifierInfo();
2487  if (!II) {
2488    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2489      << Name.getAsString();
2490    return 0;
2491  }
2492
2493  DiagnoseFunctionSpecifiers(D);
2494
2495  if (!DC->isRecord() && S->getFnParent() == 0) {
2496    // C99 6.9p2: The storage-class specifiers auto and register shall not
2497    // appear in the declaration specifiers in an external declaration.
2498    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2499
2500      // If this is a register variable with an asm label specified, then this
2501      // is a GNU extension.
2502      if (SC == VarDecl::Register && D.getAsmLabel())
2503        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2504      else
2505        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2506      D.setInvalidType();
2507    }
2508  }
2509  if (DC->isRecord() && !CurContext->isRecord()) {
2510    // This is an out-of-line definition of a static data member.
2511    if (SC == VarDecl::Static) {
2512      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2513           diag::err_static_out_of_line)
2514        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2515    } else if (SC == VarDecl::None)
2516      SC = VarDecl::Static;
2517  }
2518  if (SC == VarDecl::Static) {
2519    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2520      if (RD->isLocalClass())
2521        Diag(D.getIdentifierLoc(),
2522             diag::err_static_data_member_not_allowed_in_local_class)
2523          << Name << RD->getDeclName();
2524    }
2525  }
2526
2527  // Match up the template parameter lists with the scope specifier, then
2528  // determine whether we have a template or a template specialization.
2529  bool isExplicitSpecialization = false;
2530  if (TemplateParameterList *TemplateParams
2531        = MatchTemplateParametersToScopeSpecifier(
2532                                  D.getDeclSpec().getSourceRange().getBegin(),
2533                                                  D.getCXXScopeSpec(),
2534                        (TemplateParameterList**)TemplateParamLists.get(),
2535                                                   TemplateParamLists.size(),
2536                                                  /*never a friend*/ false,
2537                                                  isExplicitSpecialization)) {
2538    if (TemplateParams->size() > 0) {
2539      // There is no such thing as a variable template.
2540      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2541        << II
2542        << SourceRange(TemplateParams->getTemplateLoc(),
2543                       TemplateParams->getRAngleLoc());
2544      return 0;
2545    } else {
2546      // There is an extraneous 'template<>' for this variable. Complain
2547      // about it, but allow the declaration of the variable.
2548      Diag(TemplateParams->getTemplateLoc(),
2549           diag::err_template_variable_noparams)
2550        << II
2551        << SourceRange(TemplateParams->getTemplateLoc(),
2552                       TemplateParams->getRAngleLoc());
2553
2554      isExplicitSpecialization = true;
2555    }
2556  }
2557
2558  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2559                                   II, R, TInfo, SC, SCAsWritten);
2560
2561  if (D.isInvalidType())
2562    NewVD->setInvalidDecl();
2563
2564  SetNestedNameSpecifier(NewVD, D);
2565
2566  if (D.getDeclSpec().isThreadSpecified()) {
2567    if (NewVD->hasLocalStorage())
2568      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2569    else if (!Context.Target.isTLSSupported())
2570      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2571    else
2572      NewVD->setThreadSpecified(true);
2573  }
2574
2575  // Set the lexical context. If the declarator has a C++ scope specifier, the
2576  // lexical context will be different from the semantic context.
2577  NewVD->setLexicalDeclContext(CurContext);
2578
2579  // Handle attributes prior to checking for duplicates in MergeVarDecl
2580  ProcessDeclAttributes(S, NewVD, D);
2581
2582  // Handle GNU asm-label extension (encoded as an attribute).
2583  if (Expr *E = (Expr*) D.getAsmLabel()) {
2584    // The parser guarantees this is a string.
2585    StringLiteral *SE = cast<StringLiteral>(E);
2586    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2587  }
2588
2589  // Diagnose shadowed variables before filtering for scope.
2590  if (!D.getCXXScopeSpec().isSet())
2591    CheckShadow(S, NewVD, Previous);
2592
2593  // Don't consider existing declarations that are in a different
2594  // scope and are out-of-semantic-context declarations (if the new
2595  // declaration has linkage).
2596  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2597
2598  // Merge the decl with the existing one if appropriate.
2599  if (!Previous.empty()) {
2600    if (Previous.isSingleResult() &&
2601        isa<FieldDecl>(Previous.getFoundDecl()) &&
2602        D.getCXXScopeSpec().isSet()) {
2603      // The user tried to define a non-static data member
2604      // out-of-line (C++ [dcl.meaning]p1).
2605      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2606        << D.getCXXScopeSpec().getRange();
2607      Previous.clear();
2608      NewVD->setInvalidDecl();
2609    }
2610  } else if (D.getCXXScopeSpec().isSet()) {
2611    // No previous declaration in the qualifying scope.
2612    Diag(D.getIdentifierLoc(), diag::err_no_member)
2613      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2614      << D.getCXXScopeSpec().getRange();
2615    NewVD->setInvalidDecl();
2616  }
2617
2618  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2619
2620  // This is an explicit specialization of a static data member. Check it.
2621  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2622      CheckMemberSpecialization(NewVD, Previous))
2623    NewVD->setInvalidDecl();
2624
2625  // attributes declared post-definition are currently ignored
2626  if (Previous.isSingleResult()) {
2627    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2628    if (Def && (Def = Def->getDefinition()) &&
2629        Def != NewVD && D.hasAttributes()) {
2630      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2631      Diag(Def->getLocation(), diag::note_previous_definition);
2632    }
2633  }
2634
2635  // If this is a locally-scoped extern C variable, update the map of
2636  // such variables.
2637  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2638      !NewVD->isInvalidDecl())
2639    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2640
2641  return NewVD;
2642}
2643
2644/// \brief Diagnose variable or built-in function shadowing.  Implements
2645/// -Wshadow.
2646///
2647/// This method is called whenever a VarDecl is added to a "useful"
2648/// scope.
2649///
2650/// \param S the scope in which the shadowing name is being declared
2651/// \param R the lookup of the name
2652///
2653void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2654  // Return if warning is ignored.
2655  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2656    return;
2657
2658  // Don't diagnose declarations at file scope.  The scope might not
2659  // have a DeclContext if (e.g.) we're parsing a function prototype.
2660  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2661  if (NewDC && NewDC->isFileContext())
2662    return;
2663
2664  // Only diagnose if we're shadowing an unambiguous field or variable.
2665  if (R.getResultKind() != LookupResult::Found)
2666    return;
2667
2668  NamedDecl* ShadowedDecl = R.getFoundDecl();
2669  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2670    return;
2671
2672  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2673
2674  // Only warn about certain kinds of shadowing for class members.
2675  if (NewDC && NewDC->isRecord()) {
2676    // In particular, don't warn about shadowing non-class members.
2677    if (!OldDC->isRecord())
2678      return;
2679
2680    // TODO: should we warn about static data members shadowing
2681    // static data members from base classes?
2682
2683    // TODO: don't diagnose for inaccessible shadowed members.
2684    // This is hard to do perfectly because we might friend the
2685    // shadowing context, but that's just a false negative.
2686  }
2687
2688  // Determine what kind of declaration we're shadowing.
2689  unsigned Kind;
2690  if (isa<RecordDecl>(OldDC)) {
2691    if (isa<FieldDecl>(ShadowedDecl))
2692      Kind = 3; // field
2693    else
2694      Kind = 2; // static data member
2695  } else if (OldDC->isFileContext())
2696    Kind = 1; // global
2697  else
2698    Kind = 0; // local
2699
2700  DeclarationName Name = R.getLookupName();
2701
2702  // Emit warning and note.
2703  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2704  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2705}
2706
2707/// \brief Check -Wshadow without the advantage of a previous lookup.
2708void Sema::CheckShadow(Scope *S, VarDecl *D) {
2709  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2710                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2711  LookupName(R, S);
2712  CheckShadow(S, D, R);
2713}
2714
2715/// \brief Perform semantic checking on a newly-created variable
2716/// declaration.
2717///
2718/// This routine performs all of the type-checking required for a
2719/// variable declaration once it has been built. It is used both to
2720/// check variables after they have been parsed and their declarators
2721/// have been translated into a declaration, and to check variables
2722/// that have been instantiated from a template.
2723///
2724/// Sets NewVD->isInvalidDecl() if an error was encountered.
2725void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2726                                    LookupResult &Previous,
2727                                    bool &Redeclaration) {
2728  // If the decl is already known invalid, don't check it.
2729  if (NewVD->isInvalidDecl())
2730    return;
2731
2732  QualType T = NewVD->getType();
2733
2734  if (T->isObjCObjectType()) {
2735    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2736    return NewVD->setInvalidDecl();
2737  }
2738
2739  // Emit an error if an address space was applied to decl with local storage.
2740  // This includes arrays of objects with address space qualifiers, but not
2741  // automatic variables that point to other address spaces.
2742  // ISO/IEC TR 18037 S5.1.2
2743  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2744    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2745    return NewVD->setInvalidDecl();
2746  }
2747
2748  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2749      && !NewVD->hasAttr<BlocksAttr>())
2750    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2751
2752  bool isVM = T->isVariablyModifiedType();
2753  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2754      NewVD->hasAttr<BlocksAttr>() ||
2755      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2756      // However, this turns on the scope checker for everything with a variable
2757      // which may impact compile time.  See if we can find a better solution
2758      // to this, perhaps only checking functions that contain gotos in C++?
2759      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2760    FunctionNeedsScopeChecking() = true;
2761
2762  if ((isVM && NewVD->hasLinkage()) ||
2763      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2764    bool SizeIsNegative;
2765    QualType FixedTy =
2766        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2767
2768    if (FixedTy.isNull() && T->isVariableArrayType()) {
2769      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2770      // FIXME: This won't give the correct result for
2771      // int a[10][n];
2772      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2773
2774      if (NewVD->isFileVarDecl())
2775        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2776        << SizeRange;
2777      else if (NewVD->getStorageClass() == VarDecl::Static)
2778        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2779        << SizeRange;
2780      else
2781        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2782        << SizeRange;
2783      return NewVD->setInvalidDecl();
2784    }
2785
2786    if (FixedTy.isNull()) {
2787      if (NewVD->isFileVarDecl())
2788        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2789      else
2790        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2791      return NewVD->setInvalidDecl();
2792    }
2793
2794    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2795    NewVD->setType(FixedTy);
2796  }
2797
2798  if (Previous.empty() && NewVD->isExternC()) {
2799    // Since we did not find anything by this name and we're declaring
2800    // an extern "C" variable, look for a non-visible extern "C"
2801    // declaration with the same name.
2802    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2803      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2804    if (Pos != LocallyScopedExternalDecls.end())
2805      Previous.addDecl(Pos->second);
2806  }
2807
2808  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2809    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2810      << T;
2811    return NewVD->setInvalidDecl();
2812  }
2813
2814  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2815    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2816    return NewVD->setInvalidDecl();
2817  }
2818
2819  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2820    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2821    return NewVD->setInvalidDecl();
2822  }
2823
2824  if (!Previous.empty()) {
2825    Redeclaration = true;
2826    MergeVarDecl(NewVD, Previous);
2827  }
2828}
2829
2830/// \brief Data used with FindOverriddenMethod
2831struct FindOverriddenMethodData {
2832  Sema *S;
2833  CXXMethodDecl *Method;
2834};
2835
2836/// \brief Member lookup function that determines whether a given C++
2837/// method overrides a method in a base class, to be used with
2838/// CXXRecordDecl::lookupInBases().
2839static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2840                                 CXXBasePath &Path,
2841                                 void *UserData) {
2842  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2843
2844  FindOverriddenMethodData *Data
2845    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2846
2847  DeclarationName Name = Data->Method->getDeclName();
2848
2849  // FIXME: Do we care about other names here too?
2850  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2851    // We really want to find the base class constructor here.
2852    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2853    CanQualType CT = Data->S->Context.getCanonicalType(T);
2854
2855    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2856  }
2857
2858  for (Path.Decls = BaseRecord->lookup(Name);
2859       Path.Decls.first != Path.Decls.second;
2860       ++Path.Decls.first) {
2861    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2862      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2863        return true;
2864    }
2865  }
2866
2867  return false;
2868}
2869
2870/// AddOverriddenMethods - See if a method overrides any in the base classes,
2871/// and if so, check that it's a valid override and remember it.
2872void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2873  // Look for virtual methods in base classes that this method might override.
2874  CXXBasePaths Paths;
2875  FindOverriddenMethodData Data;
2876  Data.Method = MD;
2877  Data.S = this;
2878  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2879    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2880         E = Paths.found_decls_end(); I != E; ++I) {
2881      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2882        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2883            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2884            !CheckOverridingFunctionAttributes(MD, OldMD))
2885          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2886      }
2887    }
2888  }
2889}
2890
2891NamedDecl*
2892Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2893                              QualType R, TypeSourceInfo *TInfo,
2894                              LookupResult &Previous,
2895                              MultiTemplateParamsArg TemplateParamLists,
2896                              bool IsFunctionDefinition, bool &Redeclaration) {
2897  assert(R.getTypePtr()->isFunctionType());
2898
2899  DeclarationName Name = GetNameForDeclarator(D);
2900  FunctionDecl::StorageClass SC = FunctionDecl::None;
2901  switch (D.getDeclSpec().getStorageClassSpec()) {
2902  default: assert(0 && "Unknown storage class!");
2903  case DeclSpec::SCS_auto:
2904  case DeclSpec::SCS_register:
2905  case DeclSpec::SCS_mutable:
2906    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2907         diag::err_typecheck_sclass_func);
2908    D.setInvalidType();
2909    break;
2910  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2911  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2912  case DeclSpec::SCS_static: {
2913    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2914      // C99 6.7.1p5:
2915      //   The declaration of an identifier for a function that has
2916      //   block scope shall have no explicit storage-class specifier
2917      //   other than extern
2918      // See also (C++ [dcl.stc]p4).
2919      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2920           diag::err_static_block_func);
2921      SC = FunctionDecl::None;
2922    } else
2923      SC = FunctionDecl::Static;
2924    break;
2925  }
2926  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2927  }
2928
2929  if (D.getDeclSpec().isThreadSpecified())
2930    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2931
2932  bool isFriend = D.getDeclSpec().isFriendSpecified();
2933  bool isInline = D.getDeclSpec().isInlineSpecified();
2934  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2935  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2936
2937  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2938  FunctionDecl::StorageClass SCAsWritten
2939    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2940
2941  // Check that the return type is not an abstract class type.
2942  // For record types, this is done by the AbstractClassUsageDiagnoser once
2943  // the class has been completely parsed.
2944  if (!DC->isRecord() &&
2945      RequireNonAbstractType(D.getIdentifierLoc(),
2946                             R->getAs<FunctionType>()->getResultType(),
2947                             diag::err_abstract_type_in_decl,
2948                             AbstractReturnType))
2949    D.setInvalidType();
2950
2951  // Do not allow returning a objc interface by-value.
2952  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
2953    Diag(D.getIdentifierLoc(),
2954         diag::err_object_cannot_be_passed_returned_by_value) << 0
2955      << R->getAs<FunctionType>()->getResultType();
2956    D.setInvalidType();
2957  }
2958
2959  bool isVirtualOkay = false;
2960  FunctionDecl *NewFD;
2961
2962  if (isFriend) {
2963    // C++ [class.friend]p5
2964    //   A function can be defined in a friend declaration of a
2965    //   class . . . . Such a function is implicitly inline.
2966    isInline |= IsFunctionDefinition;
2967  }
2968
2969  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2970    // This is a C++ constructor declaration.
2971    assert(DC->isRecord() &&
2972           "Constructors can only be declared in a member context");
2973
2974    R = CheckConstructorDeclarator(D, R, SC);
2975
2976    // Create the new declaration
2977    NewFD = CXXConstructorDecl::Create(Context,
2978                                       cast<CXXRecordDecl>(DC),
2979                                       D.getIdentifierLoc(), Name, R, TInfo,
2980                                       isExplicit, isInline,
2981                                       /*isImplicitlyDeclared=*/false);
2982  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2983    // This is a C++ destructor declaration.
2984    if (DC->isRecord()) {
2985      R = CheckDestructorDeclarator(D, SC);
2986
2987      NewFD = CXXDestructorDecl::Create(Context,
2988                                        cast<CXXRecordDecl>(DC),
2989                                        D.getIdentifierLoc(), Name, R,
2990                                        isInline,
2991                                        /*isImplicitlyDeclared=*/false);
2992      NewFD->setTypeSourceInfo(TInfo);
2993
2994      isVirtualOkay = true;
2995    } else {
2996      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2997
2998      // Create a FunctionDecl to satisfy the function definition parsing
2999      // code path.
3000      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3001                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3002                                   /*hasPrototype=*/true);
3003      D.setInvalidType();
3004    }
3005  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3006    if (!DC->isRecord()) {
3007      Diag(D.getIdentifierLoc(),
3008           diag::err_conv_function_not_member);
3009      return 0;
3010    }
3011
3012    CheckConversionDeclarator(D, R, SC);
3013    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3014                                      D.getIdentifierLoc(), Name, R, TInfo,
3015                                      isInline, isExplicit);
3016
3017    isVirtualOkay = true;
3018  } else if (DC->isRecord()) {
3019    // If the of the function is the same as the name of the record, then this
3020    // must be an invalid constructor that has a return type.
3021    // (The parser checks for a return type and makes the declarator a
3022    // constructor if it has no return type).
3023    // must have an invalid constructor that has a return type
3024    if (Name.getAsIdentifierInfo() &&
3025        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3026      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3027        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3028        << SourceRange(D.getIdentifierLoc());
3029      return 0;
3030    }
3031
3032    bool isStatic = SC == FunctionDecl::Static;
3033
3034    // [class.free]p1:
3035    // Any allocation function for a class T is a static member
3036    // (even if not explicitly declared static).
3037    if (Name.getCXXOverloadedOperator() == OO_New ||
3038        Name.getCXXOverloadedOperator() == OO_Array_New)
3039      isStatic = true;
3040
3041    // [class.free]p6 Any deallocation function for a class X is a static member
3042    // (even if not explicitly declared static).
3043    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3044        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3045      isStatic = true;
3046
3047    // This is a C++ method declaration.
3048    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3049                                  D.getIdentifierLoc(), Name, R, TInfo,
3050                                  isStatic, SCAsWritten, isInline);
3051
3052    isVirtualOkay = !isStatic;
3053  } else {
3054    // Determine whether the function was written with a
3055    // prototype. This true when:
3056    //   - we're in C++ (where every function has a prototype),
3057    //   - there is a prototype in the declarator, or
3058    //   - the type R of the function is some kind of typedef or other reference
3059    //     to a type name (which eventually refers to a function type).
3060    bool HasPrototype =
3061       getLangOptions().CPlusPlus ||
3062       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3063       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3064
3065    NewFD = FunctionDecl::Create(Context, DC,
3066                                 D.getIdentifierLoc(),
3067                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3068                                 HasPrototype);
3069  }
3070
3071  if (D.isInvalidType())
3072    NewFD->setInvalidDecl();
3073
3074  SetNestedNameSpecifier(NewFD, D);
3075
3076  // Set the lexical context. If the declarator has a C++
3077  // scope specifier, or is the object of a friend declaration, the
3078  // lexical context will be different from the semantic context.
3079  NewFD->setLexicalDeclContext(CurContext);
3080
3081  // Match up the template parameter lists with the scope specifier, then
3082  // determine whether we have a template or a template specialization.
3083  FunctionTemplateDecl *FunctionTemplate = 0;
3084  bool isExplicitSpecialization = false;
3085  bool isFunctionTemplateSpecialization = false;
3086  if (TemplateParameterList *TemplateParams
3087        = MatchTemplateParametersToScopeSpecifier(
3088                                  D.getDeclSpec().getSourceRange().getBegin(),
3089                                  D.getCXXScopeSpec(),
3090                           (TemplateParameterList**)TemplateParamLists.get(),
3091                                                  TemplateParamLists.size(),
3092                                                  isFriend,
3093                                                  isExplicitSpecialization)) {
3094    if (TemplateParams->size() > 0) {
3095      // This is a function template
3096
3097      // Check that we can declare a template here.
3098      if (CheckTemplateDeclScope(S, TemplateParams))
3099        return 0;
3100
3101      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3102                                                      NewFD->getLocation(),
3103                                                      Name, TemplateParams,
3104                                                      NewFD);
3105      FunctionTemplate->setLexicalDeclContext(CurContext);
3106      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3107    } else {
3108      // This is a function template specialization.
3109      isFunctionTemplateSpecialization = true;
3110
3111      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3112      if (isFriend && isFunctionTemplateSpecialization) {
3113        // We want to remove the "template<>", found here.
3114        SourceRange RemoveRange = TemplateParams->getSourceRange();
3115
3116        // If we remove the template<> and the name is not a
3117        // template-id, we're actually silently creating a problem:
3118        // the friend declaration will refer to an untemplated decl,
3119        // and clearly the user wants a template specialization.  So
3120        // we need to insert '<>' after the name.
3121        SourceLocation InsertLoc;
3122        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3123          InsertLoc = D.getName().getSourceRange().getEnd();
3124          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3125        }
3126
3127        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3128          << Name << RemoveRange
3129          << FixItHint::CreateRemoval(RemoveRange)
3130          << FixItHint::CreateInsertion(InsertLoc, "<>");
3131      }
3132    }
3133
3134    // FIXME: Free this memory properly.
3135    TemplateParamLists.release();
3136  }
3137
3138  // C++ [dcl.fct.spec]p5:
3139  //   The virtual specifier shall only be used in declarations of
3140  //   nonstatic class member functions that appear within a
3141  //   member-specification of a class declaration; see 10.3.
3142  //
3143  if (isVirtual && !NewFD->isInvalidDecl()) {
3144    if (!isVirtualOkay) {
3145       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3146           diag::err_virtual_non_function);
3147    } else if (!CurContext->isRecord()) {
3148      // 'virtual' was specified outside of the class.
3149      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3150        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3151    } else {
3152      // Okay: Add virtual to the method.
3153      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3154      CurClass->setMethodAsVirtual(NewFD);
3155    }
3156  }
3157
3158  // C++ [dcl.fct.spec]p6:
3159  //  The explicit specifier shall be used only in the declaration of a
3160  //  constructor or conversion function within its class definition; see 12.3.1
3161  //  and 12.3.2.
3162  if (isExplicit && !NewFD->isInvalidDecl()) {
3163    if (!CurContext->isRecord()) {
3164      // 'explicit' was specified outside of the class.
3165      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3166           diag::err_explicit_out_of_class)
3167        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3168    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3169               !isa<CXXConversionDecl>(NewFD)) {
3170      // 'explicit' was specified on a function that wasn't a constructor
3171      // or conversion function.
3172      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3173           diag::err_explicit_non_ctor_or_conv_function)
3174        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3175    }
3176  }
3177
3178  // Filter out previous declarations that don't match the scope.
3179  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3180
3181  if (isFriend) {
3182    // DC is the namespace in which the function is being declared.
3183    assert((DC->isFileContext() || !Previous.empty()) &&
3184           "previously-undeclared friend function being created "
3185           "in a non-namespace context");
3186
3187    // For now, claim that the objects have no previous declaration.
3188    if (FunctionTemplate) {
3189      FunctionTemplate->setObjectOfFriendDecl(false);
3190      FunctionTemplate->setAccess(AS_public);
3191    }
3192    NewFD->setObjectOfFriendDecl(false);
3193    NewFD->setAccess(AS_public);
3194  }
3195
3196  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3197      !CurContext->isRecord()) {
3198    // C++ [class.static]p1:
3199    //   A data or function member of a class may be declared static
3200    //   in a class definition, in which case it is a static member of
3201    //   the class.
3202
3203    // Complain about the 'static' specifier if it's on an out-of-line
3204    // member function definition.
3205    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3206         diag::err_static_out_of_line)
3207      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3208  }
3209
3210  // Handle GNU asm-label extension (encoded as an attribute).
3211  if (Expr *E = (Expr*) D.getAsmLabel()) {
3212    // The parser guarantees this is a string.
3213    StringLiteral *SE = cast<StringLiteral>(E);
3214    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3215  }
3216
3217  // Copy the parameter declarations from the declarator D to the function
3218  // declaration NewFD, if they are available.  First scavenge them into Params.
3219  llvm::SmallVector<ParmVarDecl*, 16> Params;
3220  if (D.getNumTypeObjects() > 0) {
3221    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3222
3223    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3224    // function that takes no arguments, not a function that takes a
3225    // single void argument.
3226    // We let through "const void" here because Sema::GetTypeForDeclarator
3227    // already checks for that case.
3228    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3229        FTI.ArgInfo[0].Param &&
3230        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3231      // Empty arg list, don't push any params.
3232      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3233
3234      // In C++, the empty parameter-type-list must be spelled "void"; a
3235      // typedef of void is not permitted.
3236      if (getLangOptions().CPlusPlus &&
3237          Param->getType().getUnqualifiedType() != Context.VoidTy)
3238        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3239      // FIXME: Leaks decl?
3240    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3241      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3242        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3243        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3244        Param->setDeclContext(NewFD);
3245        Params.push_back(Param);
3246
3247        if (Param->isInvalidDecl())
3248          NewFD->setInvalidDecl();
3249      }
3250    }
3251
3252  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3253    // When we're declaring a function with a typedef, typeof, etc as in the
3254    // following example, we'll need to synthesize (unnamed)
3255    // parameters for use in the declaration.
3256    //
3257    // @code
3258    // typedef void fn(int);
3259    // fn f;
3260    // @endcode
3261
3262    // Synthesize a parameter for each argument type.
3263    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3264         AE = FT->arg_type_end(); AI != AE; ++AI) {
3265      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3266                                               D.getIdentifierLoc(), 0,
3267                                               *AI,
3268                                         Context.getTrivialTypeSourceInfo(*AI,
3269                                                          D.getIdentifierLoc()),
3270                                               VarDecl::None,
3271                                               VarDecl::None, 0);
3272      Param->setImplicit();
3273      Params.push_back(Param);
3274    }
3275  } else {
3276    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3277           "Should not need args for typedef of non-prototype fn");
3278  }
3279  // Finally, we know we have the right number of parameters, install them.
3280  NewFD->setParams(Params.data(), Params.size());
3281
3282  // If the declarator is a template-id, translate the parser's template
3283  // argument list into our AST format.
3284  bool HasExplicitTemplateArgs = false;
3285  TemplateArgumentListInfo TemplateArgs;
3286  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3287    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3288    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3289    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3290    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3291                                       TemplateId->getTemplateArgs(),
3292                                       TemplateId->NumArgs);
3293    translateTemplateArguments(TemplateArgsPtr,
3294                               TemplateArgs);
3295    TemplateArgsPtr.release();
3296
3297    HasExplicitTemplateArgs = true;
3298
3299    if (FunctionTemplate) {
3300      // FIXME: Diagnose function template with explicit template
3301      // arguments.
3302      HasExplicitTemplateArgs = false;
3303    } else if (!isFunctionTemplateSpecialization &&
3304               !D.getDeclSpec().isFriendSpecified()) {
3305      // We have encountered something that the user meant to be a
3306      // specialization (because it has explicitly-specified template
3307      // arguments) but that was not introduced with a "template<>" (or had
3308      // too few of them).
3309      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3310        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3311        << FixItHint::CreateInsertion(
3312                                   D.getDeclSpec().getSourceRange().getBegin(),
3313                                                 "template<> ");
3314      isFunctionTemplateSpecialization = true;
3315    } else {
3316      // "friend void foo<>(int);" is an implicit specialization decl.
3317      isFunctionTemplateSpecialization = true;
3318    }
3319  } else if (isFriend && isFunctionTemplateSpecialization) {
3320    // This combination is only possible in a recovery case;  the user
3321    // wrote something like:
3322    //   template <> friend void foo(int);
3323    // which we're recovering from as if the user had written:
3324    //   friend void foo<>(int);
3325    // Go ahead and fake up a template id.
3326    HasExplicitTemplateArgs = true;
3327    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3328    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3329  }
3330
3331  // If it's a friend (and only if it's a friend), it's possible
3332  // that either the specialized function type or the specialized
3333  // template is dependent, and therefore matching will fail.  In
3334  // this case, don't check the specialization yet.
3335  if (isFunctionTemplateSpecialization && isFriend &&
3336      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3337    assert(HasExplicitTemplateArgs &&
3338           "friend function specialization without template args");
3339    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3340                                                     Previous))
3341      NewFD->setInvalidDecl();
3342  } else if (isFunctionTemplateSpecialization) {
3343    if (CheckFunctionTemplateSpecialization(NewFD,
3344                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3345                                            Previous))
3346      NewFD->setInvalidDecl();
3347  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3348    if (CheckMemberSpecialization(NewFD, Previous))
3349      NewFD->setInvalidDecl();
3350  }
3351
3352  // Perform semantic checking on the function declaration.
3353  bool OverloadableAttrRequired = false; // FIXME: HACK!
3354  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3355                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3356
3357  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3358          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3359         "previous declaration set still overloaded");
3360
3361  NamedDecl *PrincipalDecl = (FunctionTemplate
3362                              ? cast<NamedDecl>(FunctionTemplate)
3363                              : NewFD);
3364
3365  if (isFriend && Redeclaration) {
3366    AccessSpecifier Access = AS_public;
3367    if (!NewFD->isInvalidDecl())
3368      Access = NewFD->getPreviousDeclaration()->getAccess();
3369
3370    NewFD->setAccess(Access);
3371    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3372
3373    PrincipalDecl->setObjectOfFriendDecl(true);
3374  }
3375
3376  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3377      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3378    PrincipalDecl->setNonMemberOperator();
3379
3380  // If we have a function template, check the template parameter
3381  // list. This will check and merge default template arguments.
3382  if (FunctionTemplate) {
3383    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3384    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3385                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3386             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3387                                                : TPC_FunctionTemplate);
3388  }
3389
3390  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3391    // Fake up an access specifier if it's supposed to be a class member.
3392    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3393      NewFD->setAccess(AS_public);
3394
3395    // An out-of-line member function declaration must also be a
3396    // definition (C++ [dcl.meaning]p1).
3397    // Note that this is not the case for explicit specializations of
3398    // function templates or member functions of class templates, per
3399    // C++ [temp.expl.spec]p2.
3400    if (!IsFunctionDefinition && !isFriend &&
3401        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3402      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3403        << D.getCXXScopeSpec().getRange();
3404      NewFD->setInvalidDecl();
3405    } else if (!Redeclaration &&
3406               !(isFriend && CurContext->isDependentContext())) {
3407      // The user tried to provide an out-of-line definition for a
3408      // function that is a member of a class or namespace, but there
3409      // was no such member function declared (C++ [class.mfct]p2,
3410      // C++ [namespace.memdef]p2). For example:
3411      //
3412      // class X {
3413      //   void f() const;
3414      // };
3415      //
3416      // void X::f() { } // ill-formed
3417      //
3418      // Complain about this problem, and attempt to suggest close
3419      // matches (e.g., those that differ only in cv-qualifiers and
3420      // whether the parameter types are references).
3421      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3422        << Name << DC << D.getCXXScopeSpec().getRange();
3423      NewFD->setInvalidDecl();
3424
3425      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3426                        ForRedeclaration);
3427      LookupQualifiedName(Prev, DC);
3428      assert(!Prev.isAmbiguous() &&
3429             "Cannot have an ambiguity in previous-declaration lookup");
3430      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3431           Func != FuncEnd; ++Func) {
3432        if (isa<FunctionDecl>(*Func) &&
3433            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3434          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3435      }
3436    }
3437  }
3438
3439  // Handle attributes. We need to have merged decls when handling attributes
3440  // (for example to check for conflicts, etc).
3441  // FIXME: This needs to happen before we merge declarations. Then,
3442  // let attribute merging cope with attribute conflicts.
3443  ProcessDeclAttributes(S, NewFD, D);
3444
3445  // attributes declared post-definition are currently ignored
3446  if (Redeclaration && Previous.isSingleResult()) {
3447    const FunctionDecl *Def;
3448    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3449    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3450      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3451      Diag(Def->getLocation(), diag::note_previous_definition);
3452    }
3453  }
3454
3455  AddKnownFunctionAttributes(NewFD);
3456
3457  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3458    // If a function name is overloadable in C, then every function
3459    // with that name must be marked "overloadable".
3460    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3461      << Redeclaration << NewFD;
3462    if (!Previous.empty())
3463      Diag(Previous.getRepresentativeDecl()->getLocation(),
3464           diag::note_attribute_overloadable_prev_overload);
3465    NewFD->addAttr(::new (Context) OverloadableAttr());
3466  }
3467
3468  // If this is a locally-scoped extern C function, update the
3469  // map of such names.
3470  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3471      && !NewFD->isInvalidDecl())
3472    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3473
3474  // Set this FunctionDecl's range up to the right paren.
3475  NewFD->setLocEnd(D.getSourceRange().getEnd());
3476
3477  if (FunctionTemplate && NewFD->isInvalidDecl())
3478    FunctionTemplate->setInvalidDecl();
3479
3480  if (FunctionTemplate)
3481    return FunctionTemplate;
3482
3483
3484  // Keep track of static, non-inlined function definitions that
3485  // have not been used. We will warn later.
3486  // FIXME: Also include static functions declared but not defined.
3487  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3488      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3489      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3490      && !NewFD->hasAttr<ConstructorAttr>()
3491      && !NewFD->hasAttr<DestructorAttr>())
3492    UnusedStaticFuncs.push_back(NewFD);
3493
3494  return NewFD;
3495}
3496
3497/// \brief Perform semantic checking of a new function declaration.
3498///
3499/// Performs semantic analysis of the new function declaration
3500/// NewFD. This routine performs all semantic checking that does not
3501/// require the actual declarator involved in the declaration, and is
3502/// used both for the declaration of functions as they are parsed
3503/// (called via ActOnDeclarator) and for the declaration of functions
3504/// that have been instantiated via C++ template instantiation (called
3505/// via InstantiateDecl).
3506///
3507/// \param IsExplicitSpecialiation whether this new function declaration is
3508/// an explicit specialization of the previous declaration.
3509///
3510/// This sets NewFD->isInvalidDecl() to true if there was an error.
3511void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3512                                    LookupResult &Previous,
3513                                    bool IsExplicitSpecialization,
3514                                    bool &Redeclaration,
3515                                    bool &OverloadableAttrRequired) {
3516  // If NewFD is already known erroneous, don't do any of this checking.
3517  if (NewFD->isInvalidDecl())
3518    return;
3519
3520  if (NewFD->getResultType()->isVariablyModifiedType()) {
3521    // Functions returning a variably modified type violate C99 6.7.5.2p2
3522    // because all functions have linkage.
3523    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3524    return NewFD->setInvalidDecl();
3525  }
3526
3527  if (NewFD->isMain())
3528    CheckMain(NewFD);
3529
3530  // Check for a previous declaration of this name.
3531  if (Previous.empty() && NewFD->isExternC()) {
3532    // Since we did not find anything by this name and we're declaring
3533    // an extern "C" function, look for a non-visible extern "C"
3534    // declaration with the same name.
3535    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3536      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3537    if (Pos != LocallyScopedExternalDecls.end())
3538      Previous.addDecl(Pos->second);
3539  }
3540
3541  // Merge or overload the declaration with an existing declaration of
3542  // the same name, if appropriate.
3543  if (!Previous.empty()) {
3544    // Determine whether NewFD is an overload of PrevDecl or
3545    // a declaration that requires merging. If it's an overload,
3546    // there's no more work to do here; we'll just add the new
3547    // function to the scope.
3548
3549    NamedDecl *OldDecl = 0;
3550    if (!AllowOverloadingOfFunction(Previous, Context)) {
3551      Redeclaration = true;
3552      OldDecl = Previous.getFoundDecl();
3553    } else {
3554      if (!getLangOptions().CPlusPlus) {
3555        OverloadableAttrRequired = true;
3556
3557        // Functions marked "overloadable" must have a prototype (that
3558        // we can't get through declaration merging).
3559        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3560          Diag(NewFD->getLocation(),
3561               diag::err_attribute_overloadable_no_prototype)
3562            << NewFD;
3563          Redeclaration = true;
3564
3565          // Turn this into a variadic function with no parameters.
3566          QualType R = Context.getFunctionType(
3567                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3568                     0, 0, true, 0, false, false, 0, 0,
3569                     FunctionType::ExtInfo());
3570          NewFD->setType(R);
3571          return NewFD->setInvalidDecl();
3572        }
3573      }
3574
3575      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3576      case Ovl_Match:
3577        Redeclaration = true;
3578        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3579          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3580          Redeclaration = false;
3581        }
3582        break;
3583
3584      case Ovl_NonFunction:
3585        Redeclaration = true;
3586        break;
3587
3588      case Ovl_Overload:
3589        Redeclaration = false;
3590        break;
3591      }
3592    }
3593
3594    if (Redeclaration) {
3595      // NewFD and OldDecl represent declarations that need to be
3596      // merged.
3597      if (MergeFunctionDecl(NewFD, OldDecl))
3598        return NewFD->setInvalidDecl();
3599
3600      Previous.clear();
3601      Previous.addDecl(OldDecl);
3602
3603      if (FunctionTemplateDecl *OldTemplateDecl
3604                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3605        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3606        FunctionTemplateDecl *NewTemplateDecl
3607          = NewFD->getDescribedFunctionTemplate();
3608        assert(NewTemplateDecl && "Template/non-template mismatch");
3609        if (CXXMethodDecl *Method
3610              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3611          Method->setAccess(OldTemplateDecl->getAccess());
3612          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3613        }
3614
3615        // If this is an explicit specialization of a member that is a function
3616        // template, mark it as a member specialization.
3617        if (IsExplicitSpecialization &&
3618            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3619          NewTemplateDecl->setMemberSpecialization();
3620          assert(OldTemplateDecl->isMemberSpecialization());
3621        }
3622      } else {
3623        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3624          NewFD->setAccess(OldDecl->getAccess());
3625        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3626      }
3627    }
3628  }
3629
3630  // Semantic checking for this function declaration (in isolation).
3631  if (getLangOptions().CPlusPlus) {
3632    // C++-specific checks.
3633    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3634      CheckConstructor(Constructor);
3635    } else if (CXXDestructorDecl *Destructor =
3636                dyn_cast<CXXDestructorDecl>(NewFD)) {
3637      CXXRecordDecl *Record = Destructor->getParent();
3638      QualType ClassType = Context.getTypeDeclType(Record);
3639
3640      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3641      // type is dependent? Both gcc and edg can handle that.
3642      if (!ClassType->isDependentType()) {
3643        DeclarationName Name
3644          = Context.DeclarationNames.getCXXDestructorName(
3645                                        Context.getCanonicalType(ClassType));
3646        if (NewFD->getDeclName() != Name) {
3647          Diag(NewFD->getLocation(), diag::err_destructor_name);
3648          return NewFD->setInvalidDecl();
3649        }
3650      }
3651
3652      Record->setUserDeclaredDestructor(true);
3653      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3654      // user-defined destructor.
3655      Record->setPOD(false);
3656
3657      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3658      // declared destructor.
3659      // FIXME: C++0x: don't do this for "= default" destructors
3660      Record->setHasTrivialDestructor(false);
3661    } else if (CXXConversionDecl *Conversion
3662               = dyn_cast<CXXConversionDecl>(NewFD)) {
3663      ActOnConversionDeclarator(Conversion);
3664    }
3665
3666    // Find any virtual functions that this function overrides.
3667    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3668      if (!Method->isFunctionTemplateSpecialization() &&
3669          !Method->getDescribedFunctionTemplate())
3670        AddOverriddenMethods(Method->getParent(), Method);
3671    }
3672
3673    // Additional checks for the destructor; make sure we do this after we
3674    // figure out whether the destructor is virtual.
3675    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3676      if (!Destructor->getParent()->isDependentType())
3677        CheckDestructor(Destructor);
3678
3679    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3680    if (NewFD->isOverloadedOperator() &&
3681        CheckOverloadedOperatorDeclaration(NewFD))
3682      return NewFD->setInvalidDecl();
3683
3684    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3685    if (NewFD->getLiteralIdentifier() &&
3686        CheckLiteralOperatorDeclaration(NewFD))
3687      return NewFD->setInvalidDecl();
3688
3689    // In C++, check default arguments now that we have merged decls. Unless
3690    // the lexical context is the class, because in this case this is done
3691    // during delayed parsing anyway.
3692    if (!CurContext->isRecord())
3693      CheckCXXDefaultArguments(NewFD);
3694  }
3695}
3696
3697void Sema::CheckMain(FunctionDecl* FD) {
3698  // C++ [basic.start.main]p3:  A program that declares main to be inline
3699  //   or static is ill-formed.
3700  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3701  //   shall not appear in a declaration of main.
3702  // static main is not an error under C99, but we should warn about it.
3703  bool isInline = FD->isInlineSpecified();
3704  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3705  if (isInline || isStatic) {
3706    unsigned diagID = diag::warn_unusual_main_decl;
3707    if (isInline || getLangOptions().CPlusPlus)
3708      diagID = diag::err_unusual_main_decl;
3709
3710    int which = isStatic + (isInline << 1) - 1;
3711    Diag(FD->getLocation(), diagID) << which;
3712  }
3713
3714  QualType T = FD->getType();
3715  assert(T->isFunctionType() && "function decl is not of function type");
3716  const FunctionType* FT = T->getAs<FunctionType>();
3717
3718  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3719    // TODO: add a replacement fixit to turn the return type into 'int'.
3720    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3721    FD->setInvalidDecl(true);
3722  }
3723
3724  // Treat protoless main() as nullary.
3725  if (isa<FunctionNoProtoType>(FT)) return;
3726
3727  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3728  unsigned nparams = FTP->getNumArgs();
3729  assert(FD->getNumParams() == nparams);
3730
3731  bool HasExtraParameters = (nparams > 3);
3732
3733  // Darwin passes an undocumented fourth argument of type char**.  If
3734  // other platforms start sprouting these, the logic below will start
3735  // getting shifty.
3736  if (nparams == 4 &&
3737      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3738    HasExtraParameters = false;
3739
3740  if (HasExtraParameters) {
3741    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3742    FD->setInvalidDecl(true);
3743    nparams = 3;
3744  }
3745
3746  // FIXME: a lot of the following diagnostics would be improved
3747  // if we had some location information about types.
3748
3749  QualType CharPP =
3750    Context.getPointerType(Context.getPointerType(Context.CharTy));
3751  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3752
3753  for (unsigned i = 0; i < nparams; ++i) {
3754    QualType AT = FTP->getArgType(i);
3755
3756    bool mismatch = true;
3757
3758    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3759      mismatch = false;
3760    else if (Expected[i] == CharPP) {
3761      // As an extension, the following forms are okay:
3762      //   char const **
3763      //   char const * const *
3764      //   char * const *
3765
3766      QualifierCollector qs;
3767      const PointerType* PT;
3768      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3769          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3770          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3771        qs.removeConst();
3772        mismatch = !qs.empty();
3773      }
3774    }
3775
3776    if (mismatch) {
3777      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3778      // TODO: suggest replacing given type with expected type
3779      FD->setInvalidDecl(true);
3780    }
3781  }
3782
3783  if (nparams == 1 && !FD->isInvalidDecl()) {
3784    Diag(FD->getLocation(), diag::warn_main_one_arg);
3785  }
3786}
3787
3788bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3789  // FIXME: Need strict checking.  In C89, we need to check for
3790  // any assignment, increment, decrement, function-calls, or
3791  // commas outside of a sizeof.  In C99, it's the same list,
3792  // except that the aforementioned are allowed in unevaluated
3793  // expressions.  Everything else falls under the
3794  // "may accept other forms of constant expressions" exception.
3795  // (We never end up here for C++, so the constant expression
3796  // rules there don't matter.)
3797  if (Init->isConstantInitializer(Context))
3798    return false;
3799  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3800    << Init->getSourceRange();
3801  return true;
3802}
3803
3804void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3805  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3806}
3807
3808/// AddInitializerToDecl - Adds the initializer Init to the
3809/// declaration dcl. If DirectInit is true, this is C++ direct
3810/// initialization rather than copy initialization.
3811void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3812  Decl *RealDecl = dcl.getAs<Decl>();
3813  // If there is no declaration, there was an error parsing it.  Just ignore
3814  // the initializer.
3815  if (RealDecl == 0)
3816    return;
3817
3818  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3819    // With declarators parsed the way they are, the parser cannot
3820    // distinguish between a normal initializer and a pure-specifier.
3821    // Thus this grotesque test.
3822    IntegerLiteral *IL;
3823    Expr *Init = static_cast<Expr *>(init.get());
3824    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3825        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3826      CheckPureMethod(Method, Init->getSourceRange());
3827    else {
3828      Diag(Method->getLocation(), diag::err_member_function_initialization)
3829        << Method->getDeclName() << Init->getSourceRange();
3830      Method->setInvalidDecl();
3831    }
3832    return;
3833  }
3834
3835  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3836  if (!VDecl) {
3837    if (getLangOptions().CPlusPlus &&
3838        RealDecl->getLexicalDeclContext()->isRecord() &&
3839        isa<NamedDecl>(RealDecl))
3840      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3841        << cast<NamedDecl>(RealDecl)->getDeclName();
3842    else
3843      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3844    RealDecl->setInvalidDecl();
3845    return;
3846  }
3847
3848  // A definition must end up with a complete type, which means it must be
3849  // complete with the restriction that an array type might be completed by the
3850  // initializer; note that later code assumes this restriction.
3851  QualType BaseDeclType = VDecl->getType();
3852  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3853    BaseDeclType = Array->getElementType();
3854  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3855                          diag::err_typecheck_decl_incomplete_type)) {
3856    RealDecl->setInvalidDecl();
3857    return;
3858  }
3859
3860  // The variable can not have an abstract class type.
3861  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3862                             diag::err_abstract_type_in_decl,
3863                             AbstractVariableType))
3864    VDecl->setInvalidDecl();
3865
3866  const VarDecl *Def;
3867  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3868    Diag(VDecl->getLocation(), diag::err_redefinition)
3869      << VDecl->getDeclName();
3870    Diag(Def->getLocation(), diag::note_previous_definition);
3871    VDecl->setInvalidDecl();
3872    return;
3873  }
3874
3875  // Take ownership of the expression, now that we're sure we have somewhere
3876  // to put it.
3877  Expr *Init = init.takeAs<Expr>();
3878  assert(Init && "missing initializer");
3879
3880  // Capture the variable that is being initialized and the style of
3881  // initialization.
3882  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3883
3884  // FIXME: Poor source location information.
3885  InitializationKind Kind
3886    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3887                                                   Init->getLocStart(),
3888                                                   Init->getLocEnd())
3889                : InitializationKind::CreateCopy(VDecl->getLocation(),
3890                                                 Init->getLocStart());
3891
3892  // Get the decls type and save a reference for later, since
3893  // CheckInitializerTypes may change it.
3894  QualType DclT = VDecl->getType(), SavT = DclT;
3895  if (VDecl->isBlockVarDecl()) {
3896    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3897      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3898      VDecl->setInvalidDecl();
3899    } else if (!VDecl->isInvalidDecl()) {
3900      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3901      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3902                                          MultiExprArg(*this, (void**)&Init, 1),
3903                                                &DclT);
3904      if (Result.isInvalid()) {
3905        VDecl->setInvalidDecl();
3906        return;
3907      }
3908
3909      Init = Result.takeAs<Expr>();
3910
3911      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3912      // Don't check invalid declarations to avoid emitting useless diagnostics.
3913      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3914        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3915          CheckForConstantInitializer(Init, DclT);
3916      }
3917    }
3918  } else if (VDecl->isStaticDataMember() &&
3919             VDecl->getLexicalDeclContext()->isRecord()) {
3920    // This is an in-class initialization for a static data member, e.g.,
3921    //
3922    // struct S {
3923    //   static const int value = 17;
3924    // };
3925
3926    // Attach the initializer
3927    VDecl->setInit(Init);
3928
3929    // C++ [class.mem]p4:
3930    //   A member-declarator can contain a constant-initializer only
3931    //   if it declares a static member (9.4) of const integral or
3932    //   const enumeration type, see 9.4.2.
3933    QualType T = VDecl->getType();
3934    if (!T->isDependentType() &&
3935        (!Context.getCanonicalType(T).isConstQualified() ||
3936         !T->isIntegralType())) {
3937      Diag(VDecl->getLocation(), diag::err_member_initialization)
3938        << VDecl->getDeclName() << Init->getSourceRange();
3939      VDecl->setInvalidDecl();
3940    } else {
3941      // C++ [class.static.data]p4:
3942      //   If a static data member is of const integral or const
3943      //   enumeration type, its declaration in the class definition
3944      //   can specify a constant-initializer which shall be an
3945      //   integral constant expression (5.19).
3946      if (!Init->isTypeDependent() &&
3947          !Init->getType()->isIntegralType()) {
3948        // We have a non-dependent, non-integral or enumeration type.
3949        Diag(Init->getSourceRange().getBegin(),
3950             diag::err_in_class_initializer_non_integral_type)
3951          << Init->getType() << Init->getSourceRange();
3952        VDecl->setInvalidDecl();
3953      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3954        // Check whether the expression is a constant expression.
3955        llvm::APSInt Value;
3956        SourceLocation Loc;
3957        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3958          Diag(Loc, diag::err_in_class_initializer_non_constant)
3959            << Init->getSourceRange();
3960          VDecl->setInvalidDecl();
3961        } else if (!VDecl->getType()->isDependentType())
3962          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3963      }
3964    }
3965  } else if (VDecl->isFileVarDecl()) {
3966    if (VDecl->getStorageClass() == VarDecl::Extern &&
3967        (!getLangOptions().CPlusPlus ||
3968         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3969      Diag(VDecl->getLocation(), diag::warn_extern_init);
3970    if (!VDecl->isInvalidDecl()) {
3971      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3972      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3973                                          MultiExprArg(*this, (void**)&Init, 1),
3974                                                &DclT);
3975      if (Result.isInvalid()) {
3976        VDecl->setInvalidDecl();
3977        return;
3978      }
3979
3980      Init = Result.takeAs<Expr>();
3981    }
3982
3983    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3984    // Don't check invalid declarations to avoid emitting useless diagnostics.
3985    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3986      // C99 6.7.8p4. All file scoped initializers need to be constant.
3987      CheckForConstantInitializer(Init, DclT);
3988    }
3989  }
3990  // If the type changed, it means we had an incomplete type that was
3991  // completed by the initializer. For example:
3992  //   int ary[] = { 1, 3, 5 };
3993  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3994  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3995    VDecl->setType(DclT);
3996    Init->setType(DclT);
3997  }
3998
3999  Init = MaybeCreateCXXExprWithTemporaries(Init);
4000  // Attach the initializer to the decl.
4001  VDecl->setInit(Init);
4002
4003  if (getLangOptions().CPlusPlus) {
4004    // Make sure we mark the destructor as used if necessary.
4005    QualType InitType = VDecl->getType();
4006    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4007      InitType = Context.getBaseElementType(Array);
4008    if (const RecordType *Record = InitType->getAs<RecordType>())
4009      FinalizeVarWithDestructor(VDecl, Record);
4010  }
4011
4012  return;
4013}
4014
4015/// ActOnInitializerError - Given that there was an error parsing an
4016/// initializer for the given declaration, try to return to some form
4017/// of sanity.
4018void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4019  // Our main concern here is re-establishing invariants like "a
4020  // variable's type is either dependent or complete".
4021  Decl *D = dcl.getAs<Decl>();
4022  if (!D || D->isInvalidDecl()) return;
4023
4024  VarDecl *VD = dyn_cast<VarDecl>(D);
4025  if (!VD) return;
4026
4027  QualType Ty = VD->getType();
4028  if (Ty->isDependentType()) return;
4029
4030  // Require a complete type.
4031  if (RequireCompleteType(VD->getLocation(),
4032                          Context.getBaseElementType(Ty),
4033                          diag::err_typecheck_decl_incomplete_type)) {
4034    VD->setInvalidDecl();
4035    return;
4036  }
4037
4038  // Require an abstract type.
4039  if (RequireNonAbstractType(VD->getLocation(), Ty,
4040                             diag::err_abstract_type_in_decl,
4041                             AbstractVariableType)) {
4042    VD->setInvalidDecl();
4043    return;
4044  }
4045
4046  // Don't bother complaining about constructors or destructors,
4047  // though.
4048}
4049
4050void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4051                                  bool TypeContainsUndeducedAuto) {
4052  Decl *RealDecl = dcl.getAs<Decl>();
4053
4054  // If there is no declaration, there was an error parsing it. Just ignore it.
4055  if (RealDecl == 0)
4056    return;
4057
4058  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4059    QualType Type = Var->getType();
4060
4061    // C++0x [dcl.spec.auto]p3
4062    if (TypeContainsUndeducedAuto) {
4063      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4064        << Var->getDeclName() << Type;
4065      Var->setInvalidDecl();
4066      return;
4067    }
4068
4069    switch (Var->isThisDeclarationADefinition()) {
4070    case VarDecl::Definition:
4071      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4072        break;
4073
4074      // We have an out-of-line definition of a static data member
4075      // that has an in-class initializer, so we type-check this like
4076      // a declaration.
4077      //
4078      // Fall through
4079
4080    case VarDecl::DeclarationOnly:
4081      // It's only a declaration.
4082
4083      // Block scope. C99 6.7p7: If an identifier for an object is
4084      // declared with no linkage (C99 6.2.2p6), the type for the
4085      // object shall be complete.
4086      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4087          !Var->getLinkage() && !Var->isInvalidDecl() &&
4088          RequireCompleteType(Var->getLocation(), Type,
4089                              diag::err_typecheck_decl_incomplete_type))
4090        Var->setInvalidDecl();
4091
4092      // Make sure that the type is not abstract.
4093      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4094          RequireNonAbstractType(Var->getLocation(), Type,
4095                                 diag::err_abstract_type_in_decl,
4096                                 AbstractVariableType))
4097        Var->setInvalidDecl();
4098      return;
4099
4100    case VarDecl::TentativeDefinition:
4101      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4102      // object that has file scope without an initializer, and without a
4103      // storage-class specifier or with the storage-class specifier "static",
4104      // constitutes a tentative definition. Note: A tentative definition with
4105      // external linkage is valid (C99 6.2.2p5).
4106      if (!Var->isInvalidDecl()) {
4107        if (const IncompleteArrayType *ArrayT
4108                                    = Context.getAsIncompleteArrayType(Type)) {
4109          if (RequireCompleteType(Var->getLocation(),
4110                                  ArrayT->getElementType(),
4111                                  diag::err_illegal_decl_array_incomplete_type))
4112            Var->setInvalidDecl();
4113        } else if (Var->getStorageClass() == VarDecl::Static) {
4114          // C99 6.9.2p3: If the declaration of an identifier for an object is
4115          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4116          // declared type shall not be an incomplete type.
4117          // NOTE: code such as the following
4118          //     static struct s;
4119          //     struct s { int a; };
4120          // is accepted by gcc. Hence here we issue a warning instead of
4121          // an error and we do not invalidate the static declaration.
4122          // NOTE: to avoid multiple warnings, only check the first declaration.
4123          if (Var->getPreviousDeclaration() == 0)
4124            RequireCompleteType(Var->getLocation(), Type,
4125                                diag::ext_typecheck_decl_incomplete_type);
4126        }
4127      }
4128
4129      // Record the tentative definition; we're done.
4130      if (!Var->isInvalidDecl())
4131        TentativeDefinitions.push_back(Var);
4132      return;
4133    }
4134
4135    // Provide a specific diagnostic for uninitialized variable
4136    // definitions with incomplete array type.
4137    if (Type->isIncompleteArrayType()) {
4138      Diag(Var->getLocation(),
4139           diag::err_typecheck_incomplete_array_needs_initializer);
4140      Var->setInvalidDecl();
4141      return;
4142    }
4143
4144   // Provide a specific diagnostic for uninitialized variable
4145   // definitions with reference type.
4146   if (Type->isReferenceType()) {
4147     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4148       << Var->getDeclName()
4149       << SourceRange(Var->getLocation(), Var->getLocation());
4150     Var->setInvalidDecl();
4151     return;
4152   }
4153
4154    // Do not attempt to type-check the default initializer for a
4155    // variable with dependent type.
4156    if (Type->isDependentType())
4157      return;
4158
4159    if (Var->isInvalidDecl())
4160      return;
4161
4162    if (RequireCompleteType(Var->getLocation(),
4163                            Context.getBaseElementType(Type),
4164                            diag::err_typecheck_decl_incomplete_type)) {
4165      Var->setInvalidDecl();
4166      return;
4167    }
4168
4169    // The variable can not have an abstract class type.
4170    if (RequireNonAbstractType(Var->getLocation(), Type,
4171                               diag::err_abstract_type_in_decl,
4172                               AbstractVariableType)) {
4173      Var->setInvalidDecl();
4174      return;
4175    }
4176
4177    const RecordType *Record
4178      = Context.getBaseElementType(Type)->getAs<RecordType>();
4179    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4180        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4181      // C++03 [dcl.init]p9:
4182      //   If no initializer is specified for an object, and the
4183      //   object is of (possibly cv-qualified) non-POD class type (or
4184      //   array thereof), the object shall be default-initialized; if
4185      //   the object is of const-qualified type, the underlying class
4186      //   type shall have a user-declared default
4187      //   constructor. Otherwise, if no initializer is specified for
4188      //   a non- static object, the object and its subobjects, if
4189      //   any, have an indeterminate initial value); if the object
4190      //   or any of its subobjects are of const-qualified type, the
4191      //   program is ill-formed.
4192      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4193    } else {
4194      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4195      InitializationKind Kind
4196        = InitializationKind::CreateDefault(Var->getLocation());
4197
4198      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4199      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4200                                              MultiExprArg(*this, 0, 0));
4201      if (Init.isInvalid())
4202        Var->setInvalidDecl();
4203      else if (Init.get())
4204        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4205    }
4206
4207    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4208      FinalizeVarWithDestructor(Var, Record);
4209  }
4210}
4211
4212Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4213                                                   DeclPtrTy *Group,
4214                                                   unsigned NumDecls) {
4215  llvm::SmallVector<Decl*, 8> Decls;
4216
4217  if (DS.isTypeSpecOwned())
4218    Decls.push_back((Decl*)DS.getTypeRep());
4219
4220  for (unsigned i = 0; i != NumDecls; ++i)
4221    if (Decl *D = Group[i].getAs<Decl>())
4222      Decls.push_back(D);
4223
4224  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4225                                                   Decls.data(), Decls.size()));
4226}
4227
4228
4229/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4230/// to introduce parameters into function prototype scope.
4231Sema::DeclPtrTy
4232Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4233  const DeclSpec &DS = D.getDeclSpec();
4234
4235  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4236  VarDecl::StorageClass StorageClass = VarDecl::None;
4237  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4238  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4239    StorageClass = VarDecl::Register;
4240    StorageClassAsWritten = VarDecl::Register;
4241  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4242    Diag(DS.getStorageClassSpecLoc(),
4243         diag::err_invalid_storage_class_in_func_decl);
4244    D.getMutableDeclSpec().ClearStorageClassSpecs();
4245  }
4246
4247  if (D.getDeclSpec().isThreadSpecified())
4248    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4249
4250  DiagnoseFunctionSpecifiers(D);
4251
4252  // Check that there are no default arguments inside the type of this
4253  // parameter (C++ only).
4254  if (getLangOptions().CPlusPlus)
4255    CheckExtraCXXDefaultArguments(D);
4256
4257  TypeSourceInfo *TInfo = 0;
4258  TagDecl *OwnedDecl = 0;
4259  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4260
4261  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4262    // C++ [dcl.fct]p6:
4263    //   Types shall not be defined in return or parameter types.
4264    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4265      << Context.getTypeDeclType(OwnedDecl);
4266  }
4267
4268  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4269  IdentifierInfo *II = D.getIdentifier();
4270  if (II) {
4271    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4272                   ForRedeclaration);
4273    LookupName(R, S);
4274    if (R.isSingleResult()) {
4275      NamedDecl *PrevDecl = R.getFoundDecl();
4276      if (PrevDecl->isTemplateParameter()) {
4277        // Maybe we will complain about the shadowed template parameter.
4278        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4279        // Just pretend that we didn't see the previous declaration.
4280        PrevDecl = 0;
4281      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4282        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4283        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4284
4285        // Recover by removing the name
4286        II = 0;
4287        D.SetIdentifier(0, D.getIdentifierLoc());
4288        D.setInvalidType(true);
4289      }
4290    }
4291  }
4292
4293  // Temporarily put parameter variables in the translation unit, not
4294  // the enclosing context.  This prevents them from accidentally
4295  // looking like class members in C++.
4296  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4297                                    TInfo, parmDeclType, II,
4298                                    D.getIdentifierLoc(),
4299                                    StorageClass, StorageClassAsWritten);
4300
4301  if (D.isInvalidType())
4302    New->setInvalidDecl();
4303
4304  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4305  if (D.getCXXScopeSpec().isSet()) {
4306    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4307      << D.getCXXScopeSpec().getRange();
4308    New->setInvalidDecl();
4309  }
4310
4311  // Add the parameter declaration into this scope.
4312  S->AddDecl(DeclPtrTy::make(New));
4313  if (II)
4314    IdResolver.AddDecl(New);
4315
4316  ProcessDeclAttributes(S, New, D);
4317
4318  if (New->hasAttr<BlocksAttr>()) {
4319    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4320  }
4321  return DeclPtrTy::make(New);
4322}
4323
4324ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4325                                  TypeSourceInfo *TSInfo, QualType T,
4326                                  IdentifierInfo *Name,
4327                                  SourceLocation NameLoc,
4328                                  VarDecl::StorageClass StorageClass,
4329                                  VarDecl::StorageClass StorageClassAsWritten) {
4330  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4331                                         adjustParameterType(T), TSInfo,
4332                                         StorageClass, StorageClassAsWritten,
4333                                         0);
4334
4335  // Parameters can not be abstract class types.
4336  // For record types, this is done by the AbstractClassUsageDiagnoser once
4337  // the class has been completely parsed.
4338  if (!CurContext->isRecord() &&
4339      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4340                             AbstractParamType))
4341    New->setInvalidDecl();
4342
4343  // Parameter declarators cannot be interface types. All ObjC objects are
4344  // passed by reference.
4345  if (T->isObjCObjectType()) {
4346    Diag(NameLoc,
4347         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4348    New->setInvalidDecl();
4349  }
4350
4351  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4352  // duration shall not be qualified by an address-space qualifier."
4353  // Since all parameters have automatic store duration, they can not have
4354  // an address space.
4355  if (T.getAddressSpace() != 0) {
4356    Diag(NameLoc, diag::err_arg_with_address_space);
4357    New->setInvalidDecl();
4358  }
4359
4360  return New;
4361}
4362
4363void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4364                                           SourceLocation LocAfterDecls) {
4365  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4366         "Not a function declarator!");
4367  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4368
4369  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4370  // for a K&R function.
4371  if (!FTI.hasPrototype) {
4372    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4373      --i;
4374      if (FTI.ArgInfo[i].Param == 0) {
4375        llvm::SmallString<256> Code;
4376        llvm::raw_svector_ostream(Code) << "  int "
4377                                        << FTI.ArgInfo[i].Ident->getName()
4378                                        << ";\n";
4379        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4380          << FTI.ArgInfo[i].Ident
4381          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4382
4383        // Implicitly declare the argument as type 'int' for lack of a better
4384        // type.
4385        DeclSpec DS;
4386        const char* PrevSpec; // unused
4387        unsigned DiagID; // unused
4388        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4389                           PrevSpec, DiagID);
4390        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4391        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4392        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4393      }
4394    }
4395  }
4396}
4397
4398Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4399                                              Declarator &D) {
4400  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4401  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4402         "Not a function declarator!");
4403  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4404
4405  if (FTI.hasPrototype) {
4406    // FIXME: Diagnose arguments without names in C.
4407  }
4408
4409  Scope *ParentScope = FnBodyScope->getParent();
4410
4411  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4412                                  MultiTemplateParamsArg(*this),
4413                                  /*IsFunctionDefinition=*/true);
4414  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4415}
4416
4417static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4418  // Don't warn about invalid declarations.
4419  if (FD->isInvalidDecl())
4420    return false;
4421
4422  // Or declarations that aren't global.
4423  if (!FD->isGlobal())
4424    return false;
4425
4426  // Don't warn about C++ member functions.
4427  if (isa<CXXMethodDecl>(FD))
4428    return false;
4429
4430  // Don't warn about 'main'.
4431  if (FD->isMain())
4432    return false;
4433
4434  // Don't warn about inline functions.
4435  if (FD->isInlineSpecified())
4436    return false;
4437
4438  // Don't warn about function templates.
4439  if (FD->getDescribedFunctionTemplate())
4440    return false;
4441
4442  // Don't warn about function template specializations.
4443  if (FD->isFunctionTemplateSpecialization())
4444    return false;
4445
4446  bool MissingPrototype = true;
4447  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4448       Prev; Prev = Prev->getPreviousDeclaration()) {
4449    // Ignore any declarations that occur in function or method
4450    // scope, because they aren't visible from the header.
4451    if (Prev->getDeclContext()->isFunctionOrMethod())
4452      continue;
4453
4454    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4455    break;
4456  }
4457
4458  return MissingPrototype;
4459}
4460
4461Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4462  // Clear the last template instantiation error context.
4463  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4464
4465  if (!D)
4466    return D;
4467  FunctionDecl *FD = 0;
4468
4469  if (FunctionTemplateDecl *FunTmpl
4470        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4471    FD = FunTmpl->getTemplatedDecl();
4472  else
4473    FD = cast<FunctionDecl>(D.getAs<Decl>());
4474
4475  // Enter a new function scope
4476  PushFunctionScope();
4477
4478  // See if this is a redefinition.
4479  // But don't complain if we're in GNU89 mode and the previous definition
4480  // was an extern inline function.
4481  const FunctionDecl *Definition;
4482  if (FD->getBody(Definition) &&
4483      !canRedefineFunction(Definition, getLangOptions())) {
4484    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4485    Diag(Definition->getLocation(), diag::note_previous_definition);
4486  }
4487
4488  // Builtin functions cannot be defined.
4489  if (unsigned BuiltinID = FD->getBuiltinID()) {
4490    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4491      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4492      FD->setInvalidDecl();
4493    }
4494  }
4495
4496  // The return type of a function definition must be complete
4497  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4498  QualType ResultType = FD->getResultType();
4499  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4500      !FD->isInvalidDecl() &&
4501      RequireCompleteType(FD->getLocation(), ResultType,
4502                          diag::err_func_def_incomplete_result))
4503    FD->setInvalidDecl();
4504
4505  // GNU warning -Wmissing-prototypes:
4506  //   Warn if a global function is defined without a previous
4507  //   prototype declaration. This warning is issued even if the
4508  //   definition itself provides a prototype. The aim is to detect
4509  //   global functions that fail to be declared in header files.
4510  if (ShouldWarnAboutMissingPrototype(FD))
4511    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4512
4513  if (FnBodyScope)
4514    PushDeclContext(FnBodyScope, FD);
4515
4516  // Check the validity of our function parameters
4517  CheckParmsForFunctionDef(FD);
4518
4519  bool ShouldCheckShadow =
4520    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4521
4522  // Introduce our parameters into the function scope
4523  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4524    ParmVarDecl *Param = FD->getParamDecl(p);
4525    Param->setOwningFunction(FD);
4526
4527    // If this has an identifier, add it to the scope stack.
4528    if (Param->getIdentifier() && FnBodyScope) {
4529      if (ShouldCheckShadow)
4530        CheckShadow(FnBodyScope, Param);
4531
4532      PushOnScopeChains(Param, FnBodyScope);
4533    }
4534  }
4535
4536  // Checking attributes of current function definition
4537  // dllimport attribute.
4538  if (FD->getAttr<DLLImportAttr>() &&
4539      (!FD->getAttr<DLLExportAttr>())) {
4540    // dllimport attribute cannot be applied to definition.
4541    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4542      Diag(FD->getLocation(),
4543           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4544        << "dllimport";
4545      FD->setInvalidDecl();
4546      return DeclPtrTy::make(FD);
4547    }
4548
4549    // Visual C++ appears to not think this is an issue, so only issue
4550    // a warning when Microsoft extensions are disabled.
4551    if (!LangOpts.Microsoft) {
4552      // If a symbol previously declared dllimport is later defined, the
4553      // attribute is ignored in subsequent references, and a warning is
4554      // emitted.
4555      Diag(FD->getLocation(),
4556           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4557        << FD->getNameAsCString() << "dllimport";
4558    }
4559  }
4560  return DeclPtrTy::make(FD);
4561}
4562
4563/// \brief Given the set of return statements within a function body,
4564/// compute the variables that are subject to the named return value
4565/// optimization.
4566///
4567/// Each of the variables that is subject to the named return value
4568/// optimization will be marked as NRVO variables in the AST, and any
4569/// return statement that has a marked NRVO variable as its NRVO candidate can
4570/// use the named return value optimization.
4571///
4572/// This function applies a very simplistic algorithm for NRVO: if every return
4573/// statement in the function has the same NRVO candidate, that candidate is
4574/// the NRVO variable.
4575///
4576/// FIXME: Employ a smarter algorithm that accounts for multiple return
4577/// statements and the lifetimes of the NRVO candidates. We should be able to
4578/// find a maximal set of NRVO variables.
4579static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4580  const VarDecl *NRVOCandidate = 0;
4581  for (unsigned I = 0; I != NumReturns; ++I) {
4582    if (!Returns[I]->getNRVOCandidate())
4583      return;
4584
4585    if (!NRVOCandidate)
4586      NRVOCandidate = Returns[I]->getNRVOCandidate();
4587    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4588      return;
4589  }
4590
4591  if (NRVOCandidate)
4592    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4593}
4594
4595Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4596  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4597}
4598
4599Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4600                                              bool IsInstantiation) {
4601  Decl *dcl = D.getAs<Decl>();
4602  Stmt *Body = BodyArg.takeAs<Stmt>();
4603
4604  FunctionDecl *FD = 0;
4605  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4606  if (FunTmpl)
4607    FD = FunTmpl->getTemplatedDecl();
4608  else
4609    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4610
4611  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4612
4613  if (FD) {
4614    FD->setBody(Body);
4615    if (FD->isMain()) {
4616      // C and C++ allow for main to automagically return 0.
4617      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4618      FD->setHasImplicitReturnZero(true);
4619      WP.disableCheckFallThrough();
4620    }
4621
4622    if (!FD->isInvalidDecl()) {
4623      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4624
4625      // If this is a constructor, we need a vtable.
4626      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4627        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4628
4629      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4630                  FunctionScopes.back()->Returns.size());
4631    }
4632
4633    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4634  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4635    assert(MD == getCurMethodDecl() && "Method parsing confused");
4636    MD->setBody(Body);
4637    MD->setEndLoc(Body->getLocEnd());
4638    if (!MD->isInvalidDecl())
4639      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4640  } else {
4641    Body->Destroy(Context);
4642    return DeclPtrTy();
4643  }
4644
4645  // Verify and clean out per-function state.
4646
4647  // Check goto/label use.
4648  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4649       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4650    LabelStmt *L = I->second;
4651
4652    // Verify that we have no forward references left.  If so, there was a goto
4653    // or address of a label taken, but no definition of it.  Label fwd
4654    // definitions are indicated with a null substmt.
4655    if (L->getSubStmt() != 0)
4656      continue;
4657
4658    // Emit error.
4659    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4660
4661    // At this point, we have gotos that use the bogus label.  Stitch it into
4662    // the function body so that they aren't leaked and that the AST is well
4663    // formed.
4664    if (Body == 0) {
4665      // The whole function wasn't parsed correctly, just delete this.
4666      L->Destroy(Context);
4667      continue;
4668    }
4669
4670    // Otherwise, the body is valid: we want to stitch the label decl into the
4671    // function somewhere so that it is properly owned and so that the goto
4672    // has a valid target.  Do this by creating a new compound stmt with the
4673    // label in it.
4674
4675    // Give the label a sub-statement.
4676    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4677
4678    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4679                               cast<CXXTryStmt>(Body)->getTryBlock() :
4680                               cast<CompoundStmt>(Body);
4681    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4682                                          Compound->body_end());
4683    Elements.push_back(L);
4684    Compound->setStmts(Context, Elements.data(), Elements.size());
4685  }
4686
4687  if (Body) {
4688    // C++ constructors that have function-try-blocks can't have return
4689    // statements in the handlers of that block. (C++ [except.handle]p14)
4690    // Verify this.
4691    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4692      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4693
4694    // Verify that that gotos and switch cases don't jump into scopes illegally.
4695    // Verify that that gotos and switch cases don't jump into scopes illegally.
4696    if (FunctionNeedsScopeChecking() &&
4697        !FD->isInvalidDecl() &&
4698        !hasAnyErrorsInThisFunction())
4699      DiagnoseInvalidJumps(Body);
4700
4701    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4702      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4703                                             Destructor->getParent());
4704
4705    // If any errors have occurred, clear out any temporaries that may have
4706    // been leftover. This ensures that these temporaries won't be picked up for
4707    // deletion in some later function.
4708    if (PP.getDiagnostics().hasErrorOccurred())
4709      ExprTemporaries.clear();
4710    else if (!isa<FunctionTemplateDecl>(dcl)) {
4711      // Since the body is valid, issue any analysis-based warnings that are
4712      // enabled.
4713      QualType ResultType;
4714      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4715        ResultType = FD->getResultType();
4716      }
4717      else {
4718        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4719        ResultType = MD->getResultType();
4720      }
4721      AnalysisWarnings.IssueWarnings(WP, dcl);
4722    }
4723
4724    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4725  }
4726
4727  if (!IsInstantiation)
4728    PopDeclContext();
4729
4730  PopFunctionOrBlockScope();
4731
4732  // If any errors have occurred, clear out any temporaries that may have
4733  // been leftover. This ensures that these temporaries won't be picked up for
4734  // deletion in some later function.
4735  if (getDiagnostics().hasErrorOccurred())
4736    ExprTemporaries.clear();
4737
4738  return D;
4739}
4740
4741/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4742/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4743NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4744                                          IdentifierInfo &II, Scope *S) {
4745  // Before we produce a declaration for an implicitly defined
4746  // function, see whether there was a locally-scoped declaration of
4747  // this name as a function or variable. If so, use that
4748  // (non-visible) declaration, and complain about it.
4749  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4750    = LocallyScopedExternalDecls.find(&II);
4751  if (Pos != LocallyScopedExternalDecls.end()) {
4752    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4753    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4754    return Pos->second;
4755  }
4756
4757  // Extension in C99.  Legal in C90, but warn about it.
4758  if (II.getName().startswith("__builtin_"))
4759    Diag(Loc, diag::warn_builtin_unknown) << &II;
4760  else if (getLangOptions().C99)
4761    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4762  else
4763    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4764
4765  // Set a Declarator for the implicit definition: int foo();
4766  const char *Dummy;
4767  DeclSpec DS;
4768  unsigned DiagID;
4769  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4770  Error = Error; // Silence warning.
4771  assert(!Error && "Error setting up implicit decl!");
4772  Declarator D(DS, Declarator::BlockContext);
4773  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4774                                             0, 0, false, SourceLocation(),
4775                                             false, 0,0,0, Loc, Loc, D),
4776                SourceLocation());
4777  D.SetIdentifier(&II, Loc);
4778
4779  // Insert this function into translation-unit scope.
4780
4781  DeclContext *PrevDC = CurContext;
4782  CurContext = Context.getTranslationUnitDecl();
4783
4784  FunctionDecl *FD =
4785 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4786  FD->setImplicit();
4787
4788  CurContext = PrevDC;
4789
4790  AddKnownFunctionAttributes(FD);
4791
4792  return FD;
4793}
4794
4795/// \brief Adds any function attributes that we know a priori based on
4796/// the declaration of this function.
4797///
4798/// These attributes can apply both to implicitly-declared builtins
4799/// (like __builtin___printf_chk) or to library-declared functions
4800/// like NSLog or printf.
4801void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4802  if (FD->isInvalidDecl())
4803    return;
4804
4805  // If this is a built-in function, map its builtin attributes to
4806  // actual attributes.
4807  if (unsigned BuiltinID = FD->getBuiltinID()) {
4808    // Handle printf-formatting attributes.
4809    unsigned FormatIdx;
4810    bool HasVAListArg;
4811    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4812      if (!FD->getAttr<FormatAttr>())
4813        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4814                                               HasVAListArg ? 0 : FormatIdx+2));
4815    }
4816
4817    // Mark const if we don't care about errno and that is the only
4818    // thing preventing the function from being const. This allows
4819    // IRgen to use LLVM intrinsics for such functions.
4820    if (!getLangOptions().MathErrno &&
4821        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4822      if (!FD->getAttr<ConstAttr>())
4823        FD->addAttr(::new (Context) ConstAttr());
4824    }
4825
4826    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4827      FD->setType(Context.getNoReturnType(FD->getType()));
4828    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4829      FD->addAttr(::new (Context) NoThrowAttr());
4830    if (Context.BuiltinInfo.isConst(BuiltinID))
4831      FD->addAttr(::new (Context) ConstAttr());
4832  }
4833
4834  IdentifierInfo *Name = FD->getIdentifier();
4835  if (!Name)
4836    return;
4837  if ((!getLangOptions().CPlusPlus &&
4838       FD->getDeclContext()->isTranslationUnit()) ||
4839      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4840       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4841       LinkageSpecDecl::lang_c)) {
4842    // Okay: this could be a libc/libm/Objective-C function we know
4843    // about.
4844  } else
4845    return;
4846
4847  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4848    // FIXME: NSLog and NSLogv should be target specific
4849    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4850      // FIXME: We known better than our headers.
4851      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4852    } else
4853      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4854                                             Name->isStr("NSLogv") ? 0 : 2));
4855  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4856    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4857    // target-specific builtins, perhaps?
4858    if (!FD->getAttr<FormatAttr>())
4859      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4860                                             Name->isStr("vasprintf") ? 0 : 3));
4861  }
4862}
4863
4864TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4865                                    TypeSourceInfo *TInfo) {
4866  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4867  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4868
4869  if (!TInfo) {
4870    assert(D.isInvalidType() && "no declarator info for valid type");
4871    TInfo = Context.getTrivialTypeSourceInfo(T);
4872  }
4873
4874  // Scope manipulation handled by caller.
4875  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4876                                           D.getIdentifierLoc(),
4877                                           D.getIdentifier(),
4878                                           TInfo);
4879
4880  if (const TagType *TT = T->getAs<TagType>()) {
4881    TagDecl *TD = TT->getDecl();
4882
4883    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4884    // keep track of the TypedefDecl.
4885    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4886      TD->setTypedefForAnonDecl(NewTD);
4887  }
4888
4889  if (D.isInvalidType())
4890    NewTD->setInvalidDecl();
4891  return NewTD;
4892}
4893
4894
4895/// \brief Determine whether a tag with a given kind is acceptable
4896/// as a redeclaration of the given tag declaration.
4897///
4898/// \returns true if the new tag kind is acceptable, false otherwise.
4899bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4900                                        TagTypeKind NewTag,
4901                                        SourceLocation NewTagLoc,
4902                                        const IdentifierInfo &Name) {
4903  // C++ [dcl.type.elab]p3:
4904  //   The class-key or enum keyword present in the
4905  //   elaborated-type-specifier shall agree in kind with the
4906  //   declaration to which the name in the elaborated-type-specifier
4907  //   refers. This rule also applies to the form of
4908  //   elaborated-type-specifier that declares a class-name or
4909  //   friend class since it can be construed as referring to the
4910  //   definition of the class. Thus, in any
4911  //   elaborated-type-specifier, the enum keyword shall be used to
4912  //   refer to an enumeration (7.2), the union class-key shall be
4913  //   used to refer to a union (clause 9), and either the class or
4914  //   struct class-key shall be used to refer to a class (clause 9)
4915  //   declared using the class or struct class-key.
4916  TagTypeKind OldTag = Previous->getTagKind();
4917  if (OldTag == NewTag)
4918    return true;
4919
4920  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
4921      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
4922    // Warn about the struct/class tag mismatch.
4923    bool isTemplate = false;
4924    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4925      isTemplate = Record->getDescribedClassTemplate();
4926
4927    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4928      << (NewTag == TTK_Class)
4929      << isTemplate << &Name
4930      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4931                              OldTag == TTK_Class? "class" : "struct");
4932    Diag(Previous->getLocation(), diag::note_previous_use);
4933    return true;
4934  }
4935  return false;
4936}
4937
4938/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4939/// former case, Name will be non-null.  In the later case, Name will be null.
4940/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4941/// reference/declaration/definition of a tag.
4942Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4943                               SourceLocation KWLoc, CXXScopeSpec &SS,
4944                               IdentifierInfo *Name, SourceLocation NameLoc,
4945                               AttributeList *Attr, AccessSpecifier AS,
4946                               MultiTemplateParamsArg TemplateParameterLists,
4947                               bool &OwnedDecl, bool &IsDependent) {
4948  // If this is not a definition, it must have a name.
4949  assert((Name != 0 || TUK == TUK_Definition) &&
4950         "Nameless record must be a definition!");
4951
4952  OwnedDecl = false;
4953  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4954
4955  // FIXME: Check explicit specializations more carefully.
4956  bool isExplicitSpecialization = false;
4957  if (TUK != TUK_Reference) {
4958    if (TemplateParameterList *TemplateParams
4959          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4960                        (TemplateParameterList**)TemplateParameterLists.get(),
4961                                              TemplateParameterLists.size(),
4962                                                    TUK == TUK_Friend,
4963                                                    isExplicitSpecialization)) {
4964      if (TemplateParams->size() > 0) {
4965        // This is a declaration or definition of a class template (which may
4966        // be a member of another template).
4967        OwnedDecl = false;
4968        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4969                                               SS, Name, NameLoc, Attr,
4970                                               TemplateParams,
4971                                               AS);
4972        TemplateParameterLists.release();
4973        return Result.get();
4974      } else {
4975        // The "template<>" header is extraneous.
4976        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4977          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
4978        isExplicitSpecialization = true;
4979      }
4980    }
4981
4982    TemplateParameterLists.release();
4983  }
4984
4985  DeclContext *SearchDC = CurContext;
4986  DeclContext *DC = CurContext;
4987  bool isStdBadAlloc = false;
4988  bool Invalid = false;
4989
4990  RedeclarationKind Redecl = ForRedeclaration;
4991  if (TUK == TUK_Friend || TUK == TUK_Reference)
4992    Redecl = NotForRedeclaration;
4993
4994  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4995
4996  if (Name && SS.isNotEmpty()) {
4997    // We have a nested-name tag ('struct foo::bar').
4998
4999    // Check for invalid 'foo::'.
5000    if (SS.isInvalid()) {
5001      Name = 0;
5002      goto CreateNewDecl;
5003    }
5004
5005    // If this is a friend or a reference to a class in a dependent
5006    // context, don't try to make a decl for it.
5007    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5008      DC = computeDeclContext(SS, false);
5009      if (!DC) {
5010        IsDependent = true;
5011        return DeclPtrTy();
5012      }
5013    } else {
5014      DC = computeDeclContext(SS, true);
5015      if (!DC) {
5016        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5017          << SS.getRange();
5018        return DeclPtrTy();
5019      }
5020    }
5021
5022    if (RequireCompleteDeclContext(SS, DC))
5023      return DeclPtrTy::make((Decl *)0);
5024
5025    SearchDC = DC;
5026    // Look-up name inside 'foo::'.
5027    LookupQualifiedName(Previous, DC);
5028
5029    if (Previous.isAmbiguous())
5030      return DeclPtrTy();
5031
5032    if (Previous.empty()) {
5033      // Name lookup did not find anything. However, if the
5034      // nested-name-specifier refers to the current instantiation,
5035      // and that current instantiation has any dependent base
5036      // classes, we might find something at instantiation time: treat
5037      // this as a dependent elaborated-type-specifier.
5038      if (Previous.wasNotFoundInCurrentInstantiation()) {
5039        IsDependent = true;
5040        return DeclPtrTy();
5041      }
5042
5043      // A tag 'foo::bar' must already exist.
5044      Diag(NameLoc, diag::err_not_tag_in_scope)
5045        << Kind << Name << DC << SS.getRange();
5046      Name = 0;
5047      Invalid = true;
5048      goto CreateNewDecl;
5049    }
5050  } else if (Name) {
5051    // If this is a named struct, check to see if there was a previous forward
5052    // declaration or definition.
5053    // FIXME: We're looking into outer scopes here, even when we
5054    // shouldn't be. Doing so can result in ambiguities that we
5055    // shouldn't be diagnosing.
5056    LookupName(Previous, S);
5057
5058    // Note:  there used to be some attempt at recovery here.
5059    if (Previous.isAmbiguous())
5060      return DeclPtrTy();
5061
5062    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5063      // FIXME: This makes sure that we ignore the contexts associated
5064      // with C structs, unions, and enums when looking for a matching
5065      // tag declaration or definition. See the similar lookup tweak
5066      // in Sema::LookupName; is there a better way to deal with this?
5067      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5068        SearchDC = SearchDC->getParent();
5069    }
5070  }
5071
5072  if (Previous.isSingleResult() &&
5073      Previous.getFoundDecl()->isTemplateParameter()) {
5074    // Maybe we will complain about the shadowed template parameter.
5075    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5076    // Just pretend that we didn't see the previous declaration.
5077    Previous.clear();
5078  }
5079
5080  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5081      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5082    // This is a declaration of or a reference to "std::bad_alloc".
5083    isStdBadAlloc = true;
5084
5085    if (Previous.empty() && StdBadAlloc) {
5086      // std::bad_alloc has been implicitly declared (but made invisible to
5087      // name lookup). Fill in this implicit declaration as the previous
5088      // declaration, so that the declarations get chained appropriately.
5089      Previous.addDecl(StdBadAlloc);
5090    }
5091  }
5092
5093  // If we didn't find a previous declaration, and this is a reference
5094  // (or friend reference), move to the correct scope.  In C++, we
5095  // also need to do a redeclaration lookup there, just in case
5096  // there's a shadow friend decl.
5097  if (Name && Previous.empty() &&
5098      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5099    if (Invalid) goto CreateNewDecl;
5100    assert(SS.isEmpty());
5101
5102    if (TUK == TUK_Reference) {
5103      // C++ [basic.scope.pdecl]p5:
5104      //   -- for an elaborated-type-specifier of the form
5105      //
5106      //          class-key identifier
5107      //
5108      //      if the elaborated-type-specifier is used in the
5109      //      decl-specifier-seq or parameter-declaration-clause of a
5110      //      function defined in namespace scope, the identifier is
5111      //      declared as a class-name in the namespace that contains
5112      //      the declaration; otherwise, except as a friend
5113      //      declaration, the identifier is declared in the smallest
5114      //      non-class, non-function-prototype scope that contains the
5115      //      declaration.
5116      //
5117      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5118      // C structs and unions.
5119      //
5120      // It is an error in C++ to declare (rather than define) an enum
5121      // type, including via an elaborated type specifier.  We'll
5122      // diagnose that later; for now, declare the enum in the same
5123      // scope as we would have picked for any other tag type.
5124      //
5125      // GNU C also supports this behavior as part of its incomplete
5126      // enum types extension, while GNU C++ does not.
5127      //
5128      // Find the context where we'll be declaring the tag.
5129      // FIXME: We would like to maintain the current DeclContext as the
5130      // lexical context,
5131      while (SearchDC->isRecord())
5132        SearchDC = SearchDC->getParent();
5133
5134      // Find the scope where we'll be declaring the tag.
5135      while (S->isClassScope() ||
5136             (getLangOptions().CPlusPlus &&
5137              S->isFunctionPrototypeScope()) ||
5138             ((S->getFlags() & Scope::DeclScope) == 0) ||
5139             (S->getEntity() &&
5140              ((DeclContext *)S->getEntity())->isTransparentContext()))
5141        S = S->getParent();
5142    } else {
5143      assert(TUK == TUK_Friend);
5144      // C++ [namespace.memdef]p3:
5145      //   If a friend declaration in a non-local class first declares a
5146      //   class or function, the friend class or function is a member of
5147      //   the innermost enclosing namespace.
5148      SearchDC = SearchDC->getEnclosingNamespaceContext();
5149    }
5150
5151    // In C++, we need to do a redeclaration lookup to properly
5152    // diagnose some problems.
5153    if (getLangOptions().CPlusPlus) {
5154      Previous.setRedeclarationKind(ForRedeclaration);
5155      LookupQualifiedName(Previous, SearchDC);
5156    }
5157  }
5158
5159  if (!Previous.empty()) {
5160    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5161
5162    // It's okay to have a tag decl in the same scope as a typedef
5163    // which hides a tag decl in the same scope.  Finding this
5164    // insanity with a redeclaration lookup can only actually happen
5165    // in C++.
5166    //
5167    // This is also okay for elaborated-type-specifiers, which is
5168    // technically forbidden by the current standard but which is
5169    // okay according to the likely resolution of an open issue;
5170    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5171    if (getLangOptions().CPlusPlus) {
5172      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5173        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5174          TagDecl *Tag = TT->getDecl();
5175          if (Tag->getDeclName() == Name &&
5176              Tag->getDeclContext()->getLookupContext()
5177                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5178            PrevDecl = Tag;
5179            Previous.clear();
5180            Previous.addDecl(Tag);
5181          }
5182        }
5183      }
5184    }
5185
5186    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5187      // If this is a use of a previous tag, or if the tag is already declared
5188      // in the same scope (so that the definition/declaration completes or
5189      // rementions the tag), reuse the decl.
5190      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5191          isDeclInScope(PrevDecl, SearchDC, S)) {
5192        // Make sure that this wasn't declared as an enum and now used as a
5193        // struct or something similar.
5194        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5195          bool SafeToContinue
5196            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5197               Kind != TTK_Enum);
5198          if (SafeToContinue)
5199            Diag(KWLoc, diag::err_use_with_wrong_tag)
5200              << Name
5201              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5202                                              PrevTagDecl->getKindName());
5203          else
5204            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5205          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5206
5207          if (SafeToContinue)
5208            Kind = PrevTagDecl->getTagKind();
5209          else {
5210            // Recover by making this an anonymous redefinition.
5211            Name = 0;
5212            Previous.clear();
5213            Invalid = true;
5214          }
5215        }
5216
5217        if (!Invalid) {
5218          // If this is a use, just return the declaration we found.
5219
5220          // FIXME: In the future, return a variant or some other clue
5221          // for the consumer of this Decl to know it doesn't own it.
5222          // For our current ASTs this shouldn't be a problem, but will
5223          // need to be changed with DeclGroups.
5224          if (TUK == TUK_Reference || TUK == TUK_Friend)
5225            return DeclPtrTy::make(PrevTagDecl);
5226
5227          // Diagnose attempts to redefine a tag.
5228          if (TUK == TUK_Definition) {
5229            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5230              // If we're defining a specialization and the previous definition
5231              // is from an implicit instantiation, don't emit an error
5232              // here; we'll catch this in the general case below.
5233              if (!isExplicitSpecialization ||
5234                  !isa<CXXRecordDecl>(Def) ||
5235                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5236                                               == TSK_ExplicitSpecialization) {
5237                Diag(NameLoc, diag::err_redefinition) << Name;
5238                Diag(Def->getLocation(), diag::note_previous_definition);
5239                // If this is a redefinition, recover by making this
5240                // struct be anonymous, which will make any later
5241                // references get the previous definition.
5242                Name = 0;
5243                Previous.clear();
5244                Invalid = true;
5245              }
5246            } else {
5247              // If the type is currently being defined, complain
5248              // about a nested redefinition.
5249              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5250              if (Tag->isBeingDefined()) {
5251                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5252                Diag(PrevTagDecl->getLocation(),
5253                     diag::note_previous_definition);
5254                Name = 0;
5255                Previous.clear();
5256                Invalid = true;
5257              }
5258            }
5259
5260            // Okay, this is definition of a previously declared or referenced
5261            // tag PrevDecl. We're going to create a new Decl for it.
5262          }
5263        }
5264        // If we get here we have (another) forward declaration or we
5265        // have a definition.  Just create a new decl.
5266
5267      } else {
5268        // If we get here, this is a definition of a new tag type in a nested
5269        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5270        // new decl/type.  We set PrevDecl to NULL so that the entities
5271        // have distinct types.
5272        Previous.clear();
5273      }
5274      // If we get here, we're going to create a new Decl. If PrevDecl
5275      // is non-NULL, it's a definition of the tag declared by
5276      // PrevDecl. If it's NULL, we have a new definition.
5277
5278
5279    // Otherwise, PrevDecl is not a tag, but was found with tag
5280    // lookup.  This is only actually possible in C++, where a few
5281    // things like templates still live in the tag namespace.
5282    } else {
5283      assert(getLangOptions().CPlusPlus);
5284
5285      // Use a better diagnostic if an elaborated-type-specifier
5286      // found the wrong kind of type on the first
5287      // (non-redeclaration) lookup.
5288      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5289          !Previous.isForRedeclaration()) {
5290        unsigned Kind = 0;
5291        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5292        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5293        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5294        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5295        Invalid = true;
5296
5297      // Otherwise, only diagnose if the declaration is in scope.
5298      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5299        // do nothing
5300
5301      // Diagnose implicit declarations introduced by elaborated types.
5302      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5303        unsigned Kind = 0;
5304        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5305        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5306        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5307        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5308        Invalid = true;
5309
5310      // Otherwise it's a declaration.  Call out a particularly common
5311      // case here.
5312      } else if (isa<TypedefDecl>(PrevDecl)) {
5313        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5314          << Name
5315          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5316        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5317        Invalid = true;
5318
5319      // Otherwise, diagnose.
5320      } else {
5321        // The tag name clashes with something else in the target scope,
5322        // issue an error and recover by making this tag be anonymous.
5323        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5324        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5325        Name = 0;
5326        Invalid = true;
5327      }
5328
5329      // The existing declaration isn't relevant to us; we're in a
5330      // new scope, so clear out the previous declaration.
5331      Previous.clear();
5332    }
5333  }
5334
5335CreateNewDecl:
5336
5337  TagDecl *PrevDecl = 0;
5338  if (Previous.isSingleResult())
5339    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5340
5341  // If there is an identifier, use the location of the identifier as the
5342  // location of the decl, otherwise use the location of the struct/union
5343  // keyword.
5344  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5345
5346  // Otherwise, create a new declaration. If there is a previous
5347  // declaration of the same entity, the two will be linked via
5348  // PrevDecl.
5349  TagDecl *New;
5350
5351  if (Kind == TTK_Enum) {
5352    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5353    // enum X { A, B, C } D;    D should chain to X.
5354    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5355                           cast_or_null<EnumDecl>(PrevDecl));
5356    // If this is an undefined enum, warn.
5357    if (TUK != TUK_Definition && !Invalid)  {
5358      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5359                                              : diag::ext_forward_ref_enum;
5360      Diag(Loc, DK);
5361    }
5362  } else {
5363    // struct/union/class
5364
5365    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5366    // struct X { int A; } D;    D should chain to X.
5367    if (getLangOptions().CPlusPlus) {
5368      // FIXME: Look for a way to use RecordDecl for simple structs.
5369      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5370                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5371
5372      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5373        StdBadAlloc = cast<CXXRecordDecl>(New);
5374    } else
5375      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5376                               cast_or_null<RecordDecl>(PrevDecl));
5377  }
5378
5379  // Maybe add qualifier info.
5380  if (SS.isNotEmpty()) {
5381    if (SS.isSet()) {
5382      NestedNameSpecifier *NNS
5383        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5384      New->setQualifierInfo(NNS, SS.getRange());
5385    }
5386    else
5387      Invalid = true;
5388  }
5389
5390  if (Kind != TTK_Enum) {
5391    // Handle #pragma pack: if the #pragma pack stack has non-default
5392    // alignment, make up a packed attribute for this decl. These
5393    // attributes are checked when the ASTContext lays out the
5394    // structure.
5395    //
5396    // It is important for implementing the correct semantics that this
5397    // happen here (in act on tag decl). The #pragma pack stack is
5398    // maintained as a result of parser callbacks which can occur at
5399    // many points during the parsing of a struct declaration (because
5400    // the #pragma tokens are effectively skipped over during the
5401    // parsing of the struct).
5402    if (unsigned Alignment = getPragmaPackAlignment())
5403      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5404  }
5405
5406  // If this is a specialization of a member class (of a class template),
5407  // check the specialization.
5408  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5409    Invalid = true;
5410
5411  if (Invalid)
5412    New->setInvalidDecl();
5413
5414  if (Attr)
5415    ProcessDeclAttributeList(S, New, Attr);
5416
5417  // If we're declaring or defining a tag in function prototype scope
5418  // in C, note that this type can only be used within the function.
5419  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5420    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5421
5422  // Set the lexical context. If the tag has a C++ scope specifier, the
5423  // lexical context will be different from the semantic context.
5424  New->setLexicalDeclContext(CurContext);
5425
5426  // Mark this as a friend decl if applicable.
5427  if (TUK == TUK_Friend)
5428    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5429
5430  // Set the access specifier.
5431  if (!Invalid && SearchDC->isRecord())
5432    SetMemberAccessSpecifier(New, PrevDecl, AS);
5433
5434  if (TUK == TUK_Definition)
5435    New->startDefinition();
5436
5437  // If this has an identifier, add it to the scope stack.
5438  if (TUK == TUK_Friend) {
5439    // We might be replacing an existing declaration in the lookup tables;
5440    // if so, borrow its access specifier.
5441    if (PrevDecl)
5442      New->setAccess(PrevDecl->getAccess());
5443
5444    DeclContext *DC = New->getDeclContext()->getLookupContext();
5445    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5446    if (Name) // can be null along some error paths
5447      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5448        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5449  } else if (Name) {
5450    S = getNonFieldDeclScope(S);
5451    PushOnScopeChains(New, S);
5452  } else {
5453    CurContext->addDecl(New);
5454  }
5455
5456  // If this is the C FILE type, notify the AST context.
5457  if (IdentifierInfo *II = New->getIdentifier())
5458    if (!New->isInvalidDecl() &&
5459        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5460        II->isStr("FILE"))
5461      Context.setFILEDecl(New);
5462
5463  OwnedDecl = true;
5464  return DeclPtrTy::make(New);
5465}
5466
5467void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5468  AdjustDeclIfTemplate(TagD);
5469  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5470
5471  // Enter the tag context.
5472  PushDeclContext(S, Tag);
5473}
5474
5475void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5476                                           SourceLocation LBraceLoc) {
5477  AdjustDeclIfTemplate(TagD);
5478  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5479
5480  FieldCollector->StartClass();
5481
5482  if (!Record->getIdentifier())
5483    return;
5484
5485  // C++ [class]p2:
5486  //   [...] The class-name is also inserted into the scope of the
5487  //   class itself; this is known as the injected-class-name. For
5488  //   purposes of access checking, the injected-class-name is treated
5489  //   as if it were a public member name.
5490  CXXRecordDecl *InjectedClassName
5491    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5492                            CurContext, Record->getLocation(),
5493                            Record->getIdentifier(),
5494                            Record->getTagKeywordLoc(),
5495                            Record);
5496  InjectedClassName->setImplicit();
5497  InjectedClassName->setAccess(AS_public);
5498  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5499      InjectedClassName->setDescribedClassTemplate(Template);
5500  PushOnScopeChains(InjectedClassName, S);
5501  assert(InjectedClassName->isInjectedClassName() &&
5502         "Broken injected-class-name");
5503}
5504
5505void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5506                                    SourceLocation RBraceLoc) {
5507  AdjustDeclIfTemplate(TagD);
5508  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5509  Tag->setRBraceLoc(RBraceLoc);
5510
5511  if (isa<CXXRecordDecl>(Tag))
5512    FieldCollector->FinishClass();
5513
5514  // Exit this scope of this tag's definition.
5515  PopDeclContext();
5516
5517  // Notify the consumer that we've defined a tag.
5518  Consumer.HandleTagDeclDefinition(Tag);
5519}
5520
5521void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5522  AdjustDeclIfTemplate(TagD);
5523  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5524  Tag->setInvalidDecl();
5525
5526  // We're undoing ActOnTagStartDefinition here, not
5527  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5528  // the FieldCollector.
5529
5530  PopDeclContext();
5531}
5532
5533// Note that FieldName may be null for anonymous bitfields.
5534bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5535                          QualType FieldTy, const Expr *BitWidth,
5536                          bool *ZeroWidth) {
5537  // Default to true; that shouldn't confuse checks for emptiness
5538  if (ZeroWidth)
5539    *ZeroWidth = true;
5540
5541  // C99 6.7.2.1p4 - verify the field type.
5542  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5543  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5544    // Handle incomplete types with specific error.
5545    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5546      return true;
5547    if (FieldName)
5548      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5549        << FieldName << FieldTy << BitWidth->getSourceRange();
5550    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5551      << FieldTy << BitWidth->getSourceRange();
5552  }
5553
5554  // If the bit-width is type- or value-dependent, don't try to check
5555  // it now.
5556  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5557    return false;
5558
5559  llvm::APSInt Value;
5560  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5561    return true;
5562
5563  if (Value != 0 && ZeroWidth)
5564    *ZeroWidth = false;
5565
5566  // Zero-width bitfield is ok for anonymous field.
5567  if (Value == 0 && FieldName)
5568    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5569
5570  if (Value.isSigned() && Value.isNegative()) {
5571    if (FieldName)
5572      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5573               << FieldName << Value.toString(10);
5574    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5575      << Value.toString(10);
5576  }
5577
5578  if (!FieldTy->isDependentType()) {
5579    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5580    if (Value.getZExtValue() > TypeSize) {
5581      if (!getLangOptions().CPlusPlus) {
5582        if (FieldName)
5583          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5584            << FieldName << (unsigned)Value.getZExtValue()
5585            << (unsigned)TypeSize;
5586
5587        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5588          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5589      }
5590
5591      if (FieldName)
5592        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5593          << FieldName << (unsigned)Value.getZExtValue()
5594          << (unsigned)TypeSize;
5595      else
5596        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5597          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5598    }
5599  }
5600
5601  return false;
5602}
5603
5604/// ActOnField - Each field of a struct/union/class is passed into this in order
5605/// to create a FieldDecl object for it.
5606Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5607                                 SourceLocation DeclStart,
5608                                 Declarator &D, ExprTy *BitfieldWidth) {
5609  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5610                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5611                               AS_public);
5612  return DeclPtrTy::make(Res);
5613}
5614
5615/// HandleField - Analyze a field of a C struct or a C++ data member.
5616///
5617FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5618                             SourceLocation DeclStart,
5619                             Declarator &D, Expr *BitWidth,
5620                             AccessSpecifier AS) {
5621  IdentifierInfo *II = D.getIdentifier();
5622  SourceLocation Loc = DeclStart;
5623  if (II) Loc = D.getIdentifierLoc();
5624
5625  TypeSourceInfo *TInfo = 0;
5626  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5627  if (getLangOptions().CPlusPlus)
5628    CheckExtraCXXDefaultArguments(D);
5629
5630  DiagnoseFunctionSpecifiers(D);
5631
5632  if (D.getDeclSpec().isThreadSpecified())
5633    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5634
5635  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5636                                         ForRedeclaration);
5637
5638  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5639    // Maybe we will complain about the shadowed template parameter.
5640    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5641    // Just pretend that we didn't see the previous declaration.
5642    PrevDecl = 0;
5643  }
5644
5645  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5646    PrevDecl = 0;
5647
5648  bool Mutable
5649    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5650  SourceLocation TSSL = D.getSourceRange().getBegin();
5651  FieldDecl *NewFD
5652    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5653                     AS, PrevDecl, &D);
5654
5655  if (NewFD->isInvalidDecl())
5656    Record->setInvalidDecl();
5657
5658  if (NewFD->isInvalidDecl() && PrevDecl) {
5659    // Don't introduce NewFD into scope; there's already something
5660    // with the same name in the same scope.
5661  } else if (II) {
5662    PushOnScopeChains(NewFD, S);
5663  } else
5664    Record->addDecl(NewFD);
5665
5666  return NewFD;
5667}
5668
5669/// \brief Build a new FieldDecl and check its well-formedness.
5670///
5671/// This routine builds a new FieldDecl given the fields name, type,
5672/// record, etc. \p PrevDecl should refer to any previous declaration
5673/// with the same name and in the same scope as the field to be
5674/// created.
5675///
5676/// \returns a new FieldDecl.
5677///
5678/// \todo The Declarator argument is a hack. It will be removed once
5679FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5680                                TypeSourceInfo *TInfo,
5681                                RecordDecl *Record, SourceLocation Loc,
5682                                bool Mutable, Expr *BitWidth,
5683                                SourceLocation TSSL,
5684                                AccessSpecifier AS, NamedDecl *PrevDecl,
5685                                Declarator *D) {
5686  IdentifierInfo *II = Name.getAsIdentifierInfo();
5687  bool InvalidDecl = false;
5688  if (D) InvalidDecl = D->isInvalidType();
5689
5690  // If we receive a broken type, recover by assuming 'int' and
5691  // marking this declaration as invalid.
5692  if (T.isNull()) {
5693    InvalidDecl = true;
5694    T = Context.IntTy;
5695  }
5696
5697  QualType EltTy = Context.getBaseElementType(T);
5698  if (!EltTy->isDependentType() &&
5699      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5700    InvalidDecl = true;
5701
5702  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5703  // than a variably modified type.
5704  if (!InvalidDecl && T->isVariablyModifiedType()) {
5705    bool SizeIsNegative;
5706    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5707                                                           SizeIsNegative);
5708    if (!FixedTy.isNull()) {
5709      Diag(Loc, diag::warn_illegal_constant_array_size);
5710      T = FixedTy;
5711    } else {
5712      if (SizeIsNegative)
5713        Diag(Loc, diag::err_typecheck_negative_array_size);
5714      else
5715        Diag(Loc, diag::err_typecheck_field_variable_size);
5716      InvalidDecl = true;
5717    }
5718  }
5719
5720  // Fields can not have abstract class types
5721  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5722                                             diag::err_abstract_type_in_decl,
5723                                             AbstractFieldType))
5724    InvalidDecl = true;
5725
5726  bool ZeroWidth = false;
5727  // If this is declared as a bit-field, check the bit-field.
5728  if (!InvalidDecl && BitWidth &&
5729      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5730    InvalidDecl = true;
5731    DeleteExpr(BitWidth);
5732    BitWidth = 0;
5733    ZeroWidth = false;
5734  }
5735
5736  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5737                                       BitWidth, Mutable);
5738  if (InvalidDecl)
5739    NewFD->setInvalidDecl();
5740
5741  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5742    Diag(Loc, diag::err_duplicate_member) << II;
5743    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5744    NewFD->setInvalidDecl();
5745  }
5746
5747  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5748    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5749
5750    if (!T->isPODType())
5751      CXXRecord->setPOD(false);
5752    if (!ZeroWidth)
5753      CXXRecord->setEmpty(false);
5754
5755    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5756      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5757
5758      if (!RDecl->hasTrivialConstructor())
5759        CXXRecord->setHasTrivialConstructor(false);
5760      if (!RDecl->hasTrivialCopyConstructor())
5761        CXXRecord->setHasTrivialCopyConstructor(false);
5762      if (!RDecl->hasTrivialCopyAssignment())
5763        CXXRecord->setHasTrivialCopyAssignment(false);
5764      if (!RDecl->hasTrivialDestructor())
5765        CXXRecord->setHasTrivialDestructor(false);
5766
5767      // C++ 9.5p1: An object of a class with a non-trivial
5768      // constructor, a non-trivial copy constructor, a non-trivial
5769      // destructor, or a non-trivial copy assignment operator
5770      // cannot be a member of a union, nor can an array of such
5771      // objects.
5772      // TODO: C++0x alters this restriction significantly.
5773      if (Record->isUnion()) {
5774        // We check for copy constructors before constructors
5775        // because otherwise we'll never get complaints about
5776        // copy constructors.
5777
5778        CXXSpecialMember member = CXXInvalid;
5779        if (!RDecl->hasTrivialCopyConstructor())
5780          member = CXXCopyConstructor;
5781        else if (!RDecl->hasTrivialConstructor())
5782          member = CXXConstructor;
5783        else if (!RDecl->hasTrivialCopyAssignment())
5784          member = CXXCopyAssignment;
5785        else if (!RDecl->hasTrivialDestructor())
5786          member = CXXDestructor;
5787
5788        if (member != CXXInvalid) {
5789          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5790          DiagnoseNontrivial(RT, member);
5791          NewFD->setInvalidDecl();
5792        }
5793      }
5794    }
5795  }
5796
5797  // FIXME: We need to pass in the attributes given an AST
5798  // representation, not a parser representation.
5799  if (D)
5800    // FIXME: What to pass instead of TUScope?
5801    ProcessDeclAttributes(TUScope, NewFD, *D);
5802
5803  if (T.isObjCGCWeak())
5804    Diag(Loc, diag::warn_attribute_weak_on_field);
5805
5806  NewFD->setAccess(AS);
5807
5808  // C++ [dcl.init.aggr]p1:
5809  //   An aggregate is an array or a class (clause 9) with [...] no
5810  //   private or protected non-static data members (clause 11).
5811  // A POD must be an aggregate.
5812  if (getLangOptions().CPlusPlus &&
5813      (AS == AS_private || AS == AS_protected)) {
5814    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5815    CXXRecord->setAggregate(false);
5816    CXXRecord->setPOD(false);
5817  }
5818
5819  return NewFD;
5820}
5821
5822/// DiagnoseNontrivial - Given that a class has a non-trivial
5823/// special member, figure out why.
5824void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5825  QualType QT(T, 0U);
5826  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5827
5828  // Check whether the member was user-declared.
5829  switch (member) {
5830  case CXXInvalid:
5831    break;
5832
5833  case CXXConstructor:
5834    if (RD->hasUserDeclaredConstructor()) {
5835      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5836      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5837        const FunctionDecl *body = 0;
5838        ci->getBody(body);
5839        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5840          SourceLocation CtorLoc = ci->getLocation();
5841          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5842          return;
5843        }
5844      }
5845
5846      assert(0 && "found no user-declared constructors");
5847      return;
5848    }
5849    break;
5850
5851  case CXXCopyConstructor:
5852    if (RD->hasUserDeclaredCopyConstructor()) {
5853      SourceLocation CtorLoc =
5854        RD->getCopyConstructor(Context, 0)->getLocation();
5855      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5856      return;
5857    }
5858    break;
5859
5860  case CXXCopyAssignment:
5861    if (RD->hasUserDeclaredCopyAssignment()) {
5862      // FIXME: this should use the location of the copy
5863      // assignment, not the type.
5864      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5865      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5866      return;
5867    }
5868    break;
5869
5870  case CXXDestructor:
5871    if (RD->hasUserDeclaredDestructor()) {
5872      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5873      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5874      return;
5875    }
5876    break;
5877  }
5878
5879  typedef CXXRecordDecl::base_class_iterator base_iter;
5880
5881  // Virtual bases and members inhibit trivial copying/construction,
5882  // but not trivial destruction.
5883  if (member != CXXDestructor) {
5884    // Check for virtual bases.  vbases includes indirect virtual bases,
5885    // so we just iterate through the direct bases.
5886    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5887      if (bi->isVirtual()) {
5888        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5889        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5890        return;
5891      }
5892
5893    // Check for virtual methods.
5894    typedef CXXRecordDecl::method_iterator meth_iter;
5895    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5896         ++mi) {
5897      if (mi->isVirtual()) {
5898        SourceLocation MLoc = mi->getSourceRange().getBegin();
5899        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5900        return;
5901      }
5902    }
5903  }
5904
5905  bool (CXXRecordDecl::*hasTrivial)() const;
5906  switch (member) {
5907  case CXXConstructor:
5908    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5909  case CXXCopyConstructor:
5910    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5911  case CXXCopyAssignment:
5912    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5913  case CXXDestructor:
5914    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5915  default:
5916    assert(0 && "unexpected special member"); return;
5917  }
5918
5919  // Check for nontrivial bases (and recurse).
5920  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5921    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5922    assert(BaseRT && "Don't know how to handle dependent bases");
5923    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5924    if (!(BaseRecTy->*hasTrivial)()) {
5925      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5926      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5927      DiagnoseNontrivial(BaseRT, member);
5928      return;
5929    }
5930  }
5931
5932  // Check for nontrivial members (and recurse).
5933  typedef RecordDecl::field_iterator field_iter;
5934  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5935       ++fi) {
5936    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5937    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5938      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5939
5940      if (!(EltRD->*hasTrivial)()) {
5941        SourceLocation FLoc = (*fi)->getLocation();
5942        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5943        DiagnoseNontrivial(EltRT, member);
5944        return;
5945      }
5946    }
5947  }
5948
5949  assert(0 && "found no explanation for non-trivial member");
5950}
5951
5952/// TranslateIvarVisibility - Translate visibility from a token ID to an
5953///  AST enum value.
5954static ObjCIvarDecl::AccessControl
5955TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5956  switch (ivarVisibility) {
5957  default: assert(0 && "Unknown visitibility kind");
5958  case tok::objc_private: return ObjCIvarDecl::Private;
5959  case tok::objc_public: return ObjCIvarDecl::Public;
5960  case tok::objc_protected: return ObjCIvarDecl::Protected;
5961  case tok::objc_package: return ObjCIvarDecl::Package;
5962  }
5963}
5964
5965/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5966/// in order to create an IvarDecl object for it.
5967Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5968                                SourceLocation DeclStart,
5969                                DeclPtrTy IntfDecl,
5970                                Declarator &D, ExprTy *BitfieldWidth,
5971                                tok::ObjCKeywordKind Visibility) {
5972
5973  IdentifierInfo *II = D.getIdentifier();
5974  Expr *BitWidth = (Expr*)BitfieldWidth;
5975  SourceLocation Loc = DeclStart;
5976  if (II) Loc = D.getIdentifierLoc();
5977
5978  // FIXME: Unnamed fields can be handled in various different ways, for
5979  // example, unnamed unions inject all members into the struct namespace!
5980
5981  TypeSourceInfo *TInfo = 0;
5982  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5983
5984  if (BitWidth) {
5985    // 6.7.2.1p3, 6.7.2.1p4
5986    if (VerifyBitField(Loc, II, T, BitWidth)) {
5987      D.setInvalidType();
5988      DeleteExpr(BitWidth);
5989      BitWidth = 0;
5990    }
5991  } else {
5992    // Not a bitfield.
5993
5994    // validate II.
5995
5996  }
5997  if (T->isReferenceType()) {
5998    Diag(Loc, diag::err_ivar_reference_type);
5999    D.setInvalidType();
6000  }
6001  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6002  // than a variably modified type.
6003  else if (T->isVariablyModifiedType()) {
6004    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6005    D.setInvalidType();
6006  }
6007
6008  // Get the visibility (access control) for this ivar.
6009  ObjCIvarDecl::AccessControl ac =
6010    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6011                                        : ObjCIvarDecl::None;
6012  // Must set ivar's DeclContext to its enclosing interface.
6013  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6014  ObjCContainerDecl *EnclosingContext;
6015  if (ObjCImplementationDecl *IMPDecl =
6016      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6017    // Case of ivar declared in an implementation. Context is that of its class.
6018    EnclosingContext = IMPDecl->getClassInterface();
6019    assert(EnclosingContext && "Implementation has no class interface!");
6020  } else {
6021    if (ObjCCategoryDecl *CDecl =
6022        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6023      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6024        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6025        return DeclPtrTy();
6026      }
6027    }
6028    EnclosingContext = EnclosingDecl;
6029  }
6030
6031  // Construct the decl.
6032  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6033                                             EnclosingContext, Loc, II, T,
6034                                             TInfo, ac, (Expr *)BitfieldWidth);
6035
6036  if (II) {
6037    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6038                                           ForRedeclaration);
6039    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6040        && !isa<TagDecl>(PrevDecl)) {
6041      Diag(Loc, diag::err_duplicate_member) << II;
6042      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6043      NewID->setInvalidDecl();
6044    }
6045  }
6046
6047  // Process attributes attached to the ivar.
6048  ProcessDeclAttributes(S, NewID, D);
6049
6050  if (D.isInvalidType())
6051    NewID->setInvalidDecl();
6052
6053  if (II) {
6054    // FIXME: When interfaces are DeclContexts, we'll need to add
6055    // these to the interface.
6056    S->AddDecl(DeclPtrTy::make(NewID));
6057    IdResolver.AddDecl(NewID);
6058  }
6059
6060  return DeclPtrTy::make(NewID);
6061}
6062
6063void Sema::ActOnFields(Scope* S,
6064                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6065                       DeclPtrTy *Fields, unsigned NumFields,
6066                       SourceLocation LBrac, SourceLocation RBrac,
6067                       AttributeList *Attr) {
6068  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6069  assert(EnclosingDecl && "missing record or interface decl");
6070
6071  // If the decl this is being inserted into is invalid, then it may be a
6072  // redeclaration or some other bogus case.  Don't try to add fields to it.
6073  if (EnclosingDecl->isInvalidDecl()) {
6074    // FIXME: Deallocate fields?
6075    return;
6076  }
6077
6078
6079  // Verify that all the fields are okay.
6080  unsigned NumNamedMembers = 0;
6081  llvm::SmallVector<FieldDecl*, 32> RecFields;
6082
6083  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6084  for (unsigned i = 0; i != NumFields; ++i) {
6085    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6086
6087    // Get the type for the field.
6088    Type *FDTy = FD->getType().getTypePtr();
6089
6090    if (!FD->isAnonymousStructOrUnion()) {
6091      // Remember all fields written by the user.
6092      RecFields.push_back(FD);
6093    }
6094
6095    // If the field is already invalid for some reason, don't emit more
6096    // diagnostics about it.
6097    if (FD->isInvalidDecl()) {
6098      EnclosingDecl->setInvalidDecl();
6099      continue;
6100    }
6101
6102    // C99 6.7.2.1p2:
6103    //   A structure or union shall not contain a member with
6104    //   incomplete or function type (hence, a structure shall not
6105    //   contain an instance of itself, but may contain a pointer to
6106    //   an instance of itself), except that the last member of a
6107    //   structure with more than one named member may have incomplete
6108    //   array type; such a structure (and any union containing,
6109    //   possibly recursively, a member that is such a structure)
6110    //   shall not be a member of a structure or an element of an
6111    //   array.
6112    if (FDTy->isFunctionType()) {
6113      // Field declared as a function.
6114      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6115        << FD->getDeclName();
6116      FD->setInvalidDecl();
6117      EnclosingDecl->setInvalidDecl();
6118      continue;
6119    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6120               Record && Record->isStruct()) {
6121      // Flexible array member.
6122      if (NumNamedMembers < 1) {
6123        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6124          << FD->getDeclName();
6125        FD->setInvalidDecl();
6126        EnclosingDecl->setInvalidDecl();
6127        continue;
6128      }
6129      // Okay, we have a legal flexible array member at the end of the struct.
6130      if (Record)
6131        Record->setHasFlexibleArrayMember(true);
6132    } else if (!FDTy->isDependentType() &&
6133               RequireCompleteType(FD->getLocation(), FD->getType(),
6134                                   diag::err_field_incomplete)) {
6135      // Incomplete type
6136      FD->setInvalidDecl();
6137      EnclosingDecl->setInvalidDecl();
6138      continue;
6139    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6140      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6141        // If this is a member of a union, then entire union becomes "flexible".
6142        if (Record && Record->isUnion()) {
6143          Record->setHasFlexibleArrayMember(true);
6144        } else {
6145          // If this is a struct/class and this is not the last element, reject
6146          // it.  Note that GCC supports variable sized arrays in the middle of
6147          // structures.
6148          if (i != NumFields-1)
6149            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6150              << FD->getDeclName() << FD->getType();
6151          else {
6152            // We support flexible arrays at the end of structs in
6153            // other structs as an extension.
6154            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6155              << FD->getDeclName();
6156            if (Record)
6157              Record->setHasFlexibleArrayMember(true);
6158          }
6159        }
6160      }
6161      if (Record && FDTTy->getDecl()->hasObjectMember())
6162        Record->setHasObjectMember(true);
6163    } else if (FDTy->isObjCObjectType()) {
6164      /// A field cannot be an Objective-c object
6165      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6166      FD->setInvalidDecl();
6167      EnclosingDecl->setInvalidDecl();
6168      continue;
6169    } else if (getLangOptions().ObjC1 &&
6170               getLangOptions().getGCMode() != LangOptions::NonGC &&
6171               Record &&
6172               (FD->getType()->isObjCObjectPointerType() ||
6173                FD->getType().isObjCGCStrong()))
6174      Record->setHasObjectMember(true);
6175    // Keep track of the number of named members.
6176    if (FD->getIdentifier())
6177      ++NumNamedMembers;
6178  }
6179
6180  // Okay, we successfully defined 'Record'.
6181  if (Record) {
6182    Record->completeDefinition();
6183  } else {
6184    ObjCIvarDecl **ClsFields =
6185      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6186    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6187      ID->setLocEnd(RBrac);
6188      // Add ivar's to class's DeclContext.
6189      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6190        ClsFields[i]->setLexicalDeclContext(ID);
6191        ID->addDecl(ClsFields[i]);
6192      }
6193      // Must enforce the rule that ivars in the base classes may not be
6194      // duplicates.
6195      if (ID->getSuperClass())
6196        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6197    } else if (ObjCImplementationDecl *IMPDecl =
6198                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6199      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6200      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6201        // Ivar declared in @implementation never belongs to the implementation.
6202        // Only it is in implementation's lexical context.
6203        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6204      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6205    } else if (ObjCCategoryDecl *CDecl =
6206                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6207      // case of ivars in class extension; all other cases have been
6208      // reported as errors elsewhere.
6209      // FIXME. Class extension does not have a LocEnd field.
6210      // CDecl->setLocEnd(RBrac);
6211      // Add ivar's to class extension's DeclContext.
6212      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6213        ClsFields[i]->setLexicalDeclContext(CDecl);
6214        CDecl->addDecl(ClsFields[i]);
6215      }
6216    }
6217  }
6218
6219  if (Attr)
6220    ProcessDeclAttributeList(S, Record, Attr);
6221}
6222
6223/// \brief Determine whether the given integral value is representable within
6224/// the given type T.
6225static bool isRepresentableIntegerValue(ASTContext &Context,
6226                                        llvm::APSInt &Value,
6227                                        QualType T) {
6228  assert(T->isIntegralType() && "Integral type required!");
6229  unsigned BitWidth = Context.getIntWidth(T);
6230
6231  if (Value.isUnsigned() || Value.isNonNegative())
6232    return Value.getActiveBits() < BitWidth;
6233
6234  return Value.getMinSignedBits() <= BitWidth;
6235}
6236
6237// \brief Given an integral type, return the next larger integral type
6238// (or a NULL type of no such type exists).
6239static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6240  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6241  // enum checking below.
6242  assert(T->isIntegralType() && "Integral type required!");
6243  const unsigned NumTypes = 4;
6244  QualType SignedIntegralTypes[NumTypes] = {
6245    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6246  };
6247  QualType UnsignedIntegralTypes[NumTypes] = {
6248    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6249    Context.UnsignedLongLongTy
6250  };
6251
6252  unsigned BitWidth = Context.getTypeSize(T);
6253  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6254                                            : UnsignedIntegralTypes;
6255  for (unsigned I = 0; I != NumTypes; ++I)
6256    if (Context.getTypeSize(Types[I]) > BitWidth)
6257      return Types[I];
6258
6259  return QualType();
6260}
6261
6262EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6263                                          EnumConstantDecl *LastEnumConst,
6264                                          SourceLocation IdLoc,
6265                                          IdentifierInfo *Id,
6266                                          ExprArg val) {
6267  Expr *Val = (Expr *)val.get();
6268
6269  unsigned IntWidth = Context.Target.getIntWidth();
6270  llvm::APSInt EnumVal(IntWidth);
6271  QualType EltTy;
6272  if (Val) {
6273    if (Enum->isDependentType() || Val->isTypeDependent())
6274      EltTy = Context.DependentTy;
6275    else {
6276      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6277      SourceLocation ExpLoc;
6278      if (!Val->isValueDependent() &&
6279          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6280        Val = 0;
6281      } else {
6282        if (!getLangOptions().CPlusPlus) {
6283          // C99 6.7.2.2p2:
6284          //   The expression that defines the value of an enumeration constant
6285          //   shall be an integer constant expression that has a value
6286          //   representable as an int.
6287
6288          // Complain if the value is not representable in an int.
6289          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6290            Diag(IdLoc, diag::ext_enum_value_not_int)
6291              << EnumVal.toString(10) << Val->getSourceRange()
6292              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6293          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6294            // Force the type of the expression to 'int'.
6295            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6296
6297            if (Val != val.get()) {
6298              val.release();
6299              val = Val;
6300            }
6301          }
6302        }
6303
6304        // C++0x [dcl.enum]p5:
6305        //   If the underlying type is not fixed, the type of each enumerator
6306        //   is the type of its initializing value:
6307        //     - If an initializer is specified for an enumerator, the
6308        //       initializing value has the same type as the expression.
6309        EltTy = Val->getType();
6310      }
6311    }
6312  }
6313
6314  if (!Val) {
6315    if (Enum->isDependentType())
6316      EltTy = Context.DependentTy;
6317    else if (!LastEnumConst) {
6318      // C++0x [dcl.enum]p5:
6319      //   If the underlying type is not fixed, the type of each enumerator
6320      //   is the type of its initializing value:
6321      //     - If no initializer is specified for the first enumerator, the
6322      //       initializing value has an unspecified integral type.
6323      //
6324      // GCC uses 'int' for its unspecified integral type, as does
6325      // C99 6.7.2.2p3.
6326      EltTy = Context.IntTy;
6327    } else {
6328      // Assign the last value + 1.
6329      EnumVal = LastEnumConst->getInitVal();
6330      ++EnumVal;
6331      EltTy = LastEnumConst->getType();
6332
6333      // Check for overflow on increment.
6334      if (EnumVal < LastEnumConst->getInitVal()) {
6335        // C++0x [dcl.enum]p5:
6336        //   If the underlying type is not fixed, the type of each enumerator
6337        //   is the type of its initializing value:
6338        //
6339        //     - Otherwise the type of the initializing value is the same as
6340        //       the type of the initializing value of the preceding enumerator
6341        //       unless the incremented value is not representable in that type,
6342        //       in which case the type is an unspecified integral type
6343        //       sufficient to contain the incremented value. If no such type
6344        //       exists, the program is ill-formed.
6345        QualType T = getNextLargerIntegralType(Context, EltTy);
6346        if (T.isNull()) {
6347          // There is no integral type larger enough to represent this
6348          // value. Complain, then allow the value to wrap around.
6349          EnumVal = LastEnumConst->getInitVal();
6350          EnumVal.zext(EnumVal.getBitWidth() * 2);
6351          Diag(IdLoc, diag::warn_enumerator_too_large)
6352            << EnumVal.toString(10);
6353        } else {
6354          EltTy = T;
6355        }
6356
6357        // Retrieve the last enumerator's value, extent that type to the
6358        // type that is supposed to be large enough to represent the incremented
6359        // value, then increment.
6360        EnumVal = LastEnumConst->getInitVal();
6361        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6362        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6363        ++EnumVal;
6364
6365        // If we're not in C++, diagnose the overflow of enumerator values,
6366        // which in C99 means that the enumerator value is not representable in
6367        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6368        // permits enumerator values that are representable in some larger
6369        // integral type.
6370        if (!getLangOptions().CPlusPlus && !T.isNull())
6371          Diag(IdLoc, diag::warn_enum_value_overflow);
6372      } else if (!getLangOptions().CPlusPlus &&
6373                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6374        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6375        Diag(IdLoc, diag::ext_enum_value_not_int)
6376          << EnumVal.toString(10) << 1;
6377      }
6378    }
6379  }
6380
6381  if (!EltTy->isDependentType()) {
6382    // Make the enumerator value match the signedness and size of the
6383    // enumerator's type.
6384    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6385    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6386  }
6387
6388  val.release();
6389  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6390                                  Val, EnumVal);
6391}
6392
6393
6394Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6395                                        DeclPtrTy lastEnumConst,
6396                                        SourceLocation IdLoc,
6397                                        IdentifierInfo *Id,
6398                                        SourceLocation EqualLoc, ExprTy *val) {
6399  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6400  EnumConstantDecl *LastEnumConst =
6401    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6402  Expr *Val = static_cast<Expr*>(val);
6403
6404  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6405  // we find one that is.
6406  S = getNonFieldDeclScope(S);
6407
6408  // Verify that there isn't already something declared with this name in this
6409  // scope.
6410  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6411                                         ForRedeclaration);
6412  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6413    // Maybe we will complain about the shadowed template parameter.
6414    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6415    // Just pretend that we didn't see the previous declaration.
6416    PrevDecl = 0;
6417  }
6418
6419  if (PrevDecl) {
6420    // When in C++, we may get a TagDecl with the same name; in this case the
6421    // enum constant will 'hide' the tag.
6422    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6423           "Received TagDecl when not in C++!");
6424    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6425      if (isa<EnumConstantDecl>(PrevDecl))
6426        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6427      else
6428        Diag(IdLoc, diag::err_redefinition) << Id;
6429      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6430      if (Val) Val->Destroy(Context);
6431      return DeclPtrTy();
6432    }
6433  }
6434
6435  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6436                                            IdLoc, Id, Owned(Val));
6437
6438  // Register this decl in the current scope stack.
6439  if (New) {
6440    New->setAccess(TheEnumDecl->getAccess());
6441    PushOnScopeChains(New, S);
6442  }
6443
6444  return DeclPtrTy::make(New);
6445}
6446
6447void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6448                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6449                         DeclPtrTy *Elements, unsigned NumElements,
6450                         Scope *S, AttributeList *Attr) {
6451  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6452  QualType EnumType = Context.getTypeDeclType(Enum);
6453
6454  if (Attr)
6455    ProcessDeclAttributeList(S, Enum, Attr);
6456
6457  if (Enum->isDependentType()) {
6458    for (unsigned i = 0; i != NumElements; ++i) {
6459      EnumConstantDecl *ECD =
6460        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6461      if (!ECD) continue;
6462
6463      ECD->setType(EnumType);
6464    }
6465
6466    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6467    return;
6468  }
6469
6470  // TODO: If the result value doesn't fit in an int, it must be a long or long
6471  // long value.  ISO C does not support this, but GCC does as an extension,
6472  // emit a warning.
6473  unsigned IntWidth = Context.Target.getIntWidth();
6474  unsigned CharWidth = Context.Target.getCharWidth();
6475  unsigned ShortWidth = Context.Target.getShortWidth();
6476
6477  // Verify that all the values are okay, compute the size of the values, and
6478  // reverse the list.
6479  unsigned NumNegativeBits = 0;
6480  unsigned NumPositiveBits = 0;
6481
6482  // Keep track of whether all elements have type int.
6483  bool AllElementsInt = true;
6484
6485  for (unsigned i = 0; i != NumElements; ++i) {
6486    EnumConstantDecl *ECD =
6487      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6488    if (!ECD) continue;  // Already issued a diagnostic.
6489
6490    const llvm::APSInt &InitVal = ECD->getInitVal();
6491
6492    // Keep track of the size of positive and negative values.
6493    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6494      NumPositiveBits = std::max(NumPositiveBits,
6495                                 (unsigned)InitVal.getActiveBits());
6496    else
6497      NumNegativeBits = std::max(NumNegativeBits,
6498                                 (unsigned)InitVal.getMinSignedBits());
6499
6500    // Keep track of whether every enum element has type int (very commmon).
6501    if (AllElementsInt)
6502      AllElementsInt = ECD->getType() == Context.IntTy;
6503  }
6504
6505  // Figure out the type that should be used for this enum.
6506  // FIXME: Support -fshort-enums.
6507  QualType BestType;
6508  unsigned BestWidth;
6509
6510  // C++0x N3000 [conv.prom]p3:
6511  //   An rvalue of an unscoped enumeration type whose underlying
6512  //   type is not fixed can be converted to an rvalue of the first
6513  //   of the following types that can represent all the values of
6514  //   the enumeration: int, unsigned int, long int, unsigned long
6515  //   int, long long int, or unsigned long long int.
6516  // C99 6.4.4.3p2:
6517  //   An identifier declared as an enumeration constant has type int.
6518  // The C99 rule is modified by a gcc extension
6519  QualType BestPromotionType;
6520
6521  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6522
6523  if (NumNegativeBits) {
6524    // If there is a negative value, figure out the smallest integer type (of
6525    // int/long/longlong) that fits.
6526    // If it's packed, check also if it fits a char or a short.
6527    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6528      BestType = Context.SignedCharTy;
6529      BestWidth = CharWidth;
6530    } else if (Packed && NumNegativeBits <= ShortWidth &&
6531               NumPositiveBits < ShortWidth) {
6532      BestType = Context.ShortTy;
6533      BestWidth = ShortWidth;
6534    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6535      BestType = Context.IntTy;
6536      BestWidth = IntWidth;
6537    } else {
6538      BestWidth = Context.Target.getLongWidth();
6539
6540      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6541        BestType = Context.LongTy;
6542      } else {
6543        BestWidth = Context.Target.getLongLongWidth();
6544
6545        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6546          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6547        BestType = Context.LongLongTy;
6548      }
6549    }
6550    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6551  } else {
6552    // If there is no negative value, figure out the smallest type that fits
6553    // all of the enumerator values.
6554    // If it's packed, check also if it fits a char or a short.
6555    if (Packed && NumPositiveBits <= CharWidth) {
6556      BestType = Context.UnsignedCharTy;
6557      BestPromotionType = Context.IntTy;
6558      BestWidth = CharWidth;
6559    } else if (Packed && NumPositiveBits <= ShortWidth) {
6560      BestType = Context.UnsignedShortTy;
6561      BestPromotionType = Context.IntTy;
6562      BestWidth = ShortWidth;
6563    } else if (NumPositiveBits <= IntWidth) {
6564      BestType = Context.UnsignedIntTy;
6565      BestWidth = IntWidth;
6566      BestPromotionType
6567        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6568                           ? Context.UnsignedIntTy : Context.IntTy;
6569    } else if (NumPositiveBits <=
6570               (BestWidth = Context.Target.getLongWidth())) {
6571      BestType = Context.UnsignedLongTy;
6572      BestPromotionType
6573        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6574                           ? Context.UnsignedLongTy : Context.LongTy;
6575    } else {
6576      BestWidth = Context.Target.getLongLongWidth();
6577      assert(NumPositiveBits <= BestWidth &&
6578             "How could an initializer get larger than ULL?");
6579      BestType = Context.UnsignedLongLongTy;
6580      BestPromotionType
6581        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6582                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6583    }
6584  }
6585
6586  // Loop over all of the enumerator constants, changing their types to match
6587  // the type of the enum if needed.
6588  for (unsigned i = 0; i != NumElements; ++i) {
6589    EnumConstantDecl *ECD =
6590      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6591    if (!ECD) continue;  // Already issued a diagnostic.
6592
6593    // Standard C says the enumerators have int type, but we allow, as an
6594    // extension, the enumerators to be larger than int size.  If each
6595    // enumerator value fits in an int, type it as an int, otherwise type it the
6596    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6597    // that X has type 'int', not 'unsigned'.
6598
6599    // Determine whether the value fits into an int.
6600    llvm::APSInt InitVal = ECD->getInitVal();
6601
6602    // If it fits into an integer type, force it.  Otherwise force it to match
6603    // the enum decl type.
6604    QualType NewTy;
6605    unsigned NewWidth;
6606    bool NewSign;
6607    if (!getLangOptions().CPlusPlus &&
6608        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6609      NewTy = Context.IntTy;
6610      NewWidth = IntWidth;
6611      NewSign = true;
6612    } else if (ECD->getType() == BestType) {
6613      // Already the right type!
6614      if (getLangOptions().CPlusPlus)
6615        // C++ [dcl.enum]p4: Following the closing brace of an
6616        // enum-specifier, each enumerator has the type of its
6617        // enumeration.
6618        ECD->setType(EnumType);
6619      continue;
6620    } else {
6621      NewTy = BestType;
6622      NewWidth = BestWidth;
6623      NewSign = BestType->isSignedIntegerType();
6624    }
6625
6626    // Adjust the APSInt value.
6627    InitVal.extOrTrunc(NewWidth);
6628    InitVal.setIsSigned(NewSign);
6629    ECD->setInitVal(InitVal);
6630
6631    // Adjust the Expr initializer and type.
6632    if (ECD->getInitExpr())
6633      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6634                                                      CastExpr::CK_IntegralCast,
6635                                                      ECD->getInitExpr(),
6636                                                      CXXBaseSpecifierArray(),
6637                                                      /*isLvalue=*/false));
6638    if (getLangOptions().CPlusPlus)
6639      // C++ [dcl.enum]p4: Following the closing brace of an
6640      // enum-specifier, each enumerator has the type of its
6641      // enumeration.
6642      ECD->setType(EnumType);
6643    else
6644      ECD->setType(NewTy);
6645  }
6646
6647  Enum->completeDefinition(BestType, BestPromotionType,
6648                           NumPositiveBits, NumNegativeBits);
6649}
6650
6651Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6652                                            ExprArg expr) {
6653  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6654
6655  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6656                                                   Loc, AsmString);
6657  CurContext->addDecl(New);
6658  return DeclPtrTy::make(New);
6659}
6660
6661void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6662                             SourceLocation PragmaLoc,
6663                             SourceLocation NameLoc) {
6664  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6665
6666  if (PrevDecl) {
6667    PrevDecl->addAttr(::new (Context) WeakAttr());
6668  } else {
6669    (void)WeakUndeclaredIdentifiers.insert(
6670      std::pair<IdentifierInfo*,WeakInfo>
6671        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6672  }
6673}
6674
6675void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6676                                IdentifierInfo* AliasName,
6677                                SourceLocation PragmaLoc,
6678                                SourceLocation NameLoc,
6679                                SourceLocation AliasNameLoc) {
6680  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6681                                    LookupOrdinaryName);
6682  WeakInfo W = WeakInfo(Name, NameLoc);
6683
6684  if (PrevDecl) {
6685    if (!PrevDecl->hasAttr<AliasAttr>())
6686      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6687        DeclApplyPragmaWeak(TUScope, ND, W);
6688  } else {
6689    (void)WeakUndeclaredIdentifiers.insert(
6690      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6691  }
6692}
6693